JP4417972B2 - 放射線測定装置 - Google Patents

放射線測定装置 Download PDF

Info

Publication number
JP4417972B2
JP4417972B2 JP2007100635A JP2007100635A JP4417972B2 JP 4417972 B2 JP4417972 B2 JP 4417972B2 JP 2007100635 A JP2007100635 A JP 2007100635A JP 2007100635 A JP2007100635 A JP 2007100635A JP 4417972 B2 JP4417972 B2 JP 4417972B2
Authority
JP
Japan
Prior art keywords
pulse
value
radiation
average
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007100635A
Other languages
English (en)
Other versions
JP2007187682A (ja
Inventor
幹 雄 泉
田 真 史 山
川 立 行 前
水 輝 次 垂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007100635A priority Critical patent/JP4417972B2/ja
Publication of JP2007187682A publication Critical patent/JP2007187682A/ja
Application granted granted Critical
Publication of JP4417972B2 publication Critical patent/JP4417972B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Measurement Of Radiation (AREA)

Description

本発明は、放射線測定装置に関する。より詳細には、本発明は、放射線測定装置により放射線測定を行う場合に広レンジの監視に用いられるパルス計測およびキャンベル計測に関し、そのディジタル信号処理の技術に関する。
広いレンジの放射線を測定するためにパルス計測およびキャンベル計測が併用されている。パルス計測は、一般に放射線センサからのパルス数をカウントするものであり、そのパルスが重なりあって計数できなくなった場合に、キャンベル計測が行われる。たとえば、原子力の出力監視では、原子炉圧力容器内部に6〜10本の起動領域センサ(SRNMセンサ)および100〜200本の局所出力領域センサ(LPRMセンサ)を設置し、それらの出力をそれぞれ起動領域モニタおよび出力領域モニタによって測定し、原子炉の出力を約11桁の監視幅で監視している。
このうち起動領域モニタは、原子炉出力の低い領域、つまり原子炉出力が定格出力の10−9%から10−4%まではSRNMセンサの出力パルスの個数を計数すること(以後、パルス計測と呼ぶ)により出力を監視する。一方、原子炉出力が高い領域、つまり原子炉出力が10−5%〜10%では、センサの出力パルスの重なりにより生じる揺らぎのパワーを測定すること、すなわちキャンベル計測により原子炉の出力を監視する。
以下、原子炉起動監視装置におけるパルス計測およびキャンベル計測の先行技術例(特開2000−162366号公報参照)について図18を参照して説明する。
図18に示した原子炉監視装置は、原子炉内の中性子に感応して中性子量に対応する電気パルスを出力するSRNMセンサ1と、その出力パルス信号を増幅し整形するアナログ式プリアンプ2と、SRNMセンサ1の出力パルス幅より狭い時間間隔でサンプリングしディジタル値に変換するA/D変換器3と、このサンプリングされたサンプルデータからパルス数を計数し、原子炉の低い領域での出力レベル値に変換するパルス計数手段(PC)23と、測定精度を向上させるためにA/D変換器3のサンプル値を積算する積算手段24と、その積算値を2乗してパワーを演算するパワー演算手段25と、そのパワーを平均化する加算平均手段26と、パルス計数手段23の計数結果および加算平均手段26の演算結果に基づいて原子炉起動時の出力を連続監視する原子炉出力評価手段27とから構成されている。
このように構成されたディジタル式原子炉起動監視装置においては、SRNMセンサ1の出力パルスの形状をプリアンプ2で増幅整形し、増幅整形されたパルスをA/D変換器3が高速にサンプリングし、そのサンプル値に対してある一つの、または、複数のロジック演算を行い、その演算結果がそれぞれ予め設定した範囲内にある場合にセンサ出力パルスとしてパルス計数手段23で計数する。
一方、同じサンプル値を積算手段24で積算処理し、キャンベル計測に必要なサンプリングレートまで落とすとともに、ダイナミックレンジを稼ぐために積算し、等価ビット数の改善を計る。その結果をパワー演算手段25でバンドパスフィルタ処理を行ったのち、その2乗和を演算し、その演算結果を加算平均手段26で平均し、キャンベル出力値を算出する。これらパルス計数値とキャンベル出力値は原子炉出力評価手段27で評価され、原子炉出力として表示される。
この構成では、パルス計数手段23によりパルスの波高のみではなく、パルス幅の情報も取り入れた識別により広いパルス幅のノイズを除去し、センサ出力パルスのみを計数することができる。つまり、図18の原子炉起動監視装置では、たとえば、100nsパルス幅のSRNMセンサ1の出力を25ns間隔でサンプリングする。このサンプリングによるサンプルデータのうち、パルス幅に相当するk−3番めからk番めまでの4つのサンプル値[S(k), S(k-1), S(k-2), S(k-3)]を用い、パルス立ち上がり部相当のサンプル値S(k-3)、立ち下がり部相当のサンプル値S(k)と、その間の2つのサンプル値S(k-2)およびS(k-1)を用いて下記のような演算を行い、その演算結果(Out(k))をパルス識別の指標とし、それが予め設定したレベルの範囲内にある場合、中性子パルスとして計数する。
Out(k) = {b×S(k-2) + c×S(k-1)}
- {a×S(k-3) + d×S(k)} …(1)
この演算を行うことにより、SRNMセンサ1の出力パルスとほぼ同じパルス幅の信号のみを計数することが可能となる。つまり、大きなサージ状のノイズに信号パルスが重畳された場合でも、パルスのグランドレベルを差し引くことにより正確な測定値を計数することが可能となる。
なお、このようなセンサパルス形状に合致したケースを検出できる指標を複数設けて、それらの論理積(AND)をとることによって、この識別性能はさらに向上する。これにより、最もSRNMに混入しやすいとされる数μs幅のサージノイズが混入しても、それをほぼ完全に除去し、100ns幅のセンサパルスのみを計数可能とすることができる。
一方、キャンベル計測に関しては、パワー演算手段25により周波数帯域を制限し、2乗平均値を演算する。この構成では、ソフトウエアにより周波数帯域を設定できるため、ノイズが測定帯域と同等の周波数となった場合、測定帯域をソフトウエア上で変更することによりノイズの誘導を低減することができる。
特開2000−162366号公報
しかし、上述の先行技術による原子炉起動監視装置においては、以下に述べるような課題が存在している。
第1の課題は、両極性ノイズの低減の問題である。つまり、数μs幅のサージノイズとセンサパルスとが重なった場合、不感時間を設けずにその重なったセンサパルスを計数するには、差分を用いてパルス波高値相当の値を算出する必要がある。しかし、この差分をとった場合、センサ出力などの正のみ、または負のみの単極性のパルスは、従来のグランドレベルからの波高値と同等の識別レベルとなるが、回路からのホワイトノイズなどの両極性のパルスに対しては、そのピーク間の電圧をパルス識別レベルと識別する。このため、従来のグランドレベルからの波高で識別する場合に比べ、約2倍の識別レベルが必要となる。したがって、センサ出力のみを計数するのに必要な識別レベルが、従来の方式より2倍程度必要となり、センサ信号/ホワイトノイズ比(SN比)が悪くなる。
