WO2023026468A1 - 鋼板およびプレス成形品 - Google Patents
鋼板およびプレス成形品 Download PDFInfo
- Publication number
- WO2023026468A1 WO2023026468A1 PCT/JP2021/031492 JP2021031492W WO2023026468A1 WO 2023026468 A1 WO2023026468 A1 WO 2023026468A1 JP 2021031492 W JP2021031492 W JP 2021031492W WO 2023026468 A1 WO2023026468 A1 WO 2023026468A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- content
- steel sheet
- press
- mass
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 142
- 239000010959 steel Substances 0.000 title claims abstract description 142
- 239000000203 mixture Substances 0.000 claims abstract description 18
- 239000000126 substance Substances 0.000 claims abstract description 18
- 239000012535 impurity Substances 0.000 claims abstract description 13
- 238000007747 plating Methods 0.000 claims description 24
- 238000000465 moulding Methods 0.000 abstract description 11
- 239000010410 layer Substances 0.000 description 61
- 238000000137 annealing Methods 0.000 description 24
- 238000000034 method Methods 0.000 description 21
- 239000000047 product Substances 0.000 description 20
- 230000000694 effects Effects 0.000 description 17
- 230000006872 improvement Effects 0.000 description 17
- 238000005097 cold rolling Methods 0.000 description 13
- 238000005261 decarburization Methods 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 11
- 229910001297 Zn alloy Inorganic materials 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 9
- 239000000956 alloy Substances 0.000 description 9
- 238000005098 hot rolling Methods 0.000 description 9
- 229910052761 rare earth metal Inorganic materials 0.000 description 9
- 150000002910 rare earth metals Chemical class 0.000 description 9
- 238000005096 rolling process Methods 0.000 description 9
- 229910052725 zinc Inorganic materials 0.000 description 9
- 239000011701 zinc Substances 0.000 description 9
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 8
- 238000005275 alloying Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000005728 strengthening Methods 0.000 description 6
- 229910000859 α-Fe Inorganic materials 0.000 description 6
- 229910001335 Galvanized steel Inorganic materials 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 239000008397 galvanized steel Substances 0.000 description 5
- 229910052749 magnesium Inorganic materials 0.000 description 5
- 229910052748 manganese Inorganic materials 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 229910052726 zirconium Inorganic materials 0.000 description 5
- 230000001186 cumulative effect Effects 0.000 description 4
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 4
- 238000005554 pickling Methods 0.000 description 4
- 238000001953 recrystallisation Methods 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 238000007731 hot pressing Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 238000005482 strain hardening Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000001336 glow discharge atomic emission spectroscopy Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052699 polonium Inorganic materials 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 229910052713 technetium Inorganic materials 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/62—Quenching devices
- C21D1/673—Quenching devices for die quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
- C21D1/76—Adjusting the composition of the atmosphere
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0257—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
Definitions
- the present invention relates to steel sheets and press-formed products.
- panel system parts such as door outers are also being investigated for increased strength and reduced thickness.
- these panel-type parts are required to have a high appearance quality because they are visible to the public. Therefore, even high-strength steel sheets, which have been conventionally applied to frame parts, are required to have excellent appearance quality after molding when applied to panel-type parts.
- a ghost line is a fine unevenness on the order of several millimeters that occurs on the surface due to preferential deformation around the soft phase when a steel sheet having a hard phase and a soft phase is press-formed. Since the unevenness forms a striped pattern on the surface, a press-molded product with ghost lines has poor appearance quality.
- Patent Document 1 discloses a high-strength hot-dip galvanized steel sheet with excellent surface quality.
- Patent Document 2 discloses a high-strength cold-rolled steel sheet and a high-strength plated steel sheet that have a tensile strength of the surface layer of 780 MPa or more and good formability, and methods for producing these.
- Patent Document 3 discloses a high-strength automotive member capable of securing hydrogen embrittlement susceptibility due to post-processing after hot pressing without dehydrogenation in a method of forming a high-strength automotive member by hot pressing, and its A hot pressing method is disclosed.
- Patent Document 4 discloses a hot-dip galvanized steel sheet with a tensile strength (TS) of 980 MPa or more, excellent coating adhesion and delayed fracture resistance, and a method for manufacturing the same.
- TS tensile strength
- Patent document 5 discloses a hot press steel plate member that can obtain excellent collision characteristics while having high strength, a method for manufacturing the same, and a steel plate for hot press.
- Patent Document 6 discloses hot-dip galvanized steel sheets and alloyed hot-dip galvanized steel sheets having good elongation properties and bendability, and methods for producing them.
- An object of the present invention is to provide a press-formed article having high strength (specifically, tensile strength: 500 MPa or more) and excellent appearance quality, and a steel sheet from which this press-formed article can be produced.
- the gist of the present invention is as follows.
- the steel sheet according to one aspect of the present invention has a chemical composition in mass% of C: 0.040 to 0.105%, Mn: 1.00-2.30%, Si: 0.005 to 1.500%, Al: 0.005 to 0.700%, P: 0.100% or less, S: 0.0200% or less, N: 0.0150% or less, O: 0.0100% or less, Cr: 0 to 0.80%, Mo: 0-0.16%, Ti: 0 to 0.100%, B: 0 to 0.0100%, Nb: 0 to 0.060%, V: 0 to 0.50%, Ni: 0 to 1.00%, Cu: 0 to 1.00%, W: 0 to 1.00%, Sn: 0 to 1.00%, Sb: 0 to 0.200%, Ca: 0 to 0.0100%, Mg: 0-0.0100%, Zr: 0 to 0.0100%, REM: 0-0.0100%, and the balance: Fe and im
- the steel sheet according to (1) above has the chemical composition, in mass%, Cr: 0.01 to 0.80%, Mo: 0.01-0.16%, Ti: 0.001 to 0.100%, B: 0.0001 to 0.0100%, Nb: 0.001 to 0.060%, V: 0.01 to 0.50%, Ni: 0.01 to 1.00%, Cu: 0.01 to 1.00%, W: 0.01 to 1.00%, Sn: 0.01 to 1.00%, Sb: 0.001 to 0.200%, Ca: 0.0001 to 0.0100%, Mg: 0.0001-0.0100%, Zr: 0.0001-0.0100% and REM: 0.0001-0.0100% It may contain one or more selected from the group consisting of.
- the chemical composition may be C: 0.040 to 0.080% by mass.
- the steel sheet according to any one of (1) to (3) above may have a ⁇ C of 0.30 to 0.80% by mass/mm.
- the steel sheet according to any one of (1) to (4) above may have a plating layer on at least one surface of the steel sheet.
- the steel sheet according to any one of (1) to (5) above may have a tensile strength of 500 to 750 MPa.
- the aspect of the present invention it is possible to provide a press-formed article having high strength and excellent appearance quality, and a steel sheet from which this press-formed article can be produced.
- having excellent appearance quality means that the generation of ghost lines is suppressed.
- the present inventors have found that the hardness difference in the steel can be reduced by decarburizing the surface layer of the steel sheet to form a uniform decarburized layer with a small hardness difference.
- the C content is reduced from the area near the surface and a decarburized layer is formed.
- the C concentration in the decarburized layer increases from a region near the surface of the steel sheet toward the base material side (inside the steel sheet), but the upper limit is the C content of the base material. That is, the C concentration gradient from the surface to the inside of the steel sheet depends on the decarburization conditions and the C content of the steel sheet.
- a region with a low C concentration tends to become a ferrite single phase, so the surface of the steel sheet softens relative to the interior of the steel sheet.
- the C concentration sharply increases toward the inside of the steel sheet, the difference in hardness increases, so it is thought that ghost lines occur after press forming.
- the inventors have found that by setting the C concentration gradient in the decarburized layer within a desired range, the difference in hardness within the decarburized layer can be reduced, and the occurrence of ghost lines after press forming can be suppressed.
- the steel sheet according to the present embodiment has a chemical composition in mass% of C: 0.040 to 0.105%, Mn: 1.00 to 2.30%, Si: 0.005 to 1.500%, Al : 0.005 to 0.700%, P: 0.100% or less, S: 0.0200% or less, N: 0.0150% or less, O: 0.0100% or less, and the balance: Fe and impurities contains.
