WO2013047820A1 - 溶融亜鉛めっき鋼板及びその製造方法 - Google Patents

溶融亜鉛めっき鋼板及びその製造方法 Download PDF

Info

Publication number
WO2013047820A1
WO2013047820A1 PCT/JP2012/075215 JP2012075215W WO2013047820A1 WO 2013047820 A1 WO2013047820 A1 WO 2013047820A1 JP 2012075215 W JP2012075215 W JP 2012075215W WO 2013047820 A1 WO2013047820 A1 WO 2013047820A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
less
steel sheet
hot
temperature
Prior art date
Application number
PCT/JP2012/075215
Other languages
English (en)
French (fr)
Inventor
東 昌史
千智 若林
貴行 野崎
高橋 学
藤田 展弘
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201280047125.9A priority Critical patent/CN103827341B/zh
Priority to US14/347,067 priority patent/US10407760B2/en
Priority to BR112014007500A priority patent/BR112014007500A2/pt
Priority to KR1020147008479A priority patent/KR20140068122A/ko
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to ES12834953T priority patent/ES2732799T3/es
Priority to JP2013512901A priority patent/JP5569647B2/ja
Priority to RU2014113075/02A priority patent/RU2566131C1/ru
Priority to EP12834953.7A priority patent/EP2762600B1/en
Priority to KR1020167016215A priority patent/KR101951081B1/ko
Priority to MX2014003716A priority patent/MX2014003716A/es
Priority to CA2850044A priority patent/CA2850044C/en
Priority to PL12834953T priority patent/PL2762600T3/pl
Priority to KR1020167016218A priority patent/KR101935112B1/ko
Publication of WO2013047820A1 publication Critical patent/WO2013047820A1/ja
Priority to ZA2014/02259A priority patent/ZA201402259B/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Definitions

