WO2023026465A1 - 鋼板およびプレス成形品 - Google Patents

鋼板およびプレス成形品 Download PDF

Info

Publication number
WO2023026465A1
WO2023026465A1 PCT/JP2021/031487 JP2021031487W WO2023026465A1 WO 2023026465 A1 WO2023026465 A1 WO 2023026465A1 JP 2021031487 W JP2021031487 W JP 2021031487W WO 2023026465 A1 WO2023026465 A1 WO 2023026465A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
content
press
steel
Prior art date
Application number
PCT/JP2021/031487
Other languages
English (en)
French (fr)
Inventor
泰弘 伊藤
裕之 川田
真衣 永野
諭 弘中
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN202180101569.5A priority Critical patent/CN117897512A/zh
Priority to PCT/JP2021/031487 priority patent/WO2023026465A1/ja
Priority to KR1020247005240A priority patent/KR20240036620A/ko
Priority to JP2023543605A priority patent/JPWO2023026465A1/ja
Publication of WO2023026465A1 publication Critical patent/WO2023026465A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0257Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon

Definitions

  • the present invention relates to steel sheets and press-formed products.
  • panel system parts such as door outers are also being investigated for increased strength and reduced thickness.
  • these panel-type parts are required to have a high appearance quality because they are visible to the public. Therefore, even high-strength steel sheets, which have been conventionally applied to frame parts, are required to have excellent appearance quality after molding when applied to panel-type parts.
  • a ghost line is a fine unevenness on the order of several millimeters that occurs on the surface due to preferential deformation around the soft phase when a steel sheet having a hard phase and a soft phase is press-formed. Since the unevenness forms a striped pattern on the surface, a press-molded product with ghost lines has poor appearance quality.
  • the interface between the hot-dip galvanized layer and the base steel sheet has an average thickness of 0.1 ⁇ m to 2.0 ⁇ m, and the difference between the maximum thickness and the minimum thickness in the width direction of the steel sheet is within 0.5 ⁇ m.
  • the difference between the maximum thickness and the minimum thickness of the refined layer in the steel sheet width direction is within 2.0 ⁇ m.
  • the Vickers hardness at a depth of 0.05 mm from the front and back surfaces of the steel plate is 100 to 250 Hv, and (the Vickers hardness at a depth of 0.2 mm from the front and back surfaces) ⁇ 0.8 or less, the variation in Vickers hardness in the inner layer portion on the plate thickness center side from the position where the depth from the front and back is 0.2 mm is 100 Hv or less, and the inner layer portion has a total area ratio of bainite and martensite. It discloses a high-strength thin steel sheet containing 80% or more, having a surface roughness Ra of 0.4 to 1.2 ⁇ m, and having a tensile strength of 780 MPa or more.
  • Patent document 4 has a chemical composition in which the alloyed hot-dip galvanized layer contains 10 to 15% Fe and 0.20 to 0.45% Al, and the balance is Zn and impurities, It discloses a high-strength galvannealed steel sheet, wherein the interfacial adhesion strength between the steel sheet and the galvannealed layer is 20 MPa or more.
  • a high-strength steel sheet with less property deterioration after cutting characterized by:
  • An object of the present invention is to provide a press-formed article having high strength and excellent appearance quality, and a steel sheet from which the press-formed article can be produced.
  • the gist of the present invention is as follows.
  • the steel sheet according to one aspect of the present invention has a chemical composition in mass% of C: 0.040 to 0.100%, Mn: 1.00-2.00%, Si: 0.005 to 1.500%, P: 0.100% or less, S: 0.0200% or less, Al: 0.005 to 0.700%, N: 0.0150% or less, O: 0.0100% or less, Cr: 0 to 0.80%, Mo: 0-0.16%, B: 0 to 0.0100%, Ti: 0 to 0.100%, Nb: 0 to 0.060%, V: 0 to 0.50%, Ni: 0 to 1.00%, Cu: 0 to 1.00%, W: 0 to 1.00%, Sn: 0 to 1.00%, Sb: 0 to 0.200%, Ca: 0 to 0.0100%, Mg: 0-0.0100%, Zr: 0 to 0.0100%, REM: 0-0.0100%, and the balance: Fe and im
  • the steel sheet according to (1) above has the chemical composition, in mass %, Cr: 0.01 to 0.80%, Mo: 0.01-0.16%, B: 0.0001 to 0.0100%, Ti: 0.001 to 0.100%, Nb: 0.001 to 0.060%, V: 0.01 to 0.50%, Ni: 0.01 to 1.00%, Cu: 0.01 to 1.00%, W: 0.01 to 1.00%, Sn: 0.01 to 1.00%, Sb: 0.001 to 0.200%, Ca: 0.0001 to 0.0100%, Mg: 0.0001-0.0100%, Zr: 0.0001-0.0100% and REM: 0.0001-0.0100% It may contain one or more selected from the group consisting of.
  • the steel sheet according to (1) or (2) above is 3 times the thickness in the thickness direction from the surface of the steel sheet in the thickness direction from a position 1/8 of the thickness in the thickness direction from the surface of the steel sheet.
  • the average value of the Mn concentration in the region up to the position separated by /8 is ⁇ and the standard deviation of the Mn concentration is ⁇ , (3 ⁇ / ⁇ ) ⁇ 100 ⁇ 7.0 may be satisfied.
  • the steel sheet according to any one of (1) to (3) above may have a decarburized layer having a thickness of 20 ⁇ m or more on the surface of the steel sheet.
  • the steel sheet according to any one of (1) to (4) above may have a plating layer on at least one surface of the steel sheet.
  • a press-formed product according to another aspect of the present invention is obtained by press-forming the steel sheet according to any one of (1) to (5) above.
  • the inventors investigated a method for suppressing the generation of ghost lines after press forming a high-strength steel plate. As a result, the present inventors have found that it is effective to reduce the difference in hardness in steel and control the surface roughness of the steel sheet within a desired range.
  • One of the causes of the difference in hardness in steel is band-like Mn segregation that occurs during the solidification process of steel. If Mn segregation occurs in a band shape, the area around the portion with high Mn concentration is likely to transform into austenite during annealing, so hard martensite occurs in a band shape after annealing after cold rolling. As a result, the difference in hardness in the steel increases, and ghost lines are thought to occur during press forming.
  • the present inventors have found that in order to suppress the occurrence of ghost lines in press-formed products, it is important to moderately roughen the surface of the steel plate as a material to the extent that the appearance quality does not deteriorate. bottom.
  • the steel sheet according to the present embodiment has a chemical composition in mass% of C: 0.040 to 0.100%, Mn: 1.00 to 2.00%, Si: 0.005 to 1.500%, P : 0.100% or less, S: 0.0200% or less, Al: 0.005 to 0.700%, N: 0.0150% or less, O: 0.0100% or less, and the balance: Fe and impurities contains.
  • C 0.040 to 0.100%
  • Mn 1.00 to 2.00%
  • Si 0.005 to 1.500%
  • P 0.100% or less
  • S 0.0200% or less
  • Al 0.005 to 0.700%
  • N 0.0150% or less
  • O 0.0100% or less
  • Fe and impurities contains a chemical composition in mass% of C: 0.040 to 0.100%, Mn: 1.00 to 2.00%, Si: 0.005 to 1.500%, P : 0.100% or less, S: 0.0200% or less, Al: 0.005 to 0.700%, N: 0.0
  • C 0.040-0.100% C is an element that increases the strength of steel sheets and press-formed products.
  • the C content should be 0.040% or more.
  • the C content is preferably 0.050% or more, more preferably 0.060% or more, 0.070% or more, or 0.075% or more.
  • the C content is made 0.100% or less.
  • the C content is preferably 0.095% or less, more preferably 0.090% or less or 0.085% or less.
  • the C content is preferably more than 0.075%.
  • Mn 1.00-2.00%
  • Mn is an element that enhances the hardenability of steel and contributes to the improvement of strength.
  • the Mn content should be 1.00% or more.
  • the Mn content is preferably 1.05% or more, 1.10% or more, or 1.20% or more, more preferably 1.30% or more, 1.40% or more, or 1.50% or more.
  • the Mn content is set to 2.00% or less.
  • the Mn content is preferably 1.85% or less, more preferably 1.80% or less, and even more preferably 1.75% or less.
  • Si 0.005-1.500%
  • Si is an element that improves the strength-formability balance of the steel sheet.
  • the Si content should be 0.005% or more.
  • Si is 0.010% or more.
  • Si is also an element that forms coarse Si oxides that act as starting points for destruction.
  • the Si content is set to 1.500% or less.
  • the Si content is preferably 1.300% or less, more preferably 1.000% or less.
  • P 0.100% or less
  • P is an impurity element that embrittles steel.
  • the P content is set to 0.100% or less.
  • the P content is preferably 0.050% or less, more preferably 0.030% or less or 0.020% or less.
  • the lower limit of the P content includes 0%, the production cost can be further reduced by setting the P content to 0.001% or more. Therefore, the P content may be 0.001% or more.
  • S 0.0200% or less
  • S is an impurity element that forms Mn sulfides and deteriorates the formability of the steel sheet, such as ductility, hole expandability, stretch flangeability and bendability. If the S content is 0.0200% or less, it is possible to suppress a significant deterioration in the formability of the steel sheet. Therefore, the S content should be 0.0200% or less.
  • the S content is preferably 0.0100% or less, more preferably 0.0080% or less. Although the lower limit of the S content includes 0%, the production cost can be further reduced by setting the S content to 0.0001% or more. Therefore, the S content may be 0.0001% or more.
  • Al 0.005-0.700%
  • Al is an element that functions as a deoxidizer. In order to sufficiently obtain the deoxidizing effect of Al, the Al content is made 0.005% or more. The Al content is preferably 0.010% or more or 0.025% or more. Al is also an element that embrittles steel by forming coarse oxides that serve as fracture starting points. By setting the Al content to 0.700% or less, it is possible to suppress the formation of coarse oxides that act as starting points for fracture, and to suppress the slab from becoming easily cracked. Therefore, the Al content is set to 0.700% or less. The upper limit of Al content is 0.600%, 0.400%, 0.200% or . 100% is preferred, and 0.085%, 0.070%, 0.065% or 0.060% is more preferred.
  • N is an impurity element that forms nitrides and deteriorates formability such as ductility, hole expandability, stretch flangeability and bendability of the steel sheet.
  • N content is made 0.0150% or less.
  • N is also an element that causes welding defects during welding and hinders productivity. Therefore, the N content is preferably 0.0120% or less, more preferably 0.0100% or less.
  • the lower limit of the N content includes 0%, the production cost can be further reduced by setting the N content to 0.0005% or more. Therefore, the N content may be 0.0005% or more.
  • O is an impurity element that forms oxides and impairs the formability of the steel sheet, such as ductility, hole expandability, stretch flangeability and bendability.
  • the O content is set to 0.0100% or less. It is preferably 0.0080% or less, more preferably 0.0050% or less.
  • the lower limit of the O content includes 0%, the manufacturing cost can be further reduced by making the O content 0.0001% or more. Therefore, the O content may be 0.0001% or more.
  • the steel sheet according to the present embodiment may contain the following elements as optional elements instead of part of Fe.
  • the content is 0% when the following optional elements are not contained.
  • Cr 0-0.80% Cr is an element that increases the hardenability of steel and contributes to the improvement of the strength of the steel sheet. Since Cr does not necessarily have to be contained, the lower limit of the Cr content includes 0%. The Cr content is preferably 0.01% or more, more preferably 0.20% or more, and still more preferably 0.30% or more in order to sufficiently obtain the strength improvement effect of Cr. In addition, when the Cr content is 0.80% or less, it is possible to suppress the formation of coarse Cr carbides that may serve as starting points for fracture. Therefore, the Cr content is set to 0.80% or less. In order to reduce alloy costs, the upper limit of Cr content may be set to 0.60%, 0.40%, 0.20%, 0.10% or 0.05%, as required.
  • Mo 0-0.16%
  • Mo is an element that suppresses phase transformation at high temperatures and contributes to improvement in strength of the steel sheet. Since Mo does not necessarily have to be contained, the lower limit of the Mo content includes 0%. In order to sufficiently obtain the strength improvement effect of Mo, the Mo content is preferably 0.01% or more, more preferably 0.05% or more, and still more preferably 0.10% or more. In addition, when the Mo content is 0.16% or less, it is possible to suppress a decrease in hot workability and a decrease in productivity. Therefore, Mo content shall be 0.16% or less. In order to reduce alloy costs, the upper limit of Mo content may be set to 0.12%, 0.10%, 0.08% or 0.04% as required. Including both Cr: 0.01 to 0.80% and Mo: 0.01 to 0.16% is preferable because the strength of the steel sheet can be more reliably improved.
  • B 0 to 0.0100%