- C 0.040 to 0.105%
- Mn 1.00 to 2.30%
- Si 0.005 to 1.500%
- Al 0.005 to 0.700%
- P 0.100% or less
- S 0.0200% or less
- N 0.0150% or less
- O 0.0100% or less
- Fe and impurities contains each element will be described below.
- C 0.040-0.105%
- the C content should be 0.040% or more.
- the C content is preferably 0.050% or more, more preferably 0.060% or more or 0.070% or more. Also, by setting the C content to 0.105% or less, it is possible to suppress occurrence of excessive hardness difference in the decarburized layer. As a result, generation of ghost lines after press molding can be suppressed. Therefore, the C content is made 0.105% or less.
- the C content is preferably 0.090% or less, more preferably 0.080% or less.
- Mn 1.00-2.30%
- Mn is an element that enhances the hardenability of steel and contributes to the improvement of strength.
- the Mn content should be 1.00% or more.
- the Mn content is preferably 1.05% or more or 1.10% or more, more preferably 1.20% or more, 1.30% or more or 1.40% or more.
- the Mn content is set to 2.30% or less.
- the Mn content is preferably 2.10% or less or 2.00% or less, more preferably 1.90% or less, 1.80% or less or 1.70% or less.
- Si 0.005-1.500%
- Si is an element that forms coarse Si oxides that act as starting points for destruction.
- the Si content is set to 1.500% or less.
- the Si content is preferably 1.300% or less or 1.000% or less, more preferably 0.800% or less, 0.600% or less, or 0.500% or less.
- the Si content is set to 0.005% or more in order to improve the strength-formability balance of the steel sheet.
- the Si content is preferably 0.010% or more or 0.020% or more.
- Al 0.005-0.700%
- Al is an element that functions as a deoxidizer.
- Al is also an element that embrittles steel by forming coarse oxides that serve as fracture starting points.
- the Al content is set to 0.700% or less.
- the Al content is preferably 0.650% or less, 0.400% or less, or 0.200% or less, and more preferably 0.100% or less, 0.080% or less, or 0.060% or less.
- the Al content is set to 0.005% or more in order to sufficiently obtain the deoxidizing effect of Al.
- the Al content is preferably 0.010% or more, 0.020% or more, 0.030% or more or 0.040% or more.
- P 0.100% or less
- P is an element mixed as an impurity and an element that embrittles steel.
- the P content is set to 0.100% or less.
- the P content is preferably 0.050% or less, more preferably 0.030% or less or 0.020% or less.
- the lower limit of the P content includes 0%, the production cost can be further reduced by setting the P content to 0.001% or more. Therefore, the P content may be 0.001% or more.
- S 0.0200% or less
- S is an element that is mixed as an impurity, forms Mn sulfide, and is also an element that deteriorates formability such as ductility, hole expandability, stretch flangeability and bendability of the steel sheet. If the S content is 0.0200% or less, it is possible to suppress a significant deterioration in the formability of the steel sheet. Therefore, the S content should be 0.0200% or less.
- the S content is preferably 0.0100% or less or 0.0080% or less, more preferably 0.0060% or less or 0.0040% or less. Although the lower limit of the S content includes 0%, the production cost can be further reduced by setting the S content to 0.0001% or more. Therefore, the S content may be 0.0001% or more.
- N 0.0150% or less
- N is an element that is mixed as an impurity, forms nitrides, and is also an element that deteriorates the formability of the steel sheet, such as ductility, hole expandability, stretch flangeability and bendability.
- the N content is made 0.0150% or less.
- N is also an element that causes welding defects during welding and hinders productivity. Therefore, the N content is preferably 0.0120% or less or 0.0100% or less, more preferably 0.0080% or less or 0.0060% or less.
- the lower limit of the N content includes 0%, the production cost can be further reduced by setting the N content to 0.0005% or more. Therefore, the N content may be 0.0005% or more.
- O 0.0100% or less
- O is an element that is mixed as an impurity, forms an oxide, and is also an element that impairs the formability of the steel sheet, such as ductility, hole expandability, stretch flangeability and bendability.
- the O content is set to 0.0100% or less. It is preferably 0.0080% or less or 0.0050% or less, more preferably 0.0030% or less or 0.0020% or less.
- the lower limit of the O content includes 0%, the manufacturing cost can be further reduced by making the O content 0.0001% or more. Therefore, the O content may be 0.0001% or more.
- the steel sheet according to the present embodiment may contain the following elements as optional elements instead of part of Fe.
- the content is 0% when the following optional elements are not contained.
- Cr 0-0.80% Cr is an element that increases the hardenability of steel and contributes to the improvement of the strength of the steel sheet. Since Cr does not necessarily have to be contained, the lower limit of the Cr content includes 0%. The Cr content is preferably 0.01% or more, or 0.20% or more, more preferably 0.30% or more, in order to sufficiently obtain the strength improvement effect of Cr. In addition, when the Cr content is 0.80% or less, it is possible to suppress the formation of coarse Cr carbides that may serve as starting points for fracture. Therefore, the Cr content is set to 0.80% or less. In order to reduce alloy costs, the Cr content is preferably 0.60% or less or 0.40% or less, and is 0.20% or less, 0.10% or less, or 0.06% or less. is more preferred.
- Mo 0-0.16%
- Mo is an element that suppresses phase transformation at high temperatures and contributes to improvement in strength of the steel sheet. Since Mo does not necessarily have to be contained, the lower limit of the Mo content includes 0%. The Mo content is preferably 0.01% or more, or 0.05% or more, and more preferably 0.10% or more, in order to sufficiently obtain the strength improvement effect of Mo. In addition, when the Mo content is 0.16% or less, it is possible to suppress a decrease in hot workability and a decrease in productivity. Therefore, Mo content shall be 0.16% or less. In order to reduce alloy costs, the Mo content is preferably 0.12% or less or 0.08% or less, and is 0.06% or less, 0.04% or less, or 0.02% or less. is more preferred.
- Ti is an element that has the effect of reducing the amounts of S, N, and O that generate coarse inclusions that act as starting points for fracture.
- Ti has the effect of refining the structure and improving the strength-formability balance of the steel sheet. Since Ti does not necessarily have to be contained, the lower limit of the Ti content includes 0%. In order to sufficiently obtain the above effects, the Ti content is preferably 0.001% or more, more preferably 0.010% or more. Further, when the Ti content is 0.100% or less, formation of coarse Ti sulfides, Ti nitrides and Ti oxides can be suppressed, and formability of the steel sheet can be ensured. Therefore, the Ti content is set to 0.100% or less. The Ti content is preferably 0.075% or less or 0.060% or less, more preferably 0.040% or less or 0.020% or less.
- B 0 to 0.0100%
- B is an element that suppresses phase transformation at high temperatures and contributes to improvement in strength of the steel sheet. Since B does not necessarily have to be contained, the lower limit of the B content includes 0%. In order to sufficiently obtain the strength-improving effect of B, the B content is preferably 0.0001% or more, or 0.0005% or more, and more preferably 0.0010% or more. Further, when the B content is 0.0100% or less, it is possible to suppress the formation of B precipitates and the decrease in the strength of the steel sheet. Therefore, the B content is set to 0.0100% or less. In order to reduce the alloy cost, the B content is preferably 0.0080% or less or 0.0060% or less, and is preferably 0.0040% or less, 0.0030% or less, or 0.0015% or less. more preferred.
- Nb is an element that contributes to the improvement of the strength of a steel sheet through strengthening by precipitates, grain refinement strengthening by suppressing the growth of ferrite grains, and dislocation strengthening by suppressing recrystallization. Since Nb does not necessarily have to be contained, the lower limit of the Nb content includes 0%. In order to sufficiently obtain the above effect, the Nb content is preferably 0.001% or more or 0.005% or more, more preferably 0.010% or more. Further, when the Nb content is 0.060% or less, it is possible to promote recrystallization and suppress the remaining non-recrystallized ferrite, thereby ensuring the formability of the steel sheet. Therefore, the Nb content is set to 0.060% or less. The Nb content is preferably 0.050% or less, more preferably 0.040% or less, 0.030% or less, or 0.015% or less.