第2の課題は、キャンベル計測における耐ノイズ性の向上である。従来のモータ等からのノイズ試験の結果、数μs幅のサージノイズが原子炉起動監視装置に誘導しやすいことが分かっている。パルス計測に関しては、前記のディジタル演算によるパルス識別によりこのサージノイズの低減が可能である。しかし、キャンベル計測においては、測定帯域をセンサのパルス形状から選定した数百Hzから1MHz以下の周波数帯域に設定しているが、前記の先行技術例では、この測定帯域をシフトすることにより誘導ノイズを除去している。しかし、最も誘導しやすいノイズの周波数が、ほぼ測定帯域の範囲になっており、完全に除去することは難しく、また、センサ感度がわずかに変化するため、これらを補正する必要がある。
一方、一般に線量当量を求める計測装置は、γ線エネルギーに対する感度特性を人体に対するエネルギー吸収特性と等しくなるように、センサの放射線入射窓、反応体積などが最適化されている。しかし、γ線の入射方向によって感度特性が異なる場合があり、感度特性を正確に一致させることは難しい。また、人体に対する線量当量を正確に換算するには、人体の部位によってエネルギー吸収特性が異なるため、γ線エネルギーに対するセンサ感度と一致させただけの計測装置のみでは、人体の各部位に対する正確な評価は難しい。さらに、γ線以外の中性子、たとえばβ線などが混在している場合、センサ構造で感度を補正しているセンサでは、物質への吸収特性が大きく異なるこれらの放射線に対しては評価できないため、それぞれ専用の測定系が必要となる。従来、これらの課題を解決するために、γ線のエネルギースペクトルを求め、その値から換算する手法が提案され、実用化されている。しかし、この手法ではパルス波高を用いたエネルギー情報の取得を元にしており、パルスのパイルアップが生じる条件では、エネルギー情報の取得が難しくなり、精度が悪くなる。つまり、センサの出力パルス幅にもよるが、通常エネルギー測定を行う場合約1×10cps程度が計測の上限となる。計測下限は、応答要求を満たす計数とする必要があるが、1cpsと仮定しても、計測レンジは約5桁程度となり、さらに広レンジの線量を連続で行える測定方法が望まれている。
特開平3−183983号公報には、センサを二重構造にすることにより測定の精度を改善することが記載されている。この手法では、前記したパルス計測のパイルアップの影響は、電流計測を行うことによって回避されているが、この手法に関しても、センサ構造または処理内容が複雑なため、その簡素化が望まれていた。
本発明はかかる従来技術に対処してなされたものであり、キャンベル計測を放射線の線量計測に適用し、簡素で、広いレンジの線量を連続監視する放射線計測装置を提供することを目的とする。
上記課題を解決するための手段として、請求項1に係る発明の放射線測定装置は、放射線に感応してパルスを出力する放射線検出手段と、この放射線検出手段の出力パルスに対し前記感応に基づく吸収エネルギーについての複数のn次モーメントを求めるモーメント演算手段と、前記放射線検出手段の出力パルスを計数するパルス計数手段または平均電流値を評価する平均電流計測手段と、前記モーメント演算手段によって求められた複数のn次モーメント平均値とパルス計数値の比率または前記複数のn次モーメント平均値と前記平均電流値の比率を求めるモーメント比率評価手段と、求められた比率から予め評価した応答マトリックスをもとにモーメント個数分のエネルギーバンド数のエネルギースペクトルに換算するスペクトル評価手段と、前記エネルギースペクトルを放射線の線量当量に換算する線量当量評価手段とを具備する。
請求項2に係る発明の放射線測定装置は、放射線に感応してパルスを出力する放射線検出手段と、この放射線検出手段の出力パルスの前記感応に基づく吸収エネルギーについてのn乗平均値(n>=2)を算出するn次モーメント演算手段と、前記放射線検出手段の出力パルス数を計数するパルス計数手段と、前記n乗平均値と前記パルス計数値の比率をもとに入射放射線の平均エネルギーを算出する平均エネルギー算出手段と、前記平均エネルギーと前記n乗平均値またはパルス計数値とから放射線の線量当量を算出する線量評価手段とを具備する。
請求項3に係る発明の放射線測定装置は、放射線に感応してパルスを出力する放射線検出手段と、この放射線検出手段の出力パルスの前記感応に基づく吸収エネルギーについてのn乗平均値を算出する複数のn次モーメント演算手段と、これらのn次モーメント演算手段によって算出された複数のn次モーメントどうしの比率をもとに入射放射線の平均エネルギーを算出する平均エネルギー算出手段と、前記平均エネルギーと前記n乗平均値または平均電流値とから放射線の線量当量を算出する線量評価手段とを具備する。
本発明によれば、キャンベル計測を放射線の線量計測に適用し、簡素で、広いレンジの線量を連続監視することができる。
本発明の実施の形態を説明する前にいくつかの参考例につき説明する。
<第1の参考例>
本発明の第1の参考例による放射線測定装置を、図1を参照して説明する。
図1に示す放射線測定装置は、放射線に感応し放射線量に応じた出力パルスを発生するSRNMセンサ1と、その出力パルスを増幅するプリアンプ2Aと、プリアンプ2Aの出力パルスをそのパルス幅より狭い時間間隔でサンプリングしサンプル値を得るA/D変換器3と、そのサンプル値をn乗しSRNMセンサ1の出力パルス幅に相当するn乗値を用いて信号を識別するn乗パルス識別装置4と、このn乗パルス識別装置4により識別されたパルスを計数するパルス計数装置(PC)5とを備えている。SRNMセンサ1は、パルス出力が得られる核分裂センサであるが、これは同様のパルス出力が得られる電離箱等に置換することもできる。
このように構成された放射線測定装置のSRNMセンサ1に中性子が入射し、内部で核分裂すると図2(a)に示すような電気パルスが出力される。このSRNMセンサ1の出力パルスの時間幅は100ns程度である。この出力パルスは、プリアンプ2Aに入力され、増幅される。プリアンプ2Aは、SRNMセンサ1へ動作電圧を印加する機能をも有する。プリアンプ2Aの出力パルスは、A/D変換器3に入力され、図2(a)で点により示されるようなサンプリング時間間隔でサンプリングされ、ディジタル化される。このサンプリング時間間隔は短いほど波形情報を多く抽出でき、他の誤差信号、たとえば外来ノイズによる信号を除いてセンサ出力パルスのみを正確に計数することが可能となる。A/D変換器3では、サンプリング前に、サンプリング定理で必要とされる周波数帯域に制限するバンドパスフィルタ処理も行う。
A/D変換器3から出力されるサンプル値は、n乗パルス識別装置4に内蔵されるn乗演算部に入力され、ここでn乗演算される。つまり、各サンプル値をそれぞれn乗演算するか、または、前後n個のサンプル値を掛け算する。ここで、n>=2とする。同じサンプル値をn乗演算した場合は、前後2個のn乗値を平均化処理する。たとえば、8個でパルス波形をサンプリングした場合は、おのおのの2乗値を演算した後、前後2個の演算値を平均化処理し、結果的に4つの演算値を得る。この場合、移動平均処理を行い、8個のサンプル値を得るようにしてもよい。
例えばn=2として、2乗演算を行った場合のサンプル値の変化の様子を図2(b)に示す。このようにサンプル値をn乗値に変換することにより、パルス波形の波高と回路によるノイズ成分の比率は、従来の比率のn乗倍に改善することができる。
ただし、単純にサンプル値ごとにn乗演算した値をパルス識別に用いても、サンプル値をそのままパルス識別に用いた場合と同じ識別性能となる。そこで、ディジタル演算でn乗する場合は、すでに述べたように前後のデータを掛け合わせるか、n乗後に前後のデータを平均化する処理を加えることが必ず必要となる。この2乗演算された結果を、予め設定しておいた識別レベルと比較することにより、SRNMセンサ1の出力パルスと回路ノイズとの識別が容易になる。この放射線測定装置によりSRNMセンサ1のパルスとして識別されたものは、パルス計数装置6でパルス発生率に換算され、最終的にはSRNMセンサ1の位置での中性子束レベルに換算される。