  • B is an element that suppresses phase transformation at high temperatures and contributes to improvement in strength of the steel sheet. Since B does not necessarily have to be contained, the lower limit of the B content includes 0%. In order to sufficiently obtain the strength improvement effect of B, the B content is preferably 0.0001% or more, more preferably 0.0005% or more, and even more preferably 0.0010% or more. Further, when the B content is 0.0100% or less, it is possible to suppress the formation of B precipitates and the decrease in the strength of the steel sheet. Therefore, the B content is set to 0.0100% or less. In order to reduce the alloy cost, the upper limit of the B content may be 0.0050%, 0.0030%, 0.0020%, 0.0010% or 0.0005% as required.
  • Ti is an element that has the effect of reducing the amounts of S, N, and O that generate coarse inclusions that act as starting points for fracture.
  • Ti has the effect of refining the structure and improving the strength-formability balance of the steel sheet.
  • the lower limit of the Ti content includes 0%.
  • the Ti content is preferably 0.001% or more, more preferably 0.001% or more.
  • the Ti content is set to 0.100% or less.
  • the Ti content is preferably 0.080% or less, more preferably 0.060% or less.
  • the upper limit of the Ti content may be 0.040%, 0.020%, 0.010% or 0.005% as required.
  • Nb is an element that contributes to the improvement of the strength of a steel sheet through strengthening by precipitates, grain refinement strengthening by suppressing the growth of ferrite grains, and dislocation strengthening by suppressing recrystallization. Since Nb does not necessarily have to be contained, the lower limit of the Nb content includes 0%. In order to sufficiently obtain the above effects, the Nb content is preferably 0.001% or more, more preferably 0.005% or more, and still more preferably 0.010% or more. Further, when the Nb content is 0.060% or less, it is possible to promote recrystallization and suppress the remaining non-recrystallized ferrite, thereby ensuring the formability of the steel sheet. Therefore, the Nb content is set to 0.060% or less. The Nb content is preferably 0.050% or less, more preferably 0.040% or less. In order to reduce the alloy cost, the upper limit of the Nb content may be 0.030%, 0.020%, 0.010% or 0.005% as required.
  • V 0-0.50%
  • V is an element that contributes to the improvement of the strength of the steel sheet through strengthening by precipitates, grain refinement strengthening by suppressing the growth of ferrite grains, and dislocation strengthening by suppressing recrystallization. Since V does not necessarily have to be contained, the lower limit of the V content includes 0%. In order to sufficiently obtain the strength improvement effect of V, the V content is preferably 0.01% or more, more preferably 0.03% or more. Further, when the V content is 0.50% or less, it is possible to suppress the deterioration of the formability of the steel sheet due to the precipitation of a large amount of carbonitrides. Therefore, the V content is set to 0.50% or less. In order to reduce the alloy cost, the upper limit of the V content may be 0.30%, 0.20%, 0.10%, 0.05% or 0.02% as required.
  • Ni is an element that suppresses phase transformation at high temperatures and contributes to improvement in strength of the steel sheet. Since Ni does not necessarily have to be contained, the lower limit of the Ni content includes 0%. The Ni content is preferably 0.01% or more, more preferably 0.05% or more, and still more preferably 0.20% or more in order to sufficiently obtain the strength improvement effect of Ni. Moreover, it can suppress that the weldability of a steel plate falls as Ni content is 1.00% or less. Therefore, the Ni content is set to 1.00% or less. In order to reduce the alloy cost, the upper limit of the Ni content may be 0.60%, 0.40%, 0.20%, 0.10% or 0.03% as required.
  • Cu 0-1.00%
  • Cu is an element that exists in steel in the form of fine particles and contributes to the improvement of the strength of the steel sheet. Since Cu does not necessarily have to be contained, the lower limit of the Cu content includes 0%.
  • the Cu content is preferably 0.01% or more, more preferably 0.05% or more, and still more preferably 0.15% or more in order to sufficiently obtain the strength improvement effect of Cu. Moreover, it can suppress that the weldability of a steel plate falls that Cu content is 1.00% or less. Therefore, the Cu content is set to 1.00% or less.
  • the upper limit of Cu content may be set to 0.60%, 0.40%, 0.20%, 0.10% or 0.03% as required.
  • W 0-1.00%
  • W is an element that suppresses phase transformation at high temperatures and contributes to improvement in strength of the steel sheet. Since W does not necessarily have to be contained, the lower limit of the W content includes 0%. In order to sufficiently obtain the strength improvement effect of W, the W content is preferably 0.01% or more, more preferably 0.03% or more, and even more preferably 0.10% or more. In addition, when the W content is 1.00% or less, it is possible to suppress a decrease in hot workability and a decrease in productivity. Therefore, the W content is set to 1.00% or less. In order to reduce the alloy cost, the upper limit of the W content may be 0.50%, 0.20%, 0.10%, 0.05% or 0.02% as required.
  • Sn 0-1.00%
  • Sn is an element that suppresses the coarsening of crystal grains and contributes to the improvement of the strength of the steel sheet. Since Sn does not necessarily have to be contained, the lower limit of the Sn content includes 0%. In order to sufficiently obtain the effect of Sn, the Sn content is more preferably 0.01% or more. Moreover, when the Sn content is 1.00% or less, it is possible to prevent the steel sheet from embrittlement and breakage during rolling. Therefore, the Sn content is set to 1.00% or less. In order to reduce the alloy cost, the upper limit of the Sn content may be 0.50%, 0.20%, 0.10%, 0.05% or 0.02% as required.
  • Sb 0-0.200%
  • Sb is an element that suppresses the coarsening of crystal grains and contributes to the improvement of the strength of the steel sheet. Since Sb does not necessarily have to be contained, the lower limit of the Sb content includes 0%. In order to sufficiently obtain the above effects, the Sb content is preferably 0.001% or more, more preferably 0.005% or more. Moreover, when the Sb content is 0.200% or less, it is possible to prevent the steel sheet from embrittlement and breakage during rolling. Therefore, the Sb content is set to 0.200% or less. In order to reduce the alloy cost, the upper limit of the Sb content may be set to 0.100%, 0.070%, 0.040%, 0.010% or 0.005% as required.
  • Ca, Mg, Zr, and REM are elements that contribute to improving the formability of steel sheets. Since Ca, Mg, Zr and REM do not necessarily have to be contained, the lower limit of the total content of these elements includes 0%. In order to sufficiently obtain the effect of improving formability, the content of each of these elements is preferably 0.0001% or more, more preferably 0.0010% or more. In order to sufficiently obtain the above effect, it is not necessary to contain all of the above elements, and the content of any one of the above elements should be 0.0001% or more.
  • the content of each of Ca, Mg, Zr and REM is 0.0100% or less, it is possible to suppress the decrease in ductility of the steel sheet. Therefore, the content of each of these elements is set to 0.0100% or less. Preferably, it is 0.0050% or less. In order to reduce alloy costs, the upper limits of the contents of Ca, Mg, Zr and REM may be set to 0.0030%, 0.0020%, 0.0010% or 0.0003%, respectively, if necessary.
  • REM Rotary Earth Metal
  • the REM content refers to the total content of these elements.
  • the rest of the chemical composition of the steel sheet according to this embodiment may be Fe and impurities.
  • impurities include those that are unavoidably mixed from steel raw materials or scraps and/or during the steelmaking process, or elements that are allowed within a range that does not impair the properties of the steel sheet according to the present embodiment.
  • Impurities include H, Na, Cl, Co, Zn, Ga, Ge, As, Se, Y, Tc, Ru, Rh, Pd, Ag, Cd, In, Te, Cs, Ta, Re, Os, Ir, Pt , Au, Pb, Bi, and Po.
  • the total amount of impurities may be 0.100% or less.
  • the chemical composition of the steel sheet described above may be measured by a general analytical method. For example, it may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry).
  • C and S can be measured using a combustion-infrared absorption method
  • N can be measured using an inert gas fusion-thermal conductivity method
  • O can be measured using an inert gas fusion-nondispersive infrared absorption method.
  • the coating layer on the surface may be removed by mechanical grinding, and then the chemical composition may be analyzed.
  • Arithmetic mean waviness Wa 0.10 to 0.30 ⁇ m
  • the present inventors have found that the surface of the steel sheet that is the material should be moderately roughened. By doing so, it was found that the occurrence of ghost lines in the press-molded product can be suppressed. Therefore, the steel sheet according to the present embodiment has an arithmetic mean waviness Wa of 0.10 ⁇ m or more. It is preferably 0.13 ⁇ m or more.
  • the arithmetic mean waviness Wa is set to 0.30 ⁇ m or less. It is preferably 0.25 ⁇ m or less.
  • the arithmetic mean waviness Wa is the arithmetic mean waviness of the steel sheet when the steel sheet does not have a coating layer, and the arithmetic mean waviness of the coating layer when the steel sheet has a coating layer on its surface.
  • the arithmetic mean waviness Wa is obtained by the following method.
  • a test piece of 50 mm x 50 mm is cut from a position 10 mm or more away from the end face of the steel plate.
  • a laser displacement measuring device Keyence VK-X1000
  • three lines of the profile are measured along the direction perpendicular to the rolling direction.
  • an undulation curve is obtained by successively applying contour filters with cutoff values ⁇ c and ⁇ f to the cross-sectional curve according to JIS B 0601:2013.
  • a wave curve is obtained by removing a component with a wavelength ⁇ c of 0.8 mm or less and a component with a wavelength ⁇ f of 2.5 mm or more from the obtained measurement results.
  • the arithmetic mean undulation is calculated according to JIS B 0601:2013, and the average value of a total of 3 lines is calculated.
  • the arithmetic mean of the calculated average values of the three lines is taken as the arithmetic mean waviness Wa of the steel plate.
  • the surface of the plating layer may be subjected to the line analysis described above.
  • the steel plate according to the present embodiment includes a region from a position 1/8 of the plate thickness in the thickness direction from the surface of the steel plate to a position 3/8 of the plate thickness in the thickness direction from the surface (surface of the steel plate).
  • the average value of the Mn concentration in the region from 1/8 depth to 3/8 depth from the surface of the steel sheet is ⁇ in unit mass%, and the standard deviation of the Mn concentration is ⁇ in unit mass%, ( 3 ⁇ / ⁇ ) ⁇ 100 ⁇ 7.0.
  • (3 ⁇ / ⁇ ) ⁇ 100 is more preferably 6.5 or less.
  • the lower limit of (3 ⁇ / ⁇ ) ⁇ 100 is not particularly limited, it may be 0.
  • Lowering (3 ⁇ / ⁇ ) ⁇ 100 increases the manufacturing cost, so the lower limit may be 2.0, 4.0 or 5.0.
  • the upper limit of (3 ⁇ / ⁇ ) ⁇ 100 may be set to 11.0, 10.0, 9.0 or 8.0 as required.
  • the average value ⁇ of the Mn concentration and the standard deviation ⁇ of the Mn concentration are obtained by the following method. After the thickness cross-section of the steel sheet is mirror-polished, the Mn concentration is measured at 600 points at predetermined depth positions in the rolling direction of the steel sheet at intervals of 1 ⁇ m. By calculating the average value of the obtained Mn concentrations, the Mn concentration (% by mass) at a predetermined depth position is obtained. This operation is performed every 1 ⁇ m in the plate thickness direction from a position 1/8 of the plate thickness away from the surface of the steel plate in the plate thickness direction to a position 3/8 of the plate thickness away from the surface in the plate thickness direction.
  • the average value ⁇ of the Mn concentration is obtained. Further, the standard deviation ⁇ of the Mn concentration is obtained by calculating the standard deviation from all the obtained Mn concentrations.
  • the device used is an electron probe microanalyzer (EPMA), and the measurement conditions are an acceleration voltage of 15 kV.
  • the steel sheet according to this embodiment may have a plating layer on at least one surface of the steel sheet.
  • the plating layer includes a zinc plating layer, a zinc alloy plating layer, and an alloying zinc plating layer and an alloying zinc alloy plating layer obtained by subjecting these to an alloying treatment.
  • the zinc plating layer and the zinc alloy plating layer are formed by a hot dip plating method, an electroplating method, or a vapor deposition plating method.
  • the Al content of the galvanized layer is 0.5% by mass or less, the adhesion between the surface of the steel sheet and the galvanized layer can be sufficiently ensured, so the Al content of the galvanized layer is 0.5%. % by mass or less is preferable.
  • the galvanized layer is a hot-dip galvanized layer
  • the Fe content of the hot-dip galvanized layer is preferably 3.0% by mass or less in order to increase the adhesion between the steel sheet surface and the galvanized layer.
  • the galvanized layer is an electrogalvanized layer
  • the Fe content of the electrogalvanized layer is preferably 0.5% by mass or less from the viewpoint of improving corrosion resistance.
  • the zinc plating layer and the zinc alloy plating layer include Al, Ag, B, Be, Bi, Ca, Cd, Co, Cr, Cs, Cu, Ge, Hf, Zr, I, K, La, Li, Mg, Mn, One or more of Mo, Na, Nb, Ni, Pb, Rb, Sb, Si, Sn, Sr, Ta, Ti, V, W, Zr, and REM, in a range that does not impair the corrosion resistance and formability of the steel sheet and may contain In particular, Ni, Al and Mg are effective in improving the corrosion resistance of steel sheets.
  • the zinc plated layer or zinc alloy plated layer may be a zinc alloyed layer or a zinc alloy plated layer that has been alloyed.
  • the hot-dip galvanized layer after the alloying treatment is used from the viewpoint of improving the adhesion between the steel sheet surface and the alloyed coating layer.
  • the Fe content of the hot-dip zinc alloy plating layer is 7.0 to 13.0% by mass.
  • the Fe content in the plating layer can be obtained by the following method. Only the plated layer is dissolved and removed using a 5% by volume HCl aqueous solution containing an inhibitor. By measuring the Fe content in the obtained solution using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry), the Fe content (% by mass) in the plating layer is obtained.
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrometry
  • the steel sheet according to this embodiment may have a decarburized layer with a thickness of 20 ⁇ m or more on the surface of the steel sheet, regardless of the presence or absence of the plating layer.
  • the thickness of the decarburized layer is measured by the following method. At three arbitrary points on the steel sheet, the C concentration in the area from the surface of the steel sheet to a position separated by 1/2 of the thickness in the depth direction (thickness direction) is measured every 1 ⁇ m depth. The thickness of the decarburized layer is obtained by regarding the region where the C concentration is 1/2 or less of the C concentration at the position 1/2 of the plate thickness away from the surface as the decarburized layer, and calculating the thickness of the region. For the measurement, a Marcus type high-frequency glow discharge luminescence surface analyzer (GD-Profiler) manufactured by Horiba, Ltd. is used.
  • GD-Profiler high-frequency glow discharge luminescence surface analyzer
  • the plate thickness of the steel plate according to the present embodiment is not limited to a specific range, but is preferably 0.2 to 2.0 mm in consideration of versatility and manufacturability.
  • the plate thickness is preferably 0.2 mm or more. More preferably, it is 0.4 mm or more.
  • the plate thickness is preferably 2.0 mm or less. More preferably, it is 1.5 mm or less.
  • the steel plate according to this embodiment preferably has a tensile strength of 500 to 750 MPa.
  • a tensile strength of 500 to 750 MPa.
  • the tensile strength may have a lower limit of 540 MPa, 580 MPa or 600 MPa, and an upper limit of 680 MPa or 660 MPa.
  • the tensile strength is evaluated according to JIS Z 2241:2011.
  • the test piece shall be JIS Z 2241:2011 No. 5 test piece.
  • Tensile test pieces are taken from the 1/4 part from the edge in the width direction, and the direction perpendicular to the rolling direction is taken as the longitudinal direction.
  • the press-formed product according to this embodiment which can be manufactured by press-forming the steel plate described above, will be described.
  • the press-formed product according to this embodiment has the same chemical composition as the steel plate described above.
  • the press-formed product according to the present embodiment may have the above-described plated layer on at least one surface.
  • press-formed product according to the present embodiment is obtained by press-forming the above-described steel plate, the occurrence of ghost lines is suppressed and the appearance quality is excellent.
  • press-formed products include panel system parts such as door outers for automobile bodies.
  • excellent appearance quality means that striped patterns (that is, ghost lines) occurring on the surface at intervals of several millimeters are not observed.
  • the maximum length of streak patterns at intervals of several millimeters that can be observed when an arbitrary area of 100 mm ⁇ 100 mm is visually observed is 50 mm or less.
  • the maximum length of the streak pattern is preferably 20 mm or less. Moreover, it is more preferable that no streak pattern is observed.
  • Wz which is the sum of the maximum peak height Zp and the maximum valley height Zv of the undulation curve
  • Wz is 0.60 ⁇ m or less.
  • Wz is obtained in accordance with JIS B 0601:2013 by obtaining the undulation curve of the surface of the press-formed product, obtaining the maximum peak height Zp and the maximum valley height Zv, and calculating the sum of these.
  • the steel plate according to the present embodiment can obtain the effect as long as it has the above characteristics regardless of the manufacturing method. Moreover, it may be a steel strip instead of a steel plate.
  • a steel plate in which the arithmetic mean waviness Wa is preferably controlled can be stably manufactured. can do.
  • the condition (VI) in addition to the following conditions (I) to (IV).
  • Conditions (V) and (VI) are arbitrary conditions. Each condition will be described below.
  • the winding temperature is set to 550° C. or higher.
  • the pickling time shall be 50 seconds or longer.
  • Arithmetic mean roughness Ra of the roll surface in the final pass of cold rolling is set to 0.2 to 0.7 ⁇ m.
  • the reduction ratio of temper rolling is set to 0.3 to 0.7%, and the arithmetic mean roughness Ra of the rolling rolls is set to 1.5 to 3.5 ⁇ m.
  • V) The slab is heated to a temperature range of 1200° C. or higher and held in the temperature range for 5 hours or longer.
  • Annealing is performed with a dew point (average dew point in the annealing furnace) of ⁇ 20° C. or higher and a residence time of the steel sheet in a temperature range of 700° C. or higher for 50 to 400 seconds.
  • the winding temperature is more preferably 600°C or higher, and even more preferably 650°C or higher.
  • (II) Pickling Time 50 Seconds or More When the pickling time is set to 50 seconds or more after coiling and before cold rolling, unevenness is likely to occur on the surface of the steel sheet. More preferably, the pickling time is 70 seconds or longer.
  • V Slab heating temperature/holding time: 5 hours or longer in a temperature range of 1200°C or higher
  • Condition (V) is an arbitrary condition.
  • Condition (VI) is an arbitrary condition.
  • the cold-rolled steel sheet obtained by the above method may be annealed.
  • the dew point during annealing (average dew point in the annealing furnace) is -20 ° C. or higher, and the residence time of the steel plate in the temperature range of 700 ° C. or higher is 50 to 400 seconds, so that the surface of the steel plate is stably removed.
  • a decarburized layer having a thickness of 30 ⁇ m or more can be formed on the surface of the steel sheet.
  • the upper limit of the dew point need not be set, but may be about 10°C.
  • Conditions other than those described above are not particularly limited, but, for example, it is preferable to satisfy the following conditions. After heating the slab to a temperature range of 1100° C. or higher, the billet is hot rolled. After hot rolling, coiling is performed, and then pickling is performed. Cold rolling is performed after pickling. The cumulative rolling reduction in cold rolling is preferably 30 to 90%. Annealing is performed after cold rolling. After that, the plating layer described above is formed as necessary. Moreover, it is preferable to perform temper rolling after that.
  • the press molding method is not particularly limited.
  • automobile panel parts such as door outers can be formed by pressing a steel plate with a blank holder and a die, applying strain to the steel plate by pressing a punch, and stretching the steel plate.
  • Such forming is called draw forming or stretch forming.
  • a slab with a thickness of 240 to 300 mm was produced by melting steel having the chemical composition shown in Table 1 and continuously casting it. Using the obtained slabs, cold-rolled steel sheets and plated steel sheets were manufactured under conditions (I) to (V) described later. In Table 2, when the conditions were satisfied, "OK” was written in the condition column, and when the conditions were not satisfied, "NG” was written in the condition column. The thickness of the obtained steel sheet and plated steel sheet was 0.2 to 2.0 mm.
  • annealing was performed after cold rolling.
  • Manufacturing conditions other than conditions (I) to (VI) were as follows. After heating the slab to a temperature range of 1100° C. or higher, it was hot rolled. After hot rolling, coiling was performed, and then pickling was performed. After pickling, cold rolling was performed with a cumulative rolling reduction of 30 to 90%. Annealing was performed after cold rolling to form an alloyed hot-dip galvanized layer (GA), a hot-dip galvanized layer (GI), and an electroplated layer (EG) as necessary. After that, temper rolling was performed.
  • GA alloyed hot-dip galvanized layer
  • GI hot-dip galvanized layer
  • EG electroplated layer
  • Conditions (I) to (VI) in the table are as follows.
  • the winding temperature is set to 550° C. or higher.
  • the pickling time shall be 50 seconds or more.
  • Arithmetic mean roughness Ra of the roll surface in the final pass of cold rolling is set to 0.2 to 0.7 ⁇ m.
  • the reduction ratio of temper rolling is set to 0.3 to 0.7%, and the arithmetic mean roughness Ra of the rolling rolls is set to 1.5 to 3.5 ⁇ m.
  • the slab is heated to a temperature range of 1200° C. or higher and held in the temperature range for 5 hours or longer.
  • Annealing is performed with a dew point (average dew point in the annealing furnace) of ⁇ 20° C. or higher and a residence time of the steel sheet in a temperature range of 700° C. or higher for 50 to 400 seconds.
  • a roughly semi-cylindrical simulated part (press-molded product) simulating a door outer was manufactured by press molding.
  • the material steel plate or plated steel sheet
  • strain in any direction along the surface of the simulated part is applied at any position on the surface of the simulated part.
  • the ratio of the strain in the direction perpendicular to the direction (any direction thereof) to the strain was set to about 1. In other words, press molding was performed so that strain anisotropy did not occur at any position on the surface of the simulated part.
  • the arithmetic mean waviness Wa, the average value ⁇ and standard deviation ⁇ of the Mn concentration, the tensile strength, and the thickness of the decarburized layer were obtained by the methods described above.
  • the obtained tensile strength was 500 MPa or more, it was determined to be high strength and passed. On the other hand, when the obtained tensile strength was less than 500 MPa, it was determined to be unacceptable because the strength was inferior.
  • the appearance quality of the simulated parts was evaluated by the following method. Appearance quality was evaluated by the degree of ghost lines generated on the surface of the simulated part after molding.
  • the surface after press molding was ground with a grindstone, and striped patterns at intervals of several millimeters on the surface were judged to be ghost lines, and were rated on a scale of 1 to 5 depending on the degree of occurrence of the striped pattern.
  • An arbitrary area of 100 mm x 100 mm was visually checked, and the case where no streak pattern was confirmed was rated as "1", and the case where the maximum length of the streak pattern was 20 mm or less was rated as "2", and the maximum length of the streak pattern.
  • Wz is the sum of the maximum peak height Zp and the maximum valley height Zv of the undulation curve.
  • a waviness curve of the surface of the press-molded product (simulated part) was obtained in accordance with JIS B 0601:2013 by the same method as that used to obtain the arithmetic mean waviness Wa. From this undulation curve, the maximum peak height Zp and the maximum valley height Zv were obtained, and Wz was obtained by calculating the sum of these. When the obtained Wz was 0.40 ⁇ m or less, it was judged that the appearance quality was superior.
  • the press-molded product according to the comparative example had inferior strength or deteriorated appearance quality.
  • the steel sheets according to the comparative examples have high strength and could not produce press-formed products having excellent appearance quality.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

この鋼板は、化学組成が、質量%で、C:0.040~0.100%、Mn:1.00~2.00%、Si:0.005~1.500%、P:0.100%以下、S:0.0200%以下、Al:0.005~0.700%、N:0.0150%以下、O:0.0100%以下、並びに、残部:Feおよび不純物を含有し、算術平均うねりWaが0.10~0.30μmである。

Description

鋼板およびプレス成形品
 本発明は、鋼板およびプレス成形品に関する。
 地球環境保護の観点から、自動車車体には軽量化・衝突安全性の向上が求められている。これらの要求に応えるべく、ドアアウタ等のパネル系部品についても、高強度化および薄肉化が検討されている。これらのパネル系部品は、骨格部品とは異なり、人目に触れるため高い外観品質が求められる。そのため、従来では骨格部品に適用されていた高強度の鋼板であっても、パネル系部品に適用する場合には、成形後において外観品質に優れることが要求される。
 外観品質を向上するために、ゴーストラインの発生を抑制することが1つの課題として挙げられる。ゴーストラインは、硬質相と軟質相とを有する鋼板をプレス成形した際、軟質相周辺が優先的に変形することで、表面に数mmオーダーで生じる微小な凹凸のことである。この凹凸は表面に筋模様となって生じるため、ゴーストラインが発生したプレス成形品は、外観品質が劣る。
 特許文献1は、表面品質に優れる高強度溶融亜鉛めっき鋼板を開示している。具体的には、特許文献1は、質量%で、C:0.02~0.20%、Si:0.7%以下、Mn:1.5~3.5%、P:0.10%以下、S:0.01%以下、Al:0.1~1.0%、N:0.010%以下、Cr:0.03~0.5%を含有し、かつ、Al、Cr、Si、Mnの含有量を同号項とした数式:A=400Al/(4Cr+3Si+6Mn)で定義された焼鈍時表面酸化指数Aが2.3以上であり、残部がFeおよび不可避的不純物からなり、さらに、前記基板の組織が、フェライトおよび第2相からなり、該第2相がマルテンサイト主体である鋼板(基板)と、当該基板表面に溶融亜鉛めっき層を有する、高強度溶融亜鉛めっき鋼板を開示している。
 特許文献2は、溶融亜鉛めっき層と前記母材鋼板との界面に、平均厚さが0.1μm~2.0μmであり、鋼板幅方向における最大厚さと最小厚さとの差が0.5μm以内であるFe-Al合金層を有し、前記Fe-Al合金層に直接接する微細化層において、鋼板幅方向における前記微細化層の最大厚さと最小厚さとの差が2.0μm以内である溶融亜鉛めっき鋼板を開示している。
 特許文献3は、鋼板の表裏面からの深さが0.05mmの位置でのビッカース硬さが100~250Hv、かつ(表裏面からの深さが0.2mmの位置でのビッカース硬さ)×0.8以下、表裏面からの深さが0.2mmの位置から板厚中心側の内層部におけるビッカース硬さのばらつきが100Hv以下であり、前記内層部がベイナイトおよびマルテンサイトを合計面積率で80%以上含有し、前記鋼板の表面粗さがRaで0.4~1.2μmであり、前記鋼板の引張強度が780MPa以上であることを特徴とする高強度薄鋼板を開示している。
 特許文献4は、合金化溶融亜鉛めっき層が質量%で、Fe:10~15%およびAl:0.20~0.45%を含有し、残部がZnおよび不純物からなる化学組成を有するとともに、前記鋼板と前記合金化溶融亜鉛めっき層との界面密着強度が20MPa以上であることを特徴とする高張力合金化溶融亜鉛めっき鋼板を開示している。
 特許文献5は、鋼板組織が主としてフェライトとベイナイトからなり、板厚方向のMn偏析度(=中心部Mnピーク濃度/平均Mn濃度)が1.20以下であり、引張最大強さが540MPa以上であることを特徴とする切断後の特性劣化の少ない高強度鋼板を開示している。
日本国特開2005-220430号公報 国際公開第2019/026113号 日本国特開2006-70328号公報 日本国特開2006-97102号公報 日本国特開2009-263685号公報
 本発明は上記実情に鑑みてなされたものである。本発明は、高強度であり、優れた外観品質を有するプレス成形品、およびこのプレス成形品を製造できる鋼板を提供することを目的とする。
 本発明の要旨は以下の通りである。
(1)本発明の一態様に係る鋼板は、化学組成が、質量%で、
C :0.040~0.100%、
Mn:1.00~2.00%、
Si:0.005~1.500%、
P :0.100%以下、
S :0.0200%以下、
Al:0.005~0.700%、
N :0.0150%以下、
O :0.0100%以下、
Cr:0~0.80%、
Mo:0~0.16%、
B :0~0.0100%、
Ti:0~0.100%、
Nb:0~0.060%、
V :0~0.50%、
Ni:0~1.00%、
Cu:0~1.00%、
W :0~1.00%、
Sn:0~1.00%、
Sb:0~0.200%、
Ca:0~0.0100%、
Mg:0~0.0100%、
Zr:0~0.0100%、
REM:0~0.0100%、および
残部:Feおよび不純物であり、
 算術平均うねりWaが0.10~0.30μmである。
(2)上記(1)に記載の鋼板は、前記化学組成が、質量%で、
Cr:0.01~0.80%、
Mo:0.01~0.16%、
B :0.0001~0.0100%、
Ti:0.001~0.100%、
Nb:0.001~0.060%、
V :0.01~0.50%、
Ni:0.01~1.00%、
Cu:0.01~1.00%、
W :0.01~1.00%、
Sn:0.01~1.00%、
Sb:0.001~0.200%、
Ca:0.0001~0.0100%、
Mg:0.0001~0.0100%、
Zr:0.0001~0.0100%、および
REM:0.0001~0.0100%
からなる群から選択される1種または2種以上を含有してもよい。
(3)上記(1)または(2)に記載の鋼板は、前記鋼板の表面から板厚方向に板厚の1/8離れた位置から、前記表面から前記板厚方向に前記板厚の3/8離れた位置までの領域におけるMn濃度の平均値をμとし、前記Mn濃度の標準偏差をσとしたとき、(3σ/μ)×100≦7.0であってもよい。
(4)上記(1)~(3)のいずれか1項に記載の鋼板は、前記鋼板の表面に厚さが20μm以上の脱炭層を有してもよい。
(5)上記(1)~(4)のいずれか1項に記載の鋼板は、前記鋼板の少なくとも一方の表面にめっき層を有してもよい。
(6)本発明の別の態様に係るプレス成形品は、上記(1)~(5)の何れか1項に記載の鋼板をプレス成形して得られる。
 本発明に係る上記態様によれば、高強度であり、優れた外観品質を有するプレス成形品、およびこのプレス成形品を製造できる鋼板を提供することができる。
 本発明者らは、高強度の鋼板をプレス成形した後において、ゴーストラインの発生を抑制する方法について検討した。その結果、本発明者らは、鋼中の硬度差を低減し、且つ鋼板の表面粗さを所望の範囲に制御することが有効であることを知見した。鋼中に硬度差が生じる要因の一つとして、鋼の凝固過程に生じるバンド状のMn偏析が挙げられる。バンド状にMn偏析が生じると、Mn濃度が高い箇所の周辺は焼鈍中にオーステナイトに変態し易いため、冷間圧延後に焼鈍を行った後に、硬質なマルテンサイトがバンド状に生じる。その結果、鋼中の硬度差が大きくなり、プレス成形時にゴーストラインが発生すると考えられる。
 一般的には、素材となる鋼板の表面粗さは小さい程好ましいとされる。鋼板の表面粗さが過度に大きい場合、外観品質が劣るためである。しかし、プレス成形品においてゴーストラインの発生を抑制するためには、外観品質が低下しない程度に、素材となる鋼板の表面を適度に粗くすることが重要であることを、本発明者らは知見した。
 本発明は上記知見に基づいてなされたものであり、以下に本実施形態に係る鋼板およびプレス成形品について詳細に説明する。ただし、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。
 まず、本実施形態に係る鋼板の化学組成について説明する。以下に「~」を挟んで記載する数値限定範囲には、下限値および上限値がその範囲に含まれる。「未満」または「超」と示す数値には、その値が数値範囲に含まれない。以下の説明において、化学組成に関する%は特に指定しない限り質量%である。
 本実施形態に係る鋼板は、化学組成が、質量%で、C:0.040~0.100%、Mn:1.00~2.00%、Si:0.005~1.500%、P:0.100%以下、S:0.0200%以下、Al:0.005~0.700%、N:0.0150%以下、O:0.0100%以下、並びに、残部:Feおよび不純物を含有する。以下、各元素について説明する。
 C:0.040~0.100%
 Cは、鋼板およびプレス成形品の強度を高める元素である。所望の強度を得るために、C含有量は0.040%以上とする。強度をより高めるため、C含有量は、好ましくは0.050%以上であり、より好ましくは0.060%以上、0.070%以上又は0.075%以上である。
 また、C含有量を0.100%以下とすることで、凝固時のMnの拡散が助長され、これによりバンド状のMn偏析が生じやすくなることを抑制できる。その結果、プレス成形後のゴーストラインの発生を抑制できる。そのため、C含有量は0.100%以下とする。C含有量は、0.095%以下が好ましく、0.090%以下又は0.085%以下がより好ましい。
 なお、Mn含有量が1.40%以下である場合は、C含有量は0.075%超であることが好ましい。このように、Mn含有量およびC含有量を厳格に制御することで、高温において鋼中のMn拡散が促進され、Mn偏析を低減することができる。
 Mn:1.00~2.00%
 Mnは、鋼の焼入れ性を高めて、強度の向上に寄与する元素である。所望の強度を得るために、Mn含有量は1.00%以上とする。Mn含有量は、好ましくは1.05%以上、1.10%以上又は1.20%以上、より好ましくは1.30%以上、1.40%以上又は1.50%以上である。
 また、Mn含有量が2.00%以下であると、鋼の凝固時にバンド状のMn偏析が生じることを抑制できる。そのため、Mn含有量は2.00%以下とする。Mn含有量は、1.85%以下が好ましく、1.80%以下がより好ましく、1.75%以下がより一層好ましい。
 Si:0.005~1.500%
 Siは、鋼板の強度-成形性バランスを向上する元素である。この効果を得るために、Si含有量は0.005%以上とする。好ましくは0.010%以上である。
 また、Siは、破壊の起点として働く粗大なSi酸化物を形成する元素でもある。Si含有量を1.500%以下とすることで、Si酸化物が形成されることを抑制でき、割れが発生しにくくなる。その結果、鋼の脆化を抑制することができる。そのため、Si含有量は1.500%以下とする。Si含有量は1.300%以下が好ましく、1.000%以下がより好ましい。
 P:0.100%以下
 Pは、不純物元素であり、鋼を脆化する元素である。P含有量が0.100%以下であると、鋼板が脆化して生産工程において割れ易くなることを抑制できる。そのため、P含有量は0.100%以下とする。生産性の観点から、P含有量は0.050%以下が好ましく、0.030%以下又は0.020%以下がより好ましい。
 P含有量の下限は0%を含むが、P含有量を0.001%以上とすることで、製造コストをより低減できる。そのため、P含有量は0.001%以上としてもよい。
 S:0.0200%以下
 Sは、不純物元素であり、Mn硫化物を形成し、鋼板の延性、穴拡げ性、伸びフランジ性および曲げ性などの成形性を劣化させる元素である。S含有量が0.0200%以下であると、鋼板の成形性が著しく低下することを抑制できる。そのため、S含有量は0.0200%以下とする。S含有量は0.0100%以下が好ましく、0.0080%以下がより好ましい。
 S含有量の下限は0%を含むが、S含有量を0.0001%以上とすることで、製造コストをより低減できる。そのため、S含有量は0.0001%以上としてもよい。
 Al:0.005~0.700%
 Alは、脱酸材として機能する元素である。Alによる脱酸効果を十分に得るために、Al含有量は0.005%以上とする。Al含有量は、好ましくは0.010%以上または0.025%以上である。
 また、Alは、破壊の起点となる粗大な酸化物を形成し、鋼を脆化する元素でもある。Al含有量を0.700%以下とすることで、破壊の起点として働く粗大な酸化物の生成を抑制でき、鋳片が割れ易くなることを抑制できる。そのため、Al含有量は0.700%以下とする。Al含有量の上限は0.600%、0.400%、0.200%または.100%が好ましく、0.085%、0.070%、0.065%又は0.060%がより好ましい。
 N:0.0150%以下
 Nは、不純物元素であり、窒化物を形成し、鋼板の延性、穴拡げ性、伸びフランジ性および曲げ性などの成形性を劣化させる元素である。N含有量が0.0150%以下であると、鋼板の成形性が低下することを抑制できる。そのため、N含有量は0.0150%以下とする。また、Nは、溶接時に溶接欠陥を発生させて生産性を阻害する元素でもある。そのため、N含有量は、好ましくは0.0120%以下であり、より好ましくは0.0100%以下である。
 N含有量の下限は0%を含むが、N含有量を0.0005%以上とすることで、製造コストをより低減できる。そのため、N含有量は0.0005%以上としてもよい。
 O:0.0100%以下
 Oは、不純物元素であり、酸化物を形成し、鋼板の延性、穴拡げ性、伸びフランジ性および曲げ性などの成形性を阻害する元素である。O含有量が0.0100%以下であると、鋼板の成形性が著しく低下することを抑制できる。そのため、O含有量は0.0100%以下とする。好ましくは0.0080%以下、より好ましくは0.0050%以下である。
 O含有量の下限は0%を含むが、O含有量を0.0001%以上とすることで、製造コストをより低減できる。そのため、O含有量は0.0001%以上としてもよい。
 本実施形態に係る鋼板は、Feの一部に代えて、任意元素として、以下の元素を含有してもよい。以下の任意元素を含有しない場合の含有量は0%である。
 Cr:0~0.80%
 Crは、鋼の焼入れ性を高め、鋼板の強度の向上に寄与する元素である。Crは必ずしも含有させなくてよいので、Cr含有量の下限は0%を含む。Crによる強度向上効果を十分に得るためには、Cr含有量は、0.01%以上が好ましく、0.20%以上がより好ましく、0.30%以上がより一層好ましい。
 また、Cr含有量が0.80%以下であると、破壊の起点となり得る粗大なCr炭化物が形成されることを抑制できる。そのため、Cr含有量は0.80%以下とする。合金コスト低減のため、必要に応じて、Cr含有量の上限を0.60%、0.40%、0.20%、0.10%又は0.05%としてもよい。
 Mo:0~0.16%
 Moは、高温での相変態を抑制し、鋼板の強度の向上に寄与する元素である。Moは必ずしも含有させなくてよいので、Mo含有量の下限は0%を含む。Moによる強度向上効果を十分に得るためには、Mo含有量は、0.01%以上が好ましく、0.05%以上がより好ましく、0.10%以上がより一層好ましい。
 また、Mo含有量が0.16%以下であると、熱間加工性が低下して生産性が低下することを抑制できる。そのため、Mo含有量は、0.16%以下とする。合金コスト低減のため、必要に応じて、Mo含有量の上限を0.12%、0.10%、0.08%又は0.04%としてもよい。
 なお、Cr:0.01~0.80%およびMo:0.01~0.16%の両方を含むことで、鋼板の強度をより確実に向上することができるため、好ましい。
 B:0~0.0100%
 Bは、高温での相変態を抑制し、鋼板の強度の向上に寄与する元素である。Bは必ずしも含有させなくてよいので、B含有量の下限は0%を含む。Bによる強度向上効果を十分に得るためには、B含有量は、0.0001%以上が好ましく、0.0005%以上がより好ましく、0.0010%以上がより一層好ましい。
 また、B含有量が0.0100%以下であると、B析出物が生成して鋼板の強度が低下することを抑制できる。そのため、B含有量は0.0100%以下とする。合金コスト低減のため、必要に応じて、B含有量の上限を0.0050%、0.0030%、0.0020%、0.0010%又は0.0005%としてもよい。
 Ti:0~0.100%
 Tiは、破壊の起点として働く粗大な介在物を発生させるS量、N量およびO量を低減する効果を有する元素である。また、Tiは組織を微細化し、鋼板の強度-成形性バランスを高める効果がある。Tiは必ずしも含有させなくてよいので、Ti含有量の下限は0%を含む。上記効果を十分に得るためには、Ti含有量は0.001%以上とすることが好ましく、0.001%以上とすることがより好ましい。
 また、Ti含有量が0.100%以下であると、粗大なTi硫化物、Ti窒化物およびTi酸化物の形成を抑制でき、鋼板の成形性を確保することができる。そのため、Ti含有量は0.100%以下とする。Ti含有量は0.080%以下とすることが好ましく、0.060%以下とすることがより好ましい。合金コスト低減のため、必要に応じて、Ti含有量の上限を0.040%、0.020%、0.010%又は0.005%としてもよい。
 Nb:0~0.060%
 Nbは、析出物による強化、フェライト結晶粒の成長抑制による細粒化強化および再結晶の抑制による転位強化によって、鋼板の強度の向上に寄与する元素である。Nbは必ずしも含有させなくてよいので、Nb含有量の下限は0%を含む。上記効果を十分に得るためには、Nb含有量は0.001%以上が好ましく、0.005%以上とすることがより好ましく、0.010%以上とすることがより一層好ましい。
 また、Nb含有量が0.060%以下であると、再結晶を促進して未再結晶フェライトが残存することを抑制でき、鋼板の成形性を確保することができる。そのため、Nb含有量は0.060%以下とする。Nb含有量は好ましくは0.050%以下であり、より好ましくは0.040%以下である。合金コスト低減のため、必要に応じて、Nb含有量の上限を0.030%、0.020%、0.010%又は0.005%としてもよい。
 V:0~0.50%
 Vは、析出物による強化、フェライト結晶粒の成長抑制による細粒化強化および再結晶の抑制による転位強化によって、鋼板の強度の向上に寄与する元素である。Vは必ずしも含有させなくてよいので、V含有量の下限は0%を含む。Vによる強度向上効果を十分に得るためには、V含有量は、0.01%以上が好ましく、0.03%以上がより好ましい。
 また、V含有量が0.50%以下であると、炭窒化物が多量に析出して鋼板の成形性が低下することを抑制できる。そのため、V含有量は、0.50%以下とする。合金コスト低減のため、必要に応じて、V含有量の上限を0.30%、0.20%、0.10%、0.05%又は0.02%としてもよい。
 Ni:0~1.00%
 Niは、高温での相変態を抑制し、鋼板の強度の向上に寄与する元素である。Niは必ずしも含有させなくてよいので、Ni含有量の下限は0%を含む。Niによる強度向上効果を十分に得るためには、Ni含有量は、0.01%以上が好ましく、0.05%以上がより好ましく、0.20%以上がより一層好ましい。
 また、Ni含有量が1.00%以下であると、鋼板の溶接性が低下することを抑制できる。そのため、Ni含有量は1.00%以下とする。合金コスト低減のため、必要に応じて、Ni含有量の上限を0.60%、0.40%、0.20%、0.10%又は0.03%としてもよい。
 Cu:0~1.00%
 Cuは、微細な粒子の形態で鋼中に存在し、鋼板の強度の向上に寄与する元素である。Cuは必ずしも含有させなくてよいので、Cu含有量の下限は0%を含む。Cuによる強度向上効果を十分に得るためには、Cu含有量は、0.01%以上が好ましく、0.05%以上がより好ましく、0.15%以上がより一層好ましい。
 また、Cu含有量が1.00%以下であると、鋼板の溶接性が低下することを抑制できる。そのため、Cu含有量は1.00%以下とする。合金コスト低減のため、必要に応じて、Cu含有量の上限を0.60%、0.40%、0.20%、0.10%又は0.03%としてもよい。
 W:0~1.00%
 Wは、高温での相変態を抑制し、鋼板の強度の向上に寄与する元素である。Wは必ずしも含有させなくてよいので、W含有量の下限は0%を含む。Wによる強度向上効果を十分に得るためには、W含有量は、0.01%以上が好ましく、0.03%以上がより好ましく、0.10%以上がより一層好ましい。
 また、W含有量が1.00%以下であると、熱間加工性が低下して生産性が低下することを抑制できる。そのため、W含有量は1.00%以下とする。合金コスト低減のため、必要に応じて、W含有量の上限を0.50%、0.20%、0.10%、0.05%又は0.02%としてもよい。
 Sn:0~1.00%
 Snは、結晶粒の粗大化を抑制し、鋼板の強度の向上に寄与する元素である。Snは必ずしも含有させなくてよいので、Sn含有量の下限は0%を含む。Snによる効果を十分に得るためには、Sn含有量は、0.01%以上がより好ましい。
 また、Sn含有量が1.00%以下であると、鋼板が脆化して圧延時に破断することを抑制できる。そのため、Sn含有量は1.00%以下とする。合金コスト低減のため、必要に応じて、Sn含有量の上限を0.50%、0.20%、0.10%、0.05%又は0.02%としてもよい。
 Sb:0~0.200%
 Sbは、結晶粒の粗大化を抑制し、鋼板の強度の向上に寄与する元素である。Sbは必ずしも含有させなくてよいので、Sb含有量の下限は0%を含む。上記効果を十分に得るためには、Sb含有量は、0.001%以上が好ましく、0.005%以上がより好ましい。
 また、Sb含有量が0.200%以下であると、鋼板が脆化して圧延時に破断することを抑制できる。そのため、Sb含有量は0.200%以下とする。合金コスト低減のため、必要に応じて、Sb含有量の上限を0.100%、0.070%、0.040%、0.010%又は0.005%としてもよい。
 Ca:0~0.0100%
 Mg:0~0.0100%
 Zr:0~0.0100%
 REM:0~0.0100%
 Ca、Mg、ZrおよびREMは、鋼板の成形性の向上に寄与する元素である。Ca、Mg、ZrおよびREMは必ずしも含有させなくてよいので、これらの元素の含有量の合計の下限は0%を含む。成形性向上効果を十分に得るためには、これらの元素の含有量はそれぞれ、0.0001%以上が好ましく、0.0010%以上がより好ましい。上記効果を十分に得るためには、上記元素の全てを含有する必要はなく、いずれか1種でもその含有量が0.0001%以上であればよい。
 また、Ca、Mg、ZrおよびREMのそれぞれの含有量が0.0100%以下であると、鋼板の延性が低下することを抑制できる。そのため、これらの元素の含有量はそれぞれ、0.0100%以下とする。好ましくは0.0050%以下である。合金コスト低減のため、必要に応じて、Ca、Mg、ZrおよびREMそれぞれの含有量の上限を、それぞれ0.0030%、0.0020%、0.0010%又は0.0003%としてもよい。
 REM(Rare Earth Metal)は、Sc、Y及びランタノイドからなる合計17元素を指し、REMの含有量とはこれらの元素の合計含有量を指す。
 本実施形態に係る鋼板の化学組成の残部は、Fe及び不純物であってもよい。不純物としては、鋼原料もしくはスクラップからおよび/または製鋼過程で不可避的に混入するもの、あるいは本実施形態に係る鋼板の特性を阻害しない範囲で許容される元素が例示される。不純物として、H、Na、Cl、Co、Zn、Ga、Ge、As、Se、Y、Tc、Ru、Rh、Pd、Ag、Cd、In、Te、Cs、Ta、Re、Os、Ir、Pt、Au、Pb、Bi、Poが挙げられる。不純物は、合計で0.100%以下含んでもよい。
 上述した鋼板の化学組成は、一般的な分析方法によって測定すればよい。例えば、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。なお、CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用い、Oは不活性ガス融解-非分散型赤外線吸収法を用いて測定すればよい。
 鋼板が表面にめっき層を有する場合は、機械研削により表面のめっき層を除去してから、化学組成の分析を行えばよい。
 算術平均うねりWa:0.10~0.30μm
 一般的には、素材となる鋼板の算術平均うねりWaは小さい程、外観品質の観点において好ましいとされる。しかし、本発明者らは、プレス成形品においてゴーストラインの発生を抑制するためには、素材となる鋼板の表面を適度に粗くする、具体的には、算術平均うねりWaを0.10μm以上とすることで、プレス成形品におけるゴーストラインの発生を抑制できることを知見した。そのため、本実施形態に係る鋼板では、算術平均うねりWaを0.10μm以上とする。好ましくは0.13μm以上である。
 また、算術平均うねりWaが過度に大きい場合は鋼板自体の外観品質が低下し、プレス成形後においても低い外観品質が維持される。そのため、算術平均うねりWaは0.30μm以下とする。好ましくは0.25μm以下である。
 なお、算術平均うねりWaは、鋼板がめっき層を有しない場合は鋼板の算術平均うねりのことであり、鋼板が表面にめっき層を有する場合はめっき層の算術平均うねりのことである。
 本実施形態において算術平均うねりWaは、以下の方法により得る。
 鋼板の端面から10mm以上離れた位置から50mm×50mmの試験片を切り出す。次に、レーザー変位測定装置(キーエンスVK-X1000)を用いて、圧延方向と直角の方向に沿ってプロファイルを3ライン測定する。得られた結果から、JIS B 0601:2013に準拠し、断面曲線にカットオフ値λcおよびλfの輪郭曲線フィルタを順次適用することによってうねり曲線を得る。具体的には、得られた測定結果から、波長λcが0.8mm以下の成分および波長λfが2.5mm以上の成分を除去して、うねり曲線を得る。得られたうねり曲線をもとに、JIS B 0601:2013に準拠し、算術平均うねりを算出し、合計3ラインの平均値を算出する。算出された3ラインの平均値の算術平均を、鋼板の算術平均うねりWaとする。
 鋼板が表面にめっき層を有する場合は、めっき層の表面について上述のライン分析を行えばよい。
 (3σ/μ)×100≦7.0
 本実施形態に係る鋼板は、鋼板の表面から板厚方向に板厚の1/8離れた位置から、前記表面から板厚方向に板厚の3/8離れた位置までの領域(鋼板の表面から1/8深さ~鋼板の表面から3/8深さの領域)におけるMn濃度の平均値を単位質量%でμとし、前記Mn濃度の標準偏差を単位質量%でσとしたとき、(3σ/μ)×100≦7.0であることが好ましい。(3σ/μ)×100を7.0以下とすることで、鋼板中のMn偏析の発生をより低減でき、ゴーストラインの発生をより抑制することができ、より外観品質に優れるプレス成形品を得ることができる。(3σ/μ)×100は6.5以下とすることがより好ましい。(3σ/μ)×100の下限は特に限定しないが、0としてもよい。(3σ/μ)×100を低くするためには製造コストが高くなるため、その下限を2.0、4.0または5.0としてもよい。必要に応じて、(3σ/μ)×100の上限を11.0、10.0、9.0又は8.0としてもよい。
 本実施形態においてMn濃度の平均値μおよびMn濃度の標準偏差σは以下の方法により得る。
 鋼板の板厚断面を鏡面研磨した後に、所定の深さ位置において、鋼板の圧延方向に、測定間隔1μmで600点におけるMn濃度を測定する。得られたMn濃度の平均値を算出することで、所定の深さ位置におけるMn濃度(質量%)を得る。この操作を、板厚方向に1μm毎に、鋼板の表面から板厚方向に板厚の1/8離れた位置から、前記表面から板厚方向に板厚の3/8離れた位置まで行う。得られたすべてのMn濃度の平均値(算術平均)を算出することで、Mn濃度の平均値μを得る。また、得られたすべてのMn濃度から標準偏差を算出することで、Mn濃度の標準偏差σを得る。
 使用する装置は電子プローブマイクロアナライザ(EPMA)とし、測定条件は加速電圧を15kVとする。
 本実施形態に係る鋼板は、鋼板の少なくとも一方の表面に、めっき層を有してもよい。めっき層としては、亜鉛めっき層および亜鉛合金めっき層、並びに、これらに合金化処理を施した合金化亜鉛めっき層および合金化亜鉛合金めっき層が挙げられる。
 亜鉛めっき層および亜鉛合金めっき層は、溶融めっき法、電気めっき法、または蒸着めっき法で形成する。亜鉛めっき層のAl含有量が0.5質量%以下であると、鋼板の表面と亜鉛めっき層との密着性を十分に確保することができるので、亜鉛めっき層のAl含有量は0.5質量%以下が好ましい。
 亜鉛めっき層が溶融亜鉛めっき層の場合、鋼板表面と亜鉛めっき層との密着性を高めるため、溶融亜鉛めっき層のFe含有量は3.0質量%以下が好ましい。
 亜鉛めっき層が電気亜鉛めっき層の場合、電気亜鉛めっき層のFe含有量は、耐食性の向上の点で、0.5質量%以下が好ましい。
 亜鉛めっき層および亜鉛合金めっき層は、Al、Ag、B、Be、Bi、Ca、Cd、Co、Cr、Cs、Cu、Ge、Hf、Zr、I、K、La、Li、Mg、Mn、Mo、Na、Nb、Ni、Pb、Rb、Sb、Si、Sn、Sr、Ta、Ti、V、W、Zr、REMの1種または2種以上を、鋼板の耐食性および成形性を阻害しない範囲で、含有してもよい。特に、Ni、AlおよびMgは、鋼板の耐食性の向上に有効である。
 亜鉛めっき層または亜鉛合金めっき層は、合金化処理が施された、合金化亜鉛めっき層または合金化亜鉛合金めっき層であってもよい。溶融亜鉛めっき層または溶融亜鉛合金めっき層に合金化処理を施す場合、鋼板表面と合金化めっき層との密着性向上の観点から、合金化処理後の溶融亜鉛めっき層(合金化亜鉛めっき層)または溶融亜鉛合金めっき層(合金化亜鉛合金めっき層)のFe含有量を7.0~13.0質量%とすることが好ましい。溶融亜鉛めっき層または溶融亜鉛合金めっき層を有する鋼板に合金化処理を施すことで、めっき層中にFeが取り込まれ、Fe含有量が増量する。これにより、Fe含有量を7.0質量%以上とすることができる。すなわち、Fe含有量が7.0質量%以上である亜鉛めっき層は、合金化亜鉛めっき層または合金化亜鉛合金めっき層である。
 めっき層中のFe含有量は、次の方法により得ることができる。インヒビターを添加した5体積%HCl水溶液を用いてめっき層のみを溶解除去する。ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて、得られた溶解液中のFe含有量を測定することで、めっき層中のFe含有量(質量%)を得る。
 本実施形態に係る鋼板は、めっき層の有無に関わらず、鋼板の表面に厚さが20μm以上の脱炭層を有してもよい。脱炭層の厚さを20μm以上とすることで、筋模様の原因となるバンド状のMn偏析が低減し、プレス成形後の外観品質がより改善される。
 本実施形態において、脱炭層の厚さは、以下の方法により測定する。
 鋼板の任意の3か所について、鋼板の表面から深さ方向(板厚方向)に板厚の1/2離れた位置までの領域におけるC濃度を1μm深さ毎に測定する。表面から板厚の1/2離れた位置におけるC濃度の1/2以下のC濃度である領域を脱炭層とみなし、その厚さを求めることで、脱炭層の厚さを得る。
 測定には(株)堀場製作所製のマーカス型高周波グロー放電発光表面分析装置(GD-Profiler)を用いる。
 本実施形態に係る鋼板の板厚は、特定の範囲に限定されないが、汎用性や製造性を考慮すると、0.2~2.0mmが好ましい。板厚を0.2mm以上とすることで、鋼板形状を平坦に維持することが容易になり、寸法精度および形状精度を向上することができる。そのため、板厚は0.2mm以上が好ましい。より好ましくは0.4mm以上である。
 一方、板厚が2.0mm以下であると、製造過程で、適正なひずみ付与および温度制御を行うことが容易になり、均質な組織を得ることができる。そのため、板厚は2.0mm以下が好ましい。より好ましくは1.5mm以下である。
 本実施形態に係る鋼板は、引張強さが500~750MPaであることが好ましい。引張強さを500MPa以上とすることで、パネル系部品に好適に適用することができる。引張強さを750MPa以下とすることで、プレス成形性を向上でき、且つゴーストラインの発生による外観品質の劣化を抑制することができる。引張強さは、下限を540MPa、580MPa又は600MPaとしてもよく、その上限を680MPa又は660MPaとしてもよい。
 なお、引張強さは、JIS Z 2241:2011に準拠して評価する。試験片はJIS Z 2241:2011の5号試験片とする。引張試験片の採取位置は、板幅方向の端部から1/4部分とし、圧延方向に垂直な方向を長手方向とする。
 次に、上述した鋼板をプレス成形することで製造できる、本実施形態に係るプレス成形品について説明する。本実施形態に係るプレス成形品は、上述した鋼板と同じ化学組成を有する。また、本実施形態に係るプレス成形品は、少なくとも一方の表面に上述しためっき層を備えていてもよい。
 本実施形態に係るプレス成形品は、上述した鋼板をプレス成形して得られるものであるため、ゴーストラインの発生が抑制されており、外観品質に優れる。プレス成形品の具体例としては例えば、自動車車体のドアアウタ等のパネル系部品が挙げられる。
 本実施形態に係るプレス成形品において、外観品質に優れるとは、表面に生じる数mmオーダー間隔の縞模様(すなわちゴーストライン)が観察されないことをいう。更に換言すると、100mm×100mmの任意の領域を目視で確認したときに確認される、数mmオーダー間隔の筋模様の最大長さが50mm以下である。筋模様の最大長さは20mm以下であることが好ましい。また、筋模様は全く観察されないことがより好ましい。
 本実施形態に係るプレス成形品はゴーストラインの発生が抑制されているため、うねり曲線の最大山高さZpと最大谷高さZvとの和であるWzが0.60μm以下である。
 また、3σ/μが好ましく制御された鋼板を用いてプレス成形品を製造することで、外観品質により優れたプレス成形品を得ることができる。つまり、うねり曲線の最大山高さZpと最大谷高さZvとの和であるWzが0.40μm以下であるプレス成形品を得ることができる。
 Wzは、JIS B 0601:2013に準拠して、プレス成形品の表面のうねり曲線を得て、最大山高さZpと最大谷高さZvと求め、これらの和を算出することで得る。
 次に、本実施形態に係る鋼板の製造方法について説明する。
 本実施形態に係る鋼板は、製造方法に依らず、上記の特徴を有していればその効果が得られる。また、鋼板ではなく、鋼帯であってもよい。しかし、上述した化学組成を有する鋼を用いて、例えば、下記条件(I)~(IV)を複合的且つ不可分に制御することで、算術平均うねりWaが好ましく制御された鋼板を安定して製造することができる。また、3σ/μを好ましく制御するためには、下記条件(I)~(IV)に加えて更に、条件(V)を制御することが好ましい。また、脱炭層の厚さを好ましく制御するためには、下記条件(I)~(IV)に加えて更に、条件(VI)を制御することが好ましい。なお、条件(V)および(VI)は任意条件である。
 以下、各条件について説明する。
(I)巻取り温度を550℃以上とする。
(II)酸洗時間を50秒以上とする。
(III)冷間圧延の最終パスの圧延ロール表面の算術平均粗さRaを0.2~0.7μmとする。
(IV)調質圧延の圧下率を0.3~0.7%とし、圧延ロールの算術平均粗さRaを1.5~3.5μmとする。
(V)スラブを1200℃以上の温度域に加熱し、当該温度域で5時間以上保持する。
(VI)露点(焼鈍炉内の平均的な露点)を-20℃以上とし、700℃以上の温度域における鋼板の滞在時間を50~400秒とする焼鈍を行う。
(I)巻取り温度:550℃以上
 熱間圧延後の巻取り温度を550℃以上の高温域とすることで、鋼板の表面にスケールが生じやすくなる。その結果、酸洗後の鋼板の表面に凹凸が生じやすくなる。巻取り温度は、より好ましくは600℃以上であり、より一層好ましくは650℃以上である。
(II)酸洗時間:50秒以上
 巻取り後、且つ冷間圧延前の酸洗において、酸洗時間を50秒以上とすることで、鋼板の表面に凹凸が生じやすくなる。酸洗時間は70秒以上とすることがより好ましい。
(III)冷間圧延の最終パスの圧延ロールの算術平均粗さRa:0.2~0.7μm
 酸洗後、冷間圧延における最終パスの圧延ロール表面の算術平均粗さRaを0.2~0.7μmとすることで、冷間圧延時に鋼板の表面に適度な凹凸を形成することができる。圧延ロールの算術平均粗さRaは0.3μm以上とすることがより好ましい。
 通常の圧延ロールでは上述の算術平均粗さRaを有しないため、本実施形態に係る鋼板を製造することができない。本実施形態に係る鋼板を製造するためには、冷間圧延の最終パスにおいて、特殊な圧延ロールを用いることが望ましい。
(IV)調質圧延の圧下率:0.3~0.7%、圧延ロールの算術平均粗さRa:1.5~3.5μm
 焼鈍後(めっき材であれば、めっき後)の調質圧延において、圧下率を0.3~0.7%とし、圧延ロール表面の算術平均粗さRaを1.5~3.5μmとすることで、鋼板の表面に凹凸を形成することができる。調質圧延時の圧下率は0.5%以上とすることがより好ましく、圧延ロール表面の算術平均粗さRaは2.3μm以上とすることがより好ましい。
(V)スラブの加熱温度・保持時間:1200℃以上の温度域で5時間以上
 条件(V)は任意条件である。スラブを1200℃以上の温度域で5時間以上加熱することによって、鋼板の表面から板厚方向に板厚の1/8離れた位置から、前記表面から板厚方向に板厚の3/8離れた位置までの領域(鋼板の表面から1/8深さ~鋼板の表面から3/8深さの領域)における3σ/μを好ましく制御することができる。その結果、鋼板中のMn偏析の発生をより低減でき、より外観品質に優れるプレス成形品を得ることができる。
(VI)露点:-20℃以上、700℃以上の温度域における鋼板の滞在時間:50~400秒
 条件(VI)は任意条件である。本実施形態では、上述の方法により得た冷間圧延後の鋼板に対し、焼鈍を施してもよい。焼鈍時の露点(焼鈍炉内の平均的な露点)は-20℃以上とし、700℃以上の温度域における鋼板の滞在時間を50~400秒とすることで、安定して鋼板の表面を脱炭することができる。これにより、鋼板の表面に厚さが30μm以上である脱炭層を形成することができる。なお、露点の上限は特に定める必要はないが、10℃程度としてもよい。
 上述した条件以外については、特に限定されないが、例えば以下の条件を満足することが好ましい。
 鋼片を1100℃以上の温度域にスラブを加熱した後、熱間圧延する。熱間圧延後は巻取りを行い、次いで酸洗を行う。酸洗後は冷間圧延を行う。冷間圧延における累積圧下率は30~90%とすることが好ましい。冷間圧延後は焼鈍を行う。その後、必要に応じて、上述しためっき層を形成する。また、その後に調質圧延を施すことが好ましい。
 次に、本実施形態に係るプレス成形品の製造方法について説明する。プレス成形の方法は特に限定されない。例えば、ドアアウタのような自動車のパネル系部品については、鋼板をブランクホルターとダイで押圧した後、パンチを押し当てることで鋼板にひずみを付与し、伸ばすことで形成することが可能である。このような成形を絞り成形あるいは張出成形と呼ぶ。
 次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用する一条件例である。本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得る。
 表1に示す化学組成を有する鋼を溶製し、連続鋳造により厚みが240~300mmのスラブを製造した。得られたスラブを用いて、後述の条件(I)~(V)により、冷延鋼板およびめっき鋼板を製造した。なお、表2において、条件を満足する場合にはその条件の欄に「OK」と記載し、条件を満足しない場合にはその条件の欄に「NG」と記載した。また、得られた鋼板およびめっき鋼板の板厚は0.2~2.0mmであった。
 また、冷間圧延の後に焼鈍を実施した。
 条件(I)~(VI)以外の製造条件は次の通りとした。スラブを1100℃以上の温度域に加熱した後、熱間圧延した。熱間圧延後は巻取りを行い、次いで酸洗を行った。酸洗後は、累積圧下率が30~90%となる冷間圧延を行った。冷間圧延後に焼鈍を実施し、必要に応じて合金化溶融亜鉛めっき層(GA)、溶融亜鉛めっき層(GI)、電気めっき層(EG)を形成した。その後、調質圧延を実施した。
 表中の条件(I)~(VI)は以下の通りである。
(I)巻取り温度を550℃以上とする。
(II)酸洗時間を50秒以上とする。
(III)冷間圧延の最終パスの圧延ロール表面の算術平均粗さRaを0.2~0.7μmとする。
(IV)調質圧延の圧下率を0.3~0.7%とし、圧延ロールの算術平均粗さRaを1.5~3.5μmとする。
(V)スラブを1200℃以上の温度域に加熱し、当該温度域で5時間以上保持する。
(VI)露点(焼鈍炉内の平均的な露点)を-20℃以上とし、700℃以上の温度域における鋼板の滞在時間を50~400秒とする焼鈍を行う。
 次に、製造した鋼板およびめっき鋼板を用いて、プレス成形によってドアアウタを模擬した略半円筒状の模擬部品(プレス成形品)を製造した。この模擬部品をプレス成形する際には、材料(鋼板またはめっき鋼板)を積極的に金型に流入させ、模擬部品の表面におけるいずれの位置においても、模擬部品の表面に沿う任意の方向のひずみに対する当該方向(その任意の方向)に垂直な方向のひずみの比が1程度になるようにした。つまり、模擬部品の表面のどの位置においても、ひずみの異方性が生じないようにプレス成形を行った。
 得られた鋼板およびめっき鋼板に対しては、上述の方法により、算術平均うねりWa、Mn濃度の平均値μおよび標準偏差σ、引張強さ、並びに、脱炭層の厚さを求めた。
 得られた引張強さが500MPa以上であった場合、高強度であるとして合格と判定した。一方、得られた引張強さが500MPa未満であった場合、強度に劣るとして不合格と判定した。
 また、以下の方法により模擬部品の外観品質を評価した。
 外観品質は、成形後の模擬部品の表面に発生するゴーストラインの程度により評価した。プレス成形後の表面を砥石掛けし、表面に生じた数mmオーダー間隔の縞模様を、ゴーストラインと判断し、筋模様の発生程度によって、1~5で評点付けした。100mm×100mmの任意の領域を目視で確認し、筋模様が全く確認されなかった場合を「1」とし、筋模様の最大長さが20mm以下の場合を「2」とし、筋模様の最大長さが20mm超、50mm以下の場合を「3」とし、筋模様の最大長さが50mm超、70mm以下の場合を「4」とし、筋模様の最大長さが70mmを超える場合を「5」とした。評価が「3」以下であった場合、外観品質に優れるとして合格と判定した。一方、評価が「4」以上であった場合、外観品質に劣るとして不合格と判定した。
 更に、「うねり曲線の最大山高さZpと最大谷高さZvとの和であるWz」によっても外観品質をより厳格に評価した。算術平均うねりWaを求めた際と同様の方法により、JIS B 0601:2013に準拠して、プレス成形品(模擬部品)の表面のうねり曲線を得た。このうねり曲線より、最大山高さZpと最大谷高さZvと求め、これらの和を算出することでWzを得た。得られたWzが0.40μm以下であった場合、外観品質がより優れると判断した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2を見ると、本発明例に係るプレス成形品は、高強度であり、優れた外観品質を有することが分かる。また、本発明例に係る鋼板は、高強度であり、優れた外観品質を有するプレス成形品を製造できたことが分かる。更に、3σ/μが7.0以下であった本発明例は、プレス成形後において外観品質がより優れたことが分かる。
 一方、比較例に係るプレス成形品は、強度が劣ったか、外観品質が劣化したことが分かる。また、比較例に係る鋼板は、高強度であり、優れた外観品質を有するプレス成形品を製造できなかったことが分かる。
 本発明に係る上記態様によれば、高強度であり、優れた外観品質を有するプレス成形品、およびこのプレス成形品を製造できる鋼板を提供することができる。

Claims (6)

  1.  化学組成が、質量%で、
    C :0.040~0.100%、
    Mn:1.00~2.00%、
    Si:0.005~1.500%、
    P :0.100%以下、
    S :0.0200%以下、
    Al:0.005~0.700%、
    N :0.0150%以下、
    O :0.0100%以下、
    Cr:0~0.80%、
    Mo:0~0.16%、
    B :0~0.0100%、
    Ti:0~0.100%、
    Nb:0~0.060%、
    V :0~0.50%、
    Ni:0~1.00%、
    Cu:0~1.00%、
    W :0~1.00%、
    Sn:0~1.00%、
    Sb:0~0.200%、
    Ca:0~0.0100%、
    Mg:0~0.0100%、
    Zr:0~0.0100%、
    REM:0~0.0100%、および
    残部:Feおよび不純物であり、
     算術平均うねりWaが0.10~0.30μmである、ことを特徴とする鋼板。
  2.  前記化学組成が、質量%で、
    Cr:0.01~0.80%、
    Mo:0.01~0.16%、
    B :0.0001~0.0100%、
    Ti:0.001~0.100%、
    Nb:0.001~0.060%、
    V :0.01~0.50%、
    Ni:0.01~1.00%、
    Cu:0.01~1.00%、
    W :0.01~1.00%、
    Sn:0.01~1.00%、
    Sb:0.001~0.200%、
    Ca:0.0001~0.0100%、
    Mg:0.0001~0.0100%、
    Zr:0.0001~0.0100%、および
    REM:0.0001~0.0100%
    からなる群から選択される1種または2種以上を含有する、ことを特徴とする請求項1に記載の鋼板。
  3.  前記鋼板の表面から板厚方向に板厚の1/8離れた位置から、前記表面から前記板厚方向に前記板厚の3/8離れた位置までの領域におけるMn濃度の平均値をμとし、前記Mn濃度の標準偏差をσとしたとき、(3σ/μ)×100≦7.0である、ことを特徴とする請求項1または2に記載の鋼板。
  4.  前記鋼板の表面に厚さが20μm以上の脱炭層を有する、ことを特徴とする請求項1~3の何れか一項に記載の鋼板。
  5.  前記鋼板の少なくとも一方の表面にめっき層を有する、ことを特徴とする請求項1~4の何れか一項に記載の鋼板。
  6.  請求項1~5の何れか一項に記載の鋼板をプレス成形して得られる、ことを特徴とするプレス成形品。
PCT/JP2021/031487 2021-08-27 2021-08-27 鋼板およびプレス成形品 WO2023026465A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180101569.5A CN117897512A (zh) 2021-08-27 2021-08-27 钢板及压制成形品
PCT/JP2021/031487 WO2023026465A1 (ja) 2021-08-27 2021-08-27 鋼板およびプレス成形品
KR1020247005240A KR20240036620A (ko) 2021-08-27 2021-08-27 강판 및 프레스 성형품
JP2023543605A JPWO2023026465A1 (ja) 2021-08-27 2021-08-27

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/031487 WO2023026465A1 (ja) 2021-08-27 2021-08-27 鋼板およびプレス成形品

Publications (1)

Publication Number Publication Date
WO2023026465A1 true WO2023026465A1 (ja) 2023-03-02

Family

ID=85322564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031487 WO2023026465A1 (ja) 2021-08-27 2021-08-27 鋼板およびプレス成形品

Country Status (4)

Country Link
JP (1) JPWO2023026465A1 (ja)
KR (1) KR20240036620A (ja)
CN (1) CN117897512A (ja)
WO (1) WO2023026465A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078362B2 (ja) * 1987-10-08 1995-02-01 新日本製鐵株式会社 塗装鮮映性及びプレス加工性の優れた調質圧延鋼板並びにその製造方法
JPH09502661A (ja) * 1993-09-17 1997-03-18 シドマール エヌ.ヴィ. 冷間圧延金属薄板またはストリップを製造するための方法と装置および得られた金属薄板またはストリップ
JPH1046289A (ja) * 1996-05-07 1998-02-17 Nkk Corp パネル加工後のパネル外観と耐デント性に優れた鋼板
JPH10324953A (ja) * 1997-03-26 1998-12-08 Nkk Corp パネル表面形状と耐デント性に優れた冷延鋼板、溶融亜鉛めっき鋼板及びそれらの製造方法
JP2005220430A (ja) 2004-02-09 2005-08-18 Jfe Steel Kk 表面品質に優れる高強度溶融亜鉛めっき鋼板
JP2006070328A (ja) 2004-09-02 2006-03-16 Sumitomo Metal Ind Ltd 高強度薄鋼板およびその製造方法
JP2006097102A (ja) 2004-09-30 2006-04-13 Sumitomo Metal Ind Ltd 高張力合金化溶融亜鉛めっき鋼板およびその製造方法
WO2008108044A1 (ja) * 2007-03-01 2008-09-12 Jfe Steel Corporation 高張力冷延鋼板およびその製造方法
JP2009263685A (ja) 2008-04-22 2009-11-12 Nippon Steel Corp 切断後の特性劣化の少ない高強度鋼板及びその製造方法
WO2019026113A1 (ja) 2017-07-31 2019-02-07 新日鐵住金株式会社 溶融亜鉛めっき鋼板
JP2019534949A (ja) * 2016-10-17 2019-12-05 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップTata Steel Ijmuiden Bv 塗装部品用鋼基材

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078362B2 (ja) * 1987-10-08 1995-02-01 新日本製鐵株式会社 塗装鮮映性及びプレス加工性の優れた調質圧延鋼板並びにその製造方法
JPH09502661A (ja) * 1993-09-17 1997-03-18 シドマール エヌ.ヴィ. 冷間圧延金属薄板またはストリップを製造するための方法と装置および得られた金属薄板またはストリップ
JPH1046289A (ja) * 1996-05-07 1998-02-17 Nkk Corp パネル加工後のパネル外観と耐デント性に優れた鋼板
JPH10324953A (ja) * 1997-03-26 1998-12-08 Nkk Corp パネル表面形状と耐デント性に優れた冷延鋼板、溶融亜鉛めっき鋼板及びそれらの製造方法
JP2005220430A (ja) 2004-02-09 2005-08-18 Jfe Steel Kk 表面品質に優れる高強度溶融亜鉛めっき鋼板
JP2006070328A (ja) 2004-09-02 2006-03-16 Sumitomo Metal Ind Ltd 高強度薄鋼板およびその製造方法
JP2006097102A (ja) 2004-09-30 2006-04-13 Sumitomo Metal Ind Ltd 高張力合金化溶融亜鉛めっき鋼板およびその製造方法
WO2008108044A1 (ja) * 2007-03-01 2008-09-12 Jfe Steel Corporation 高張力冷延鋼板およびその製造方法
JP2009263685A (ja) 2008-04-22 2009-11-12 Nippon Steel Corp 切断後の特性劣化の少ない高強度鋼板及びその製造方法
JP2019534949A (ja) * 2016-10-17 2019-12-05 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップTata Steel Ijmuiden Bv 塗装部品用鋼基材
WO2019026113A1 (ja) 2017-07-31 2019-02-07 新日鐵住金株式会社 溶融亜鉛めっき鋼板

Also Published As

Publication number Publication date
JPWO2023026465A1 (ja) 2023-03-02
CN117897512A (zh) 2024-04-16
KR20240036620A (ko) 2024-03-20

Similar Documents

Publication Publication Date Title
CN109642294B (zh) 钢板及其制造方法
CN110121568B (zh) 高强度镀锌钢板及其制造方法
JP4725415B2 (ja) 熱間プレス用鋼板および熱間プレス鋼板部材ならびにそれらの製造方法
JP6879402B2 (ja) 高強度亜鉛めっき鋼板および高強度部材
CN110959047B (zh) 热浸镀锌钢板
CN113597473B (zh) 钢板及其制造方法
JP6801819B2 (ja) 鋼板、部材およびこれらの製造方法
CN113544302B (zh) 高强度钢板及其制造方法
CN113227415B (zh) 钢板、构件和它们的制造方法
JP7095818B2 (ja) 被覆鋼部材、被覆鋼板およびそれらの製造方法
CN110199045B (zh) 高强度钢板及其制造方法
CN113348259A (zh) 高强度热浸镀锌钢板和其制造方法
JP4360319B2 (ja) 高張力溶融亜鉛めっき鋼板とその製造方法
JP7486010B2 (ja) 鋼板
WO2020203979A1 (ja) 被覆鋼部材、被覆鋼板およびそれらの製造方法
WO2022080489A1 (ja) ホットスタンプ用鋼板及びその製造方法、並びに、ホットスタンプ部材及びその製造方法
WO2023026465A1 (ja) 鋼板およびプレス成形品
CN115698361A (zh) 钢板、构件及它们的制造方法
CN116034177A (zh) Zn系镀覆热冲压成型品
CN114945690B (zh) 钢板及其制造方法
WO2023026468A1 (ja) 鋼板およびプレス成形品
WO2023026469A1 (ja) 自動車用外板部品、ブランクシート、ブランクシートの製造方法、及びブランクシートの製造設備
CN111868286B (zh) 钢板
WO2023132349A1 (ja) ホットスタンプ用鋼板、ホットスタンプ用鋼板の製造方法、及びホットスタンプ成形体
WO2022254847A1 (ja) 鋼板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955075

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023543605

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20247005240

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247005240

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202180101569.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2401001144

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 2021955075

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021955075

Country of ref document: EP

Effective date: 20240327