- V 0-0.50%
- V is an element that contributes to the improvement of the strength of the steel sheet through strengthening by precipitates, grain refinement strengthening by suppressing the growth of ferrite grains, and dislocation strengthening by suppressing recrystallization. Since V does not necessarily have to be contained, the lower limit of the V content includes 0%. In order to sufficiently obtain the strength improvement effect of V, the V content is preferably 0.01% or more, more preferably 0.03% or more. Further, when the V content is 0.50% or less, it is possible to suppress the deterioration of the formability of the steel sheet due to the precipitation of a large amount of carbonitrides. Therefore, the V content is set to 0.50% or less. In order to reduce alloy costs, the V content is preferably 0.30% or less or 0.10% or less, and is 0.08% or less, 0.06% or less, or 0.03% or less. is more preferred.
- Ni is an element that suppresses phase transformation at high temperatures and contributes to improvement in strength of the steel sheet. Since Ni does not necessarily have to be contained, the lower limit of the Ni content includes 0%. The Ni content is preferably 0.01% or more, or 0.05% or more, more preferably 0.20% or more, in order to sufficiently obtain the strength improvement effect of Ni. Moreover, it can suppress that the weldability of a steel plate falls as Ni content is 1.00% or less. Therefore, the Ni content is set to 1.00% or less. In order to reduce alloy costs, the Ni content is preferably 0.70% or less or 0.50% or less, and is 0.30% or less, 0.15% or less, or 0.08% or less. is more preferred.
- Cu 0-1.00%
- Cu is an element that exists in steel in the form of fine particles and contributes to the improvement of the strength of the steel sheet. Since Cu does not necessarily have to be contained, the lower limit of the Cu content includes 0%.
- the Cu content is preferably 0.01% or more, or 0.05% or more, more preferably 0.15% or more, in order to sufficiently obtain the strength improvement effect of Cu. Moreover, it can suppress that the weldability of a steel plate falls that Cu content is 1.00% or less. Therefore, the Cu content is set to 1.00% or less. In order to reduce alloy costs, the Cu content is preferably 0.70% or less or 0.50% or less, and is 0.30% or less, 0.15% or less, or 0.08% or less. is more preferred.
- W 0-1.00% W is an element that suppresses phase transformation at high temperatures and contributes to improvement in strength of the steel sheet. Since W does not necessarily have to be contained, the lower limit of the W content includes 0%. In order to sufficiently obtain the strength improvement effect of W, the W content is preferably 0.01% or more, or 0.03% or more, and more preferably 0.10% or more. In addition, when the W content is 1.00% or less, it is possible to suppress a decrease in hot workability and a decrease in productivity. Therefore, the W content is set to 1.00% or less. In order to reduce alloy costs, the W content is preferably 0.70% or less or 0.50% or less, and is 0.30% or less, 0.15% or less, or 0.08% or less. is more preferred.
- Sn 0-1.00%
- Sn is an element that suppresses the coarsening of crystal grains and contributes to the improvement of the strength of the steel sheet. Since Sn does not necessarily have to be contained, the lower limit of the Sn content includes 0%. In order to sufficiently obtain the effect of Sn, the Sn content is more preferably 0.01% or more. Moreover, when the Sn content is 1.00% or less, it is possible to prevent the steel sheet from embrittlement and breakage during rolling. Therefore, the Sn content is set to 1.00% or less. In order to reduce the alloy cost, the Sn content is preferably 0.70% or less or 0.50% or less, and is 0.30% or less, 0.15% or less, or 0.08% or less. is more preferred.
- Sb 0-0.200%
- Sb is an element that suppresses the coarsening of crystal grains and contributes to the improvement of the strength of the steel sheet. Since Sb does not necessarily have to be contained, the lower limit of the Sb content includes 0%. In order to sufficiently obtain the above effects, the Sb content is preferably 0.001% or more or 0.005% or more. Moreover, when the Sb content is 0.200% or less, it is possible to prevent the steel sheet from embrittlement and breakage during rolling. Therefore, the Sb content is set to 0.200% or less. In order to reduce alloy costs, the Sb content is preferably 0.100% or less or 0.050% or less, and is 0.030% or less, 0.010% or less, or 0.005% or less. is more preferred.
- Ca, Mg, Zr, and REM are elements that contribute to improving the formability of steel sheets. Since Ca, Mg, Zr and REM do not necessarily have to be contained, the lower limit of the content of these elements includes 0%. In order to sufficiently obtain the effect of improving formability, the content of each of these elements is preferably 0.0001% or more, more preferably 0.0010% or more. Also, when the contents of Ca, Mg, Zr and REM are each 0.0100% or less, it is possible to suppress the deterioration of the ductility of the steel sheet. Therefore, the content of each of these elements is set to 0.0100% or less. It is preferably 0.0050% or less or 0.0030% or less.
- REM are Earth Metal
- the rest of the chemical composition of the steel sheet according to this embodiment may be Fe and impurities.
- impurities include those that are unavoidably mixed from steel raw materials or scraps and/or during the steelmaking process, or elements that are allowed within a range that does not impair the properties of the steel sheet according to the present embodiment.
- Impurities include H, Na, Cl, Co, Zn, Ga, Ge, As, Se, Y, Tc, Ru, Rh, Pd, Ag, Cd, In, Te, Cs, Ta, Re, Os, Ir, Pt , Au, Pb, Bi, and Po.
- the total amount of impurities may be 0.100% or less.
- the chemical composition of the steel sheet described above may be measured by a general analytical method. For example, it may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry).
- C and S can be measured using a combustion-infrared absorption method
- N can be measured using an inert gas fusion-thermal conductivity method
- O can be measured using an inert gas fusion-nondispersive infrared absorption method.
- the coating layer on the surface may be removed by mechanical grinding, and then the chemical composition may be analyzed.
- ⁇ C indicates the C concentration gradient in a region from a depth of 20 ⁇ m to a depth of 60 ⁇ m from the surface of the decarburized layer formed on the surface.
- a sharp increase in the C concentration gradient in the decarburized layer can be suppressed by setting ⁇ C to 0.20 to 0.90% by mass/mm. As a result, it is possible to suppress the occurrence of ghost lines after press molding.
- ⁇ C is set to 0.20% by mass/mm or more.
- ⁇ C exceeds 0.90% by mass/mm, the hardness difference in the decarburized layer becomes significant, making it difficult to suppress the occurrence of ghost lines.
- ⁇ C is preferably 0.30 mass %/mm or more, 0.35 mass %/mm or more, 0.40 mass %/mm or more, or 0.45 mass %/mm or more. Also, ⁇ C is preferably 0.80 mass %/mm or less or 0.75 mass %/mm or less.
- the "surface” in the "20 ⁇ m depth position from the surface” and the “region at 60 ⁇ m depth position from the surface” refers to the interface between the plating layer and the base material.
- the depth position where the Fe content is 95% by mass or more is regarded as the interface between the plating layer and the base material.
- the reason why ⁇ C is specified at a depth position of 20 ⁇ m or more from the surface is that the C concentration at a depth of less than 20 ⁇ m from the surface does not affect ghost lines.
- ⁇ C is obtained by the following method. Measure the C content (% by mass) from the surface of the steel sheet to 100 ⁇ m in the depth direction (plate thickness direction) by Glow Discharge Optical Emission Spectrometry (GDS analysis) for any three locations on the steel sheet. do. ⁇ C (% by mass/mm) is calculated from the C content (C 20 ) at a depth of 20 ⁇ m from the surface, the C content (C 60 ) at a depth of 60 ⁇ m from the surface, and the above formula (1). . ⁇ C is obtained by calculating the average value of ⁇ C at three locations. For the measurement, a Marcus type high-frequency glow discharge luminescence surface analyzer (GD-Profiler) manufactured by Horiba, Ltd. is used.
- GD-Profiler high-frequency glow discharge luminescence surface analyzer
- the steel sheet according to this embodiment may have a plating layer on at least one surface of the steel sheet.
- the plating layer includes a zinc plating layer, a zinc alloy plating layer, and an alloying zinc plating layer and an alloying zinc alloy plating layer obtained by subjecting these to an alloying treatment.
- the zinc plating layer and zinc alloy plating layer are formed by hot dip plating, electroplating, or vapor deposition.
- the Al content of the galvanized layer is 0.5% by mass or less, the adhesion between the surface of the steel sheet and the galvanized layer can be sufficiently ensured, so the Al content of the galvanized layer is 0.5%. % by mass or less is preferable.
- the Fe content of the hot-dip galvanized layer is preferably 3.0% by mass or less in order to increase the adhesion between the steel sheet surface and the galvanized layer.
- the Fe content of the electrogalvanized layer is preferably 0.5% by mass or less from the viewpoint of improving corrosion resistance.
- the zinc plating layer and the zinc alloy plating layer include Al, Ag, B, Be, Bi, Ca, Cd, Co, Cr, Cs, Cu, Ge, Hf, Zr, I, K, La, Li, Mg, Mn, One or more of Mo, Na, Nb, Ni, Pb, Rb, Sb, Si, Sn, Sr, Ta, Ti, V, W, Zr, and REM, in a range that does not impair the corrosion resistance and formability of the steel sheet and may contain In particular, Ni, Al and Mg are effective in improving the corrosion resistance of steel sheets.
- the zinc plated layer or zinc alloy plated layer may be a zinc alloyed layer or a zinc alloy plated layer that has been alloyed.
- the hot-dip galvanized layer after the alloying treatment is used from the viewpoint of improving the adhesion between the steel sheet surface and the alloyed coating layer.
- the Fe content of the hot-dip zinc alloy plating layer is 7.0 to 13.0% by mass.
- the Fe content in the plating layer can be obtained by the following method. Only the plated layer is dissolved and removed using a 5% by volume HCl aqueous solution containing an inhibitor. By measuring the Fe content in the obtained solution using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry), the Fe content (% by mass) in the plating layer is obtained.
- ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrometry
- the tensile strength (TS) of the steel plate according to this embodiment is 500 MPa or more. Also, the tensile strength may be from 500 to 750 MPa. By setting the tensile strength to 500 MPa or more, the steel sheet according to the present embodiment can be suitably applied to panel system parts such as door outers.
- the tensile strength is preferably 550 MPa or higher or 600 MPa or higher. Further, by setting the tensile strength to 750 MPa or less, it is possible to suppress deterioration of the appearance after press molding.
- Tensile strength is preferably 700 MPa or less.
- the tensile strength is evaluated according to JIS Z 2241:2011.
- the test piece shall be JIS Z 2241:2011 No. 5 test piece.
- Tensile test pieces are taken from the 1/4 part from the edge in the width direction, and the direction perpendicular to the rolling direction is taken as the longitudinal direction.
- the plate thickness of the steel plate according to the present embodiment is not limited to a specific range, but is preferably 0.2 to 2.0 mm in consideration of versatility and manufacturability.
- the plate thickness is preferably 0.2 mm or more. More preferably, it is 0.4 mm or more.
- the plate thickness is preferably 2.0 mm or less. More preferably, it is 1.5 mm or less.
- the press-formed product according to this embodiment has the same chemical composition as the steel plate described above.
- the C concentration gradient is preferably 0.30 mass%/mm or more, 0.35 mass%/mm or more, 0.40 mass%/mm or more, or 0.45 mass%/mm or more, and 0.80 It is preferably set to mass %/mm or less or 0.75 mass %/mm or less.
- the ⁇ C of the press-formed product is obtained by the same method as for the steel plate.
- the press-formed product according to the present embodiment is obtained by press-forming the above-described steel plate, the occurrence of ghost lines is suppressed and the appearance quality is excellent.
- excellent in appearance quality means that no striped pattern (ie, ghost line) occurring on the surface at intervals of several millimeters is observed.
- the maximum length of streak patterns at intervals of several millimeters that can be observed when an arbitrary area of 100 mm ⁇ 100 mm is visually observed is 50 mm or less.
- the maximum length of the streak pattern is preferably 20 mm or less. Moreover, it is more preferable that no streak pattern is observed.
- press-formed products include panel parts such as door outers for automobile bodies.
- the steel plate according to the present embodiment can obtain the effect as long as it has the above characteristics regardless of the manufacturing method.
- ⁇ C C concentration gradient
- a hot-rolled steel sheet is obtained by subjecting a slab having the chemical composition described above to hot rolling under general conditions.
- the obtained hot-rolled steel sheet is subjected to primary annealing in a high temperature range in the atmosphere.
- This primary annealing is performed under conditions of an annealing temperature of 550 to 700° C. and an annealing time of 2 hours or longer.
- annealing temperature is less than 550°C or the annealing time is less than 2 hours, the ⁇ C of the steel sheet cannot be controlled favorably.
- the steel is pickled and then cold-rolled with a cumulative rolling reduction of 70% or more to produce a steel plate or strip having a desired thickness.
- a cumulative reduction ratio of cold rolling to 70% or more, austenite recrystallization is promoted during annealing after cold rolling, and an increase in the austenite fraction can be suppressed.
- the ferrite fraction which has a large C diffusion coefficient, increases during annealing after cold rolling, promoting decarburization.
- the dew point during secondary annealing (average dew point in the annealing furnace) is -10 ° C. or higher, and the residence time of the steel plate in the temperature range of 700 ° C. or higher is 50 to 400 seconds. can be used to decarburize the surface of the steel sheet.
- the upper limit of the dew point need not be specified, it may be about 10°C. If the dew point is too low or if the residence time is too short, decarburization will not proceed sufficiently, and ⁇ C cannot be controlled favorably. Moreover, when the residence time is too long, sufficient tensile strength may not be obtained.
- the temperature during annealing is, for example, about 750 to 850.degree.
- Conditions other than those described above are not particularly limited, but, for example, it is preferable to satisfy the following conditions. After heating the slab to a temperature range of 1100° C. or higher, it is hot rolled. After hot rolling, coiling is performed, primary annealing is performed, and then pickling is performed. The finish rolling temperature of hot rolling is preferably 900°C or higher, and the coiling temperature is preferably 650°C or lower. Cold rolling is performed after pickling. Secondary annealing may be performed after cold rolling, and then the above-described plating layer may be formed as necessary.
- Cold working is preferable as the method of press molding in order to maintain the obtained structure and suppress the occurrence of ghost lines.
- the cold working method is not particularly limited as long as the steel sheet can be formed by relatively moving the die and the punch.
- a slab with a thickness of 240 to 300 mm was produced by melting steel having the chemical composition shown in Table 1 and continuously casting it. After heating the obtained slab to a temperature range of 1100° C. or higher, hot rolling was performed. After hot rolling, coiling was performed, primary annealing was performed under the conditions shown in Table 2, and then pickling was performed. The finish rolling temperature of hot rolling was set to 900°C or higher, and the coiling temperature was set to 650°C or lower. After pickling, cold rolling was performed with a cumulative rolling reduction of 70 to 90%.
- a roughly semi-cylindrical simulated part (press-molded product) simulating a door outer was manufactured by press-molding steel sheets and plated steel sheets.
- the material steel plate or plated steel sheet
- the ratio of the strain in the direction perpendicular to the direction (any direction thereof) to the strain was set to about 1. In other words, press molding was performed so that strain anisotropy did not occur at any position on the surface of the simulated part.
- ⁇ C was obtained by the method described above for the obtained steel sheets, plated steel sheets, and simulated parts (press-formed parts). Since ⁇ C of the steel plate and plated steel sheet and ⁇ C of the simulative component were the same value, ⁇ C of the simulative component is not shown in the table. Also, the tensile strength of the steel plate and the appearance quality of the simulated parts were evaluated by the following methods. Since there is no significant difference between the tensile strength of the steel plate and the tensile strength of the simulated part (press-formed product), it is evaluated whether or not the steel plate has the desired tensile strength as the simulated part. bottom.
- Tensile strength was evaluated according to JIS Z 2241:2011.
- the test piece was JIS Z 2241:2011 No. 5 test piece.
- the tensile test piece was sampled from the 1/4 part from the edge in the width direction, and the direction perpendicular to the rolling direction was taken as the longitudinal direction.
- the obtained tensile strength was 500 MPa or more, it was determined to be high strength and passed.
- the obtained tensile strength was less than 500 MPa, it was determined to be unacceptable because the strength was inferior.
- Appearance Quality Appearance quality was evaluated by the degree of ghost lines generated on the surface of the simulated part after molding.
- the surface after press molding was ground with a grindstone, and striped patterns at intervals of several millimeters on the surface were judged to be ghost lines, and were rated on a scale of 1 to 5 depending on the degree of occurrence of the striped pattern.
- An arbitrary area of 100 mm x 100 mm was visually checked, and the case where no streak pattern was confirmed was rated as "1", and the case where the maximum length of the streak pattern was 20 mm or less was rated as "2", and the maximum length of the streak pattern.
- the press-molded product according to the comparative example had inferior strength or deteriorated appearance quality.
- the steel sheets according to the comparative examples have high strength and could not produce press-formed products having excellent appearance quality.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
(1)本発明の一態様に係る鋼板は、化学組成が、質量%で、
C :0.040~0.105%、
Mn:1.00~2.30%、
Si:0.005~1.500%、
Al:0.005~0.700%、
P :0.100%以下、
S :0.0200%以下、
N :0.0150%以下、
O :0.0100%以下、
Cr:0~0.80%、
Mo:0~0.16%、
Ti:0~0.100%、
B :0~0.0100%、
Nb:0~0.060%、
V :0~0.50%、
Ni:0~1.00%、
Cu:0~1.00%、
W :0~1.00%、
Sn:0~1.00%、
Sb:0~0.200%、
Ca:0~0.0100%、
Mg:0~0.0100%、
Zr:0~0.0100%、
REM:0~0.0100%、並びに
残部:Feおよび不純物であり、
表面から20μm深さ位置のC含有量であるC20と、前記表面から60μm深さ位置のC含有量であるC60と、下記式(1)とから算出されるΔCが0.20~0.90質量%/mmである。
ΔC=(C60-C20)/(0.04) …(1)
(2)上記(1)に記載の鋼板は、前記化学組成が、質量%で、
Cr:0.01~0.80%、
Mo:0.01~0.16%、
Ti:0.001~0.100%、
B :0.0001~0.0100%、
Nb:0.001~0.060%、
V :0.01~0.50%、
Ni:0.01~1.00%、
Cu:0.01~1.00%、
W :0.01~1.00%、
Sn:0.01~1.00%、
Sb:0.001~0.200%、
Ca:0.0001~0.0100%、
Mg:0.0001~0.0100%、
Zr:0.0001~0.0100%、および
REM:0.0001~0.0100%
からなる群から選択される1種または2種以上を含有してもよい。
(3)上記(1)または(2)に記載の鋼板は、前記化学組成が、質量%で、C:0.040~0.080%であってもよい。
(4)上記(1)~(3)の何れか一項に記載の鋼板は、前記ΔCが0.30~0.80質量%/mmであってもよい。
(5)上記(1)~(4)の何れか一項に記載の鋼板は、前記鋼板の少なくとも一方の表面にめっき層を有してもよい。
(6)上記(1)~(5)の何れか一項に記載の鋼板は、引張強さが500~750MPaであってもよい。
(7)本発明の別の態様に係るプレス成形品は、上記(1)~(6)の何れか一項に記載の鋼板をプレス成形して得られるプレス成形品であって、
表面から20μm深さ位置のC含有量であるC20と、前記表面から60μm深さ位置のC含有量であるC60と、下記式(1)とから算出されるΔCが0.20~0.90質量%/mmである。
ΔC=(C60-C20)/(0.04) …(1)
なお、優れた外観品質を有するとは、ゴーストラインの発生が抑制されていることをいう。
Cは、鋼板およびプレス成形品の強度を高める元素である。所望の強度を得るために、C含有量は0.040%以上とする。鋼板の強度をより高めるため、C含有量は、好ましくは0.050%以上であり、より好ましくは0.060%以上または0.070%以上である。
また、C含有量を0.105%以下とすることで、脱炭層における過度な硬度差の発生を抑制できる。その結果、プレス成形後のゴーストラインの発生を抑制できる。そのため、C含有量は0.105%以下とする。C含有量は、0.090%以下が好ましく、0.080%以下がより好ましい。
Mnは、鋼の焼入れ性を高めて、強度の向上に寄与する元素である。所望の強度を得るために、Mn含有量は1.00%以上とする。Mn含有量は、好ましくは1.05%以上または1.10%以上、より好ましくは1.20%以上、1.30%以上または1.40%以上である。
また、Mn含有量を2.30%以下とすることで、鋼中に硬度差が生じやすくなることを抑制できる。そのため、Mn含有量は2.30%以下とする。Mn含有量は、2.10%以下または2.00%以下が好ましく、1.90%以下、1.80%以下または1.70%以下がより好ましい。
Siは、破壊の起点として働く粗大なSi酸化物を形成する元素である。Si含有量を1.500%以下とすることで、Si酸化物が形成されることを抑制でき、割れが発生しにくくなる。その結果、鋼の脆化を抑制することができる。そのため、Si含有量は1.500%以下とする。Si含有量は1.300%以下または1.000%以下が好ましく、0.800%以下、0.600%以下または0.500%以下がより好ましい。
Si含有量は、鋼板の強度-成形性バランスを向上するために0.005%以上とする。Si含有量は、好ましくは0.010%以上または0.020%以上である。
Alは、脱酸材として機能する元素である。また、Alは、破壊の起点となる粗大な酸化物を形成し、鋼を脆化する元素でもある。Al含有量を0.700%以下とすることで、破壊の起点として働く粗大な酸化物の生成を抑制でき、鋳片が割れ易くなることを抑制できる。そのため、Al含有量は0.700%以下とする。Al含有量は0.650%以下、0.400%以下または0.200%以下が好ましく、0.100%以下、0.080%以下または0.060%以下がより好ましい。
Al含有量は、Alによる脱酸効果を十分に得るために0.005%以上とする。Al含有量は、好ましくは0.010%以上、0.020%以上、0.030%以上または0.040%以上である。
Pは、不純物として混入する元素であり、鋼を脆化する元素でもある。P含有量が0.100%以下であると、鋼板が脆化して生産工程において割れ易くなることを抑制できる。そのため、P含有量は0.100%以下とする。生産性の観点から、P含有量は0.050%以下が好ましく、0.030%以下または0.020%以下がより好ましい。
P含有量の下限は0%を含むが、P含有量を0.001%以上とすることで、製造コストをより低減できる。そのため、P含有量は0.001%以上としてもよい。
Sは、不純物として混入する元素であり、Mn硫化物を形成し、鋼板の延性、穴拡げ性、伸びフランジ性および曲げ性などの成形性を劣化させる元素でもある。S含有量が0.0200%以下であると、鋼板の成形性が著しく低下することを抑制できる。そのため、S含有量は0.0200%以下とする。S含有量は0.0100%以下または0.0080%以下が好ましく、0.0060%以下または0.0040%以下がより好ましい。
S含有量の下限は0%を含むが、S含有量を0.0001%以上とすることで、製造コストをより低減できる。そのため、S含有量は0.0001%以上としてもよい。
Nは、不純物として混入する元素であり、窒化物を形成し、鋼板の延性、穴拡げ性、伸びフランジ性および曲げ性などの成形性を劣化させる元素でもある。N含有量が0.0150%以下であると、鋼板の成形性が低下することを抑制できる。そのため、N含有量は0.0150%以下とする。また、Nは、溶接時に溶接欠陥を発生させて生産性を阻害する元素でもある。そのため、N含有量は、好ましくは0.0120%以下または0.0100%以下であり、より好ましくは0.0080%以下または0.0060%以下である。
N含有量の下限は0%を含むが、N含有量を0.0005%以上とすることで、製造コストをより低減できる。そのため、N含有量は0.0005%以上としてもよい。
Oは、不純物として混入する元素であり、酸化物を形成し、鋼板の延性、穴拡げ性、伸びフランジ性および曲げ性などの成形性を阻害する元素でもある。O含有量が0.0100%以下であると、鋼板の成形性が著しく低下することを抑制できる。そのため、O含有量は0.0100%以下とする。好ましくは0.0080%以下または0.0050%以下、より好ましくは0.0030%以下または0.0020%以下である。
O含有量の下限は0%を含むが、O含有量を0.0001%以上とすることで、製造コストをより低減できる。そのため、O含有量は0.0001%以上としてもよい。
Crは、鋼の焼入れ性を高め、鋼板の強度の向上に寄与する元素である。Crは必ずしも含有させなくてよいので、Cr含有量の下限は0%を含む。Crによる強度向上効果を十分に得るためには、Cr含有量は、0.01%以上または0.20%以上が好ましく、0.30%以上がより好ましい。
また、Cr含有量が0.80%以下であると、破壊の起点となり得る粗大なCr炭化物が形成されることを抑制できる。そのため、Cr含有量は0.80%以下とする。合金コストの削減のためには、Cr含有量は0.60%以下または0.40%以下とすることが好ましく、0.20%以下、0.10%以下または0.06%以下とすることがより好ましい。
Moは、高温での相変態を抑制し、鋼板の強度の向上に寄与する元素である。Moは必ずしも含有させなくてよいので、Mo含有量の下限は0%を含む。Moによる強度向上効果を十分に得るためには、Mo含有量は、0.01%以上または0.05%以上が好ましく、0.10%以上がより好ましい。
また、Mo含有量が0.16%以下であると、熱間加工性が低下して生産性が低下することを抑制できる。そのため、Mo含有量は、0.16%以下とする。合金コストの削減のためには、Mo含有量は0.12%以下または0.08%以下とすることが好ましく、0.06%以下、0.04%以下または0.02%以下とすることがより好ましい。
Tiは、破壊の起点として働く粗大な介在物を発生させるS量、N量およびO量を低減する効果を有する元素である。また、Tiは組織を微細化し、鋼板の強度-成形性バランスを高める効果がある。Tiは必ずしも含有させなくてよいので、Ti含有量の下限は0%を含む。上記効果を十分に得るためには、Ti含有量は0.001%以上とすることが好ましく、0.010%以上とすることがより好ましい。
また、Ti含有量が0.100%以下であると、粗大なTi硫化物、Ti窒化物およびTi酸化物の形成を抑制でき、鋼板の成形性を確保することができる。そのため、Ti含有量は0.100%以下とする。Ti含有量は0.075%以下または0.060%以下とすることが好ましく、0.040%以下または0.020%以下とすることがより好ましい。
Bは、高温での相変態を抑制し、鋼板の強度の向上に寄与する元素である。Bは必ずしも含有させなくてよいので、B含有量の下限は0%を含む。Bによる強度向上効果を十分に得るためには、B含有量は、0.0001%以上または0.0005%以上が好ましく、0.0010%以上がより好ましい。
また、B含有量が0.0100%以下であると、B析出物が生成して鋼板の強度が低下することを抑制できる。そのため、B含有量は0.0100%以下とする。合金コストの削減のためには、B含有量は0.0080%以下または0.0060%以下とすることが好ましく、0.0040%以下、0.0030以下または0.0015%以下とすることがより好ましい。
Nbは、析出物による強化、フェライト結晶粒の成長抑制による細粒化強化および再結晶の抑制による転位強化によって、鋼板の強度の向上に寄与する元素である。Nbは必ずしも含有させなくてよいので、Nb含有量の下限は0%を含む。上記効果を十分に得るためには、Nb含有量は0.001%以上または0.005%以上とすることが好ましく、0.010%以上とすることがより好ましい。
また、Nb含有量が0.060%以下であると、再結晶を促進して未再結晶フェライトが残存することを抑制でき、鋼板の成形性を確保することができる。そのため、Nb含有量は0.060%以下とする。Nb含有量は好ましくは0.050%以下であり、より好ましくは0.040%以下、0.030%以下、0.015%以下である。
Vは、析出物による強化、フェライト結晶粒の成長抑制による細粒化強化および再結晶の抑制による転位強化によって、鋼板の強度の向上に寄与する元素である。Vは必ずしも含有させなくてよいので、V含有量の下限は0%を含む。Vによる強度向上効果を十分に得るためには、V含有量は、0.01%以上が好ましく、0.03%以上がより好ましい。
また、V含有量が0.50%以下であると、炭窒化物が多量に析出して鋼板の成形性が低下することを抑制できる。そのため、V含有量は、0.50%以下とする。合金コストの削減のためには、V含有量は0.30%以下または0.10%以下とすることが好ましく、0.08%以下、0.06%以下または0.03%以下とすることがより好ましい。
Niは、高温での相変態を抑制し、鋼板の強度の向上に寄与する元素である。Niは必ずしも含有させなくてよいので、Ni含有量の下限は0%を含む。Niによる強度向上効果を十分に得るためには、Ni含有量は、0.01%以上または0.05%以上が好ましく、0.20%以上がより好ましい。
また、Ni含有量が1.00%以下であると、鋼板の溶接性が低下することを抑制できる。そのため、Ni含有量は1.00%以下とする。合金コストの削減のためには、Ni含有量は0.70%以下または0.50%以下とすることが好ましく、0.30%以下、0.15%以下または0.08%以下とすることがより好ましい。
Cuは、微細な粒子の形態で鋼中に存在し、鋼板の強度の向上に寄与する元素である。Cuは必ずしも含有させなくてよいので、Cu含有量の下限は0%を含む。Cuによる強度向上効果を十分に得るためには、Cu含有量は、0.01%以上または0.05%以上が好ましく、0.15%以上がより好ましい。
また、Cu含有量が1.00%以下であると、鋼板の溶接性が低下することを抑制できる。そのため、Cu含有量は1.00%以下とする。合金コストの削減のためには、Cu含有量は0.70%以下または0.50%以下とすることが好ましく、0.30%以下、0.15%以下または0.08%以下とすることがより好ましい。
Wは、高温での相変態を抑制し、鋼板の強度の向上に寄与する元素である。Wは必ずしも含有させなくてよいので、W含有量の下限は0%を含む。Wによる強度向上効果を十分に得るためには、W含有量は、0.01%以上または0.03%以上が好ましく、0.10%以上がより好ましい。
また、W含有量が1.00%以下であると、熱間加工性が低下して生産性が低下することを抑制できる。そのため、W含有量は1.00%以下とする。合金コストの削減のためには、W含有量は0.70%以下または0.50%以下とすることが好ましく、0.30%以下、0.15%以下または0.08%以下とすることがより好ましい。
Snは、結晶粒の粗大化を抑制し、鋼板の強度の向上に寄与する元素である。Snは必ずしも含有させなくてよいので、Sn含有量の下限は0%を含む。Snによる効果を十分に得るためには、Sn含有量は、0.01%以上がより好ましい。
また、Sn含有量が1.00%以下であると、鋼板が脆化して圧延時に破断することを抑制できる。そのため、Sn含有量は1.00%以下とする。合金コストの削減のためには、Sn含有量は0.70%以下または0.50%以下とすることが好ましく、0.30%以下、0.15%以下または0.08%以下とすることがより好ましい。
Sbは、結晶粒の粗大化を抑制し、鋼板の強度の向上に寄与する元素である。Sbは必ずしも含有させなくてよいので、Sb含有量の下限は0%を含む。上記効果を十分に得るためには、Sb含有量は、0.001%以上または0.005%以上が好ましい。
また、Sb含有量が0.200%以下であると、鋼板が脆化して圧延時に破断することを抑制できる。そのため、Sb含有量は0.200%以下とする。合金コストの削減のためには、Sb含有量は0.100%以下または0.050%以下とすることが好ましく、0.030%以下、0.010%以下または0.005%以下とすることがより好ましい。
Mg:0~0.0100%
Zr:0~0.0100%
REM:0~0.0100%
Ca、Mg、ZrおよびREMは、鋼板の成形性の向上に寄与する元素である。Ca、Mg、ZrおよびREMは必ずしも含有させなくてよいので、これらの元素の含有量の下限は0%を含む。成形性向上効果を十分に得るためには、これらの元素の含有量はそれぞれ、0.0001%以上が好ましく、0.0010%以上がより好ましい。
また、Ca、Mg、ZrおよびREMの含有量がそれぞれ0.0100%以下であると、鋼板の延性が低下することを抑制できる。そのため、これらの元素の含有量はそれぞれ、0.0100%以下とする。好ましくは0.0050%以下または0.0030%以下である。
REM(Rare Earth Metal)は、ランタノイド系列に属する元素群を意味する。
鋼板が表面にめっき層を有する場合は、機械研削により表面のめっき層を除去してから、化学組成の分析を行えばよい。
ΔC=(C60-C20)/(0.04) …(1)
ΔCは、表層に形成される脱炭層のうち、表面から20μm深さ位置~前記表面から60μm深さ位置の領域におけるC濃度勾配を示す。ΔCを0.20~0.90質量%/mmとすることで、脱炭層におけるC濃度勾配の急激な増加を抑制できる。その結果、プレス成形後にゴーストラインが発生することを抑制できる。
また、表面から20μm以上の深さ位置のΔCを規定するのは、表面から20μm未満のC濃度はゴーストラインに影響を及ぼさないからである。
鋼板の任意の3か所について、グロー放電発光分光法(Glow Discharge Optical Emission Spectrometry、GDS分析)により、鋼板の表面から深さ方向(板厚方向)に100μmまでC含有量(質量%)を測定する。表面から20μm深さ位置におけるC含有量(C20)と、表面から60μm深さ位置におけるC含有量(C60)と、上記式(1)とから、ΔC(質量%/mm)を算出する。3か所におけるΔCの平均値を算出することで、ΔCを得る。
測定には(株)堀場製作所製のマーカス型高周波グロー放電発光表面分析装置(GD-Profiler)を用いる。
亜鉛めっき層が電気亜鉛めっき層の場合、電気亜鉛めっき層のFe含有量は、耐食性の向上の点で、0.5質量%以下が好ましい。
また、引張強さを750MPa以下とすることで、プレス成形後の外観が劣化することを抑制することができる。引張強さは、好ましくは、700MPa以下である。
一方、板厚が2.0mm以下であると、製造過程で、適正なひずみ付与および温度制御を行うことが容易になり、均質な組織を得ることができる。そのため、板厚は2.0mm以下が好ましい。より好ましくは1.5mm以下である。
ΔC=(C60-C20)/(0.04) …(1)
本実施形態に係る鋼板は、製造方法に依らず、上記の特徴を有していればその効果が得られる。しかし、上述した化学組成を有する鋼を用いて、熱間圧延後且つ冷間圧延後に下記条件で焼鈍を行うことで、ΔC(C濃度勾配)が好ましく制御された鋼板を安定して製造することができる。
まず、上述した化学組成を有するスラブに対して、一般的な条件で熱間圧延を行うことで、熱間圧延鋼板を得る。得られた熱間圧延鋼板に対して、大気中雰囲気にて高温域で一次焼鈍を行う。この一次焼鈍は、焼鈍温度550~700℃、焼鈍時間:2時間以上の条件で行う。熱間圧延後に高温域で焼鈍を行うことで、鋼板の表層にSiおよびMnの内部酸化物が形成される。その結果、冷間圧延後の焼鈍においてSiおよびMnの表面濃化が抑制され、脱炭が促進される。これにより、ΔCを好ましく制御することができる。
焼鈍温度が550℃未満または焼鈍時間が2時間未満であると、鋼板のΔCを好ましく制御することができない。
スラブを1100℃以上の温度域に加熱した後、熱間圧延する。熱間圧延後は巻取りを行い、一次焼鈍を行い、次いで酸洗を行う。熱間圧延の仕上げ圧延温度は900℃以上が好ましく、巻取り温度は650℃以下であることが好ましい。酸洗後は冷間圧延を行う。冷間圧延後は二次焼鈍を実施し、その後必要に応じて、上述しためっき層を形成してもよい。
プレス成形の方法は、得られた組織を維持させてゴーストラインの発生を抑制するために、冷間加工が好ましい。冷間加工方法は、特に限定されないが、ダイとパンチを相対移動させることで鋼板を成形できればよい。
また、以下の方法により、鋼板の引張強さおよび模擬部品の外観品質を評価した。なお、鋼板の引張強さと模擬部品(プレス成形品)の引張強さとの間には大きな差異は無いため、鋼板時点で、模擬部品として所望される引張強さを有しているか否かを評価した。
引張強さは、JIS Z 2241:2011に準拠して評価した。試験片はJIS Z 2241:2011の5号試験片とした。引張試験片の採取位置は、板幅方向の端部から1/4部分とし、圧延方向に垂直な方向を長手方向とした。得られた引張強さが500MPa以上であった場合、高強度であるとして合格と判定した。一方、得られた引張強さが500MPa未満であった場合、強度に劣るとして不合格と判定した。
外観品質は、成形後の模擬部品の表面に発生するゴーストラインの程度により評価した。プレス成形後の表面を砥石掛けし、表面に生じた数mmオーダー間隔の縞模様を、ゴーストラインと判断し、筋模様の発生程度によって、1~5で評点付けした。100mm×100mmの任意の領域を目視で確認し、筋模様が全く確認されなかった場合を「1」とし、筋模様の最大長さが20mm以下の場合を「2」とし、筋模様の最大長さが20mm超、50mm以下の場合を「3」とし、筋模様の最大長さが50mm超、70mm以下の場合を「4」とし、筋模様の最大長さが70mmを超える場合を「5」とした。評価が「3」以下であった場合、外観品質に優れるとして合格と判定した。一方、評価が「4」以上であった場合、外観品質に劣るとして不合格と判定した。
Claims (7)
- 化学組成が、質量%で、
C :0.040~0.105%、
Mn:1.00~2.30%、
Si:0.005~1.500%、
Al:0.005~0.700%、
P :0.100%以下、
S :0.0200%以下、
N :0.0150%以下、
O :0.0100%以下、
Cr:0~0.80%、
Mo:0~0.16%、
Ti:0~0.100%、
B :0~0.0100%、
Nb:0~0.060%、
V :0~0.50%、
Ni:0~1.00%、
Cu:0~1.00%、
W :0~1.00%、
Sn:0~1.00%、
Sb:0~0.200%、
Ca:0~0.0100%、
Mg:0~0.0100%、
Zr:0~0.0100%、
REM:0~0.0100%、並びに
残部:Feおよび不純物であり、
表面から20μm深さ位置のC含有量であるC20と、前記表面から60μm深さ位置のC含有量であるC60と、下記式(1)とから算出されるΔCが0.20~0.90質量%/mmであり、
引張強さが500MPa以上である、ことを特徴とする鋼板。
ΔC=(C60-C20)/(0.04) …(1) - 前記化学組成が、質量%で、
Cr:0.01~0.80%、
Mo:0.01~0.16%、
Ti:0.001~0.100%、
B :0.0001~0.0100%、
Nb:0.001~0.060%、
V :0.01~0.50%、
Ni:0.01~1.00%、
Cu:0.01~1.00%、
W :0.01~1.00%、
Sn:0.01~1.00%、
Sb:0.001~0.200%、
Ca:0.0001~0.0100%、
Mg:0.0001~0.0100%、
Zr:0.0001~0.0100%、および
REM:0.0001~0.0100%
からなる群から選択される1種または2種以上を含有する、ことを特徴とする請求項1に記載の鋼板。 - 前記化学組成が、質量%で、C:0.040~0.080%である、ことを特徴とする請求項1または2に記載の鋼板。
- 前記ΔCが0.30~0.80質量%/mmである、ことを特徴とする請求項1~3の何れか一項に記載の鋼板。
- 前記鋼板の少なくとも一方の表面にめっき層を有する、ことを特徴とする請求項1~4の何れか一項に記載の鋼板。
- 引張強さが500~750MPaである、ことを特徴とする請求項1~5の何れか一項に記載の鋼板。
- 請求項1~6の何れか一項に記載の鋼板をプレス成形して得られるプレス成形品であって、
表面から20μm深さ位置のC含有量であるC20と、前記表面から60μm深さ位置のC含有量であるC60と、下記式(1)とから算出されるΔCが0.20~0.90質量%/mmである、ことを特徴とするプレス成形品。
ΔC=(C60-C20)/(0.04) …(1)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/031492 WO2023026468A1 (ja) | 2021-08-27 | 2021-08-27 | 鋼板およびプレス成形品 |
US18/681,807 US20240344165A1 (en) | 2021-08-27 | 2021-08-27 | Steel sheet and press-formed article |
EP21955078.7A EP4394071A4 (en) | 2021-08-27 | 2021-08-27 | STEEL PLATE, AND MOULDED AND PRESSED ARTICLE |
CN202180100521.2A CN117616143A (zh) | 2021-08-27 | 2021-08-27 | 钢板及压制成形品 |
JP2023543607A JPWO2023026468A1 (ja) | 2021-08-27 | 2021-08-27 | |
MX2024002034A MX2024002034A (es) | 2021-08-27 | 2021-08-27 | Lamina de acero y articulo conformado. |
KR1020247005400A KR20240037287A (ko) | 2021-08-27 | 2021-08-27 | 강판 및 프레스 성형품 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/031492 WO2023026468A1 (ja) | 2021-08-27 | 2021-08-27 | 鋼板およびプレス成形品 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023026468A1 true WO2023026468A1 (ja) | 2023-03-02 |
Family
ID=85322568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/031492 WO2023026468A1 (ja) | 2021-08-27 | 2021-08-27 | 鋼板およびプレス成形品 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20240344165A1 (ja) |
EP (1) | EP4394071A4 (ja) |
JP (1) | JPWO2023026468A1 (ja) |
KR (1) | KR20240037287A (ja) |
CN (1) | CN117616143A (ja) |
MX (1) | MX2024002034A (ja) |
WO (1) | WO2023026468A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11199991A (ja) * | 1998-01-06 | 1999-07-27 | Kawasaki Steel Corp | 耐時効性と焼き付け硬化性に優れた缶用鋼板およびその製造方法 |
JP2005220430A (ja) | 2004-02-09 | 2005-08-18 | Jfe Steel Kk | 表面品質に優れる高強度溶融亜鉛めっき鋼板 |
JP2006104546A (ja) | 2004-10-08 | 2006-04-20 | Nippon Steel Corp | 高強度自動車部材および熱間プレス方法 |
JP2006161064A (ja) * | 2004-12-02 | 2006-06-22 | Sumitomo Metal Ind Ltd | 高張力溶融亜鉛めっき鋼板とその製造方法 |
WO2013047820A1 (ja) | 2011-09-30 | 2013-04-04 | 新日鐵住金株式会社 | 溶融亜鉛めっき鋼板及びその製造方法 |
WO2015097882A1 (ja) | 2013-12-27 | 2015-07-02 | 新日鐵住金株式会社 | 熱間プレス鋼板部材、その製造方法及び熱間プレス用鋼板 |
WO2016121388A1 (ja) | 2015-01-28 | 2016-08-04 | Jfeスチール株式会社 | 高強度冷延鋼板、高強度めっき鋼板及びこれらの製造方法 |
JP2017048412A (ja) | 2015-08-31 | 2017-03-09 | 新日鐵住金株式会社 | 溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、およびそれらの製造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH116028A (ja) * | 1997-06-11 | 1999-01-12 | Kobe Steel Ltd | プレス成形後の表面性状に優れた深絞り用高強度冷延鋼板 |
EP3287539B1 (en) * | 2015-04-22 | 2019-12-18 | Nippon Steel Corporation | Plated steel sheet |
-
2021
- 2021-08-27 MX MX2024002034A patent/MX2024002034A/es unknown
- 2021-08-27 JP JP2023543607A patent/JPWO2023026468A1/ja active Pending
- 2021-08-27 WO PCT/JP2021/031492 patent/WO2023026468A1/ja active Application Filing
- 2021-08-27 US US18/681,807 patent/US20240344165A1/en active Pending
- 2021-08-27 CN CN202180100521.2A patent/CN117616143A/zh active Pending
- 2021-08-27 KR KR1020247005400A patent/KR20240037287A/ko unknown
- 2021-08-27 EP EP21955078.7A patent/EP4394071A4/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11199991A (ja) * | 1998-01-06 | 1999-07-27 | Kawasaki Steel Corp | 耐時効性と焼き付け硬化性に優れた缶用鋼板およびその製造方法 |
JP2005220430A (ja) | 2004-02-09 | 2005-08-18 | Jfe Steel Kk | 表面品質に優れる高強度溶融亜鉛めっき鋼板 |
JP2006104546A (ja) | 2004-10-08 | 2006-04-20 | Nippon Steel Corp | 高強度自動車部材および熱間プレス方法 |
JP2006161064A (ja) * | 2004-12-02 | 2006-06-22 | Sumitomo Metal Ind Ltd | 高張力溶融亜鉛めっき鋼板とその製造方法 |
WO2013047820A1 (ja) | 2011-09-30 | 2013-04-04 | 新日鐵住金株式会社 | 溶融亜鉛めっき鋼板及びその製造方法 |
WO2015097882A1 (ja) | 2013-12-27 | 2015-07-02 | 新日鐵住金株式会社 | 熱間プレス鋼板部材、その製造方法及び熱間プレス用鋼板 |
WO2016121388A1 (ja) | 2015-01-28 | 2016-08-04 | Jfeスチール株式会社 | 高強度冷延鋼板、高強度めっき鋼板及びこれらの製造方法 |
JP2017048412A (ja) | 2015-08-31 | 2017-03-09 | 新日鐵住金株式会社 | 溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、およびそれらの製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4394071A4 |
Also Published As
Publication number | Publication date |
---|---|
EP4394071A4 (en) | 2024-09-11 |
JPWO2023026468A1 (ja) | 2023-03-02 |
EP4394071A1 (en) | 2024-07-03 |
MX2024002034A (es) | 2024-03-06 |
US20240344165A1 (en) | 2024-10-17 |
CN117616143A (zh) | 2024-02-27 |
KR20240037287A (ko) | 2024-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107532266B (zh) | 镀覆钢板 | |
KR101837883B1 (ko) | 고강도 열간 성형 강판 부재 | |
KR101479391B1 (ko) | 형상 동결성이 우수한 냉연 박강판 및 그 제조 방법 | |
JP6795042B2 (ja) | ホットスタンプ成形体及びその製造方法 | |
JP2017048412A (ja) | 溶融亜鉛めっき鋼板、合金化溶融亜鉛めっき鋼板、およびそれらの製造方法 | |
JP7095818B2 (ja) | 被覆鋼部材、被覆鋼板およびそれらの製造方法 | |
WO2020203979A1 (ja) | 被覆鋼部材、被覆鋼板およびそれらの製造方法 | |
CN113597473A (zh) | 钢板及其制造方法 | |
WO2022181761A1 (ja) | 鋼板 | |
JP7216933B2 (ja) | 鋼板およびその製造方法 | |
CN110199045B (zh) | 高强度钢板及其制造方法 | |
EP3693485A1 (en) | Hot-stamp molded article, hot-stamp steel sheet, and methods for producing these | |
JP7553837B2 (ja) | ホットスタンプ用鋼板及びその製造方法、並びに、ホットスタンプ部材及びその製造方法 | |
JP4360319B2 (ja) | 高張力溶融亜鉛めっき鋼板とその製造方法 | |
CN112313351B (zh) | 钢板及钢板的制造方法 | |
JP7151878B2 (ja) | ホットスタンプ成形品およびホットスタンプ用鋼板、並びにそれらの製造方法 | |
CN111868283B (zh) | 钢板 | |
WO2023026468A1 (ja) | 鋼板およびプレス成形品 | |
CN114945690B (zh) | 钢板及其制造方法 | |
WO2023026465A1 (ja) | 鋼板およびプレス成形品 | |
JP7127735B2 (ja) | ホットスタンプ成形品およびその製造方法 | |
CN111868286B (zh) | 钢板 | |
WO2023189183A1 (ja) | ホットスタンプ成形体 | |
CN118922573A (zh) | 钢构件及钢板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21955078 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023543607 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180100521.2 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18681807 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20247005400 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020247005400 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2401001107 Country of ref document: TH |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2021955078 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021955078 Country of ref document: EP Effective date: 20240327 |