  • the present invention relates to a hot dip galvanized steel sheet having a tensile strength (TS) of 980 MPa or more and excellent in plating adhesion and delayed fracture resistance.
  • the hot dip galvanized steel sheet according to the present invention is particularly suitable for structural members, reinforcing members, and suspension members for automobiles.
  • the hot dip galvanized steel sheet in the present invention refers to a hot dip galvanized steel sheet and an alloyed hot dip galvanized steel sheet.
  • thin steel sheets are (1) thin because the sheet thickness is thin, even if hydrogen enters, it is released in a short time, and (2) because workability has been prioritized, there is almost no use of steel sheets with a tensile strength of 900 MPa or more. For this reason, the problem with respect to hydrogen embrittlement was small.
  • the demand for application of high-strength steel plates is rapidly increasing, it is required to develop a high-strength steel plate excellent in hydrogen embrittlement resistance.
  • Delayed fracture is known to have a close relationship with hydrogen entering the steel from the environment.
  • hydrogen that enter the steel from the environment, such as hydrogen contained in the atmosphere and hydrogen generated in a corrosive environment.
  • hydrogen when hydrogen penetrates into the steel material, it can cause delayed fracture. For this reason, it is desired that the steel material be used in an environment where hydrogen is not present.
  • intrusion of hydrogen is unavoidable because steel materials are used outdoors.
  • Examples of the stress acting on a steel material used as a structure include a stress applied to the structure and a residual stress in which a part of the stress generated at the time of forming the structure remains in the steel material.
  • structures used as members after molding such as thin steel sheets for automobiles, have a large residual stress compared to thick plates and strips that are used as they are with almost no deformation of products such as bolts and thick plates. It becomes a problem. Therefore, when forming a steel sheet in which delayed fracture is a problem, a forming method that does not leave residual stress is desired.
  • Patent Document 1 discloses a hot press forming method for a metal plate in which a steel plate is once heated to a high temperature and then processed and then baked using a mold to increase the strength.
  • the steel material is processed at a high temperature. For this reason, dislocations introduced during processing that cause residual stress are recovered, or transformation occurs after processing to relieve the residual stress. As a result, little residual stress remains. Therefore, as described above, the delayed fracture resistance is improved by performing hot processing and strengthening the steel sheet using the subsequent quenching.
  • it is necessary to heat the steel sheet to be processed by heat treatment, and the productivity is poor. Moreover, since installation of a heating furnace etc. is needed, it is economically inferior.
  • Non-Patent Document 1 shows temper softening resistance such as Cr, Mo and V by quenching a steel material from a high-temperature austenite single phase to form a martensite single phase structure and then performing a tempering treatment.
  • a high-strength bolt is disclosed in which fine precipitates of additive elements are finely precipitated in martensite in a consistent manner to improve the hydrogen embrittlement resistance of the steel material.
  • This high-strength bolt utilizes the fact that hydrogen that has penetrated into the steel material is trapped around VC or the like that has been deposited in the martensite in a consistent manner. It is suppressed from diffusing or concentrating on the starting point. Utilizing such a mechanism, conventionally, development of steel sheets having high strength and excellent delayed fracture resistance has been promoted.
  • the steel sheet is processed during subsequent cold rolling and recrystallized during continuous annealing.
  • the orientation relationship between the precipitates and the ferrite and martensite as the parent phase is lost. That is, the precipitate is no longer a matched precipitate.
  • the delayed fracture resistance of the obtained steel sheet is also greatly reduced.
  • the steel structure of a high-strength steel sheet that is likely to cause delayed fracture is a structure mainly composed of martensite. Since the temperature at which the martensite structure is formed is low, precipitates that serve as hydrogen trap sites such as VC cannot be deposited in the temperature range where the martensite structure is formed. In other words, when it is intended to improve delayed fracture resistance by hydrogen trapping of matched precipitates such as VC in thin steel sheets, the steel structure is once built by continuous annealing equipment or continuous hot dip galvanizing equipment, and then additional heat treatment is performed. It is necessary to deposit these precipitates, which greatly increases the manufacturing cost.
  • Non-Patent Document 1 since the steel described in Non-Patent Document 1 has a C content of 0.4% or more and contains a large amount of alloying elements, the workability and weldability required for thin steel sheets are not sufficient.
  • Patent Document 2 describes a thick steel plate in which hydrogen defects are reduced by an oxide mainly composed of Ti and Mg.
  • the disclosed thick steel sheet only reduces hydrogen defects caused by hydrogen trapped in the steel at the time of manufacture, and does not consider any hydrogen embrittlement resistance (delayed fracture resistance). Furthermore, no consideration is given to the compatibility between high formability and hydrogen embrittlement resistance (delayed fracture resistance) required for thin steel sheets.
  • Non-Patent Document 2 reports the promotion of hydrogen embrittlement due to the processing-induced transformation of the retained austenite amount. This is in consideration of the forming process of a thin steel sheet, but the regulation of the amount of retained austenite that does not deteriorate the hydrogen embrittlement resistance is described. That is, it relates to a high-strength thin steel sheet having a specific structure, and is not a fundamental measure for improving hydrogen embrittlement resistance.
  • an object of the present invention is to provide a hot-dip galvanized steel sheet having a tensile strength (TS) of 980 MPa or more and excellent plating adhesion and delayed fracture resistance, and a method for producing the same.
  • the hot dip galvanized steel sheet also has formability (elongation, bendability, hole expansibility, etc.) particularly suitable for structural members, reinforcing members, and suspension members for automobiles.
  • TS ⁇ EL is 10,000 MPa ⁇ % or more and TS ⁇ ⁇ is 20000 MPa ⁇ % or more.
  • TS ⁇ EL is preferably 14000 MPa ⁇ % or more, more preferably 15000 MPa ⁇ % or more, and 16000 MPa ⁇ % or more. Is more desirable. Further, in the case of a steel plate applied to a member requiring particularly bendability such as a bumper reinforcement, it is desirable that TS ⁇ ⁇ having a correlation with bendability is 30000 MPa ⁇ % or more. More desirably, it is 40000 MPa ⁇ % or more, and further desirably 50000 MPa ⁇ % or more.
  • the present inventors have been able to improve delayed fracture resistance by applying plating as described later on the surface of a steel sheet as a means of improving delayed fracture resistance without affecting the steel material. I found out. Specifically, by dispersing an oxide containing one or more selected from Si, Mn or Al in the plating layer, hydrogen entering from the environment is trapped by the oxide in the plating layer, and the stress concentration portion It has been found that the diffusion of hydrogen into water and the delayed destruction caused by this can be delayed.
  • a hot dip galvanized steel sheet includes a steel sheet and a plating layer on a surface of the steel sheet, and the steel sheet is in mass% and C: 0.05 to 0.00. Less than 40%, Si: 0.5 to 3.0%, Mn: 1.5 to 3.0%, O: 0.006% or less, P: 0.04% or less, S: 0.00.
  • the balance is composed of Fe and inevitable impurities, the microstructure is one of martensite and bainite, 2 types are contained in total 20% or more and 99% or less; the balance structure is composed of ferrite, residual austenite with a volume fraction of less than 8%, and one or two of pearlite with a volume fraction of 10% or less, and tensile strength It has 980 MPa or more, and the plating layer is one of Si, Mn or Al or A plate containing an oxide containing at least seeds, containing 15% by mass or less of Fe, the balance being a hot dip galvanized layer made of Zn, Al and unavoidable impurities, the steel plate and the hot dip galvanized layer When viewed in a cross section in the thickness direction, it is obtained by dividing the length of the oxide projected onto the interface between the hot dip galvanized layer and the steel sheet by the length of the interface between the hot dip galvanized layer and the steel sheet.
  • a hot-dip galvanized steel sheet includes a steel sheet and a plating layer on a surface of the steel sheet, and the steel sheet is in mass%, C: 0.05 to 0.00. Less than 40%, Si: 0.5 to 3.0%, Mn: 1.5 to 3.0%, O: 0.006% or less, P: 0.04% or less, S: 0.00.
  • the balance is composed of Fe and inevitable impurities, and the microstructure is one of martensite and bainite in volume fraction or 2 types are contained in total 20% or more and 99% or less; the balance structure is composed of ferrite, residual austenite with a volume fraction of less than 8%, and one or two of pearlite with a volume fraction of 10% or less, and tensile strength
  • the plating layer has one or more of Si, Mn or Al.
  • An alloyed hot dip galvanized layer comprising 7% by mass or more and 15% by mass or less of Fe, with the balance being Zn, Al and unavoidable impurities, the steel sheet and the alloyed hot dip galvanized
  • the length of the oxide projected on the interface between the galvannealed layer and the steel sheet when viewed in a cross section in the thickness direction including the layer is the interface between the galvannealed layer and the steel sheet.
  • the projected area ratio which is the area ratio obtained by dividing by the length, is 10% or more and 90% or less.
  • the microstructure may contain 40% to 80% of the ferrite in terms of volume fraction.
  • the microstructure may contain one or more of martensite and bainite in a volume fraction of more than 60%.
  • the steel sheet further includes Cr: 0.05 to 1.0% by mass, Mo: 0.01. -1.0%, Ni: 0.05-1.0%, Cu: 0.05-1.0%, Nb: 0.005-0.3%, Ti: 0.005-0.3%, V: 0.005 to 0.5%, B: 0.0001 to 0.01%, Ca: 0.0005 to 0.04%, Mg: 0.0005 to 0.04%, REM: 0.0005 to You may contain 1 type, or 2 or more types of 0.04%.
  • a method for producing a hot-dip galvanized steel sheet comprises producing a steel by casting the molten steel comprising the chemical component described in (1); after the steel is directly or once cooled Heating the steel to a first temperature range of 1100 ° C. or more and less than 1300 ° C .; completing the hot rolling at or above the Ar3 transformation point; bringing the steel to a second temperature range of 300 ° C. or more and 700 ° C. or less.
  • the steel is kept in a third temperature range of 550 to 750 ° C. for 20 seconds or more and 2000 seconds or less during heating up to the annealing temperature; the steel has an H 2 concentration of 20% or less. and dew point under N 2 atmosphere at least -20 ° C.
  • a second cooling is performed to cool the bath temperature to a sixth temperature range of ⁇ 40 ° C. to a galvanizing bath temperature + 50 ° C .; a plating bath immersion plate temperature, which is a temperature at which the steel is immersed in a hot dip galvanizing bath; 6 is immersed in the hot dip galvanizing bath flowing at a flow rate of 10 m / min to 50 m / min and galvanized; the steel is cooled to 40 ° C. or lower.
  • a method for producing a hot-dip galvanized steel sheet comprises producing a steel by casting the molten steel comprising the chemical component described in (2) above; After cooling, the steel is heated to a seventh temperature range of 1100 ° C. or higher and lower than 1300 ° C .; the steel is hot-rolled at an Ar3 transformation point or higher; and the steel is heated to 300 ° C. or higher and 700 ° C. or lower to an eighth temperature range.
  • N 2 Annealing is carried out in a tenth temperature range of 750 ° C. to 900 ° C.
  • the steel is heated to 500 to 750 at an average cooling rate of 1 ° C./second to 200 ° C./second.
  • a fourth cooling is performed to cool to a twelfth temperature range of 500 ° C. to 25 ° C .; when the cooling stop temperature in the fourth cooling is less than 350 ° C., the steel is heated to 350 ° C. or more and 500 ° C.
  • plating bath immersion plate temperature which is the temperature at which the steel is immersed in a hot dip galvanizing bath, to the galvanizing bath temperature -40 ° C to zinc plating bath temperature + 50 ° C 14 is immersed in a hot dip galvanizing bath flowing at a flow rate of 10 m / min to 50 m / min and galvanized; alloying treatment is performed in the fifteenth temperature range of 600 ° C. or lower for the steel. Perform; Cool the steel to 40 ° C. or less.
  • the annealing may be performed at a temperature of less than 840 ° C.
  • the annealing may be performed at a temperature of 840 ° C. or higher.
  • the molten steel further contains Cr: 0.05 to 1.0% by mass, Mo: 0.01-1.0%, Ni: 0.05-1.0%, Cu: 0.05-1.0%, Nb: 0.005-0.3%, Ti: 0.005-0. 3%, V: 0.005 to 0.5%, B: 0.0001 to 0.01%, Ca: 0.0005 to 0.04%, Mg: 0.0005 to 0.04%, REM: 0 One or two or more of .0005 to 0.04% may be contained.
  • the present invention can provide, at low cost, a hot-dip galvanized steel sheet having a tensile strength of 980 MPa or more suitable for automobile structural members, reinforcing members, suspension members, etc., and excellent in plating adhesion and delayed fracture resistance.
  • the oxide can be dispersed in the plating layer so that the projected area ratio is 10% or more, and the plating adhesion is also excellent. Moreover, it discovered that it could utilize as a trap site by disperse
  • the hot dip galvanized steel sheet according to this embodiment includes a steel sheet and a plating layer on the surface of the steel sheet.
  • the plated steel sheet may further include various coating layers such as an organic layer and an inorganic layer on the surface of the plating layer.
  • the plated steel plate is composed of a steel plate and a plating layer on the surface of the steel plate.
  • This plated layer includes a hot dip galvanized layer and an alloyed hot dip galvanized layer.
  • the plating layer is on the surface of the steel sheet, and contains an oxide containing one or more of Si, Mn, or Al alone or in combination. In the present embodiment, it is most important that the oxide containing one or more of Si, Mn, and Al in the plating layer is dispersed in the plating layer.
  • the projected area ratio that is, the length of the projected oxide on the interface between the plating layer and the steel sheet when viewed in a cross section in the thickness direction including the steel sheet and the plating layer, The effect becomes remarkable by dispersing the oxide in the plating layer so that the area ratio obtained by dividing by the length of the interface between the plating layer and the steel sheet is 10% or more.
  • This projected area ratio can be rephrased as an apparent covering ratio of oxide that shades the surface of the steel sheet when the steel sheet is viewed from above the surface of the hot dip galvanized steel sheet.
  • the oxide contains many defects, so the oxide in the plating layer traps hydrogen that penetrates from the surface of the steel sheet (for example, hydrogen generated by corrosion reaction or hydrogen in the atmosphere).
  • the delayed fracture resistance is improved by delaying the penetration of hydrogen into the steel plate.
  • Automobile steel sheets are used in an environment in which a wet environment and a dry environment are repeatedly performed, that is, in a wet-dry environment, so that hydrogen once trapped in the oxide present on the steel sheet surface in the wet environment enters the environment in the dry environment. Released. Therefore, it is considered that dispersing the oxide in the plating layer as described above has a higher effect on delayed fracture resistance in an actual use environment of an automobile.
  • the form of the above-mentioned oxide is any of a film form, a granular form, and a string form
  • the effect of this embodiment can be obtained as long as the projected area ratio is within the above range.
  • the film-like oxide tends to have a larger projected area ratio with respect to the volume ratio, in order to make the projected area ratio within the range of the present embodiment within a short period of processing, It is desirable that the form is a film.
  • the oxides dispersed in the plating layer are Si, Mn, or Al oxides. These oxides have a higher melting point than zinc and are dispersed in the plating layer as an oxide (for example, in the form of a film). This is because it is easy. In particular, when a film-like oxide is used, a projected area ratio of 10% or more can be secured more easily. Further, when the oxide is dispersed in a plating layer region within 5 ⁇ m from the interface between the steel plate and the plating layer, the hydrogen trap effect becomes more prominent. After forming these oxides on the steel sheet surface layer, the oxides can be dispersed inside the plating layer as shown in FIG. 1 by performing hot dip galvanizing treatment, or hot dip galvanizing treatment and alloying treatment. .
  • the reason for using the oxide on the surface of the steel sheet is that it is easy to control the oxide form such as the size and number density of the oxide, and is advantageous for producing an oxide having a projected area ratio of 10% or more.
  • SiO 2 , MnO, Al 2 O 3 , Mn 2 SiO 4, and the like can be given as oxides containing one or more of Si, Mn, and Al, alone or in combination, and SiO 2 , Mn 2 Desirably, SiO 4 is included.
  • the same effect can be obtained even when an oxide containing Cr (Cr 2 O 3 ) is contained.
  • the oxide dispersed in the plating layer is an oxide containing Si, Mn, or Al alone or in combination.
  • These oxides can be controlled by adding Si, Mn, or Al to the steel sheet and controlling the atmosphere during annealing.
  • the oxide needs to have a projected area ratio of 10% or more with respect to the steel sheet surface.
  • the oxide is intended to trap hydrogen entering from the surface of the steel sheet, and therefore it is desirable that the oxide exists in the plating layer and covers the interface between the steel sheet and the plating layer widely.
  • the effect can be obtained by setting the projected area ratio to 10% or more. Desirably, it is 15% or more, and more desirably 20% or more.
  • the projected area ratio exceeds 90%, the alloying reaction becomes extremely slow, and high-temperature alloying is required to keep the Fe% in the plating layer within a predetermined range. In that case, since austenite is transformed into pearlite, a predetermined material cannot be obtained.
  • the projected area ratio of the oxide can be easily measured by observing the cross section of the hot dip galvanized steel sheet. Specifically, as shown in FIG. 2, it can be evaluated by the ratio of the oxide length in the direction parallel to the plating layer and steel plate interface. For example, as shown in FIG. 2, when the oxide is projected perpendicularly to the interface between the plating layer and the steel plate (interface approximated by a straight line), the length of the interface between the plating layer and the steel plate (for example, , The projected area ratio A (in the ratio of the projected length of the projected oxide (shadow) to the length L in FIG. 2 (for example, the length (L ⁇ l 1 ⁇ l 2 ⁇ l 3 ) in FIG. 1). %).
  • oxide dispersion in the present embodiment is to trap the invading hydrogen with the oxide in the plating layer, the oxides may overlap each other.
  • oxides can be identified and evaluated by observing the structure from the cross section of the hot dip galvanized steel sheet. For example, after processing the cross section of a steel sheet into a thin piece so as to include a plating layer with a focused ion beam (FIB), a field emission transmission electron microscope (FE-TEM) using a field emission transmission electron microscope (FE-TEM) is used. Examples of the method include observation and composition analysis using an energy dispersive X-ray detector (EDX: Energy Dispersive X-ray Spectrometry). In this embodiment, after preparing the observation sample with the FIB processing apparatus, the oxide was observed at 50,000 times with FE-TEM. In addition, the oxide was identified by analyzing the oxide by EDX.
  • EDX Energy Dispersive X-ray Spectrometry
  • the plated layer is a hot dip galvanized layer containing 15% by mass or less of Fe or an alloyed hot dip galvanized layer. If the amount of Fe exceeds 15% by mass, the adhesion of the plating layer itself is impaired, and the plating layer breaks and falls off during processing and adheres to the mold, thereby causing defects during molding.
  • spot weldability or paintability it is desirable to enhance the properties of the plating layer by alloying treatment. Specifically, after being immersed in a galvanizing bath, Fe is taken into the plating layer by applying an alloying treatment, and has a high-strength melting having an alloyed hot-dip galvanized layer with excellent paintability and spot weldability. A galvanized steel sheet can be obtained.
  • the spot weldability is insufficient when the Fe amount after the alloying treatment is less than 7% by mass. Therefore, when the alloying treatment is performed, that is, when the plating layer is an alloyed hot-dip galvanized layer, the Fe content in the plating layer is desirably 7 to 15% by mass.
  • the chemical composition of the plating layer is desirably composed of 15% or less of Fe by mass, Zn of 80% or more and 100% or less, Al of 2% or less, and unavoidable impurities.
  • the inevitable impurities in the plating layer for example, inevitable impurities mixed in production (for example, inevitable impurities in the plating bath and chemical elements derived from the chemical composition of the steel sheet (excluding Fe, Al, and Zn)) And chemical elements (Ni, Cu, and Co) during pre-plating as required.
  • the plating layer may contain chemical elements such as Fe, Al, Mg, Mn, Si, Cr, Ni, and Cu in addition to Zn.
  • the plating adhesion amount (amount of the plating layer adhered per unit area) is not particularly limited, but is preferably 5 g / m 2 or more in terms of one-side adhesion from the viewpoint of corrosion resistance. Further, from the viewpoint of ensuring plating adhesion, it is desirable that the amount of adhesion on one side is 100 g / m 2 or less. Further, in order to further improve the plating adhesion, the steel plate may be plated with Ni, Cu, Co, or Fe alone or before plating.
  • the effective Al concentration in the plating bath is a value obtained by subtracting the Fe concentration in the plating bath from the Al concentration in the plating bath.
  • the effective Al concentration in the bath is desirably 0.05 to 0.500 mass%.
  • a method of chemically analyzing the solution after dissolving the plating layer with an acid and removing undissolved oxides may be used.
  • an alloyed hot dip galvanized steel sheet cut to 30 mm ⁇ 40 mm is dissolved with a 5% HCl aqueous solution to which an inhibitor is added while only the plating layer is dissolved while suppressing elution of the steel sheet base material.
  • a method of quantifying the contents of Fe and Al from the signal intensity obtained by emission analysis and a calibration curve prepared from a solution having a known concentration may be used. Further, in consideration of measurement variations among the samples, it is only necessary to cut out from the same alloyed hot-dip galvanized steel sheet and average the measured values of at least three samples.
  • the steel plate which is a to-be-plated material is demonstrated.
  • This steel sheet contains the chemical components described later, the microstructure contains a volume fraction of one or two of martensite and bainite in a total of 20% or more and 99% or less, and the remaining structure is ferrite and volume. It consists of one or two types of residual austenite with a fraction of less than 8% and pearlite with a volume fraction of 10% or less. In order to ensure a tensile strength of 980 MPa or more, martensite and bainite are contained in a total of 20% or more.
  • the total volume fraction of martensite and bainite need not be particularly limited, but it is not easy to set it to 100% in consideration of actual production, and may be 99% or less.
  • bainite has a lower strength than martensite, when the tensile strength is 980 MPa or more, the volume fraction of bainite is desirably 70% or less. Residual austenite transforms into martensite during bending and tensile processing. Since the martensite formed during the processing is hard, the delayed fracture resistance is deteriorated. For this reason, the retained austenite volume fraction is set to less than 8%. Further, when the volume ratio of the pearlite structure exceeds 10%, it becomes difficult to ensure the strength of 980 MPa or more, so the upper limit of pearlite is 10%. The residual austenite and pearlite may be 0%.
  • the martensite may be any of tempered martensite containing carbide in the interior and as-quenched martensite containing no carbide.
  • the bainite structure may be either a lower bainite containing carbide in the bainite lath or an upper bainite containing carbide between the laths.
  • C is an element that increases the strength of the steel sheet. However, if it is less than 0.05%, it becomes difficult to achieve both a tensile strength of 980 MPa or more and workability. On the other hand, if it is 0.40% or more, it is difficult to ensure spot weldability. In addition, residual austenite is generated excessively and the delayed fracture resistance is deteriorated. Therefore, the range is limited to 0.05 to less than 0.40%.
  • Si can be dispersed in the plating layer as an oxide. Therefore, it is the most important additive element for improving hydrogen embrittlement resistance (delayed fracture resistance). However, if the addition amount is less than 0.5%, the amount of oxide is not sufficient, and the delayed fracture resistance is not sufficiently improved. For this reason, it is necessary to add 0.5% or more. On the other hand, if it exceeds 3.0%, the workability deteriorates and the steel sheet becomes brittle, which promotes the occurrence of delayed fracture. Moreover, pickling property falls. Therefore, the Si content is limited to the range of 0.5 to 3.0%. Si is a strengthening element and is also effective for increasing the strength of the steel sheet. More preferably, it is 0.5 to 2.5%, and further preferably 0.5 to 2.0%.
  • Mn is a strengthening element and is effective in increasing the strength of the steel sheet. Moreover, it can disperse
  • O in the steel sheet forms an oxide in the steel sheet (other than the surface layer).
  • the oxide contained in these steel plates deteriorates the elongation and hole expansibility. Therefore, it is necessary to suppress the amount of O added in the steel plate.
  • oxides often exist as inclusions, and when they are present on a punched end face or cut face, notched wrinkles and coarse dimples are formed on the end face.
  • stress concentration occurs at the time of hole expansion or strong processing, which becomes a starting point of crack formation, resulting in significant deterioration of hole expandability or bendability and delayed fracture resistance.
  • O exceeds 0.006% this tendency becomes remarkable, so the upper limit of the O content is set to 0.006% or less.
  • the amount of O in the steel sheet is small, but setting it to less than 0.0001% invites excessive cost and is not economically preferable, so this is a practical lower limit.
  • the hot-dip galvanized steel sheet according to this embodiment has an oxide dispersed in the plating layer, the O content in the plating layer and in the vicinity of the interface between the plating layer and the steel sheet is higher than that in the steel sheet. Become.
  • the oxide present on the surface of the steel sheet is not defined as the oxide contained in the steel sheet or the oxygen content of the steel sheet because it exists in the surface of the steel sheet or in the plating layer. Specifically, when measuring the O content of the steel sheet, the plating layer is removed and the steel sheet surface is mechanically polished by 10 ⁇ m and then measured.
  • P tends to segregate in the central part of the plate thickness of the steel sheet, causing the weld to become brittle. When it exceeds 0.04%, the embrittlement of the weld becomes remarkable, so the content is limited to 0.04% or less. On the other hand, if it exceeds 0.04%, the steel sheet becomes brittle, and the occurrence of delayed fracture is promoted.
  • the lower limit value of P is not particularly defined, it is preferable to set this value as the lower limit value because it is economically disadvantageous to set it to less than 0.0001%.
  • S adversely affects weldability and manufacturability during casting and hot rolling. Therefore, it was limited to 0.01% or less. S combines with Mn to form coarse MnS. This MnS deteriorates bendability and hole expansibility and promotes the occurrence of delayed fracture. Therefore, it is desirable to reduce the S content as much as possible. However, since it is economically disadvantageous to make it less than 0.0001%, it is preferable to make this value the lower limit.
  • Al may be added because it can be used to improve delayed fracture resistance by being dispersed in the plating layer as an oxide. It can also be used as a deoxidizer. However, excessive addition increases the number of Al-based coarse inclusions, causing deterioration of hole expansibility and surface flaws. Excessive Al addition is not preferable because it causes embrittlement of the steel sheet and promotes the occurrence of delayed fracture. From this, the upper limit of Al addition was set to 2.0%. The lower limit is not particularly limited, but it is difficult to set the lower limit to 0.0005% or less, which is a practical lower limit.
  • N forms coarse nitrides in the steel. Since this nitride deteriorates the bendability and hole expansibility and the delayed fracture resistance, it is necessary to suppress the addition amount. When N exceeds 0.01%, this tendency becomes remarkable. Therefore, the range of N content is set to 0.01% or less. In addition, it is desirable to reduce the number of blowholes during welding. Therefore, there is no need to set a lower limit. However, if the N content is less than 0.0005%, the production cost is significantly increased, and this is a practical lower limit.
  • the hot dip galvanized steel sheet according to the present embodiment is basically composed of the above elements, the remaining iron and unavoidable impurities, but the following elements are conventionally used for improving the strength and the like. Any 1 type or 2 types or more of these can be contained.
  • these selective elements are inevitably mixed in the steel sheet (for example, an amount less than the preferable lower limit of the amount of each selective element), the effect in the present embodiment is not impaired.
  • the lower limits of these chemical elements are all 0% and are not limited.
  • Mo is a strengthening element and is important for improving hardenability. However, since these effects cannot be obtained at less than 0.01%, the lower limit for addition is set to 0.01%. On the other hand, if the content exceeds 1.0%, the manufacturability during production and hot rolling is adversely affected, and the steel sheet becomes brittle and the occurrence of delayed fracture is promoted. Therefore, the upper limit is set to 1.0%.
  • Cr Cr is a strengthening element and effective in improving hardenability. However, if it is less than 0.05%, these effects cannot be obtained, so the lower limit value when adding is set to 0.05%. On the other hand, if the content exceeds 1.0%, the manufacturability at the time of production and hot rolling is adversely affected, and the steel plate becomes brittle and the occurrence of delayed fracture is promoted, so the upper limit value was made 1.0%.
  • Ni is a strengthening element and effective in improving hardenability. In addition, it may be added because it improves wettability and promotes the alloying reaction. However, if it is less than 0.05%, these effects cannot be obtained, so the lower limit value when adding is set to 0.05%. On the other hand, if the content exceeds 1.0%, the manufacturability during production and hot rolling is adversely affected, so the upper limit was made 1.0%.
  • Cu is a strengthening element and effective in improving hardenability. In addition, it may be added because it improves wettability and promotes the alloying reaction. However, if it is less than 0.05%, these effects cannot be obtained, so the lower limit value when adding is set to 0.05%. On the other hand, if the content exceeds 1.0%, the manufacturability during production and hot rolling is adversely affected, so the upper limit was made 1.0%.
  • B is effective for strengthening grain boundaries and strengthening steel by addition of 0.0001% by mass or more.
  • the addition amount exceeds 0.01% by mass, the effect is not only saturated but also heat Decrease production at the time of delay. Therefore, the addition amount of B is set to 0.0001% to 0.01%.
  • Ti is a strengthening element. It contributes to increasing the strength of steel sheets by strengthening precipitates, strengthening fine grains by suppressing the growth of ferrite crystal grains, and strengthening dislocations by suppressing recrystallization. If the addition amount is less than 0.005%, these effects cannot be obtained. Therefore, the lower limit for addition is set to 0.005%. If the content exceeds 0.3%, the carbonitride precipitates more and the formability and delayed fracture resistance deteriorate, so the upper limit was made 0.3%.
  • Nb is a strengthening element. It contributes to increasing the strength of steel sheets by strengthening precipitates, strengthening fine grains by suppressing the growth of ferrite crystal grains, and strengthening dislocations by suppressing recrystallization. If the addition amount is less than 0.005%, these effects cannot be obtained. Therefore, the lower limit for addition is set to 0.005%. If the content exceeds 0.3%, carbonitride precipitation increases and the formability deteriorates, so the upper limit was made 0.3%.
  • V is a strengthening element. It contributes to increasing the strength of steel sheets by strengthening precipitates, strengthening fine grains by suppressing the growth of ferrite crystal grains, and strengthening dislocations by suppressing recrystallization. If the addition amount is less than 0.005%, these effects cannot be obtained. Therefore, the lower limit for addition is set to 0.005%. If the content exceeds 0.5%, carbonitride precipitation increases and the formability deteriorates, so the upper limit was made 0.5%.
  • One or more selected from Ca, Mg, and REM may be added in an amount of 0.0005 to 0.04%.
  • Ca, Mg, and REM are elements used for deoxidation, and in order to obtain the effect, it is preferable to contain one or more of 0.0005% or more in total.
  • REM is Rare Earth Metal. However, if each content exceeds 0.04%, it causes deterioration of molding processability. Therefore, the total content is preferably 0.0005 to 0.04%.
  • REM is often added by misch metal, and may contain lanthanoid series elements in combination with La and Ce. The effect of this embodiment is exhibited even if lanthanoid series elements other than La and Ce are included as inevitable impurities. Even if the metal La or Ce is added, the effect of this embodiment is exhibited.
  • the hot-dip galvanized steel sheet according to the present embodiment may further contain elements other than the above (for example, Zr, Sn, Co, As, etc.) as inevitable impurities as long as the characteristics are not impaired.
  • the hot-dip galvanized steel sheet according to the present embodiment has a tensile strength TS of 980 MPa or more and is excellent in delayed fracture resistance and plating adhesion.
  • the hot-dip galvanized steel sheet (raw material) according to the present embodiment is a product manufactured through the respective processes of smelting, steelmaking (smelting), casting, hot rolling, and cold rolling, which are ordinary iron making processes. It can obtain suitably with the manufacturing method of embodiment. However, even in a product manufactured by omitting part or all of the iron making process, the effect described in this embodiment can be obtained as long as the conditions according to this embodiment are satisfied.
  • the hot dip galvanized steel sheet is not necessarily limited by the manufacturing method.
  • the production method prior to hot rolling is not particularly limited. That is, various secondary smelting is performed following smelting in a blast furnace, electric furnace, etc., and then molten steel having the above-described chemical components is cast by a method such as normal continuous casting, casting by ingot method, and thin slab casting. do it.
  • molten steel having the above-described chemical components is cast by a method such as normal continuous casting, casting by ingot method, and thin slab casting. do it.
  • continuous casting after cooling to low temperature once, it may be heated again and then hot rolled, or the cast slab may be continuously hot rolled. Scrap may be used as a raw material.
  • Slab heating temperature before hot rolling needs to be 1100 ° C. or higher. If the slab heating temperature is less than 1100 ° C, the finish rolling temperature may be lower than the Ar3 point. In that case, it becomes a two-phase rolling of ferrite and austenite, the hot-rolled sheet structure becomes a heterogeneous mixed grain structure, even if it undergoes cold rolling and annealing processes, the heterogeneous structure is not eliminated, and the ductility and bendability are inferior. It will be a thing. Moreover, in this embodiment, in order to ensure the maximum tensile strength of 980 MPa or more after annealing, the alloy element content is higher than that of mild steel, and the strength during finish rolling tends to be high.
  • the slab heating temperature is less than 1100 ° C.
  • the upper limit of the slab heating temperature is not particularly defined, and the effect of the present embodiment is exhibited.
  • the upper limit of the slab heating temperature is less than 1300 ° C.
  • Ar3 transformation point is calculated by the following formula.
  • Ar3 transformation point (° C.) 901 ⁇ 325 ⁇ C + 33 ⁇ Si ⁇ 92 ⁇ (Mn + Ni / 2 + Cr / 2 + Cu / 2 + Mo / 2)
  • C, Si, Mn, Ni, Cr, Cu, and Mo in the formula are the content [% by mass] of each component in the steel.
  • the finish rolling temperature (hot rolling completion temperature) of hot rolling is not less than the Ar3 transformation point.
  • the upper limit is not particularly defined, and the effect of the present embodiment is exhibited.
  • the rolling temperature is lower than the Ar3 transformation point, the rolling load becomes excessively high and the production becomes difficult, and the steel is subjected to hot rolling in the two-phase region of ferrite and austenite. Becomes non-uniform. That is, the ferrite generated during finish rolling is elongated by rolling and becomes coarse, and the ferrite transformed from austenite after rolling becomes a film.
  • a steel sheet having such a non-uniform microstructure is not preferable because even if the structure is controlled by performing cold rolling and annealing, the materials vary and the delayed fracture resistance is reduced.
  • the heating temperature of the slab must be excessively high in order to secure the temperature, which is not preferable. From this, it is desirable that the upper limit temperature of the finish rolling temperature of hot rolling be 1000 ° C. or less.
  • the cooling after hot rolling is not particularly defined, and the effect of the present embodiment can be obtained even if a cooling pattern for controlling the structure for each purpose is taken.
  • Winding is performed after hot rolling.
  • the coiling temperature needs to be 300 ° C. or higher and 700 ° C. or lower.
  • the temperature exceeds 700 ° C. coarse ferrite and pearlite structures are generated in the hot rolled structure, the structure non-uniformity after annealing increases, and the material anisotropy of the final product increases.
  • winding at a temperature exceeding 700 ° C. is not preferable because the thickness of the oxide formed on the steel sheet surface is excessively increased, resulting in poor pickling properties.
  • it when it is 300 ° C. or lower, the strength of the hot-rolled sheet is increased, so that the cold rolling load is increased. As a result, cold rolling cannot be performed, or manufacturing troubles such as plate breakage are caused.
  • rough rolling sheets may be joined to each other during hot rolling to continuously perform finish rolling. Moreover, you may wind up a rough rolling board once.
  • the pickled hot rolled steel sheet is pickled.
  • Pickling is important for improving plating properties because it can remove oxides on the surface of the steel sheet.
  • a pickling method a known method may be used.
  • pickling may be performed once, or pickling may be performed in a plurality of times.
  • the pickled hot-rolled steel sheet is cold-rolled at a cumulative reduction of 40-80% and passed through a continuous hot-dip galvanizing line. Since Si, Al, or Mn forming the oxide is supplied by diffusion from the inside of the steel sheet (particularly at the grain boundary), the oxide is easily formed around the grain boundary on the surface of the steel sheet. As a result, when the ferrite grain size is large, the ratio of grain boundaries on the steel sheet surface is small, and it is difficult to set the projected area of the oxide to 10% or more. In general, as-cold-rolled ferrite extends in the rolling direction and the proportion of grain boundaries is small. As a result, when the cold-rolled structure is annealed, it is difficult to set the projected area ratio of the oxide to 10% or more.
  • the cumulative rolling reduction of cold rolling is less than 40%, the strain necessary for recrystallization is not sufficiently introduced. Moreover, since the ductility of the final product becomes poor, this is the lower limit. Furthermore, if the cumulative rolling reduction is less than 40%, it is difficult to keep the shape flat. On the other hand, cold rolling exceeding 80% (cold rolling) has an excessive upper limit because the cold rolling load becomes too large and cold rolling becomes difficult. A more preferred range is 45 to 75%. If the cumulative rolling reduction is in the above range, the effect of the present embodiment is exhibited without particularly defining the number of rolling passes and the rolling reduction of each pass.
  • the diameter (roll diameter) of the work roll at the time of performing cold rolling shall be 1400 mm or less. Desirably, it is 1200 mm or less, and more desirably 1000 mm or less.
  • the reason is that the type of strain to be introduced differs depending on the roll diameter, and shear strain is likely to occur in the small-diameter roll. Since recrystallization is likely to occur from a shear band, recrystallization occurs earlier in a steel sheet rolled with a small-diameter roll having a large number of shear bands. That is, by performing cold rolling using a work roll having a small roll diameter, recrystallization can be started before the oxide is formed.
  • the cumulative rolling reduction is based on the inlet plate thickness before the first pass of each rolling step (for example, cold rolling step), and the cumulative rolling amount with respect to this reference (the inlet plate thickness before the first pass in rolling and It is a percentage of the difference between the outlet plate thickness after the final pass in rolling.
  • the heating rate when passing through the plating line is not particularly defined, and the effect of this embodiment is exhibited.
  • a heating rate of less than 0.5 ° C./second is not preferable because productivity is greatly impaired.
  • the sample is retained for 20 seconds or more in the temperature range of 550 to 750 ° C.
  • the reason is that although recrystallization proceeds sufficiently in this temperature range, oxide formation is slower than recrystallization. Oxides containing Si, Mn, or Al alone or in combination tend to form at the ferrite grain boundaries on the surface of the steel sheet first, and the fine ferrite grain boundaries formed by recrystallization are used as generation sites. use. That is, after the cold rolling is performed, retention is performed in this temperature range, so that recrystallization can be started prior to oxide formation. If the residence temperature is less than 550 ° C., recrystallization takes a long time, which is not desirable.
  • the retention temperature is higher than 750 ° C.
  • the formation of oxides is fast, and it is not desirable because oxides on grains are formed at the grain boundaries during recrystallization or grain growth.
  • the oxide may be held for a long time in a temperature range exceeding 750 ° C. for the purpose of structure control. This effect is the same in a structure having ferrite as a main phase and a structure having bainite or martensite as a main phase. If the residence time at 550 ° C. to 750 ° C. is less than 20 seconds, recrystallization does not proceed sufficiently, which is not desirable.
  • the retention does not only mean isothermal holding, but there may be a temperature change such as heating and holding in this temperature range. Since these oxides are formed preferentially at the ferrite grain boundaries, they often have a network structure.
  • annealing is performed.
  • the surface of the steel sheet is subjected to an annealing process in a continuous galvanizing line (CGL).
  • CGL continuous galvanizing line
  • the atmosphere in the annealing process of the continuous hot dip galvanizing line is controlled within an appropriate range. That is, it is particularly important to manage the H 2 concentration and dew point in the annealing atmosphere together with the annealing temperature.
  • annealing is performed in a N 2 atmosphere having an H 2 concentration of 20% by volume or less with a dew point of ⁇ 20 ° C. or higher and a maximum heating temperature of 750 to 900 ° C.
  • the maximum heating temperature is less than 750 ° C., it takes too much time for the carbide formed during hot rolling to re-dissolve, and the carbide, or a part of it remains, or the martensite and bainite are sufficiently obtained after cooling. Since it cannot be obtained, it is difficult to ensure a strength of 980 MPa or more.
  • the upper limit of the maximum heating temperature is set to 900 ° C.
  • the heat treatment time in this temperature range is desirably a heat treatment of 10 seconds or more for dissolving the carbide.
  • the heat treatment time exceeds 1000 seconds, the cost increases, which is not economically preferable. More desirably, it is 600 seconds or less.
  • the heat treatment may be held isothermally at the maximum heating temperature, or even if cooling is started immediately after the gradient heating is performed and the maximum heating temperature is reached, the effect of the present embodiment is exhibited.
  • the dew point is less than ⁇ 20 ° C., the above projected area ratio exceeds 90%, which is not desirable. If the H 2 concentration exceeds 20% by volume, the cost increases significantly, which is not desirable.
  • the lower limit of the H 2 concentration is desirably 0.05% by volume in order to make the atmosphere in the furnace a reducing atmosphere of Fe.
  • the dew point is desirably 50 ° C. or lower in order to suppress oxidation of Fe in the furnace.
  • the dew point is more desirably 40 ° C. or less, and further desirably 30 ° C. or less.
  • the annealing temperature is less than 840 ° C.
  • the ferrite fraction during annealing can be increased, so that a structure containing a large amount of ferrite can be obtained even after cooling.
  • transforms into a martensite, a bainite, a retained austenite, and a pearlite after cooling.
  • the annealing temperature is preferably set to 840 ° C. or higher.
  • the austenite fraction during annealing can be increased. Since this austenite is transformed into bainite or martensite during cooling after annealing, the fraction of bainite and martensite can be increased.
  • the average cooling rate from the highest heating temperature of annealing is set to 1.0 to 200 ° C./second.
  • a cooling rate of less than 1 ° C./second is not desirable because productivity is greatly impaired.
  • the upper limit is preferably set to 200 ° C./second.
  • cooling is performed to a temperature range of galvanizing bath temperature ⁇ 40 ° C. to galvanizing bath temperature + 50 ° C. at a cooling rate of 1 ° C./second or higher and faster than the first cooling rate (second cooling).
  • the reason why the cooling rate is set to 1 ° C./second or more is that if the cooling rate is low, ferrite and pearlite are excessively produced in the cooling process, and it is difficult to secure a strength of 980 MPa or more.
  • the upper limit is preferably set to 200 ° C./second.
  • the galvanizing bath temperature is 440 ° C. to 460 ° C.
  • the second cooling before immersion in the plating bath, it is once cooled to a temperature of 25 ° C. to 500 ° C. (fourth cooling), and then the cooling stop temperature is lower than the plating bath temperature ⁇ 40 ° C. May be reheated to a temperature range of 350 ° C. to 500 ° C. for retention.
  • a hard phase such as martensite or bainite is formed from untransformed austenite during cooling.
  • the hard phase is tempered by reheating.
  • Tempering means carbide precipitation in the hard phase and recovery / rearrangement of dislocations. By tempering, hole expandability, bendability and delayed fracture resistance are improved.
  • the lower limit of the cooling stop temperature is set to 25 ° C. because excessive cooling not only requires a large capital investment but also saturates its effect. Further, the steel sheet is retained in a temperature range of 350 to 500 ° C. after reheating and before immersion in the plating bath. Residence in this temperature range not only contributes to tempering of martensite but also eliminates temperature unevenness in the width direction of the plate and improves the appearance after plating.
  • the cooling stop temperature of the fourth cooling is 350 ° C. to 500 ° C.
  • the residence may be performed without performing reheating.
  • the residence time is desirably 10 seconds or more and 1000 seconds or less.
  • the residence time is desirably 20 to 750 seconds, and more desirably 30 to 500 seconds.
  • dip galvanization is performed by dipping in a plating bath.
  • Plating bath immersion plate temperature temperature of steel plate when immersed in hot dip galvanizing bath
  • hot dip galvanizing bath temperature hot galvanizing bath temperature ⁇ 40 ° C.
  • the temperature range is up to a high temperature (hot dip galvanizing bath temperature + 50 ° C.).
  • the plating bath immersion plate temperature is lower than the hot dip galvanizing bath temperature ⁇ 40 ° C., the heat removal at the time of immersion in the plating bath is large, and part of the molten zinc may solidify and the plating appearance may be deteriorated. .
  • the plate temperature before immersion is lower than the hot dip galvanizing bath temperature ⁇ 40 ° C., further heating is performed before immersion in the plating bath by an arbitrary method, and the plate temperature is controlled to the hot dip galvanizing bath temperature ⁇ 40 ° C. or higher. May be immersed in a plating bath.
  • the plating bath immersion plate temperature exceeds the hot dip galvanizing bath temperature + 50 ° C., operational problems accompanying the increase in the plating bath temperature are induced.
  • the plating bath may contain Fe, Al, Mg, Mn, Si, Cr and the like in addition to pure zinc.
  • the oxide covers the steel sheet surface, problems such as non-plating and alloying delay are likely to occur.
  • zinc oxide is present on the surface of the hot dip galvanizing bath or in the bath. Since the zinc oxide and the oxide formed on the surface of the steel sheet have a high affinity and the zinc oxide tends to adhere, problems such as non-plating and poor appearance tend to occur.
  • the oxide of Si, Mn or Al is dispersed on the surface of the steel plate, non-plating or alloying delay is likely to occur. This tendency becomes significant when an oxide having a projected area ratio of 10% or more is dispersed so that hydrogen embrittlement can be suppressed.
  • the oxide of the present embodiment when the oxide of the present embodiment is formed on the surface of the steel sheet, the molten zinc in the plating bath is caused to flow at a jet velocity of 10 m / min or more and 50 m / min or less to obtain an oxide of the steel sheet and zinc. Prevents non-plating and promotes alloying. As a result, the oxide can be dispersed in the plating layer. Normally, an oxide film of Zn or Al called scum floats in the hot dip galvanizing bath, causing non-plating or alloying delay.
  • the present inventors have found that when an oxide is present on the surface of the steel plate, scum is likely to adhere when the steel plate is immersed in a bath, and thus non-plating (defect reaching the steel plate in the plating layer) is likely to occur. It was.
  • the scum adhering to the steel plate delays not only non-plating but also alloying. This behavior is particularly remarkable in a steel sheet containing a large amount of Si and Mn.
  • the detailed mechanism is unknown, it is considered that non-plating and alloying delay are promoted by the reaction of oxides of Si and Mn formed on the steel sheet surface with scum, which is also an oxide.
  • the flow rate of molten zinc in the plating bath is set to 10 m / min or more and 50 m / min or less.
  • the direction of the molten zinc flux is not particularly limited, and only the size of the flux needs to be controlled.
  • the amount of plating (plating adhesion amount) adhering to the surface of the steel plate can be controlled.
  • the amount of plating adhesion is 5 g / m ⁇ 2 > or more per one side.
  • the plating adhesion amount is 100 g / m 2 or less per side.
  • the alloying process of the plating layer is performed, it is performed at 600 ° C. or lower.
  • it exceeds 600 ° C. carbides are formed and the retained austenite volume fraction is reduced, and it becomes difficult to ensure excellent ductility, and a hard phase such as martensite is softened, or a large amount of pearlite is generated.
  • the alloying treatment temperature is less than 460 ° C., the progress of alloying is slow and the productivity is poor, which is not preferable.
  • the alloying treatment temperature exceeds 600 ° C.
  • Fe in the plating layer exceeds 15% by mass, so that the adhesion of the plating layer is lost.
  • the conditions of this embodiment are satisfy
  • 3A and 3B show a flowchart of the manufacturing method according to one embodiment of the present invention described above.
  • skin pass rolling may be applied for the purpose of improving ductility by correcting the shape of the steel sheet and introducing movable dislocations.
  • the reduction ratio of the skin pass rolling after the heat treatment is preferably in the range of 0.1 to 1.5%. If it is less than 0.1%, the effect is small and control is difficult, so this is the lower limit. Since productivity will fall remarkably when it exceeds 1.5%, this is made an upper limit.
  • the skin pass may be performed inline or offline. Further, a skin pass having a desired reduction rate may be performed at once, or may be performed in several steps.
  • the material of the hot dip galvanized steel sheet of the present invention is manufactured through refining, steel making, casting, hot rolling, and cold rolling processes, which are the usual iron making processes, but omitting some or all of them. Even if it is manufactured, the effects of the present invention can be obtained as long as the conditions according to the present invention are satisfied.
  • a slab having the components shown in Table 1 is heated to 1200 ° C., hot-rolled under the hot rolling conditions described in Tables 2-1 to 2-4, water-cooled in a water-cooled zone, The winding process was performed at the temperatures shown in 1 to Table 2-4.
  • the thickness of the hot rolled plate was in the range of 2 to 4.5 mm. After this hot-rolled sheet was pickled, it was cold-rolled at a predetermined cold-rolling rate to obtain a cold-rolled sheet so that the thickness after cold rolling was 1.2 mm.
  • Tables 3-1 to 3-4 show the characteristics of the steel sheets manufactured under the above conditions.
  • a JIS No. 5 test piece was taken from a 1.2 mm thick plate in a direction perpendicular to the rolling direction, and the tensile properties were evaluated according to JIS Z2241: 2011.
  • the observation of the oxide in the plating layer was performed by observing the structure from the cross section of the hot dip galvanized steel sheet.
  • the surface layer of hot dip galvanized steel sheet is processed into a thin piece with a focused ion beam processing device so as to include the plating layer, followed by observation with FE-TEM and composition analysis with an energy dispersive X-ray detector (EDX). It was. Five fields of view were observed at a magnification of 10,000 to 50,000 times, and the composition and area ratio were specified.
  • the content of Fe and Al in the plating layer was measured by dissolving the plating layer with a 5% HCl aqueous solution to which an inhibitor was added, removing undissolved oxides, and then analyzing the solution by ICP emission analysis. Three samples were measured, and the average value was defined as Fe% of the plating layer.
  • composition and area ratio of these oxides can be evaluated by observing the structure from the hot dip galvanized steel sheet cross section. For example, after processing a cross section of a steel sheet into a thin piece so as to include a plating layer with a focused ion beam (FIB) processing apparatus, observation with a field emission transmission electron microscope (FE-TEM) and an energy dispersive X-ray detector There is a method of performing composition analysis by (EDX). After preparing a sample for observation with a FIB processing apparatus, the oxide was observed with FE-TEM at a magnification of 50,000 times. In addition, the oxide can be identified by analyzing the oxide by EDX.
  • FIB focused ion beam
  • FE-TEM field emission transmission electron microscope
  • EDX energy dispersive X-ray detector
  • the plating layer contains an oxide containing one or more oxides containing Si, Mn or Al alone or in combination, an oxide of an easily oxidizable element is formed on the surface of the steel sheet in the annealing process of CGL. After that, it is necessary to plate and incorporate it into the plating layer.
  • a test piece preparation by a U-bending test and a delayed fracture resistance test by electrolytic charging were performed.
  • the delayed fracture resistance of the hot-dip galvanized steel sheet produced according to the method of the present invention was evaluated according to the method described in Non-Patent Document 3. Specifically, after mechanically cutting the steel sheet, the end face was mechanically ground and a U-bending test was performed at 10R. A strain gauge was attached to the center of the obtained test piece, and stress was applied by fastening both ends of the test piece with bolts. The applied stress was calculated from the strain of the monitored strain gauge.
  • the applied stress was 700 MPa for a 980 MPa grade steel plate, 840 MPa for a 1180 MPa grade steel plate, and 925 MPa for a 1320 MPa grade steel plate, and applied a stress corresponding to 0.7 of TS. This is because the residual stress introduced during forming is considered to correspond to the TS of the steel sheet.
  • the hole expansion was evaluated according to JFS T1001.
  • the obtained U-bending specimen was immersed in an ammonium thiocyanate solution, the steel sheet side was the cathode, the platinum electrode was the anode, a current was passed at a current density of 0.1 mA / cm 2 , and an electrolytic charge test was conducted for 2 hours. . Hydrogen generated during the electrolytic charge test may penetrate into the steel sheet and cause delayed fracture. After the electrolytic charge test, the test piece was taken out of the solution, and the presence or absence of cracks was examined by visually observing the center part of the U-bend test piece. However, the plating layer may break during the U-bending test, and may be mistaken for a crack caused by delayed fracture during surface observation after the electrolytic charge test.
  • the plating layer was dissolved in a 5% HCl aqueous solution to which an inhibitor was added, and the presence or absence of cracks on the steel sheet surface was observed. Since a large stress is applied to the bent portion, when a crack occurs, the progress is rapid. From this, in this example, when there was a crack, all were large opening cracks, and it was possible to easily determine the presence or absence of a crack even visually. In this example, the specimen was carefully observed using a magnifying glass, actual microscope, etc., and the presence or absence of cracks was confirmed again, and those without open cracks were confirmed to have no fine cracks.
  • Tables 3-1 to 3-4 show the measured tensile properties, delayed fracture resistance, plating properties, and Fe% in the plating layer. It can be seen that all the steel sheets of the present invention have a high strength of 980 MPa or more and are excellent in delayed fracture resistance and plating properties (non-plating, powdering resistance). On the other hand, in an example in which any of the conditions is outside the scope of the present invention, at least one of tensile strength, delayed fracture resistance, and plating property (non-plating, powdering resistance) is inferior. In the example in which the cold rolling rate was 90% or more, the plate was broken in the middle and could not be passed.
  • GI in the table indicates a hot-dip galvanized steel sheet provided with a hot-dip galvanized layer
  • GA indicates a hot-dip galvanized steel sheet provided with an alloyed hot-dip galvanized layer, that is, an alloyed hot-dip galvanized steel sheet.
  • the present invention provides inexpensively a high-strength hot-dip galvanized steel sheet excellent in delayed fracture resistance having a maximum tensile strength of 980 MPa or more, which is suitable for structural members, reinforcing members, and suspension members for automobiles. is there. Therefore, it can be expected to greatly contribute to the weight reduction of automobiles, and the industrial effect is extremely high.

Abstract

 この溶融亜鉛めっき鋼板は、鋼板と、前記鋼板の表面上のめっき層と、を備え、 ミクロ組織が、体積分率で、マルテンサイト及びベイナイトの1種又は2種を合計で20%以上99%以下含有し;残部組織がフェライトと、体積分率8%未満の残留オーステナイト及び体積分率10%以下のパーライトの1種または2種とから成り、引張強度980MPa以上を有し、前記めっき層が、Si、Mn又はAlの1種又は2種以上を含む酸化物を含有し、Feを15質量%以下を含有し、残部がZn、Alおよび不可避的不純物からなる溶融亜鉛めっき層であり、前記鋼板と前記溶融亜鉛めっき層とを含む板厚方向断面で見た場合に、投影面積率が10%以上90%以下である。

Description

溶融亜鉛めっき鋼板及びその製造方法
 本発明は、引張強度(TS)が980MPa以上で、めっき密着性および耐遅れ破壊特性に優れた溶融亜鉛めっき鋼板に関する。本発明に係る溶融亜鉛めっき鋼板は、自動車用の構造用部材、補強用部材、足廻り用部材に特に適する。本発明における溶融亜鉛めっき鋼板は、溶融亜鉛めっき鋼板及び合金化溶融亜鉛めっき鋼板を示す。本願は、2011年09月30日に、日本に出願された特願2011-218046号と、2011年09月30日に出願された特願2011-217108号とに基づき優先権を主張し、その内容をここに援用する。
 自動車のクロスメンバーやサイドメンバー等の部材は、近年の燃費低減の動向に対応すべく軽量化が検討されており、材料面では、薄肉化しても、すなわち薄い鋼板を使用しても、強度および衝突安全性が確保されるという観点から鋼板の高強度化が進められている。中でも、バンパーレインフォースやセンターピラーといった構造部材においては、980MPa級(引張強度が980MPa以上)の鋼板が用いられており、今後更なる高強度鋼板の開発が切望されている。しかしながら、980MPa級以上の鋼板の自動車用部材への適用を考えた場合、強度、加工性といった特性に加え、耐遅れ破壊特性が求められる。遅れ破壊とは、鋼材にかかる応力や水素脆性に起因するものであり、構造体として使用されている鋼材の応力集中部に水素が拡散、集積することで、構造体の破壊が起こる現象である。遅れ破壊によって引き起こされる現象として、例えば、PC鋼線(Pre-stressed Concrete Steel Wire)やボルトといった高い応力が作用する使用状況下にある部材が、突然破壊する現象などが挙げられる。
 従来、薄鋼板は(1)板厚が薄いため水素が侵入しても短時間で放出されること、(2)加工性を優先させてきたため引張強度で900MPa以上の鋼板の利用がほとんどなかったことなどから、水素脆性に対する問題が小さかった。しかしながら、急速に高強度鋼板の適用に関する要求が高まっていることから、耐水素脆性に優れた高強度鋼板を開発することが求められている。
 遅れ破壊は、環境から鋼材に侵入する水素と密接な関係があることが知られている。環境から鋼材に侵入する水素としては、大気中に含まれる水素、腐食環境下で発生する水素など様々な種類のものが存在する。何れであっても、水素が鋼材中へ侵入した場合、遅れ破壊をもたらす原因となりうる。このことから、鋼材の使用環境としては、水素の存在しない環境下での使用が望まれる。しかしながら、構造体あるいは自動車への適用を考えた場合、鋼材が屋外で使用されることになることから、水素の侵入を避けられない。
 構造体として使用されている鋼材に働く応力としては、構造体に付与される応力や、構造体の成形時に生じた応力の一部が鋼材内部に残留したものである残留応力が挙げられる。特に、自動車用の薄鋼板など成形後に部材として使用される構造体では、ボルトや厚板といった製品に対して変形をほとんど与えることなくそのまま使用する厚板や条鋼と比較して、残留応力が大きな問題となる。したがって、遅れ破壊が問題となる鋼板を成形するにあたっては、残留応力を残さない成形方法が望まれている。
 例えば、特許文献1には、鋼板を一旦高温に加熱して加工した後、金型を用いて焼きを入れ、高強度化する金属板の熱間プレス成形方法が開示されている。この手法では、鋼材は高温で加工される。そのため、残留応力の原因となる加工時に導入される転位は回復する、あるいは、加工後に変態が生じて残留応力が緩和される。その結果、残留応力はあまり残らない。したがって、上記のように、熱間で加工を行い、その後の焼き入れを用いて鋼板を強化することにより、耐遅れ破壊特性が向上する。
 しかしながら、特許文献1の技術では、加工する鋼板を熱処理により加熱する必要があり、生産性に劣る。また、加熱炉の設置などが必要となるため、経済的に劣る。
 また、切断や打ち抜きと言った機械加工においては、切断面に残留応力が存在することから、遅れ破壊を引き起こす懸念がある。このため、980MPa級以上の高強度鋼板の加工時においては、切断にレーザー等の直接的な機械加工を伴わない手法を用いることで、残留応力発生を回避している。しかしながら、シャー切断や打ち抜き加工に比較して、レーザー切断はコストが高いという課題がある。
 これら課題に対し、棒鋼や条鋼、厚鋼板の分野では、耐水素脆化特性を向上させることで、遅れ破壊を回避可能な鋼材が開発されてきた。例えば、非特許文献1には、鋼材を高温のオーステナイト単相より焼き入れ、マルテンサイト単相組織とした後、焼き戻し処理を行うことで、Cr、MoやVといった焼き戻し軟化抵抗性を示す添加元素の微細析出物をマルテンサイト中に整合に微細析出させ、鋼材の耐水素脆化特性を向上させた高強度ボルトが開示されている。この高強度ボルトでは、鋼材中に侵入した水素が、マルテンサイト中に整合に析出したVCなどの周りにトラップされることを利用して、鋼材中に侵入した水素が、応力の集中する遅れ破壊の起点となる部位へ拡散したり集中したりするのを抑制している。このようなメカニズムを活用して、従来から、高強度で耐遅れ破壊特性に優れた鋼板の開発が進められている。
 VC等の水素のトラップサイトを活用した耐遅れ破壊特性の向上は、マルテンサイト組織中へのこれら析出物の整合析出によってもたらされる。したがって、これら析出物を組織中に整合析出させることが必須である。しかしながら、これら析出物の析出には、数時間以上の析出熱処理が必要であり、製造性に問題がある。即ち、連続焼鈍設備や連続溶融亜鉛めっき設備等の一般的な薄鋼板の製造設備を用いて製造される薄鋼板では、数十分程度という短時間で組織制御が為されることから、これら析出物による耐遅れ破壊特性向上効果が得難い。
 さらに、熱間圧延工程で析出される析出物を活用する場合、熱延工程でこれら析出物が析出していたとしても、その後の冷間圧延時に鋼板が加工され、連続焼鈍時に再結晶することで、析出物と母相であるフェライト、マルテンサイトとの方位関係を失ってしまう。即ち、析出物が整合析出物でなくなってしまう。この結果、得られた鋼板の耐遅れ破壊特性も大幅に減じてしまう。
 また、通常、遅れ破壊の発生が懸念される高強度鋼板の鋼板組織は、マルテンサイトを主体とする組織である。マルテンサイト組織の形成される温度は、低温であるため、マルテンサイト組織の形成される温度域でVCをはじめとする水素のトラップサイトとなる析出物を析出させることは出来ない。つまり、薄鋼板においてVC等の整合析出物の水素トラップによる耐遅れ破壊特性の向上を意図した場合、連続焼鈍設備や連続溶融亜鉛めっき設備で一旦鋼材の組織を造り込んだ後、付加的な熱処理を施し、これら析出物を析出させる必要があり、製造コスト増加が大幅に増加する。加えて、マルテンサイトを主体とする組織に付加的な熱処理を施すと、組織が軟化し、強度が低下するという問題が生じる。そのため、高強度薄鋼板への耐遅れ破壊特性向上のために、VCなどの整合析出物を活用することは難しい。また、非特許文献1に記載の鋼は、Cの含有量が0.4%以上であり、合金元素も多く含むことから、薄鋼板で要求される加工性や溶接性が十分でない。
 特許文献2には、Ti、Mgを主体とする酸化物によって水素性欠陥を低減した厚鋼板が記載されている。しかし、開示された厚鋼板では、製造時に鋼中にトラップされる水素によって生じる水素性欠陥を低減しているだけであり、耐水素脆性(耐遅れ破壊特性)について一切考慮されていない。さらには、薄鋼板に要求される高い成形性と耐水素脆性(耐遅れ破壊特性)の両立に関しては一切考慮されていない。
 薄鋼板の水素脆性に関しては、例えば、非特許文献2に残留オーステナイト量の加工誘起変態に起因した水素脆性の助長について報告されている。これは、薄鋼板の成型加工を考慮したものであるが、耐水素脆性性を劣化させない残留オーステナイト量の規制について述べられている。すなわち、特定の組織を持つ高強度薄鋼板に関するものであり、根本的な耐水素脆性向上対策とは言えない。
日本国特開2002-18531号公報 日本国特開平11―293383号公報
遅れ破壊解明の新展開、日本鉄鋼協会、1997年1月発行 CAMP-ISIJ、vol.5、No.6、1839~1842頁、山崎ら、1992年10月、日本鉄鋼協会発行 まてりあ 日本金属学会会報 第44巻 第3号(2005)p254-256
 本発明は、上述した問題点に鑑みて案出されたものである。すなわち、引張強度(TS)980MPa以上で、めっき密着性および耐遅れ破壊特性に優れた溶融亜鉛めっき鋼板及びその製造方法を提供することを目的とする。なお、本溶融亜鉛めっき鋼板は、自動車用の構造用部材、補強用部材、足廻り用部材に特に適した成形性(伸び、曲げ性、穴広げ性等)を兼ね備えている。
 なお、上記部材に適用する場合、TS×ELが10000MPa・%以上かつ、TS×λで、20000MPa・%以上であることが望ましい。
 さらに、特に伸びが必要とされる部材へ適用される鋼板の場合、TS×ELが14000MPa・%以上であることが望ましく、15000MPa・%以上であることがより望ましく、16000MPa・%以上であることがさらに望ましい。
 また、バンパーレインフォースなどの特に曲げ性が求められる部材へ適用される鋼板の場合、曲げ性と相関のあるTS×λで30000MPa・%以上であることが望ましい。より望ましくは40000MPa・%以上であり、さらに望ましくは50000MPa・%以上である。
 本発明者らは、鋭意検討を進めた結果、鋼材の材質に影響なく耐遅れ破壊特性を向上させる手段として、鋼板の表面に後述するようなめっきを施すことで、耐遅れ破壊特性が向上可能なことを見出した。具体的には、めっき層中にSi、MnまたはAlから選択される1種以上を含む酸化物を分散させることで、環境から侵入する水素をめっき層内の酸化物でトラップし、応力集中部への水素の拡散と、これによる遅れ破壊とを遅延できることを見出した。
 (1)すなわち、本発明の一態様に係る溶融亜鉛めっき鋼板は、鋼板と、前記鋼板の表面上のめっき層と、を備え、前記鋼板が、質量%で、C:0.05~0.40%未満、Si:0.5~3.0%、Mn:1.5~3.0%、を含有し、O:0.006%以下、P:0.04%以下、S:0.01%以下、Al:2.0%以下、N:0.01%以下に制限し、残部がFe及び不可避的不純物からなり、ミクロ組織が、体積分率で、マルテンサイト及びベイナイトの1種又は2種を合計で20%以上99%以下含有し;残部組織がフェライトと、体積分率8%未満の残留オーステナイト及び体積分率10%以下のパーライトの1種または2種とから成り、引張強度980MPa以上を有し、前記めっき層が、Si、Mn又はAlの1種又は2種以上を含む酸化物を含有し、Feを15質量%以下を含有し、残部がZn、Alおよび不可避的不純物からなる溶融亜鉛めっき層であり、前記鋼板と前記溶融亜鉛めっき層とを含む板厚方向断面で見た場合に、前記酸化物を前記溶融亜鉛めっき層と前記鋼板との界面に投影した長さを前記溶融亜鉛めっき層と前記鋼板との界面の長さで除して得られる面積率である投影面積率が10%以上90%以下である。
 (2)本発明の別の一態様に係る溶融亜鉛めっき鋼板は、鋼板と、前記鋼板の表面上のめっき層と、を備え、前記鋼板が、質量%で、C:0.05~0.40%未満、Si:0.5~3.0%、Mn:1.5~3.0%、を含有し、O:0.006%以下、P:0.04%以下、S:0.01%以下、Al:2.0%以下、N:0.01%以下に制限し、残部がFe及び不可避的不純物からなり、ミクロ組織が、体積分率で、マルテンサイト及びベイナイトの1種又は2種を合計で20%以上99%以下含有し;残部組織がフェライトと、体積分率8%未満の残留オーステナイト及び体積分率10%以下のパーライトの1種または2種とから成り、引張強度980MPa以上を有し、前記めっき層が、Si、Mn又はAlの1種又は2種以上を含む酸化物を含有し、Feを7質量%以上15質量%以下含有し、残部がZn、Alおよび不可避的不純物からなる合金化溶融亜鉛めっき層であり、前記鋼板と前記合金化溶融亜鉛めっき層とを含む板厚方向断面で見た場合に、前記酸化物を前記合金化溶融亜鉛めっき層と前記鋼板との界面に投影した長さを前記合金化溶融亜鉛めっき層と前記鋼板との界面の長さで除して得られる面積率である投影面積率が10%以上90%以下である。
 (3)上記(1)または(2)に記載の溶融亜鉛めっき鋼板では、前記ミクロ組織が、体積分率で、前記フェライトを40%以上80%以下含有してもよい。
 (4)上記(1)または(2)に記載の溶融亜鉛めっき鋼板では、前記ミクロ組織が、体積分率で、マルテンサイト及びベイナイトの1種又は2種を60%超含有してもよい。
 (5)上記(1)~(4)のいずれか一項に記載の溶融亜鉛めっき鋼板では、さらに、前記鋼板が、質量%でCr:0.05~1.0%、Mo:0.01~1.0%、Ni:0.05~1.0%、Cu:0.05~1.0%、Nb:0.005~0.3%、Ti:0.005~0.3%、V:0.005~0.5%、B:0.0001~0.01%、Ca:0.0005~0.04%、Mg:0.0005~0.04%、REM:0.0005~0.04%、の1種又は2種以上を含有してもよい。
 (6)本発明の一態様に係る溶融亜鉛めっき鋼板の製造方法は、(1)に記載の化学成分からなる溶鋼を、鋳造して鋼を製造し;前記鋼を、直接または一旦冷却した後、1100℃以上1300℃未満の第1の温度範囲に加熱し;前記鋼を、Ar3変態点以上で熱間圧延を完了し;前記鋼を、300℃以上700℃以下の第2の温度範囲にて巻き取り;前記鋼を、酸洗し;前記鋼を、ロール径が200mm以上1400mm以下のワークロールを有する冷延機にて累積圧下率40~80%で冷間圧延し;前記鋼を、連続溶融亜鉛めっきラインを通板するに際し、焼鈍温度までの加熱中に、550~750℃の第3の温度範囲に20秒以上2000秒以下滞留させ;前記鋼を、H濃度が20%以下、かつ露点が-20℃以上のN雰囲気下で、750℃以上かつ900℃以下の第4の温度範囲で10秒以上1000秒以下保持して焼鈍し;前記鋼を1℃/秒以上200℃/秒以下の平均冷却速度で500~750℃の第5の温度範囲まで冷却する第1の冷却を行い;前記鋼を1℃/秒以上200℃/秒以下、かつ前記第1の冷却の前記平均冷却速度よりも早い平均冷却速度で、亜鉛めっき浴温度-40℃~亜鉛めっき浴温度+50℃の第6の温度範囲まで冷却する第2の冷却を行い;前記鋼を、溶融亜鉛めっき浴に浸漬する温度であるめっき浴浸漬板温度を前記第6の温度範囲として、流速10m/min以上50m/min以下で流動する前記溶融亜鉛めっき浴に浸漬して亜鉛めっきし;前記鋼を、40℃以下まで冷却する。
 (7)本発明の別の一態様に係る溶融亜鉛めっき鋼板の製造方法は、上記(2)に記載の化学成分からなる溶鋼を、鋳造して鋼を製造し;前記鋼を、直接または一旦冷却した後、1100℃以上1300℃未満の第7の温度範囲に加熱し;前記鋼を、Ar3変態点以上で熱間圧延を完了し;前記鋼を、300℃以上700℃以下の第8の温度範囲にて巻き取り;前記鋼を、酸洗し;前記鋼を、ロール径が200mm以上1400mm以下のワークロールを有する冷延機にて累積圧下率40~80%で冷間圧延し;前記鋼を、連続溶融亜鉛めっきラインを通板するに際し、焼鈍温度までの加熱中に、550~750℃の第9の温度範囲に20秒以上2000秒以下滞留させ;前記鋼を、H濃度が20%以下、かつ露点が-20℃以上のN雰囲気下で、750℃以上かつ900℃以下の第10の温度範囲で10秒以上1000秒以下保持して焼鈍し;前記鋼を1℃/秒以上200℃/秒の平均冷却速度で500~750℃の第11の温度範囲まで冷却する第3の冷却を行い;前記鋼を1℃/秒以上200℃/秒以下、かつ前記第3の冷却の前記平均冷却速度よりも早い平均冷却速度で、500℃~25℃の第12の温度範囲まで冷却する第4の冷却を行い;前記第4の冷却における冷却停止温度が350℃未満であった場合には、前記鋼を、350℃以上500℃以下の第13の温度範囲に再加熱し;前記鋼を、前記第13の温度範囲で滞留させ;前記鋼を、溶融亜鉛めっき浴に浸漬する温度であるめっき浴浸漬板温度を亜鉛めっき浴温度-40℃~亜鉛めっき浴温度+50℃の第14の温度範囲として、流速10m/min以上50m/min以下で流動する溶融亜鉛めっき浴に浸漬して、亜鉛めっきし;前記鋼に対して600℃以下の第15の温度範囲で合金化処理を行い;前記鋼を、40℃以下まで冷却する。
 (8)上記(6)または(7)に記載の溶融亜鉛めっき鋼板の製造方法では、840℃未満の温度で、前記焼鈍を行ってもよい。
 (9)上記(6)または(7)に記載の溶融亜鉛めっき鋼板の製造方法では、840℃以上の温度で、前記焼鈍を行ってもよい。
 (10)上記(6)~(10)のいずれか一項に記載の融亜鉛めっき鋼板の製造方法では、さらに、前記溶鋼が、質量%でCr:0.05~1.0%、Mo:0.01~1.0%、Ni:0.05~1.0%、Cu:0.05~1.0%、Nb:0.005~0.3%、Ti:0.005~0.3%、V:0.005~0.5%、B:0.0001~0.01%、Ca:0.0005~0.04%、Mg:0.0005~0.04%、REM:0.0005~0.04%、の1種又は2種以上を含有してもよい。
 本発明は、自動車用の構造用部材、補強用部材、足廻り用部材等に好適な引張強度980MPa以上有し、めっき密着性および耐遅れ破壊に優れる溶融亜鉛めっき鋼板を、安価に提供できる。
本発明の一実施形態に係る溶融亜鉛めっき鋼板の断面を、FIB加工装置で加工し、FE‐TEMにより5万倍で観察した写真である。 本実施形態に係る溶融亜鉛めっき鋼板におけるめっき層中の酸化物の投影面積率の計算方法を模式的に示す図である。 本発明の一実施形態に係る溶融亜鉛めっき鋼板の製造方法を示すフローチャートである。 本発明の一実施形態に係る溶融亜鉛めっき鋼板の製造方法を示すフローチャート(図3Aの続き)である。
 本発明者らは、上記課題を解決すべく鋭意検討を行った。その結果、ロール径1400mm以下のワークロールを有する冷延機(冷間圧延機)にて40%以上の累積圧下率で冷間圧延した後、焼鈍時の加熱中に550~750℃の温度域に20秒以上滞留させることで、鋼板表層にSi、MnあるいはAlを1種以上単独で、または複合で含有する酸化物を形成させることができることを見出した。さらに、鋼板表層にこれら酸化物を形成させた後、この鋼板を流速10m/min以上50m/min以下にて流動する溶融亜鉛めっき浴に浸漬し、溶融亜鉛めっき処理、あるいは、溶融亜鉛めっき処理及び合金化処理を行うことにより、上記酸化物を投影面積率で10%以上となるようにめっき層中に分散させることができ、さらに、めっきの密着性にも優れることを見出した。また、上記の酸化物をめっき層中に適切に分散させることで、トラップサイトとして活用でき、耐遅れ破壊特性が向上することを見出した。
 以下に本実施形態の内容を詳細に説明する。
 本実施形態に係る溶融亜鉛めっき鋼板は、鋼板と、鋼板の表面上のめっき層とを備えている。なお、めっき鋼板が、めっき層の表面に有機層や無機層等の各種被覆層をさらに備えてもよい。めっき鋼板にこのような被膜層が形成されない場合には、めっき鋼板は、鋼板と、鋼板の表面上のめっき層とからなる。
 まず、鋼板上に配置されためっき層に関して記載する。このめっき層には、溶融亜鉛めっき層、及び合金化溶融亜鉛めっき層を含む。
 めっき層は、鋼板の表面上にあり、Si、MnあるいはAlよりなる1種または2種以上を、単独または複合で含む酸化物を含有している。めっき層中のSi、MnあるいはAlよりなる1種または2種以上を含む酸化物をめっき層中に分散させることは、本実施形態で、最も重要である。特に、鋼板の表面方向から観察して、投影面積率、すなわち、鋼板とめっき層とを含む板厚方向断面で見た場合に、酸化物をめっき層と鋼板との界面に投影した長さをめっき層と鋼板との界面の長さで除して得られる面積率が、10%以上となるように酸化物をめっき層内に分散させることでその効果が顕著となる。この投影面積率は、溶融亜鉛めっき鋼板の表面より上方から鋼板を見た場合に、鋼板の表面に影を作る酸化物の見かけ上の被覆率とも言い換えることができる。詳細なメカニズムは不明なものの、酸化物は多数の欠陥を含むことから、めっき層中の酸化物が、鋼板表面からに侵入する水素(例えば、腐食反応によって生じる水素や大気中の水素)をトラップし、鋼板内部への水素の侵入を遅延させることで、耐遅れ破壊特性が向上すると考えられる。自動車鋼板は、湿潤環境と乾燥環境が繰り返し行われる環境、すなわち湿潤-乾燥環境で使用されるため、湿潤環境で鋼板表層に存在する酸化物に一旦トラップされた水素は、乾燥環境では環境中へ放出される。そのため、上記のようにめっき層中に酸化物を分散させることは、自動車の実使用環境では耐遅れ破壊特性により高い効果があると考えられる。
 上述の酸化物の形態は、膜状、粒状、紐状のいずれであっても、投影面積率を上述の範囲とする限り、本実施形態の効果を得ることができる。ただし、膜状の酸化物は、体積率に対して、投影面積率が大きくなる傾向にあるため、短時間での処理で投影面積率を本実施形態の範囲とするためには、酸化物の形態を膜状にすることが望ましい。
 めっき層中分散させる酸化物を、Si、MnあるいはAlの酸化物としたのは、これら酸化物は亜鉛に比較して融点が高く、酸化物(例えば膜状)としてめっき層中に分散させることが容易なためである。特に、膜状の酸化物とした場合、10%以上の投影面積率をより容易に確保できる。また、上記酸化物は、鋼板とめっき層の界面から5μm以内のめっき層の領域に分散させると、水素トラップ効果がより顕著となる。これら酸化物を、鋼板表層に形成させた後、溶融亜鉛めっき処理、あるいは、溶融亜鉛めっき処理及び合金化処理を行うことで、図1のように酸化物をめっき層内部に分散させることが出来る。鋼板表面の酸化物を利用するのは、酸化物のサイズや個数密度といった酸化物形態の制御が容易であり、投影面積率で10%以上の酸化物を生成させるのに有利なためである。
 ここで、Si、Mn、Alを1種または2種以上、単独、または複合で含む酸化物として、SiO、MnO、Al、MnSiO等が挙げられ、SiO、MnSiOを含むと望ましい。
 上記に加え、Crを含む酸化物(Cr)を含有したとしても同様の効果が得られる。
 一方で、酸化物を含む溶融亜鉛を鋼板にめっきすることは難しい。例えば、溶融亜鉛内に酸化物を分散させたとしても、ファンデルワールス力が原因で酸化物はクラスターを形成し、1μm~数mmにも達する巨大な酸化物となる。この巨大な酸化物は、不めっきや疵の原因となる虞がある。そのため、めっき浴内に酸化物を分散させることは好ましくない。加えて、通常、めっき密着性を高めるため、めっき前には鋼板の表面の酸化物を除去して正常な表面を得ることが一般的であり、めっき前の鋼板の表面には、意図的に酸化物を形成させない。
 なお、溶融亜鉛中には、不可避酸化物として、ZnやAlの酸化物が存在する。これら酸化物は、出来るだけ除去する、あるいは、鋼板との反応を抑制することが望ましいが、めっき層中に不可避的に(例えば5%以下)存在しても構わない。ただし、めっき層は酸化しやすいことから、めっき層の表面にZnの酸化物が存在する場合があるが、これはめっき層中の酸化物としてカウントしない。
 本実施形態においてめっき層中に分散させる酸化物は、Si、MnあるいはAlを単独、あるいは、複合で含む酸化物とする。これら酸化物は、鋼板へのSi、MnあるいはAl添加と焼鈍時の雰囲気制御とによって、制御が可能である。一方、Ni、Cu等の酸化し難い元素の添加は、添加元素のみならずFeの酸化をもたらすことから、酸化物の投影面積率及び、めっき性の確保が難しくなる。そこで、本実施形態では、鋼板にFeよりも酸化しやすい元素としてSi、MnあるいはAlを添加し、焼鈍条件及び炉内雰囲気を所定の条件とすることで、鋼板表面に、これら元素を単独、あるいは、複合で含む酸化物を形成させる。
 酸化物は、鋼板表面に対し、上述したように10%以上の投影面積率を持つ必要がある。本実施形態において、酸化物は、鋼板表面から侵入する水素をトラップすることが目的であることから、めっき層内に存在し、鋼板とめっき層の界面を広く覆うことが望ましい。投影面積率を10%以上とすることでその効果が得られる。望ましくは15%以上であり、更に望ましくは20%以上である。一方、投影面積率が90%を超えると合金化反応が極端に遅くなり、めっき層中のFe%を所定の範囲とするために高温合金化が必要となる。その場合、オーステナイトがパーライトに変態してしまうため、所定の材質を得ることができない。酸化物の投影面積率は、溶融亜鉛めっき鋼板の断面を観察することで、容易に測定できる。具体的には、図2に示すように、めっき層と鋼板界面に対し、平行な方向の酸化物長さの割合で評価できる。例えば、図2に示すように、めっき層と鋼板との界面(直線近似された界面)に対して酸化物を垂直に投影した場合において、めっき層と鋼板との間の界面の長さ(例えば、図2における長さL)に対する投影された酸化物(影)の投影長さ(例えば、図1における長さ(L-l-l-l))の割合で投影面積率A(%)を評価できる。本実施形態では、1万倍の倍率で5視野測定し、その平均値を投影面積率と定義した。本実施形態における酸化物分散の目的が、侵入する水素をめっき層中の酸化物でトラップすることであるため、酸化物が互いにオーバーラップしていても良い。
 これら酸化物の組成特定および評価は、溶融亜鉛めっき鋼板の断面より組織観察を行うことで可能である。例えば、集束イオンビーム(FIB:Focus Ion Beam)加工装置により、めっき層を含むように鋼板断面を薄片に加工した後、電解放出型透過型電子顕微鏡(FE-TEM:Field Emission Transmission Electron Microscopy)による観察と、エネルギー分散型X線検出器(EDX:Energy Dispersive X-ray Spectrometry)による組成分析を行う方法が挙げられる。本実施形態では、FIB加工装置により観察用試料を作製した後、FE‐TEMにより5万倍で酸化物を観察した。加えて、酸化物をEDXで分析することで、酸化物を特定した。
 めっき層は、Feを15質量%以下含む溶融亜鉛めっき層、または合金化溶融亜鉛めっき層とする。Fe量が15質量%を超えるとめっき層自体の密着性を損ない、加工の際めっき層が破壊・脱落し金型に付着することで、成形時の疵の原因となる。スポット溶接性や塗装性が望まれる場合には、合金化処理によってめっき層の特性を高めることが望ましい。具体的には、亜鉛めっき浴に浸漬した後、合金化処理を施すことで、めっき層中にFeが取り込まれ、塗装性やスポット溶接性に優れた合金化溶融亜鉛めっき層を有する高強度溶融亜鉛めっき鋼板を得ることができる。しかしながら、合金化処理を行う場合、合金化処理後のFe量が7質量%未満ではスポット溶接性が不十分となる。したがって、合金化処理を行う場合、すなわちめっき層を合金化溶融亜鉛めっき層とする場合は、めっき層中Fe量の範囲を7~15質量%とすることが望ましい。
 めっき層の化学組成としては、質量%で、Feを15%以下、残部が80%以上100%以下のZn、及び2%以下のAl、及び不可避的不純物からなることが望ましい。めっき層中の上記不可避的不純物として、例えば、製造上混入する不可避的不純物(例えば、めっき浴中の不可避的不純物や鋼板の化学組成に起因する化学元素(Fe、Al、及び、Znを除く)や、必要に応じたプレめっき中の化学元素(Ni、Cu、及び、Co))が挙げられる。めっき層は、Znに加え、Fe、Al、Mg、Mn、Si、Cr、Ni、Cuなどの化学元素を含有しても構わない。
 めっき付着量(単位面積当たりの付着しためっき層の量)については、特に制約は設けないが、耐食性の観点から片面付着量で5g/m以上であることが望ましい。また、めっき密着性を確保すると言う観点からは、片面付着量で100g/m以下であることが望ましい。
 また、めっき密着性をさらに向上させるために、焼鈍前に鋼板に、Ni、Cu、Co、Feの単独あるいは複数より成るめっきを施してもよい。
 また、めっき層を合金化溶融亜鉛めっき層とする場合、めっき層の特性を制御するため、めっき浴中の有効Al濃度を0.05~0.500質量%の範囲に制御することが望ましい。ここで、めっき浴中の有効Al濃度とは、めっき浴中のAl濃度から、めっき浴中のFe濃度を引いた値である。
 有効Al濃度が0.05質量%よりも低い場合にはドロス発生が顕著で良好な外観が得られない場合がある。一方、有効Al濃度が0.500質量%よりも高い場合には、合金化が遅く、生産性に劣る。このことから、浴中の有効Al濃度は、0.05~0.500質量%とすることが望ましい。
 めっき層中のFe及びAlの含有量を測定するには、めっき層を酸で溶解し、未溶解の酸化物を除去した後、溶解液を化学分析する方法を用いればよい。例えば、30mm×40mmに切断した合金化溶融亜鉛めっき鋼板について、インヒビタを添加した5%HCl水溶液で、鋼板母材の溶出を抑制しながらめっき層のみを溶解し、溶解液をICP(Inductively Coupled Plasma)発光分析して得られた信号強度と、濃度既知溶液から作成した検量線からFe及びAlの含有量を定量する方法を用いればよい。また、各試料間の測定ばらつきを考慮して、同じ合金化溶融亜鉛めっき鋼板から切出し、少なくとも3つの試料の測定値を平均すればよい。
 本実施形態に係る溶融亜鉛めっき鋼板上に、塗装性、溶接性を改善する目的で、さらに、上層めっきを施したり、各種の処理、例えば、クロメート処理、りん酸塩処理、潤滑性向上処理、溶接性向上処理等を施したりしても、本実施形態の効果を損なうものではない。
 次に、被めっき材である鋼板について説明する。
 この鋼板は、後述の化学成分を含有し、ミクロ組織が、体積分率で、マルテンサイト及びベイナイトの1種又は2種を合計で20%以上99%以下含有し、残部組織がフェライトと、体積分率8%未満の残留オーステナイト及び体積分率10%以下のパーライトの1種または2種とから成る。
 980MPa以上の引張強度を確保するため、マルテンサイト及びベイナイトを合計で20%以上含有する。マルテンサイト及びベイナイトの合計の体積分率は特に限定する必要はないが、実製造を考慮した場合100%とすることは容易ではないため、99%以下としてもよい。なお、ベイナイトは、マルテンサイトより低強度であるため、980MPa以上の引張強度とする場合、ベイナイトの体積率は70%以下であることが望ましい。残留オーステナイトは、曲げや引張加工時にマルテンサイトへと変態する。この加工時に形成したマルテンサイトは固いことから、耐遅れ破壊特性を劣化させる。このことから、残留オーステナイト体積率を8%未満とする。また、パーライト組織の体積率が10%超となると980MPa以上の強度確保が難しくなるので、パーライトの上限は10%とする。残留オーステナイト及びパーライトは、0%でもよい。
 しかしながら、さらに伸びを向上させることが求められる場合には、体積率40%以上80%以下のフェライトを含有することが望ましい。フェライトの体積率を40%以上とすることで延性(伸び)が向上する。フェライトの体積率が40%未満では、その効果は小さい。一方、80%超では、マルテンサイト及びベイナイトの合計の体積率が20%未満となり、980MPa以上の高強度を確保できなくなる。マルテンサイトは、その内部に炭化物を含む焼き戻しマルテンサイトや、炭化物を含まない焼き入れままのマルテンサイトのいずれであっても良い。ベイナイト組織もベイナイトラス内に炭化物を含む下部ベイナイト、ラス間に炭化物を含む上部ベイナイトのいずれであっても良い。
 一方、さらに穴広げ性を向上させる場合には、マルテンサイト及びベイナイトの1種または2種を合計で60%超含有することが望ましい。ベイナイト及びマルテンサイトを合計で60%超とするのは、穴広げ性を向上させつつ980MPa以上の強度を確保するためであり、60%以下では、その効果は小さい。
 上記ミクロ組織の各相、フェライト、マルテンサイト、ベイナイト、オーステナイト、パーライトおよび残部組織の同定、存在位置の観察および面積率の測定は、ナイタール試薬および日本国特開S59-219473号公報に開示された試薬により鋼板圧延方向断面または圧延方向直角方向断面を腐食して、倍率1000倍の光学顕微鏡観察及び倍率1000~100000倍の走査型および透過型電子顕微鏡により定量化が可能である。各20視野以上の観察を行い、ポイントカウント法や画像解析により各組織の面積率を求めることが出来る。上記測定方法は、二次元の観察ではあるものの、本実施形態に係る鋼板では、全ての断面で同一面積率が得られる。そのため、面積率は、体積率に等しい。
 次に、被めっき材である鋼板の化学成分の限定理由について説明する。なお、以下の化学成分の%は質量%を意味する。
 C:Cは、鋼板の強度を上昇させる元素である。しかしながら、0.05%未満であると980MPa以上の引張強度と加工性とを両立することが難しくなる。一方、0.40%以上となるとスポット溶接性の確保が困難となる。また、残留オーステナイトが過剰に生成し、耐遅れ破壊特性が低下する。このため、その範囲を0.05~0.40%未満に限定した。
 Si:Siは、酸化物としてめっき層に分散させることが出来る。そのため、耐水素脆性(耐遅れ破壊特性)を改善するために最も重要な添加元素である。ただし、添加量が0.5%未満では、酸化物の量が十分でなく、耐遅れ破壊特性が十分に向上しない。このことから、0.5%以上添加する必要がある。一方、3.0%を超えると加工性が低下するとともに、鋼板が脆化し、遅れ破壊の発生を助長する。また、酸洗性が低下する。従って、Si含有量は0.5~3.0%の範囲に制限した。また、Siは、強化元素であり、鋼板の強度を上昇させるためにも有効である。より好ましくは、0.5~2.5%、更に好ましくは0.5~2.0%ある。
 Mn:Mnは、強化元素であり、鋼板の強度を上昇させることに有効である。また、酸化物としてめっき層に分散させることが出来る。しかしながら、1.5%未満であると980MPa以上の引張強度を得ることが困難である。一方、3.0%超では、P、Sとの共偏析を助長し、加工性の著しい劣化を招く。また、残留オーステナイトが過剰に生成し、耐遅れ破壊特性が低下する。そのため3.0%を上限とする。より好ましい範囲は、2.0~2.8%である。
 O:鋼板中のOは、鋼板中(表層部以外)に酸化物を形成する。これら鋼板中に含まれる酸化物は、伸びや穴広げ性を劣化させる。そのため、鋼板中のO添加量を抑える必要がある。特に、酸化物は介在物として存在する場合が多く、打抜き端面、あるいは、切断面に存在すると、端面に切り欠き状の疵や粗大なディンプルを形成する。その結果、穴広げ時や強加工時に、応力集中を招き、亀裂形成の起点となり大幅な穴広げ性あるいは曲げ性、耐遅れ破壊特性の劣化をもたらす。Oが0.006%を超えると、この傾向が顕著となることから、O含有量の上限を0.006%以下とした。一方、鋼板中のOは少ない方が好ましいが、0.0001%と未満とすることは、過度のコスト高を招き経済的に好ましくないことから、これが実質的な下限である。ただし、本実施形態に係る溶融亜鉛めっき鋼板は、めっき層中に酸化物を分散させていることから、めっき層中や、めっき層と鋼板界面近傍のO含有量は、鋼板内部に比較し高くなる。鋼板表面に存在する酸化物は、鋼板表面もしくはめっき層中に存在することから、鋼板に含まれる酸化物、あるいは鋼板の酸素含有量として定義しない。具体的には、鋼板のO含有量を測定する場合、めっき層を除去し、鋼板表面を10μm機械研磨した後測定する。
 P:Pは鋼板の板厚中央部に偏析する傾向があり、溶接部を脆化させる。0.04%を超えると溶接部の脆化が顕著になるため、0.04%以下に制限した。また0.04%を超えると、鋼板を脆化させ、遅れ破壊の発生を助長する。Pの下限値は特に定めないが、0.0001%未満とすることは、経済的に不利であることからこの値を下限値とすることが好ましい。
 S:Sは、溶接性、ならびに鋳造時および熱延時の製造性に悪影響を及ぼす。そのため、0.01%以下に制限した。SはMnと結びついて粗大なMnSを形成する。このMnSは、曲げ性や穴広げ性を劣化させたり、遅れ破壊の発生を助長する。そのためS含有量は、出来るだけ少なくすることが望ましい。しかしながら、0.0001%未満とすることは、経済的に不利であることからこの値を下限値とすることが好ましい。
 Al:Alは、酸化物としてめっき層中に分散させることで、耐遅れ破壊特性の向上に活用できるので添加しても良い。また、脱酸材としても活用可能である。しかしながら、過剰な添加はAl系の粗大介在物の個数を増大させ、穴広げ性の劣化や表面疵の原因になる。また過剰なAl添加は、鋼板を脆化させ、遅れ破壊の発生を助長するため好ましくない。このことから、Al添加の上限を2.0%とした。下限は、特に限定しないが、0.0005%以下とするのは困難であるのでこれが実質的な下限である。
 N:Nは、鋼中に粗大な窒化物を形成する。この窒化物は、曲げ性や穴広げ性を劣化させるとともに耐遅れ破壊特性を劣化させることから、添加量を抑える必要がある。Nが0.01%を超えると、この傾向が顕著となることから、N含有量の範囲を0.01%以下とした。加えて、溶接時のブローホール発生の原因になることから少ない方が望ましい。そのため下限は、特に定める必要がない。しかしながら、N含有量を0.0005%未満とすることは、製造コストの大幅な増加を招くことから、これが実質的な下限である。
 本実施形態に係る溶融亜鉛めっき鋼板は、以上の元素と残部の鉄及び不可避的不純物よりなる組成を基本とするが、さらに、強度の向上などのために従来から用いている元素として以下の元素のいずれか1種または2種以上を含有することができる。なお、これらの選択元素が鋼板中に不可避的に(例えば、各選択元素の量の好ましい下限未満の量)混入しても、本実施形態における効果を損なわない。また、これらの化学元素は、必ずしも鋼板中に添加する必要がないため、これらの化学元素の下限は、いずれも0%であり制限されない。
 Mo:Moは、強化元素であるとともに焼入れ性の向上に重要である。しかし、0.01%未満ではこれらの効果が得られないため添加する場合の下限値を0.01%とした。逆に、1.0%超含有すると製造時および熱延時の製造性に悪影響を及ぼすとともに鋼板が脆化させ、遅れ破壊の発生が助長されるため、上限値を1.0%とした。
 Cr:Crは、強化元素であるとともに焼入れ性の向上に有効である。しかし、0.05%未満ではこれらの効果が得られないため添加する場合の下限値を0.05%とした。逆に、1.0%超含有すると製造時および熱延時の製造性に悪影響を及ぼすとともに、鋼板が脆化し、遅れ破壊の発生が助長されるため、上限値を1.0%とした。
 Ni:Niは、強化元素であるとともに焼入れ性の向上に有効である。加えて、濡れ性の向上や合金化反応の促進をもたらすことから添加しても良い。しかし、0.05%未満ではこれらの効果が得られないため添加する場合の下限値を0.05%とした。一方、1.0%超含有すると製造時および熱延時の製造性に悪影響を及ぼすため、上限値を1.0%とした。
 Cu:Cuは、強化元素であるとともに焼入れ性の向上に有効である。加えて、濡れ性の向上や合金化反応の促進をもたらすことから添加しても良い。しかし、0.05%未満ではこれらの効果が得られないため添加する場合の下限値を0.05%とした。逆に、1.0%超含有すると製造時および熱延時の製造性に悪影響を及ぼすため、上限値を1.0%とした。
 Bは、0.0001質量%以上の添加で粒界の強化や鋼材の強度化に有効であるが、その添加量が0.01質量%を超えると、その効果が飽和するばかりでなく、熱延時の製造製を低下させる。そのため、Bの添加量を0.0001%~0.01%とした。
 Ti:Tiは、強化元素である。析出物強化、フェライト結晶粒の成長抑制による細粒強化および再結晶の抑制を通じた転位強化にて、鋼板の強度上昇に寄与する。添加量が0.005%未満ではこれらの効果が得られないため、添加する場合の下限値を0.005%とした。0.3%超含有すると、炭窒化物の析出が多くなり成形性や耐遅れ破壊特性が劣化するため、上限値を0.3%とした。
 Nb:Nbは、強化元素である。析出物強化、フェライト結晶粒の成長抑制による細粒強化および再結晶の抑制を通じた転位強化にて、鋼板の強度上昇に寄与する。添加量が0.005%未満ではこれらの効果が得られないため、添加する場合の下限値を0.005%とした。0.3%超含有すると、炭窒化物の析出が多くなり成形性が劣化するため、上限値を0.3%とした。
 V:Vは、強化元素である。析出物強化、フェライト結晶粒の成長抑制による細粒強化および再結晶の抑制を通じた転位強化にて、鋼板の強度上昇に寄与する。添加量が0.005%未満ではこれらの効果が得られないため、添加する場合の下限値を0.005%とした。0.5%超含有すると、炭窒化物の析出が多くなり成形性が劣化するため、上限値を0.5%とした。
 Ca、Mg、REMから選ばれる1種または2種以上をそれぞれ0.0005~0.04%添加してもよい。Ca、MgおよびREMは脱酸に用いる元素であり、その効果を得るためには、1種または2種以上を合計で0.0005%以上含有することが好ましい。REMとは、Rare Earth Metalである。しかしながら、それぞれの含有量が0.04%を超えると、成形加工性の悪化の原因となる。そのため、含有量は合計でも0.0005~0.04%とするのが好ましい。本実施形態において、REMはミッシュメタルにて添加されることが多く、LaやCeの他にランタノイド系列の元素を複合で含有する場合がある。不可避不純物として、これらLaやCe以外のランタノイド系列の元素を含んだとしても本実施形態の効果は発揮される。金属LaやCeを添加したとしても本実施形態の効果は発揮される。
 本実施形態に係る溶融亜鉛めっき鋼板は、さらに、不可避的不純物として、特性を損なわない範囲であれば、上記以外の元素(例えばZr、Sn、Co、As等)を含んでも構わない。
 本実施形態に係る溶融亜鉛めっき鋼板は、980MPa以上の引張強度TSを有し、耐遅れ破壊特性、めっき密着性に優れている。本実施形態に係る溶融亜鉛めっき鋼板(素材)は、通常の製鉄工程である製錬、製鋼(精錬)、鋳造、熱延、冷延の各工程を経て製造される製品を原則とし、後述の実施形態の製造方法により好適に得ることができる。しかしながら、製鉄工程の一部、又は、全部を省略して製造される製品でも、本実施形態に係る条件を満足する限り、本実施形態において説明した効果を得ることができるため、本実施形態に係る溶融亜鉛めっき鋼板は、必ずしも製造方法によって制限されない。
 以下に、本発明の一実施形態に係る溶融亜鉛めっき鋼板の製造方法を説明する。
 本発明の一実施形態に係る溶融亜鉛めっき鋼板を得るためには、鋼板表層の酸化物の制御、めっき浴内の溶融亜鉛の噴流の制御を行うことが重要である。
 熱間圧延に先行する製造方法は特に限定するものではない。すなわち、高炉や電炉等による溶製に引き続き各種の2次製錬を行い、次いで、通常の連続鋳造、インゴット法による鋳造の他、薄スラブ鋳造などの方法で上述の化学成分を有する溶鋼を鋳造すればよい。連続鋳造の場合には一度低温まで冷却したのち、再度加熱してから熱間圧延しても良いし、鋳造スラブを連続的に熱延しても良い。原料にはスクラップを使用しても構わない。
 熱間圧延前のスラブ加熱温度は、1100℃以上にする必要がある。スラブ加熱温度が1100℃未満であると、仕上げ圧延温度がAr3点を下回ってしまう場合がある。その場合、フェライト及びオーステナイトの二相域圧延となり、熱延板組織が不均質な混粒組織となり、冷延及び焼鈍工程を経たとしても不均質な組織が解消されず、延性や曲げ性に劣るものとなる。また、本実施形態においては、焼鈍後に980MPa以上の引張最大強度を確保するため、軟鋼等に比べて合金元素の含有量が多く、仕上げ圧延時の強度も高くなりがちである。そのため、スラブ加熱温度が1100℃未満であると、仕上げ圧延温度の低下に伴う圧延荷重の増加によって、圧延が困難となったり、圧延後の鋼板の形状不良を招く懸念がある。また、スラブ加熱温度の上限は特に定めることなく、本実施形態の効果は発揮されるが、加熱温度を過度に高温にすることは、経済上好ましくない。このことから、スラブ加熱温度の上限は1300℃未満とする。
 本実施形態において、Ar3変態点は次の式により計算する。
 Ar3変態点(℃)=901-325×C+33×Si-92×(Mn+Ni/2+Cr/2+Cu/2+Mo/2)
(式中のC、Si、Mn、Ni、Cr、Cu、Moは、鋼中の各成分の含有量[質量%]である。)
 熱間圧延の仕上げ圧延温度(熱間圧延完了温度)は、Ar3変態点以上とする。上限は特に定めることなく、本実施形態の効果は発揮される。圧延温度がAr3変態点未満であると、圧延荷重が過度に高くなり製造が困難となると共に、フェライトとオーステナイトの二相域で熱間圧延を受けることから、熱間圧延後の鋼板のミクロ組織が不均一となってしまう。即ち、仕上げ圧延中に生成したフェライトは、圧延にて延ばされ、粗大となり、圧延後にオーステナイトから変態したフェライトは膜状となる。このような不均一なミクロ組織を有する鋼板は、冷間圧延及び焼鈍を行って組織制御を行ったとしても、材質がばらつき、さらに耐遅れ破壊特性が低下することから好ましくない。一方、熱間圧延の仕上げ圧延温度を過度に高温とした場合、その温度を確保するために、スラブの加熱温度を過度に高温にせねばならなくなり、好ましくない。このことから、熱間圧延の仕上げ圧延温度の上限温度を、1000℃以下とすることが望ましい。
 熱間圧延後の冷却については特に規定はせず、それぞれの目的にあった組織制御を行うための冷却パターンをとっても本実施形態の効果は得られる。
 熱間圧延後、巻き取りを行う。巻き取り温度は300℃以上700℃以下にする必要がある。700℃を超えると熱延組織中に粗大なフェライトやパーライト組織が生成し、焼鈍後の組織不均一性が大きくなり、最終製品の材質異方性が大きくなる。また、700℃を超える温度で巻き取ることは、鋼板表面に形成する酸化物の厚さを過度に増大させるため、酸洗性が劣るので好ましくない。一方300℃以下であると、熱延板の強度が高くなることで、冷延荷重が高くなる。その結果、冷間圧延ができない、あるいは、板破断などの製造トラブルを招く。
 なお、熱延時に粗圧延板同士を接合して連続的に仕上げ圧延を行っても良い。また、粗圧延板を一旦巻き取っても構わない。
 このようにして巻き取った熱延鋼板に、酸洗を行う。酸洗は鋼板表面の酸化物の除去が可能であることから、めっき性向上のためには重要である。酸洗の方法については、公知の方法を用いればよい。また、一回の酸洗を行っても良いし、複数回に分けて酸洗を行っても良い。
 酸洗した熱延鋼板を累積圧下率40~80%で冷間圧延して、連続溶融亜鉛めっきラインを通板する。上述の酸化物を形成するSi、AlあるいはMnは、鋼板内部からの(特に、粒界での)拡散により供給されることから、酸化物は、鋼板表面の粒界周辺に形成され易い。この結果、フェライトの粒径が大きいと、鋼板表面の粒界の割合が小さく、酸化物の投影面積を10%以上とすることが難しい。また、一般的に、冷間圧延ままのフェライトは圧延方向に延びており、粒界の割合が小さい。この結果、冷間圧延ままの組織を焼鈍した場合、酸化物の投影面積率を10%以上とすることは難しい。このことから、酸化物形成前に、フェライトを再結晶させ、粒径を小さくすることで、酸化物の形成を促進させる必要がある。冷延の累積圧下率が40%未満では、再結晶に必要な歪が十分に導入されない。また、最終製品の延性が劣悪となるのでこれを下限とする。さらに、累積圧下率が40%未満では、形状を平坦に保つことが困難である。また、一方、80%を越える冷延(冷間圧延)は、冷延荷重が大きくなりすぎてしまい冷延が困難となることから、これを上限とする。より好ましい範囲は、45~75%である。累積圧下率が上記の範囲であれば、圧延パスの回数、各パスの圧下率については特に規定することなく本実施形態の効果は発揮される。
 また、本実施形態においては、冷間圧延を行う際のワークロールの径(ロール径)を1400mm以下とする。望ましくは、1200mm以下であり、更に望ましくは、1000mm以下である。その理由としては、ロール径により導入される歪の種類が異なり、小径ロールでは、せん断歪が入り易いためである。再結晶はせん断帯から生じやすいため、せん断帯が多く形成する小径ロールで圧延を行った鋼板の方が再結晶が早く起こる。すなわち、ロールの径小さなワークロールを用いて冷延を行うことで、酸化物が形成する前に、再結晶が開始させることが可能となる。
 ここで、累積圧下率とは、各圧下工程(例えば冷間圧延工程)の最初のパス前の入口板厚を基準とし、この基準に対する累積圧下量(圧延における最初のパス前の入口板厚と圧延における最終パス後の出口板厚との差)の百分率である。
 めっきラインを通板する場合の加熱速度は、特に定めることなく本実施形態の効果は発揮される。しかしながら、0.5℃/秒未満の加熱速度は、生産性が大きく損なわれることから好ましくない。また、加熱速度を100℃超とすることは、過度の設備投資を招き、経済的に好ましくない。
 本実施形態において、めっきラインを通板する場合の焼鈍温度までの加熱中に550~750℃の温度範囲で、20秒以上滞留させる。その理由は、この温度範囲では再結晶が十分に進行するものの、再結晶に比較して酸化物形成は遅いためである。Si、MnやAlを単独、あるいは、複合で含む酸化物は、まず初めに、鋼板表面のフェライトの粒界に形成する傾向にあり、再結晶により形成した微細なフェライトの粒界を生成サイトとして活用する。すなわち、上記冷延を施した後、この温度域で滞留を行うことで、酸化物の形成に先だって再結晶が開始させることが可能となる。滞留の温度が550℃未満であると、再結晶に長時間を要するため望ましくない。また、滞留の温度が750℃超であると、酸化物の形成が速く、再結晶や粒成長の途中で粒界に粒上の酸化物を形成してしまうことから望ましくない。ただし、一旦、酸化物を形成させた後であれば、組織制御の目的で750℃超の温度域で長時間の保持を行っても良い。なお、この効果は、フェライトを主相とする組織でもベイナイトやマルテンサイトを主相とする組織でも同様である。また、550℃~750℃での滞留時間が、20秒未満では、十分に再結晶が進まないため望ましくない。一方、2000秒超の滞留は、生産性を劣化させるばかりでなく、形成した酸化物が厚くなり、不めっき原因となることから好ましくない。好ましくは、40~500秒である。なお、滞留とは等温保持のみを意味するのでなく、この温度域での加熱や保持等温度変化があっても構わない。
 これら酸化物は、フェライト粒界に優先的に形成するため、網目状の構造を有することが多い。
 上記滞留の後、焼鈍を行う。Si、MnあるいはAlを単独、あるいは、複合で含む酸化物を1種以上含む酸化物をめっき層に含有させるには、連続溶融亜鉛めっきライン(CGL:Continuous Galvanizing Line)の焼鈍工程において、鋼板表面に易酸化性元素の酸化物を形成させた後、めっきし、めっき層中に取り込ませる必要がある。鋼板表面にSi、MnあるいはAlの酸化物を形成させるには、連続溶融亜鉛めっきラインの焼鈍工程における雰囲気を適切な範囲に制御する。即ち、焼鈍温度とともに、焼鈍雰囲気中のH濃度と露点を管理することが特に重要である。そこで、本実施形態では、H濃度が20体積%以下のN雰囲気において、露点を-20℃以上とし、最高加熱温度が、750~900℃の範囲で焼鈍を行う。最高加熱温度が750℃未満になると、熱延時に形成した炭化物が再固溶するのに時間がかかりすぎてしまい炭化物、あるいは、その一部が残存したり、冷却後にマルテンサイトやベイナイトが十分に得られないことから、980MPa以上の強度が確保し難い。一方、過度の高温加熱は、コストの上昇を招くことから経済的に好ましくないばかりでなく、高温通板時の板形状が劣悪になったり、ロールの寿命を低下させたりとトラブルを誘発することから、最高加熱温度の上限を900℃とする。この温度域での熱処理時間は、炭化物の溶解のために、10秒以上の熱処理が望ましい。一方、熱処理時間が1000秒超となると、コストの上昇を招くことから経済的に好ましくない。より望ましくは、600秒以下である。熱処理についても、最高加熱温度にて等温保持を行っても良いし、傾斜加熱を行い最高加熱温度に到達した後、直ちに冷却を開始したとしても、本実施形態の効果は発揮される。露点が-20℃未満であると、上述の投影面積率が90%を超えてしまうため望ましくない。H濃度を20体積%超とすると、コストが大幅に上昇してしまうため望ましくない。
 H濃度の下限は、炉内雰囲気をFeの還元雰囲気とするため、0.05体積%であることが望ましい。露点は、炉内でのFeの酸化を抑制するため、50℃以下であることが望ましい。露点は、より望ましくは40℃以下、更に望ましくは30℃以下である。
 フェライトは、750~900℃での焼鈍中、あるいは、最高加熱温度~650℃までの冷却中に形成される。従って、伸びをより向上させるため、ミクロ組織におけるフェライト面積率を40%以上とする場合、焼鈍温度を840℃未満とすることが望ましい。焼鈍温度を840℃未満とすることで、焼鈍時のフェライト分率を多くすることができるため、冷却後にもフェライトを多く含む組織とすることができる。なお、焼鈍時にオーステナイトであった組織は、冷却後、マルテンサイト、ベイナイト、残留オーステナイト、パーライトのいずれかに変態する。
 一方、穴広げ性をより向上させるため、ミクロ組織におけるマルテンサイト及びベイナイトの面積率を60%超とする場合には、焼鈍温度を840℃以上とすることが望ましい。焼鈍温度を840℃以上とすることで、焼鈍時のオーステイナイト分率を高めることができる。このオーステナイトは、焼鈍後の冷却においてベイナイトまたはマルテンサイトに変態するため、ベイナイト及びマルテンサイトの分率を多くすることができる。
 めっき前の焼鈍については、「脱脂酸洗後、非酸化雰囲気にて加熱し、H及びNを含む還元雰囲気にて焼鈍後、めっき浴温度近傍まで冷却し、めっき浴に侵漬」というゼンジマー法、「焼鈍時の雰囲気を調節し、最初、鋼板表面を酸化させた後、その後還元することによりめっき前の清浄化を行った後にめっき浴に侵漬」という全還元炉方式、あるいは、「鋼板を脱脂酸洗した後、塩化アンモニウムなどを用いてフラックス処理を行って、めっき浴に侵漬」というフラックス法等を本実施形態の各工程に沿うように必要に応じて変更を加えた上で適用してもよい。
 上記焼鈍終了後、500~750℃の温度域まで冷却する(第1の冷却または第3の冷却)。焼鈍の最高加熱温度からの平均冷却速度は、1.0~200℃/秒とする。冷却速度を、1℃/秒未満とすることは、生産性が大きく損なわれることから望ましくない。一方、過度に冷却速度を上げる事は、製造コスト高を招くこととなるので、上限を200℃/秒とすることが好ましい。
 その後、1℃/秒以上、かつ第1の冷却速度よりも速い冷却速度で、亜鉛めっき浴温度‐40℃~亜鉛めっき浴温度+50℃の温度範囲に冷却する(第2の冷却)。冷却速度を1℃/秒以上とする理由は、冷却速度が小さいと冷却過程でフェライトやパーライトが過剰に出てしまい980MPa以上の強度確保が難しくなるためである。一方、過度に冷却速度を上げる事は、製造コスト高を招くこととなるので、上限を200℃/秒とすることが好ましい。本実施形態において、亜鉛めっき浴温度は440℃~460℃とする。
 また、第2の冷却の代わりにめっき浴浸漬前に、25℃~500℃の温度に一旦冷却(第4の冷却)し、その後、冷却停止温度がめっき浴温度-40℃未満であった場合には350℃~500℃の温度範囲まで再加熱して滞留させてもよい。上述の温度範囲で冷却及を行うと冷却中に未変態のオーステナイトからマルテンサイトまたはベイナイトといった硬質相が形成される。その後、再加熱を行うことで、硬質相は焼き戻される。焼き戻しとは、硬質相内での炭化物析出や転位の回復・再配列を意味し、焼戻しを行うことで、穴広げ性や曲げ性や耐遅れ破壊特性が向上する。冷却停止温度の下限を25℃としたのは、過度の冷却は大幅な設備投資を必要とするばかりでなく、その効果が飽和するためである。さらに、再加熱後かつめっき浴浸漬前に、350~500℃の温度域での鋼板を滞留させる。この温度域での滞留は、マルテンサイトの焼き戻しに寄与するばかりでなく、板の幅方向の温度ムラをなくし、めっき後の外観を向上させる。第4の冷却の冷却停止温度が350℃~500℃であった場合には、再加熱を行わずに滞留を行えばよい。滞留を行う時間は、その効果を得るために10秒以上1000秒以下とすることが望ましい。ベイナイト変態を起こさせ、残留オーステナイトを安定化させるためには、滞留時間を20~750秒にすることが望ましく、更に望ましくは、30~500秒である。
 上記の第2の冷却または、350℃~500℃の温度域での滞留の後、めっき浴に浸漬して溶融亜鉛めっきを行う。めっき浴浸漬板温度(溶融亜鉛めっき浴に浸漬する際の鋼板の温度)は、溶融亜鉛めっき浴温度より40℃低い温度(溶融亜鉛めっき浴温度-40℃)から溶融亜鉛めっき浴温度より50℃高い温度(溶融亜鉛めっき浴温度+50℃)までの温度範囲とする。めっき浴浸漬板温度が溶融亜鉛めっき浴温度-40℃を下回ると、めっき浴浸漬進入時の抜熱が大きく、溶融亜鉛の一部が凝固してしまいめっき外観を劣化させる場合があるため望ましくない。浸漬前の板温度が溶融亜鉛めっき浴温度-40℃を下回っていた場合、任意の方法でめっき浴浸漬前にさらに加熱を行い、板温度を溶融亜鉛めっき浴温度-40℃以上に制御してからめっき浴に浸漬させても良い。また、めっき浴浸漬板温度が溶融亜鉛めっき浴温度+50℃を超えると、めっき浴温度上昇に伴う操業上の問題を誘発する。めっき浴は、純亜鉛に加え、Fe、Al、Mg、Mn、Si、Crなどを含有しても構わない。
 酸化物が鋼板表面を覆うと、不めっきや合金化遅延などの問題が生じやすい。特に、溶融亜鉛めっき浴の表面や浴中には、亜鉛の酸化物が存在する。亜鉛の酸化物と鋼板表面に形成した酸化物とは親和性が高く、亜鉛の酸化物が付着しやすいため、不めっきや外観不良などの問題が生じやすい。本実施形態では、鋼板表面にSi、MnあるいはAlの酸化物を分散させていることから、不めっきや合金化の遅延が起こりやすい。水素脆化抑制可能となるように、投影面積率10%以上の酸化物を分散させる場合、この傾向が顕著となる。そこで、鋼板表面に本実施形態の酸化物を形成させる場合には、めっき浴中の溶融亜鉛を流速10m/min以上50m/min以下の噴流速度にて流動させることで、鋼板と亜鉛の酸化物の付着を妨げ、不めっきの防止と合金化促進を行う。この結果、めっき層中に酸化物を分散させることが可能となる。通常、溶融亜鉛めっき浴中には、スカムと呼ばれる、ZnやAlの酸化膜が浮遊しており、不めっきや合金化遅延の原因となる。本発明者らは、鋼板表面に酸化物が存在している場合、鋼板の浴への浸漬時にスカムが付着し易いため、不めっき(めっき層において鋼板まで達する欠陥)が発生し易いことを見出した。鋼板に付着したスカムは、不めっきのみならず、合金化も遅延させる。この挙動は、SiやMnを多く含む鋼板で特に顕著となる。詳細なメカニズムは不明なものの、鋼板表面に形成するSiやMnの酸化物と、同じく酸化物であるスカムが反応することで、不めっきや合金化遅延を助長しているものと考えられる。流速10m/min未満では、噴流による不めっき抑制効果が得られず、鋼板表面に酸化物が付着するため、外観不良が引き起こされる。一方、50m/min超となると、効果が飽和するばかりでなく、亜鉛の流動に起因した模様が生じ、外観不良を招き易い。また、過大な設備投資はコスト高を招く。そのため、めっき浴中の溶融亜鉛の流速は10m/min以上50m/min以下とする。ここで、溶融亜鉛の流束の方向については特に制限されず、流束の大きさのみを制御すればよい。
 浸漬後、めっき浴に浸漬した鋼板をめっき浴から引き上げ、必要に応じてワイピングを行う。鋼板に対してワイピングを行うと、鋼板表面に付着するめっきの量(めっき付着量)を制御することができる。めっき付着量について、特に制約はないが、耐食性をより高める観点から、めっき付着量が片面当たり5g/m以上であると望ましい。また、めっき密着性をより高める観点から、めっき付着量が片面当たり100g/m以下であると望ましい。
 さらに、めっき層の合金化処理を行う場合には、600℃以下で行う。一方、600℃を超えると、炭化物が形成されて残留オーステナイト体積率を減少させ、優れた延性の確保が難しくなるとともに、マルテンサイト等の硬質相が軟化したり、パーライトが多量生成したりして、980MPa以上の引張最大強度の確保が難しくなる。一方、合金化処理温度が460℃未満であると合金化の進行が遅く、生産性が悪いため好ましくない。さらに、合金化処理温度が600℃を超えると、めっき層中のFeが15質量%を超えてしまうため、めっき層の密着性を失う。なお、合金化処理を行わない場合、本実施形態の条件を満たせば、めっき層中のFeは15質量%を超えない。
 図3A及び図3Bに上記した本発明の一実施形態に係る製造方法のフローチャートを示す。
 さらに、鋼板形状の矯正や可動転位導入により延性の向上を図ることを目的として、スキンパス圧延を施してもよい。熱処理後のスキンパス圧延の圧下率は、0.1~1.5%の範囲が好ましい。0.1%未満では効果が小さく、制御も困難であることから、これが下限となる。1.5%を超えると生産性が著しく低下するのでこれを上限とする。スキンパスは、インラインで行っても良いし、オフラインで行っても良い。また、一度に目的の圧下率のスキンパスを行っても良いし、数回に分けて行っても構わない。
 本発明の溶融亜鉛めっき鋼板の素材は、通常の製鉄工程である精錬、製鋼、鋳造、熱延、冷延工程を経て製造されることを原則とするが、その一部あるいは全部を省略して製造されるものでも、本発明に係わる条件を満足する限り、本発明の効果を得ることができる。
 次に、本発明を実施例により詳細に説明する。
 表1に示す成分を有するスラブを、1200℃に加熱し、表2-1~表2-4に記載の熱延条件にて熱間圧延を行い、水冷帯にて水冷の後、表2-1~表2-4に示す温度で巻き取り処理を行った。熱延板の厚みは、2~4.5mmの範囲とした。この熱延板を酸洗した後、冷間圧延後の板厚が1.2mmとなるように、所定の冷延率で冷延を行い、冷延板とした。その後、これらの冷延板に表2-1~表2-4に示す条件で連続合金化溶融亜鉛めっき設備にて、550~750℃の温度域において表2-1~表2-4の条件で滞留させ、その後、焼鈍、冷却、必要に応じて再加熱を行い所定の条件に制御した亜鉛めっき浴に浸漬し、その後室温(25℃)まで冷却した。めっき浴中の有効Al濃度は、0.09~0.17質量%の範囲とした。一部の鋼板については、亜鉛めっき浴に浸漬後、各条件にて合金化処理を行い、室温まで冷却した。その際の目付け量としては、両面とも約35g/mとした。最後に、得られた鋼板について0.4%の圧下率でスキンパス圧延を行った。
 上述の条件にて製造した鋼板の特性を表3-1~表3-4に示す。
 引張試験は、1.2mm厚の板から圧延方向に垂直な方向にJIS5号試験片を採取し、JIS Z2241:2011に準じて引張特性を評価した。
 めっき層中の酸化物の観察は、溶融亜鉛めっき鋼板断面より組織観察を行うことで行った。溶融亜鉛めっき鋼板表層を集束イオンビーム加工装置により、めっき層を含むように鋼板断面を薄片に加工した後、FE‐TEMによる観察と、エネルギー分散型X線検出器(EDX)による組成分析を行った。1万~5万倍の倍率で5視野観察し、組成や面積率を特定した。
 めっき層中のFe及びAlの含有量は、めっき層をインヒビタを添加した5%HCl水溶液で溶解し、未溶解の酸化物を除去した後、溶解液をICP発光分析して測定した。3つの試料を測定し、平均値をめっき層のFe%とした。
 これら酸化物の組成や面積率の評価は、溶融亜鉛めっき鋼板断面より組織観察を行うことで可能である。例えば、集束イオンビーム(FIB)加工装置により、めっき層を含むように鋼板断面を薄片に加工した後、電解放出型透過型電子顕微鏡(FE‐TEM)による観察と、エネルギー分散型X線検出器(EDX)による組成分析を行う方法が挙げられる。FIB加工装置により観察用試料を作製した後、FE‐TEMにより5万倍で酸化物を観察した。加えて、酸化物をEDXで分析することで、酸化物の特定が可能である。
 Si、MnあるいはAlを単独、あるいは、複合で含む酸化物を1種以上含む酸化物をめっき層に含有させるには、CGLの焼鈍工程において、鋼板表面に易酸化性元素の酸化物を形成させた後、めっきし、めっき層中に取り込ませる必要がある。
 次に、耐遅れ破壊特性を評価するため、U曲げ試験による試験片作製と電解チャージによる耐遅れ破壊試験を行った。本発明の方法にしたがって製造した溶融亜鉛めっき鋼板を非特許文献3記載の方法に従って、耐遅れ破壊特性を評価した。
 具体的には、鋼板を機械切断した後、端面を機械研削し、10RにてU曲げ試験を行った。得られた試験片の中央に歪ゲージを貼り、試験片両端をボルトで締め付けることにより応力を付与した。付与した応力は、モニタリングした歪ゲージの歪より算出した。負荷応力は、980MPa級の鋼板であれば700MPaの、1180MPa級の鋼板であれば840MPaの、1320MPa級の鋼板であれば925MPaであり、TSの0.7に対応する応力を付与した。これは、成形時に導入される残留応力が鋼板のTSと対応があると考えられるためである。
その他、穴広げについては、JFS T1001に準拠して評価した。
 得られたU曲げ試験片は、チオシアン酸アンモニウム溶液に浸漬し、鋼板側を陰極、白金電極を陽極とし、電流密度0.1mA/cmにて電流を流し、電解チャージ試験を2時間行った。電解チャージ試験中発生した水素は、鋼板中に侵入し、遅れ破壊をもたらす可能性がある。電解チャージ試験後、試験片を溶液から取り出し、U曲げ試験片中央部を目視にて観察することで、割れの有無を調査した。ただし、めっき層は、U曲げ試験時に割れる場合があり、電解チャージ試験後の表面観察の際に、遅れ破壊により生じた亀裂と誤認される可能性がある。そこで、遅れ破壊試験の後、めっき層を、インヒビタを添加した5%HCl水溶液で溶解し、鋼板表面の亀裂の有無を観察した。曲げ加工部には大きな応力が付与されていることから、亀裂が発生するとその進展が速い。このことから、本実施例では、亀裂がある場合、全て大きな開口亀裂となっており、目視であっても容易に亀裂の有無を判定可能であった。本実施例では、ルーペや実態顕微鏡等を用いて、試験片を入念に観察し、亀裂の有無を再度確認し、開口亀裂がないものは微細な亀裂もないことを確認した。
 表3-1~表3-4に示す遅れ破壊試験結果において、GOODは端部に亀裂が発生していなかったことを示し、BADは端部に亀裂が発生していたことを示す。
 めっき性は、下記のように評価した。
  GOOD:不めっきなし
  BAD :不めっきあり
 耐パウダリング性は、プレスを行った際、パウダリングが発生したかどうかで評価した。
  GOOD:パウダリング発生なし
  BAD :パウダリング発生あり
 不めっきがある例については、十分なめっき層の密着性が得られなかった。
 測定した引張特性、耐遅れ破壊特性、めっき性及びめっき層中のFe%を表3-1~表3-4に示す。本発明の鋼板はいずれも980MPa以上の高強度を有し、耐遅れ破壊特性及びめっき性(不めっき、耐パウダリング性)に優れていることがわかる。
 一方いずれかの条件が、本発明の範囲を外れた例では、引張強度、耐遅れ破壊特性、めっき性(不めっき、耐パウダリング性)の少なくとも1つが劣っている。
 なお、冷間圧延率を90%以上とした例では、板が途中で破断し通板できなかった。また、冷間圧延率を30%未満とした例では、板形状が不安定であり、通板時にトラブルが発生したため、通板を中止した。いずれも鋼板の評価ができなかったため、表には示していない。
 また、表1における成分の残部は、Fe及び不可避的不純物をいい、「‐」は、検出されなかったことを示している。更に表中における下線は、本発明の範囲外であることを示している。表2、3中の「*1」、「*2」、「*3」、「*4」は、表3-1の下部に示す通りである。また、表中のGIは、溶融亜鉛めっき層を備える溶融亜鉛めっき鋼板、GAが、合金化溶融亜鉛めっき層を備える溶融亜鉛めっき鋼板、すなわち合金化溶融亜鉛めっき鋼板を示している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 本発明は、自動車用の構造用部材、補強用部材、足廻り用部材に好適な、引張最大強度980MPa以上を有する耐遅れ破壊特性に優れた高強度溶融亜鉛めっき鋼板を安価に提供するものである。そのため、自動車の軽量化に大きく貢献することが期待でき、産業上の効果は極めて高い。

Claims (10)

  1.  鋼板と、
     前記鋼板の表面上のめっき層と、
    を備え、
     前記鋼板が、質量%で、
    C:0.05~0.40%未満、
    Si:0.5~3.0%、
    Mn:1.5~3.0%、
    を含有し、
    O:0.006%以下、
    P:0.04%以下、
    S:0.01%以下、
    Al:2.0%以下、
    N:0.01%以下
    に制限し、残部がFe及び不可避的不純物からなり、
     ミクロ組織が、体積分率で、マルテンサイト及びベイナイトの1種又は2種を合計で20%以上99%以下含有し;
     残部組織がフェライトと、体積分率8%未満の残留オーステナイト及び体積分率10%以下のパーライトの1種または2種とから成り、
     引張強度980MPa以上を有し、
     前記めっき層が、Si、Mn又はAlの1種又は2種以上を含む酸化物を含有し、Feを15質量%以下を含有し、残部がZn、Alおよび不可避的不純物からなる溶融亜鉛めっき層であり、
     前記鋼板と前記溶融亜鉛めっき層とを含む板厚方向断面で見た場合に、前記酸化物を前記溶融亜鉛めっき層と前記鋼板との界面に投影した長さを前記溶融亜鉛めっき層と前記鋼板との界面の長さで除して得られる面積率である投影面積率が10%以上90%以下である
    ことを特徴とする溶融亜鉛めっき鋼板。
  2.  鋼板と、
     前記鋼板の表面上のめっき層と、
    を備え、
     前記鋼板が、質量%で、
    C:0.05~0.40%未満、
    Si:0.5~3.0%、
    Mn:1.5~3.0%、
    を含有し、
    O:0.006%以下、
    P:0.04%以下、
    S:0.01%以下、
    Al:2.0%以下、
    N:0.01%以下
    に制限し、残部がFe及び不可避的不純物からなり、
     ミクロ組織が、体積分率で、マルテンサイト及びベイナイトの1種又は2種を合計で20%以上99%以下含有し;
     残部組織がフェライトと、体積分率8%未満の残留オーステナイト及び体積分率10%以下のパーライトの1種または2種とから成り、
     引張強度980MPa以上を有し、
     前記めっき層が、Si、Mn又はAlの1種又は2種以上を含む酸化物を含有し、Feを7質量%以上15質量%以下含有し、残部がZn、Alおよび不可避的不純物からなる合金化溶融亜鉛めっき層であり、
     前記鋼板と前記合金化溶融亜鉛めっき層とを含む板厚方向断面で見た場合に、前記酸化物を前記合金化溶融亜鉛めっき層と前記鋼板との界面に投影した長さを前記合金化溶融亜鉛めっき層と前記鋼板との界面の長さで除して得られる面積率である投影面積率が10%以上90%以下である
    ことを特徴とする溶融亜鉛めっき鋼板。
  3.  前記ミクロ組織が、体積分率で、
     前記フェライトを40%以上80%以下含有する;
    ことを特徴とする請求項1または2に記載の溶融亜鉛めっき鋼板。
  4.  前記ミクロ組織が、体積分率で、
     マルテンサイト及びベイナイトの1種又は2種を60%超含有する
    ことを特徴とする請求項1または2に記載の溶融亜鉛めっき鋼板。
  5. さらに、前記鋼板が、質量%で
    Cr:0.05~1.0%、
    Mo:0.01~1.0%、
    Ni:0.05~1.0%、
    Cu:0.05~1.0%、
    Nb:0.005~0.3%、
    Ti:0.005~0.3%、
    V:0.005~0.5%、
    B:0.0001~0.01%、
    Ca:0.0005~0.04%、
    Mg:0.0005~0.04%、
    REM:0.0005~0.04%、
    の1種又は2種以上を含有することを特徴とする請求項1または2に記載の引張溶融亜鉛めっき鋼板。
  6. 請求項1に記載の化学成分からなる溶鋼を、鋳造して鋼を製造し;
     前記鋼を、直接または一旦冷却した後、1100℃以上1300℃未満の第1の温度範囲に加熱し;
     前記鋼を、Ar3変態点以上で熱間圧延を完了し;
     前記鋼を、300℃以上700℃以下の第2の温度範囲にて巻き取り;
     前記鋼を、酸洗し;
     前記鋼を、ロール径が200mm以上1400mm以下のワークロールを有する冷延機にて累積圧下率40~80%で冷間圧延し;
     前記鋼を、連続溶融亜鉛めっきラインを通板するに際し、焼鈍温度までの加熱中に、550~750℃の第3の温度範囲に20秒以上2000秒以下滞留させ;
     前記鋼を、H濃度が20%以下、かつ露点が-20℃以上のN雰囲気下で、750℃以上かつ900℃以下の第4の温度範囲で10秒以上1000秒以下保持して焼鈍し;
     前記鋼を1℃/秒以上200℃/秒以下の平均冷却速度で500~750℃の第5の温度範囲まで冷却する第1の冷却を行い;
     前記鋼を1℃/秒以上200℃/秒以下、かつ前記第1の冷却の前記平均冷却速度よりも早い平均冷却速度で、亜鉛めっき浴温度-40℃~亜鉛めっき浴温度+50℃の第6の温度範囲まで冷却する第2の冷却を行い;
     前記鋼を、溶融亜鉛めっき浴に浸漬する温度であるめっき浴浸漬板温度を前記第6の温度範囲として、流速10m/min以上50m/min以下で流動する前記溶融亜鉛めっき浴に浸漬して亜鉛めっきし;
     前記鋼を、40℃以下まで冷却する;
    ことを特徴とする溶融亜鉛めっき鋼板の製造方法。
  7. 請求項2に記載の化学成分からなる溶鋼を、鋳造して鋼を製造し;
     前記鋼を、直接または一旦冷却した後、1100℃以上1300℃未満の第7の温度範囲に加熱し;
     前記鋼を、Ar3変態点以上で熱間圧延を完了し;
     前記鋼を、300℃以上700℃以下の第8の温度範囲にて巻き取り;
     前記鋼を、酸洗し;
     前記鋼を、ロール径が200mm以上1400mm以下のワークロールを有する冷延機にて累積圧下率40~80%で冷間圧延し;
     前記鋼を、連続溶融亜鉛めっきラインを通板するに際し、焼鈍温度までの加熱中に、550~750℃の第9の温度範囲に20秒以上2000秒以下滞留させ;
     前記鋼を、H濃度が20%以下、かつ露点が-20℃以上のN雰囲気下で、750℃以上かつ900℃以下の第10の温度範囲で10秒以上1000秒以下保持して焼鈍し;
     前記鋼を1℃/秒以上200℃/秒の平均冷却速度で500~750℃の第11の温度範囲まで冷却する第3の冷却を行い;
     前記鋼を1℃/秒以上200℃/秒以下、かつ前記第3の冷却の前記平均冷却速度よりも早い平均冷却速度で、500℃~25℃の第12の温度範囲まで冷却する第4の冷却を行い;
     前記第4の冷却における冷却停止温度が350℃未満であった場合には、前記鋼を、350℃以上500℃以下の第13の温度範囲に再加熱し;
     前記鋼を、前記第13の温度範囲で滞留させ;
     前記鋼を、溶融亜鉛めっき浴に浸漬する温度であるめっき浴浸漬板温度を亜鉛めっき浴温度-40℃~亜鉛めっき浴温度+50℃の第14の温度範囲として、流速10m/min以上50m/min以下で流動する溶融亜鉛めっき浴に浸漬して、亜鉛めっきし;
     前記鋼に対して600℃以下の第15の温度範囲で合金化処理を行い;
     前記鋼を、40℃以下まで冷却する;
     ことを特徴とする溶融亜鉛めっき鋼板の製造方法。
  8.  840℃未満の温度で、前記焼鈍を行うことを特徴とする請求項6または7に記載の溶融亜鉛めっき鋼板の製造方法。
  9.  840℃以上の温度で、前記焼鈍を行うことを特徴とする請求項6または7に記載の溶融亜鉛めっき鋼板の製造方法。
  10. さらに、前記溶鋼が、質量%で
    Cr:0.05~1.0%、
    Mo:0.01~1.0%、
    Ni:0.05~1.0%、
    Cu:0.05~1.0%、
    Nb:0.005~0.3%、
    Ti:0.005~0.3%、
    V:0.005~0.5%、
    B:0.0001~0.01%、
    Ca:0.0005~0.04%、
    Mg:0.0005~0.04%、
    REM:0.0005~0.04%、
    の1種又は2種以上を含有することを特徴とする請求項6または7に記載の溶融亜鉛めっき鋼板の製造方法。
PCT/JP2012/075215 2011-09-30 2012-09-28 溶融亜鉛めっき鋼板及びその製造方法 WO2013047820A1 (ja)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP2013512901A JP5569647B2 (ja) 2011-09-30 2012-09-28 溶融亜鉛めっき鋼板及びその製造方法
BR112014007500A BR112014007500A2 (pt) 2011-09-30 2012-09-28 folha de aço galvanizada por imersão a quente e método de fabricação da mesma
KR1020147008479A KR20140068122A (ko) 2011-09-30 2012-09-28 용융 아연 도금 강판 및 그 제조 방법
EP12834953.7A EP2762600B1 (en) 2011-09-30 2012-09-28 Hot-dip galvanized steel sheet and process for producing same
ES12834953T ES2732799T3 (es) 2011-09-30 2012-09-28 Chapa de acero galvanizada por inmersión en caliente y método de fabricación de la misma
US14/347,067 US10407760B2 (en) 2011-09-30 2012-09-28 Hot-dip galvanized steel sheet and manufacturing method thereof
RU2014113075/02A RU2566131C1 (ru) 2011-09-30 2012-09-28 Гальванизированный горячим способом стальной лист и способ его изготовления
CN201280047125.9A CN103827341B (zh) 2011-09-30 2012-09-28 热浸镀锌钢板及其制造方法
KR1020167016215A KR101951081B1 (ko) 2011-09-30 2012-09-28 용융 아연 도금 강판 및 그 제조 방법
MX2014003716A MX2014003716A (es) 2011-09-30 2012-09-28 Plancha de acero galvanizado por inmersion en caliente y proceso para producirla.
CA2850044A CA2850044C (en) 2011-09-30 2012-09-28 Hot-dip galvanized steel sheet and manufacturing method thereof
PL12834953T PL2762600T3 (pl) 2011-09-30 2012-09-28 Blacha stalowa cienka cynkowana zanurzeniowo na gorąco oraz sposób jej wytwarzania
KR1020167016218A KR101935112B1 (ko) 2011-09-30 2012-09-28 용융 아연 도금 강판 및 그 제조 방법
ZA2014/02259A ZA201402259B (en) 2011-09-30 2014-03-26 Hot-dip galvanized steel sheet and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011217108 2011-09-30
JP2011-218046 2011-09-30
JP2011-217108 2011-09-30
JP2011218046 2011-09-30

Publications (1)

Publication Number Publication Date
WO2013047820A1 true WO2013047820A1 (ja) 2013-04-04

Family

ID=47995843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075215 WO2013047820A1 (ja) 2011-09-30 2012-09-28 溶融亜鉛めっき鋼板及びその製造方法

Country Status (14)

Country Link
US (1) US10407760B2 (ja)
EP (1) EP2762600B1 (ja)
JP (1) JP5569647B2 (ja)
KR (3) KR101935112B1 (ja)
CN (1) CN103827341B (ja)
BR (1) BR112014007500A2 (ja)
CA (1) CA2850044C (ja)
ES (1) ES2732799T3 (ja)
MX (1) MX2014003716A (ja)
PL (1) PL2762600T3 (ja)
RU (1) RU2566131C1 (ja)
TW (1) TWI500780B (ja)
WO (1) WO2013047820A1 (ja)
ZA (1) ZA201402259B (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014237887A (ja) * 2013-05-08 2014-12-18 株式会社神戸製鋼所 引張強度が1180MPa以上の強度−曲げ性バランスに優れた溶融亜鉛めっき鋼板もしくは合金化溶融亜鉛めっき鋼板
WO2015015738A1 (ja) * 2013-08-02 2015-02-05 Jfeスチール株式会社 高強度高ヤング率鋼板およびその製造方法
WO2015015739A1 (ja) * 2013-08-02 2015-02-05 Jfeスチール株式会社 高強度高ヤング率鋼板およびその製造方法
JP2016191106A (ja) * 2015-03-31 2016-11-10 株式会社神戸製鋼所 切断端面の耐遅れ破壊性に優れた高強度鋼板およびその製造方法
JP2017053009A (ja) * 2015-09-10 2017-03-16 新日鐵住金株式会社 伸びと穴広げ性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
WO2017057570A1 (ja) * 2015-10-02 2017-04-06 株式会社神戸製鋼所 熱間プレス用亜鉛めっき鋼板および熱間プレス成形品の製造方法
JP2017075394A (ja) * 2015-10-16 2017-04-20 株式会社神戸製鋼所 高強度溶融亜鉛めっき鋼板及び高強度溶融亜鉛めっき鋼板の製造方法
JP2017115205A (ja) * 2015-12-24 2017-06-29 日新製鋼株式会社 めっき密着性に優れた溶融Zn−Al−Mg合金めっき鋼板の製造方法
KR101767818B1 (ko) 2016-03-08 2017-08-11 주식회사 포스코 소부경화성 및 내시효성이 우수한 용융 아연계 도금강판 및 그 제조방법
WO2018124157A1 (ja) * 2016-12-27 2018-07-05 Jfeスチール株式会社 高強度亜鉛めっき鋼板及びその製造方法
WO2018138898A1 (ja) * 2017-01-30 2018-08-02 新日鐵住金株式会社 鋼板
KR20180126580A (ko) * 2016-06-28 2018-11-27 바오샨 아이론 앤 스틸 유한공사 저밀도 용융 아연도금 강철 및 이의 제조 방법
JP2019504196A (ja) * 2015-12-15 2019-02-14 ポスコPosco 表面品質及びスポット溶接性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
JP2021507992A (ja) * 2017-12-22 2021-02-25 ポスコPosco 加工性に優れた高強度鋼板及びその製造方法
JPWO2020262652A1 (ja) * 2019-06-28 2021-12-23 日本製鉄株式会社 鋼板
WO2022138395A1 (ja) * 2020-12-24 2022-06-30 Jfeスチール株式会社 溶融亜鉛めっき鋼板およびその製造方法
WO2023026468A1 (ja) 2021-08-27 2023-03-02 日本製鉄株式会社 鋼板およびプレス成形品

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5569647B2 (ja) * 2011-09-30 2014-08-13 新日鐵住金株式会社 溶融亜鉛めっき鋼板及びその製造方法
JP5821912B2 (ja) 2013-08-09 2015-11-24 Jfeスチール株式会社 高強度冷延鋼板およびその製造方法
KR101909356B1 (ko) 2013-12-11 2018-10-17 아르셀러미탈 지연 파괴 저항을 갖는 마텐자이트 강 및 제조 방법
WO2015185956A1 (en) * 2014-06-06 2015-12-10 ArcelorMittal Investigación y Desarrollo, S.L. High strength multiphase galvanized steel sheet, production method and use
ES2777835T3 (es) 2014-07-03 2020-08-06 Arcelormittal Procedimiento para producir una lámina de acero de ultra alta resistencia no recubierta y una lámina obtenida
MX2017005507A (es) * 2014-11-05 2017-06-20 Nippon Steel & Sumitomo Metal Corp Hoja de acero galvanizad por inmersion en caliente.
US10822683B2 (en) 2014-11-05 2020-11-03 Nippon Steel Corporation Hot-dip galvanized steel sheet
CN107109554B (zh) 2014-11-05 2018-11-09 新日铁住金株式会社 热浸镀锌钢板
CN107148488B (zh) * 2015-01-07 2020-02-07 Posco公司 拉伸强度为1300Mpa以上的超高强度镀覆钢板及其制造方法
JP6082451B2 (ja) * 2015-03-18 2017-02-15 株式会社神戸製鋼所 熱間プレス用鋼板およびその製造方法
JP6187710B2 (ja) * 2015-06-11 2017-08-30 新日鐵住金株式会社 合金化溶融亜鉛めっき鋼板およびその製造方法
KR102057946B1 (ko) 2015-07-13 2019-12-20 닛폰세이테츠 가부시키가이샤 강판, 용융 아연 도금 강판 및 합금화 용융 아연 도금 강판, 그리고 그들의 제조 방법
TWI551695B (zh) * 2015-07-13 2016-10-01 新日鐵住金股份有限公司 鋼板、熔融鍍鋅鋼板及合金化熔融鍍鋅鋼板以及其等之製造方法
MX2018000328A (es) 2015-07-13 2018-03-14 Nippon Steel & Sumitomo Metal Corp Lamina de acero, lamina de acero galvanizado por inmersion en caliente, lamina de acero galvanorecocido, y metodos de fabricacion para lo mismo.
JP6164280B2 (ja) 2015-12-22 2017-07-19 Jfeスチール株式会社 表面外観および曲げ性に優れるMn含有合金化溶融亜鉛めっき鋼板およびその製造方法
BR112018013051B1 (pt) 2015-12-29 2021-01-26 Arcelormittal método para produzir uma chapa de aço recozida após galvanização e chapa de aço recozida após galvanização
EP3409808B1 (en) * 2016-01-27 2020-03-04 JFE Steel Corporation High-yield ratio high-strength galvanized steel sheet, and method for producing same
KR102557715B1 (ko) 2016-05-10 2023-07-20 유나이테드 스테이츠 스틸 코포레이션 고강도 철강 제품 및 이의 제조를 위한 소둔 공정
US11560606B2 (en) 2016-05-10 2023-01-24 United States Steel Corporation Methods of producing continuously cast hot rolled high strength steel sheet products
CN105925887B (zh) * 2016-06-21 2018-01-30 宝山钢铁股份有限公司 一种980MPa级热轧铁素体贝氏体双相钢及其制造方法
EP3438307A4 (en) * 2016-07-15 2019-08-28 Nippon Steel Corporation HOT GALVANIZED STEEL SHEET
TWI613300B (zh) * 2016-09-06 2018-02-01 新日鐵住金股份有限公司 高強度冷軋鋼板
US10907235B2 (en) * 2016-09-13 2021-02-02 Nippon Steel Corporation Steel sheet
US11021776B2 (en) 2016-11-04 2021-06-01 Nucor Corporation Method of manufacture of multiphase, hot-rolled ultra-high strength steel
US10968502B2 (en) 2016-11-04 2021-04-06 Nucor Corporation Method of manufacture of multiphase, cold-rolled ultra-high strength steel
KR101889181B1 (ko) 2016-12-19 2018-08-16 주식회사 포스코 굽힘성 및 신장플랜지성이 우수한 고장력강 및 이의 제조방법
BR112019005890A2 (pt) * 2017-01-25 2019-06-11 Nippon Steel & Sumitomo Metal Corp chapa de aço
KR20190044669A (ko) * 2017-01-31 2019-04-30 닛폰세이테츠 가부시키가이샤 강판
MX2019009513A (es) * 2017-02-10 2019-11-05 Jfe Steel Corp Lamina de acero galvanizada de alta resistencia y metodo para producir la misma.
CN107287542A (zh) * 2017-05-18 2017-10-24 当涂县宏宇金属炉料有限责任公司 一种加强热浸镀锌钢板防腐蚀性能的处理工艺
DE102017218704A1 (de) * 2017-10-19 2019-04-25 Thyssenkrupp Ag Verfahren zur Herstellung eines mit einem metallischen, vor Korrosion schützenden Überzug versehenen Stahlbauteils
WO2019092467A1 (en) * 2017-11-08 2019-05-16 Arcelormittal A galvannealed steel sheet
WO2019092468A1 (en) * 2017-11-08 2019-05-16 Arcelormittal A hot-dip coated steel sheet
BR112020008962A2 (pt) 2017-11-15 2020-10-13 Nippon Steel Corporation chapa de aço laminada a frio de alta resistência
WO2019122965A1 (en) * 2017-12-19 2019-06-27 Arcelormittal Cold rolled and coated steel sheet and a method of manufacturing thereof
KR102031454B1 (ko) 2017-12-24 2019-10-11 주식회사 포스코 저온 밀착성과 가공성이 우수한 용융아연도금강판 및 그 제조방법
WO2019130713A1 (ja) 2017-12-27 2019-07-04 Jfeスチール株式会社 高強度鋼板およびその製造方法
MX2020010279A (es) 2018-03-30 2020-10-28 Jfe Steel Corp Lamina de acero galvanizada de alta resistencia, miembro de alta resistencia, y metodo para la fabricacion de los mismos.
WO2019186997A1 (ja) * 2018-03-30 2019-10-03 日本製鉄株式会社 鋼板およびその製造方法
WO2019194251A1 (ja) * 2018-04-03 2019-10-10 日本製鉄株式会社 鋼板及び鋼板の製造方法
WO2020058748A1 (en) 2018-09-20 2020-03-26 Arcelormittal Cold rolled and coated steel sheet and a method of manufacturing thereof
WO2020065381A1 (en) * 2018-09-28 2020-04-02 Arcelormittal Hot rolled steel sheet and a method of manufacturing thereof
KR102222614B1 (ko) * 2018-11-27 2021-03-05 주식회사 포스코 수소취성 저항성이 우수한 초고강도 냉연강판 및 그 제조 방법
JP2021014605A (ja) * 2019-07-10 2021-02-12 株式会社神戸製鋼所 溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板の製造方法
CN110564928A (zh) * 2019-10-18 2019-12-13 山东钢铁集团日照有限公司 一种生产不同屈服强度级别热镀锌dp980钢的方法
KR102321301B1 (ko) * 2019-12-09 2021-11-02 주식회사 포스코 내해수성이 우수한 구조용 강판 및 이의 제조방법
US20230071793A1 (en) * 2020-02-13 2023-03-09 Jfe Steel Corporation High-strength steel sheet and method for manufacturing the same
CN112267069B (zh) * 2020-09-30 2022-03-29 江苏省沙钢钢铁研究院有限公司 2100MPa级镀锌钢丝用盘条及其制造方法
CN114107818B (zh) * 2021-11-19 2023-03-28 本钢板材股份有限公司 一种1000MPa级热镀锌双相钢及其生产方法
CN114875336A (zh) * 2022-05-31 2022-08-09 山东钢铁集团日照有限公司 一种增塑性热镀锌复相钢的生产调控方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59219473A (ja) 1983-05-26 1984-12-10 Nippon Steel Corp カラ−エツチング液及びエツチング方法
JPH11293383A (ja) 1998-04-09 1999-10-26 Nippon Steel Corp 水素性欠陥の少ない厚鋼板およびその製造方法
JP2002018531A (ja) 2000-07-06 2002-01-22 Sumitomo Metal Ind Ltd 金属板の熱間プレス成形方法
JP2007270176A (ja) * 2006-03-30 2007-10-18 Nippon Steel Corp 表面外観及びめっき密着性に優れた合金化溶融亜鉛めっき鋼板
JP2009209451A (ja) * 2008-02-08 2009-09-17 Jfe Steel Corp 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP2010106323A (ja) * 2008-10-30 2010-05-13 Kobe Steel Ltd 加工性に優れた高降伏比高強度溶融亜鉛めっき鋼板とその製造方法
WO2011065591A1 (ja) * 2009-11-30 2011-06-03 新日本製鐵株式会社 耐水素脆化特性に優れた引張最大強度900MPa以上の高強度鋼板及びその製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1504134B1 (en) * 2001-06-06 2007-05-16 Nippon Steel Corporation High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance, corrosion resistance, ductility and plating adhesion, after severe deformation, and a method of producing the same
KR100748736B1 (ko) 2003-03-31 2007-08-13 신닛뽄세이테쯔 카부시키카이샤 합금화 용융 아연 도금 강판 및 그 제조 방법
KR20070122581A (ko) 2003-04-10 2007-12-31 신닛뽄세이테쯔 카부시키카이샤 고강도 용융 아연 도금 강판 및 그 제조 방법
JP4192051B2 (ja) * 2003-08-19 2008-12-03 新日本製鐵株式会社 高強度合金化溶融亜鉛めっき鋼板の製造方法と製造設備
PL1980638T3 (pl) * 2006-01-30 2014-03-31 Nippon Steel & Sumitomo Metal Corp Wysokowytrzymała blacha cynkowana ogniowo o doskonałej podatności na formowanie i nadająca się do platerowania, wysokowytrzymała stopowa blacha cynkowana ogniowo oraz procesy i urządzenie do ich wytwarzania
JP4837459B2 (ja) 2006-06-30 2011-12-14 新日本製鐵株式会社 外観が良好な耐食性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
JP4411326B2 (ja) 2007-01-29 2010-02-10 株式会社神戸製鋼所 リン酸塩処理性に優れた高強度合金化溶融亜鉛めっき鋼板
JP5369663B2 (ja) * 2008-01-31 2013-12-18 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP5402007B2 (ja) * 2008-02-08 2014-01-29 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
ES2547280T3 (es) * 2009-03-03 2015-10-02 Hexagon Technology As Disparador en aleación con memoria de forma para válvula de alivio de la presión
JP4737319B2 (ja) * 2009-06-17 2011-07-27 Jfeスチール株式会社 加工性および耐疲労特性に優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法
JP5435340B2 (ja) * 2009-07-17 2014-03-05 富士ゼロックス株式会社 蓋装置および画像形成装置
US20110019800A1 (en) * 2009-07-24 2011-01-27 Martin Spahn X-ray detector for recording x-ray images and x-ray recording system
JP5499663B2 (ja) * 2009-11-30 2014-05-21 新日鐵住金株式会社 機械切断特性に優れた引張最大強度900MPa以上の高強度冷延鋼板及びその製造方法、並びに、高強度亜鉛めっき鋼板及びその製造方法
PL2524972T3 (pl) * 2010-01-13 2017-06-30 Nippon Steel & Sumitomo Metal Corporation Sposób wytwarzania blachy stalowej grubej o dużej wytrzymałości i doskonałej odkształcalności
JP5569647B2 (ja) * 2011-09-30 2014-08-13 新日鐵住金株式会社 溶融亜鉛めっき鋼板及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59219473A (ja) 1983-05-26 1984-12-10 Nippon Steel Corp カラ−エツチング液及びエツチング方法
JPH11293383A (ja) 1998-04-09 1999-10-26 Nippon Steel Corp 水素性欠陥の少ない厚鋼板およびその製造方法
JP2002018531A (ja) 2000-07-06 2002-01-22 Sumitomo Metal Ind Ltd 金属板の熱間プレス成形方法
JP2007270176A (ja) * 2006-03-30 2007-10-18 Nippon Steel Corp 表面外観及びめっき密着性に優れた合金化溶融亜鉛めっき鋼板
JP2009209451A (ja) * 2008-02-08 2009-09-17 Jfe Steel Corp 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP2010106323A (ja) * 2008-10-30 2010-05-13 Kobe Steel Ltd 加工性に優れた高降伏比高強度溶融亜鉛めっき鋼板とその製造方法
WO2011065591A1 (ja) * 2009-11-30 2011-06-03 新日本製鐵株式会社 耐水素脆化特性に優れた引張最大強度900MPa以上の高強度鋼板及びその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"New developments in delayed fracture clarification, The Iron and Steel Institute of Japan", January 1997
MATERIA, JAPAN INSTITUTE OF METALS BULLETIN, vol. 44, no. 3, 2005, pages 254 - 256
YAMAZAKI ET AL.: "CAMP-ISIJ", vol. 5, October 1992, THE IRON AND STEEL INSTITUTE OF JAPAN, pages: 1839 - 1842

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014237887A (ja) * 2013-05-08 2014-12-18 株式会社神戸製鋼所 引張強度が1180MPa以上の強度−曲げ性バランスに優れた溶融亜鉛めっき鋼板もしくは合金化溶融亜鉛めっき鋼板
JPWO2015015739A1 (ja) * 2013-08-02 2017-03-02 Jfeスチール株式会社 高強度高ヤング率鋼板およびその製造方法
CN105452509A (zh) * 2013-08-02 2016-03-30 杰富意钢铁株式会社 高强度高杨氏模量钢板及其制造方法
US10563279B2 (en) 2013-08-02 2020-02-18 Jfe Steel Corporation High strength steel sheet having high Young's modulus and method for manufacturing the same
JP5800098B2 (ja) * 2013-08-02 2015-10-28 Jfeスチール株式会社 高強度高ヤング率鋼板およびその製造方法
WO2015015738A1 (ja) * 2013-08-02 2015-02-05 Jfeスチール株式会社 高強度高ヤング率鋼板およびその製造方法
CN105473749A (zh) * 2013-08-02 2016-04-06 杰富意钢铁株式会社 高强度高杨氏模量钢板及其制造方法
KR101753511B1 (ko) * 2013-08-02 2017-07-19 제이에프이 스틸 가부시키가이샤 고강도 고영률 강판 및 그 제조 방법
KR101753510B1 (ko) * 2013-08-02 2017-07-04 제이에프이 스틸 가부시키가이샤 고강도 고영률 강판 및 그 제조 방법
JP5737485B1 (ja) * 2013-08-02 2015-06-17 Jfeスチール株式会社 高強度高ヤング率鋼板およびその製造方法
WO2015015739A1 (ja) * 2013-08-02 2015-02-05 Jfeスチール株式会社 高強度高ヤング率鋼板およびその製造方法
US10385431B2 (en) 2013-08-02 2019-08-20 Jfe Steel Corporation High strength steel sheet having high young's modulus and method for manufacturing the same
US11085100B2 (en) 2013-08-02 2021-08-10 Jfe Steel Corporation High strength steel sheet having high Young's modulus and method for manufacturing the same
JP2016191106A (ja) * 2015-03-31 2016-11-10 株式会社神戸製鋼所 切断端面の耐遅れ破壊性に優れた高強度鋼板およびその製造方法
JP2017053009A (ja) * 2015-09-10 2017-03-16 新日鐵住金株式会社 伸びと穴広げ性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
WO2017057570A1 (ja) * 2015-10-02 2017-04-06 株式会社神戸製鋼所 熱間プレス用亜鉛めっき鋼板および熱間プレス成形品の製造方法
CN108138282A (zh) * 2015-10-02 2018-06-08 株式会社神户制钢所 热压用镀锌钢板和热压成形品的制造方法
JP2017075394A (ja) * 2015-10-16 2017-04-20 株式会社神戸製鋼所 高強度溶融亜鉛めっき鋼板及び高強度溶融亜鉛めっき鋼板の製造方法
US10900097B2 (en) 2015-12-15 2021-01-26 Posco High-strength hot-dip galvanized steel sheet having excellent surface quality and spot weldability
JP2019504196A (ja) * 2015-12-15 2019-02-14 ポスコPosco 表面品質及びスポット溶接性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
JP2017115205A (ja) * 2015-12-24 2017-06-29 日新製鋼株式会社 めっき密着性に優れた溶融Zn−Al−Mg合金めっき鋼板の製造方法
KR101767818B1 (ko) 2016-03-08 2017-08-11 주식회사 포스코 소부경화성 및 내시효성이 우수한 용융 아연계 도금강판 및 그 제조방법
KR102189791B1 (ko) * 2016-06-28 2020-12-11 바오샨 아이론 앤 스틸 유한공사 저밀도 용융 아연도금 강철 및 이의 제조 방법
JP2019521257A (ja) * 2016-06-28 2019-07-25 宝山鋼鉄股▲ふん▼有限公司Baoshan Iron & Steel Co.,Ltd. 低密度溶融亜鉛めっき鋼及びその製造方法
KR20180126580A (ko) * 2016-06-28 2018-11-27 바오샨 아이론 앤 스틸 유한공사 저밀도 용융 아연도금 강철 및 이의 제조 방법
CN110121568A (zh) * 2016-12-27 2019-08-13 杰富意钢铁株式会社 高强度镀锌钢板及其制造方法
WO2018124157A1 (ja) * 2016-12-27 2018-07-05 Jfeスチール株式会社 高強度亜鉛めっき鋼板及びその製造方法
US11377708B2 (en) 2016-12-27 2022-07-05 Jfe Steel Corporation High-strength galvanized steel sheet and method for producing the same
JPWO2018124157A1 (ja) * 2016-12-27 2018-12-27 Jfeスチール株式会社 高強度亜鉛めっき鋼板及びその製造方法
JP6439900B2 (ja) * 2016-12-27 2018-12-19 Jfeスチール株式会社 高強度亜鉛めっき鋼板及びその製造方法
JPWO2018138898A1 (ja) * 2017-01-30 2019-07-18 日本製鉄株式会社 鋼板
WO2018138898A1 (ja) * 2017-01-30 2018-08-02 新日鐵住金株式会社 鋼板
US10895002B2 (en) 2017-01-30 2021-01-19 Nippon Steel Corporation Steel sheet
JP2021507992A (ja) * 2017-12-22 2021-02-25 ポスコPosco 加工性に優れた高強度鋼板及びその製造方法
JP7150022B2 (ja) 2017-12-22 2022-10-07 ポスコ 加工性に優れた高強度鋼板及びその製造方法
US11519051B2 (en) 2017-12-22 2022-12-06 Posco Co., Ltd High-strength steel sheet having excellent processability and method for manufacturing same
US11827950B2 (en) 2017-12-22 2023-11-28 Posco Co., Ltd Method of manufacturing high-strength steel sheet having excellent processability
JPWO2020262652A1 (ja) * 2019-06-28 2021-12-23 日本製鉄株式会社 鋼板
JP7160199B2 (ja) 2019-06-28 2022-10-25 日本製鉄株式会社 鋼板
WO2022138395A1 (ja) * 2020-12-24 2022-06-30 Jfeスチール株式会社 溶融亜鉛めっき鋼板およびその製造方法
JP7111279B1 (ja) * 2020-12-24 2022-08-02 Jfeスチール株式会社 溶融亜鉛めっき鋼板およびその製造方法
WO2023026468A1 (ja) 2021-08-27 2023-03-02 日本製鉄株式会社 鋼板およびプレス成形品
KR20240037287A (ko) 2021-08-27 2024-03-21 닛폰세이테츠 가부시키가이샤 강판 및 프레스 성형품

Also Published As

Publication number Publication date
CA2850044C (en) 2016-08-23
JPWO2013047820A1 (ja) 2015-03-30
US10407760B2 (en) 2019-09-10
TWI500780B (zh) 2015-09-21
CN103827341A (zh) 2014-05-28
JP5569647B2 (ja) 2014-08-13
RU2566131C1 (ru) 2015-10-20
ZA201402259B (en) 2015-04-29
KR20160075849A (ko) 2016-06-29
KR20140068122A (ko) 2014-06-05
CN103827341B (zh) 2016-08-31
MX2014003716A (es) 2014-06-23
KR101935112B1 (ko) 2019-01-03
EP2762600A1 (en) 2014-08-06
KR20160075850A (ko) 2016-06-29
KR101951081B1 (ko) 2019-02-21
CA2850044A1 (en) 2013-04-04
EP2762600B1 (en) 2019-04-17
BR112014007500A2 (pt) 2017-04-04
ES2732799T3 (es) 2019-11-26
US20140234657A1 (en) 2014-08-21
TW201319268A (zh) 2013-05-16
PL2762600T3 (pl) 2019-09-30
EP2762600A4 (en) 2015-09-23

Similar Documents

Publication Publication Date Title
JP5569647B2 (ja) 溶融亜鉛めっき鋼板及びその製造方法
JP5376090B2 (ja) 亜鉛めっき鋼板及びその製造方法
JP6439900B2 (ja) 高強度亜鉛めっき鋼板及びその製造方法
JP6525114B1 (ja) 高強度亜鉛めっき鋼板およびその製造方法
US8657969B2 (en) High-strength galvanized steel sheet with excellent formability and method for manufacturing the same
JP5644095B2 (ja) 延性及び耐遅れ破壊特性の良好な引張最大強度900MPa以上を有する高強度鋼板および高強度冷延鋼板の製造方法、高強度亜鉛めっき鋼板の製造方法
JP6777173B2 (ja) スポット溶接用高強度亜鉛めっき鋼板
WO2019003539A1 (ja) 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法
JP6562180B1 (ja) 高強度鋼板およびその製造方法
WO2020136988A1 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
KR20150008112A (ko) 고강도 용융 아연 도금 강판 및 그 제조 방법
WO2017009938A1 (ja) 鋼板、溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法
JP7137492B2 (ja) 合金化溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板の製造方法
WO2017009936A1 (ja) 鋼板、溶融亜鉛めっき鋼板、及び合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013512901

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12834953

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2850044

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14347067

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/003716

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2012834953

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147008479

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014113075

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014007500

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014007500

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140327