この参考例によれば、回路ノイズレベルと同程度の波高を有するパルスを従来の差分を用いた手法よりも良好に識別することができる。図3(a)にホワイトノイズと、それと同程度のパルス波高を有するセンサ出力パルスをA/D変換器3でサンプリングした場合の一例を示す。この図3(a)では、垂直破線で囲まれた時間4.20×10nsの近傍においてセンサ出力パルスが発生した場合を示しており、この区間で回路ノイズとセンサパルスとが重畳している。このデータに対して、従来のパルス波高によるノイズ識別を行った場合、図3(a)中の水平破線を識別レベルLbとすると、両パルスとも計数してしまい、正確な測定をすることはできない。また、上記の差分を用いたパルス計数方式では、図3(a)中、垂直破線で囲まれた範囲における正負両ピーク間の電圧がパルスの波高と認識される。したがって、正と負の両極性で生ずる回路ノイズは、従来の0Vからの波高値で識別していたものに比べ、2倍の電圧まで識別レベルをあげないと識別することができない。一方、加算平均化することにより、両極性のノイズは正負の信号がキャンセルされて平均化され、単極性のセンサ出力はもともと正のみ又は負のみの信号であるため、このようにキャンセルされることはないが、図3(b)に示すように、パルス幅が広くなる。パルス幅が広くなった場合、センサ出力のパルス数の多い条件ではパルスが重なりパルスを計数できなくなり、パルス計測の計数上限が低下するという問題がある。
本参考例のn乗パルス識別装置4によるn乗演算処理後のサンプル値を図3(c)に示す。回路ノイズ相当のホワイトノイズ(左側)の識別レベルとセンサ出力(右側)の識別レベルの比率は、従来の差分を用いた場合より大きく改善することができる。また、パルス幅も、平均化のみの処理をした場合の図3(b)に比べ広がることもなく、これにより、パルス計数の上限を悪化させることなくパルス計測を可能とすることができる。特に、本参考例においてnが奇数の場合、両極性ノイズの符号を維持して平均化することができるため、両極性信号と単極性の信号を良好なSN比(信号雑音比)をもって識別することができる。
以上により、パルス計測において、出力パルスの識別レベルを設定する際に、回路ノイズまたはα線ノイズを除去する識別レベルを低く設定することができ、その分、センサ出力パルスが小さい場合でも計測感度を落とすことなくパルス計測を行うことができる。
<第2の参考例>
次に、本発明の第2の参考例を図4に基づいて説明する。
図4の放射線測定装置のn乗パルス識別装置4は、積分識別装置6、差分識別装置7、および波高・パワー識別装置8を備えている。A/D変換器3の出力パルスは積分識別装置6および差分識別装置7に入力され、両者の出力は波高・パワー識別装置8に入力される。波高・パワー識別装置8の出力信号はパルス計数装置5に入力される。ここで、積分識別装置6は、第1の参考例で説明したパルス識別方式によりパルスを識別する。
以下、本参考例における差分識別装置7が行う処理の第1参考実施例について説明する。この参考実施例では次の原理により識別を行う。
A/D変換器3の出力の最大値Top(k)およびボトム値Bottom(k)をそれぞれ、
Top(k) = +b×S(k-2) + c×S(k-1)
Bottom(k) = a×S(k-3) + d×S(k)
とすると、波高値High(k)は、先行技術での式(1)を簡略化し、
High(k) = +Top(k) - Bottom(k)
とすることができる。
本参考例では、まず最大値Top(k)の2乗値とボトム値Bottom(k)の2乗値の差を求める。すなわち、
X = +Top(k)2 - Bottom(k)2
= (Top(k) - Bottom(k)) × (Top(k) + Bottom(k))
= High(k) × (Top(k) + Bottom(k)) …(2)
ここで、通常の回路ノイズのみに信号パルスが重畳したケース(以下、ケース1とする)では、
Top(k) >> +Bottom(k)
であるため、
X = High(k) × Top(k) …(3)
一方、非常に大きなサージノイズに信号パルスが重畳した極端なケース(以下、ケース2とする)では、近似値として、
Top(k) = Bottom(k)
であるため、式(2)から、
X = High(k) × (2×Top(k)) …(4)
となる。式(3)および式(4)から、
X/Top(k) = α × High(k) …(5)
(ここで、ケース1ではα=1、ケース2ではα=2)
となり、X/Top(k)はほぼパルス波高High(k)の一次関数となる。つまり、サージノイズ上にSRNMセンサの出力パルスが重畳した場合でも、この値によって識別することにより、数μsの周期のサージノイズ上に重なった数百nsのSRNMセンサ出力パルスを識別し、計数することが可能となる。
このように本第1参考実施例によれば、n乗値の差を用いることによって、仮にセンサパルスよりもパルス幅の広い外来ノイズが誘導されても、その影響を低減することができる。
次に、本参考例における差分識別装置7の処理の第2参考実施例について説明する。式(1)を、
D1(k) = c×S(k-1) - d×S(k) …(6)
D2(k) = a×S(k-3) - b×S(k-2) …(7)
とすると、波高値High(k)は、
High(k) = +D1(k) + D2(k) …(8)
となる。式(8)の右辺各項のn乗の和Yは、
Y = D1(k) + D2(k)
となり、これは近似値として、
Y = High(k)
すなわち、
Y−n = High(k) …(9)
となる。よって、この場合は、近似値としてY−nを指標に用いることにより、パルス識別が可能である。なお、n=1のときは、式(1)に相当する。
以上、差分識別装置7により、サージノイズ上にSRNMセンサ1の出力パルスが重畳した場合でも、差分によって求めた指標を用いることにより、数μsの周期のサージノイズ上に重なった数百nsのSRNMセンサ1のパルスを識別し、計測することが可能となる。
図5に積分識別装置6および差分識別装置7の識別性能の差異をまとめて示す。積分識別装置6は、ホワイトノイズなど両極性ノイズで、センサ出力のパルス幅より短い周期のノイズを低減するのに有効であり、一般に回路ノイズ、センサのα線ノイズなど、センサ出力より信号(波高値)が小さいノイズをさらに低減するのに有効である。一方、差分識別装置7は、センサ1の出力パルス幅より長い周期のノイズに対して有効であり、一般に外部からの数μsパルス幅の誘導ノイズを除去するのに有効である。したがって、両者のロジックを最適に調整し、両者がともに成立した場合のみパルスを計数することにより、センサ出力のみをより正確に計数することができる。
以上のように、本第2参考実施例によれば、波高値に相当するサンプル値の差のn乗値を用いることにより、第1参考実施例と同様に、センサパルスよりもパルス幅の広い外来ノイズが誘導されても、その影響を低減し、より高精度の放射線測定を行うことができる。
次に、本参考例の第3参考実施例として、波高・パワー識別装置8について説明する。波高・パワー識別装置8は、積分識別装置6からパルスの積分値を、差分識別装置7からパルスの波高値相当の値を受け取る。この両者の比率(積分値/波高値)は、センサ出力パルスの場合、ほぼパルス幅相当となり一定の値を示す。一方、高周波成分を含むホワイトノイズは、波高値がセンサ出力と同等の場合でも積分値が小さいため、比率は小さくなる。また、パルス幅の広いサージノイズは、積分値は大きく波高値は小さいため、その比率はセンサ出力より大きくなる。したがって、この比率が一定範囲内である場合に、パルスを計数することにより、これらのノイズの影響を低減することができる。
以上により、パルス計測において、サージ状の外来ノイズが誘導された場合でも、その周期が数μsとセンサ出力パルス幅100nsより長い場合、そのサージ状ノイズの影響を除去し、そのノイズに重畳したパルスも計数することができる。かくして、本第3参考実施例によれば、本参考例の第1参考実施例または第2参考実施例で述べた差分によるパルス計数と、第1の参考例で述べたn乗値によるパルス計数を併用し、その比率を用いることにより両者の特性を同時に実現し、より正確なパルス計測が可能となる。
<第3の参考例>
次に、本発明の第3の参考例を図6に基づいて説明する。
図6に示す放射線測定装置は、図1に示した放射線測定装置において、A/D変換器3とn乗パルス識別装置4との間に、両極性の信号をパルスの主成分である極性のみの信号に変換する単極性変換手段9を介挿したことを特徴とするものである。なお、SRNMセンサ1はパルス出力が得られる核分裂検出器であるが、これは他のパルス出力が得られる電離箱等の放射線検出器であってもよい。
このように構成された本参考例における単極性変換手段9の機能について図7を参照して説明する。図7(a)は、図2(a)に示されるような検出器出力を2次微分処理した場合のパルス波形の一例を示す。2次微分処理は、プリアンプ2Aにおいてアナログ回路で処理する場合と、図2の波形をA/D変換器3でサンプリングし、ディジタル処理で2次微分演算を行う場合が想定されるが、今回は両者とも想定している。この図7(a)をn乗パルス識別装置4において偶数nを用いてn乗演算後、平均処理した結果を図7(b)に示す。両極性が単極性に変化するために、パルス幅が広くなる。
そこで、単極性変換手段9は、図7(a)のパルスの主成分は負極性であるため(図7(a)の下方が負極性)、正極性の成分をゼロまたはそれに近い数値に置き換え、図7(c)の波形に変換する。この波形を、n乗パルス識別装置4に内蔵されるn乗演算手段によって、偶数nを用いてn乗演算した後、たとえば2乗演算した後、n乗パルス識別装置4に内蔵される平滑手段によって平均化処理した結果を図7(d)に示す。これから分かるように、パルス幅の広がりを、単極性変換手段9を用いない図7(b)に比べ狭くすることができる。
かくして本参考例によれば、パルス計測において、偶数nを用いてn乗演算を行ってもパルス幅が広がることなく、その結果、パルスの重なりによって1個のパルスを計数できなくなる、パルスパイルアップによる誤計数を低減することができる。
<第4の参考例>
次に、本発明の第4の参考例を図8に基づいて説明する。
SRNMセンサ1の出力は、帯域制限機能を有するプリアンプ2Bで増幅・帯域制限され、A/D変換器3に入力される。A/D変換器3の出力は、バンドパスフィルタ(BPF)10に入力され、特定の周波数帯域に制限される。通常、バンドパスフィルタ10の周波数帯域はSRNMセンサ1の出力特性によって決定されるが、たとえば100kHzから400kHzまでの範囲の周波数成分のみを通過するディジタルフィルタとして構成することができる。この測定帯域は複数個設定してもよいが、本参考例では一つの帯域に特定した単純な場合の構成で代表させる。
ディジタルフィルタ処理を行う際、入力のサンプル値は、バンドパスフィルタ10の出力周波数帯域に対して適切なサンプリング間隔およびビット数に調整される。このバンドパスフィルタ10の出力はn乗値演算装置11に入力され、n次モーメント値に変換される。
本参考例では、n乗値演算装置11の出力側に、第1平滑装置12A、中間値の平均を取るデータ除去平均化装置(DEA)13、および第2平滑装置12Bが配設され、その平滑個数とデータ除去個数を外来ノイズのサージノイズ幅と到来周期およびMSV計測に必要なデータ除去可能率を元に調整することによって、外来ノイズの影響を受けないMSV計測が可能となる。これによってさらに信頼性の高い計測を実現することができる。
さらに、データ除去平均化装置13において、最大値のみを平均化することにより、低計数率時にもMSV指示値を得ることができ、プリアンプ2Bの回路ノイズ等で決まっているMSV計測の測定下限を拡大することができる。
なお、本参考例においては、nを奇数に設定した場合、サージ状のノイズは正負両極性のノイズであるため、平均化処理することによって正負の値が相殺され、単極性のセンサ出力と同じ極性の値を出力として選択することにより、サージ状ノイズの影響を低減することができる。
以下に述べる参考例では、n次モーメント演算として最も簡単な2乗値に代表させて説明する。つまり、バンドパスフィルタ9のk番めの出力サンプル値をS(k)とし、n乗値演算装置において、
Out1(k) = S(k) × S(k) …(10)
の演算が行われるものとして説明する。
この出力Out1(k)は、第1平滑装置12Aに入力され、ある個数分について平均化される。この際、バンドパスフィルタ10の出力の平均値がオフセットを有する場合は、サンプル値S(k)の平均値も同時に算出し、その2乗値を算出し、2乗演算結果Out1(k)から引き算する。つまり、n個平均化する場合は、
Out2(k2) = (ΣOut1(k))/n − {(Σs(k))/n } …(11)
を演算する。ただし、Σはn個のサンプル値を加算することを示すものとする。
この際、加算するnの個数は、想定される外来ノイズのパルス幅に相当する個数分に設定され、また、この個数はディジタル演算のしやすいように2のn乗個に設定される。つまり、図9に示すようなノイズを想定した場合、すなわちパルス幅20μsのサージ状パルスが2ms周期で到来するパルス状ノイズを想定した場合、1μs周期でバンドパスフィルタ9の出力が得られるものとして、20μs以上のデータを平均化する。ただし、ディジタル演算で行う場合、ビットシフトによる割り算が行えるように2のn乗個に加算数を設定した方が演算に有利であるため、このケースでは32(=2)個加算する。出力間隔k2は、バンドパスフィルタ9の出力間隔1μsに対して、その32倍である32μs周期となる。
この第1平滑装置12Aの出力は、データ除去平均化装置13に入力される。データ除去平均化装置13では、32μs周期の第1平滑装置12Aの出力を、特定個数ごとに区切って、その大小関係を比較し、特定のデータを除く処理を行う。図9に示すようにサージノイズの除去を想定した場合は、以下の処理を行う。図9に示すサージ状パルスの到来間隔は、約2msである。よって、2ms以下の間隔でデータを区切り、その中でサージ状パルスをサンプリングして得たパルスデータのみを除けば、残りはノイズのないデータのパワー値に換算することができる。つまり、この区間の大小関係を比較し、値の大きいものから2個以上を除けば、このサージ状ノイズの影響を除去することができる。ここで最低の除去数を2個に設定したのは、タイミングによっては20μs幅のサージノイズが2個分の第1平滑装置12Aの出力信号に混入する可能性があるためである。また、大きい値を除いた場合、平均値を保持するために、小さい値も除いた最大の個数と同数、つまり、2個分の小さい値のデータを除く必要がある。このように大きい値と小さい値を2個ずつ除いた残りのデータを平均化する。図9のノイズの場合は、36個分の第1平滑装置12Aの出力をひと区切りとすると、約1.16msの平滑区間となり、その中に含まれるサージパルスは最大2個であるため、大きいもの2個と小さいもの2個を除き、残りの32個を平均化する。この場合も、除いた後の個数が2のn乗個となるように、加算数を決定する。
また、サージ状パルスの到来間隔が短くなったケースでは、データ除去平均化装置13での加算数を少なくする場合と、加算平均区間内でのサージ状パルスの到来個数を評価し、その個数の2倍分の最大・最小データを除く処理を行えば、ノイズを除去することができる。
ただし、このようにデータを除く場合に問題となるのは、データの除去率である。つまり、SRNMセンサ1の出力パルス数が少ない場合、データを除去することによって、平均したパワーつまりMSV値が実際の値より低めに表示される。そのパルス数が充分な場合、そのランダム性からある程度のデータ除去は誤差範囲内におさまる。したがって、その測定精度から得られる除去限度率を確保するようにデータ除去を行えば、測定に悪影響を与えることなしに、間欠的に誘導されるサージノイズによる突発的な指示値の上昇を、あるしきい値の範囲内の値に制限することができる。
データ除去平均化装置13の他の機能として、最大値のみを選択することにより、SRNMセンサ1のパルス発生率が低い場合にも、MSV指示値を得ることが可能となる。つまり、低いパルス発生率の場合、ひとつの平滑化区間においてセンサパルスが1個も到来しない時間が多く存在する。したがって、この到来しない区間を平滑化に含めないようにすることにより、パルス発生率が低い場合もMSV指示値を得ることが可能となり、MSV計測の下限を延長させることができる。これは、パルス計測とMSV計測を併用した計測手法であるということができる。ただし、この場合、パルス発生率に対するMSV指示値の直線性を補正するために、データの除去割合をパラメータとした補正関数を用いて補正する必要がある。
次に、データ除去平均化装置13内でデータを除去する処理の基準に関する一実施例を以下説明する。模擬中性子パルスの入力に対し第1平滑装置12Aにおいて32μsで平滑化した場合のシミュレーション結果の一例を図10に示す。図10の実線は図の縦左軸に対応し、平滑後のMSV指示値の平均値Sを示している。これから分かるように、パルス計数率がMSV計測範囲内すなわち1×105cps以上においては、概ね、パルス計数率と平滑後のMSV指示値すなわち2乗電圧とは、ほぼ比例して推移する。他方、パルス計数率が1×105cps〜2×105cpsの範囲では回路ノイズの影響で比例関係にはなっていない。
また、32μsでのMSV指示値の平均値Sと標準偏差σに対して、
X=(S+6σ)/S
で表される指標をパルス発生率ごとに評価したものを、図10の縦右軸に対応する破線で示す。XはMSV計測下限で最大5.3程度となり、同様の評価で1×106cps以上では2〜3程度で推移する。
一方、他の評価方法として、バンドパスフィルタ10で100〜400kHzの帯域制限処理を施して第1平滑装置12Aで模擬中性子パルスを32μsで平滑化したときのMSV計測値の揺らぎ率Y、すなわち標準偏差σと平均値Sとの比率:Y=σ/S の推移を理論式で評価した場合のグラフを図11に示す。図から分かるように、MSV計測範囲(計測下限1×105cps)におけるYの値は0.4以下であり、MSV計測範囲の下限で揺らぎは最大となる。
これらの図から分かるように、波形の揺らぎは、特にMSV計測範囲の下限である約1×105cps程度において大きい。したがって、特にこの揺らぎの大きい計数率:1×105cps程度における、上述したXあるいはYにより例示される揺らぎの度合いを示す指標を、第1平滑装置12Aの積分時間の条件で事前に評価し、得られた評価値を超えたものはノイズと判定することとする。
すなわち、第1平滑装置12Aでパルスを32μsで平滑化した場合、第1平滑装置12Aで以前に平滑処理された結果や、あるいは予め模擬中性子パルスを用いて評価した結果を用いて得られる評価指標および評価基準と、平滑化した結果との比較を行い、この評価指標に基づいてパルスを評価したときに、評価基準を超えるような場合、例えば評価指標が前回の平滑処理結果の8倍と規定されるしきい値を超えた場合、この部分を異常値と判定する。
図12は、ノイズを含むパルス波形を模式的に示したものである。通常のMSV値は破線で囲まれる範囲を揺らいでいる。この範囲を超えるものはノイズである。このしきい値は、その平均のMSV指示値によって変化するが、もっとも変動の大きいMSVの計測下限での評価値を用いれば、全MSV計測範囲において保守的な評価として適用可能である。
また、ここでのデータ除去平均化装置13においては、ノイズと判定された部分のデータについては、このデータ自体を除去する場合と、このデータを上述したしきい値の範囲内の値に置き換える場合とがある。前者の場合、ノイズをほぼ完全に除去することができるが、上述したデータ除去率の範囲で除去する必要があるためデータ除去率を評価する必要となる。逆に後者の場合、完全なノイズ除去はできないが、データ除去率の評価が不要であるという特徴がある。
以下、後者の場合、すなわちノイズ部分の値を置換する場合の一例を詳述する。図13は、MSV指示値の揺らぎの範囲と平均値の変化幅の関係を示すグラフである。図中の実線はパルスを32μsで平滑化したときのMSV信号出力、破線は中性子束の最大変化を示している。図中一点破線で示された、上述の方法により評価されるMSV計測の揺らぎの変化幅は、破線で示された、本来計測すべき中性子束の変化率に比べて十分大きい。よって、この評価されたMSV計測の揺らぎの変化幅を超えた場合を、異常値と判定することとする。
この揺らぎの変化幅すなわち最大揺らぎを超えるノイズが誘導された場合のパルスのMSV指示値の推移の一例を図14(a)に示す。図中矢印Aは、MSV計測の揺らぎの変化幅、例えば前回の平滑処理結果の8倍と規定されたしきい値を示す。このAを超えている部分は異常値と判定され、この異常値を、正常値として、本来の中性子束の最大変化率を前回のサンプリング値に乗じた値に置き換えることとする。置換処理の結果を図14(b)に示す。ここで、32μs幅での想定される中性子束の最大変化率は、例えば1.03倍程度であり、上述したMSV計測の揺らぎ範囲よりも十分小さいものである。よってここでの置換処理は、異常値を前回値の1.03倍に置き換えるものとしている。このように、異常値が検出された場合の変化率も、平滑区間内での監視すべき中性子束の最大変化率をあらかじめ評価しておくことにより、計測の時間応答性を損なうことなく、異常値のみを除去することができる。
次に、データ除去平均化装置13の出力は、第2平滑装置12Bに入力され、測定値の揺らぎが必要とされる測定精度を満たし、また、応答要求を満たす範囲となるように、平均化処理される。この結果は、MSV中性子評価装置14に入力され、測定されたMSV値が中性子束の値に換算される。
また、本参考例では、ノイズ特性評価装置15を設けるのが好適である。ここでは、ノイズ波形の特性であるサージ状パルスのパルス幅と到来周期の最小値を評価し、MSV計測の測定範囲において必要となる最大データ除去率の範囲内において、第1平滑装置12Aで平均化のために用いるデータ数、データ除去平均化装置13のデータ平均区間と、データ除去数、および、第2平滑装置12Bの平滑化フィルタの時定数を設定する。
このような構成により、MSV計測において、サージ状の外来ノイズが誘導された場合でも、そのサージ状のパルス幅と、その到来周期を評価し、MSV計測の許容データ除去率を満たす範囲内でサージノイズデータを除去することにより、間欠的なサージノイズを完全に除去することができる。
<本発明の実施の形態>
次に、本発明の実施の形態を図15に基づいて説明する。
図15に示す放射線測定装置では、放射線センサとして、常温半導体であるCdTeを用いたCdTeセンサ16を用いている。放射線センサとしては、エネルギー情報の取得が可能な、NaI等のシンチレーションセンサと光電子増倍管を組み合わせたもの、半導体センサであるGeセンサなども同様に用いることが可能である。CdTeセンサ16の出力は、チャージアンプ(CA)17に入力される。チャージアンプ17は、入力パルスの電荷を積分し、その電荷量に応じたパルス波高を有するパルスに変換し出力する。なお、チャージアンプ17はCdTeセンサ16に対しその動作電圧を供給する。チャージアンプ17の出力は、一般に放射線のエネルギー測定に用いられるパイルアプリジェクション回路、ポールゼロキャンセル回路などで波形整形処理が施され、MSV計測装置18、電流計測装置(CD)19、およびパルスカウンタ(PC)20に入力される。MSV計測装置18では、周波数帯域の制限を行った後、n乗の平均化演算が行われ、MSV計測値つまり2次モーメント値に変換される。電流計測装置19では、1次モーメント値である平均電流値が測定される。また、パルス計測装置20では、パルス数の計数が行われる。これらMSV計測値、電流計測値、およびパルス計数値は、それぞれエネルギー評価装置21に入力され、MSV値とパルス計数の比率、または、MSV値と直流電流値の比率(1次と2次のモーメント値の比率)をもとに平均放射線エネルギーを評価する。この平均のエネルギー値と、前記の測定値は、線量評価装置22に入力され、照射線量、または、物質での吸収線量、または、人体へのリスク率を含めた線量当量に換算される。
エネルギー評価装置21における放射線の平均エネルギーの推定方法を以下に説明する。
チャージアンプ17の出力は、CdTeセンサ16内で放射線が吸収されたエネルギーに比例した波高値を有するパルスである。したがって、その反応の起こる確率をNとし、吸収エネルギーをqとすると、MSV値、パルス計数値、および電流値は、以下の式で近似することができる。
MSV値 : k1×q×N
n次モーメント値 : kn×q×N
パルス計数値 : k2×N
直流電流値(1次モーメント値) : k0×q×N
ただし、k0、k1、k2、knはそれぞれ補正係数である。
よって、これらの比率は、
MSV値/パルス計数値=(k1/k2)×q(一般に、kn×q
MSV値/直流電流値=(k1/k0)×q
n次/n’次モーメント値 = kn×q(n−n’)/kn’
となり、これらの補正係数k0,k1,k2,kn等を予め評価し、これら測定値の比率を用いることにより、結晶中での吸収エネルギーの推定が可能となる。
図16は、CdTeセンサ16によって種々の核種からの放射線、つまり、エネルギーの異なる放射線、を測定した場合の、パルス計数値およびMSV値(縦軸)を、市販の放射線サーベイメータで測定した線量(横軸)に対してプロットしたものである。一般に、サーベイメータ等は、放射線のエネルギーに対する感度特性を、放射線のエネルギーに対する線量当量の評価曲線に一致するように遮蔽、または、内部の補正係数を調整している。つまり、エネルギーの低い放射線に対しては、1個の放射線が入射した場合の結晶中での吸収エネルギーが小さいためパルス計数率が大きくなるが、1個の放射線の線量は低い値を示す。逆に、エネルギーの高い放射線に対しては、パルス計数率は低くなるが、1個の放射線で発生する電荷量が大きいため線量は大きくなる。したがって、測定しているパルス計数値または電流値の感度を線量当量への寄与率と同じになるように遮蔽等で調整する。図16は、これらの感度補正を行っていないため、低いエネルギーの放射線に対してはパルス計数値が高くなっており、線量に対してパルス計数値およびMSV計測値はランダムになっている。
しかし、これをMSV値/パルス計数値の線量に対する特性としてプロットすると、図17に示すように線量当量に対して単調な特性となる。したがって、この特性を事前に評価しておくことによって、両者の比率から線量当量への換算が可能である。また、同様に、このMSV値/パルス計数値の比率は、入射エネルギーに対しても単調な特性となり、この特性も評価しておくことにより、平均の入射放射線エネルギーを推定することができる。この場合、放射線のエネルギーに対する人体の各部位の吸収特性を用いることにより、各部位で吸収線量をより正確に評価することが可能となる。
さらに、パルス計測で線量評価を行う場合、パルスの波高分布を測定し、入射エネルギーのエネルギー情報を取得し、線量に換算する方法と、前記のセンサ自体の構造を工夫し、パルス計測の感度を線量応答特性と同一にする場合がある。また、電流値で線量を評価する方法としては、後者のセンサ構造を工夫し、感度応答を調整する方法がある。したがって、これら周知の手法と本実施の形態の線量評価方法を併用することにより、さらに精度のよい線量評価を行うことができる。つまり、たとえば、センサの感度特性を単独にある程度調整し、その後に本発明の補正関数を評価して用いることにより、さらに正確な線量評価が可能となる。
さらに、パルスがパイルアップし、パルス計数の数え落としが生じるような高い計数率では、波高情報を取得し線量に換算する前者の方法では正確な線量は評価できない。また、遮蔽を設けた後者の場合も、数え落とし分を補正する必要がある。しかし、本実施の形態のようにパルス計測とMSV計測を同時に実施することにより、パルス計測がパイルアップによって飽和した場合でも、MSV計測によって線量の評価が可能となり、広いレンジの測定が可能となる。ただし、この場合の平均エネルギーの推定は、パルス計測のパイルアップの効果を補正する必要があるが、ある程度センサ自体の感度を線量応答に近似させておくことにより、その誤差は無視できる範囲に抑えることができる。
また、MSV値/パルス計数値の比率と同様に、電流値/パルス計数値の比率と、上述した本実施の形態によるMSV値/電流値の比率を用いた場合も、同様の補正関数を求めておくことにより平均放射線エネルギーの推定が可能となる。
かくして、本実施の形態によれば、線量評価において、n次モーメント値とパルス計測を併用することにより、平均入射エネルギーの推定から、より正確な線量評価を行うことができる。また、パルスがパイルアップし、計数誤差が生じる条件においても、n次モーメントどうしの比率を用いることにより、同様に平均エネルギーの推定が可能となり、従来よりも広い測定レンジで正確な線量評価を行うことができる。
さらに、本実施の形態の変形例を以下説明する。ここでは、上述したMSV値の代わりに、1乗値(平均電流)、2乗値、3乗値、…、n乗値をそれぞれ算出し、それぞれの補正関数を算出しておき、この補正関数の逆マトリックスを解くことにより、エネルギー分布の推定が可能となる。
つまり、各n次のモーメントの計測値は、
x1 = a1[1:n]×E[n:1] (電流計測に相当)
x2 = a2[1:n]×E[n:1] (MSV計測に相当)
x3 = a3[1:n]×E[n:1]
・・・
xn = an[1:n]×E[n:1]
xn: n次モーメント値[スカラー量]
an: 応答マトリックス[1行n列行列]
E: エネルギー分布[n行1列行列]
となるから、行列の乗算として、
X[n:1] = A[n:n] × E[n:1]
と表すことができる。この行列Aの逆行列A−1を用いて、放射線のエネルギー分布は、
E[n:1] = A-1[n:n] × X[n:1]
として求めることができる。ただし、この1乗からn乗までのモーメント計測は、必要とするエネルギーバンド幅に相当する個数分を前記の式から選択すればよく、1次モーメントである平均電流値を除くことにより、すべて交流の計測手段のみで構成することができる。
以上説明したように、本発明の放射線測定装置によれば、MSV計測とパルス計測または電流計測を組み合せ、その比率から平均放射線エネルギーを推定し、線量に換算することができる。これは、従来のセンサ構造を用いて感度を補正していた手法と併用することにより、より線量応答に近い特性を容易に実現することができる。また、従来のパルス波高を求めて線量を算出していた手法に比べ、波高を選別する必要がなく、簡単な構成で実現が可能である。さらに、複数のn次モーメント値を用い、その応答関数から放射線のエネルギーを再構成することができ、パルス計測が困難な高計数率においても放射線のエネルギー分布の測定が可能となり、その情報からより正確な線量を評価することができる。かくして、これらを単独に、または従来の線量評価手法と併用することにより、より広いレンジの線量を、より正確に、一括して監視することの可能な放射線測定装置を提供することができる。
本発明による放射線測定装置の第1の参考例を示すブロック図である。 (a)はSRNMセンサ出力パルスとサンプリングの例を示す説明図、(b)はSRNMセンサ出力の2乗値を示す説明図である。 (a)〜(c)はn乗パルス計測手段の作用を説明するためのグラフである。 本発明による放射線測定装置の第2の参考例を示すブロック図である。 積分識別装置と差分識別装置の特徴を比較する図表である。 本発明による放射線測定装置の第3の参考例を示すブロック図である。 (a)〜(d)は単極性変換手段の機能を説明するためのグラフである。 本発明による放射線測定装置の第4の参考例を示すブロック図である。 ノイズ波形例を示す波形図である。 第4の参考例において模擬中性子パルスを入力したときの第1平滑装置のシミュレーション結果と指標Xの推移を示すグラフである。 第4の参考例において第1平滑装置の出力の揺らぎ率Yを評価した結果を示すグラフである。 MSV揺らぎとノイズの関係を説明するための波形図である。 MSV指示値の揺らぎの範囲と平均値の変化幅の関係を示すグラフである。 (a)は最大揺らぎを超えるノイズが誘導された場合のパルスのMSV指示値の推移の一例を示すグラフ、(b)は(a)を第4の実施の形態のデータ除去平均化手段によって処理した結果を示すグラフである。 本発明による放射線測定装置の実施の形態を示すブロック図である。 線量に対するCdTeセンサのパルス計数およびMSV指示値を示すグラフである。 線量に対するCdTeセンサのMSV指示値とパルス計数値の比率を示すグラフである。 従来のディジタル式原子炉起動監視装置のブロック図である。
符号の説明
1 SRNMセンサ
2 アナログ式増幅器
2A プリアンプ
2B プリアンプ
3 A/D変換器
4 n乗パルス識別装置
5 パルス計数装置(PC)
6 積分識別装置
7 差分識別装置
8 波高・パワー識別装置
9 単極性変換手段
10 バンドパスフィルタ(BPF)
11 n乗演算装置
12A 第1平滑装置
12B 第2平滑装置
13 データ除去平均化装置(DEA)
14 MSV中性子評価装置
15 ノイズ特性評価装置
16 CdTeセンサ
17 チャージアンプ
18 MSV計測装置
19 電流計測装置
20 パルス計数装置
21 エネルギー評価装置
22 線量評価装置
23 パルス計数手段
24 和演算手段
25 パワー演算手段
26 加算平均手段
27 原子炉出力評価手段

Claims (3)

  1. 放射線に感応してパルスを出力する放射線検出手段と、この放射線検出手段の出力パルスに対し前記感応に基づく吸収エネルギーについての複数のn次モーメントを求めるモーメント演算手段と、前記放射線検出手段の出力パルスを計数するパルス計数手段または平均電流値を評価する平均電流計測手段と、前記モーメント演算手段によって求められた複数のn次モーメント平均値とパルス計数値の比率または前記複数のn次モーメント平均値と前記平均電流値の比率を求めるモーメント比率評価手段と、求められた比率から予め評価した応答マトリックスをもとにモーメント個数分のエネルギーバンド数のエネルギースペクトルに換算するスペクトル評価手段と、前記エネルギースペクトルを放射線の線量当量に換算する線量当量評価手段とを具備した放射線測定装置。
  2. 放射線に感応してパルスを出力する放射線検出手段と、この放射線検出手段の出力パルスの前記感応に基づく吸収エネルギーについてのn乗平均値(n>=2)を算出するn次モーメント演算手段と、前記放射線検出手段の出力パルス数を計数するパルス計数手段と、前記n乗平均値と前記パルス計数値の比率をもとに入射放射線の平均エネルギーを算出する平均エネルギー算出手段と、前記平均エネルギーと前記n乗平均値またはパルス計数値とから放射線の線量当量を算出する線量評価手段とを具備した放射線測定装置。
  3. 放射線に感応してパルスを出力する放射線検出手段と、この放射線検出手段の出力パルスの前記感応に基づく吸収エネルギーについてのn乗平均値を算出する複数のn次モーメント演算手段と、これらのn次モーメント演算手段によって算出された複数のn次モーメントどうしの比率をもとに入射放射線の平均エネルギーを算出する平均エネルギー算出手段と、前記平均エネルギーと前記n乗平均値または平均電流値とから放射線の線量当量を算出する線量評価手段とを具備した放射線測定装置。
JP2007100635A 2001-03-28 2007-04-06 放射線測定装置 Expired - Fee Related JP4417972B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007100635A JP4417972B2 (ja) 2001-03-28 2007-04-06 放射線測定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001093306 2001-03-28
JP2007100635A JP4417972B2 (ja) 2001-03-28 2007-04-06 放射線測定装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002046788A Division JP3958069B2 (ja) 2001-03-28 2002-02-22 放射線測定装置

Publications (2)

Publication Number Publication Date
JP2007187682A JP2007187682A (ja) 2007-07-26
JP4417972B2 true JP4417972B2 (ja) 2010-02-17

Family

ID=38342918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007100635A Expired - Fee Related JP4417972B2 (ja) 2001-03-28 2007-04-06 放射線測定装置

Country Status (1)

Country Link
JP (1) JP4417972B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102413765B (zh) 2009-03-26 2016-09-21 皇家飞利浦电子股份有限公司 频谱成像
JP6628701B2 (ja) * 2016-08-05 2020-01-15 三菱電機株式会社 放射線測定装置
CN108572382B (zh) * 2017-03-09 2022-05-20 中国辐射防护研究院 一种β-γ混合辐射场中H'(0.07)的测算方法
JP6953902B2 (ja) * 2017-08-29 2021-10-27 東京電力ホールディングス株式会社 中性子検出器

Also Published As

Publication number Publication date
JP2007187682A (ja) 2007-07-26

Similar Documents

Publication Publication Date Title
JP3958069B2 (ja) 放射線測定装置
JP5171891B2 (ja) 放射線測定装置
JP5336934B2 (ja) 広域中性子束監視システムおよび検出器特性評価装置
EP3637147A1 (en) Gain correction apparatus and method for scintillation detector
KR100930681B1 (ko) 방사성 핵종별 선량률 측정이 가능한 환경방사능 감시시스템의 감시방법
US9029769B2 (en) Dose rate measuring apparatus
JP4417972B2 (ja) 放射線測定装置
JP2004108796A (ja) 放射線測定装置
JP2003513250A (ja) 差分訂正法と差分訂正装置
JP3807652B2 (ja) 放射線測定装置及び方法
CN108196293B (zh) 一种基于闪烁体探测器剂量率检测方法
US20150301194A1 (en) Guard efficiency compensation system and method
JP2001194460A (ja) 放射線モニタ
US10353081B2 (en) Gamma system count loss correction with virtual pulse injection
JP7183206B2 (ja) 放射能検査装置
JP2019120656A (ja) 放射線計測装置及び放射線計測方法
JP2005049144A (ja) 放射線計測方法
RU2729600C1 (ru) Способ диагностирования стабильности работы устройства с коронным счетчиком для измерения нейтронных потоков в присутствии гамма-излучения
JP6304961B2 (ja) パルス処理装置及び放射線検出装置
JPH0921880A (ja) 放射線測定装置
JP2000266854A (ja) 電子式線量計
JP2004138511A (ja) 中性子測定装置
JPH07306267A (ja) 放射線測定装置
USRE28738E (en) Quench correction in liquid scintillation counting
JP3728220B2 (ja) 比例計数管型中性子検出器のγ線感度試験方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees