WO2022181761A1 - 鋼板 - Google Patents

鋼板 Download PDF

Info

Publication number
WO2022181761A1
WO2022181761A1 PCT/JP2022/007854 JP2022007854W WO2022181761A1 WO 2022181761 A1 WO2022181761 A1 WO 2022181761A1 JP 2022007854 W JP2022007854 W JP 2022007854W WO 2022181761 A1 WO2022181761 A1 WO 2022181761A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
average
concentration
thickness direction
Prior art date
Application number
PCT/JP2022/007854
Other languages
English (en)
French (fr)
Inventor
諭 弘中
真衣 永野
泰弘 伊藤
拓也 高山
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to US18/277,966 priority Critical patent/US20240124963A1/en
Priority to MX2023009945A priority patent/MX2023009945A/es
Priority to CN202280017399.7A priority patent/CN116888294A/zh
Priority to JP2023502534A priority patent/JP7486010B2/ja
Priority to EP22759795.2A priority patent/EP4299770A1/en
Priority to KR1020237032158A priority patent/KR20230147174A/ko
Publication of WO2022181761A1 publication Critical patent/WO2022181761A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/285Thermal after-treatment, e.g. treatment in oil bath for remelting the coating

Definitions

  • the present invention relates to steel sheets.
  • Ghost lines are caused by preferential deformation around the soft phase when a steel plate having a hard phase and a soft phase such as DP (Dual Phase) steel is press-formed, resulting in minute irregularities on the surface of the order of 1 mm. That is. Since the unevenness forms a striped pattern on the surface, a press-molded product with ghost lines has poor appearance quality.
  • An object of the present invention is to provide a steel sheet that has high strength and can achieve excellent appearance quality.
  • the gist of the present invention is the following steel plate.
  • the chemical composition is mass %, C: more than 0.030% to 0.145%, Si: 0% to 0.500% or less, Mn: 0.50% to 2.50%, P: 0% to 0.100% or less, S: 0% to 0.020% or less, Al: 0% to 1.000% or less, N: 0% to 0.0100% or less, B: 0% to 0.0050%, Mo: 0% to 0.800%, Ti: 0% to 0.200%, Nb: 0% to 0.100%, V: 0% to 0.200%, Cr: 0% to 0.800%, Ni: 0% to 0.250% O: 0% to 0.0100%, Cu: 0% to 1.00%, W: 0% to 1.00%, Sn: 0% to 1.00%, Sb: 0% to 0.200%, Ca: 0% to 0.0100%, Mg: 0% to 0.0100%, Zr: 0% to 0.0100%, REM: 0% to 0.0100%, the remainder being iron and impurities,
  • the area of the hard phase connected in the rolling direction by 100 ⁇ m or more is 30% or less of the total area of the hard phase.
  • the steel plate according to (2) In the region of 1/4 to 1/2 in the plate thickness direction, the area of the hard phase connected in the rolling direction by 100 ⁇ m or more is 30% or less of the total area of the hard phase.
  • FIG. 1 shows the standard deviation in the thickness direction of the average Mn concentration in the rolling direction at the 1/4 position and 1/2 position in the thickness direction of the steel sheet, and the corresponding 1/4 position and 1/4 position in the thickness direction.
  • FIG. 4 is a schematic diagram for explaining a value divided by the average Mn concentration at two positions;
  • FIG. 2 is a graph showing the rolling direction average Mn concentration at each depth position in the plate thickness direction for the present examples and comparative examples.
  • FIG. 3 shows the standard deviation in the thickness direction of the rolling direction average Mn concentration at the 1/4 position in the thickness direction for the present example and the comparative example, with the overall average Mn concentration at the 1/4 position in the thickness direction. It is a graph which shows the relationship between the divided value X1 and Wz.
  • the present inventors have studied a method for suppressing the generation of ghost lines after press-forming a high-strength steel sheet.
  • a steel sheet such as DP (Dual Phase) steel in which a hard phase and a soft phase coexist
  • the area around the soft phase is mainly deformed during forming, and fine unevenness is generated on the surface of the steel sheet, resulting in ghost lines.
  • a so-called appearance defect may occur.
  • the ghost line is formed in a band shape (stripe shape) by deforming such that the soft phase is dented during press forming of the steel sheet while the hard phase is not dented or rather rises to become convex.
  • the hard phases are uniformly dispersed. (Suppression of band-like structure) is important. Since the band-like structure is generated due to central segregation and micro-segregation of Mn during solidification of steel, it is necessary to suppress Mn segregation during solidification of steel.
  • the inventors of the present application have focused on the method of reducing the slab immediately after solidification (post-solidification large reduction method) as a means of reducing Mn segregation in steel. It has been found that high reduction after solidification reduces Mn segregation, especially Mn microsegregation at the 1/4 position in the plate thickness direction, and reduces the ratio of connected hard phases. As a result, the inventors have found that the surface roughness of the steel sheet after forming is improved.
  • the steel sheet according to the present embodiment has a chemical composition in mass% of C: more than 0.030% to 0.145%, Si: 0% to 0.500%, Mn: 0.5% to 2.50%, P: 0% to 0.100%, S: 0% to 0.020%, Al: 0% to 1.000%, N: 0% to 0.0100%, B: 0% to 0.0050%, Mo: 0% to 0.800%, Ti: 0% to 0.200%, Nb: 0% to 0.100%, V: 0% to 0.200%, Cr: 0% to 0.800%, Ni: 0% to 0.250% O: 0% to 0.0100%, Cu: 0% to 1.00%, W: 0% to 1.00%, Sn: 0% to 1.00%, Sb: 0% to 0.200%, Ca: 0% to 0.0100%, Mg: 0% to 0.0100%, Zr: 0% to 0.0100%, REM: 0% to 0.0100%, The balance is iron and impurities. Each element will be described below
  • C is an element that increases the strength of the steel sheet.
  • the C content should be above 0.030%.
  • the C content is preferably 0.035% or more, more preferably 0.040% or more, still more preferably 0.050% or more, still more preferably 0.060% That's it.
  • the C content is made 0.145% or less.
  • the C content is preferably 0.110% or less, more preferably 0.090% or less.
  • Si is a deoxidizing element for steel, and is an effective element for increasing the strength without impairing the ductility of the steel sheet.
  • the Si content is set to 0.500% or less.
  • the Si content is preferably 0.250% or less, more preferably 0.100% or less.
  • the lower limit of the Si content includes 0%, but the Si content may be 0.0005% or more or 0.0010% or more in order to improve the strength-formability balance of the steel sheet.
  • Mn is an element that enhances the hardenability of steel and contributes to the improvement of strength.
  • the Mn content should be 0.50% or more.
  • the Mn content is preferably 1.20% or more, more preferably 1.40% or more.
  • the Mn content is set to 2.50% or less.
  • the Mn content is preferably 2.00% or less, more preferably 1.80% or less.
  • P is an element that embrittles steel.
  • the P content may be 0.070% or less, 0.040% or less, 0.030% or less, or 0.020% or less.
  • the lower limit of the P content includes 0%, the production cost can be further reduced by setting the P content to 0.001% or more. Therefore, the P content may be 0.001% or more.
  • S is an element that forms Mn sulfides and deteriorates formability such as ductility, hole expandability, stretch flangeability and bendability of the steel sheet.
  • S content is set to 0.020% or less.
  • the S content is preferably 0.010% or less, more preferably 0.008% or less.
  • the lower limit of the S content includes 0%, the production cost can be further reduced by setting the S content to 0.0001% or more. Therefore, the S content may be 0.0001% or more.
  • Al 0% to 1.000%
  • Al is an element that functions as a deoxidizer and is an element that is effective in increasing the strength of steel.
  • the Al content is set to 1.000% or less.
  • the Al content is preferably 0.650% or less, more preferably 0.600% or less.
  • the lower limit of the Al content includes 0%, the Al content may be 0.005% or more in order to sufficiently obtain the deoxidizing effect of Al.
  • N is an element that forms nitrides and deteriorates formability such as ductility, hole expandability, stretch flangeability and bendability of the steel sheet.
  • N content is set to 0.0100% or less.
  • the N content is preferably 0.0080% or less, more preferably 0.0070% or less.
  • the lower limit of the N content includes 0%, the production cost can be further reduced by setting the N content to 0.0005% or more. Therefore, the N content may be 0.0005% or more.
  • the steel sheet according to this embodiment may contain the following elements as optional elements.
  • the content is 0% when the following optional elements are not contained.
  • B is an element that suppresses phase transformation at high temperatures and contributes to improvement in strength of the steel sheet. Since B does not necessarily have to be contained, the lower limit of the B content includes 0%. In order to sufficiently obtain the strength improvement effect of B, the B content is preferably 0.0005% or more, more preferably 0.0010% or more. Further, when the B content is 0.0050% or less, it is possible to suppress the formation of B precipitates and the decrease in the strength of the steel sheet. Therefore, the B content is set to 0.0050% or less. The B content may be between 0.0001% and 0.0050%.
  • Mo 0% to 0.800%
  • Mo is an element that suppresses phase transformation at high temperatures and contributes to improvement in strength of the steel sheet. Since Mo does not necessarily have to be contained, the lower limit of the Mo content includes 0%.
  • the Mo content is preferably 0.050% or more, more preferably 0.100% or more, in order to sufficiently obtain the strength improvement effect of Mo. Further, when the Mo content is 0.800% or less, it is possible to suppress the deterioration of hot workability and productivity. Therefore, Mo content shall be 0.800% or less.
  • the Mo content may be between 0.001% and 0.800%, or between 0 and 0.40%. Including both Cr: 0.200 to 0.800% and Mo: 0.050 to 0.800% is preferable because the strength of the steel sheet can be more reliably improved.
  • Ti is an element that has the effect of reducing the amounts of S, N, and O that generate coarse inclusions that act as starting points for fracture.
  • Ti has the effect of refining the structure and improving the strength-formability balance of the steel sheet. Since Ti does not necessarily have to be contained, the lower limit of the Ti content includes 0%. In order to sufficiently obtain the above effects, the Ti content is preferably 0.001% or more, more preferably 0.010% or more. Further, when the Ti content is 0.200% or less, formation of coarse Ti sulfides, Ti nitrides and Ti oxides can be suppressed, and formability of the steel sheet can be ensured. Therefore, the Ti content is set to 0.200% or less. The Ti content is preferably 0.080% or less, more preferably 0.060% or less. The Ti content may be from 0 to 0.100%, or from 0.001% to 0.200%.
  • Nb is an element that contributes to the improvement of the strength of a steel sheet through strengthening by precipitates, grain refinement strengthening by suppressing the growth of ferrite grains, and dislocation strengthening by suppressing recrystallization. Since Nb does not necessarily have to be contained, the lower limit of the Nb content includes 0%. In order to sufficiently obtain the above effects, the Nb content is preferably 0.005% or more, more preferably 0.010% or more. Further, when the Nb content is 0.100% or less, it is possible to promote recrystallization and suppress the remaining non-recrystallized ferrite, thereby ensuring the formability of the steel sheet. Therefore, the Nb content is set to 0.100% or less. The Nb content is preferably 0.050% or less, more preferably 0.040% or less. The Nb content may be between 0.001% and 0.100%.
  • V is an element that contributes to the improvement of the strength of the steel sheet through strengthening by precipitates, grain refinement strengthening by suppressing the growth of ferrite grains, and dislocation strengthening by suppressing recrystallization. Since V does not necessarily have to be contained, the lower limit of the V content includes 0%. The V content is preferably 0.010% or more, more preferably 0.030% or more, in order to sufficiently obtain the strength improvement effect of V. Moreover, when the V content is 0.200% or less, it is possible to suppress the deterioration of the formability of the steel sheet due to the precipitation of a large amount of carbonitrides. Therefore, the V content is set to 0.200% or less. The V content may be 0-0.100%, or 0.001-0.200%.
  • Cr 0% to 0.800%
  • Cr is an element that increases the hardenability of steel and contributes to the improvement of the strength of the steel sheet. Since Cr does not necessarily have to be contained, the lower limit of the Cr content includes 0%.
  • the Cr content is preferably 0.200% or more, more preferably 0.300% or more, in order to sufficiently obtain the strength improvement effect of Cr.
  • the Cr content is set to 0.800% or less.
  • the Cr content may be 0.001-0.700% or 0.001-0.800%.
  • Ni is an element that suppresses phase transformation at high temperatures and contributes to improvement in strength of the steel sheet. Since Ni does not necessarily have to be contained, the lower limit of the Ni content includes 0%. The Ni content is preferably 0.050% or more, more preferably 0.200% or more, in order to sufficiently obtain the strength improvement effect of Ni. Further, when the Ni content is 0.250% or less, deterioration of the weldability of the steel sheet can be suppressed. Therefore, the Ni content is set to 0.250% or less. The Ni content may be 0.001-0.200%.
  • O is an element mixed in during the manufacturing process.
  • the O content may be 0%.
  • the refining time can be shortened and the productivity can be increased. Therefore, the O content may be 0.0001% or more, 0.0005% or more, or 0.0010% or more.
  • the O content should be 0.0100% or less.
  • the O content may be 0.0070% or less, 0.0040% or less, or 0.0020% or less.
  • Cu is an element that exists in steel in the form of fine particles and contributes to the improvement of the strength of the steel sheet.
  • the Cu content may be 0%, the Cu content is preferably 0.001% or more in order to obtain such effects.
  • the Cu content may be 0.01% or more, 0.03% or more, or 0.05% or more.
  • the Cu content is set to 1.00% or less.
  • the Cu content may be 0.60% or less, 0.40% or less, or 0.20% or less.
  • W is an element that suppresses phase transformation at high temperatures and contributes to improvement in strength of the steel sheet.
  • the W content may be 0%, the W content is preferably 0.001% or more in order to obtain such effects.
  • the W content may be 0.01% or more, 0.02% or more, or 0.10% or more.
  • the W content should be 1.00% or less.
  • the W content may be 0.80% or less, 0.50% or less, or 0.20% or less.
  • Sn is an element that suppresses the coarsening of crystal grains and contributes to the improvement of the strength of the steel sheet.
  • the Sn content may be 0%, the Sn content is preferably 0.001% or more in order to obtain such effects.
  • the Sn content may be 0.01% or more, 0.05% or more, or 0.08% or more.
  • the Sn content should be 1.00% or less.
  • the Sn content may be 0.80% or less, 0.50% or less, or 0.20% or less.
  • Sb is an element that suppresses the coarsening of crystal grains and contributes to the improvement of the strength of the steel sheet.
  • the Sb content may be 0%, the Sb content is preferably 0.001% or more in order to obtain such effects.
  • the Sb content may be 0.010% or more, 0.050% or more, or 0.080% or more.
  • the Sb content should be 0.200% or less.
  • the Sb content may be 0.180% or less, 0.150% or less, or 0.120% or less.
  • Ca, Mg, Zr, and REM are elements that contribute to improving the formability of steel sheets.
  • the Ca, Mg, Zr and REM contents may be 0%, but in order to obtain such effects, the Ca, Mg, Zr and REM contents are each preferably 0.0001% or more. , 0.0005% or more, 0.0010% or more, or 0.0015% or more.
  • the content of each of Ca, Mg, Zr and REM can be ensured.
  • the Ca, Mg, Zr and REM contents are each 0.0100% or less, and may be 0.0080% or less, 0.0060% or less, or 0.0030% or less.
  • REM refers to scandium (Sc) with atomic number 21, yttrium (Y) with atomic number 39, and lanthanide (La) with atomic number 57 to lutetium (Lu) with atomic number 71, which are lanthanoids.
  • the REM content is the total content of these elements.
  • the rest of the chemical composition of the steel sheet according to this embodiment may be Fe and impurities.
  • impurities include those that are mixed from steel raw materials or scrap and/or during the steelmaking process, or elements that are allowed within a range that does not impair the properties of the steel sheet according to the present embodiment.
  • impurities H, Na, Cl, Co, Zn, Ga, Ge, As, Se, Tc, Ru, Rh, Pd, Ag, Cd, In, Te, Cs, Ta, Re, Os, Ir, Pt, Au , Pb, Bi, and Po.
  • the total amount of impurities may be 0.200% or less.
  • the chemical composition of the steel sheet mentioned above can be measured by a general analytical method. For example, it may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). Incidentally, C and S may be measured using the combustion-infrared absorption method, and N may be measured using the inert gas fusion-thermal conductivity method.
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrometry
  • C and S may be measured using the combustion-infrared absorption method
  • N may be measured using the inert gas fusion-thermal conductivity method.
  • the coating layer on the surface may be removed by mechanical grinding, and then the chemical composition may be analyzed.
  • the metal structure consists of ferrite with a volume fraction of 70 to 95% and a hard phase with a volume fraction of 5 to 30%
  • the volume fraction of the hard phase is set to 5% or more.
  • the volume fraction of the hard phase is set to 30% or less.
  • the hard phase can be dispersed more uniformly, so that surface unevenness during molding can be reduced, and the appearance after molding can be improved.
  • the remainder of the metallographic structure other than the hard phase is ferrite, and the volume fraction of ferrite is 70 to 95%.
  • the sum of the volume fractions of ferrite and hard phases in the metallographic structure is 100%.
  • the hard phase is a hard structure that is harder than ferrite, and is composed of, for example, one or more of martensite, bainite, tempered martensite, and pearlite. From the viewpoint of strength improvement, the hard phase preferably comprises one or more of martensite, bainite, and tempered martensite, and more preferably martensite.
  • the volume fraction of the hard phase in the metallographic structure can be obtained by the following method.
  • the metal structure (microstructure) from the W / 4 position or 3W / 4 position of the width W of the obtained steel plate (that is, the position of W / 4 in the width direction from either end of the steel plate in the width direction)
  • a sample (approximately 20 mm in the rolling direction, 20 mm in the width direction, and the thickness of the steel sheet) is collected, and the metal structure (microstructure) is observed from the surface at half the thickness of the plate using an optical microscope.
  • the plate thickness cross-section in the direction perpendicular to the rolling direction is polished as an observation surface and etched with a repeller reagent.
  • Microstructure is classified from optical microscope photographs or scanning-electron-microscope photographs at a magnification of 500 times. When observed with an optical microscope after repeller corrosion, each structure is observed in different colors, such as black for bainite, white for martensite (including tempered martensite), and gray for ferrite. can be easily determined. In the optical micrograph, the non-gray areas showing ferrite are the hard phases.
  • Mn is an element that contributes to the improvement of the strength of steel, as described above.
  • the inventors of the present application have found that when the segregation of Mn is large, the hard phase tends to be connected in a band shape, and as a result, ghost lines tend to occur when the steel sheet is press-formed. Then, the inventor of the present application paid attention to the point that the ghost line is formed in the shape of an elongated band in the rolling direction of the steel sheet, and paid attention to the average Mn concentration in the rolling direction of the steel sheet.
  • the inventors of the present application also paid attention to variations in the Mn concentration in the plate thickness direction in the region focused on the average Mn concentration in the rolling direction of the steel plate.
  • the standard deviation in the thickness direction of the average Mn concentration in the rolling direction at the 1/4 position in the thickness direction (1/4 region in the thickness direction) of the steel plate is The inventors have found that setting the value X1 divided by 0.025 or less is effective in improving the surface quality of the surface of the steel sheet and the molded product obtained by press-molding the steel sheet.
  • FIG. 1 shows the standard deviations ⁇ 1 and ⁇ 2 in the thickness direction T of the average Mn concentration in the rolling direction L at the 1/4 position and 1/2 position in the thickness direction of the steel sheet, respectively, and the corresponding 1/ 4 is a schematic diagram for explaining values X1 and X2 divided by average Mn concentrations D13 and D23 at 4th position and 1/2 position;
  • FIG. FIG. 1 shows a central section 2 in the width direction C of the steel plate 1 .
  • This cross section 2 is a cross section parallel to the thickness direction T and the rolling direction L of the steel sheet 1 , that is, a cross section orthogonal to the width direction C of the steel sheet 1 .
  • the observation of the "thickness direction 1/4 position" refers to the cross section 2 parallel to the thickness direction T and the rolling direction L of the steel plate 1, and the cross section 2 at the center of the width direction C of the steel plate 1.
  • the observation range 11 of 100 ⁇ m in the thickness direction T ⁇ 600 ⁇ m in the rolling direction L centered on the position that is 1/4 in the thickness direction T from the surface 3 of the steel plate 1, and the thickness from the back surface 4 of the steel plate 1
  • observation ranges 11 and 12 are 200 ⁇ m in total in the plate thickness direction T and 600 ⁇ m in the rolling direction L.
  • Each of the observation ranges 11 and 12 may be less than 100 ⁇ m (eg, 50 ⁇ m) in the thickness direction T, or may be greater than 100 ⁇ m (eg, 150 ⁇ m).
  • the observation ranges 11 and 12 may each be less than 600 ⁇ m (eg, 400 ⁇ m) in the rolling direction L, or may be greater than 600 ⁇ m (eg, 800 ⁇ m).
  • At least one intermediate cross section in the width direction C of the steel plate 1 may have the same configuration as the configuration of the cross section 2 .
  • the section 2 is prepared by mirror-polishing the section 2 of the steel sheet 1 where the observation ranges 11 and 12 are set in the rolling direction L. Observation ranges 11 and 12 are ranges on the cross section 2 .
  • the Mn concentration D11 is measured at 600 points at a measurement interval of 1 ⁇ m in the rolling direction L at predetermined depth positions in the observation ranges 11 and 12.
  • the device used is an electron probe microanalyzer (EPMA), and the measurement conditions are an acceleration voltage of 15 kV and an irradiation time of 25 ms.
  • the average value ⁇ ( ⁇ D11)/600 ⁇ of the Mn concentrations D11 obtained at 600 points is obtained as the average Mn concentration (% by mass) at a predetermined depth position, that is, the rolling direction average Mn concentration D12.
  • the above-described work of measuring the Mn concentration D11 at 600 points having the same depth position and calculating the rolling direction average Mn concentration D12 at the depth position is performed every 1 ⁇ m in the thickness direction T in the observation ranges 11 and 12. .
  • the rolling direction average Mn concentration D12 at each of 200 points in the plate thickness direction T in the observation ranges 11 and 12 is obtained.
  • an average value D13 of all rolling direction average Mn concentrations D12 in the observation ranges 11 and 12 is calculated. That is, the average value ⁇ ( ⁇ D12)/200 ⁇ of the 200 rolling direction average Mn concentrations D12 is calculated as the average Mn concentration in the entire observation ranges 11 and 12 (overall average Mn concentration D13).
  • the value X1 is obtained by dividing the standard deviation ⁇ 1 by the overall average Mn concentration D13 at the quarter position in the plate thickness direction.
  • the observation ranges 11 and 12 are provided in the rolling direction L.
  • the Mn concentration may be measured at intervals of 1 ⁇ m and at intervals of 1 ⁇ m in the rolling direction L. In this case, among the measured Mn concentrations, the Mn concentration required for measurement in the observation ranges 11 and 12 is used as the Mn concentration D11.
  • the inventors of the present application reduce the segregation of the Mn concentration near the surface of the steel plate as the material, specifically, the value X1 is set to 0.025 or less. It was found that the occurrence of ghost lines can be suppressed by doing so. Therefore, in this embodiment, the value X1 is set to 0.025 or less. Preferably, the value X1 is less than or equal to 0.020. Note that the lower limit of the value X1 is zero.
  • the value X2 obtained by dividing the standard deviation in the thickness direction of the average Mn concentration in the rolling direction at the 1/2 position in the thickness direction by the average Mn concentration at the 1/2 position in the thickness direction is 0.035 or less
  • the value X1 is 0.025 or less, it is possible to suppress the generation of ghost lines when the steel sheet is press-formed.
  • the inventors of the present application also paid attention to the segregation of Mn concentration in a region deep from the surface 3 of the steel sheet 1 .
  • the standard deviation ⁇ 2 in the thickness direction T of the average Mn concentration in the rolling direction L at the thickness direction 1 ⁇ 2 position (thickness direction 1 ⁇ 2 region) of the steel sheet 1 is
  • the value X2 divided by the average Mn concentration D23 of 0.035 or less is effective for further improving the surface quality of the surface of the steel sheet 1 and the molded product obtained by press molding the steel sheet 1. did.
  • the Mn concentration at 600 points (Mn concentration D21 at 600 points) is measured at a measurement interval of 1 ⁇ m in the rolling direction L at a predetermined depth position in the observation range 13 in the cross section 2 .
  • the method for measuring the Mn concentration D21 is the same as the method for measuring the block Mn concentration D11 described above.
  • the average value ⁇ ( ⁇ D21)/600 ⁇ of the Mn concentrations D21 obtained at 600 points is obtained as the average Mn concentration (% by mass) at a predetermined depth position, that is, the rolling direction average Mn concentration D22.
  • the work of measuring the Mn concentration D21 at 600 points at the same depth position and calculating the rolling direction average Mn concentration D22 at the depth position is performed every 1 ⁇ m in the plate thickness direction T in the observation range 13 . Thereby, in the observation range 13, the rolling direction average Mn concentration D22 at each of 100 points in the plate thickness direction T is obtained.
  • an average value D23 of all rolling direction average Mn concentrations D22 in the observation range 13 is calculated. That is, the average value ⁇ ( ⁇ D22)/100 ⁇ of 100 rolling direction average Mn concentrations D22 is calculated as the average Mn concentration in the entire observation range 13 (overall average Mn concentration D23).
  • the value X2 is obtained by dividing the standard deviation ⁇ 2 by the overall average Mn concentration D23 at the half position in the plate thickness direction.
  • the Mn concentration D21 in the entire area where the observation range 13 is provided in the rolling direction L in the cross section 2 of the steel sheet 1, even in places other than the observation range 13, 1 ⁇ m intervals in the thickness direction T and rolling The Mn concentration may be measured in the direction L at intervals of 1 ⁇ m. In this case, among the measured Mn concentrations, the Mn concentration required for measurement in the observation range 13 is used as the Mn concentration D13.
  • the inventors of the present application have determined that the segregation of the Mn concentration at the center of the steel sheet, which is the raw material, is reduced. It has been found that generation of ghost lines can be suppressed by the following. Therefore, in this embodiment, the value X2 is set to 0.035 or less. Preferably, the value X2 is less than or equal to 0.030. Note that the lower limit of the value X2 is zero.
  • the area of the hard phase connected to 100 ⁇ m or more in the rolling direction is 30% or less of the total area of the hard phase.
  • the area of the hard phase connected in the rolling direction by 100 ⁇ m or more is 30% or less of the total hard phase area, when the steel sheet is press-formed, the hard phase is deformed to bulge and the soft phase is recessed around the hard phase. The deformation is suppressed from continuing long in the rolling direction, and the occurrence of easily visible ghost lines can be suppressed. Therefore, in the present embodiment, it is preferable that the area of the hard phases connected in the rolling direction by 100 ⁇ m or more is 30% or less of the total area of the hard phases in the region of 1/4 to 1/2 in the plate thickness direction. More preferably, this ratio is 20% or less. The lower limit of this percentage is zero percent.
  • the method for measuring the above ratio in this embodiment is as follows. First, in a cross section parallel to the thickness direction and the rolling direction of the steel sheet, and in the cross section at the center of the width direction of the steel sheet, a region of 1/4 to 1/2 in the thickness direction from the surface of the steel sheet and rolled A 400 ⁇ m observation range (connected hard phase observation range) is defined in the direction.
  • the length of the connecting hard phase observation range in the rolling direction may be less than 400 ⁇ m (eg, 300 ⁇ m) or may be greater than 400 ⁇ m (eg, 500 ⁇ m). However, the lower limit of the length of the connected hard phase observation range in the rolling direction is up to 250 ⁇ m.
  • the area AR1 of the hard phase connected by 100 ⁇ m or more in the rolling direction is measured.
  • a hard phase connected by 100 ⁇ m or more in the rolling direction is extracted by image processing by the above-described hard phase measuring method.
  • "connected” indicates that the grain boundaries of the hard phase are in contact.
  • the area AR2 of all the hard phases is measured by the above-described hard phase measuring method. After that, AR1/AR2 is calculated.
  • the average crystal grain size of ferrite is 5.0 to 30 ⁇ m
  • the average grain size of ferrite is preferably 30 ⁇ m or less. More preferably, the thickness is 15 ⁇ m or less.
  • the average crystal grain size of ferrite is 5.0 ⁇ m or more, it is possible to suppress the facilitation of agglomeration of ferrite grains having ⁇ 001 ⁇ orientation. Even if the individual particles with the ⁇ 001 ⁇ orientation of ferrite are small, if these particles are aggregated and formed, deformation will concentrate on the aggregated parts.
  • the preferable average grain size of ferrite is 5.0 ⁇ m or more. It is more preferably 8.0 ⁇ m or more, still more preferably 10.0 ⁇ m or more, still more preferably 15.0 ⁇ m or more.
  • the average grain size of ferrite in steel sheets can be obtained by the following method. Specifically, 10 fields of view were observed at a magnification of 500 times in the area from the surface of the steel plate etched with a repeller reagent to the position of 1/2 of the plate thickness in the plate thickness direction. Image analysis is performed in the same manner as described above using image analysis software, and the area fraction occupied by ferrite and the number of ferrite particles are calculated. By summing them up and dividing the area fraction occupied by ferrite by the number of ferrite particles, the average area fraction per ferrite particle is calculated. The equivalent circle diameter is calculated from the average area fraction and the number of particles, and the obtained equivalent circle diameter is taken as the average crystal grain size of ferrite.
  • the average crystal grain size of the hard phase is 1.0 to 5.0 ⁇ m
  • the preferable average crystal grain size of the hard phase in the steel sheet is preferably 5.0 ⁇ m or less. It is more preferably 4.5 ⁇ m or less, still more preferably 4.0 ⁇ m or less.
  • the average crystal grain size of the hard phase is 1.0 ⁇ m or more, it is possible to prevent the particles of the hard phase from aggregating and being easily generated. By reducing the size of individual particles of the hard phase and suppressing aggregation of these particles, deterioration of appearance after molding can be suppressed. Therefore, it is preferable to set the preferable average crystal grain size of the hard phase in the steel sheet to 1.0 ⁇ m or more. It is more preferably 1.5 ⁇ m or more, and still more preferably 2.0 ⁇ m or more.
  • the average crystal grain size of the hard phase can be obtained by the following method. Specifically, 10 fields of view were observed at a magnification of 500 times in the area from the surface of the steel plate etched with a repeller reagent to the position of 1/2 of the plate thickness in the plate thickness direction. Image analysis is performed in the same manner as described above using image analysis software, and the area fraction occupied by the hard phase and the number of hard phase particles are calculated. By summing them up and dividing the area fraction occupied by the hard phase by the number of particles of the hard phase, the average area fraction per particle of the hard phase is calculated. The equivalent circle diameter is calculated from the average area fraction and the number of particles, and the obtained equivalent circle diameter is taken as the average crystal grain size of the hard phase.
  • the average Mn concentration (rolling direction average Mn concentration D22) at each depth position in the thickness direction 1/2 position, that is, in the observation range 13 is calculated by the method described above. do.
  • the difference ⁇ 2 between the maximum value and the minimum value in the thickness direction T of the rolling direction average Mn concentration D22 at each depth position is calculated.
  • the steel sheet according to this embodiment may have a plating layer on at least one surface of the steel sheet.
  • the plating layer includes a zinc plating layer, a zinc alloy plating layer, and an alloying zinc plating layer and an alloying zinc alloy plating layer obtained by subjecting these to an alloying treatment.
  • the zinc plating layer and the zinc alloy plating layer are formed by a hot dip plating method, an electroplating method, or a vapor deposition plating method.
  • the Al content of the galvanized layer is 0.5% by mass or less, the adhesion between the surface of the steel sheet and the galvanized layer can be sufficiently ensured, so the Al content of the galvanized layer is 0.5%. % by mass or less is preferable.
  • the galvanized layer is a hot-dip galvanized layer
  • the Fe content of the hot-dip galvanized layer is preferably 3.0% by mass or less in order to increase the adhesion between the steel sheet surface and the galvanized layer.
  • the galvanized layer is an electrogalvanized layer
  • the Fe content of the electrogalvanized layer is preferably 0.5% by mass or less from the viewpoint of improving corrosion resistance.
  • the zinc plating layer and the zinc alloy plating layer include Al, Ag, B, Be, Bi, Ca, Cd, Co, Cr, Cs, Cu, Ge, Hf, Zr, I, K, La, Li, Mg, Mn, One or more of Mo, Na, Nb, Ni, Pb, Rb, Sb, Si, Sn, Sr, Ta, Ti, V, W, Zr, and REM, in a range that does not impair the corrosion resistance and formability of the steel sheet and may contain In particular, Ni, Al and Mg are effective in improving the corrosion resistance of steel sheets.
  • the zinc plated layer or zinc alloy plated layer may be a zinc alloyed layer or a zinc alloy plated layer that has been alloyed.
  • the hot-dip galvanized layer after the alloying treatment is used from the viewpoint of improving the adhesion between the steel sheet surface and the alloyed coating layer.
  • the Fe content of the hot-dip zinc alloy plating layer is 7.0 to 13.0% by mass.
  • the Fe content in the plating layer can be obtained by the following method. Only the plated layer is dissolved and removed using a 5% by volume HCl aqueous solution containing an inhibitor. By measuring the Fe content in the obtained solution using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry), the Fe content (% by mass) in the plating layer is obtained.
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrometry
  • the plate thickness of the steel plate is 0.20 mm to 1.00 mm
  • the plate thickness of the steel plate according to the present embodiment is not limited to a specific range, but is preferably 0.20 to 1.00 mm in consideration of versatility and manufacturability.
  • the plate thickness is preferably 0.20 mm or more, preferably 0.35 mm or more, and more preferably 0.40 mm or more.
  • the plate thickness is preferably 1.00 mm or less, preferably 0.70 mm or less, and more preferably 0.60 mm or less.
  • the plate thickness of the steel plate can be measured with a micrometer.
  • This press-formed product has the same chemical composition as the steel plate described above. Moreover, the press-formed product may have the above-described plated layer on at least one surface. Since the press-molded product is obtained by press-molding the steel plate described above, the occurrence of ghost lines is suppressed and the appearance quality is excellent.
  • the steel plate is an automobile outer panel
  • a specific example of a press-formed product formed by press-forming a steel plate is an automobile outer panel.
  • Automobile skin panels are directly visible to the consumer as the appearance of the automobile. Therefore, by forming an automobile outer panel using a steel plate that suppresses ghost lines and has excellent appearance quality, it is possible to realize an automobile that is highly marketable due to the excellent appearance.
  • Specific examples of automobile outer panels include panel system parts such as door outers of automobile bodies. Examples of the panel system parts include a hood outer panel, a quarter panel such as a fender panel, a door outer panel, a roof panel, and the like.
  • the steel plate according to the present embodiment can obtain the effect as long as it has the above characteristics regardless of the manufacturing method. However, the following method is preferable because it can be produced stably.
  • the steel sheet according to the present embodiment can be manufactured by a manufacturing method including the following steps (i) to (v).
  • a slab forming step of solidifying the molten steel having the above chemical composition to form a slab (ii) a post-solidification large reduction step in which the slab immediately after solidification is reduced at a reduction rate of 30 to 50% at a temperature of 1100 to 1400° C. at the center of the slab to form a steel billet;
  • a hot-rolling step of heating the steel billet to 1100° C. or higher and hot-rolling it so that the rolling end temperature is 950° C.
  • slab molding process In the slab forming process, molten steel having a predetermined chemical composition is formed into a slab.
  • the manufacturing method of the slab forming process is not limited. For example, it is possible to use a slab produced by melting molten steel having the above-mentioned chemical composition using a converter or an electric furnace and producing it by a continuous casting method. An ingot casting method, a thin slab casting method, or the like may be employed instead of the continuous casting method.
  • the slab immediately after solidification formed by continuous casting or the like is reduced while maintaining the temperature during slab molding.
  • the slab is preferably not reheated until the large reduction step after solidification, and the slab center temperature is kept below 1100°C.
  • a large pressure By applying a large pressure to the slab immediately after solidification, a large strain can be applied near the surface and near the center of the thickness of the slab, and the hydrostatic stress can be increased.
  • the temperature at the center of the slab is set at 1100°C to 1400°C. When the temperature at the center of the slab is 1100° C. or higher, the effect of reducing Mn segregation in the slab can be increased, and the load applied to the rolling equipment can be reduced.
  • the temperature of the slab center is 1400° C. or less, the temperature of the slab center does not exceed the solidus temperature, and internal cracks due to reduction can be suppressed.
  • the temperature of the slab center is preferably 1100°C or higher and lower than 1300°C.
  • the rolling reduction of the slab is set to 30 to 50%. When the rolling reduction of the slab is 30% or more, Mn segregation can be sufficiently reduced.
  • the upper limit of the rolling reduction of the slab is not particularly limited, it is preferably 50% or less in terms of production efficiency.
  • the number of rolling passes is preferably one pass, and three passes at the most is preferable in that the effect of reducing Mn segregation can be reliably exhibited by performing a large rolling reduction on the slab at one time.
  • the slab which has been greatly reduced after solidification, is heated to 1100° C. or higher prior to hot rolling.
  • the heating temperature is preferably less than 1300° C. from an economical point of view.
  • the billet heated to the above heating temperature is hot rolled.
  • the rolling end temperature shall be 950°C or less.
  • the average grain size of the hot-rolled steel sheet can be prevented from becoming excessively large.
  • the average crystal grain size of the final product sheet can be made small, and sufficient yield strength can be ensured and high surface quality after forming can be ensured.
  • the coiling temperature in the hot rolling process is preferably 450-650°C.
  • the coiling temperature in the hot rolling process is preferably 450-650°C.
  • the crystal grain size can be made minute, and sufficient strength of the steel sheet can be ensured.
  • the pickling property can be sufficiently secured.
  • the strength of the hot-rolled steel sheet does not increase excessively, and the load on equipment for the cold-rolling process can be suppressed to further increase productivity.
  • Cold rolling process In the cold-rolling process, cold-rolling is performed at a cumulative reduction rate RCR of 50 to 90% to obtain a cold-rolled steel sheet.
  • RCR cumulative reduction rate
  • the cumulative reduction rate RCR is set to 50 to 90%.
  • annealing process is performed by heating the cold-rolled steel sheet to a soaking temperature of 750 to 900° C. and holding it.
  • the soaking temperature is 750° C. or higher, recrystallization of ferrite and reverse transformation from ferrite to austenite proceed sufficiently, and a desired texture can be obtained.
  • the soaking temperature is 900° C. or less, the crystal grains are densified and sufficient strength can be obtained.
  • the heating temperature is not excessively high, and productivity can be increased.
  • the cold-rolled steel sheet after soaking in the annealing step is cooled. Cooling is performed so that the average cooling rate from the soaking temperature is 5.0 to 50° C./sec. When the average cooling rate is 5.0° C./second or more, the ferrite transformation is not excessively accelerated, and the amount of hard phases such as martensite produced can be increased to obtain the desired strength. . Moreover, the steel sheet can be cooled more uniformly in the width direction of the steel sheet by setting the average cooling rate to 50° C./sec or less.
  • the cold-rolled steel sheet obtained by the above method may be further subjected to a plating step for forming a plating layer on the surface.
  • the plating layer formed in the plating step may be alloyed.
  • the alloying temperature is, for example, 450-600.degree.
  • a steel plate according to the present embodiment having quality can be obtained.
  • annealing and cooling were performed under the conditions shown in Table 3. Also, some of the steel sheets were plated with various types of plating to form a plating layer on the surface. In Table 4, CR indicates no plating, GI hot-dip galvanized, and GA hot-alloyed hot-dip galvanized.
  • Obtained product board No. The plate thickness was measured using a micrometer for A1a to K1a.
  • the product plate No. Tensile strength was measured for A1a to K1a. Tensile strength was evaluated according to JIS Z 2241:2011. The test piece was JIS Z 2241:2011 No. 5 test piece. The tensile test piece was sampled from the 1/4 part from the edge in the width direction, and the direction perpendicular to the rolling direction was taken as the longitudinal direction. When the obtained tensile strength was 500 MPa or more, it was determined to be high strength and passed. On the other hand, when the obtained tensile strength was less than 500 MPa, it was determined to be unacceptable because the strength was inferior.
  • the volume fraction of the hard phase in the metal structures of A1a to K1a was measured by the method described above.
  • the obtained product plate No. For A1a to K1a, the Mn concentration of 600 points (600 points The Mn concentration D11) of was measured by the method described above. Then, the rolling direction average Mn concentration D12 at each depth position and the overall average Mn concentration D13 in the observation ranges 11 and 12 were calculated. Then, using this measurement result, the overall average Mn concentration D13, the value X1 (standard deviation ⁇ 1/the overall average Mn concentration D13), the maximum and minimum values of the rolling direction average Mn concentration D12, and the value Z1 ⁇ (rolling (maximum value ⁇ minimum value of directional average Mn concentration D12)/overall average Mn concentration D13 ⁇ was calculated.
  • the obtained product plate No. For A1a to K1a, the area ratio of the hard phase connected to 100 ⁇ m or more in the rolling direction L was measured by the method described above.
  • the surface roughness Wz after molding of each of A1a to K1a was measured.
  • the surface roughness Wz refers to the surface roughness of the steel sheet when the steel sheet does not have a coating layer, and refers to the surface roughness of the coating layer when the steel sheet has a coating layer on its surface.
  • the surface roughness of the steel sheet after forming was obtained by the following method.
  • a JIS No. 5 test piece is cut in a direction perpendicular to the rolling direction from a position 100 mm or more away from the end face of the steel plate, and a tensile strain of 5% is applied.
  • the profile is measured for 60 lines along the direction perpendicular to the rolling direction.
  • the evaluation length is 10 mm, and the components with wavelengths of 0.8 m or less and 2.5 m or more are removed. Based on the obtained results, the maximum peak height (Wz) of the cross-sectional curve is determined according to JIS B 0601:2001.
  • the surface roughness Wz in the example (Example) in which all of the chemical composition, metallographic structure and value X1 are within the preferable range is The surface roughness Wz was clearly lower than the surface roughness Wz in the example (comparative example) in which three or more points were out of the range of the present invention, and the plate was thin and light in weight while being excellent in strength and surface quality. More specifically, all the examples had a tensile strength exceeding 500 MPa and a surface roughness Wz of 0.33 or less. On the other hand, in the comparative example, the product plate No. Except for F1a, the surface roughness Wz was 0.35 or more, and the surface quality was not sufficient. In addition, product plate No. 1, which is a comparative example, was used. Although F1a had a small surface roughness, the tensile strength did not reach 500 MPa and did not satisfy the required strength.
  • FIG. 2 is a graph showing the rolling direction average Mn concentration D12 at each depth position in the plate thickness direction for the present example and comparative example.
  • A1a and A3a example with large reduction after solidification and comparative example without large reduction after solidification
  • Rolling direction average Mn concentrations D12 and D22 were measured by the method described above for a range of 100 ⁇ m in the plate thickness direction at each of the four positions.
  • the variation in the column average Mn concentration in the example is the same as the variation in the column average Mn concentration in the comparative example. It can be seen that it is clearly smaller than Therefore, in the example, the unevenness of Mn was small, the variation in Mn concentration caused by microsegregation was small, and the occurrence of surface unevenness after molding could be suppressed.
  • FIG. 3 shows the standard deviation ⁇ 1 in the thickness direction of the rolling direction average Mn concentration D12 at the 1/4 position in the thickness direction for the present example and comparative examples (product plate Nos. A1a to K1a).
  • 4 is a graph showing the relationship between the value X1 divided by the overall average Mn concentration D13 at the 1/4 position and Wz. It was found that X1 and Wz are in a proportional relationship, and that Wz is smaller as X1 is smaller.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

高強度であり、優れた外観品質を実現できる鋼板を提供する。 鋼板において、化学組成が質量%で、C:0.030%超~0.145%、Si:0%~0.500%、Mn:0.50%~2.50%、P:0%~0.100%、S:0%~0.020%、Al:0%~1.000%以下、N:0%~0.0100%等であり、金属組織が、体積分率で70~95%のフェライトと、体積分率で5~30%の硬質相とからなり、板厚方向1/4位置での圧延方向における平均Mn濃度の板厚方向での標準偏差を、板厚方向1/4位置での平均Mn濃度で除した値X1が0.025以下である。

Description

鋼板
 本発明は、鋼板に関する。
 地球環境保護の観点から、自動車には燃費向上のため、メンバー等の構造部品だけでなく、ルーフやドアアウタ等のパネル系部品についても軽量化ニーズが高まっている。これらのパネル系部品は、骨格部品とは異なり、人目に触れるため高い外観品質も求められる。外観品質として、意匠性および面品質を挙げることができる。
 特許文献1は、表面品質に優れる高強度溶融亜鉛めっき鋼板を開示している。具体的には、特許文献1は、質量%で、C:0.02~0.20%、Si:0.7%以下、Mn:1.5~3.5%、P:0.10%以下、S:0.01%以下、Al:0.1~1.0%、N:0.010%以下、Cr:0.03~0.5%を含有し、かつ、Al、Cr、Si、Mnの含有量を同号項とした数式:A=400Al/(4Cr+3Si+6Mn)で定義された焼鈍時表面酸化指数Aが2.3以上であり、残部がFeおよび不可避的不純物からなり、さらに、鋼板(基板)の組織が、フェライトおよび第2相からなり、該第2相がマルテンサイト主体である鋼板(基板)と、当該基板表面に溶融亜鉛めっき層を有する、高強度溶融亜鉛めっき鋼板を開示している。
特開2005-220430号公報
 外観品質を向上するために、ゴーストラインの発生を抑制することが1つの課題として挙げられる。ゴーストラインは、DP(Dual Phase)鋼のような硬質相と軟質相とを有する鋼板をプレス成形した際、軟質相周辺が優先的に変形することで、表面に1mmオーダーで生じる微小な凹凸のことである。この凹凸は表面に筋模様となって生じるため、ゴーストラインが発生したプレス成形品は、外観品質が劣る。
 自動車の軽量化のためパネル系部品の高強度および薄肉化、さらに形状の複雑化に伴い、成形後の鋼板の表面は凹凸が生じやすくなり、ゴーストラインが発生し易い傾向にある。
 本発明は上記実情に鑑みてなされたものである。本発明は、高強度であり、優れた外観品質を実現できる鋼板を提供することを目的とする。
 本発明は、下記の鋼板を要旨とする。
 (1)化学組成が質量%で、
C:0.030%超~0.145%、
Si:0%~0.500%以下、
Mn:0.50%~2.50%、
P:0%~0.100%以下、
S:0%~0.020%以下、
Al:0%~1.000%以下、
N:0%~0.0100%以下、
B:0%~0.0050%、
Mo:0%~0.800%、
Ti:0%~0.200%、
Nb:0%~0.100%、
V:0%~0.200%、
Cr:0%~0.800%、
Ni:0%~0.250%
O:0%~0.0100%、
Cu:0%~1.00%、
W:0%~1.00%、
Sn:0%~1.00%、
Sb:0%~0.200%、
Ca:0%~0.0100%、
Mg:0%~0.0100%、
Zr:0%~0.0100%、
REM:0%~0.0100%、
残部が鉄および不純物であり、
金属組織が、体積分率で70~95%のフェライトと、体積分率で5~30%の硬質相とからなり、
 板厚方向1/4位置での圧延方向における平均Mn濃度の板厚方向での標準偏差を、前記板厚方向1/4位置での平均Mn濃度で除した値X1が0.025以下である鋼板。
 (2)板厚方向1/2位置での圧延方向における平均Mn濃度の板厚方向での標準偏差を、前記板厚方向1/2位置での平均Mn濃度で除した値X2が0.035以下であることを特徴とする前記(1)に記載の鋼板。
 (3)板厚方向1/4~1/2の領域において、圧延方向に100μm以上連結した硬質相の面積が全硬質相の面積に対し30%以下、であることを特徴とする前記(1)または(2)に記載の鋼板。
 (4)前記フェライトの平均結晶粒径が5.0~30μm、前記硬質相の平均結晶粒径が1.0~5.0μmであることを特徴とする前記(1)~(3)のいずれか一項に記載の鋼板。
 (5)前記板厚方向1/4位置での前記圧延方向における前記平均Mn濃度の前記板厚方向での最大と最小の差を、前記板厚方向1/4位置での前記平均Mn濃度で除した値Z1が0.110以下であることを特徴とする前記(1)~(4)のいずれか一項に記載の鋼板。
 (6)前記板厚方向1/2位置での前記圧延方向における前記平均Mn濃度の前記板厚方向での最大と最小の差を、前記板厚方向1/2位置での前記平均Mn濃度で除した値Z2が0.150以下であることを特徴とする前記(1)~(5)のいずれか一項に記載の鋼板。
 (7)前記硬質相が、マルテンサイト、ベイナイト、焼き戻しマルテンサイト、およびパーライトのいずれか1種以上からなることを特徴とする前記(1)~(6)のいずれか一項に記載の鋼板。
 (8)前記鋼板の板厚が0.20mm~1.00mmであることを特徴とする、前記(1)~(7)の何れか一項に記載の鋼板。
 (9)前記鋼板が自動車外板パネルであることを特徴とする、前記(1)~(8)の何れか一項に記載の鋼板。
 本発明に係る上記態様によれば、高強度であり、優れた外観品質を実現できる鋼板を提供することができる。
図1は、鋼板の板厚方向1/4位置、1/2位置のそれぞれでの圧延方向における平均Mn濃度の板厚方向での標準偏差を、対応する板厚方向1/4位置,1/2位置での平均Mn濃度で除した値について説明するための模式図である。 図2は、本実施例および比較例について、板厚方向の各深さ位置における圧延方向平均Mn濃度を示すグラフである。 図3は、本実施例および比較例について、板厚方向1/4位置での圧延方向平均Mn濃度の板厚方向での標準偏差を、板厚方向1/4位置での全体平均Mn濃度で除した値X1とWzの関係を示すグラフである。
<本発明を想到するに至った経緯>
 本発明者は、高強度の鋼板をプレス成形した後において、ゴーストラインの発生を抑制する方法について検討した。前述したように、DP(Dual Phase)鋼のような硬質相と軟質相が混在する鋼板では、成形時に主に軟質相周辺が変形し、鋼板表面に微小な凹凸が生じることで、ゴーストラインと呼ばれる外観不良が発生することがある。ゴーストラインは、鋼板のプレス成形時に軟質相が凹む一方で硬質相は凹まないかむしろ凸となるように盛り上がるように変形することで、バンド状(縞状)に生じる。
 このように、ゴーストラインはバンド状に連結した硬質相が存在することで発生するとの知見を基に、例えば本実施形態におけるDP鋼においてゴーストラインを低減するには、硬質相を均一に分散させる(バンド状組織を抑制する)ことが重要であるとの着想を得た。そして、バンド状組織は、鋼の凝固時のMnの中心偏析やミクロ偏析に起因し発生するため、その抑制には鋼の凝固時のMn偏析を抑制する必要がある。
 本願発明者は、鋭意研究の結果、鋼中のMn偏析を低減する手段として、凝固直後のスラブを圧下する手法(凝固後大圧下法)に着目するに至った。凝固後に大圧下を行うことで、Mn偏析、特に板厚方向1/4位置でのMnミクロ偏析が低減し、連結した硬質相の比率が減少することを発見した。その結果、成形後の鋼板の表面粗さがより良好となることを知見した。
 本発明は上記知見に基づいてなされたものであり、以下に本実施形態に係る鋼板について詳細に説明する。ただし、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。
 まず、本実施形態に係る鋼板の化学組成について説明する。以下に「~」を挟んで記載する数値限定範囲には、下限値および上限値がその範囲に含まれる。「未満」または「超」と示す数値には、その値が数値範囲に含まれない。以下の説明において、化学組成に関する%は特に指定しない限り質量%である。
 本実施形態に係る鋼板は、化学組成が、質量%で、
C:0.030%超~0.145%、
Si:0%~0.500%、
Mn:0.5%~2.50%、
P:0%~0.100%、
S:0%~0.020%、
Al:0%~1.000%、
N:0%~0.0100%、
B:0%~0.0050%、
Mo:0%~0.800%、
Ti:0%~0.200%、
Nb:0%~0.100%、
V:0%~0.200%、
Cr:0%~0.800%、
Ni:0%~0.250%
O:0%~0.0100%、
Cu:0%~1.00%、
W:0%~1.00%、
Sn:0%~1.00%、
Sb:0%~0.200%、
Ca:0%~0.0100%、
Mg:0%~0.0100%、
Zr:0%~0.0100%、
REM:0%~0.0100%、
残部が鉄および不純物である。以下、各元素について説明する。
 (C:0.030%超~0.145%)
 Cは、鋼板の強度を高める元素である。所望の強度を得るために、C含有量は0.030%超とする。強度をより高めるため、C含有量は、好ましくは0.035%以上であり、より好ましくは0.040%以上であり、さらに好ましくは0.050%以上であり、さらに好ましくは0.060%以上である。
 また、C含有量を0.145%以下とすることで、凝固時のMnの拡散が助長され、これによりバンド状のMn偏析が生じやすくなることを抑制できる。その結果、鋼板のプレス成形後のゴーストラインの発生を抑制できる。そのため、C含有量は0.145%以下とする。C含有量は、0.110%以下が好ましく、0.090%以下がより好ましい。
 (Si:0%~0.500%)
 Siは、鋼の脱酸元素であり、鋼板の延性を損なわずに強度を高めるのに有効な元素である。Si含有量を0.500%以下とすることで、スケール剥離性の低下による表面欠陥の発生を抑制できる。そのため、Si含有量は0.500%以下とする。Si含有量は0.250%以下が好ましく、0.100%以下がより好ましい。
 Si含有量の下限は0%を含むが、鋼板の強度-成形性バランスを向上するために、Si含有量は0.0005%以上または0.0010%以上としてもよい。
 (Mn:0.50%~2.50%)
 Mnは、鋼の焼入れ性を高めて、強度の向上に寄与する元素である。所望の強度を得るために、Mn含有量は0.50%以上とする。Mn含有量は、好ましくは1.20%以上、より好ましくは1.40%以上である。
 また、Mn含有量が2.50%以下であると、鋼の凝固時に縞状のMn偏析が生じることを抑制できる。そのため、Mn含有量は2.50%以下とする。Mn含有量は、2.00%以下が好ましく、1.80%以下がより好ましい。
 (P:0%~0.100%)
 Pは、鋼を脆化する元素である。P含有量が0.100%以下であると、鋼板が脆化して生産工程において割れ易くなることを抑制できる。そのため、P含有量は0.100%以下とする。P含有量は、0.070%以下、0.040%以下、0.030%以下、又は0.020%以下であってもよい。
 P含有量の下限は0%を含むが、P含有量を0.001%以上とすることで、製造コストをより低減できる。そのため、P含有量は0.001%以上としてもよい。
 (S:0%~0.020%)
 Sは、Mn硫化物を形成し、鋼板の延性、穴拡げ性、伸びフランジ性および曲げ性などの成形性を劣化させる元素である。S含有量が0.020%以下であると、鋼板の成形性が著しく低下することを抑制できる。そのため、S含有量は0.020%以下とする。S含有量は0.010%以下が好ましく、0.008%以下がより好ましい。
 S含有量の下限は0%を含むが、S含有量を0.0001%以上とすることで、製造コストをより低減できる。そのため、S含有量は0.0001%以上としてもよい。
 (Al:0%~1.000%)
 Alは、脱酸材として機能する元素であり、鋼の強度を高めるのに有効な元素である。Al含有量を1.000%以下とすることで鋳造性を高くできるので生産性を高くできる。そのため、Al含有量は1.000%以下とする。Al含有量は0.650%以下が好ましく、0.600%以下がより好ましい。
 Al含有量の下限は0%を含むが、Alによる脱酸効果を十分に得るために、Al含有量は0.005%以上としてもよい。
 (N:0%~0.0100%)
 Nは、窒化物を形成し、鋼板の延性、穴拡げ性、伸びフランジ性および曲げ性などの成形性を劣化させる元素である。N含有量が0.0100%以下であると、窒化物が過度に形成されずに済み、鋼板の延性、穴拡げ性、伸びフランジ性および曲げ性などの成形性を高くでき、さらに、溶接時の溶接欠陥を低減できるので生産性を高くできる。そのため、N含有量は0.0100%以下とする。N含有量は、好ましくは0.0080%以下であり、より好ましくは0.0070%以下である。
 N含有量の下限は0%を含むが、N含有量を0.0005%以上とすることで、製造コストをより低減できる。そのため、N含有量は0.0005%以上としてもよい。
 本実施形態に係る鋼板は、任意元素として、以下の元素を含有してもよい。以下の任意元素を含有しない場合の含有量は0%である。
 (B:0%~0.0050%)
 Bは、高温での相変態を抑制し、鋼板の強度の向上に寄与する元素である。Bは必ずしも含有させなくてよいので、B含有量の下限は0%を含む。Bによる強度向上効果を十分に得るためには、B含有量は、0.0005%以上が好ましく、0.0010%以上がより好ましい。
 また、B含有量が0.0050%以下であると、B析出物が生成して鋼板の強度が低下することを抑制できる。そのため、B含有量は0.0050%以下とする。B含有量は、0.0001%~0.0050%であってもよい。
 (Mo:0%~0.800%)
 Moは、高温での相変態を抑制し、鋼板の強度の向上に寄与する元素である。Moは必ずしも含有させなくてよいので、Mo含有量の下限は0%を含む。Moによる強度向上効果を十分に得るためには、Mo含有量は、0.050%以上が好ましく、0.100%以上がより好ましい。
 また、Mo含有量が0.800%以下であると、熱間加工性が低下して生産性が低下することを抑制できる。そのため、Mo含有量は、0.800%以下とする。Mo含有量は、0.001%~0.800%であってもよいし、0~0.40%であってもよい。
 なお、Cr:0.200~0.800%およびMo:0.050~0.800%の両方を含むことで、鋼板の強度をより確実に向上することができるため、好ましい。
 (Ti:0%~0.200%)
 Tiは、破壊の起点として働く粗大な介在物を発生させるS量、N量およびO量を低減する効果を有する元素である。また、Tiは組織を微細化し、鋼板の強度-成形性バランスを高める効果がある。Tiは必ずしも含有させなくてよいので、Ti含有量の下限は0%を含む。上記効果を十分に得るためには、Ti含有量は0.001%以上とすることが好ましく、0.010%以上とすることがより好ましい。
 また、Ti含有量が0.200%以下であると、粗大なTi硫化物、Ti窒化物およびTi酸化物の形成を抑制でき、鋼板の成形性を確保することができる。そのため、Ti含有量は0.200%以下とする。Ti含有量は0.080%以下とすることが好ましく、0.060%以下とすることがより好ましい。Ti含有量は、0~0.100%であってもよいし、0.001%~0.200%であってもよい。
 (Nb:0%~0.100%)
 Nbは、析出物による強化、フェライト結晶粒の成長抑制による細粒化強化および再結晶の抑制による転位強化によって、鋼板の強度の向上に寄与する元素である。Nbは必ずしも含有させなくてよいので、Nb含有量の下限は0%を含む。上記効果を十分に得るためには、Nb含有量は0.005%以上とすることが好ましく、0.010%以上とすることがより好ましい。
 また、Nb含有量が0.100%以下であると、再結晶を促進して未再結晶フェライトが残存することを抑制でき、鋼板の成形性を確保することができる。そのため、Nb含有量は0.100%以下とする。Nb含有量は好ましくは0.050%以下であり、より好ましくは0.040%以下である。Nb含有量は、0.001%~0.100%であってもよい。
 (V:0%~0.200%)
 Vは、析出物による強化、フェライト結晶粒の成長抑制による細粒化強化および再結晶の抑制による転位強化によって、鋼板の強度の向上に寄与する元素である。Vは必ずしも含有させなくてよいので、V含有量の下限は0%を含む。Vによる強度向上効果を十分に得るためには、V含有量は、0.010%以上が好ましく、0.030%以上がより好ましい。
 また、V含有量が0.200%以下であると、炭窒化物が多量に析出して鋼板の成形性が低下することを抑制できる。そのため、V含有量は、0.200%以下とする。V含有量は、0~0.100%であってもよいし、0.001~0.200%であってもよい。
 (Cr:0%~0.800%)
 Crは、鋼の焼入れ性を高め、鋼板の強度の向上に寄与する元素である。Crは必ずしも含有させなくてよいので、Cr含有量の下限は0%を含む。Crによる強度向上効果を十分に得るためには、Cr含有量は、0.200%以上が好ましく、0.300%以上がより好ましい。
 また、Cr含有量が0.800%以下であると、破壊の起点となり得る粗大なCr炭化物が形成されることを抑制できる。そのため、Cr含有量は0.800%以下とする。Cr含有量は、0.001~0.700%であってもよいし、0.001~0.800%であってもよい。
 (Ni:0%~0.250%)
 Niは、高温での相変態を抑制し、鋼板の強度の向上に寄与する元素である。Niは必ずしも含有させなくてよいので、Ni含有量の下限は0%を含む。Niによる強度向上効果を十分に得るためには、Ni含有量は、0.050%以上が好ましく、0.200%以上がより好ましい。
 また、Ni含有量が0.250%以下であると、鋼板の溶接性が低下することを抑制できる。そのため、Ni含有量は0.250%以下とする。Ni含有量は、0.001~0.200%であってもよい。
 以下では、任意添加元素として、O、Cu、W、Sn、Sb、Ca、Mg、Zr、REMのそれぞれについて、好ましい含有量を説明する。しかしながら、これらO、Cu、W、Sn、Sb、Ca、Mg、Zr、REMは、何れも、以下に例示する含有量の範囲において、ゴーストライン低減には寄与しない。換言すれば、本実施形態では、後述する凝固後大圧下を適用することで、ミクロ偏析に起因したMn濃度の変動が小さくなる結果、高強度であり、成形後の表面凹凸の発生を抑制できるという効果について、O、Cu、W、Sn、Sb、Ca、Mg、Zr、REMは、影響を与えない。
(O:0%~0.0100%)
 Oは、製造工程で混入する元素である。O含有量は0%であってもよい。なお、O含有量を0.0001%以上とすることで、精錬時間を短くして生産性を高くできる。したがって、O含有量は0.0001%以上、0.0005%以上又は0.0010%以上であってもよい。一方で、O含有量が0.0100%以下であると、粗大な酸化物の形成を抑えることができ、鋼板の延性、穴広げ性、伸びフランジ性及び/又は曲げ性などの成形性を高くできる。したがって、O含有量は0.0100%以下とする。O含有量は0.0070%以下、0.0040%以下又は0.0020%以下であってもよい。
(Cu:0%~1.00%)
 Cuは、微細な粒子の形態で鋼中に存在し、鋼板の強度の向上に寄与する元素である。Cu含有量は0%であってもよいが、このような効果を得るためには、Cu含有量は0.001%以上であることが好ましい。Cu含有量は0.01%以上、0.03%以上又は0.05%以上であってもよい。一方で、Cu含有量を1.00%以下とすることで、鋼板の溶接性を良好にできる。したがって、Cu含有量は1.00%以下とする。Cu含有量は0.60%以下、0.40%以下又は0.20%以下であってもよい。
(W:0%~1.00%)
 Wは、高温での相変態を抑制し、鋼板の強度の向上に寄与する元素である。W含有量は0%であってもよいが、このような効果を得るためには、W含有量は0.001%以上であることが好ましい。W含有量は0.01%以上、0.02%以上又は0.10%以上であってもよい。一方で、Wの含有量を1.00%以下にすることで、熱間加工性を高くして生産性を高くできる。したがって、W含有量は1.00%以下とする。W含有量は0.80%以下、0.50%以下又は0.20%以下であってもよい。
(Sn:0%~1.00%)
 Snは、結晶粒の粗大化を抑制し、鋼板の強度の向上に寄与する元素である。Sn含有量は0%であってもよいが、このような効果を得るためには、Sn含有量は0.001%以上であることが好ましい。Sn含有量は0.01%以上、0.05%以上又は0.08%以上であってもよい。一方で、Sn含有量を1.00%以下にすることで、鋼板の脆化を抑制できる。したがって、Sn含有量は1.00%以下とする。Sn含有量は0.80%以下、0.50%以下又は0.20%以下であってもよい。
(Sb:0%~0.200%)
 Sbは、結晶粒の粗大化を抑制し、鋼板の強度の向上に寄与する元素である。Sb含有量は0%であってもよいが、このような効果を得るためには、Sb含有量は0.001%以上であることが好ましい。Sb含有量は0.010%以上、0.050%以上又は0.080%以上であってもよい。一方で、Sn含有量を0.200%以下にすることで、鋼板の脆化を抑制できる。したがって、Sb含有量は0.200%以下とする。Sb含有量は0.180%以下、0.150%以下又は0.120%以下であってもよい。
(Ca:0%~0.0100%)
(Mg:0%~0.0100%)
(Zr:0%~0.0100%)
(REM:0%~0.0100%)
 Ca、Mg、Zr及びREMは、鋼板の成形性の向上に寄与する元素である。Ca、Mg、Zr及びREM含有量は0%であってもよいが、このような効果を得るためには、Ca、Mg、Zr及びREM含有量はそれぞれ0.0001%以上であることが好ましく、0.0005%以上、0.0010%以上又は0.0015%以上であってもよい。一方で、Ca、Mg、Zr及びREMのそれぞれについて、含有量を0.0100%以下とすることで、鋼板の延性を確保できる。したがって、Ca、Mg、Zr及びREM含有量はそれぞれ0.0100%以下とし、0.0080%以下、0.0060%以下又は0.0030%以下であってもよい。本明細書におけるREMとは、原子番号21番のスカンジウム(Sc)、原子番号39番のイットリウム(Y)及びランタノイドである原子番号57番のランタン(La)~原子番号71番のルテチウム(Lu)の17元素の総称であり、REM含有量はこれら元素の合計含有量である。
 本実施形態に係る鋼板の化学組成の残部は、Fe及び不純物であってもよい。不純物としては、鋼原料もしくはスクラップからおよび/または製鋼過程で混入するもの、あるいは本実施形態に係る鋼板の特性を阻害しない範囲で許容される元素が例示される。不純物として、H、Na、Cl、Co、Zn、Ga、Ge、As、Se、Tc、Ru、Rh、Pd、Ag、Cd、In、Te、Cs、Ta、Re、Os、Ir、Pt、Au、Pb、Bi、Poが挙げられる。不純物は、合計で0.200%以下含んでもよい。
 上述した鋼板の化学組成は、一般的な分析方法によって測定すればよい。例えば、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。なお、CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用いて測定すればよい。鋼板が表面にめっき層を有する場合は、機械研削により表面のめっき層を除去してから、化学組成の分析を行えばよい。
 (金属組織が、体積分率で70~95%のフェライトと、体積分率で5~30%の硬質相とからなる)
 金属組織における硬質相の体積分率を5%以上とすることで、鋼板の強度を十分に向上できる。そのため、硬質相の体積分率を5%以上とする。一方、硬質相の体積分率を30%以下とすることで、硬質相をより均一に分散させることができるので、成形時の表面凹凸を少なくでき、成形後の外観を向上できる。
 また、金属組織における硬質相以外の残部はフェライトであり、該フェライトの体積分率は70~95%となる。金属組織におけるフェライトと硬質相の体積分率の合計は、100%である。
 本実施形態に係る鋼板において、硬質相は、フェライトよりも硬い硬質組織であり、例えばマルテンサイト、ベイナイト、焼き戻しマルテンサイト、および、パーライトのいずれか1種以上からなる。強度の向上の点からは、硬質相は、マルテンサイト、ベイナイト、焼戻しマルテンサイトの1種以上からなることが好ましく、マルテンサイトからなることがより好ましい。
 金属組織における硬質相の体積分率は、以下の方法で求めることができる。
 得られた鋼板の板幅WのW/4位置もしくは3W/4位置(すなわち、鋼板のいずれかの幅方向端部から幅方向にW/4の位置)から金属組織(ミクロ組織)観察用の試料(サイズは、おおむね、圧延方向に20mm×幅方向に20mm×鋼板の厚さ)を採取し、光学顕微鏡を用いて表面から板厚1/2厚における金属組織(ミクロ組織)の観察を行い、鋼板の表面(めっきが存在する場合はめっき層を除いた表面)から板厚1/2厚までの硬質相の面積分率を算出する。試料の調整として、圧延直角方向の板厚断面を観察面として研磨し、レペラー試薬にてエッチングする。
 倍率500倍の光学顕微鏡写真または走査型電子顕微鏡(Scanning-electron-microscope)写真から「ミクロ組織」を分類する。レペラー腐食後に光学顕微鏡観察を行なうと、例えばベイナイトは黒、マルテンサイト(焼戻しマルテンサイトを含む)は白、フェライトは灰色と、各組織が色分けして観察されるので、フェライトとそれ以外の硬質組織との判別を容易に行うことができる。光学顕微鏡写真で、フェライトを示す灰色以外の領域が硬質相である。
 レペラー試薬にてエッチングした鋼板の表面~表面から板厚方向に板厚の1/2の位置までの領域において500倍の倍率にて10視野観察し、Adobe社製「Photoshop CS5」の画像解析ソフトを用いて画像解析を行い、硬質相の面積分率を求める。画像解析手法として、例えば、画像の最大明度値Lmaxと最小明度値Lminとを画像から取得し、明度がLmax-0.3(Lmax-Lmin)からLmaxまでの画素を持つ部分を白色領域、LminからLmin+0.3(Lmax-Lmin)の画素を持つ部分を黒色領域、それ以外の部分を灰色領域と定義して、灰色領域以外の領域である硬質相の面積分率を算出する。合計10箇所の観察視野について、上記と同様に画像解析を行って硬質相の面積分率を測定し、これらの面積分率を平均して平均値を算出する。
 (板厚方向1/4位置での圧延方向における平均Mn濃度の板厚方向での標準偏差を、板厚方向1/4位置での平均Mn濃度で除した値X1が0.025以下)
 Mnは、前述したように、鋼の強度の向上に寄与する元素である。本願発明者は、Mnの偏析が大きいと、硬質相がバンド状に連結し易く、その結果、鋼板をプレス成形したときにゴーストラインが生じ易い傾向にあることを知見した。そして、本願発明者は、ゴーストラインが鋼板の圧延方向に細長いバンド状に形成される点に着目し、鋼板の圧延方向における平均Mn濃度に着目した。さらに、本願発明者は、鋼板の圧延方向における平均Mn濃度に着目した領域での板厚方向でのMn濃度のばらつきにも着目した。特に、鋼板の表面に比較的近い領域でのMn濃度の偏析に着目した。結果、鋼板の板厚方向1/4位置(板厚方向1/4領域)での圧延方向における平均Mn濃度の板厚方向での標準偏差を、板厚方向1/4位置での平均Mn濃度で除した値X1が0.025以下とすることが、鋼板およびこの鋼板をプレス成形した成形品の表面の面品質を高くするのに有効であることに想到した。
 図1は、鋼板の板厚方向1/4位置、1/2位置のそれぞれでの圧延方向Lにおける平均Mn濃度の板厚方向Tでの標準偏差σ1,σ2を、対応する板厚方向1/4位置,1/2位置での平均Mn濃度D13,D23で除した値X1,X2について説明するための模式図である。図1では、鋼板1の幅方向Cの中央の断面2を示している。この断面2は、鋼板1の板厚方向Tおよび圧延方向Lに平行な断面、すなわち、鋼板1の幅方向Cに直交する断面である。
 本実施形態では、「板厚方向1/4位置」の観察とは、鋼板1の板厚方向Tおよび圧延方向Lに平行な断面2であって、鋼板1における幅方向Cの中央の断面2について、鋼板1の表面3から板厚方向Tに1/4となる位置を中心とした、板厚方向Tに100μm×圧延方向Lに600μmの観察範囲11と、鋼板1の裏面4から板厚方向Tに1/4となる位置を中心とした、板厚方向Tに100μm×圧延方向Lに600μmの観察範囲12と、を観察することをいう。
 なお、本実施形態では、板厚方向1/4位置の観察において、板厚方向Tに合計200μm×圧延方向Lに600μmの観察範囲11,12での構成を説明するが、この通りでなくてもよい。観察範囲11,12は、それぞれ、板厚方向Tに100μm未満(例えば、50μm)であってもよいし、100μmを超える値(例えば150μm)であってもよい。同様に、観察範囲11,12は、それぞれ、圧延方向Lに600μm未満(例えば、400μm)であってもよいし、600μmを超える値(例えば800μm)であってもよい。また、本実施形態では、鋼板1における幅方向Cの中央の断面2での構成を説明するが、この通りでなくてもよい。鋼板1における幅方向Cの中間の断面の少なくとも一つにおいて、断面2の構成で説明するのと同じ構成を有していればよい。
 値X1の算出に際しては、まず、鋼板1のうち圧延方向Lにおいて観察範囲11,12が設定される箇所について、断面2となる箇所を鏡面研磨することで、断面2を準備する。観察範囲11,12は、断面2上の範囲である。
 次に、断面2において、観察範囲11,12における所定の深さ位置において、圧延方向Lに測定間隔1μmで600点のMn濃度D11を測定する。使用する装置は電子プローブマイクロアナライザ(EPMA)とし、測定条件は加速電圧を15kVとし、照射時間を25msとする。
 得られた600点のMn濃度D11の平均値{(ΣD11)/600}を、所定の深さ位置における平均Mn濃度(質量%)、すなわち、圧延方向平均Mn濃度D12として得る。上述した、深さ位置が同じ600点のMn濃度D11を測定し且つ当該深さ位置における圧延方向平均Mn濃度D12を算出する作業を、観察範囲11,12において板厚方向Tに1μm毎に行う。これにより、観察範囲11,12において、板厚方向Tにおける200点それぞれにおける圧延方向平均Mn濃度D12が求まる。
 次に、観察範囲11,12における全ての圧延方向平均Mn濃度D12の平均値D13を算出する。すなわち、200個の圧延方向平均Mn濃度D12の平均値{(ΣD12)/200}を、観察範囲11,12全体での平均Mn濃度(全体平均Mn濃度D13)として算出する。
 次に、板厚方向Tにおける1μm毎の深さ位置での圧延方向平均Mn濃度D12を標本として、板厚方向Tの標準偏差σ1を算出する。つまり、各深さ位置での圧延方向平均Mn濃度D12の標準偏差を算出する。なお、σ1=(1/200)Σ(D12-D13)である。
 次に、上記標準偏差σ1を、板厚方向1/4位置での全体平均Mn濃度D13で除することで、値X1を得られる。なお、Mn濃度D11の測定時には、鋼板1の断面2のうち圧延方向Lにおいて観察範囲11,12が設けられている部分の全域について、観察範囲11,12以外の箇所においても板厚方向Tに1μm間隔および圧延方向Lに1μm間隔でMn濃度を測定してもよい。この場合、測定されたMn濃度のうち、観察範囲11,12での測定に必要なMn濃度が、Mn濃度D11として用いられる。
 本願発明者らは、プレス成形品においてゴーストラインの発生を抑制するためには、素材となる鋼板表面付近でのMn濃度の偏析を小さくする、具体的には値X1を0.025以下とすることで、ゴーストラインの発生を抑制できることを知見した。そのため、本実施形態では、値X1を0.025以下とする。好ましくは、値X1は0.020以下である。なお、値X1の下限はゼロである。
 (板厚方向1/2位置での圧延方向における平均Mn濃度の板厚方向での標準偏差を、板厚方向1/2位置での平均Mn濃度で除した値X2が0.035以下)
 前述したように、値X1が0.025以下であることにより、鋼板をプレス成形したときにおけるゴーストラインの発生を抑制できる。本願発明者は、さらに、鋼板1の表面3から深い領域でのMn濃度の偏析にも着目した。結果、鋼板1の板厚方向1/2位置(板厚方向1/2領域)での圧延方向Lにおける平均Mn濃度の板厚方向Tでの標準偏差σ2を、板厚方向1/2位置での平均Mn濃度D23で除した値X2が0.035以下とすることが、鋼板1およびこの鋼板1をプレス成形した成形品の表面の面品質をより一層高くするのに有効であることに想到した。
 図1の断面2における「板厚方向1/2位置」の観察とは、鋼板1の表面3から板厚方向Tに1/2となる位置を中心とした、観察範囲13を観察することをいう。観察範囲11,12と観察範囲13とは、板厚方向Tの位置が異なる点以外は同じである。
 値X2の算出に際しては、まず、断面2において、観察範囲13における所定の深さ位置において、圧延方向Lに測定間隔1μmで600点のMn濃度(600点のMn濃度D21)を測定する。Mn濃度D21の測定方法は、上述したブロックMn濃度D11の測定方法と同じである。
 得られた600点のMn濃度D21の平均値{(ΣD21)/600}を、所定の深さ位置における平均Mn濃度(質量%)、すなわち、圧延方向平均Mn濃度D22として得る。上述した、深さ位置が同じ600点のMn濃度D21を測定し且つ当該深さ位置における圧延方向平均Mn濃度D22を算出する作業を、観察範囲13において板厚方向Tに1μm毎に行う。これにより、観察範囲13において、板厚方向Tにおける100点それぞれにおける圧延方向平均Mn濃度D22が求まる。
 次に、観察範囲13における全ての圧延方向平均Mn濃度D22の平均値D23を算出する。すなわち、100個の圧延方向平均Mn濃度D22の平均値{(ΣD22)/100}を、観察範囲13全体での平均Mn濃度(全体平均Mn濃度D23)として算出する。
 次に、板厚方向Tにおける1μm毎の深さ位置での圧延方向平均Mn濃度D22を標本として、板厚方向Tの標準偏差σ2を算出する。つまり、各深さ位置での圧延方向平均Mn濃度D22の標準偏差σ2を算出する。なお、σ2=(1/100)Σ(D22-D23)である。
 次に、上記標準偏差σ2を、板厚方向1/2位置での全体平均Mn濃度D23で除することで、値X2を得られる。なお、Mn濃度D21の測定時には、鋼板1の断面2のうち圧延方向Lにおいて観察範囲13が設けられている部分の全域について、観察範囲13以外の箇所においても板厚方向Tに1μm間隔および圧延方向Lに1μm間隔でMn濃度を測定してもよい。この場合、測定されたMn濃度のうち、観察範囲13での測定に必要なMn濃度が、Mn濃度D13として用いられる。
 本願発明者らは、プレス成形品においてゴーストラインの発生をより一層確実に抑制するためには、素材となる鋼板中心でのMn濃度の偏析を小さくする、具体的には値X2を0.035以下とすることで、ゴーストラインの発生を抑制できることを知見した。そのため、本実施形態では、値X2を0.035以下とする。好ましくは、値X2は0.030以下である。なお、値X2の下限はゼロである。
 (板厚方向1/4~1/2の領域において、圧延方向に100μm以上連結した硬質相の面積が全硬質相の面積に対し30%以下)
 圧延方向に100μm以上連結した硬質相の面積が全硬質相の面積に対し30%以下であることで、鋼板をプレス成形したときに硬質相の盛り上がり変形と当該硬質相の周囲の軟質相の凹み変形とが圧延方向に長く連続することが抑制され、視認し易いゴーストラインの発生を抑制できる。よって、本実施形態では、板厚方向1/4~1/2の領域において、圧延方向に100μm以上連結した硬質相の面積が全硬質相の面積に対し30%以下とすることが好ましい。この割合が20%以下であることがより好ましい。この割合の下限はゼロ%である。
 本実施形態における上記の割合の測定方法は、以下の通りである。まず、鋼板の板厚方向および圧延方向に平行な断面であって、鋼板における幅方向の中央の断面について、鋼板表面から板厚方向に1/4~1/2の領域であって、且つ圧延方向に400μmの観察範囲(連結硬質相観察範囲)を規定する。なお、圧延方向における連結硬質相観察範囲の長さは、400μm未満(例えば、300μm)であってもよいし、400μmを超える値(例えば、500μm)であってもよい。ただし、圧延方向における連結硬質相観察範囲の長さの下限は250μmまでとする。
 次に、連結硬質相観察範囲において、圧延方向に100μm以上連結した硬質相の面積AR1を計測する。具体的には、連結硬質相観察範囲において、上述した硬質相の測定方法によって、圧延方向に100μm以上連結した硬質相を画像処理によって抽出する。この場合、「連結した」とは、硬質相の結晶粒界が接していることを示す。次に、連結硬質相観察範囲において、上述した硬質相の測定方法によって、全硬質相の面積AR2を計測する。その後、AR1/AR2を算出する。
 (フェライトの平均結晶粒径が5.0~30μm)
 フェライトの平均結晶粒径が30μm以下であることで、成形後の外観の低下を抑制できる。そのため、フェライトの平均結晶粒径は、好ましくは30μm以下とすることが好ましい。より好ましくは15μm以下とする。
 一方、フェライトの平均結晶粒径が5.0μm以上であることで、フェライトの{001}方位を持つ粒子が凝集して生成されやすくなることを抑制できる。フェライトの{001}方位を持つ個々の粒子が小さくても、これらの粒子が凝集して生成すると、凝集した部分に変形が集中するため、これらの粒子の凝集を抑制することで成形後の外観の低下を抑制できる。そのため、フェライトの好ましい平均粒径を5.0μm以上とすることが好ましい。より好ましくは8.0μm以上、さらに好ましくは10.0μm以上、さらに好ましくは15.0μm以上である。
 鋼板におけるフェライトの平均結晶粒径は、以下の方法で求めることができる。具体的には、レペラー試薬にてエッチングした鋼板の表面から板厚方向に板厚の1/2の位置までの領域において500倍の倍率にて10視野観察し、Adobe社製「Photoshop CS5」の画像解析ソフトを用いて上記と同様に画像解析を行い、フェライトが占める面積分率とフェライトの粒子数とをそれぞれ算出する。それらを合算し、フェライトが占める面積分率をフェライトの粒子数で除すことにより、フェライトの粒子あたりの平均面積分率を算出する。この平均面積分率と粒子数とから、円相当直径を算出し、得られた円相当直径をフェライトの平均結晶粒径とする。
 (硬質相の平均結晶粒径が1.0~5.0μm)
 硬質相の平均結晶粒径が5.0μm以下であることで、成形後の外観の低下を抑制できる。そのため、鋼板における硬質相の好ましい平均結晶粒径は、5.0μm以下とすることが好ましい。より好ましくは4.5μm以下、さらに好ましくは4.0μm以下とする。
 一方、硬質相の平均結晶粒径が、1.0μm以上であることで、硬質相の粒子が凝集して生成されやすくなることを抑制できる。硬質相の個々の粒子を小さくし且つこれらの粒子の凝集を抑制することで成形後の外観の低下を抑制できる。そのため、鋼板における硬質相の好ましい平均結晶粒径を1.0μm以上とすることが好ましい。より好ましくは1.5μm以上であり、さらに好ましくは2.0μm以上である。
 硬質相の平均結晶粒径は、以下の方法で求めることができる。具体的には、レペラー試薬にてエッチングした鋼板の表面から板厚方向に板厚の1/2の位置までの領域において500倍の倍率にて10視野観察し、Adobe社製「Photoshop CS5」の画像解析ソフトを用いて上記と同様に画像解析を行い、硬質相が占める面積分率と硬質相の粒子数とをそれぞれ算出する。それらを合算し、硬質相が占める面積分率を硬質相の粒子数で除すことにより、硬質相の粒子あたりの平均面積分率を算出する。この平均面積分率と粒子数とから、円相当直径を算出し、得られた円相当直径を硬質相の平均結晶粒径とする。
 (板厚方向1/4位置での圧延方向における平均Mn濃度の板厚方向での最大と最小の差を、板厚方向1/4位置での平均Mn濃度で除した値Z1が0.110以下である)
前述したように、値X1が0.025以下であることにより、鋼板をプレス成形したときにおけるゴーストラインの発生を抑制できる。本願発明者は、さらに、鋼板の板厚1/4位置でのMn濃度の偏析の程度にも着目した。結果、図1を参照して説明すると、板厚方向1/4位置(観察範囲11,12)での圧延方向Lにおける平均Mn濃度(圧延方向平均Mn濃度D12)の板厚方向Tでの最大と最小の差を、板厚方向1/4位置での平均Mn濃度(全体平均Mn濃度D13)で除した値Z1を0.110以下とすることが、鋼板およびこの鋼板をプレス成形した成形品の表面の面品質をより一層高くするのに有効であることに想到した。より好ましくは、値Z1は0.080以下である。
 図1を参照してより具体的に説明すると、板厚方向1/4位置、すなわち、観察範囲11,12において、各深さ位置の圧延方向平均Mn濃度(圧延方向平均Mn濃度D12)を上述した方法により算出する。次に、各深さ位置の圧延方向平均Mn濃度D12について、板厚方向Tでの最大値と最小値の差Δ1を算出する。次いで、差Δ1を、板厚方向1/4位置、即ち、観察範囲11,12の全域での全体平均Mn濃度D13で除した値Z1(=Δ1/D13)を算出する。
 (板厚方向1/2位置での圧延方向における平均Mn濃度の板厚方向での最大と最小の差を、板厚方向1/2位置での平均Mn濃度で除した値Z2が0.150以下である)
 前述したように、値X2が0.035以下であることにより、鋼板をプレス成形したときにおけるゴーストラインの発生を抑制できる。本願発明者は、さらに、鋼板の中心付近でのMn濃度の偏析の程度にも着目した。結果、図1を参照して説明すると、板厚方向1/2位置での圧延方向Lにおける平均Mn濃度(圧延方向平均Mn濃度D22)の板厚方向での最大と最小の差を、板厚方向1/2位置での平均Mn濃度(全体平均Mn濃度D23)で除した値Z2が0.150以下とすることが、鋼板およびこの鋼板をプレス成形した成形品の表面の面品質をより一層高くするのに有効であることに想到した。より好ましくは、値Z2は0.120以下である。
 図1を参照してより具体的に説明すると、板厚方向1/2位置、すなわち、観察範囲13において、各深さ位置の平均Mn濃度(圧延方向平均Mn濃度D22)を上述した方法により算出する。次に、各深さ位置の圧延方向平均Mn濃度D22について、板厚方向Tでの最大値と最小値の差Δ2を算出する。次いで、差Δ2を、板厚方向1/2位置、即ち、観察範囲13の全域での全体平均Mn濃度D23で除した値Z2(=Δ2/D23)を算出する。
 本実施形態に係る鋼板は、鋼板の少なくとも一方の表面に、めっき層を有してもよい。めっき層としては、亜鉛めっき層および亜鉛合金めっき層、並びに、これらに合金化処理を施した合金化亜鉛めっき層および合金化亜鉛合金めっき層が挙げられる。
 亜鉛めっき層および亜鉛合金めっき層は、溶融めっき法、電気めっき法、または蒸着めっき法で形成する。亜鉛めっき層のAl含有量が0.5質量%以下であると、鋼板の表面と亜鉛めっき層との密着性を十分に確保することができるので、亜鉛めっき層のAl含有量は0.5質量%以下が好ましい。
 亜鉛めっき層が溶融亜鉛めっき層の場合、鋼板表面と亜鉛めっき層との密着性を高めるため、溶融亜鉛めっき層のFe含有量は3.0質量%以下が好ましい。
 亜鉛めっき層が電気亜鉛めっき層の場合、電気亜鉛めっき層のFe含有量は、耐食性の向上の点で、0.5質量%以下が好ましい。
 亜鉛めっき層および亜鉛合金めっき層は、Al、Ag、B、Be、Bi、Ca、Cd、Co、Cr、Cs、Cu、Ge、Hf、Zr、I、K、La、Li、Mg、Mn、Mo、Na、Nb、Ni、Pb、Rb、Sb、Si、Sn、Sr、Ta、Ti、V、W、Zr、REMの1種または2種以上を、鋼板の耐食性および成形性を阻害しない範囲で、含有してもよい。特に、Ni、AlおよびMgは、鋼板の耐食性の向上に有効である。
 亜鉛めっき層または亜鉛合金めっき層は、合金化処理が施された、合金化亜鉛めっき層または合金化亜鉛合金めっき層であってもよい。溶融亜鉛めっき層または溶融亜鉛合金めっき層に合金化処理を施す場合、鋼板表面と合金化めっき層との密着性向上の観点から、合金化処理後の溶融亜鉛めっき層(合金化亜鉛めっき層)または溶融亜鉛合金めっき層(合金化亜鉛合金めっき層)のFe含有量を7.0~13.0質量%とすることが好ましい。溶融亜鉛めっき層または溶融亜鉛合金めっき層を有する鋼板に合金化処理を施すことで、めっき層中にFeが取り込まれ、Fe含有量が増量する。これにより、Fe含有量を7.0質量%以上とすることができる。すなわち、Fe含有量が7.0質量%以上である亜鉛めっき層は、合金化亜鉛めっき層または合金化亜鉛合金めっき層である。
 めっき層中のFe含有量は、次の方法により得ることができる。インヒビターを添加した5体積%HCl水溶液を用いてめっき層のみを溶解除去する。ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて、得られた溶解液中のFe含有量を測定することで、めっき層中のFe含有量(質量%)を得る。
(鋼板の板厚が0.20mm~1.00mmである)
 本実施形態に係る鋼板の板厚は、特定の範囲に限定されないが、汎用性や製造性を考慮すると、0.20~1.00mmが好ましい。板厚を0.20mm以上とすることで、鋼板形状を平坦に維持することが容易になり、寸法精度および形状精度を向上することができる。そのため、板厚は0.20mm以上が好ましく、0.35mm以上が好ましく、より好ましくは0.40mm以上である。
 一方、板厚が1.00mmを超えると部材の軽量化効果が小さくなる。そのため、板厚は1.00mm以下が好ましく、0.70mm以下が好ましく、より好ましくは0.60mm以下である。鋼板の板厚は、マイクロメータで測定できる。
 次に、上述した鋼板をプレス成形することで製造できるプレス成形品について説明する。このプレス成形品は、上述した鋼板と同じ化学組成を有する。また、上記プレス成形品は、少なくとも一方の表面に上述しためっき層を備えていてもよい。上記プレス成形品は、上述した鋼板をプレス成形して得られるものであるため、ゴーストラインの発生が抑制されており、外観品質に優れる。
(鋼板が自動車外板パネルである)
 鋼板をプレス成形することで形成されるプレス成形品の具体例としては例えば、自動車外板パネルが挙げられる。自動車外板パネルは、自動車の外観として直接消費者の目に触れる。このため、ゴーストラインが抑制され外観品質に優れた鋼板を用いて自動車外板パネルを構成することで、外観に優れていることで商品性の高い自動車を実現できる。自動車外板パネルの具体例として、自動車車体のドアアウタ等のパネル系部品が挙げられる。パネル系部品として、フードのアウターパネル、フェンダーパネル等のクオーターパネル、ドアアウターパネル、ルーフパネル等を例示できる。
<製造方法について>
 次に、本実施形態に係る鋼板の好ましい製造方法について説明する。本実施形態に係る鋼板は、製造方法に関わらず上記の特徴を有していればその効果が得られる。しかしながら、以下の方法によれば安定して製造できるので好ましい。
 具体的には、本実施形態に係る鋼板は、以下の工程(i)~(v)を含む製造方法によって製造することができる。
(i)上記の化学組成を有する溶鋼を凝固させてスラブを成形するスラブ成形工程、
(ii)凝固直後のスラブを、スラブ中心部の温度が1100~1400℃において、圧下率30~50%で圧下して鋼片を成形する凝固後大圧下工程、
(iii)鋼片を、1100℃以上に加熱し、圧延終了温度が950℃以下となるように熱間圧延して熱延鋼板を得た後、450~650℃で巻き取る熱間圧延工程、
(iv)巻き取った熱延鋼板を巻き戻して、累積圧下率であるRCRが50~90%である冷間圧延を行って冷延鋼板を得る冷間圧延工程、
(v)冷延鋼板を焼鈍し、その後必要に応じて上述しためっき層を形成する工程、
 以下、各工程について説明する。
[スラブ成形工程]
 スラブ成形工程では、所定の化学組成を有する溶鋼を、スラブに成形する。スラブ成形工程の製法については限定されない。例えば、転炉又は電気炉等を用いて上記化学組成の溶鋼を溶製し、連続鋳造法により製造したスラブを用いることができる。連続鋳造法に代えて、造塊法、薄スラブ鋳造法等を採用してもよい。
[凝固後大圧下工程]
 凝固後大圧下工程では、連続鋳造等で成形された凝固直後のスラブを圧下することで、スラブ成形時の温度を維持しつつ圧下する。凝固後大圧下工程までの間には、スラブは再加熱されないことが好ましく、スラブ中心温度が1100℃を下回らない状態を維持される。凝固直後のスラブに大圧下を施すことで、スラブの表面付近および厚み中心付近に大きなひずみを付与することができ、静水圧応力を大きくできる。スラブ中心部の温度は1100℃~1400℃とする。スラブ中心部の温度が1100℃以上であることによりスラブ内のMn偏析の低減効果を大きくできるとともに、圧延設備にかかる負荷も小さくできる。また、スラブ中心部の温度が1400℃以下であることによりスラブ中心部の温度が固相線温度を越えずに済み、圧下による内部割れを抑制できる。スラブ中心部の温度は、好ましくは、1100℃以上1300℃未満である。また、スラブの圧下率は30~50%とする。スラブの圧下率が30%以上であることで、Mn偏析を十分に低減できる。スラブの圧下率の上限は特に制限されないが、50%以下であることが、生産効率の点で好ましい。圧下のパス数は、好ましくは1パスであり、多くても3パスであることが、スラブに一度に大きな圧下を行うことで、Mn偏析の低減効果を確実に発揮できる点で好ましい。
 なお、凝固後大圧下工程で得られるMn偏析抑制効果は、粗圧延工程では得られない。粗圧延工程では1パス毎の圧下率が小さく設定され、複数パスで圧下を行いかつ圧延時の温度も低いため、凝固後大圧下のようなMn偏析低減効果を出せず、ゴーストライン低減のための組織を作り込むことができるとはいえない。
[熱間圧延工程]
 凝固後大圧下されたスラブを、熱間圧延に先立って、1100℃以上に加熱する。加熱温度を1100℃以上とすることで、続く熱間圧延において圧延反力が過度に大きくならず、目的とする製品厚を得やすい。また、板形状の精度を高くでき、巻き取りをスムーズに行うことができる。
 加熱温度の上限については限定する必要はないが、経済上の観点から、鋼片加熱温度は1300℃未満とすることが好ましい。
 熱間圧延工程では、上記の加熱温度に加熱された鋼片を熱間圧延する。
 圧延終了温度は950℃以下とする。圧延終了温度を950℃以下とすることで、熱延鋼板の平均結晶粒径が過度に大きくならずに済む。この場合、最終の製品板の平均結晶粒径も小さくでき、十分な降伏強度の確保および成形後の高い表面品位の確保ができる。
 熱間圧延工程における巻き取り温度は、好ましくは450~650℃とする。巻き取り温度を650℃以下とすることで、結晶粒径を微小にでき、十分な鋼板強度を確保できる。さらに、スケール厚さを抑制できることで、酸洗性を十分に確保できる。また、巻き取り温度を450℃以上とすることで、熱延鋼板の強度が過度に増加せずに済み、冷延工程を行う設備への負荷を抑制して生産性をより高くできる。
[冷間圧延工程]
 冷間圧延工程では、累積圧下率であるRCRが50~90%である冷間圧延を行って冷延鋼板を得る。所定の残留応力が付与された熱延鋼板を上記の累積圧下率で冷間圧延することで、焼鈍、冷却後に、所望の集合組織を有するフェライトが得られる。
 累積圧下率RCRが50%以上であることにより、鋼板の板厚から逆算して熱間圧延工程における鋼片の板厚を十分に確保でき、熱間圧延工程を行うことが現実的である。また、累積圧下率RCRが90%以下であることにより、圧延荷重が大きくなり過ぎずに済み、板幅方向の材質の均一性を十分に確保できる。さらに、生産の安定性も十分に確保できる。そのため、冷間圧延における累積圧下率RCRを50~90%とする。
[焼鈍工程]
 焼鈍工程では、750~900℃の均熱温度まで冷延鋼板を加熱して保持する焼鈍を行う。均熱温度が750℃以上であることにより、フェライトの再結晶およびフェライトからオーステナイトへの逆変態が十分に進行し、所望の集合組織を得ることができる。一方、均熱温度が900℃以下であることにより、結晶粒が緻密化し、十分な強度を得られる。さらに、加熱温度が過度に高くなく、生産性を高くできる。
[冷却工程]
 冷却工程では、焼鈍工程での均熱後の冷延鋼板を冷却する。冷却に際しては、均熱温度からの平均冷却速度が5.0~50℃/秒となるように冷却する。上記平均冷却速度が5.0℃/秒以上であることにより、フェライト変態が過剰に促進されずに済み、マルテンサイト等の硬質相の生成量を多くして、所望の強度を得ることができる。また、平均冷却速度が50℃/秒以下であることにより、鋼板の幅方向において鋼板をより均一に冷却できる。
[めっき工程]
 上記の方法で得られた冷延鋼板に、さらに、表面にめっき層を形成するめっき工程を行ってもよい。
[合金化工程]
 前記めっき工程で形成されためっき層に対し合金化を行ってもよい。合金化工程では、合金化温度は、例えば450~600℃である。
 上記の製造方法によれば、凝固後大圧下を適用することで、ミクロ偏析に起因したMn濃度の変動が小さくなり、高強度であり、成形後の表面凹凸の発生を抑制でき、優れた外観品質を有する本実施形態に係る鋼板を得ることができる。
 次に、本発明の実施例について説明する。なお、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 表1の鋼片No.A~Kに示す化学組成を有する鋼を溶製し、連続鋳造により厚みが200~300mmのスラブを製造した。得られたスラブの一部について、スラブの中心温度が1100℃を下回らない温度に維持しつつ、スラブ成形直後に表2に示すスラブ中心部温度および圧下率で圧下する凝固後大圧下を1パスで行った。なお、表2に示す鋼板No.A3、B2、C2、およびD2では、凝固後大圧下を行わなかった。
 次いで、凝固後大圧下された鋼片および凝固後大圧下されなかった鋼片を、表2に示す条件で熱間圧延を行い、巻き取った。
 その後、コイルを巻き戻して、表2に示す累積圧下率RCRで冷間圧延を行って鋼板A1~K1を得た。
 その後、表3に示す条件で、焼鈍及び冷却を行った。また、一部の鋼板には、各種めっきを行い、表面にめっき層を形成した。表4中、CRはめっきなし、GIは溶融亜鉛めっき、GAは合金化溶融亜鉛めっきを示す。
 得られた製品板No.A1a~K1aに対し、マイクロメータを用いて板厚を測定した。
 また、製品板No.A1a~K1aに対し、引張強さを測定した。引張強さは、JIS Z 2241:2011に準拠して評価した。試験片はJIS Z 2241:2011の5号試験片とした。引張試験片の採取位置は、板幅方向の端部から1/4部分とし、圧延方向に垂直な方向を長手方向とした。得られた引張強さが500MPa以上であった場合、高強度であるとして合格と判定した。一方、得られた引張強さが500MPa未満であった場合、強度に劣るとして不合格と判定した。
 また、得られた製品板No.A1a~K1aの金属組織における硬質相の体積分率を上述した方法により測定した。製品板No.A1a~K1aの金属組織において、硬質相とフェライトの体積分率の合計は100%である。
 また、得られた製品板No.A1a~K1aの金属組織におけるフェライトの平均結晶粒径と硬質相の平均結晶粒径を上述した方法により測定した。
 結果を表4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 また、得られた製品板No.A1a~K1aに対し、板厚方向1/4位置の観察範囲11,12について、板厚方向Tにおける1μm毎の深さ位置において、圧延方向Lに測定間隔1μmで600点のMn濃度(600点のMn濃度D11)を上述した方法により測定した。そして、各深さ位置における圧延方向平均Mn濃度D12、および、観察範囲11,12における全体平均Mn濃度D13を算出した。そして、この測定結果を用いて、全体平均Mn濃度D13と、値X1(標準偏差σ1/全体平均Mn濃度D13)と、圧延方向平均Mn濃度D12の最大値および最小値と、値Z1{(圧延方向平均Mn濃度D12の最大値-最小値)/全体平均Mn濃度D13}と、を算出した。
 また、得られた製品板No.A1a~K1aに対し、板厚方向1/2位置の観察範囲13について、板厚方向Tにおける1μm毎の深さ位置において、圧延方向Lに測定間隔1μmで600点のMn濃度(600点のMn濃度D21)を上述した方法により測定した。そして、各深さ位置における圧延方向平均Mn濃度D22、および、観察範囲13における全体平均Mn濃度D23を算出した。そして、この測定結果を用いて、全体平均Mn濃度D23と、値X2(標準偏差σ2/全体平均Mn濃度D23)と、圧延方向平均Mn濃度D22の最大値および最小値と、値Z2{(圧延方向平均Mn濃度D22の最大値-最小値)/全体平均Mn濃度D23}と、を算出した。
 さらに、得られた製品板No.A1a~K1aに対し、圧延方向Lに100μm以上連結した硬質相の面積率を上述の方法により測定した。
 さらに、製品板No.A1a~K1aのそれぞれの成形後の表面粗さWzを測定した。なお、表面粗さWzは、鋼板がめっき層を有しない場合は鋼板の表面粗さのことであり、鋼板が表面にめっき層を有する場合はめっき層の表面粗さのことである。
 成形後の鋼板の表面粗さは、以下の方法により求めた。
 鋼板の端面から100mm以上離れた位置から圧延方向と垂直な方向にJIS5号試験片を切り出し、5%の引張ひずみを付与する。次に、レーザー変位測定装置(キーエンスVK-X1000)を用いて、圧延方向と直角の方向に沿ってプロファイルを60ライン測定する。このとき、評価長さは10mmとし、波長が0.8m以下および2.5m以上の成分は除去する。得られた結果から、JIS B 0601:2001に準拠して、断面曲線の最大山高さ(Wz)を求める。
 結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表1~表5に示される通り、化学組成、金属組織および値X1の何れもが好ましい範囲にある例(実施例)における表面粗さWzは、化学組成、金属組織および値X1の何れか一つ以上が本発明範囲を外れた例(比較例)における表面粗さWzよりも明らかに低く、板厚が薄くて軽量でありつつ強度および面品質に優れたものとなった。より詳細には、実施例は、何れも、引張強度が500MPaを超えており、且つ、表面粗さWzが0.33以下であった。一方、比較例は、製品板No.F1a以外は、表面粗さWzが0.35以上であり、面品質が十分ではなかった。また、比較例である製品板No.F1aは、表面粗さが小さいものの、引張強さが500MPaに達しておらず、求められる強度を満たしていなかった。
 図2は、本実施例および比較例について、板厚方向の各深さ位置における圧延方向平均Mn濃度D12を示すグラフである。図2を参照して、製品板No.A1a,A3a(凝固後大圧下有りの実施例および凝固後大圧下無しの比較例)について、鋼板表面側の板厚方向1/4位置、1/2位置、鋼板裏面側の板厚方向1/4位置、のそれぞれにおける、板厚方向100μmの範囲について、圧延方向平均Mn濃度D12,D22上述の方法により測定した。板厚方向1/4位置(観察範囲11,12)、1/2位置(観察範囲13)のそれぞれにおいて、実施例での列平均Mn濃度のばらつきは、比較例での列平均Mn濃度のばらつきと比べて明確に小さいことが分かる。よって、実施例では、Mnの偏りが小さく、ミクロ偏析に起因したMn濃度の変動が小さくなり、成形後の表面凹凸の発生を抑制できた。
 図3は、本実施例および比較例(製品板No.A1a~K1a)について、板厚方向1/4位置での圧延方向平均Mn濃度D12の板厚方向での標準偏差σ1を、板厚方向1/4位置での全体平均Mn濃度D13で除した値X1とWzの関係を示すグラフである。X1とWzが比例関係にあり、X1が小さいほどWzも小さくなることが分かった。
 本発明に係る上記態様によれば、高強度であり、優れた外観品質を有する鋼板を提供することができる。

 

Claims (9)

  1.  化学組成が質量%で、
    C:0.030%超~0.145%、
    Si:0%~0.500%、
    Mn:0.50%~2.50%、
    P:0%~0.100%、
    S:0%~0.020%、
    Al:0%~1.000%、
    N:0%~0.0100%、
    B:0%~0.0050%、
    Mo:0%~0.800%、
    Ti:0%~0.200%、
    Nb:0%~0.100%、
    V:0%~0.200%、
    Cr:0%~0.800%、
    Ni:0%~0.250%
    O:0%~0.0100%、
    Cu:0%~1.00%、
    W:0%~1.00%、
    Sn:0%~1.00%、
    Sb:0%~0.200%、
    Ca:0%~0.0100%、
    Mg:0%~0.0100%、
    Zr:0%~0.0100%、
    REM:0%~0.0100%、
    残部が鉄および不純物であり、
    金属組織が、体積分率で70~95%のフェライトと、体積分率で5~30%の硬質相とからなり、
     板厚方向1/4位置での圧延方向における平均Mn濃度の板厚方向での標準偏差を、前記板厚方向1/4位置での平均Mn濃度で除した値X1が0.025以下である鋼板。
  2.  板厚方向1/2位置での圧延方向における平均Mn濃度の板厚方向での標準偏差を、前記板厚方向1/2位置での平均Mn濃度で除した値X2が0.035以下であることを特徴とする請求項1に記載の鋼板。
  3.  板厚方向1/4~1/2の領域において、圧延方向に100μm以上連結した硬質相の面積が全硬質相の面積に対し30%以下、であることを特徴とする請求項1または2に記載の鋼板。
  4.  前記フェライトの平均結晶粒径が5.0~30μm、前記硬質相の平均結晶粒径が1.0~5.0μmであることを特徴とする請求項1~3のいずれか一項に記載の鋼板。
  5.  前記板厚方向1/4位置での前記圧延方向における前記平均Mn濃度の前記板厚方向での最大と最小の差を、前記板厚方向1/4位置での前記平均Mn濃度で除した値Z1が0.110以下であることを特徴とする請求項1~4のいずれか一項に記載の鋼板。
  6.  前記板厚方向1/2位置での前記圧延方向における前記平均Mn濃度の前記板厚方向での最大と最小の差を、前記板厚方向1/2位置での前記平均Mn濃度で除した値Z2が0.150以下であることを特徴とする請求項1~5のいずれか一項に記載の鋼板。
  7.  前記硬質相が、マルテンサイト、ベイナイト、焼き戻しマルテンサイト、およびパーライトのいずれか1種以上からなることを特徴とする請求項1~6のいずれか一項に記載の鋼板。
  8.  前記鋼板の板厚が0.20mm~1.00mmであることを特徴とする、請求項1~7の何れか一項に記載の鋼板。
  9.  前記鋼板が自動車外板パネルであることを特徴とする、請求項1~8の何れか一項に記載の鋼板。
PCT/JP2022/007854 2021-02-26 2022-02-25 鋼板 WO2022181761A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US18/277,966 US20240124963A1 (en) 2021-02-26 2022-02-25 Steel sheet
MX2023009945A MX2023009945A (es) 2021-02-26 2022-02-25 Hoja de acero.
CN202280017399.7A CN116888294A (zh) 2021-02-26 2022-02-25 钢板
JP2023502534A JP7486010B2 (ja) 2021-02-26 2022-02-25 鋼板
EP22759795.2A EP4299770A1 (en) 2021-02-26 2022-02-25 Steel sheet
KR1020237032158A KR20230147174A (ko) 2021-02-26 2022-02-25 강판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021029590 2021-02-26
JP2021-029590 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022181761A1 true WO2022181761A1 (ja) 2022-09-01

Family

ID=83049188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007854 WO2022181761A1 (ja) 2021-02-26 2022-02-25 鋼板

Country Status (7)

Country Link
US (1) US20240124963A1 (ja)
EP (1) EP4299770A1 (ja)
JP (1) JP7486010B2 (ja)
KR (1) KR20230147174A (ja)
CN (1) CN116888294A (ja)
MX (1) MX2023009945A (ja)
WO (1) WO2022181761A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070052A1 (ja) * 2022-09-30 2024-04-04 日本製鉄株式会社 鋼板
WO2024150462A1 (ja) * 2023-01-13 2024-07-18 日本製鉄株式会社 めっき鋼板

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117418167B (zh) * 2023-10-30 2024-06-04 江苏康耐特精密机械有限公司 一种高洁净精密金属材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63180305A (ja) * 1987-01-23 1988-07-25 Sumitomo Metal Ind Ltd 薄鋳片の直接熱延による高張力鋼帯の製造方法
JP2005220430A (ja) 2004-02-09 2005-08-18 Jfe Steel Kk 表面品質に優れる高強度溶融亜鉛めっき鋼板
JP2015193897A (ja) * 2014-03-17 2015-11-05 株式会社神戸製鋼所 延性及び曲げ性に優れた高強度冷延鋼板および高強度溶融亜鉛めっき鋼板、並びにそれらの製造方法
JP2017197787A (ja) * 2016-04-25 2017-11-02 新日鐵住金株式会社 延性に優れた高張力厚鋼板及びその製造方法
WO2021187238A1 (ja) * 2020-03-19 2021-09-23 日本製鉄株式会社 鋼板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63180305A (ja) * 1987-01-23 1988-07-25 Sumitomo Metal Ind Ltd 薄鋳片の直接熱延による高張力鋼帯の製造方法
JP2005220430A (ja) 2004-02-09 2005-08-18 Jfe Steel Kk 表面品質に優れる高強度溶融亜鉛めっき鋼板
JP2015193897A (ja) * 2014-03-17 2015-11-05 株式会社神戸製鋼所 延性及び曲げ性に優れた高強度冷延鋼板および高強度溶融亜鉛めっき鋼板、並びにそれらの製造方法
JP2017197787A (ja) * 2016-04-25 2017-11-02 新日鐵住金株式会社 延性に優れた高張力厚鋼板及びその製造方法
WO2021187238A1 (ja) * 2020-03-19 2021-09-23 日本製鉄株式会社 鋼板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024070052A1 (ja) * 2022-09-30 2024-04-04 日本製鉄株式会社 鋼板
WO2024150462A1 (ja) * 2023-01-13 2024-07-18 日本製鉄株式会社 めっき鋼板

Also Published As

Publication number Publication date
US20240124963A1 (en) 2024-04-18
EP4299770A1 (en) 2024-01-03
JPWO2022181761A1 (ja) 2022-09-01
JP7486010B2 (ja) 2024-05-17
KR20230147174A (ko) 2023-10-20
CN116888294A (zh) 2023-10-13
MX2023009945A (es) 2023-09-07

Similar Documents

Publication Publication Date Title
CN109642294B (zh) 钢板及其制造方法
TWI531667B (zh) 熱壓印成形體及其製造方法
JP5636727B2 (ja) 溶融亜鉛めっき鋼板およびその製造方法
WO2022181761A1 (ja) 鋼板
TWI507535B (zh) Alloyed molten galvanized steel sheet
WO2020166231A1 (ja) 鋼板及びその製造方法
WO2020203979A1 (ja) 被覆鋼部材、被覆鋼板およびそれらの製造方法
JP7216933B2 (ja) 鋼板およびその製造方法
CN111511942A (zh) 镀铝系钢板、镀铝系钢板的制造方法及汽车用部件的制造方法
JP5807624B2 (ja) 冷延鋼板およびその製造方法
WO2022254847A1 (ja) 鋼板
WO2023149002A1 (ja) 鋼板
CN111868283B (zh) 钢板
CN114945690B (zh) 钢板及其制造方法
CN111868286B (zh) 钢板
JP7302756B1 (ja) 熱間プレス用鋼板、その製造方法、熱間プレス部材およびその製造方法
KR102666358B1 (ko) 열간 프레스 부재 및 그의 제조 방법
WO2024122118A1 (ja) めっき鋼板
WO2023026465A1 (ja) 鋼板およびプレス成形品
WO2024122121A1 (ja) めっき鋼板
KR20240113836A (ko) 도금 강판
WO2024070052A1 (ja) 鋼板
WO2023026468A1 (ja) 鋼板およびプレス成形品
WO2024166891A1 (ja) ホットスタンプ成形体及び鋼板、並びにこれらの製造方法
WO2023132350A1 (ja) ホットスタンプ用鋼板、ホットスタンプ用鋼板の製造方法、及びホットスタンプ成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759795

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023502534

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18277966

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/009945

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 202280017399.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237032158

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202317063100

Country of ref document: IN

Ref document number: 1020237032158

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022759795

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022759795

Country of ref document: EP

Effective date: 20230926