WO2013047824A1 - 放射線測定器 - Google Patents

放射線測定器 Download PDF

Info

Publication number
WO2013047824A1
WO2013047824A1 PCT/JP2012/075221 JP2012075221W WO2013047824A1 WO 2013047824 A1 WO2013047824 A1 WO 2013047824A1 JP 2012075221 W JP2012075221 W JP 2012075221W WO 2013047824 A1 WO2013047824 A1 WO 2013047824A1
Authority
WO
WIPO (PCT)
Prior art keywords
counter
value
count value
measuring instrument
radiation measuring
Prior art date
Application number
PCT/JP2012/075221
Other languages
English (en)
French (fr)
Inventor
牧野 俊一郎
徹 小野寺
美徳 佐藤
直人 久米
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to US14/348,393 priority Critical patent/US9383455B2/en
Priority to EP12837075.6A priority patent/EP2762923B1/en
Publication of WO2013047824A1 publication Critical patent/WO2013047824A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector
    • G01T1/172Circuit arrangements not adapted to a particular type of detector with coincidence circuit arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/17Circuit arrangements not adapted to a particular type of detector
    • G01T1/171Compensation of dead-time counting losses

Definitions

  • the present invention relates to a radiation measuring instrument that detects and counts radiation.
  • radioactive materials with strong radioactivity may be scattered over a wide area. For this reason, it is necessary to investigate the presence or absence of radioactive substances in the environment over a wide area, and to remove any radioactive substances.
  • Patent Documents 1 and 2 Conventionally, techniques for detecting pileup and preventing pileup have been proposed (see, for example, Patent Documents 1 and 2).
  • the count within the measurement time exceeds the capacity of the counting circuit, the digits overflow (hereinafter referred to as “overflow”), and the count output by the counting circuit becomes smaller than the count input to the counting circuit.
  • overflow the digits overflow
  • the maximum measurement value is 255 in the 8-bit counting circuit, and thus the measurement value is 0.
  • the radioactivity is judged to be weak like the pile-up, which may lead to exposure.
  • Non-Patent Document 1 In order to avoid erroneous measurement due to overflow, a technique has been proposed that displays when the counting circuit overflows (see Non-Patent Document 1).
  • the conventional technology has detected pile-up detection and prevention of pile-up, while increasing the complexity and size of the apparatus. Also, if an overflow occurs, the fact that it has overflowed is displayed, but the display of the count has overflowed, and it was difficult for workers who are not familiar with the handling of radiation measuring instruments to determine the overflow. .
  • the present invention has been made in consideration of such circumstances, and an object thereof is to provide a radiation measuring instrument that can prevent misidentification of radioactivity without depending on the skill and knowledge of radiation measurement of workers. To do.
  • a radiation measuring instrument when detecting radiation, a radiation sensor that generates a detection signal, a first counter that counts the detection signal, and a periodic signal at a predetermined period.
  • An AND circuit that outputs a logical product of the detection signal and the periodic signal, a second counter that counts an output signal of the AND circuit, and a count value of the second counter is a first value. If the count value of the first counter is less than or equal to the first predetermined value, the count value of the first counter is displayed. And a display for displaying different values.
  • the radiometer according to the present invention it is possible to prevent misidentification of radioactivity without depending on the skill level and knowledge of radiation measurement of workers.
  • the circuit block diagram of the radiation measuring device in 1st Embodiment It is explanatory drawing which shows the mode of the pulse which a comparator, an oscillator, and an AND circuit generate
  • (A) is a figure which shows the electrical pulse output from a radiation sensor
  • (B) is a waveform shaping circuit
  • (C) is a diagram showing a detection pulse output from a comparator
  • (D) is a diagram showing a periodic pulse output from an oscillator
  • E) is an output from an AND circuit. The figure which shows the output signal to be performed.
  • FIG. 1 is a circuit configuration diagram of the radiation measuring instrument 1 according to the first embodiment.
  • the radiation measuring instrument 1 includes a radiation sensor 10, a waveform shaping circuit 12, a comparator 13, a discrimination level setting unit 14, and a first counter 15 as a radiation measuring unit.
  • the radiation sensor 10 generates an electric pulse when detecting radiation.
  • the waveform shaping circuit 12 converts the generated electric pulse into a shaping pulse that can be counted by a subsequent circuit.
  • the comparator 13 discriminates the shaping pulse output from the waveform shaping circuit 12.
  • the discrimination level setting unit 14 outputs the set voltage to the comparator 13.
  • the first counter 15 counts the detection pulse that is the output of the comparator 13 for a predetermined time.
  • the radiation measuring instrument 1 includes an oscillator 16, an AND circuit 17, a second counter 18, a comparison circuit 19, a coefficient setting circuit 20, and a selector 21 as a pile-up prevention unit for preventing pile-up.
  • the oscillator 16 continuously generates periodic pulses (periodic signals) at a predetermined period.
  • the AND circuit 17 outputs a logical product of the detection pulse output from the comparator 13 and the periodic pulse output from the oscillator 16.
  • the second counter 18 counts the output signal output from the AND circuit 17 for a predetermined time.
  • the comparison circuit 19 outputs a false logic signal when the value of the second counter 18 is greater than or equal to the set value 22 and less than the set value.
  • the coefficient setting circuit 20 sets a predetermined coefficient for the count value output from the second counter 18.
  • the selector 21 (display control circuit) outputs the count value of the first counter 15 when the output of the comparison circuit 19 is false. Further, the selector 21 outputs the count value of the second counter 18 multiplied by the coefficient when the output of the comparison circuit 19 is true.
  • the radiation measuring instrument 1 has a display 23 for displaying the values of the counters 15 and 18 output from the selector 21.
  • FIG. 2 is an explanatory diagram showing the state of pulses generated by the comparator 13, the oscillator 16, the AND circuit 17 and the like when no pile-up has occurred.
  • 2A is a diagram showing an electrical pulse 31 output from the radiation sensor 10
  • FIG. 2B is a diagram showing a shaped pulse 32 that is shaped and output by the waveform shaping circuit 12.
  • FIG. 2C shows the detection pulse 33 output from the comparator 13
  • FIG. 2D shows the periodic pulse 34 output from the oscillator 16
  • FIG. 2E shows the output signal 35 output from the AND circuit 17.
  • the waveform shaping circuit 12 shapes the electric pulse 31 into a shaped pulse 32 having a width of several ⁇ s shown in FIG.
  • the comparator 13 outputs a detection pulse (detection signal) 33 indicating the output 1 shown in FIG. Since the width of the shaping pulse 32 is several ⁇ s, the output of the comparator 13 (detection pulse 33) is a pulse having a width of several ⁇ s.
  • the output of the comparator 13 is output to the first counter 15.
  • the first counter 15 counts the detection pulse 33 for a certain period.
  • the detection pulse 33 is output to the AND circuit 17 at the same time.
  • the AND circuit 17 calculates the logical product of the detection pulse 33 of the comparator 13 and the periodic pulse 34 of the oscillator 16. That is, the AND circuit 17 outputs the periodic pulse 34 output from the oscillator 16 as the output signal 35 to the second counter 18 while the output of the comparator 13 is 1 (while the detection pulse 33 is output).
  • the second counter 18 counts the output of the AND circuit 17 for a certain period.
  • the width of the periodic pulse 34 is sufficiently smaller than the width of the shaping pulse 32 (for example, about 1/5 of the detection pulse 33), and the periodic pulse 34 is always output to the second counter 18 while the shaping pulse 32 is generated. Is set to
  • the comparison circuit 19 compares the count value of the second counter 18 with the set value 22. As the set value 22, a value that can be used to determine whether or not the radiation measuring instrument 1 is in a pile-up state is arbitrarily selected and set. The comparison circuit 19 outputs false when the count value of the second counter 18 is less than the set value 22, that is, when the count of the output signal 35 is not a pile-up state and is small.
  • the selector 21 When the output is false, the selector 21 outputs the value of the first counter 15 to the display 23, and the display 23 displays the actual count value corresponding to the number of radiation inputs.
  • FIG. 3 is an explanatory diagram showing the state of pulses generated in the comparator 13, the oscillator 16, the AND circuit 17 and the like when a pile-up occurs.
  • the shaping pulse 32 is overlapped and piled up as shown in FIG.
  • the detection pulse 33 of the comparator 13 also becomes a pulse with a wide overlapping width. Despite the strong radiation, the number of detection pulses 33 decreases, and the count value counted by the first counter 15 for a certain period decreases.
  • the AND circuit 17 outputs the periodic pulse 34 output from the oscillator 16 as the output signal 35 to the second counter 18 while the output of the comparator 13 is 1 (while the detection pulse 33 is output). That is, the count value of the first counter 15 decreases, but the output signal 35 increases in proportion to the width of the detection pulse 33, so the count value of the second counter 18 increases.
  • the comparison circuit 19 compares the second counter 18 with the set value 22.
  • the comparison circuit 19 outputs true when the count value of the second counter 18 is greater than or equal to the set value 22, that is, when the pile-up state occurs and the count of the output signal 35 is large.
  • the selector 21 When the output is true, the selector 21 outputs the value of the second counter 18 multiplied by the coefficient in the coefficient setting circuit 20 (value based on the count value of the second counter 18) to the display 23, and the display 23 displays a value reflecting the actual count of detected radiation. That is, the output of the first counter 15 having a pile-up state and a small count value is not displayed.
  • the coefficient setting circuit 20 is provided in order to give continuity to the output value when the count value of the first counter 15 is switched to the count value of the second counter 18, and the coefficient is set appropriately.
  • the radiation measuring instrument 1 in the first embodiment detects from the count value of the second counter 18 that the shaping pulse 32 is piled up. When the pile-up is detected, the radiation measuring instrument 1 switches from the first counter 15 to the measured value of the second counter 18, so that the count display displayed on the display 23 is not reduced, and the actual radioactivity is not reduced. Displays a large value reflecting the state of. Thereby, the radiation measuring instrument 1 can measure the radiation regardless of the knowledge and skill level of the worker, and can prevent misidentification of the measurement value due to pile-up.
  • the radiation measuring instrument 1 in the first embodiment sets the value of the first counter 15 to a predetermined value instead of the actual count value when the count value of the second counter 18 is larger than the set value 22. 23 may be displayed.
  • FIG. 4 is a circuit configuration diagram of a radiation measuring instrument 41 as a modification of the first embodiment.
  • symbol is attached
  • the radiation measuring instrument 41 includes a radiation sensor 10, a waveform shaping circuit 12, a comparator 13, a discrimination level setting unit 14, and a first counter 15 as a radiation measuring unit.
  • the radiation measuring instrument 41 includes an oscillator 16, an AND circuit 17, a second counter 18, and a comparison circuit 42 as a pile-up prevention unit for preventing pile-up. Furthermore, the radiation measuring instrument 41 has a display 23.
  • the comparison circuit 42 outputs a false logic signal to the first counter 15 when the value of the second counter 18 is greater than or equal to the set value 22 and less than the set value.
  • the first counter 15 is set to a preset value when the output of the comparison circuit 42 is true.
  • the comparison circuit 42 compares the count value of the second counter 18 with the set value 22. When the count value of the second counter 18 is less than the set value 22 and is not in the pile-up state, the comparison circuit 42 outputs false and the actual count value of the first counter 15 is output to the display 23.
  • the display 23 displays a count value corresponding to the number of detected radiation.
  • the comparison circuit 42 When the count value of the second counter 18 becomes the set value 22 or more and the pile-up state is entered, the comparison circuit 42 outputs true.
  • the comparison circuit 42 sets the count value of the first counter 15 to a preset value.
  • the preset value is, for example, the maximum value of the first counter 15 and a value larger than the count value of the first counter 15 that has become smaller by pileup.
  • the set count value of the first counter 15 is output to the display 23 and displayed.
  • the radiation measuring instrument 41 detects the pile-up state, the count value displayed on the display unit 23 does not become small by setting the count value of the first counter 15 to a preset large value. For this reason, the radiation measuring instrument 41 displays a large value, thereby making it possible for the worker to recognize that the radioactivity is strong and preventing misperception in measurement.
  • the radiation measuring instrument 41 can omit the selector 21 provided in the radiation measuring instrument 1 of the first embodiment, the configuration can be simplified.
  • FIG. 5 is a circuit configuration diagram of the first counter 60 of the radiation measuring instrument 51 in the second embodiment.
  • the radiation measuring instrument 51 in the second embodiment is different from the first embodiment in that the first counter 60 has a configuration for preventing misidentification of workers due to overflow of the first counter 60. Since the configuration other than the first counter 60 is substantially the same as that of the radiation measuring instrument 1 of the first embodiment, the illustration is omitted. Moreover, the same code
  • the radiation measuring instrument 51 includes a radiation sensor 10, a waveform shaping circuit 12, a comparator 13, a discrimination level setting unit 14 (see FIG. 1), and a first counter 60 as a radiation measuring unit.
  • the radiation measuring instrument 51 includes an oscillator 16, an AND circuit 17, a second counter 18, and a comparison circuit 19 (see FIG. 1) as a pile-up prevention unit for preventing pile-up.
  • the radiation measuring instrument 51 includes a display 23 (see FIG. 1).
  • the radiation measuring instrument 51 may omit the pile-up prevention unit.
  • the first counter 60 has a counter 61, a comparison circuit 62, and a selector 63 as an overflow prevention unit for preventing overflow.
  • the counter 61 counts the output of the comparator 13 for a certain time.
  • the comparison circuit 62 outputs a false logic signal when the count value of the counter 61 reaches the maximum value 65 of the counter 61 and when it is less than the maximum value 65.
  • the selector 63 outputs the actual count value of the counter 61 when the output of the comparison circuit 62 is false.
  • the selector 63 outputs the maximum value 65 of the counter 61 when the output of the comparison circuit 62 is true.
  • the radiation sensor 10 generates an electric pulse 31 when detecting radiation.
  • the waveform shaping circuit 12 shapes the electric pulse 31 into a shaped pulse 32 having a width of several ⁇ s.
  • the comparator 13 outputs a detection pulse (detection signal) 33 indicating output 1 when the peak value of the shaping pulse 32 is larger than the voltage set in the discrimination level setting unit 14.
  • the output of the comparator 13 is output to the counter 61 of the first counter 60.
  • the counter 61 counts the detection pulse 33 for a certain period.
  • the comparison circuit 62 compares the count value of the counter 61 with the maximum value 65. When the count value of the counter 61 is less than the maximum value 65, false is output.
  • the selector 63 outputs the actual radiation count value of the counter 61 to the display unit 23.
  • the display 23 displays the count value of the counter 61.
  • the comparison circuit 62 outputs true when the count value of the counter 61 is the maximum value 65, that is, when the counter 61 reaches the maximum value that can be measured.
  • the selector 63 outputs the maximum value 65 of the counter 61 to the display 23 until a predetermined timing (for example, until the next measurement is started).
  • the display 23 displays the maximum value 65 of the counter 61.
  • the counter 61 does not overflow and the count value does not become smaller than the maximum value 65, and the value of the counter 61 is held at the maximum value 65.
  • the radiation measuring instrument 51 in the second embodiment detects that the first counter 60 (counter 61) has reached the maximum value 65, and switches the value of the first counter 60 from the actual count value to the maximum value 65. As a result, the value output to the display unit 23 does not become an overflowed value, and misidentification of workers can be prevented.
  • the radiation measuring instrument 51 in the second embodiment may set the value of the first counter 15 to the maximum value 65 and display it on the display unit 23 when the count value of the counter 61 reaches the maximum value 65. .
  • FIG. 6 is a circuit configuration diagram of a radiation measuring instrument 71 as a modification of the second embodiment.
  • symbol is attached
  • the first counter 72 includes a counter 61 and a comparison circuit 73 as an overflow prevention unit for preventing overflow.
  • the comparison circuit 73 outputs a false logic signal to the counter 61 when the count value of the counter 61 reaches the maximum value 65 of the counter 61 and when it is less than the maximum value 65.
  • the counter 61 outputs the actual count value of the counter 61 when the output of the comparison circuit 73 is false.
  • the comparison circuit 73 sets the count value of the counter 61 to the maximum value 65.
  • the radiation measuring instrument 71 has the same effect as the radiation measuring instrument 51 in the second embodiment, and the selector 63 can be omitted and the configuration can be simplified.
  • the value compared with the counter 61 is not limited to the maximum value 65, and may be another large value.
  • FIG. 7 is a circuit configuration diagram of the radiation measuring instrument 81 according to the third embodiment.
  • the radiation measuring instrument 81 in the third embodiment is different from the first and second embodiments in that it has a USB converter 82, a USB hub 83, and a USB memory 84 in order to improve the maintainability of the radiation measuring instrument 81. is there.
  • Components and parts corresponding to those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the radiation measuring instrument 81 includes a radiation sensor 10, a waveform shaping circuit 12, a comparator 13, a discrimination level setting unit 14, and a first counter 15 as a radiation measuring unit.
  • the radiation measuring instrument 81 includes an oscillator 16, an AND circuit 17, a second counter 18, and a comparison circuit 19 as a pileup prevention unit for preventing pileup.
  • the radiation measuring instrument 81 has a USB converter 82, a USB hub 83, and a USB memory 84.
  • the USB converter 82 converts the measurement data output from the selector 21 into USB standard serial data and outputs it.
  • the USB hub 83 (output device) connects the radiation measuring instrument 81 and the data processing display unit 90 to perform data transmission / reception and the like.
  • the USB memory 84 (storage device) stores unique information of the radiation measuring instrument 81.
  • the unique information is information such as a calibration value such as sensitivity of the radiation sensor 10, a serial number of the radiation measuring instrument 81, a use / maintenance history, and the like.
  • the data processing display unit 90 connected to the radiation measuring instrument 81 processes and displays the measurement data of the radiation measuring instrument 81.
  • the USB converter 82 converts the measurement data output from the selector 21 into USB standard serial data and outputs it to the USB hub 83.
  • the serial data is transmitted to the data processing display unit 90 via the USB hub 83.
  • the measurement data output from the selector 21 (the count values of the first and second counters 15 and 18) and the unique information of the radiation measuring instrument 81 stored in the USB memory 84 are read out, Perform the required data processing.
  • the data processing display unit 90 reads the sensitivity of the radiation sensor 10 from the USB memory 84, for example, and calibrates the count value of the first counter 15 output from the selector 21 with the sensitivity of the radiation sensor 10 unique to the radiation measuring instrument 81.
  • the radiation measuring instrument 81 since the unique information of the radiation measuring instrument 81 is stored in the USB memory 84, the radiation measuring instrument 81 and the data processing display unit 90 break down, and the radiation measuring instrument 81 and the data processing Even when the display unit 90 needs to be replaced, it is possible to smoothly shift to measurement based on this unique information.
  • the data processing display unit 90 can calibrate the count value of the radiation sensor 10 and display the measurement data. For this reason, it is not necessary to calibrate the radiation measuring instrument 81 itself when it is necessary to replace the device, and if there is a spare radiation measuring instrument 81 or the data processing display unit 90, it can be quickly replaced and used. .
  • the radiation measuring instrument 81 is an operator who does not know how to calibrate the radiation measuring instrument 81, it can be exchanged and used without requiring complicated work.
  • the USB memory 84 as a storage device may be built in the radiation measuring instrument 81 or the data processing display unit 90.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)

Abstract

 放射線を検出した場合、検出信号を発生する放射線センサ10と、検出信号を計数する第1のカウンタ15と、周期信号を所定周期で発生する発振器16と、検出信号と周期信号との論理積を出力するAND回路17と、AND回路17の出力信号を計数する第2のカウンタ18と、第2のカウンタ18の計数値が所定値未満である場合、第1のカウンタ15の計数値を表示し、第2のカウンタ18の計数値が所定値以上である場合、第1のカウンタ15の実際の計数値とは異なる値を表示する表示器23とを備えた放射線測定器1。

Description

放射線測定器
 本発明は、放射線を検出して計数する放射線測定器に関する。
 原子力発電所などの放射性物質を取り扱う施設において事故が発生した場合、広範囲にわたり強い放射能を有する放射性物質が飛散する可能性がある。このため環境中の放射性物質の有無を広範囲にわたり調査し、放射性物質が存在する場合には除去する必要がある。
 放射性物質の有無に対する測定は多大な人手を要するため、放射線計測の知識や経験が少ない作業員が実施することが考えられる。この場合、以下の課題が生じ得る。
 放射線測定器で放射線を検出すると、電気パルスが発生しこのパルスを後段の計数回路で計数する。放射能が強い場合は多数の放射線を計数するため、電気パルスと電気パルスとの間隔が狭まり、パルス同士が重なる(以下、「パイルアップ」という。)状態となる。
 パイルアップした場合、重なり合った複数のパルスは1つのパルスとみなされるため、実際に放射線検出器が検出した放射線数に比べて計数回路が計数した数は少なくなる。また、全ての電気パルスがパイルアップすると計数はゼロとなる。このため、実際には強い放射能を有する放射性物質が存在する環境であっても、放射能が弱いと判断されてしまう恐れある。この結果、放射性物質は除去されず、被曝につながる恐れがある。
 従来、パイルアップの検出やパイルアップを防止する技術が提案されている(例えば、特許文献1および2参照)。
 また、計測時間内の計数が計数回路の容量を超えると桁があふれ(以下、「オーバフロー」という。)、計数回路で出力される計数は計数回路に入力された計数より小さくなる。例えば、計測時間内の計数が256の場合、8ビット計数回路では最大計測値(計測容量)が255であるため、計測値は0となる。この場合、パイルアップと同様に放射能は弱いと判断され、被曝につながる恐れがある。
 従来、オーバフローによる誤計測を回避するため、計数回路がオーバフローした場合、その旨を表示する技術が提案されている(非特許文献1参照)。
特開平07-072252号公報 特開2009-18154号公報
http://www.clearpulse.co.jp/jpn/product/plist_E/plistE1.html
 従来の技術は、パイルアップ検出やパイルアップ防止を行う一方、装置の複雑化、大型化を招いていた。また、オーバフローが発生した場合には、オーバフローした旨を表示するが、計数の表示はオーバフローしており、やはり放射線測定器の取り扱いを熟知していない作業員にとってはオーバフローの判断が困難であった。
 本発明はこのような事情を考慮してなされたもので、作業員の放射線計測の熟練度や知識に依存せず放射能の誤認を防止することができる放射線測定器を提供することを目的とする。
 本発明に係る放射線測定器は、上述した課題を解決するために、放射線を検出した場合、検出信号を発生する放射線センサと、前記検出信号を計数する第1のカウンタと、周期信号を所定周期で発生する発振器と、前記検出信号と前記周期信号との論理積を出力するAND回路と、前記AND回路の出力信号を計数する第2のカウンタと、前記第2のカウンタの計数値が第1の所定値未満である場合、前記第1のカウンタの計数値を表示し、前記第2のカウンタの計数値が第1の所定値以上である場合、前記第1のカウンタの実際の計数値とは異なる値を表示する表示器とを備えたことを特徴とする。
 本発明に係る放射測定器においては、作業員の放射線計測の熟練度や知識に依存せず放射能の誤認を防止することができる。
第1実施形態における放射線測定器の回路構成図。 パイルアップが生じていない場合のコンパレータ、発振器およびAND回路で発生するパルスの様子を示す説明図であり、(A)は放射線センサより出力される電気パルスを示す図、(B)は波形整形回路において整形され出力される整形パルスを示す図、(C)はコンパレータより出力される検出パルスを示す図、(D)は発振器より出力される周期パルスを示す図、(E)はAND回路より出力される出力信号を示す図。 パイルアップが生じた場合のコンパレータ、発振器およびAND回路で発生するパルスの様子を示す説明図であり、(A)は放射線センサより出力される電気パルスを示す図、(B)は波形整形回路において整形され出力される整形パルスを示す図、(C)はコンパレータより出力される検出パルスを示す図、(D)は発振器より出力される周期パルスを示す図、(E)はAND回路より出力される出力信号を示す図。 第1実施形態の変形例としての放射線測定器の回路構成図。 第2実施形態における放射線測定器の第1のカウンタの回路構成図。 第2実施形態の変形例としての放射線測定器の回路構成図。 第3実施形態における放射線測定器の回路構成図。
[第1実施形態]
 本発明に係る放射線測定器の第1実施形態を添付図面に基づいて説明する。
 図1は、第1実施形態における放射線測定器1の回路構成図である。
 放射線測定器1は、放射線計測部として、放射線センサ10、波形整形回路12、コンパレータ13、弁別レベル設定器14、および第1のカウンタ15を有する。
 放射線センサ10は、放射線を検出した場合、電気パルスを発生する。波形整形回路12は、発生した電気パルスを後段の回路で計数可能な整形パルスに変換する。コンパレータ13は、波形整形回路12から出力される整形パルスを弁別する。弁別レベル設定器14は、設定電圧をコンパレータ13に出力する。第1のカウンタ15は、コンパレータ13の出力である検出パルスを一定時間計数する。
 放射線測定器1は、パイルアップを防止するためのパイルアップ防止部として、発振器16、AND回路17、第2のカウンタ18、比較回路19、係数設定回路20、およびセレクタ21を有する。
 発振器16は、所定周期で周期パルス(周期信号)を連続して発生する。AND回路17は、コンパレータ13から出力される検出パルスと発振器16から出力される周期パルスの論理積を出力する。第2のカウンタ18は、AND回路17から出力される出力信号を一定時間計数する。比較回路19は、第2のカウンタ18の値が設定値22以上で真、設定値未満で偽の論理信号を出力する。係数設定回路20は、第2のカウンタ18から出力される計数値に所定の係数を設定する。セレクタ21(表示制御回路)は、比較回路19の出力が偽の場合、第1のカウンタ15の計数値を出力する。また、セレクタ21は、比較回路19の出力が真の場合、係数が掛けられた第2のカウンタ18の計数値を出力する。
 また、放射線測定器1は、セレクタ21から出力される各カウンタ15、18の値を表示する表示器23を有する。
 次に、第1実施形態における放射線測定器1の作用を説明する。
 図2は、パイルアップが生じていない場合のコンパレータ13、発振器16およびAND回路17などで発生するパルスの様子を示す説明図である。図2(A)は放射線センサ10より出力される電気パルス31を示す図、(B)は波形整形回路12において整形され出力される整形パルス32を示す図である。図2(C)はコンパレータ13より出力される検出パルス33を示す図、(D)は発振器16より出力される周期パルス34を示す図、(E)はAND回路17より出力される出力信号35を示す図である。
 放射線センサ10は放射線を検出すると、図2(A)に示すように電気パルス31を発生する。波形整形回路12は、電気パルス31を図2(B)に示す幅数μsの整形パルス32に整形する。コンパレータ13は、整形パルス32の波高値が弁別レベル設定器14において設定された電圧より大きい場合、図2(C)に示す出力1を示す検出パルス(検出信号)33を出力する。整形パルス32の幅が数μsのため、コンパレータ13の出力(検出パルス33)は幅が数μsのパルスとなる。コンパレータ13の出力は、第1のカウンタ15に出力される。第1のカウンタ15は、検出パルス33を一定期間計数する。
 検出パルス33は、同時にAND回路17に出力される。AND回路17は、コンパレータ13の検出パルス33と発振器16の周期パルス34との論理積を演算する。すなわち、AND回路17は、コンパレータ13の出力が1である間(検出パルス33が出力される間)、発振器16より出力される周期パルス34を出力信号35として第2のカウンタ18に出力する。第2のカウンタ18は、AND回路17の出力を一定期間計数する。周期パルス34の幅は、整形パルス32の幅より充分小さく(例えば検出パルス33の1/5程度)、整形パルス32が発生している間は必ず周期パルス34が第2のカウンタ18に出力されるように設定される。
 比較回路19は、第2のカウンタ18の計数値と設定値22とを比較する。設定値22には、放射線測定器1がパイルアップ状態となっているか否かを判断可能な値が任意に選択されて設定される。比較回路19は、第2のカウンタ18の計数値が設定値22未満、すなわちパイルアップ状態ではなく出力信号35の計数が小さい場合、偽を出力する。
 セレクタ21は出力が偽である場合、第1のカウンタ15の値を表示器23に出力し、表示器23は放射線の入力数に対応した実際の計数値を表示する。
 ここで、図3は、パイルアップが生じた場合のコンパレータ13、発振器16およびAND回路17などで発生するパルスの様子を示す説明図である。
 図3(A)に示すように放射線センサ10における電気パルス31の計数が高い場合、図3(B)に示すように整形パルス32は重なりパイルアップ状態となる。この結果、図3(C)に示すようにコンパレータ13の検出パルス33も重なり幅の広いパルスになる。放射線が強いにもかかわらず検出パルス33の数は減り、第1のカウンタ15により一定期間計数される計数値は小さくなる。
 AND回路17は、コンパレータ13の出力が1である間(検出パルス33が出力される間)、発振器16より出力される周期パルス34を出力信号35として第2のカウンタ18に出力する。すなわち、第1のカウンタ15の計数値は小さくなるが、検出パルス33の幅に比例して出力信号35は増えるため第2のカウンタ18の計数値は大きくなる。
 比較回路19は、第2のカウンタ18と設定値22とを比較する。比較回路19は、第2のカウンタ18の計数値が設定値22以上の場合、すなわちパイルアップ状態となり出力信号35の計数が大きい場合、真を出力する。
 セレクタ21は出力が真である場合、係数設定回路20において係数が掛けられた第2のカウンタ18の値(第2のカウンタ18の計数値に基づく値)を表示器23に出力し、表示器23は検出された実際の放射線の計数を反映した値を表示する。すなわち、パイルアップ状態となり計数値が小さい第1のカウンタ15の出力は表示されない。なお、係数設定回路20は、第1のカウンタ15の計数値から第2のカウンタ18の計数値に切り替わる場合に、出力される値に連続性を持たせるために設けられ、係数は適宜設定される。
 第1実施形態における放射線測定器1は、整形パルス32がパイルアップしていることを第2のカウンタ18の計数値より検出する。パイルアップが検出された場合、放射線測定器1は第1のカウンタ15から第2のカウンタ18の計測値に切り替えることで、表示器23に表示される計数表示は小さくならず、実際の放射能の状態を反映した大きな値を表示する。これにより、放射線測定器1は、作業員の知識や熟練度によらずに放射線を測定でき、パイルアップによる計測値の誤認を防止できる。
 なお、第1実施形態における放射線測定器1は、第2のカウンタ18の計数値が設定値22より大きい場合、第1のカウンタ15の値を実際の計数値ではなく所定値に設定し表示器23に表示させてもよい。
 図4は、第1実施形態の変形例としての放射線測定器41の回路構成図である。なお、第1実施形態の放射線測定器1と対応する構成および部分については同一の符号を付し、重複する説明を省略する。
 放射線測定器41は、放射線計測部として、放射線センサ10、波形整形回路12、コンパレータ13、弁別レベル設定器14、および第1のカウンタ15を有する。また、放射線測定器41は、パイルアップを防止するためのパイルアップ防止部として、発振器16、AND回路17、第2のカウンタ18、および比較回路42を有する。さらに、放射線測定器41は、表示器23を有する。
 比較回路42は、第2のカウンタ18の値が設定値22以上で真、設定値未満で偽の論理信号を第1のカウンタ15に出力する。第1のカウンタ15は、比較回路42の出力が真の場合、予め設定された値に設定される。
 第1実施形態の変形例としての放射線測定器41の作用を説明する。
 比較回路42は、第2のカウンタ18の計数値と設定値22とを比較する。第2のカウンタ18の計数値が設定値22未満でありパイルアップ状態ではない場合、比較回路42は偽を出力し第1のカウンタ15の実際の計数値が表示器23に出力される。表示器23は、放射線の検出数に対応した計数値を表示する。
 第2のカウンタ18の計数値が設定値22以上となり、パイルアップ状態となる場合、比較回路42は真を出力する。比較回路42は、第1のカウンタ15の計数値を予め設定された値に設定する。予め設定された値は、例えば第1のカウンタ15の最大値であり、パイルアップして小さくなった第1のカウンタ15の計数値より大きい値である。設定された第1のカウンタ15の計数値は表示器23に出力され表示される。
 放射線測定器41は、パイルアップ状態を検出した場合、第1のカウンタ15の計数値を予め設定された大きな値に設定することにより、表示器23に表示される計数値は小さくはならない。このため、放射線測定器41は大きな値を表示することで、放射能が強いことを作業員に認識させることができ、計測における誤認を防止できる。
 また、放射線測定器41は、第1実施形態の放射線測定器1に設けられるセレクタ21を省略できるため、構成を簡素化できる。
 [第2実施形態]
 本発明に係る放射線測定器51の第2実施形態を添付図面に基づいて説明する。
 図5は、第2実施形態における放射線測定器51の第1のカウンタ60の回路構成図である。
 第2実施形態における放射線測定器51が第1実施形態と異なる点は、第1のカウンタ60内に第1のカウンタ60のオーバフローによる作業員の誤認を防止するための構成を有する点である。第1のカウンタ60以外の構成は、第1実施形態の放射線測定器1とほぼ同様であるため、図示を省略する。また、第1実施形態と対応する構成および部分については同一の符号を付し、重複する説明を省略する。
 放射線測定器51は、放射線計測部として、放射線センサ10、波形整形回路12、コンパレータ13、弁別レベル設定器14(図1参照)、および第1のカウンタ60を有する。また、放射線測定器51は、パイルアップを防止するためのパイルアップ防止部として、発振器16、AND回路17、第2のカウンタ18、および比較回路19(図1参照)を有する。また、放射線測定器51は、表示器23(図1参照)を有する。なお、放射線測定器51は、パイルアップ防止部を省略してもよい。
 第1のカウンタ60は、オーバフローを防止するオーバフロー防止部として、カウンタ61、比較回路62、およびセレクタ63を有する。
 カウンタ61は、コンパレータ13の出力を一定時間計数する。比較回路62は、カウンタ61の計数値がカウンタ61の最大値65に到達した場合に真、最大値65未満である場合に偽の論理信号を出力する。セレクタ63は比較回路62の出力が偽の場合、カウンタ61の実際の計数値を出力する。また、セレクタ63は比較回路62の出力が真の場合、カウンタ61の最大値65を出力する。
 次に、第2実施形態における放射線測定器51の作用を説明する。
 放射線センサ10は放射線を検出すると、電気パルス31を発生する。波形整形回路12は、電気パルス31を幅数μsの整形パルス32に整形する。コンパレータ13は、整形パルス32の波高値が弁別レベル設定器14において設定された電圧より大きい場合、出力1を示す検出パルス(検出信号)33を出力する。コンパレータ13の出力は、第1のカウンタ60のカウンタ61に出力される。カウンタ61は、検出パルス33を一定期間計数する。
 比較回路62は、カウンタ61の計数値を最大値65と比較する。カウンタ61の計数値が最大値65未満である場合、偽を出力する。セレクタ63は、カウンタ61の実際の放射線の計数値を表示器23に出力する。表示器23は、カウンタ61の計数値を表示する。
 一方、比較回路62は、カウンタ61の計数値が最大値65である場合、すなわちカウンタ61が計測可能な最大値に到達した場合には、真を出力する。セレクタ63は、カウンタ61の最大値65を所定のタイミングまで(例えば、次の測定を開始するまで)表示器23に出力する。表示器23は、カウンタ61の最大値65を表示する。
 この結果、カウンタ61がオーバフローして計数値が最大値65より小さくなることはなく、カウンタ61の値は最大値65に保持される。
 第2実施形態における放射線測定器51は、第1のカウンタ60(カウンタ61)が最大値65に到達したことを検出し、第1のカウンタ60の値を実際の計数値から最大値65に切り替えることで、表示器23に出力される値はオーバフローした値とならず、作業員の誤認を防止できる。
 なお、第2実施形態における放射線測定器51は、カウンタ61の計数値が最大値65に到達した場合、第1のカウンタ15の値を最大値65に設定し表示器23に表示させてもよい。
 図6は、第2実施形態の変形例としての放射線測定器71の回路構成図である。なお、第2実施形態の放射線測定器51と対応する構成および部分については同一の符号を付し、重複する説明を省略する。
 第1のカウンタ72は、オーバフローを防止するオーバフロー防止部として、カウンタ61、および比較回路73を有する。
 比較回路73は、カウンタ61の計数値がカウンタ61の最大値65に到達した場合に真、最大値65未満である場合に偽の論理信号をカウンタ61に出力する。カウンタ61は、比較回路73の出力が偽の場合、カウンタ61の実際の計数値を出力する。比較回路73の出力が真の場合、比較回路73は、カウンタ61の計数値を最大値65に設定する。
 放射線測定器71は、第2実施形態における放射線測定器51と同様の効果を奏する上、セレクタ63を省略でき構成を簡素化できる。
 なお、第2実施形態においては、カウンタ61と比較される値は最大値65に限らず他の大きい値であってもよい。
 [第3実施形態]
 本発明に係る放射線測定器の第3実施形態を添付図面に基づいて説明する。
 図7は、第3実施形態における放射線測定器81の回路構成図である。
 第3実施形態における放射線測定器81が第1および第2実施形態と異なる点は、放射線測定器81のメンテナンス性を向上させるため、USB変換器82、USBハブ83、USBメモリ84を有する点である。第1実施形態と対応する構成および部分については同一の符号を付し、重複する説明を省略する。
 放射線測定器81は、放射線計測部として、放射線センサ10、波形整形回路12、コンパレータ13、弁別レベル設定器14、および第1のカウンタ15を有する。また、放射線測定器81は、パイルアップを防止するためのパイルアップ防止部として、発振器16、AND回路17、第2のカウンタ18、および比較回路19を有する。
 さらに、放射線測定器81は、USB変換器82、USBハブ83、およびUSBメモリ84を有する。USB変換器82は、セレクタ21から出力される測定データをUSB規格のシリアルデータに変換し出力する。USBハブ83(出力装置)は、放射線測定器81とデータ処理表示部90とを接続し、データの送受信などを行う。USBメモリ84(記憶装置)は、放射線測定器81の固有情報を格納する。固有情報は、例えば放射線センサ10の感度などの校正値、放射線測定器81の製造番号、使用・保守履歴などの情報である。
 放射線測定器81に接続されるデータ処理表示部90は、放射線測定器81の測定データを処理したり表示したりする。
 次に、第3実施形態における放射線測定器81の作用について説明する。
 USB変換器82は、セレクタ21より出力される測定データをUSB規格のシリアルデータに変換し、USBハブ83に出力する。シリアルデータは、USBハブ83を介してデータ処理表示部90に送信される。データ処理表示部90においては、セレクタ21より出力される測定データ(第1および第2のカウンタ15、18の計数値)と、USBメモリ84に格納された放射線測定器81の固有情報を読み出し、所要のデータ処理を行う。
 データ処理表示部90は、例えば放射線センサ10の感度をUSBメモリ84より読み出し、放射線測定器81固有の放射線センサ10の感度でセレクタ21より出力される第1のカウンタ15の計数値を校正する。
 第3実施形態における放射線測定器81は、放射線測定器81の固有情報がUSBメモリ84に格納されているため、放射線測定器81やデータ処理表示部90が故障し、放射線測定器81やデータ処理表示部90を交換する必要がある場合であっても、この固有情報に基づいてスムーズに測定に移行することができる。
 例えば、USBメモリ84から読み出された放射線測定器81の校正値をもとに、データ処理表示部90において放射線センサ10の計数値を校正して測定データを表示することができる。このため、機器の交換が必要になる場合には放射線測定器81自体を校正する必要がなく、予備の放射線測定器81またはデータ処理表示部90があれば迅速に交換して使用することができる。
 また、放射線測定器81は、放射線測定器81の校正方法を知らない作業員であっても、繁雑な作業を要することなく交換して使用することができる。
 なお、記憶装置としてのUSBメモリ84は、放射線測定器81またはデータ処理表示部90に内蔵してもよい。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1、41、51、71、81 放射線測定器
10 放射線センサ
12 波形整形回路
13 コンパレータ
14 弁別レベル設定器
15、60、72 第1のカウンタ
16 発振器
17 AND回路
18 第2のカウンタ
19、42、62、73 比較回路
20 係数設定回路
21、63 セレクタ
22 設定値
23 表示器
61 カウンタ
65 最大値
82 USB変換器
83 USBハブ
84 USBメモリ
90 データ処理表示部

Claims (11)

  1.  放射線を検出した場合、検出信号を発生する放射線センサと、
     前記検出信号を計数する第1のカウンタと、
     周期信号を所定周期で発生する発振器と、
     前記検出信号と前記周期信号との論理積を出力するAND回路と、
     前記AND回路の出力信号を計数する第2のカウンタと、
     前記第2のカウンタの計数値が第1の所定値未満である場合、前記第1のカウンタの計数値を表示し、前記第2のカウンタの計数値が前記第1の所定値以上である場合、前記第1のカウンタの実際の計数値とは異なる値を表示する表示器とを備えたことを特徴とする放射線測定器。
  2.  前記表示器は、前記第2のカウンタの計数値が前記第1の所定値以上である場合、前記第2のカウンタの計数値に基づく値を表示する請求項1記載の放射線測定器。
  3.  前記第2のカウンタの計数値が前記第1の所定値以上であるか否かを判定する比較回路と、
     前記第2のカウンタの計数値が前記第1の所定値以上である場合、前記表示器に対し前記第2のカウンタ計数値を出力する表示制御回路をさらに備えた請求項2記載の放射線測定器。
  4.  前記表示器は、前記第2のカウンタの計数値が前記第1の所定値以上である場合、前記第1のカウンタの計数値を第2の所定値に設定し、前記第2の所定値が設定された前記第1のカウンタの値を表示する請求項1記載の放射線測定器。
  5.  前記第2のカウンタの計数値が前記第1の所定値以上であるか否かを判定し、前記第2のカウンタの計数値が前記第1の所定値以上である場合、前記第1のカウンタの計数値を前記第2の所定値に設定する比較回路をさらに備えた請求項4記載の放射線測定器。
  6.  前記表示器は、前記第1のカウンタが最大計数値に到達した場合、予め設定された第3の所定値を表示する請求項1~5のいずれか一項記載の放射線測定器。
  7.  前記第3の所定値は、前記第1のカウンタの最大値である請求項6記載の放射線計測器。
  8.  前記第1のカウンタの計数値が最大値に到達したか否かを判定する比較回路と、
     前記第1のカウンタの計数値が前記最大値に到達した場合、前記第3の所定値を前記表示器に出力する表示制御回路をさらに備えた請求項6または7記載の放射線測定器。
  9.  前記第1のカウンタの計数値が最大値に到達したか否かを判定し、前記第1のカウンタの計数値が前記最大値に到達した場合、前記第1のカウンタの計数値を前記第3の所定値に設定し、前記第1のカウンタの値を前記表示器に表示させる比較回路をさらに備えた請求項6または7記載の放射線測定器。
  10.  前記放射線測定器の固有情報を格納する記憶装置と、
     前記第1のカウンタの計測値を前記記憶装置に格納された前記固有情報とともに外部機器に出力する出力装置をさらに備えた請求項1記載の放射線測定器。
  11.  放射線を検出した場合、検出信号を発生する放射線センサと、
     前記検出信号を計数するカウンタと、
     前記カウンタの計数値が最大値未満である場合、前記カウンタの実際の計数値を表示し、前記カウンタの計数値が最大値に到達した場合、前記カウンタの実際の計数値とは異なる所定値を表示する表示器とを備えたことを特徴とする放射線測定器。
PCT/JP2012/075221 2011-09-30 2012-09-28 放射線測定器 WO2013047824A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/348,393 US9383455B2 (en) 2011-09-30 2012-09-28 Radiation measurement apparatus
EP12837075.6A EP2762923B1 (en) 2011-09-30 2012-09-28 Radiation meter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-217997 2011-09-30
JP2011217997A JP5917071B2 (ja) 2011-09-30 2011-09-30 放射線測定器

Publications (1)

Publication Number Publication Date
WO2013047824A1 true WO2013047824A1 (ja) 2013-04-04

Family

ID=47995847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075221 WO2013047824A1 (ja) 2011-09-30 2012-09-28 放射線測定器

Country Status (4)

Country Link
US (1) US9383455B2 (ja)
EP (1) EP2762923B1 (ja)
JP (1) JP5917071B2 (ja)
WO (1) WO2013047824A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016522891A (ja) * 2013-04-24 2016-08-04 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 訂正手段を備えたパルス処理回路
JP2015194457A (ja) 2014-03-19 2015-11-05 株式会社東芝 電流検出回路及びパイルアップ検出回路
JP6325343B2 (ja) * 2014-05-26 2018-05-16 株式会社日立製作所 放射線測定装置
JP6629100B2 (ja) * 2016-02-26 2020-01-15 キヤノンメディカルシステムズ株式会社 放射線検出装置および放射線検出システム
US10242268B2 (en) * 2017-02-03 2019-03-26 Raytheon Company Pixel-based event detection for tracking, hostile fire indication, glint suppression, and other applications
JP2020201191A (ja) * 2019-06-12 2020-12-17 株式会社東芝 放射線計測装置および放射線計測方法
CN115664411B (zh) * 2022-11-11 2024-02-09 华能山东石岛湾核电有限公司 一种用于高温气冷堆燃料循环计数器判断漏计的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436682A (ja) * 1990-05-31 1992-02-06 Matsushita Electric Ind Co Ltd 放射線量計
JPH0772252A (ja) 1993-09-01 1995-03-17 Fuji Photo Film Co Ltd 画像信号読出方法
JP2004529367A (ja) * 2001-06-04 2004-09-24 ウィリアム ケイ ウォーバートン X線及び核分光システムにおける基線補正方法及び装置
JP2009018154A (ja) 2007-05-04 2009-01-29 General Electric Co <Ge> オーバーレンジ論理制御を伴う光子計数x線検出器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3924106A (en) * 1974-10-31 1975-12-02 Us Energy Background compensation for a radiation level monitor
US4485442A (en) * 1981-09-24 1984-11-27 Snaper Alvin A Cumulative exposure metering system
JPH01265184A (ja) * 1988-04-15 1989-10-23 Matsushita Electric Ind Co Ltd 放射線受像装置
FR2692088B1 (fr) * 1992-06-03 1994-07-22 Commissariat Energie Atomique Circuit de temps mort de type reconductible.
JPH08146138A (ja) * 1994-11-22 1996-06-07 Toshiba Corp 放射線モニタの高速表示装置
JP4064009B2 (ja) * 1999-07-30 2008-03-19 株式会社東芝 線種弁別型放射線検出装置
US7592596B2 (en) * 2005-06-03 2009-09-22 Ge Medical Systems Israel, Ltd Methods and systems for medical imaging
DE102007034982B4 (de) * 2007-07-26 2016-07-07 Siemens Healthcare Gmbh Verfahren zum Betreiben eines getakteten, zählenden Röntgenstrahlendetektors
EP2028509A1 (en) * 2007-08-09 2009-02-25 European Organisation for Nuclear Research CERN Radiation monitoring device
JP5171891B2 (ja) * 2010-07-01 2013-03-27 三菱電機株式会社 放射線測定装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436682A (ja) * 1990-05-31 1992-02-06 Matsushita Electric Ind Co Ltd 放射線量計
JPH0772252A (ja) 1993-09-01 1995-03-17 Fuji Photo Film Co Ltd 画像信号読出方法
JP2004529367A (ja) * 2001-06-04 2004-09-24 ウィリアム ケイ ウォーバートン X線及び核分光システムにおける基線補正方法及び装置
JP2009018154A (ja) 2007-05-04 2009-01-29 General Electric Co <Ge> オーバーレンジ論理制御を伴う光子計数x線検出器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2762923A4

Also Published As

Publication number Publication date
EP2762923A1 (en) 2014-08-06
EP2762923A4 (en) 2015-10-21
US9383455B2 (en) 2016-07-05
EP2762923B1 (en) 2019-08-07
JP5917071B2 (ja) 2016-05-11
US20140231646A1 (en) 2014-08-21
JP2013076676A (ja) 2013-04-25

Similar Documents

Publication Publication Date Title
JP5917071B2 (ja) 放射線測定器
JP5336934B2 (ja) 広域中性子束監視システムおよび検出器特性評価装置
JP6005513B2 (ja) ディジタル計数率計測装置およびそれを用いた放射線モニタシステム
JP5171891B2 (ja) 放射線測定装置
JP2013113648A (ja) 放射線測定装置
JP5148053B2 (ja) パルス計数計とそれを用いた原子炉出力監視装置ならびにパルス計数方法
JP5373711B2 (ja) 放射線監視装置
JP4828962B2 (ja) 放射能検査方法および装置
Rahman et al. Arduino based radiation survey meter
US6519306B1 (en) Neutron monitoring system
JP7120608B2 (ja) 放射線計測装置
JP4417972B2 (ja) 放射線測定装置
JP4334256B2 (ja) 放射線出力監視装置
JP2014085171A (ja) 放射線測定装置
JP2951674B2 (ja) 放射線監視方法及びその装置
CN110657831A (zh) 一种脉冲编码器质量检测系统
EP2660565B1 (en) Digital logic circuit and method for detecting a relative shaft position on geared shafts
JP2015190951A (ja) 積算量出力機器、積算量入力機器、積算パルス伝送装置、および積算パルス伝送装置のエラー検出方法
JP2014126556A (ja) 放射線量測定装置
CN115083636B (zh) 高温气冷堆过球计数器测量方法和装置
JP6325343B2 (ja) 放射線測定装置
JP2012047559A (ja) 放射線監視装置
KR20180042659A (ko) 계측데이터 처리 방법 및 그 장치
JP7079426B2 (ja) γ線検出装置
JP2012007899A (ja) 放射線測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837075

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14348393

Country of ref document: US

Ref document number: 2012837075

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE