WO2013046954A1 - パワーモジュール - Google Patents

パワーモジュール Download PDF

Info

Publication number
WO2013046954A1
WO2013046954A1 PCT/JP2012/070361 JP2012070361W WO2013046954A1 WO 2013046954 A1 WO2013046954 A1 WO 2013046954A1 JP 2012070361 W JP2012070361 W JP 2012070361W WO 2013046954 A1 WO2013046954 A1 WO 2013046954A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
power module
conductor plate
sprayed film
heat
Prior art date
Application number
PCT/JP2012/070361
Other languages
English (en)
French (fr)
Inventor
英一 井出
映二 西岡
利昭 石井
順平 楠川
中津 欣也
時人 諏訪
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US14/237,975 priority Critical patent/US9439332B2/en
Priority to EP12834998.2A priority patent/EP2763165B1/en
Priority to CN201280041440.0A priority patent/CN103765577B/zh
Publication of WO2013046954A1 publication Critical patent/WO2013046954A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/209Heat transfer by conduction from internal heat source to heat radiating structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2036Electric differentials, e.g. for supporting steering vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/49524Additional leads the additional leads being a tape carrier or flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L24/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • B60L2200/42Fork lift trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/24Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/525Temperature of converter or components thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/24Driver interactions by lever actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0618Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/06181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/37124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37157Cobalt [Co] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/3716Iron [Fe] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/3718Molybdenum [Mo] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/3754Coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45014Ribbon connectors, e.g. rectangular cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48153Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate
    • H01L2224/48195Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being a discrete passive component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/4901Structure
    • H01L2224/4903Connectors having different sizes, e.g. different diameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/71Means for bonding not being attached to, or not being formed on, the surface to be connected
    • H01L2224/72Detachable connecting means consisting of mechanical auxiliary parts connecting the device, e.g. pressure contacts using springs or clips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73263Layer and strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/203Ultrasonic frequency ranges, i.e. KHz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/60Electric or hybrid propulsion means for production processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a power module excellent in heat dissipation and reliability.
  • such a power module includes a power semiconductor chip, a conductor plate on which the power semiconductor chip is mounted, a metal base plate on which the conductor plate is mounted, and a laminate composed of a ceramic plate that insulates the conductor plate and the metal base plate.
  • a structure in which a resin case is packaged to form a structure and the structure is attached to a cooling body is known.
  • a ceramic sprayed film is formed on the heat radiation surface side of a resin-sealed conductor plate and used as an insulating layer.
  • the sprayed film which is an insulating layer described in Patent Document 1 described above, has pores in the film, so that the insulating performance necessary for the power module is insufficient and needs to be formed thick after spraying. Moreover, the pores in the film cause deterioration of the heat conduction performance. Therefore, it is effective to improve the insulation performance and heat conduction performance by impregnating the resin into the holes. Furthermore, if it adhere
  • the power module is configured so that the conductive plate on which the semiconductor chip is mounted is sealed with a resin so that the heat radiating surface of the conductor plate is exposed, and the heat radiating surface.
  • a heat dissipating member disposed between the sealing body and the heat dissipating member, and the insulating layer comprises a ceramic sprayed film impregnated with an impregnating resin and a good heat conductive filler.
  • the mixed adhesive resin layer is laminated, and the heat dissipating member and the heat dissipating member are provided so as to cover the entire periphery of the heat dissipating member and at least the entire heat dissipating surface. And a stress relieving resin portion provided in a gap between the sealing body and the sealing body.
  • the stress relaxation resin portion by providing the stress relaxation resin portion, the stress at the end of the insulating layer can be relaxed, and the reliability of the power module can be improved.
  • FIG. 1 is a view showing an embodiment of a power module according to the present invention, and is an external perspective view of the power module.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3 is a diagram showing the power module structure 3000.
  • FIG. 4 is a circuit diagram of the power module 300.
  • FIG. 5 is a diagram illustrating a manufacturing process of the primary sealing body 302.
  • FIG. 6 is a diagram illustrating a manufacturing process of the primary sealing body 302, and is a diagram illustrating a process subsequent to FIG.
  • FIG. 7 is a diagram illustrating a manufacturing process of the primary sealing body 302, and is a diagram illustrating a process subsequent to FIG. FIG.
  • FIG. 8 is a diagram showing a manufacturing process of the primary sealing body 302 and shows a state after sealing with the sealing resin 348.
  • FIG. 9 is a view for explaining a transfer molding process of the sealing resin 348.
  • FIG. 10 is a perspective view of the primary sealing body 302.
  • FIG. 11 is a view showing the auxiliary mold body 600.
  • FIG. 12 is a diagram for explaining the encapsulation of the power module structure 3000 in the module case 304.
  • FIG. 13 is an enlarged view of a portion indicated by reference numeral B in FIG.
  • FIG. 14 is a cross-sectional view showing the primary sealing body 302 before the sprayed film 333A is formed.
  • FIG. 15 is a diagram for explaining a step of forming the thermal spray film 333A.
  • FIG. 15 is a diagram for explaining a step of forming the thermal spray film 333A.
  • FIG. 16 is a diagram for explaining a step of forming the thermal spray film 333A, and shows a step subsequent to FIG.
  • FIG. 17 is a view showing the primary sealing body 302 after the impregnation operation.
  • FIG. 18 is a cross-sectional view showing a power module according to the second embodiment.
  • FIG. 19 is a diagram illustrating an assembly process of the power module.
  • FIG. 20 is a diagram illustrating a state in which the primary sealing body 302 is inserted into the module case 304 in which the insulating layer 333 is formed.
  • FIG. 21 is a diagram showing a heat dissipation part 307B in which an insulating layer 333 is formed.
  • FIG. 22 is a diagram for explaining the third embodiment.
  • FIG. 22 is a diagram for explaining the third embodiment.
  • FIG. 23 is a diagram illustrating a first method for forming a stacked body.
  • FIG. 24 is a diagram for explaining another method for forming a laminate.
  • FIG. 25 is a diagram illustrating a first modification.
  • FIG. 26 is a diagram illustrating a second modification.
  • FIG. 27 is a diagram for explaining the configuration of a resin-sealed single-sided cooling power module 300.
  • FIG. 28 is a diagram for explaining the adhesion to the heat dissipating part 307.
  • FIG. 29 is a diagram illustrating a power module 300 configured to sandwich the primary sealing body 302 with a pair of heat radiation portions 307D.
  • FIG. 30 is a diagram for explaining the fifth embodiment, and is an enlarged view showing a circumferential end portion of a laminate of a thermal spray film 333A impregnated with a resin and a resin layer 333B.
  • FIG. 31 is a diagram for explaining the insulating performance (dielectric breakdown voltage) of the insulating layer 333.
  • FIG. 32 is a diagram for explaining the insulating performance (partial discharge voltage) of the insulating layer 333.
  • FIG. 33 is a diagram illustrating a comparative example regarding the configuration of the insulating layer.
  • FIG. 34 is a diagram for explaining the thermal conductivity of the comparative example and the present invention.
  • FIG. 35 is a diagram showing a control block of the hybrid vehicle.
  • FIG. 31 is a diagram for explaining the insulating performance (dielectric breakdown voltage) of the insulating layer 333.
  • FIG. 32 is a diagram for explaining the insulating performance (partial discharge voltage) of the insulating layer 333.
  • FIG. 36 illustrates an electric circuit configuration of the inverter unit.
  • FIG. 37 is an exploded perspective view for explaining the power conversion device 200.
  • FIG. 38 is an exploded perspective view of the power conversion device 200.
  • FIG. 39 is a bottom view of the cooling jacket 12 having the flow path 19.
  • FIG. 40 is an exploded perspective view of the capacitor module 500.
  • FIG. 41 is an external perspective view in which a power module, a capacitor module, and a bus bar module are assembled to the cooling jacket 12.
  • FIG. 42 is an exploded perspective view of the cooling jacket 12 and the bus bar module 800 in which the power module and the capacitor module are assembled.
  • FIG. 43 is an external perspective view of the bus bar module 800 with the holding member 803 removed.
  • FIG. 44 is an external perspective view of the cooling jacket 12 in which the power module, the capacitor module, the bus bar module 800, and the auxiliary power module 350 are assembled.
  • FIG. 45 is a divided perspective view of the power conversion device 200 in which the control circuit board 20 and the metal base plate 11 are separated.
  • 46 is a cross-sectional view of the power conversion device 200 as viewed from the direction C in FIG.
  • FIG. 47 is a diagram showing a step structure in the case where the sprayed film 333A is formed on the heat radiation portion 307B side.
  • FIG. 48 is a view showing a step structure when the sprayed film 333A is formed on the primary sealing body 302 side.
  • FIG. 49 is a diagram for explaining the sixth embodiment.
  • FIG. 1 is an external perspective view of a power module.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • the power module 300 is a module in which a power semiconductor unit including a switching element and transfer molded is housed in a module case 304.
  • the power module 300 is used in, for example, a power conversion device mounted on an electric vehicle such as an electric vehicle or a hybrid vehicle.
  • the power module 300 is obtained by storing the power module structure 3000 shown in FIG. 3 in a module case 304 that is a CAN type cooler.
  • the CAN-type cooler is a cylindrical cooler having an insertion port 306 on one surface and a bottom on the other surface.
  • the module case 304 is formed of a member having electrical conductivity, for example, a composite material such as Cu, Cu alloy, Cu—C, or Cu—CuO, or a composite material such as Al, Al alloy, AlSiC, or Al—C. Yes. Further, it is integrally formed in a case shape without a joint by a highly waterproof joining method such as welding or by forging or casting.
  • the module case 304 is a flat case having no opening other than the insertion port 306, and the flange 304B is provided in the insertion port 306 of the flat case.
  • a heat radiating portion 307A is provided on one of the two opposing surfaces with a large area of the flat case, and a heat radiating portion 307B is provided on the other surface.
  • the heat dissipating part 307A and the heat dissipating part 307B function as heat dissipating walls of the module case 304, and a plurality of fins 305 are uniformly formed on the outer peripheral surface thereof.
  • the peripheral surface surrounding the heat radiation part 307A and the heat radiation part 307B is a thin part 304A that is extremely thin and can be easily plastically deformed.
  • the heat dissipation portion 307A and the heat dissipation portion 307B can be easily deformed when pressurized in the case inner direction.
  • the shape of the module case 304 need not be an accurate rectangular parallelepiped, and the corners may form curved surfaces as shown in FIG.
  • FIG. 3 is a view showing the power module structure 3000 stored in the module case 304.
  • 3A is a perspective view of the power module structure 3000
  • FIG. 3B is a cross-sectional view taken along the line CC.
  • the CC cross section is a cross section of the same portion as the AA cross section of FIG.
  • the power module structure 3000 includes a primary sealing body 302 and an auxiliary mold body 600.
  • the primary sealing body 302 and the auxiliary mold body 600 are connected at the connection portion 370.
  • TIG welding or the like can be used for metal bonding in the connection portion 370.
  • the power module structure 3000 is positioned in the module case 304 by fixing the wiring insulating portion 608 provided in the auxiliary mold body 600 to the flange 304 ⁇ / b> B of the module case 304 with screws 309.
  • FIG. 4 is a circuit diagram of the power module 300.
  • 5 to 11 are views showing a manufacturing process of the primary sealing body 302.
  • the power module 300 is a series of an upper arm IGBT 328 and a lower arm IGBT 330, and includes IGBTs 328 and 330 and diodes 156 and 166 as semiconductor elements.
  • These semiconductor element chips (hereinafter referred to as semiconductor chips) are plate-shaped as shown in FIG. 5, and electrodes are formed on the front and back surfaces of the semiconductor chip.
  • the collector electrode of the upper arm IGBT 328 and the cathode electrode of the upper arm diode 156 are connected to the conductor plate 315, and the emitter electrode of the IGBT 328 and the anode electrode of the diode 156 are connected to the conductor plate 318.
  • the collector electrode of the lower arm IGBT 330 and the cathode electrode of the lower arm diode 166 are connected to the conductor plate 320, and the emitter electrode of the IGBT 330 and the anode electrode of the diode 166 are connected to the conductor plate 319.
  • the conductor plate 318 and the conductor plate 320 are connected via an intermediate electrode 159.
  • the upper arm circuit and the lower arm circuit are electrically connected by the intermediate electrode 159, and the upper and lower arm series circuit as shown in FIG. 4 is formed.
  • the conductor plates 315, 318, 319, and 320 metals such as Cu, Al, Ni, Au, Ag, Mo, Fe, and Co, alloys thereof, and composites are used.
  • the DC positive electrode side conductor plate 315 and the AC output side conductor plate 320, the upper arm signal connection terminal 327U, and the lower arm signal connection terminal 327L are connected to a common tie bar 372. In the state, they are integrally processed so that they are arranged in substantially the same plane.
  • the control electrode 328A of the IGBT 328 is connected to the upper arm signal connection terminal 327U by a bonding wire.
  • the control electrode 330A of the IGBT 330 is connected to the lower arm signal connection terminal 327L by a bonding wire.
  • Convex chip fixing portions 322 are respectively formed at portions where the semiconductor chips (IGBTs 328 and 330, diodes 156 and 166) of the conductive plates 315 and 320 are joined.
  • Each semiconductor chip is bonded onto the chip fixing portion 322 by a metal bonding material 160.
  • the metal bonding material 160 for example, a solder material, a silver sheet, and a low-temperature sintered bonding material containing fine metal particles are used.
  • solder containing tin as a main component for the metal bonding material 160, but it is also possible to use a solder containing one of gold, silver, and copper as a main component, a brazing material, a paste, or the like.
  • the conductor plate 318 and the conductor plate 319 are arranged in substantially the same plane via the metal bonding material 160 and are metal-bonded. As shown in FIG. 4, the conductor plate 318 is joined to the emitter electrode of the IGBT 328 on the upper arm side and the anode electrode of the diode 156 on the upper arm side. The conductor plate 319 is joined to the emitter electrode of the IGBT 330 on the lower arm side and the anode electrode of the diode 166 on the lower arm side.
  • a direct current positive electrode connection terminal 315D is formed on the conductor plate 315.
  • An AC connection terminal 320D is formed on the conductor plate 320.
  • a DC negative connection terminal 319D is formed on the conductor plate 319.
  • the IGBT 328 and the diode 156 are sandwiched between the conductor plate 315 and the conductor plate 318, and the IGBT 330 and the diode 166 are sandwiched between the conductor plate 320 and the conductor plate 319, so that the conductor plate 320 and the conductor plate 318 are intermediate.
  • the electrode 329 When connected by the electrode 329, the state shown in FIG. 6 is obtained.
  • the control electrode 328A of the IGBT 328 and the signal connection terminal 327U are connected by the bonding wire 371 and the control electrode 330A of the IGBT 330 and the signal connection terminal 327L are connected by the bonding wire 371, the state shown in FIG.
  • the portion including the semiconductor chips (IGBTs 328 and 330, diodes 156 and 166) and the bonding wire 371 is sealed with a sealing resin 348.
  • This sealing is performed by transfer molding.
  • a portion (mold pressing surface) indicated by reference numeral 373 is pressed from above and below with a transfer mold, and molding is performed by filling the mold with a sealing resin 348.
  • FIG. 9 is a diagram for explaining the transfer molding process.
  • (a) shows a longitudinal sectional view before clamping
  • (b) shows a longitudinal sectional view after clamping.
  • the primary sealing body 302 before sealing shown in FIG. 7 is installed between the upper mold 374A and the lower mold 374B.
  • the upper mold 374A and the lower mold 374B sandwich the primary sealing body 302 from above and below at the mold pressing surface 373 and clamp the mold, so that the mold space 375 is inside the mold as shown in FIG. 9B.
  • the semiconductor chips IGBTs 328 and 330 and the diodes 155 and 166
  • the sealing resin 348 for example, a resin based on a novolac-based, polyfunctional, or biphenyl-based epoxy resin can be used, and ceramics such as SiO2, Al2O3, AlN, and BN, gel, rubber, and the like are included.
  • the thermal expansion coefficient is brought close to the conductor plates 315, 320, 318, and 319. Thereby, the difference in thermal expansion coefficient between the members can be reduced, and the thermal stress generated as the temperature rises in the use environment is greatly reduced, so that the life of the power module can be extended.
  • the upper mold 374A and the lower mold 374B can be used to perform mold clamping without generating extra stress at the connection portion between each terminal and the semiconductor chip and without a gap. it can. Therefore, sealing with the semiconductor chip can be performed without causing damage to the semiconductor chip or leakage of the sealing resin 348 from the gap. Further, the surfaces (heat radiation surfaces) of the conductor plates 318 and 319 are exposed on one surface of the sealing resin 348, and the surfaces (heat radiation surfaces) of the conductor plates 315 and 320 are exposed on the opposite surface. .
  • the tie bar 372 is cut off to separate the DC positive connection terminals 315D and 319D, the AC connection terminal 320D, and the signal connection terminals 327U and 327L, respectively. Then, the respective ends of the DC positive connection terminal 315D, the DC negative connection terminal 319D, the AC connection terminal 320D, and the signal connection terminals 327U and 327L arranged in a line on one side of the primary sealing body 302 are as shown in FIG. Bend in the same direction. Thereby, the work at the time of metal bonding between the primary sealing body 302 and the auxiliary mold body 600 at the connection portion 370 can be facilitated to improve productivity, and the reliability of metal bonding can be improved.
  • FIG. 11 is a view showing the auxiliary mold body 600, where (a) is a perspective view and (b) is a DD cross-sectional view.
  • the auxiliary mold body 600 includes a DC positive electrode wiring 315A, a DC negative electrode wiring 319A, an AC wiring 320A, a signal wiring 324U, and a signal wiring 324L.
  • the direct current positive electrode wiring 315A, the direct current negative electrode wiring 319A, the alternating current wiring 320A, the signal wiring 324U, and the signal wiring 324L are integrally formed in a state of being insulated from each other by the wiring insulating portion 608 formed of a resin material.
  • the wiring insulating portion 608 also functions as a support member for supporting each wiring, and an insulating thermosetting resin or thermoplastic resin is suitable for the resin material used for the wiring insulating portion 608. Thereby, it is possible to secure insulation between the DC positive electrode wiring 315A, the DC negative electrode wiring 319A, the AC wiring 320A, the signal wiring 324U, and the signal wiring 324L, and high-density wiring is possible.
  • DC positive electrode terminal 315B is formed at the upper end of DC positive electrode wiring 315A, and DC positive electrode connection terminal 315C is formed at the lower end so as to be bent at a right angle.
  • a DC negative electrode terminal 319B is formed at the upper end of the DC negative electrode wiring 319A, and a DC negative electrode connection terminal 319C is formed at the lower end so as to be bent in the same direction as the DC positive electrode connection terminal 315C.
  • An AC terminal 320B is formed at the upper end of the AC wiring 320A, and an AC connection terminal 320C is formed at the lower end so as to be bent in the same direction as the DC positive connection terminal 315C.
  • Signal terminals 325U and 325L are formed at the upper ends of the signal wirings 324U and 324L, respectively.
  • the signal connection terminal 326U and the signal connection terminal 326L are formed at the lower ends of the signal wirings 324U and 324L so as to be bent in the same direction as the DC positive electrode connection terminal 315C.
  • connection parts 370 326U, 315C, 319C, 326L, 320C) on the auxiliary mold body 600 side are arranged in a line as shown in FIG. 315D, 319D, 327L, 320D).
  • TIG welding or the like can be used for the connection.
  • the power module structure 3000 as shown in FIG. 3 is completed, the power module structure 3000 is inserted into the module case 304 as shown in FIG. 12A, and the wiring insulation portion 608 of the auxiliary mold body 600 is connected to the module.
  • the case 304 is fixed to the flange 304B.
  • an insulating layer 333 for electrical insulation is disposed between the primary sealing body 302 of the power module structure 3000 and the heat radiation portions 307A and 307B of the module case 304. Details of the insulating layer 333 will be described later. Then, as shown by the arrows in FIG.
  • the heat radiating portions 307A and 307B are pressed inside the case to deform the thin portion 304A, and the heat radiating portions 307A and 307B are brought into close contact with the primary sealing body 302. Thereafter, a sealing resin 351 (see FIG. 3) is filled in the module case 304 and sealed, so that a necessary insulation distance between the connection portion 370 and the module case 304 can be stably secured. .
  • the sealing resin 35 for example, a resin based on a novolak-based, polyfunctional, or biphenyl-based epoxy resin can be used. Further, ceramics such as SiO 2, Al 2 O 3, AlN, and BN, rubber, and the like are contained in the epoxy resin, and the thermal expansion coefficient is brought close to the module case 304 and the conductor plates 315, 320, 318, and 319. Thereby, the difference in thermal expansion coefficient between the members can be reduced, and the thermal stress generated as the temperature rises in the use environment is greatly reduced, so that the life of the power module can be extended.
  • FIG. 13 is a diagram illustrating the structure of the insulating layer 333.
  • FIG. 13 is an enlarged view of a portion indicated by reference numeral B in FIG.
  • An insulating layer 333 is provided so as to be sandwiched between the primary sealing body 302 and the heat radiating portion 307B.
  • the insulating layer 333 is formed by spraying an insulating oxide or ceramic powder to form a thermal spray film 333A, an insulating resin layer 333B, and a peripheral edge of a laminate of the thermal spray film 333A and the resin layer 333B.
  • an insulating resin portion 333C provided at the portion (edge portion).
  • the resin portion 333C is provided on the entire circumference around the side surface of the laminate.
  • the thermal spray film 333A is formed on the primary sealing body 302 side, and a resin layer 333B is formed between the thermal spray film 333A and the heat dissipation part 307B.
  • the holes 3330 formed in the sprayed film 333A are impregnated with an insulating resin.
  • the same resin as the resin portion 333C is used for the impregnation resin.
  • a filler is mixed in the resin constituting the resin layer 333B in order to improve the heat conduction performance.
  • the resin part 333C provided at the peripheral end of the laminate of the thermal spray film 333A and the resin layer 333B is formed in the gap between the sealing resin 348 and the heat dissipation part 307B so that the peripheral end of the laminate is not exposed. Yes.
  • the surface of the sprayed film 333A is an uneven surface, and a large number of holes 3330 are formed inside the sprayed film 333A.
  • the resin layer 333B is provided so that a part thereof enters the uneven surface of the thermal spray film 333A.
  • FIGS. 14 to 17 are diagrams for explaining the formation process of the insulating layer 333.
  • FIG. FIG. 14 is a diagram for explaining the formation of the sprayed film 333A on the primary sealing body 302, and is a cross-sectional view showing the primary sealing body 302 before the sprayed film 333A is formed.
  • the pair of conductor plates 315 and 318 and the pair of conductor plates 320 and 319 arranged to face each other are arranged in a direction perpendicular to the paper surface of FIG.
  • the IGBT 328 and the diode 156 are disposed so as to be sandwiched between the conductor plates 315 and 318, and the IGBT 330 and the diode 166 are disposed so as to be sandwiched between the conductor plates 320 and 319. These are sealed with a sealing resin 348, but the heat radiation surfaces 315a, 318a, 319a, and 320a of the conductor plates 315, 318, 319, and 320 (the surface opposite to the surface to which the semiconductor chip is bonded) are sealed. It is exposed from the stop resin 348.
  • the cross-sectional view of FIG. 14 is a cross-sectional view of the same portion as the CC cross-section of FIG. 3, and is a cross-sectional view of the portions of the conductor plates 315 and 318.
  • a sprayed film 333 ⁇ / b> A is formed on both surfaces of the primary sealing body 302 as shown in FIG.
  • FIG.15 (b) is an enlarged view of the part shown by the code
  • the sprayed film 333A is formed so as to include the regions of the heat radiation surfaces 315a, 318a, 319a, and 320a, and the edge portion of the sprayed film 333A is formed on the sealing resin 348.
  • the thermal spray film 333A is an insulator and is produced by thermal spraying an oxide or ceramic powder. In this embodiment, the ceramic sprayed film 333A is formed by the plasma spraying method, but other spraying methods such as an arc spraying method, a high-speed flame spraying method, and the like may be used.
  • the temperature rise of the conductor plates 315, 318, 319, and 320 due to thermal spraying is far smaller than, for example, joining the conductor plate and the ceramic plate using a brazing material, and thermal deformation such as melting, thermal deterioration, and warping is also small.
  • the thermal spray film 333A is formed by plasma spraying
  • the temperature rise of the primary sealing body 302 is about 100 to 180 ° C. Therefore, the sealing resin 348, the metal bonding material 160, the IGBTs 328 and 330, and the diode Thermal degradation of 156 and 166 can be prevented. Since the semiconductor element is bonded to the metal bonding material 160 in a temperature range of about 220 to 300 ° C., there is no problem even if the sprayed film 333A is formed after the bonding.
  • the bonding temperature of the semiconductor element is about 220 to 300 ° C., and the temperature rises when the sprayed film is formed. Therefore, the thermal stress generated in the laminated portion of the thermal spray film 333A having a small thermal expansion coefficient and the conductor plates 315, 318, 319, and 320 having a large thermal expansion coefficient becomes larger than that during the thermal spraying. That is, the thermal stress is reduced in the procedure of forming the thermal spray film 333A after joining the semiconductor elements.
  • the conductive plates 315, 318, 319, and 320 are roughened by sandblasting, etching, or the like on the surfaces (heat dissipating surfaces) on which the sprayed film 333A is formed, so that the conductive plates 315, 318, 319, and 320 The bonding strength with 333A can be improved.
  • the primary sealing body 302 is sealed with a sealing resin 348, a semiconductor chip (IGBTs 328 and 330 and diodes 156 and 166), a bonding wire 371, and the like during the thermal spraying process.
  • the physical and chemical effects on the sealing resin 348 can be prevented. Therefore, it is not necessary to perform complicated masking for thermal spraying, and the productivity is excellent.
  • the roughening treatment such as sandblasting and etching described above has the following advantages.
  • a part of the heat radiation surface of the conductor plates 315, 318, 319, and 320 may be covered with the sealing resin 348, but by performing the above-described roughening by sandblasting, the radiation surface
  • the upper sealing resin 348 can be removed. Since the sealing resin 348 has a lower thermal conductivity than the conductor plate, it can be removed from the heat radiating surface, thereby improving the heat dissipation.
  • the heat radiation surface portion of the conductor plate may be ground or polished.
  • the surface roughness on the conductive plate becomes excessive, or the conductive plate is sealed.
  • burr is formed at the boundary with the resin 348 and electric field concentration.
  • these defects can be removed by sandblasting or etching in the spray coating pretreatment, and the insulation reliability can be improved.
  • high thermal conductive ceramic powder such as oxides such as alumina, silica, magnesia, and beryllia, nitrides such as aluminum nitride, silicon nitride, and boron nitride, and carbides such as silicon carbide. It is preferable to select from. Further, not only the simple composition, but also a simple composition, a composite composition of oxide and nitride or carbide, or a mixed powder may be used.
  • the thermal spray film 333A formed on the conductor plates 315, 318, 319, 320 and the sealing resin 348 is an assembly of flat bodies 3331 formed by solidifying the above-mentioned ceramics. It has a body shape, and flat bodies 3331 are deposited so as to form a layer.
  • the ceramic powder is caused to collide with the base material (conductor plates 315, 318, 319, 320 and sealing resin 348) in a partially or completely molten state by a plasma spraying method or the like, the ceramic is applied to the surface of the base material. It welds in flat shape, and also welds on the flat body 3331 welded and solidified.
  • the flat bodies 3331 are welded to each other or to the ceramic filler and the resin in the flat body 3331 and the conductive plates 315, 318, 319, and 320 and the sealing resin 348 at the contact surface. Surfaces are formed and firmly bonded. Therefore, after the thermal spray film 333A is formed on the primary sealing body 302, when the primary sealing body 302 and the auxiliary module 600 are metal-bonded by TIG welding or the like at the connection portion 370 as described above (see FIG. 3). Further, peeling or chipping is less likely to occur in the sprayed film 333A.
  • the sprayed film 333A since the sprayed film 333A can be partially formed by masking, the sprayed film 333A may be formed after the primary sealing body 302 and the auxiliary mold body 600 are metal-bonded.
  • the conductive plates 315, 318, 319, and 320 metals such as Cu, Al, Ni, Au, Ag, Mo, Fe, and Co, alloys thereof, and composites are used.
  • FIG. 16B is an enlarged view of the E portion.
  • a protective film 352 is provided on the surface of the resin layer 333B formed on the sprayed film 333A.
  • the resin layer 333B adheres the surface on which the thermal spray film 333A of the primary sealing body 302 is formed to the heat radiation portions 307A and 307B of the module case 304.
  • the resin layer 333B has sufficient adhesiveness and high heat. Conductivity is required. Therefore, the resin constituting the resin layer 333B includes adhesive resins such as phenolic, acrylic, polyimide, polyamideimide, epoxy, silicon, bismaleimide triazine, and cyanate esthel. Used.
  • a resin based on bismaleimide triazine, polyamideimide, polyimide, cyanate esthel, epoxy, or phenol which has high adhesiveness, and it is difficult to peel off after adhesion, thus increasing the life of the power module.
  • the resin layer 333B is required to have high thermal conductivity. Therefore, the resin layer 333 ⁇ / b> B is obtained by mixing a good heat conductive filler for improving the thermal conductivity with the resin.
  • the filler mixed in the resin layer 333B is preferably an insulating material, and has high thermal conductivity such as oxides such as alumina, silica, magnesia, and beryllia, nitrides such as aluminum nitride, silicon nitride, and boron nitride, and carbides such as silicon carbide. More preferable are ceramic fillers. However, since it can be insulated with 333A impregnated with resin, it is possible to use a filler having electrical conductivity such as silver, copper, solder, or carbon.
  • a resin sheet 3332 made of the above resin mixed with a filler is prepared (see FIG. 16A).
  • the resin sheet 3332 is provided with protective films 352 on both the front and back surfaces so that it can be easily handled.
  • a film that can be easily peeled after temporary pressing described later such as polyethylene terephthalate, polyethylene, polypropylene, polybutylene terephthalate, or Teflon (registered trademark) may be used.
  • the protective film 352 on one side of the resin sheet 3332 is peeled off, and the resin sheet 3332 is temporarily pressure-bonded onto the sprayed film 333A as indicated by an arrow, whereby the resin layer 333B is formed on the sprayed film 333A. Is formed.
  • the temporarily pressure-bonded resin layer 333B is subjected to a final pressure-bonding operation for bonding the resin layer 333B and the heat radiation portions 307A and 307B after the primary sealing body 302 is accommodated in the module case 304 in a process described later. .
  • the temperature condition and the pressure during the pressure bonding are set so that the resin component is in a semi-cured state or less (for example, the degree of cure of the resin component is about 80% or less). Set the pressure condition.
  • a part of the resin sheet 3332 enters the surface irregularities of the sprayed film 333A and the holes near the surface.
  • the particle size distribution of the filler mixed in the resin sheet 3332 is set to such an extent that the filler can enter the uneven portion of the sprayed film 333A together with the resin.
  • a resin layer 333B as shown in FIG. 16B is formed.
  • the formation range of the resin layer 333B if it is performed in a range wider than the area of the heat radiation surfaces 315a and 318a (FIG. 14) of the conductor plates 315 and 318, the heat radiation can be maximized.
  • the thermal conductivity of the sealing resin 348 is sufficiently smaller than that of the conductor plates 315, 318, 319, and 320
  • the formation range of the resin layer 333B having a high thermal conductivity is as shown in FIG. A slightly wider range is sufficient.
  • the resin layer 333B needs to be formed in a range smaller than the area of the sprayed film 333A in consideration of the resin impregnation work into the holes 3330 of the sprayed film 333A described later.
  • a blank area indicated by Y indicates an impregnation work area.
  • the resin sheet 3332 is pressure-bonded to the sprayed film 333A to form the resin layer 333B.
  • the resin layer 333A is coated with a resin mixed with filler on the surface of the sprayed film 333A.
  • 333B may be formed.
  • a mask is installed so that the coating is applied only to a predetermined area. That is, a mask is installed in the outer peripheral region of the sprayed film 333A used for impregnating the resin.
  • the resin for impregnation is the same as the resin used for the resin layer 333B because the affinity at the time of curing is high and the adhesiveness can be improved. Further, when the impregnation is performed, it is preferable to perform etching treatment or coupling treatment on the pores 3330 in order to improve the adhesion between the pores 3330 of the sprayed film 333A and the resin impregnated therein.
  • the power module is composed of members necessary for the required function, as shown in FIG. 13, a metal conductor plate 315, a ceramic sprayed film 333A impregnated with a resin, a resin layer 333B, and a metal heat dissipation portion 307B.
  • a structure in which members having various thermal expansion coefficients are laminated is formed.
  • the thermal expansion coefficient ⁇ is about 17
  • the thermal expansion coefficient ⁇ of the heat radiating portion 307B is about 23. Due to the difference in coefficient of thermal expansion, peeling or cracking is likely to occur in the laminate when the overall temperature rises.
  • a resin portion 333C is provided around the end portion of the laminate of the resin layer 333B containing the filler and the sprayed film 333A. It was made to form.
  • the resin portion 333C covers the end portions of the resin layer 333B and the sprayed film 333A and extends in the outer peripheral direction thereof.
  • the resin portion 333C is made of the same resin as the resin for impregnation, and has a smaller elastic coefficient than the thermal spray film 333A impregnated with the resin and the resin layer 333B containing the filler. Or the adhesive strength is high.
  • this resin portion 333C it becomes possible to reduce stress relaxation at the end portion, and to prevent occurrence and progress of peeling at the end portion where stress is concentrated. Since the surrounding resin portion 333C is disposed between the sealing resin 348 and the heat dissipation portion 307B, even if the thermal conductivity of that portion of the insulating layer 333 is low, the influence on the heat dissipation of the power module is not affected. almost none.
  • FIG. 17 is a view showing the primary sealing body 302 after the impregnation operation.
  • the impregnation work area Y is impregnated with the resin
  • the pores 3330 of the sprayed film 333A between the resin layer 333B and the conductor plate 315 are also impregnated with the resin by a capillary phenomenon.
  • the resin part 333C mentioned above is formed using resin used for an impregnation.
  • the insulation, heat dissipation and thermal cycle resistance of the thermal spray film 333A are improved. Further, at the location where the resin layer 333B of the thermal spray film 333A is bonded, the resin layer 333B and the surface uneven portion of the thermal spray film 333A are in close contact with each other, and the impregnation resin cannot enter. Therefore, the thermal conductivity between the sprayed film 333A and the resin layer 333B is not affected by the resin impregnation.
  • the impregnation operation in a reduced pressure state, it is possible to prevent the residual gas in the pores 3330 from being entrained in the resin for impregnation and generating voids or unfilled regions. . Further, by injecting from one place or one side of the impregnation work area Y using a dispenser or the like, the injected impregnation resin flows between the resin layer 333B and the conductor plate 315 and overflows from the other side. . At that time, the residual gas in the holes 3330 is discharged from the other side so as to be washed away by the resin. As a result, generation of voids due to entrainment of residual gas can be prevented.
  • the overflowing impregnating resin forms the above-described stress relaxation resin portion 333C. That is, the resin portion 333C at the end of the laminate is also formed during resin impregnation. In addition, when the impregnating resin overflows from other sides, it can be easily confirmed that the impregnating resin is filled in the holes 3330 between the resin layer 333B and the conductor plate 315.
  • the injection may be performed at normal pressure, and the gas in the resin may be released by reducing the pressure after the injection.
  • the resin for impregnation preferably has a low viscosity, in this embodiment, no filler is mixed in to reduce the viscosity.
  • the ceramic sprayed film 333A can obtain sufficient thermal conductivity if the pores 3330 are impregnated with a resin, so that a filler may not be mixed into the resin for impregnation.
  • a filler may be mixed so long as the viscosity can be impregnated.
  • the filler content of the resin for impregnation is set to a range smaller than the filler content of the resin layer 333B so that the elastic modulus becomes smaller or the adhesive force can be improved than the resin layer 333B.
  • the solvent component may be increased in order to lower the viscosity of the impregnating resin.
  • the resin for impregnation may be the same as or different from the resin used for the resin layer 333B.
  • the resin layer 333B is set to a temperature or time at which the degree of curing progresses less than in the semi-cured state.
  • a resin (filling resin) that lowers the thermal conductivity on the surface of the resin layer 333B (a surface facing the heat radiation portion 307B). ) Can be prevented, so that productivity can be improved.
  • the surface (adhesive surface) of the primary sealing body 302 that comes into contact with the heat dissipation portion 307B is flattened, and the primary sealing body 302 is obtained. Generation of voids between the radiating portion 307 and the heat radiating portion 307B can be prevented.
  • the thickness of the resin layer 333B provided between the thermal spray film 333A and the heat dissipation part 307B is thinner, the thermal resistance is reduced and the heat dissipation of the insulating layer 333 is improved.
  • the minimum thickness of the resin layer 333B temporarily attached to the thermal spray film 333A is larger than the range in which the maximum surface roughness Rmax of the inner surface of the heat radiation part 307B can be absorbed. This thickness adjustment can be easily performed by adjusting the thickness of the resin sheet 3332.
  • the maximum thickness of the resin layer 333B in the temporarily attached state is adjusted, for example, in the range of 10 to 50 ⁇ m, and preferably in the range of 10 to 30 ⁇ m.
  • the volume ratio of the filler mixed in the adhesive resin layer 333B is in the range of 5 to 80%. However, the larger the volume ratio, the higher the thermal conductivity and the better the heat dissipation, but the adhesive strength deteriorates, so the range of 30 to 60% is preferable. Also, a layer having high adhesion to the resin, such as physical roughening treatment such as sandblasting and dimples, etching, anodic oxidation, chemical conversion treatment, etc. is applied to the heat radiating portion 307B side serving as an adhesive surface. Adhesive strength can be relatively improved by providing the material by plating, sputtering, or coupling treatment. Therefore, the volume ratio of the filler mixed in the resin layer 333B can be further increased.
  • FIG. 18 is a cross-sectional view of the power module. Note that the auxiliary mold body 600 of the primary sealing body 302 is not shown.
  • the module case 304 is integrally formed.
  • the module case 304 includes a case frame and a pair of case side surfaces.
  • the case frame includes a thick flange 304B and a frame portion 304D.
  • One of the pair of case side surface portions 304C (the left side in the drawing) includes a heat radiating portion 307A in which the fins 305 are formed, and a thin portion 304A surrounding the periphery thereof.
  • the other case side surface portion 304C includes a heat radiating portion 307B in which the fins 305 are formed and a thin portion 304A surrounding the periphery thereof.
  • the module case 304 is formed by metal-connecting the thin portion 304A to the case frame.
  • the thermal spray film 333A is formed on the heat radiation portions 307A and 307B side, and the resin layer 333B is formed on the conductor plates 315 and 318 side.
  • the sprayed film 333A is impregnated with resin.
  • a resin portion 333C is provided at the peripheral end portion of the laminate composed of the thermal spray film 333A impregnated with the resin and the resin layer 333B so as to cover the end portion.
  • FIG. 19 to 21 are diagrams for explaining the assembly process of the power module.
  • a case side surface portion 304C before metal bonding to the case frame is prepared, and a thermal spray film 333A is formed on the case inner peripheral surface side of the heat radiating portion 307B.
  • the formation method of the sprayed film 333A is the same as that in the first embodiment.
  • the thermal spraying is performed with the fins 305 and the thin-walled parts 304A formed on the heat radiation part 307B. Can be processed. Note that a masking process is performed so that the sprayed film 333A is not formed on the thin portion 304A.
  • the case side surface portion 304C in which the fins 305 and the thin portion 304A are formed on the heat radiation portions 307A and 307B can be manufactured by casting, forging, or machining.
  • a composite material such as Cu, Cu alloy, Cu—C, or Cu—CuO, or a composite material such as Al, Al alloy, AlSiC, or Al—C is used.
  • the resin sheet 3332 is temporarily attached (temporarily fixed) on the sprayed film 333A to form the resin layer 333B (FIG. 19B). Thereafter, the sprayed film 333A is impregnated with resin, and the resin part 333C is formed at the peripheral end of the laminate of the sprayed film 333A and the resin layer 333B by the impregnating resin (FIG. 19C).
  • the steps up to FIG. 19C are performed for both the case side surface portion 304C in which the heat radiating portion 307A is formed and the case side surface portion 304C in which the heat radiating portion 307B is formed.
  • a method for forming the resin layer 333B in addition to the method using the resin sheet 3332 described above, a method of applying, spraying, and dipping a resin mixed with a liquid filler may be used. Since the resin layer 333B is formed in a range narrower than the range of the sprayed film 333A, the resin layer 333B is formed by masking the edge portion of the sprayed film range. The thermal spray film 333A is impregnated with resin from the region where the resin layer 333B is not formed by masking. Similarly to the case of using the resin sheet 3332, the impregnation operation is facilitated by installing the protective film 352 on the surface of the resin layer 333B.
  • a pair of case side surfaces 304C each formed with a thermal spray film 333A, a resin layer 333B and a resin portion 333C impregnated with resin are formed into a case frame body including a flange 304B and a frame portion 304D.
  • a module case 304 is formed by metal bonding. The metal joining is performed using a technique having a small heat-affected region such as laser welding or friction stir welding at the edge portion of the thin-walled portion 304A separated from the resin portion 333C. By selecting a method with a small heat-affected zone, the degree of curing of the resin layer 333B and the resin impregnated in the sprayed film and the resin portion 333C can be maintained.
  • the primary sealing body 302 is fixed so as to be inserted into the module case 304.
  • the heat dissipating parts 307A and 307B are heated while being pressurized toward the inside of the case, and the inner peripheral surfaces of the heat dissipating parts 307A and 307B are bonded to the resin layer 333B.
  • the sealing resin 351 is filled into the module case 304, thereby completing the power module shown in FIG.
  • the heat dissipating parts 307A and 307B which are thick parts, are formed so as to protrude outward from the case rather than the thin part 304A, but as shown in FIG. You may comprise 307B so that it may protrude inside a case rather than the thin part 304A. Further, the sprayed film 333A may have the same area as the heat radiating portions 307A and 307B which are thick portions.
  • the case frame body and the case side surface portion 304C that are separately formed are joined to each other to form the integrated module case 304, the heat radiation portions 307A and 307B are formed. It is possible to easily form the sprayed film 333A on the inner peripheral surface side.
  • the conductor plates 315 and 318 When Cu or Cu alloy is used for the conductor plates 315 and 318 and a composite material such as AlSiC or AlC is used for the module case 304, the conductor plates 315 and 318 have a larger thermal expansion coefficient than the module case. In such a case, the thermal expansion coefficient of the member constituting the insulating layer 333 is reduced from the conductor plate 315 side to the heat radiating part 307B, and is generated at the end of the laminate due to a temperature change during use. The thermal stress to be made can be reduced.
  • a thermal spray coefficient 333A having a smaller thermal expansion coefficient is formed on the heat radiation part 307B, and the overall thermal expansion coefficient of the impregnated resin and the thermal spray film 333A is made the thermal expansion coefficient of the heat radiation part 307B by impregnating the resin.
  • the resin layer 333B a resin having a large thermal expansion coefficient is selected and the amount of filler mixed is adjusted so that the thermal expansion coefficient of the resin layer 333B approaches the thermal expansion coefficient of the conductor plate 315.
  • the insulating layer 333 is a laminate of the thermal spray film 333A impregnated with the resin and the resin layer 333B mixed with the filler, so that the heat conduction performance between the conductor plate 315 and the heat radiation portion 307 is improved. About a point, it is the same as that of 1st Embodiment. Further, the provision of the resin portion 333C is similar to the first embodiment in that the increase in thermal stress at the end of the laminate can be alleviated.
  • FIG. 22 is a diagram for explaining the third embodiment.
  • the stress is applied to the end portion. Concentrated on the surface to prevent the peeling from occurring and progressing from the edge.
  • the stress concentration mitigating effect is further enhanced by increasing the amount of resin constituting the resin portion 333C.
  • the amount of the impregnating resin (the same resin as the resin portion 333C) overflows to increase the fillet (portion protruding from the gap) 333F.
  • the amount of resin when impregnating the thermal spray film 333A is increased so that the laminate is largely overflowed in the peripheral direction.
  • the fillet 333F is formed from an overflowed resin using the pressure applied when the resin layer 333B is bonded to the heat radiating portion or the conductor plate.
  • FIG. 23 is a diagram for explaining the first forming method.
  • FIG. 23A is a view showing a state before the heat radiation part 307B is pressed in the direction of the primary sealing body 302 and bonded to the resin layer 333B.
  • a thermal spray film 333A is formed on the heat radiation part 307B, and the thermal spray film 333A is impregnated with a resin 333D.
  • the resin 333D is provided also on the upper surface side and the side surface side of the sprayed film 333A by increasing the amount of the resin 333D to be impregnated here.
  • the resin 333D is not cured.
  • a resin different from the resin sheet 3332 and the resin 333D used for the resin layer 333B is used.
  • the resin sheet 3332 be resin which has thermoplastic resin as a main component, and let it be the composition which has the site
  • a thermosetting resin having a lower impregnation property than a resin 333B having a viscosity in a temperature range from room temperature to 150 ° C. is selected.
  • the resin sheet 3332 is attached to the primary sealing body 302 in a semi-cured state, and then the resin 333D is applied, sprayed, and dipped to apply the resin 333D to the sprayed film 333A.
  • a primary sealing body 302 in which a resin sheet 333D is applied and impregnated on a thermal spray film 333A and a resin sheet 3332 is attached in a semi-cured state may be mounted.
  • the heat radiating portion 307B is pressurized toward the primary sealing body 302.
  • the resin 333D between the sprayed film 333A and the resin layer 333B is pushed to the side (the left-right direction in the drawing) of the sprayed film 333A and the resin layer 333B, and as shown in FIG. Collects at the end in the circumferential direction of the laminate composed of the resin layer 333B.
  • the resin 333D and the resin layer 333B are cured.
  • the resin 333D In order to discharge the resin 333D to the circumferential end, it is necessary to pressurize the resin sheet 3332 in a state where the viscosity of the resin sheet 3332 is sufficiently larger than the resin layer 333D (for example, 50 times or more).
  • the resin 333D has a wide range of heating temperatures that can be discharged by pressurization. Therefore, the effect that production stability improves is acquired.
  • the filler mixed in the resin 333B can be disposed in the concave portion of the sprayed film 333A.
  • the heat dissipation of the insulating layer 333 can be improved.
  • a filler is mixed in the resin layer 333B and a filler is not mixed in the resin 333D, but a filler may be mixed in the resin 333D as long as the viscosity for discharging does not increase.
  • the filler can be disposed in the concave portion of the sprayed film 333A by adding the filler to the resin 333D.
  • the thermoplastic resin or the thermosetting resins are also used. Is possible.
  • the resin 333D is pressurized at a temperature lower than the glass transition temperature of the resin sheet 3332 and discharged to the outside.
  • FIG. 24 is a diagram for explaining another method for forming a laminate.
  • a sprayed film 333A is formed on the heat radiating portion 307B, and a resin sheet 3332 is disposed on the sprayed film 333A.
  • the amount of the resin sheet 3332 is set larger than the amount of the resin layer 333B to be formed.
  • the heat radiating portion 307B is pressurized in the direction of the primary sealing body 302, and the resin sheet 3332 is pressure-bonded to the primary sealing body 302 to form the resin layer 333B.
  • the resin sheet 3332 is pressurized to the thickness of the resin layer 333B.
  • the resin component of the resin sheet 3332 is impregnated into the holes 3330 of the sprayed film 333A and overflows around the sprayed film 333A. Get out. As a result, the resin component overflowing around the laminate forms the resin portion 333C and the fillet 333F.
  • the resin sheet 3332 contains 20 vol% of filler.
  • the size of the filler is set smaller than the size of the surface recess of the sprayed film 333A and larger than the holes 3330 in the sprayed film 333A.
  • the filler is also mixed into the resin portion 333C and the fillet 333F. Moreover, it can be produced by applying and dipping a resin mixed with a filler instead of a resin sheet.
  • 25 and 26 are diagrams showing a modification.
  • a recess 348a and a step 348b are formed on a part or the entire periphery of the sealing resin 348.
  • the resin 333D overflowing in the circumferential direction enters the recess 348a and the step 348b, and the resin amount of the fillet 333F becomes larger.
  • stress relaxation at the end of the laminate can be improved.
  • not only the amount of resin involved in stress relaxation is increased, but also the adhesive force is increased by the anchor effect due to entering the recess 348a and the step 348b.
  • FIG. 26 shows a case where a concave portion 304e and a step 304f are formed on the module case side (heat radiation portions 307A and 307B).
  • the corners of the heat radiation portions 307A and 307B may be chamfered to have a tapered shape.
  • FIGS. 25 and 26 when a step is provided in the sealing resin 348 on the insertion port 306 side of the module case 304 or the heat radiating portions 307A and 307B, the gap at the end of the sprayed film 333A increases. Therefore, it becomes easy to impregnate the resin from the increased gap portion in a state where the thermal spray film 333A is bonded to the primary sealing body 302 or the heat radiation portions 307A and 307B.
  • FIG. 27 shows the arrangement of semiconductor chips and conductor plates that realize the circuit of FIG.
  • the conductor plates 318 and 320 have the same potential and can be formed by a single conductor plate (hereinafter referred to as a conductor plate 318).
  • the main surface electrodes of IGBTs 328 and 330 and diodes 156 and 166 are connected by a plurality of metal wires or metal ribbons, and further connected to conductor plates 318 and 319.
  • the material of the wire or ribbon is a single or composite material of Al, Al alloy, Cu, Cu alloy.
  • the back electrodes of IGBT 328 and diode 156 are metal bonded to conductor plate 315 by metal bonding material 160.
  • the conductor plates 315 and 318 and the heat radiating portion 307 are joined via the insulating layer 333.
  • the back electrodes of the IGBT 330 and the diode 166 are metal bonded to the conductor plate 318 by the metal bonding material 160.
  • the conductor plates 315, 318, 319 and the heat radiating portion 307 are joined via the insulating layer 333.
  • FIG. 28A is a cross-sectional view of a portion indicated by a broken line in FIG.
  • the heat generated from the semiconductor chip is efficiently radiated to the outside through the conductor plate 315, the insulating layer 333, and the heat radiation portion 307.
  • the thermal spraying film 333A is provided on the heat radiating portion 307 side and the conductor plates 315, 318, 319 side are joined by the resin layer 333B is shown, but the thermal spray film 333A is provided on the conductor plates 315, 318, 319 side, A resin layer 333 ⁇ / b> B may be provided on the heat dissipation unit 307.
  • the resin layer 333B in which the highly heat-conductive filler is dispersed is larger than the bottom area of the conductor plates 315, 318, and 319 in contact with the insulating layer 333 and smaller than the area of the sprayed film 333A, and is temporarily attached to the heat radiating unit 307. . Thereafter, the resin is impregnated using the blank portion of the sprayed film 333A to which the resin layer 333B is not temporarily attached. In addition, resin impregnation is performed so that the resin part 333C is formed in the circumferential direction edge part of a laminated body. After the impregnation, as shown in FIG.
  • sealing is performed with a sealing resin 348, so that the mechanical force due to the pressure applied when the conductor plate is bonded to the heat radiation portion Damage can be prevented.
  • the sprayed film 333A is formed on the heat radiation part 307 side.
  • the conductor plates 315, 318, and 319 mechanical damage in the spraying process is prevented. Can do.
  • the structure of the insulating layer 333 disposed between the conductor plate and the heat radiating portion 307 includes a sprayed film 333A impregnated with a resin and a resin layer 333B mixed with a filler.
  • the heat dissipation performance from the power semiconductor to the heat dissipation part 307 can be improved.
  • the resin part 333C is provided at the circumferential end of the laminate, the stress at the end of the laminate can be relieved.
  • FIG. 29 is a diagram showing a power module 300 having a configuration in which the primary sealing body 302 is sandwiched between a pair of heat radiation portions 307D.
  • a refrigerant flow path 3070 is formed in the heat radiating portion 307D, and the refrigerant flows therethrough.
  • a sprayed film 333A impregnated with resin is formed on one surface of the heat radiating portion 307D, and a resin layer 333B is formed so as to be laminated on the sprayed film 333A.
  • a resin portion 333C is provided at the circumferential end of the laminated body.
  • the sprayed film 333A may be formed on the primary sealing body 302 side.
  • FIG. 30 is a diagram for explaining the fifth embodiment, and is an enlarged view showing a circumferential end of a laminate of a thermal spray film 333A impregnated with a resin and a resin layer 333B.
  • the resin portion 333C having a lower elastic coefficient or a larger adhesive force is provided at the peripheral end portion of the laminate composed of the sprayed film 333A and the resin layer 333B, thereby reducing the stress.
  • the stress concentration mitigation effect is further enhanced by increasing the amount of resin constituting the resin portion 333C.
  • the thickness of the thermal spray film 333A formed in the thermal radiation part 307B and the primary sealing body 302 which becomes possible is demonstrated.
  • the thermal spray film 333A is formed on the heat radiation part 307 side is shown.
  • the region of the resin layer 333B is smaller than the heat radiation surface region of the heat radiation part 307, and the region of the sprayed film 333A is set larger than the region of the resin layer 333B. Therefore, there is a region 3337 where the resin layer 333B is not formed at the edge portion of the sprayed film 333A.
  • the region 3337 is thinner than the thickness of the thermal spray film A immediately below the conductor plate 315, and the thickness of the resin 333B and the resin 333C can be increased in the outer peripheral portion where the stress increases (FIG. 30 shows the resin 333C). Shows an example where the thickness increases.)
  • the factors that determine the heat dissipation of the insulating layer 333 of the power module are the thermal conductivity and thickness of the resin layer 333B and the thermal conductivity and thickness of the sprayed film 333A impregnated with the resin.
  • the heat dissipation can be improved by reducing the thickness of the resin layer 333B having low thermal conductivity.
  • the thickness of the resin layer 333B is determined by the warp and inclination of the heat radiation part 307B and the primary sealing body 302 on which the sprayed film 333A is formed. These values are greatest at the outer periphery of the laminate.
  • the end (right side in the figure) of the heat radiating part 307B is inclined so as to warp upward in the figure.
  • the thickness of the sprayed film 333A is constant to the end, if the sprayed film 333A is not exposed from the resin portion 333C or the resin layer 333B, the thickness of the resin layer 333B differs between the periphery and the center.
  • the thickness of the sprayed film 333A in the region 3337 thinner than the thickness of the sprayed film 333A in the region facing the resin layer 333B variation in the overall thickness can be reduced.
  • the configuration in which the outer peripheral portion of the thermal spray film 333A is made thin as shown in FIG. 30 can be easily manufactured by controlling the scanning range of the thermal spray gun, adjusting the scanning speed, or installing a mask.
  • FIG. 47 shows a step structure when the sprayed film 333A is formed on the primary sealing body 302 side.
  • FIG. 49 is a diagram for explaining the sixth embodiment, and is an enlarged view showing a circumferential end portion of a laminate of a thermal spray film 333A impregnated with a resin and a resin layer 333B.
  • the heat radiation part 307B for improving the productivity of the insulating layer 333 of the power module and the overflow prevention convex part 307D for the stress relaxation layer 333C formed in the primary sealing body 302 will be described. If the amount of resin supplied is too large, the resin component overflowing during impregnation or bonding may adhere to the surroundings. Therefore, a mask for preventing adhesion may be provided. However, as shown in FIG.
  • the mask can be omitted by providing a frame-shaped convex portion 307D on the outer peripheral portion of 333C, and productivity is improved.
  • the convex portion 307D may be formed integrally with the heat radiating portion 307B or may be formed separately. Further, when the sprayed film 333A is formed on the primary sealing body 302 side, the convex portion 307D is formed on the primary sealing body 302 side.
  • the horizontal axis in FIG. 31 is the film thickness when the thermal spray film 333A is formed on the heat radiation portions 307A and 307B, and the vertical axis is the normalized breakdown voltage when the dielectric breakdown voltage of a single 100 ⁇ m thick thermal spray film is 1. is there.
  • the horizontal axis in FIG. 32 is the film thickness when the thermal spray film 333A is formed on the heat radiation portions 307A and 307B, and the vertical axis is the normalized partial discharge start when the corona discharge start voltage of a 100 ⁇ m thick spray film is 1 Voltage. The partial discharge start voltage is measured using a partial discharge measurement system.
  • an Al electrode is provided on a sprayed film formed on an Al plate or a sprayed film impregnated with resin, the applied AC voltage is increased at a rate of 0 to 100 V / s, and the voltage at which partial discharge starts is measured. did.
  • the threshold value for starting the partial voltage is 2 pc.
  • the sprayed film alone has pores in the film, so that the insulation performance is inferior.
  • the impregnation with resin improves the dielectric breakdown voltage and the corona discharge start voltage.
  • the corona discharge start voltage is significantly improved.
  • the insulating layer 333 formed of the laminate of the sprayed film 333A impregnated with the resin and the resin layer 333B mixed with the filler has better insulating performance than the sprayed film alone. Therefore, when applying the laminated body to a power module, the thickness required for insulation can be reduced. By reducing the thickness of the insulating layer 333, the thermal resistance of the insulating layer 333 can be reduced, and the heat dissipation of the power module can be improved.
  • FIG. 33 is a comparative example regarding the structure of the insulating layer.
  • a 150 mm square Al plate having a thickness of 2 mm was sandblasted with alumina, and then alumina particles with a particle size of 10 to 30 ⁇ m were plasma sprayed at an output of 40 kW to form a sprayed film.
  • the sprayed Al plate was preheated to 180 ° C.
  • the structure of the insulating layer to be compared is an alumina sprayed film without resin impregnation (Comparative Example A) and an alumina sprayed film in which pores are impregnated with an epoxy resin (Comparative Example B).
  • the produced sprayed film has a porosity of 10% and a thickness of 1 mm.
  • the Al plate was removed by etching to form a single alumina sprayed film.
  • the density was measured with a density meter
  • the thermal diffusivity was measured with the laser flash method
  • the specific heat capacity was measured with differential scanning calorimetry, and the thermal conductivity of the alumina sprayed film was calculated. .
  • Comparative Example C was prepared as follows. A 150 mm square Al plate having a thickness of 2 mm that had been sandblasted with alumina was preheated to 180 ° C. and plasma sprayed with alumina particles having a particle size of 10 to 30 ⁇ m to form a 100 ⁇ m sprayed film. Next, the alumina sprayed film was impregnated with an epoxy resin and adhered to Al having a thickness of 2 mm and 100 mm square.
  • Comparative Example D was different from Comparative Example C in that the adhesion to Al having a thickness of 2 mm and a 100 mm square was performed using an epoxy resin layer mixed with an alumina filler, and other configurations were the same as Comparative Example C. It is.
  • the filler particle size was made larger than the unevenness of the sprayed film so that the filler would not enter the recessed part of the alumina sprayed film.
  • the heat radiation characteristics of the insulating layer 333 of the present embodiment will be described.
  • a 150 mm square Al plate having a thickness of 2 mm was sandblasted with alumina, and then alumina particles with a particle size of 10 to 30 ⁇ m were plasma sprayed to form a 100 ⁇ m sprayed film.
  • a 30 ⁇ m-thick epoxy resin sheet mixed with 40 vol% of alumina filler was temporarily attached at 110 ° C., pressure of 2 MPa, and 1 minute. Thereafter, the alumina sprayed film was impregnated with an epoxy resin under reduced pressure.
  • a spacer was inserted and an Al plate having a thickness of 2 mm and a 100 mm square was adhered.
  • the particle size of the filler was set to 1 to 5 ⁇ m so that the filler could be arranged in the concave portion of the sprayed film.
  • pressure was applied during bonding so that the resin layer thickness was 25 ⁇ m.
  • a 10 mm square region in which no voids or unbonded portions were present in the resin adhesive layer was selected by ultrasonic flaw detection, and the region was cut out and the thermal resistance was measured.
  • the thickness of the actual Al plate, the sprayed film in the insulating layer, and the adhesive resin layer was confirmed by observing a cross section cut out in a direction perpendicular to the insulating layer after the measurement with a scanning electron microscope and measuring the length. Thereby, the thermal conductivity of the insulating layer itself was calculated from the thermal resistance value of the entire joined body.
  • the thickness of the resin layer 333B is set to 25 ⁇ m.
  • the resin layer 333B can be thinned to near the maximum filler diameter by joining without inserting a spacer.
  • the thermal spray film composition is mixed with a thermal spray raw material powder such as aluminum nitride having a higher thermal conductivity than alumina, the thermal conductivity of the thermal spray film after impregnation with the resin can be further increased.
  • the thermal conductivity of the insulating layer 333 can be improved by using ceramics having a higher thermal conductivity than alumina.
  • the above description is merely an example, and the present invention is not limited to the configuration of the above embodiment.
  • high thermal conductivity grease may be used instead of the resin layer 333B, or an elastic sheet having no adhesiveness may be used.
  • glass instead of impregnating the sprayed film 333A with resin, glass may be impregnated.
  • the elastic modulus used in the above description means the Young's modulus after curing, and the storage elastic modulus measured at a frequency of 10 Hz and a heating rate of 3 ° C./min in a dynamic viscoelasticity test. That is.
  • the adhesive force is a value measured by JISK6850.
  • the degree of cure of the resin is defined by an area ratio based on the area of the amount of heat detected when the unreacted resin is heated in differential scanning calorimetry.
  • the heating rate for the measurement is 10 ° C./min.
  • the viscosity of the resin is a value measured at a shear rate of 10 s-1 using a parallel plate viscometer.
  • the glass transition temperature of the resin is the peak temperature of tan ⁇ when measured by a dynamic viscoelasticity test at a frequency of 10 Hz and a temperature increase rate of 3 ° C./min.
  • the power module described above is, for example, a power conversion device mounted on a hybrid vehicle or an electric vehicle, a power conversion device such as a train, a ship, or an aircraft, and an industrial power conversion used as a control device for an electric motor that drives factory equipment.
  • the present invention can be applied to a home power conversion device that is used in a control device of a motor driving a device or a household photovoltaic power generation system or a household electrical appliance.
  • a case where the present invention is applied to a power converter for a hybrid vehicle will be described as an example with reference to FIGS.
  • FIG. 35 is a diagram showing a control block of the hybrid vehicle.
  • a hybrid electric vehicle (hereinafter referred to as “HEV”) 110 is one electric vehicle and includes two vehicle drive systems. One of them is an engine system that uses an engine 120 that is an internal combustion engine as a power source. The engine system is mainly used as a drive source for HEV. The other is an in-vehicle electric system using motor generators 192 and 194 as a power source. The in-vehicle electric system is mainly used as an HEV drive source and an HEV power generation source.
  • the motor generators 192 and 194 are, for example, synchronous machines or induction machines, and operate as both a motor and a generator depending on the operation method.
  • a front wheel axle 114 is rotatably supported at the front portion of the vehicle body, and a pair of front wheels 112 are provided at both ends of the front wheel axle 114.
  • a rear wheel axle is rotatably supported at the rear portion of the vehicle body, and a pair of rear wheels are provided at both ends of the rear wheel axle (not shown).
  • a so-called front wheel drive system is employed, but the reverse, that is, a rear wheel drive system may be employed.
  • a front wheel side differential gear (hereinafter referred to as “front wheel side DEF”) 116 is provided at the center of the front wheel axle 114.
  • the output shaft of the transmission 118 is mechanically connected to the input side of the front wheel side DEF 116.
  • the output side of the motor generator 192 is mechanically connected to the input side of the transmission 118.
  • the output side of the engine 120 and the output side of the motor generator 194 are mechanically connected to the input side of the motor generator 192 via the power distribution mechanism 122.
  • the inverter units 140 and 142 are electrically connected to the battery 136 via the DC connector 138. Electric power can be exchanged between the battery 136 and the inverter units 140 and 142.
  • the first motor generator unit including the motor generator 192 and the inverter unit 140 and the second motor generator unit including the motor generator 194 and the inverter unit 142 are provided, and they are selectively used according to the operation state. ing.
  • the vehicle can be driven only by the power of the motor generator 192 by operating the first motor generator unit as an electric unit by the electric power of the battery 136.
  • the battery 136 can be charged by generating power by operating the first motor generator unit or the second motor generator unit as the power generation unit by the power of the engine 120 or the power from the wheels.
  • the battery 136 is also used as a power source for driving an auxiliary motor 195.
  • the auxiliary machine is, for example, a motor for driving a compressor of an air conditioner or a motor for driving a control hydraulic pump.
  • DC power is supplied from the battery 136 to the inverter unit 43, converted into AC power by the inverter unit 43, and supplied to the motor 195.
  • the inverter unit 43 has the same function as the inverter units 140 and 142, and controls the phase, frequency, and power of alternating current supplied to the motor 195.
  • the power conversion device 200 includes an inverter unit 140, an inverter unit 142, and a capacitor module 500 for smoothing a direct current supplied to the inverter unit 43.
  • inverter unit 140 an electric circuit configuration of the inverter unit 140, the inverter unit 142, or the inverter unit 43 will be described.
  • the inverter unit 140 will be described as a representative example.
  • the inverter circuit 144 corresponds to each phase winding of the armature winding of the motor generator 192 by using an upper and lower arm series circuit 150 including an IGBT 328 and a diode 156 that operate as an upper arm, and an IGBT 330 and a diode 166 that operate as a lower arm.
  • an upper and lower arm series circuit 150 including an IGBT 328 and a diode 156 that operate as an upper arm, and an IGBT 330 and a diode 166 that operate as a lower arm.
  • three phases U phase, V phase, W phase
  • Each of the upper and lower arm series circuits 150 is connected to an AC power line (AC bus bar) 186 from the middle point portion 169 (corresponding to the intermediate electrode 329) through the AC terminal 159 and the AC connector 188 to the motor generator 192.
  • AC bus bar AC power line
  • the collector electrode 153 of the upper arm IGBT 328 is connected to the positive electrode of the capacitor module 500 via the positive terminal (P terminal) 167, and the emitter electrode of the lower arm IGBT 330 is connected to the capacitor via the negative terminal (N terminal) 168.
  • the negative electrode side of the module 500 is electrically connected to the capacitor electrode.
  • the control unit 170 includes a driver circuit 174 that drives and controls the inverter circuit 144 and a control circuit 172 that supplies a control signal to the driver circuit 174 via the signal line 176.
  • the IGBT 328 and the IGBT 330 operate in response to the drive signal output from the control unit 170, and convert DC power supplied from the battery 136 into three-phase AC power. The converted electric power is supplied to the armature winding of the motor generator 192.
  • the IGBT 328 includes a collector electrode 153, a signal emitter electrode 151, and a gate electrode 154.
  • the IGBT 330 includes a collector electrode 163, a signal emitter electrode 165, and a gate electrode 164.
  • a diode 156 is electrically connected in parallel with the IGBT 328.
  • a diode 158 is electrically connected to the IGBT 330 in parallel.
  • a MOSFET metal oxide semiconductor field effect transistor
  • the capacitor module 500 is electrically connected to the battery 136 via the positive capacitor terminal 506, the negative capacitor terminal 504, and the DC connector 138. Note that the inverter unit 140 is connected to the positive capacitor terminal 506 via the DC positive terminal 314 and is connected to the negative capacitor terminal 504 via the DC negative terminal 316.
  • the control circuit 172 includes a microcomputer (hereinafter referred to as “microcomputer”) for performing arithmetic processing on the switching timing of the IGBT 328 and the IGBT 330.
  • the microcomputer receives as input information a target torque value required for the motor generator 192, a current value supplied to the armature winding of the motor generator 192 from the upper and lower arm series circuit 150, and a magnetic pole of the rotor of the motor generator 192. The position has been entered.
  • the target torque value is based on a command signal output from a host controller (not shown).
  • the current value is detected based on the detection signal output from the current sensor 180 via the signal line 182.
  • the magnetic pole position is detected based on a detection signal output from a rotating magnetic pole sensor (not shown) provided in the motor generator 192.
  • a rotating magnetic pole sensor not shown
  • the case where the current values of three phases are detected will be described as an example, but the current values for two phases may be detected.
  • the microcomputer in the control circuit 172 calculates the d and q axis current command values of the motor generator 192 based on the target torque value, and the calculated d and q axis current command values and the detected d and q
  • the voltage command values for the d and q axes are calculated based on the difference from the current value of the shaft, and the calculated voltage command values for the d and q axes are calculated based on the detected magnetic pole position. Convert to W phase voltage command value.
  • the microcomputer generates a pulse-like modulated wave based on a comparison between the fundamental wave (sine wave) and the carrier wave (triangular wave) based on the voltage command values of the U phase, V phase, and W phase, and the generated modulation wave
  • the wave is output to the driver circuit 174 via the signal line 176 as a PWM (pulse width modulation) signal.
  • the driver circuit 174 When driving the lower arm, the driver circuit 174 outputs a drive signal obtained by amplifying the PWM signal to the gate electrode of the corresponding IGBT 330 of the lower arm. Further, when driving the upper arm, the driver circuit 174 amplifies the PWM signal after shifting the level of the reference potential of the PWM signal to the level of the reference potential of the upper arm, and uses this as a drive signal as a corresponding upper arm. Are output to the gate electrodes of the IGBTs 328 respectively.
  • control unit 170 performs abnormality detection (overcurrent, overvoltage, overtemperature, etc.) and protects the upper and lower arm series circuit 150. For this reason, sensing information is input to the control unit 170. For example, information on the current flowing through the emitter electrodes of the IGBTs 328 and IGBTs 330 is input from the signal emitter electrode 155 and the signal emitter electrode 165 of each arm to the corresponding drive unit (IC). Thereby, each drive part (IC) detects an overcurrent, and when an overcurrent is detected, the switching operation of the corresponding IGBT 328 and IGBT 330 is stopped, and the corresponding IGBT 328 and IGBT 330 are protected from the overcurrent.
  • IC drive part
  • Information on the temperature of the upper and lower arm series circuit 150 is input to the microcomputer from a temperature sensor (not shown) provided in the upper and lower arm series circuit 150.
  • voltage information on the DC positive side of the upper and lower arm series circuit 150 is input to the microcomputer.
  • the microcomputer performs over-temperature detection and over-voltage detection based on the information, and stops switching operations of all the IGBTs 328 and IGBTs 330 when an over-temperature or over-voltage is detected.
  • the gate electrode 154 and the signal emitter electrode 155 in FIG. 36 correspond to the signal terminal 325U in FIG. 1, and the gate electrode 164 and the emitter electrode 165 correspond to the signal terminal 325L in FIG.
  • the positive terminal 157 is the same as the DC positive terminal 315B in FIG. 1
  • the negative terminal 158 is the same as the DC negative terminal 319B in FIG.
  • the AC terminal 159 is the same as the AC terminal 320B in FIG.
  • FIG. 37 is an exploded perspective view for explaining the power conversion device 200.
  • the power conversion device 200 is fixed to a case 119 made of Al or Al alloy for housing the transmission 118. Since the power converter 200 has a substantially rectangular bottom surface and top surface, it can be easily attached to a vehicle and can be easily produced.
  • the cooling jacket 12 holds a power module 300 and a capacitor module 500, which will be described later, and is cooled by a cooling medium.
  • the cooling jacket 12 is fixed to the housing 119, and an inlet pipe 13 and an outlet pipe 14 are formed on a surface facing the housing 119. By connecting the inlet pipe 13 and the outlet pipe 14 with the pipe formed in the housing 119, a cooling medium for cooling the transmission 118 flows into and out of the cooling jacket 12.
  • the case 10 covers the power conversion device 200 and is fixed to the housing 119 side.
  • the bottom of the case 10 is configured to face the control circuit board 20 on which the control circuit 172 is mounted.
  • the case 10 also has a first opening 202 and a second opening 204 that are connected to the outside from the bottom of the case 10 on the bottom surface of the case 10.
  • the connector 21 is connected to the control circuit board 20 and transmits various signals from the outside to the control circuit board 20.
  • Battery negative electrode side connection terminal portion 510 and battery positive electrode side connection terminal portion 512 electrically connect battery 136 and capacitor module 500.
  • connection terminal portion 510 and battery positive electrode side connection terminal portion 512 are extended toward the bottom surface of case 10, connector 21 protrudes from first opening 202, and battery negative electrode side connection terminal portion 510 and The battery positive electrode side connection terminal portion 512 protrudes from the second opening 204.
  • the case 10 is provided with a seal member (not shown) around the first opening 202 and the second opening 204 on the inner wall thereof.
  • the direction of the mating surface of the terminal of the connector 21 and the like varies depending on the vehicle type. However, especially when trying to mount on a small vehicle, the mating surface is directed upward from the viewpoint of the size restriction in the engine room and the assembling property. It is preferable to take out.
  • the power conversion device 200 is disposed above the transmission 118 as in the present embodiment, the workability is improved by projecting toward the opposite side of the transmission 118.
  • the connector 21 needs to be sealed from the outside atmosphere, but the case 10 is assembled to the connector 21 from above so that when the case 10 is assembled to the housing 119, the case 10 The seal member in contact with 10 can press the connector 21 and the airtightness is improved.
  • FIG. 38 is an exploded perspective view of the power converter 200.
  • the cooling jacket 12 is provided with a flow path 19 (see FIG. 39). Openings 400a to 400c are formed on the upper surface of the flow path 19 along the refrigerant flow direction 418, and the openings 402a to 402c. Is formed along the flow direction 422 of the refrigerant.
  • the openings 400a to 400c are closed by the power modules 300a to 300c, and the openings 402a to 402c are closed by the power modules 301a to 301c.
  • a storage space 405 for storing the capacitor module 500 is formed in the cooling jacket 12.
  • the capacitor module 500 is cooled by the refrigerant flowing in the flow path 19 by being stored in the storage space 405. Since the capacitor module 500 is sandwiched between the flow path 19 for forming the refrigerant flow direction 418 and the flow path 19 for forming the refrigerant flow direction 422, the capacitor module 500 can be efficiently cooled.
  • the cooling jacket 12 is formed with a protrusion 407 at a position facing the inlet pipe 13 and the outlet pipe 14.
  • the protrusion 407 is formed integrally with the cooling jacket 12.
  • the auxiliary power module 350 is fixed to the protruding portion 407 and is cooled by the refrigerant flowing in the flow path 19.
  • a bus bar module 800 is disposed on the side of the auxiliary power module 350.
  • the bus bar module 800 includes an AC bus bar 186, a current sensor 180 (see FIG. 36), and the like.
  • the storage space 405 of the capacitor module 500 is provided in the center of the cooling jacket 12, and the flow paths 19 are provided so as to sandwich the storage space 405.
  • the power modules 300a to 300c for driving the vehicle By disposing the power modules 301a to 301c and further disposing the auxiliary power module 350 on the upper surface of the cooling jacket 12, cooling can be efficiently performed in a small space, and the entire power conversion device can be downsized.
  • the main structure of the flow path 19 of the cooling jacket 12 integrally with the cooling jacket 12 by casting Al or an Al alloy material, the flow path 19 has an effect of increasing the mechanical strength in addition to the cooling effect.
  • the cooling jacket 12 and the flow path 19 become an integral structure, heat transfer is improved, and cooling efficiency is improved.
  • the power module 300a to 300c and the power module 301a to 301c are fixed to the flow path 19 to complete the flow path 19, and a water leak test is performed.
  • the work of attaching the capacitor module 500, the auxiliary power module 350, and the substrate can be performed next.
  • the cooling jacket 12 is arranged at the bottom of the power conversion device 200, and then the work of fixing necessary components such as the capacitor module 500, the auxiliary power module 350, the bus bar module 800, and the board can be sequentially performed from the top. As a result, productivity and reliability are improved.
  • the driver circuit board 22 is disposed above the auxiliary power module 350 and the bus bar module 800.
  • the metal base plate 11 is disposed between the driver circuit board 22 and the control circuit board 20.
  • the metal base plate 11 functions as an electromagnetic shield for a circuit group mounted on the driver circuit board 22 and the control circuit board 20, and also releases and cools heat generated by the driver circuit board 22 and the control circuit board 20. Have.
  • FIG. 39 is a bottom view of the cooling jacket 12 having the flow path 19.
  • the cooling jacket 12 and the flow path 19 (19a to 19e) provided in the cooling jacket 12 are integrally cast.
  • An opening 404 connected to one is formed on the lower surface of the cooling jacket 12.
  • the opening 404 is closed by a lower cover 420 having an opening at the center.
  • a seal member 409a and a seal member 409b are provided between the lower cover 420 and the cooling jacket 12 to maintain airtightness.
  • an inlet hole 401 for inserting the inlet pipe 13 and an outlet hole 403 for inserting the outlet pipe 14 are formed in the vicinity of one end side and along the side edge.
  • the lower cover 420 is formed with a convex portion 406 that protrudes in the arrangement direction of the transmission 118.
  • the convex portion 406 is provided for each of the power modules 300a to 300c and the power modules 301a to 301c.
  • the refrigerant flows through the inlet hole 401 toward the first flow path portion 19a formed along the short side of the cooling jacket 12. Then, the refrigerant flows through the second flow path portion 19b formed along the longitudinal side of the cooling jacket 12 as in the flow direction 418. Further, the refrigerant flows through the third flow path portion 19 c formed along the short side of the cooling jacket 12 as in the flow direction 421. The third flow path portion 19c forms a folded flow path. Further, the refrigerant flows through the fourth flow path portion 19d formed along the longitudinal side of the cooling jacket 12 as in the flow direction 422. The fourth flow path portion 19d is provided at a position facing the second flow path portion 19b with the capacitor module 500 interposed therebetween. Further, the refrigerant flows out to the outlet pipe 14 through the fifth flow path portion 19 e and the outlet hole 403 formed along the short side of the cooling jacket 12 as in the flow direction 423.
  • the first flow path part 19a, the second flow path part 19b, the third flow path part 19c, the fourth flow path part 19d, and the fifth flow path part 19e are all formed larger in the depth direction than in the width direction.
  • the power modules 300a to 300c are inserted from the openings 400a to 400c formed on the upper surface side of the cooling jacket 12 (see FIG. 38) and stored in the storage space in the second flow path portion 19b.
  • An intermediate member 408a is formed between the storage space of the power module 300a and the storage space of the power module 300b so as not to stagnate the refrigerant flow.
  • an intermediate member 408b is formed between the storage space of the power module 300b and the storage space of the power module 300c so as not to stagnate the refrigerant flow.
  • the intermediate member 408a and the intermediate member 408b are formed such that their main surfaces are along the flow direction of the refrigerant.
  • the fourth flow path portion 19d forms a storage space and an intermediate member for the power modules 301a to 301c.
  • the cooling jacket 12 is formed so that the opening 404 and the openings 400a to 400c and 402a to 402c face each other, the cooling jacket 12 is configured to be easily manufactured by aluminum casting.
  • the lower cover 420 is provided with a support portion 410a and a support portion 410b for contacting the casing 119 and supporting the power conversion device 200.
  • the support portion 410 a is provided close to one end side of the lower cover 420, and the support portion 410 b is provided close to the other end side of the lower cover 420.
  • power conversion device 200 can be firmly fixed to the side wall of casing 119 formed in accordance with the cylindrical shape of transmission 118 or motor generator 192.
  • the support portion 410b is configured to support the resistor 450.
  • the resistor 450 is for discharging electric charges charged in the capacitor cell in consideration of occupant protection and safety during maintenance.
  • the resistor 450 is configured to continuously discharge high-voltage electricity. However, in the unlikely event that there is any abnormality in the resistor or discharge mechanism, consideration was given to minimize damage to the vehicle. Must be configured. In other words, when the resistor 450 is arranged around the power module, the capacitor module, the driver circuit board, etc., there is a possibility that the resistor 450 spreads in the vicinity of the main component in the event that the resistor 450 has a problem such as heat generation or ignition. Conceivable.
  • the power modules 300a to 300c, the power modules 301a to 301c, and the capacitor module 500 are disposed on the opposite side of the casing 119 that houses the transmission 118 with the cooling jacket 12 interposed therebetween, and the resistor 450 includes a cooling jacket. 12 and the housing 119.
  • the resistor 450 is disposed in a closed space surrounded by the cooling jacket 12 and the housing 119 formed of metal. Note that the electric charge stored in the capacitor cell in the capacitor module 500 becomes a resistor via a wiring passing through the side of the cooling jacket 12 by the switching operation of the switching means mounted on the driver circuit board 22 shown in FIG.
  • the discharge is controlled to 450. In the present embodiment, the switching is controlled so as to discharge at high speed.
  • the cooling jacket 12 is provided between the driver circuit board 22 for controlling the discharge and the resistor 450, the driver circuit board 22 can be protected from the resistor 450.
  • the resistor 450 is fixed to the lower cover 420, the resistor 450 is provided at a position very close to the flow path 19 thermally, so that abnormal heat generation of the resistor 450 can be suppressed.
  • FIG. 40 is an exploded perspective view of the capacitor module 500.
  • the laminated conductor plate 501 is composed of a negative electrode conductor plate 505 and a positive electrode conductor plate 507 formed of a thin plate-like wide conductor, and further an insulating sheet 517 sandwiched between the negative electrode conductor plate 505 and the positive electrode conductor plate 507. Inductance is achieved.
  • the laminated conductor plate 501 has a substantially rectangular shape.
  • the battery negative electrode side terminal 508 and the battery negative electrode side terminal 509 are formed in a state where they are raised from one side of the laminated conductor plate 501 in the short direction.
  • the capacitor terminals 503a to 503c are formed in a state where they are raised from one side in the longitudinal direction of the laminated conductor plate 501.
  • the capacitor terminals 503d to 503f are formed in a state where they are raised from the other side in the longitudinal direction of the laminated conductor plate 501.
  • the capacitor terminals 503a to 503f are raised in a direction crossing the main surface of the laminated conductor plate 501.
  • Capacitor terminals 503a to 503c are connected to power modules 300a to 300c, respectively.
  • Capacitor terminals 503d to 503f are connected to power modules 301a to 301c, respectively.
  • a part of the insulating sheet 517 is provided between the negative-side capacitor terminal 504a and the positive-side capacitor terminal 506a constituting the capacitor terminal 503a to ensure insulation.
  • the negative electrode conductor plate 505, the positive electrode conductor plate 507, the battery negative electrode side terminal 508, the battery negative electrode side terminal 509, and the capacitor terminals 503a to 503f are formed of integrally formed metal plates to reduce inductance. And improve productivity.
  • a plurality of capacitor cells 514 are provided below the laminated conductor plate 501.
  • eight capacitor cells 514 are arranged in a line along one side in the longitudinal direction of the multilayer conductor plate 501, and another eight capacitor cells 514 are arranged on the other side in the longitudinal direction of the multilayer conductor plate 501.
  • a total of 16 capacitor cells are arranged in a line along the side.
  • the capacitor cells 514 arranged along the respective sides in the longitudinal direction of the multilayer conductor plate 501 are arranged symmetrically with respect to the broken line portion AA shown in FIG.
  • the direct current smoothed by the capacitor cell 514 is supplied to the power modules 300a to 300c and the power modules 301a to 301c, the current balance between the capacitor terminals 503a to 503c and the capacitor terminals 503d to 503f is uniform.
  • the inductance of the laminated conductor plate 501 can be reduced.
  • a heat balance can be equalized and heat resistance can also be improved.
  • the battery negative electrode side terminal 508 and the battery negative electrode side terminal 509 are also arranged symmetrically with respect to the dotted line AA shown in FIG. Similarly, the current balance between the capacitor terminals 503a to 503c and the capacitor terminals 503d to 503f can be made uniform to reduce the inductance of the multilayer conductor plate 501, and the heat balance is made uniform to improve heat resistance. Can be made.
  • the capacitor cell 514 of the present embodiment is a unit structure of the power storage unit of the capacitor module 500, and is formed by laminating and winding two films each having a metal such as Al deposited thereon and winding each of the two metals as a positive electrode, A film capacitor having a negative electrode is used.
  • the electrode of the capacitor cell 514 is manufactured by spraying a conductor such as Sn, with the wound shaft surfaces serving as a positive electrode and a negative electrode, respectively.
  • the cell terminal 516 and the cell terminal 518 are connected to the positive electrode and the negative electrode, and extend through the opening of the laminated conductor plate 501 to the side opposite to the capacitor cell 514 arrangement side.
  • the plate 505 is connected by soldering or welding.
  • the capacitor cell 514 of the present embodiment is a unit structure of the power storage unit of the capacitor module 500, and is formed by laminating and winding two films each having a metal such as Al deposited thereon and winding each of the two metals as a positive electrode, A film capacitor having a negative electrode is used.
  • the electrode of the capacitor cell 514 is manufactured by spraying a conductor such as Sn, with the wound shaft surfaces serving as a positive electrode and a negative electrode, respectively.
  • the cell terminal 516 and the cell terminal 518 are connected to the positive electrode and the negative electrode, and extend through the opening of the laminated conductor plate 501 to the side opposite to the capacitor cell 514 arrangement side.
  • the plate 505 is connected by soldering or welding.
  • the bottom surface portion 513 of the storage portion 511 has a smooth uneven shape or corrugated shape so as to match the surface shape of the cylindrical capacitor cell 514. Thereby, it becomes easy to position the module in which the laminated conductor plate 501 and the capacitor cell 514 are connected to the capacitor case 502. Further, after the multilayer conductor plate 501 and the capacitor cell 514 are accommodated in the capacitor case 502, the multilayer conductor plate 501 is covered except for the capacitor terminals 503a to 503f, the battery negative electrode side terminal 508, and the battery negative electrode side terminal 509.
  • the capacitor case 502 is filled with a filler (not shown). Since the bottom surface portion 513 has a corrugated shape in accordance with the shape of the capacitor cell 514, the capacitor cell 514 can be prevented from being displaced from a predetermined position when the filler is filled in the capacitor case 502.
  • the capacitor cell 514 generates heat due to a ripple current at the time of switching due to the electric resistance of the metal thin film and the internal conductor deposited on the internal film. Therefore, in order to easily release the heat of the capacitor cell 514 to the capacitor case 502, the capacitor cell 514 is molded with a filler. Furthermore, the moisture resistance of the capacitor cell 514 can be improved by using a resin filler.
  • the capacitor module 500 is arranged so that the side wall forming the side in the longitudinal direction of the storage portion 511 is sandwiched between the flow paths 19, so that the capacitor module 500 can be cooled efficiently.
  • the capacitor cell 514 is disposed so that one of the electrode surfaces of the capacitor cell 514 is opposed to the inner wall forming the side in the longitudinal direction of the storage portion 511. As a result, heat is easily transferred in the direction of the winding axis of the film, so that heat easily escapes to the capacitor case 502 via the electrode surface of the capacitor cell 514.
  • FIG. 41 (a) is an external perspective view in which the power module, the capacitor module, and the bus bar module are assembled to the cooling jacket 12.
  • FIG. 41 (b) is an enlarged view of the rectangular box part of FIG. 41 (a).
  • the DC negative terminal 319B, the DC positive terminal 315B, the AC terminal 321 and the second sealing portion 601b extend through the through hole 519 of the capacitor case 502 to above the flange 515a. ing.
  • the area of the current path of the DC negative terminal 319B and the DC positive terminal 315B is much smaller than the area of the current path of the laminated conductor plate 501. For this reason, when current flows from the laminated conductor plate 501 to the DC negative terminal 319B and the DC positive terminal 315B, the area of the current path changes greatly. That is, the current is concentrated on the DC negative terminal 319B and the DC positive terminal 315B.
  • the negative electrode side capacitor terminal 504a has a rising portion rising from the laminated conductor plate 501, a folded portion connected to the rising portion and bent in a U shape, and connected to the folded portion and opposite to the rising portion.
  • the side surface is constituted by a connection portion 542 facing the main surface of the DC negative electrode terminal 319B.
  • the positive electrode side capacitor terminal 506a has a rising portion rising from the laminated conductor plate 501, a folded portion 544, and a surface connected to the folded portion 544 and opposite to the rising portion is the main surface of the DC negative electrode terminal 319B. And a connecting portion 545 facing each other.
  • the folded portion 544 is configured to be connected to the rising portion at a substantially right angle and straddle the side portions of the negative capacitor terminal 504a, the DC negative terminal 319B, and the DC positive terminal 315B. Further, the main surface of the rising portion on the negative electrode side and the main surface of the rising portion on the positive electrode side are opposed to each other with the insulating sheet 517 interposed therebetween. Similarly, the main surface of the folded portion on the negative electrode side and the main surface of the folded portion 544 on the positive electrode side face each other with the insulating sheet 517 interposed therebetween.
  • the capacitor terminal 503a forms a laminated structure through the insulating sheet 517 until just before the connection portion 542, the wiring inductance of the capacitor terminal 503a where current concentrates can be reduced.
  • the folded portion 544 is configured to straddle the side portions of the negative electrode side capacitor terminal 504a, the DC negative electrode terminal 319B, and the DC positive electrode terminal 315B. Furthermore, the tip of the DC positive terminal 315B and the side of the connecting portion 542 are connected by welding, and similarly, the tip of the DC negative terminal 319B and the side of the connecting portion 545 are connected by welding.
  • the tip of the AC terminal 321 is connected to the tip of the AC bus bar 802a by welding.
  • the welding location of the AC terminal 321 and the welding location of the DC positive terminal 315 ⁇ / b> B are arranged in a straight line along the longitudinal side of the cooling jacket 12.
  • the plurality of power modules 300a to 300c are arranged in a straight line along the side in the longitudinal direction of the cooling jacket 12. As a result, productivity can be further improved when welding the plurality of power modules 300a to 300c.
  • FIG. 42 is an exploded perspective view of the cooling jacket 12 and the bus bar module 800 assembled with the power module and the capacitor module.
  • FIG. 43 is an external perspective view of the bus bar module 800 with the holding member 803 removed.
  • the first AC bus bars 802a to 802f are stacked conductors of the capacitor module 500 up to the installation location of the current sensor 180a or the current sensor 180b. It is formed so as to be substantially perpendicular to the main surface of the plate 501. Further, the first AC bus bars 802a to 802f are bent substantially at right angles immediately before the through hole of the current sensor 180a or the through hole of the current sensor 180b. Thereby, the main surface of the portion of the first AC bus bars 802a to 802f that penetrates the current sensor 180a or the current sensor 180b is substantially parallel to the main surface of the multilayer conductor plate 501. Then, connection portions 805a to 805f for connecting to the second AC bus bars 804a to 804f are formed at the ends of the first AC bus bars 802a to 802f (connection portions 805d to 805f are not shown).
  • the second AC bus bars 804a to 804f are bent at substantially right angles toward the capacitor module 500 side in the vicinity of the connection portions 805a to 805f.
  • the main surfaces of the second AC bus bars 804a to 804f are formed so as to be substantially perpendicular to the main surface of the multilayer conductor plate 501 of the capacitor module 500.
  • the second AC bus bars 804a to 804f extend from the vicinity of the current sensor 180a or the current sensor 180b toward one side 12a in the short direction of the cooling jacket 12 shown in FIG. It is formed to cross. That is, the second AC bus bars 804a to 804f are formed so as to cross the side 12a with the main surfaces of the plurality of second AC bus bars 804a to 804f facing each other.
  • the first AC bus bars 802a to 802f, the current sensors 180a to 180b, and the second AC bus bars 804a to 804f are held and insulated by a holding member 803 made of resin.
  • the second AC bus bars 804a to 804f improve the insulation between the metal cooling jacket 12 and the housing 119. Further, since the holding member 803 is in thermal contact with or directly in contact with the cooling jacket 12, heat transmitted from the transmission 118 side to the second AC bus bars 804a to 804f can be released to the cooling jacket 12, so that the current sensors 180a to The reliability of 180b can be improved.
  • the holding member 803 includes a support member 807a and a support member 807b for supporting the driver circuit board 22 shown in FIG.
  • a plurality of support members 807 a are provided and are arranged in a line along one side in the longitudinal direction of the cooling jacket 12. Further, a plurality of support members 807 b are provided, and are formed in a line along the other side in the longitudinal direction of the cooling jacket 12. Screw holes for fixing the driver circuit board 22 are formed at the distal ends of the support member 807a and the support member 807b.
  • the holding member 803 includes a protrusion 806a and a protrusion 806b that extend upward from locations where the current sensor 180a and the current sensor 180b are disposed.
  • the protrusion 806a and the protrusion 806b are configured to penetrate the current sensor 180a and the current sensor 180b, respectively.
  • the current sensor 180a and the current sensor 180b include a signal line 182a and a signal line 182b extending in the arrangement direction of the driver circuit board 22.
  • the signal line 182a and the signal line 182b are joined to the wiring pattern of the driver circuit board 22 by solder.
  • the holding member 803, the support members 807a to 807b, and the protrusions 806a to 806b are integrally formed of resin.
  • the holding member 803 has a function of positioning the current sensor 180 and the driver circuit board 22, assembly and solder connection work between the signal line 182a and the driver circuit board 22 are facilitated. Further, by providing the holding member 803 with a mechanism for holding the current sensor 180 and the driver circuit board 22, the number of components as the whole power conversion device can be reduced.
  • the holding member 803 is provided with a support member 808 for indicating the vicinity of the central portion of the driver circuit board 22 to reduce the influence of vibration applied to the driver circuit board 22.
  • the holding member 803 is fixed to the cooling jacket 12 with screws.
  • the holding member 803 is provided with a bracket 809 for fixing one end of the auxiliary power module 350.
  • the auxiliary power module 350 is disposed in the protruding portion 407, whereby the other end of the auxiliary power module 350 is fixed to the protruding portion 407. Thereby, the influence of vibration applied to the auxiliary power module 350 can be reduced, and the number of parts for fixing can be reduced.
  • the current sensor 180 may be destroyed when heated to a temperature higher than about 100 ° C ..
  • the temperature of the environment in which it is used becomes very high, so it is important to protect the current sensor 180 from heat.
  • the power conversion device 200 according to the present embodiment is mounted on the transmission 118, it is important to protect it from heat generated from the transmission 118.
  • the current sensor 180a and the current sensor 180b are disposed on the opposite side of the transmission 118 with the cooling jacket 12 interposed therebetween. Thereby, it becomes difficult for the heat generated by the transmission 118 to be transmitted to the current sensor, and the temperature increase of the current sensor can be suppressed.
  • the second AC bus bars 804a to 804f are formed so as to cross the flow direction 810 of the refrigerant flowing through the third flow path 19c shown in FIG.
  • the current sensor 180a and the current sensor 180b are arranged closer to the AC terminal 321 of the power module than the portions of the second AC bus bars 804a to 804f crossing the third flow path portion 19c.
  • the second AC bus bars 804a to 804f are indirectly cooled by the refrigerant, and heat transmitted from the AC bus bar to the current sensor and further to the semiconductor chip in the power module can be relieved, thereby improving the reliability.
  • a flow direction 811 shown in FIG. 44 indicates the flow direction of the refrigerant flowing through the fourth flow path 19d shown in FIG.
  • the flow direction 812 indicates the flow direction of the refrigerant flowing through the second flow path 19b shown in FIG.
  • the current sensor 180a and the current sensor 180b according to the present embodiment are arranged so that the projection portions of the current sensor 180a and the current sensor 180b are surrounded by the projection portion of the flow path 19 when projected from above the power conversion device 200. The This further protects the current sensor from heat from the transmission 118.
  • the current sensor 180 is disposed above the capacitor module 500.
  • the driver circuit board 22 is disposed above the current sensor 180 and supported by support members 807a and 807b provided in the bus bar module 800 shown in FIG.
  • the metal base plate 11 is disposed above the driver circuit board 22 and supported by a plurality of support members 15 erected from the cooling jacket 12.
  • the control circuit board 20 is disposed above the metal base plate 11 and is fixed to the metal base plate 11.
  • the current sensor 180, the driver circuit board 22 and the control circuit board 20 are hierarchically arranged in a row in the height direction, and the control circuit board 20 is arranged at a position farthest from the high-power system power modules 300 and 301, Mixing of switching noise or the like can be suppressed. Furthermore, the metal base plate 11 is electrically connected to a cooling jacket 12 that is electrically connected to the ground. The metal base plate 11 reduces noise mixed from the driver circuit board 22 into the control circuit board 20.
  • the cooling target of the refrigerant flowing through the flow path 19 is mainly the driving power modules 300 and 301
  • the power modules 300 and 301 are housed in the flow path 19 and directly contact with the refrigerant to be cooled.
  • the auxiliary power module 350 is also required to be cooled, although not as much as the driving power module.
  • the heat radiating surface formed of the metal base of the auxiliary power module 350 is formed so as to face the inlet pipe 13 and the outlet pipe 14 through the flow path 19.
  • the protruding portion 407 for fixing the auxiliary power module 350 is formed above the inlet pipe 13, the refrigerant flowing from below collides with the inner wall of the protruding portion 407, so that the auxiliary power module can be efficiently used. Heat can be taken from 350.
  • a space connected to the flow path 19 is formed inside the protruding portion 407.
  • the space inside the protrusion 407 increases the depth of the flow path 19 in the vicinity of the inlet pipe 13 and the outlet pipe 14, and a liquid pool is generated in the space inside the protrusion 407.
  • the auxiliary power module 350 can be efficiently cooled by this liquid pool.
  • a first hole 24 and a second hole 26 penetrating the driver circuit board 22 are formed in the driver circuit board 22 of the present embodiment.
  • the signal terminal 325U and the signal terminal 325L of the power module 300 are inserted into the first hole 24, and the signal terminal 325U and the signal terminal 325L are joined to the wiring pattern of the driver circuit board 22 by soldering.
  • the signal line 182 of the current sensor 180 is inserted into the second hole 26, and the signal line 182 is joined to the wiring pattern of the driver circuit board 22 by solder. Note that solder bonding is performed from the surface of the driver circuit board 22 opposite to the surface facing the cooling jacket 12.
  • productivity can be further improved by joining the signal terminal 325 of the power module 300 and the signal line 182 of the current sensor 180 by solder from the same direction. Further, by providing the driver circuit board 22 with the first hole 24 for penetrating the signal terminal 325 and the second hole 26 for penetrating the signal line 182, it is possible to reduce the risk of connection mistakes. .
  • the driver circuit board 22 has a drive circuit (not shown) such as a driver IC chip mounted on the side facing the cooling jacket 12. Thereby, it is suppressed that the heat
  • a high-profile component such as a transformer mounted on the driver circuit board 22 is disposed in the space between the capacitor module 500 and the driver circuit board 22, the entire power conversion device 200 can be reduced in height. Is possible.
  • FIG. 46 is a cross-sectional view of the power converter 200 cut along the plane B of FIG. 45 as viewed from the C direction.
  • the flange 304B provided in the module case 304 is pressed against the cooling jacket 12 by the flange 515a or the flange 515b provided in the capacitor case 502. That is, the airtightness of the flow path 19 can be improved by pressing the module case 304 against the cooling jacket 12 using the dead weight of the capacitor case 502 in which the capacitor cell 514 is accommodated.
  • the refrigerant in the flow path 19 it is necessary to allow the refrigerant in the flow path 19 to flow through the region where the fins 305 are formed.
  • the fin 305 is not formed in the lower part of the module case 304 in order to secure the space of the thin portion 304A. Therefore, the lower cover 420 is formed so that the lower part of the module case 304 is fitted into the recess 430 formed in the lower cover 420. Thereby, it can prevent that a refrigerant
  • the arrangement direction of the power module 300, the capacitor module 500, and the power module 301 is arranged so as to cross the arrangement direction of the control circuit board 20, the driver circuit board 22, and the transmission 118.
  • the power module 300, the capacitor module 500, and the power module 301 are arranged in the lowest layer in the power conversion device 200. As a result, the power converter 200 as a whole can be reduced in height, and the influence of vibration from the transmission 118 can be reduced.
  • the power module is disposed between the primary sealing body 302 and the heat radiating portion 307B, and is provided so as to be in contact with the heat radiating portion 307B and at least the entire heat radiating surface of the conductor plate 315.
  • An insulating layer 333 includes a laminated body in which a ceramic sprayed film 333A impregnated with a resin and a resin layer 333B in which a good heat conductive filler is mixed, and a heat radiating portion so as to cover the peripheral edge of the laminated body.
  • a resin portion 333 ⁇ / b> C provided in a gap between 307 ⁇ / b> B and the primary sealing body 32.
  • the sprayed film 333A in which the pores 3330 are impregnated with the resin is excellent in thermal conductivity because the filling rate (70 to 97%) is higher than the filler filling rate of the insulating sheet having high thermal conductivity.
  • a sprayed film 333A excellent in insulating characteristics and heat conduction characteristics can be obtained.
  • the laminate is provided so as to be in contact with at least the entire area of the heat dissipation surface. Heat generated in the semiconductor chip can be effectively radiated from the conductor plates 315 and 318 to the heat radiating portions 307A and 307B.
  • the area of the sprayed film 333A is set larger than that of the adhesive resin layer 333B, but either may be larger or the same size.
  • the resin portion 333C is formed at the same time as the resin impregnation, it may be formed after the laminate is formed.
  • the thermal stress at the time of module production can be reduced.
  • the thickness of the sprayed film 333A can be reduced to the same thickness as that of the conventional insulating sheet, and the heat dissipation of the power module insulating portion can be improved.
  • the sprayed film 333A has a certain strength because the ceramic particles are welded to each other, it is possible to increase the pressure applied when the heat radiation part 307B and the resin layer 333B are bonded, and the resin layer 333B with few voids. Can be. When the applied pressure is increased, the thickness change of the resin layer 333B becomes larger and thinner, but the insulating performance can be ensured by the sprayed film 333A impregnated with the resin.
  • the thermal stress of the laminated body generated due to the difference in thermal expansion coefficient between the conductor plate 315 and the heat radiating portion 307B becomes large at the outer peripheral portion of the bonding surface.
  • the conductor plate 315 is heated by generated heat, and the difference in thermal expansion tends to increase.
  • the resin portion 333C is provided at the peripheral end portion of the stacked body so as to cover them, the thermal stress at the peripheral end portion of the stacked body can be relieved. In that case, the stress relaxation effect can be further enhanced by making the elastic modulus of the resin used for the resin portion 333C smaller than the elastic modulus of the resin used for the resin layer 333B.
  • the decrease in the elastic modulus is reduced by making the filler filling rate of the resin portion 333C smaller than that of the resin layer 333B. Since it becomes large, the resistance to the occurrence and progress of peeling is improved.
  • uneven portions are formed in the primary sealing body 302 and the heat radiation portions 307B, 307A, and the resin portion 333C is formed in the uneven portions.
  • the resin used for the resin sheet 3332 is a resin whose main component is a thermoplastic resin, and a composition having a portion that is heat-cured.
  • the resin 333D has a viscosity in a temperature range from room temperature to 150 ° C.
  • the resin 333D between the sprayed film 333A and the resin layer 333B is pushed in the sprayed film 333A or in the circumferential direction of the laminated body by the pressure applied when the heat radiation part 307B and the resin layer 333B are bonded.
  • the filler of the resin layer 333B enters the uneven portion of the sprayed film 333A, so that the heat conduction performance in the boundary region can be prevented from being lowered, and the heat conduction performance of the laminate can be improved.
  • the resin used for the resin sheet 3332 is a resin having a high glass temperature, and a resin having a glass transition temperature lower than that of the resin sheet 3332 is used for the resin 333D, so that the resin sheet 3332 has a temperature lower than the glass transition temperature.
  • the same effect can be obtained by heating.
  • the sprayed film 333A is formed so that the size of the holes 3330 is smaller than the size of the unevenness on the surface of the sprayed film, and the size of the filler mixed in the resin layer 333B is set to the size of the unevenness on the surface of the sprayed film. It is set smaller than this and larger than the size of the hole 3330.
  • the filler of the resin layer 333B can enter the recesses on the surface of the sprayed film without entering the pores 3330.
  • the heat conduction performance at the interface between the sprayed film 333A and the resin layer 333B can be improved.
  • Resins have significantly lower thermal conductivity than ceramics and metals, and if there is a concentrated layer of resin (a layer with less filler) in the heat dissipation path, the heat dissipation of the entire module is reduced. Therefore, it is important that the filler is present in the resin layer 333B that is set as described above and exists in the recess of the sprayed film 333A.
  • the surface unevenness of the sprayed film 333A can be controlled by the spraying conditions, that is, the spraying temperature, the substrate preheating temperature, the spraying speed, the atmosphere, and the powder particle size. Further, if necessary, surface treatment such as grinding, polishing or laser irradiation may be performed after thermal spraying.
  • the conductor plate 315 is made of Al or Al alloy (AlSiC, a composite material of AlC and Al), and the heat radiating portion 307B is made of Cu. Or a Cu alloy, the laminate is configured such that the resin layer 333B having a large thermal expansion coefficient is disposed on the conductor plate 315, and the thermal spray film 333A having a small thermal expansion coefficient is disposed on the heat radiation portion 307B side. .
  • the thermal stress is inclined from the heat radiating portion 307B to the conductor plate 315, and the thermal stress at the periphery of the multilayer body is relaxed.
  • the laminate is configured so that the thermal expansion coefficient on the conductor plate side is larger than the thermal expansion coefficient on the heat dissipation part side.
  • the thermal expansion coefficient of the resin layer 333B can be changed by adjusting the filler filling amount and the resin expansion coefficient.
  • the thermal expansion coefficient of the sprayed film 333A can be changed by adjusting the thermal expansion coefficient of the resin to be impregnated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Inverter Devices (AREA)

Abstract

 パワーモジュールは、半導体チップが搭載された導体板を、該導体板の放熱面が露出するように樹脂で封止した封止体と、放熱面と対向するように配置された放熱部材と、封止体と放熱部材との間に配置された絶縁層と、を備え、絶縁層は、含浸用樹脂が含浸されたセラミックス溶射膜および良熱伝導性のフィラーが混入された接着用樹脂層を積層したものであって、放熱部材および少なくとも放熱面の全域と接するように設けられている積層体と、積層体の端部を全周にわたって覆うように、放熱部材と封止体との隙間に設けられた応力緩和用樹脂部とを有する。

Description

パワーモジュール
 本発明は、放熱性および信頼性に優れたパワーモジュールに関する。
 省エネルギーの観点から、自動車には高燃費化が求められ、モータで駆動する電気自動車や、モータ駆動とエンジン駆動を組み合わせたハイブリッドカーが注目されている。自動車に用いる大容量の車載用モータは、バッテリの直流電圧では駆動や制御が困難であり、昇圧し交流制御するためパワー半導体素子のスイッチングを利用した電力変換装置が不可欠である。また、パワー半導体素子は通電により発熱するため、パワー半導体素子を搭載するパワーモジュールには、高い放熱能力を持つ絶縁層が求められる。
 例えば、このようなパワーモジュールとしては、パワー半導体チップ、パワー半導体チップを搭載する導体板、導体板を搭載する金属ベース板、および導体板と金属ベース板とを絶縁するセラミックス板からなる積層体を樹脂ケースでパッケージングして構造体とし、その構造体を冷却体へ取付ける構造が知られている。低コスト化を目的に例えば、特許文献1に記載の発明では、樹脂封止した導体板の放熱面側に対してセラミックス溶射膜を形成し、絶縁層として用いている。
日本国特許第4023397号公報
 しかしながら、上述した特許文献1に記載の絶縁層である溶射膜は、膜中に気孔が存在するため溶射後の状態ではパワーモジュールに必要な絶縁性能が不足し厚く形成する必要がある。また、膜中の気孔は熱伝導性能の劣化を引き起こす。そこで、樹脂を孔内へ含浸し絶縁性能と熱伝導性能を向上することが有効である。さらに、含浸樹脂により放熱冷却用の金属ベース板に接着すれば、グリスを介した取り付け方式に比較して優れた放熱性を付与できる。しかしながら、金属製の導体板や金属ベース板との熱膨張係数差に起因した熱応力によって、絶縁層の周囲端部において亀裂や剥離が生じるという問題がある。
 本発明の一の態様によると、パワーモジュールは、半導体チップが搭載された導体板を、該導体板の放熱面が露出するように樹脂で封止した封止体と、放熱面と対向するように配置された放熱部材と、封止体と放熱部材との間に配置された絶縁層と、を備え、絶縁層は、含浸用樹脂が含浸されたセラミックス溶射膜および良熱伝導性のフィラーが混入された接着用樹脂層を積層したものであって、放熱部材および少なくとも放熱面の全域と接するように設けられている積層体と、積層体の端部を全周にわたって覆うように、放熱部材と封止体との隙間に設けられた応力緩和用樹脂部とを有する。
 本発明によれば、応力緩和用樹脂部を設けたことにより絶縁層の端部における応力を緩和することができ、パワーモジュールの信頼性向上を図ることができる。
図1は、本発明に係るパワーモジュールの一実施の形態を示す図であり、パワーモジュールの外観斜視図である。 図2は、図1のA-A断面図である。 図3は、パワーモジュール構造体3000を示す図である。 図4は、パワーモジュール300の回路図である。 図5は、一次封止体302の製造工程を示す図である。 図6は、一次封止体302の製造工程を示す図であり、図5の次の工程を示す図である。 図7は、一次封止体302の製造工程を示す図であり、図6の次の工程を示す図である。 図8は、一次封止体302の製造工程を示す図であり、封止樹脂348による封止後の状態を示す。 図9は、封止樹脂348のトランスファーモールド工程を説明する図である。 図10は、一次封止体302の斜視図である。 図11は、補助モールド体600を示す図である。 図12は、パワーモジュール構造体3000のモジュールケース304への封入を説明する図である。 図13は、図2の符号Bで示した部分の拡大図である。 図14は、溶射膜333Aが形成される前の一次封止体302を示す断面図である。 図15は、溶射膜333Aの形成工程を説明する図である。 図16は、溶射膜333Aの形成工程を説明する図であり、図16に続く工程を示す。 図17は、含浸作業後の一次封止体302を示す図である。 図18は、第2の実施の形態のパワーモジュールを示す断面図である。 図19は、パワーモジュールの組み立て工程を説明する図である。 図20は、絶縁層333が形成されたモジュールケース304に一次封止体302を挿入した状態を示す図である。 図21は、絶縁層333が形成された放熱部307Bを示す図である。 図22は、第3の実施の形態を説明する図である。 図23は、積層体の第1の形成方法を説明する図である。 図24は、積層体の他の形成方法を説明する図である。 図25は、第1の変形例を示す図である。 図26は、第2の変形例を示す図である。 図27は、樹脂封止型の片面冷却パワーモジュール300の構成を説明する図である。 図28は、放熱部307への接着を説明する図である。 図29は、一次封止体302を一対の放熱部307Dで挟持する構成のパワーモジュール300を示す図である。 図30は、第5の実施の形態を説明する図であり、樹脂が含浸された溶射膜333Aと樹脂層333Bとの積層体の周方向端部を示す拡大図である。 図31は、絶縁層333の絶縁性能(絶縁破壊電圧)を説明する図である。 図32は、絶縁層333の絶縁性能(部分放電電圧)を説明する図である。 図33は、絶縁層の構成に関する比較例を示す図である。 図34は、比較例と本発明の熱伝導率を説明する図である。 図35は、ハイブリッド自動車の制御ブロックを示す図である。 図36は、インバータ部の電気回路構成を説明する。 図37は、電力変換装置200を説明するための分解斜視図を示す。 図38は、電力変換装置200の分解斜視図である。 図39は、流路19を有する冷却ジャケット12の下面図である。 図40は、コンデンサモジュール500の分解斜視図である。 図41は、冷却ジャケット12にパワーモジュールとコンデンサモジュールとバスバーモジュールを組み付けた外観斜視図である。 図42は、パワーモジュールとコンデンサモジュールを組み付けた冷却ジャケット12とバスバーモジュール800の分解斜視図である。 図43は、保持部材803を除いたバスバーモジュール800の外観斜視図である。 図44は、パワーモジュールとコンデンサモジュールとバスバーモジュール800と補機用パワーモジュール350を組み付けた冷却ジャケット12の外観斜視図である。 図45は、制御回路基板20と金属ベース板11を分離した電力変換装置200の分割斜視図である。 図46は、電力変換装置200を図45のC方向から見た断面図である。 図47は、溶射膜333Aを放熱部307B側に形成した場合の段差構造を示す図である。 図48は、溶射膜333Aを一次封止体302側に形成した場合の段差構造を示す図である。 図49は、第6の実施の形態を説明する図である。
 以下、図を参照して本発明を実施するための形態について説明する。
-第1の実施の形態-
 図1~17は、本発明によるパワーモジュールの第1の実施の形態を示す図である。図1はパワーモジュールの外観斜視図である。図2は、図1のA-A断面図である。パワーモジュール300は、スイッチング素子を含みトランスファーモールドされたパワー半導体ユニットを、モジュールケース304内に収納したものである。パワーモジュール300は、例えば、電気自動車やハイブリッド自動車等の電気車両に搭載される電力変換装置に用いられる。
 図2に示すように、パワーモジュール300は、図3に示すパワーモジュール構造体3000をCAN型冷却器であるモジュールケース304の内部に収納したものである。ここで、CAN型冷却器とは、一面に挿入口306と他面に底を有する筒形状をした冷却器である。モジュールケース304は、電気伝導性を有する部材、例えばCu、Cu合金、Cu-C、Cu-CuOなどの複合材、あるいはAl、Al合金、AlSiC、Al-Cなどの複合材などから形成されている。また、溶接など防水性の高い接合法で、あるいは鍛造、鋳造法などにより、つなぎ目の無い状態でケース状に一体成形されている。
 モジュールケース304は、挿入口306以外に開口を設けない扁平状のケースであり、扁平状ケースの挿入口306にはフランジ304Bが設けられている。扁平状ケースの面積の広い対向する2つの面の一方には放熱部307Aが設けられ、他方の面には放熱部307Bが設けられている。放熱部307Aおよび放熱部307Bはモジュールケース304の放熱壁として機能するものであり、それらの外周面には複数のフィン305が均一に形成されている。放熱部307Aおよび放熱部307Bを囲む周囲の面は、厚さが極端に薄く容易に塑性変形可能な薄肉部304Aとなっている。薄肉部304Aを極端に薄くすることで、放熱部307Aおよび放熱部307Bをケース内側方向に加圧した際に、容易に変形することができる。なお、モジュールケース304の形状は、正確な直方体である必要がなく、図1に示すように角が曲面を形成していても良い。
 図3は、モジュールケース304に収納されるパワーモジュール構造体3000を示す図である。図3(a)はパワーモジュール構造体3000の斜視図であり、図3(b)はC-C断面図である。なお、C-C断面は、図1のA-A断面と同一の部分の断面である。パワーモジュール構造体3000は、一次封止体302と補助モールド体600とから成る。一次封止体302と補助モールド体600とは接続部370において接続されている。接続部370における金属接合には、たとえばTIG溶接などを用いることができる。補助モールド体600に設けられた配線絶縁部608を、図1に示すようにネジ309によってモジュールケース304のフランジ304Bに固定することにより、モジュールケース304内においてパワーモジュール構造体3000が位置決めされる。
(一次封止体302の説明)
 次に、図4~11を用いて、一次封止体302の構成を説明する。図4は、パワーモジュール300の回路図である。図5~11は一次封止体302の製造工程を示す図である。パワーモジュール300は、上アーム用IGBT328と下アーム用IGBT330とを直列したものであり、半導体素子としては、IGBT328,330およびダイオード156,166を備えている。これらの半導体素子のチップ(以下では半導体チップと呼ぶ)は図5に示すように板状であって、半導体チップの表裏面に電極が形成されている。
 上アーム用IGBT328のコレクタ電極と上アーム用ダイオード156のカソード電極は導体板315に接続され、IGBT328のエミッタ電極とダイオード156のアノード電極は導体板318に接続されている。下アーム用IGBT330のコレクタ電極と下アーム用ダイオード166のカソード電極は導体板320に接続され、IGBT330のエミッタ電極とダイオード166のアノード電極は導体板319に接続されている。導体板318と導体板320とは、中間電極159を介して接続されている。中間電極159により上アーム回路と下アーム回路とが電気的に接続され、図4に示すような上下アーム直列回路が形成される。なお、導体板315,318,319,320としては、Cu,Al,Ni,Au,Ag,Mo,Fe,Coなどの金属、それらの合金、複合体が用いられる。
 図5に示すように、直流正極側の導体板315および交流出力側の導体板320と、上アーム用信号接続端子327Uおよび下アーム用信号接続端子327Lとは、共通のタイバー372に繋がれた状態で、これらが略同一平面状の配置となるように一体的に加工される。上アーム用信号接続端子327Uには、IGBT328の制御電極328Aがボンディングワイヤにより接続される。下アーム用信号接続端子327Lには、IGBT330の制御電極330Aがボンディングワイヤにより接続される。導体板315,320の半導体チップ(IGBT328,330、ダイオード156,166)が接合される部分には凸状のチップ固着部322がそれぞれ形成されている。各半導体チップは、それらのチップ固着部322の上に金属接合材160によって接合される。金属接合材160には、例えば、はんだ材や銀シート及び微細金属粒子を含んだ低温焼結接合材等が用いられる。また、金属接合材160には錫を主成分としたハンダを用いる事が望ましいが、金、銀、銅のいずれかを主成分としたものやロウ材やペースト等を用いることもできる。
 IGBT328,330およびダイオード155,166の上には、金属接合材160を介して導体板318と導体板319が略同一平面状に配置され、金属接合される。図4に示したように、導体板318には、上アーム側のIGBT328のエミッタ電極と上アーム側のダイオード156のアノード電極が接合される。導体板319には、下アーム側のIGBT330のエミッタ電極と下アーム側のダイオード166のアノード電極が接合される。導体板315には直流正極接続端子315Dが形成されている。導体板320には交流接続端子320Dが形成されている。導体板319には直流負極接続端子319Dが形成されている。
 上述したように、導体板315と導体板318の間にIGBT328及びダイオード156を挟み込むと共に、導体板320と導体板319の間にIGBT330及びダイオード166を挟み込み、導体板320と導体板318とを中間電極329により接続すると、図6に示す状態となる。さらに、IGBT328の制御電極328Aと信号接続端子327Uとをボンディングワイヤ371により接続すると共に、IGBT330の制御電極330Aと信号接続端子327Lとをボンディングワイヤ371により接続すると、図7に示す状態となる。
 図7に示す状態に組み立てた後、半導体チップ(IGBT328,330、ダイオード156,166)およびボンディングワイヤ371を含む部分を封止樹脂348により封止する。この封止はトランスファーモールドにより行われる。図9に示すように、符号373で示す部分(金型押圧面)を上下からトランスファーモールド用金型で押さえ、封止樹脂348を金型内に充填して成形を行う。
 図9はトランスファーモールド工程を説明するための図である。図9において、(a)は型締め前の縦断面図を示しており、(b)は型締め後の縦断面図を示している。図9(a)に示すように、図7に示した封止前の一次封止体302は、上側金型374Aと下側金型374Bの間に設置される。上側金型374Aおよび下側金型374Bが一次封止体302を上下から金型押圧面373において挟み込んで型締めすることで、図9(b)に示すように金型空間375が金型内に形成される。この金型空間375に封止樹脂348を充填して成形することで、一次封止体302において半導体チップ(IGBT328,330およびダイオード155,166)が封止樹脂348により封止される。
 封止樹脂348としては、例えばノボラック系、多官能系、ビフェニル系のエポキシ樹脂系を基とした樹脂を用いることができ、SiO2,Al2O3,AlN,BNなどのセラミックスやゲル、ゴムなどを含有させ、熱膨張係数を導体板315,320,318,319に近づける。これにより、部材間の熱膨張係数差を低減でき、使用環境時の温度上昇にともない発生する熱応力が大幅に低下するため、パワーモジュールの寿命をのばすことが可能となる。
 なお、図8に示したように、金型押圧面373では、直流正極接続端子315D、直流負極接続端子319D、交流接続端子320D、信号接続端子327Uおよび信号接続端子327Lが一列に並べて配置されている。こうした端子配置とすることで、上側金型374Aおよび下側金型374Bを用いて、各端子と半導体チップとの接続部において余分な応力を発生させずに、かつ隙間なく型締めを行うことができる。したがって、半導体チップとの破損を招いたり、あるいは封止樹脂348が隙間から漏出したりすることなく、半導体チップとの封止を行うことができる。また、封止樹脂348の一方の表面には導体板318,319の表面(放熱面)が露出し、反対側の面には、導体板315,320の表面(放熱面)が露出している。
 図8に示すように封止樹脂348により封止した後、タイバー372を切除して、直流正極接続端子315D、319D、交流接続端子320D、信号接続端子327U、327Lをそれぞれ分離する。そして、一次封止体302の一辺側に一列に並べられている直流正極接続端子315D、直流負極接続端子319D、交流接続端子320D、信号接続端子327U、327Lの各端部を、図10のようにそれぞれ同一方向に折り曲げる。これにより、接続部370において一次封止体302と補助モールド体600とを金属接合する際の作業を容易化して生産性を向上すると共に、金属接合の信頼性を向上することができる。
 図11は補助モールド体600を示す図であり、(a)は斜視図、(b)はD-D断面図である。補助モールド体600は、直流正極配線315A、直流負極配線319A、交流配線320A、信号配線324Uおよび信号配線324Lを備えている。直流正極配線315A、直流負極配線319A、交流配線320A、信号配線324Uおよび信号配線324Lは、樹脂材料で成形された配線絶縁部608によって、相互に絶縁された状態で一体に成型されている。配線絶縁部608は各配線を支持するための支持部材としても作用し、配線絶縁部608に用いる樹脂材料には、絶縁性を有する熱硬化性樹脂かあるいは熱可塑性樹脂が適している。これにより、直流正極配線315A、直流負極配線319A、交流配線320A、信号配線324Uおよび信号配線324Lの間の絶縁性を確保でき、高密度配線が可能となる。
 直流正極配線315Aの上端には直流正極端子315Bが形成され、下端には、直流正極接続端子315Cが直角に折れ曲がるように形成されている。直流負極配線319Aの上端には直流負極端子319Bが形成され、下端には、直流負極接続端子319Cが直流正極接続端子315Cと同方向に折れ曲がるように形成されている。交流配線320Aの上端には交流端子320Bが形成され、下端には、交流接続端子320Cが直流正極接続端子315Cと同方向に折れ曲がるように形成されている。信号配線324U、324Lの上端には、それぞれ信号端子325U、325Lが形成されている。一方、信号配線324U、324Lの下端には、信号接続端子326Uおよび信号接続端子326Lが直流正極接続端子315Cと同方向に折れ曲がるように形成されている。
 このように、補助モールド体600側の接続部370を構成するする直流正極接続端子315C、直流負極接続端子319C、交流接続端子320C、信号接続端子326Uおよび信号接続端子326Lは、図11(a)に示すように一列に並べて配置されている。そして、補助モールド体600側の接続部370(326U,315C,319C,326L,320C)は、図10に示すように一列に並べて配置されている一次封止体302側の接続部370(327U,315D,319D,327L,320D)と接続される。接続には、例えば、TIG溶接などを用いることができる。
 図3に示すようなパワーモジュール構造体3000が完成したならば、図12(a)に示すようにパワーモジュール構造体3000をモジュールケース304に挿入し、補助モールド体600の配線絶縁部608をモジュールケース304のフランジ304Bに固定する。その挿入の際に、パワーモジュール構造体3000の一次封止体302とモジュールケース304の放熱部307A,307Bとの間に、電気的な絶縁を図るための絶縁層333が配設される。絶縁層333の詳細については後述する。そして、図12(b)の矢印で示すように放熱部307A,307Bをケース内側に加圧して薄肉部304Aを変形させ、放熱部307A,307Bを一次封止体302に密着させる。その後、モジュールケース304内に封止樹脂351(図3参照)を充填して封止することで、接続部370とモジュールケース304との間で必要な絶縁距離を安定的に確保することができる。
 封止樹脂351としては、例えばノボラック系、多官能系、ビフェニル系のエポキシ樹脂系を基とした樹脂を用いることができる。また、エポキシ樹脂に対してはSiO2,Al2O3,AlN,BNなどのセラミックスやゲル、ゴムなどを含有させ、熱膨張係数をモジュールケース304や導体板315,320,318,319に近づける。これにより、部材間の熱膨張係数差を低減でき、使用環境時の温度上昇にともない発生する熱応力が大幅に低下するため、パワーモジュールの寿命をのばすことが可能となる。
(絶縁層333の説明)
 図13は絶縁層333の構造を説明する図である。図13は、図2の符号Bで示した部分の拡大図である。一次封止体302と放熱部307Bとによって挟まれるように絶縁層333が設けられている。絶縁層333は、絶縁性の酸化物やセラミックスの粉体を溶射して形成された溶射膜333Aの層と、絶縁性の樹脂層333Bと、溶射膜333Aと樹脂層333Bの積層体の周囲端部(縁の部分)に設けられた絶縁性の樹脂部333Cとを備えている。樹脂部333Cは、積層体の側面周囲の全周に設けられている。溶射膜333Aは一次封止体302側に形成されており、溶射膜333Aと放熱部307Bとの間に樹脂層333Bが形成されている。
 溶射膜333Aに形成される空孔3330には絶縁性の樹脂が含浸されている。図13に示す例では、含浸用樹脂には樹脂部333Cと同じ樹脂が用いられている。また、樹脂層333Bを構成する樹脂には、熱伝導性能を高めるためにフィラーが混入されている。溶射膜333Aと樹脂層333Bとの積層体の周囲端部に設けられた樹脂部333Cは、積層体の周囲端部が露出しないように封止樹脂348と放熱部307Bとの隙間に形成されている。溶射膜333Aの表面は凹凸面となっており、溶射膜333Aの内部には多数の空孔3330が形成される。樹脂層333Bは、その一部が溶射膜333Aの凹凸面に入り込むように設けられている。
 図14~17は絶縁層333の形成工程を説明する図である。図14は、一次封止体302への溶射膜333Aの形成を説明する図であり、溶射膜333Aが形成される前の一次封止体302を示す断面図である。上述したように、対向配置された一対の導体板315,318と一対の導体板320,319は、図14の紙面に垂直な方向に並ぶように配置されている。導体板315,318に挟まれるようにIGBT328およびダイオード156が配置され、導体板320,319に挟まれるようにIGBT330およびダイオード166が配置されている。これらは封止樹脂348によって封止されているが、導体板315,318,319,320の放熱面315a,318a,319a,320a(半導体チップが接合されている面と反対側の面)は封止樹脂348から露出している。図14の断面図は図3のC-C断面と同一部分を断面したものであって、導体板315,318の部分の断面図である。
〈溶射膜333Aの形成〉
 図13に示したような絶縁層333を形成するために、まず、図15(a)に示すように一次封止体302の両面に溶射膜333Aを形成する。図15(b)は、図15(a)の符号Eで示す部の拡大図である。溶射膜333Aは、放熱面315a,318a,319a,320aの領域が含まれるように形成され、溶射膜333Aの縁の部分は封止樹脂348上に形成されている。溶射膜333Aは絶縁体であり、酸化物やセラミックスの粉体を溶射して作製する。本実施の形態ではプラズマ溶射法によりセラミックスの溶射膜333Aを形成しているが、他の溶射法、例えばアーク溶射法、高速フレーム溶射法等を用いても良い。
 溶射による導体板315,318,319,320の温度上昇は、例えばろう材を用いて導体板とセラミックス板を接合するよりもはるかに小さく、溶融、熱劣化、反りなどの熱変形も小さい。例えば、溶射膜333Aをプラズマ溶射法により形成する場合には、一次封止体302の温度上昇は100~180℃程度となる、そのため、封止樹脂348、金属接合材160、IGBT328,330およびダイオード156,166の熱劣化を防止できる。金属接合材160による半導体素子の接合は220~300℃程度の温度範囲でなされるので、この接合後に溶射膜333Aを形成しても問題ない。
 一方、導体板315に溶射膜333Aを形成してから半導体素子を接合するような逆の手順で行なった場合には、半導体素子の接合温度が220~300℃程度と溶射膜形成時の温度上昇より高いため、熱膨張係数の小さい溶射膜333Aと熱膨張係数の大きな導体板315,318,319,320との積層部に発生する熱応力が溶射時よりも大きくなる。すなわち、半導体素子を接合してから溶射膜333Aを形成する手順の方が、熱応力は低減される。
 また、導体板315,318,319,320の溶射膜333Aが形成される面(放熱面)を、サンドブラストやエッチングなどにより粗化加工することによって、導体板315,318,319,320と溶射膜333Aとの間の接合強度を向上させることができる。さらに、図15(a)に示すように、一次封止体302は封止樹脂348によって封止されているため、溶射処理時に半導体チップ(IGBT328,330およびダイオード156,166)やボンディングワイヤ371などへの物理的、化学的な影響を、封止樹脂348によって防止することができる。そのため、溶射のための複雑なマスキングを施す必要がなく、生産性に優れている。
 上述したサンドブラストやエッチングなどの粗化処理は、以下のような利点を有している。トランスファーモールドを行った際に、導体板315,318,319,320の放熱面の一部が封止樹脂348により被覆される場合があるが、上述したサンドブラストによる粗化を行うことで、放射面上の封止樹脂348を除去することができる。封止樹脂348は導体板よりも熱伝導率が低いため、放熱面から除去できることで放熱性が向上する。
 また、封止樹脂348の除去や一次封止体302の平面度向上のために、導体板の放熱面の部分を研削したり研磨したりする場合がある。そのような加工を行った場合、加工条件によっては(例えば、加工時間短縮のために切削、研磨の速度を上げた場合)導体板上の表面粗さが過大となったり、導体板と封止樹脂348との境界にバリが形成されたりして電界集中のおそれがある。しかし、溶射膜前処理にサンドブラストやエッチングをすることにより、これらの欠陥を除去することができ、絶縁信頼性の向上を図ることができる。
 溶射膜333Aを形成するための粉末としては、アルミナ,シリカ,マグネシア,ベリリアなどの酸化物、窒化アルミ,窒化珪素,窒化硼素などの窒化物、シリコンカーバイドなどの炭化物といった高熱伝導なセラミックスの粉体から選ぶのが好ましい。また、これら単体組成に限らず、単体組成や酸化物と窒化物あるいは炭化物との複合組成、あるいは混合粉末を用いても良い。
 ところで、導体板315,318,319,320および封止樹脂348上に形成される溶射膜333Aは、図15(b)に示すように、上述のセラミックスが凝固し形成された扁平体3331の集合体状になっており、扁平体3331が層を成すように堆積している。このように、プラズマ溶射法などにより、セラミックスの粉末を部分的あるいは完全溶融状態で基材(導体板315,318,319,320および封止樹脂348)に衝突させると、セラミックスは基材表面に扁平形状で溶着し、溶着して凝固した扁平体3331の上にもさらに溶着することになる。
 これにより、三次元的には扁平体3331同士や、扁平体3331と導体板315,318,319,320および封止樹脂348内のセラミックスフィラーや樹脂に対して、その当接している界面で溶着面を形成し強固に接合している。そのため、一次封止体302に溶射膜333Aを形成した後に、前述のように接続部370において一次封止体302と補助モモジュール600とをTIG溶接等により金属接合する際に(図3参照)、溶射膜333Aに剥離や欠けなどが生じにくくなる。なお、マスキングをすれば部分的に溶射膜333Aを形成できるので、一次封止体302と補助モールド体600とを金属接合した後に、溶射膜333Aを形成するようにしても良い。なお、前述したように、導体板315,318,319,320としては、Cu,Al,Ni,Au,Ag,Mo,Fe,Coなどの金属、それらの合金、複合体が用いられる。
〈樹脂層333Bの形成〉
 次に、図16を用いて、絶縁層を構成する樹脂層333Bの形成について説明する。図15に示すように一次封止体302の両面に溶射膜333Aを形成したならば、その溶射膜333Aの上に、樹脂層333Bを形成する。図16(b)は、E部の拡大図である。なお、この段階では、溶射膜333A上に形成された樹脂層333Bの表面には保護フィルム352が設けられている。
 樹脂層333Bは、一次封止体302の溶射膜333Aが形成されている面をモジュールケース304の放熱部307A,307Bに接着するものであって、樹脂層333Bには充分な接着性と高い熱伝導性が要求される。そのため、樹脂層333Bを構成する樹脂には、接着性のあるフェノール系,アクリル系,ポリイミド系,ポリアミドイミド系,エポキシ系,シリコン系,ビスマレイミドトリアジン系,シアネートエッセル系を基にした樹脂等が用いられる。特に、接着性が高いビスマレイミドトリアジン系,ポリアミドイミド系,ポリイミド系,シアネートエッセル系,エポキシ系,フェノール系を基にした樹脂を用いるのが好ましく、接着後に剥離し難くパワーモジュールの寿命が高まる。
 また、半導体素子(IGBT328,330およびダイオード156,166)から発生する熱をモジュールケース304の放熱部307A,307Bに効率良く伝えるため、樹脂層333Bには高い熱伝導率が要求される。そのため、上記樹脂に熱伝導性向上のための良熱伝導性のフィラーを混入したものが、樹脂層333Bに用いられる。樹脂層333Bに混入させるフィラーは絶縁性を有したものが良く、アルミナ,シリカ,マグネシア,ベリリアなどの酸化物、窒化アルミ,窒化珪素,窒化硼素などの窒化物、シリコンカーバイドなど炭化物などの高熱伝導なセラミックスのフィラーがより好ましい。しかし、樹脂を含浸した333Aで絶縁できるため、銀や銅やはんだやカーボンなど電気伝導性を有するフィラーを用いることも可能である。
 溶射膜333A上に樹脂層333Bを形成する場合には、先ず、フィラーが混入された上記樹脂から成る樹脂シート3332を用意する(図16(a)参照)。樹脂シート3332は、取り扱いが容易なように表裏両面に保護フィルム352が設けられている。保護フィルム352には、ポリエチレンテレフタレート、ポリエチレン、ポリプロピレン、ポリブチレンテレフタレート、テフロン(登録商標)など、後述する仮圧着後に容易に剥離できるものを用いれば良い。
 図16(c)に示すように、樹脂シート3332の片面の保護フィルム352を剥がし、矢印で示すように樹脂シート3332を溶射膜333A上に仮圧着することで、溶射膜333A上に樹脂層333Bが形成される。仮圧着された樹脂層333Bは、後述する工程において一次封止体302をモジュールケース304に収納した後、樹脂層333Bと放熱部307A,307Bとの接着のために最終的な圧着作業が行われる。そのため、図16に示す工程での仮圧着においては、樹脂成分が半硬化以下の状態(例えば、樹脂成分の硬化度が約80%以下である状態)となるように圧着時の温度条件および加圧条件を設定する。
 この仮圧着により、樹脂シート3332の一部が、溶射膜333Aの表面凹凸部や表面付近の空孔内に入り込む。なお、樹脂シート3332に混入されているフィラーの粒径分布は、樹脂とともに溶射膜333Aの凹凸部に入り込める程度に設定される。その結果、図16(b)に示すような樹脂層333Bが形成される。このように樹脂層333Bの一部が溶射膜333Aの凹凸部に入り込むことで、アンカー効果による接着強度の向上と放熱性の向上とを図ることができる。
 樹脂層333Bの形成範囲については、導体板315,318の放熱面315a,318a(図14)の面積よりも広い範囲で行うと、放熱性を最も高くできる。ただし、封止樹脂348の熱伝導率が導体板315,318,319,320よりも十分小さいため、熱伝導率が高い樹脂層333Bの形成範囲は、図16(a)に示すように導体板よりもやや広い範囲で十分である。なお、後述する溶射膜333Aの空孔3330への樹脂の含浸作業を考慮して、本実施形態では、樹脂層333Bの形成範囲は溶射膜333Aの面積よりも小さくする必要がある。図16(b)ではYで示す空白範囲が含浸作業領域を示している。
 なお、図16(c)に示した例では、樹脂シート3332を溶射膜333Aに圧着して樹脂層333Bを形成したが、溶射膜333Aの表面にフィラーを混入させた樹脂を塗布して樹脂層333Bを形成しても良い。その場合、マスクを設置して所定領域のみに塗布されるようにする。すなわち、樹脂を含浸させるために利用する溶射膜333Aの外周領域にマスクを設置する。
〈樹脂の含浸〉
 図16に示すように溶射膜333Aの上に樹脂層333Bを形成したならば、溶射膜333Aの空孔3330に樹脂を含浸させる。ところで、溶射膜333Aは、セラミックス充填率で最大95%程度まで充填することができる。しかし、図13に示すように三次元的な貫通孔(空孔3330)が形成されているため、樹脂が含浸される前の溶射膜333Aの絶縁特性や熱伝導率は空孔3330の影響によって低下する。また、溶射膜333A内に三次元的な貫通孔が形成されているため、そのままでは温度昇降に伴う熱応力での割れ感受性が高いという問題がある。
 そこで、絶縁、放熱および熱サイクル耐性を向上できるように、溶射膜333A内の空孔3330に樹脂を含浸する。ここで、含浸用の樹脂は、樹脂層333Bに用いられる樹脂と同一にする方が、硬化時の親和性が高く接着性を高めることができるので好ましい。また、含浸を行う際には、溶射膜333Aの空孔3330とそこに含浸する樹脂との密着性を高めるために、空孔3330にエッチング処理やカップリング処理を施すのが好ましい。
 さらに、パワーモジュールは求められる機能に必要な部材で構成されるため、図13に示すように、金属の導体板315、樹脂が含浸されたセラミックス溶射膜333A、樹脂層333Bおよび金属の放熱部307Bのように様々な熱膨張係数の部材を積層した構造となる。このように、様々な熱膨張係数の部材を接合や接着すると、応力が積層体の端部に集中し端部から剥離が発生、進展していくことになる。例えば、導体板315にCuを用いた場合にはその熱膨張係数αは17程度となり、モジュールケース304にAlを用いた場合には放熱部307Bの熱膨張係数αは23程度となる。この熱膨張係数の違いにより、全体の温度が上昇すると積層体に剥離や割れ等が発生しやすくなる。
 本実施の形態では、このような端部の応力集中を緩和するために、図13に示すように、フィラーを含む樹脂層333Bと溶射膜333Aとの積層体の端部周囲に樹脂部333Cを形成するようにした。図13に示す例では、樹脂部333Cは、樹脂層333Bおよび溶射膜333Aの端部を覆うとともに、それらの外周方向に延在している。本実施の形態では、樹脂部333Cは、含浸用樹脂と同一の樹脂が用いられており、樹脂が含浸された溶射膜333Aは勿論のことフィラーを含む樹脂層333Bに比べて弾性係数が小さい、または接着強度が高い。そのため、この樹脂部333Cを設けることによって、端部の応力緩和や、応力集中する端部の剥離発生や進展を抑制することが可能となる。なお、この周囲の樹脂部333Cは封止樹脂348と放熱部307Bとの間に配置されるものなので、絶縁層333のその部分の熱伝導率が低くても、パワーモジュールの放熱性に対する影響はほとんど無い。
 樹脂の溶射膜333Aへの含浸を行う場合には、図16に示した含浸作業領域Yから溶射膜333Aに樹脂(樹脂部333Cと同じ樹脂)を含浸する。図17は、含浸作業後の一次封止体302を示す図である。含浸作業領域Yに対して樹脂の含浸を行うと、毛細管現象により、樹脂層333Bと導体板315との間の溶射膜333Aの空孔3330にも樹脂が含浸される。そして、この含浸作業時に、含浸に用いる樹脂を用いて上述した樹脂部333Cを形成する。
 図17に示すように、空孔3330に樹脂が含浸されることにより、溶射膜333Aの絶縁、放熱および熱サイクル耐性が向上する。また、溶射膜333Aの樹脂層333Bが接着された箇所においては、樹脂層333Bと溶射膜333Aの表面凹凸部との間は密着していて、含浸用樹脂は入り込むことはできない。そのため、樹脂の含浸によって溶射膜333Aと樹脂層333Bとの間の熱伝導性が影響を受けることはない。
 なお、減圧状態にして含浸作業を行うことにより、空孔3330内の残留ガスが含浸用樹脂内に巻き込まれてボイドが発生したり、未充填領域が発生したりするのを防止することができる。また、ディスペンサーなどを用いて含浸作業領域Yの1箇所あるいは1辺から注入することにより、注入された含浸用樹脂が樹脂層333Bと導体板315との間を流れて、他の辺から溢れ出る。その際に、空孔3330内の残留ガスは、樹脂に押し流されるように他辺から排出される。その結果、残留ガス巻き込みによるボイドの発生を防止できる。この溢れ出た含浸用樹脂は、上述した応力緩和用の樹脂部333Cを形成する。すなわち、樹脂含浸時に積層体端部の樹脂部333Cも形成する。なお、含浸用樹脂が他の辺から溢れ出ることにより、含浸用樹脂が樹脂層333Bと導体板315との間の空孔3330に充填されたことを、容易に確認することができる。なお、注入は常圧で行い、注入後に減圧状態にして樹脂中のガスを放出させるようにしても良い。
 含浸用樹脂は粘度が低い方が好ましいので、本実施の形態では粘度を低くするためにフィラーは混入させていない。セラミックスの溶射膜333Aは、空孔3330を樹脂によって含浸すれば充分な熱伝導性が得られるので、含浸用樹脂にはフィラーを混入させなくても良い。ただし、供給時の粘度調整のために、含浸可能な粘度範囲であればフィラーを混入させても良い。さらに、弾性係数が小さくなるように、あるいは接着力を樹脂層333Bよりも向上できるように、含浸用樹脂のフィラー含有率は樹脂層333Bのフィラー含有率よりも小さい範囲にする。また、含浸用樹脂の粘度を低くするために溶剤成分を増加しても良い。含浸用樹脂は樹脂層333Bに用いられる樹脂と同一でも良いし、異なる樹脂でも良い。
 なお、含浸プロセスやその後の溶剤の除去時に加熱する際は、樹脂層333Bが半硬化状態よりも硬化進行度が進行しない温度や時間とする。また、図17に示すように、仮付けした樹脂層333Bに保護フィルム352を設けておくと、樹脂層333Bの表面(放熱部307Bに対向する面)に熱伝導率を下げる樹脂(充填用樹脂)の付着を防止できるため、生産性の向上が図れる。
〈一次封止体302のモジュールケース304への封入〉
 図17に示すように溶射膜333Aに樹脂を含浸したならば、その一次封止体302をモジュールケース304内に封入する。まず、一次封止体302の樹脂層333Bの表面に貼り付けられていた保護フィルム352(図16(b)参照)を剥がし、図12(a)のように、一次封止体302をモジュールケース304内に挿入する。そして、所定の温度条件および加圧条件で図12(b)の矢印方向に放熱部307A,307Bを加圧して、放熱部307A,307Bを樹脂層333Bに接着させる。その後、モジュールケース304内に封止樹脂351を充填して封止する。
 このように、溶射膜333Aと放熱部307Bとの間に樹脂層333Bを設けることにより、一次封止体302の放熱部307Bと接触する面(接着面)が平坦化され、一次封止体302と放熱部307Bとの間におけるボイド発生を防止することができる。
 なお、溶射膜333Aと放熱部307Bとの間に設けられた樹脂層333Bの厚さは、薄いほど熱抵抗が減少し絶縁層333の放熱性が向上する。しかし、仮付けした樹脂層333Bの厚さが薄すぎると、放熱部307B内面の表面粗さを吸収できない。そのため、溶射膜333Aに仮付けした樹脂層333Bの最小厚さは、放熱部307B内面の最大表面粗さRmaxを吸収できる範囲よりも大きくすることが望ましい。この厚さ調整は、樹脂シート3332の厚さを調整することで容易にできる。仮付けされた状態における樹脂層333Bの最大厚さは、例えば10~50μmの範囲で調整され、好ましくは10~30μmの範囲となる。
 接着用樹脂層333Bに混入しているフィラーの体積率は、5~80%の範囲とする。ただし、体積率が大きいほど熱伝導率が高くなり放熱性が向上するが、接着強度が劣化するため、好ましくは30~60%の範囲がよい。また、接着面となる放熱部307B側にサンドブラストやディンプルなどの物理的な粗化処理、エッチング、陽極酸化、化成処理などの化学的な粗化処理を施したり、樹脂に対し接着性の高い層をめっきやスパッタやカップリング処理で設けたりすることで相対的に接着強度を向上できる。そのため、樹脂層333Bに混入させるフィラーの体積率をより増加させることが可能となる。
-第2の実施の形態-
 図18~21は、第2の実施の形態を示す図である。図18はパワーモジュールの断面図である。なお、一次封止体302の補助モールド体600については図示を省略した。第1の実施の形態ではモジュールケース304を一体形成していたが、第2の実施の形態では、モジュールケース304はケース枠体と一対のケース側面部とで構成されている。ケース枠体は、肉厚のフランジ304Bと枠部304Dとから成る。一対のケース側面部304Cの一方(図示左側)は、フィン305が形成された放熱部307Aと、その周囲を囲む薄肉部304Aとから成る。他方のケース側面部304Cは、フィン305が形成された放熱部307Bと、その周囲を囲む薄肉部304Aとから成る。薄肉部304Aをケース枠体に金属接続することにより、モジュールケース304が形成されている。
 本実施の形態では、放熱部307A,307B側に溶射膜333Aが形成され、導体板315,318側に樹脂層333Bが形成されている。溶射膜333Aには樹脂が含浸されている。また、樹脂が含浸された溶射膜333Aと樹脂層333Bで構成される積層体の周囲端部には端部を覆うように樹脂部333Cが設けられている。
 図19~21は、パワーモジュールの組み立て工程を説明する図である。図19(a)に示す工程では、ケース枠体に金属接合する前のケース側面部304Cを用意し、その放熱部307Bのケース内周面側に溶射膜333Aを形成する。溶射膜333Aの形成方法は第1の実施の形態の場合と同様である。上述したように、溶射時の被溶射体の温度上昇は100~200℃程度であるため、図19(a)に示すように放熱部307Bにフィン305や薄肉部304Aが形成された状態で溶射処理することができる。なお、薄肉部304Aに溶射膜333Aが形成されないようにマスキング処理が施される。
 放熱部307A,307Bにフィン305および薄肉部304Aが形成されたケース側面部304Cは、鋳造や鍛造や機械加工にて作製できる。材質には、Cu、Cu合金、Cu-C、Cu-CuOなどの複合材、あるいはAl、Al合金、AlSiC、Al-Cなどの複合材などが用いられる。
 次いで、第1の実施の形態の場合と同様に樹脂シート3332を溶射膜333A上に仮付け(仮固着)して、樹脂層333Bを形成する(図19(b))。その後、溶射膜333Aに樹脂を含浸すると共に、その含浸用樹脂により、溶射膜333Aと樹脂層333Bとの積層体の周囲端部に樹脂部333Cを形成する(図19(c))。図19(c)までの工程を、放熱部307Aが形成されたケース側面部304Cと、放熱部307Bが形成されたケース側面部304Cとの両方に関して行う。
 なお、樹脂層333Bの形成方法としては、上述した樹脂シート3332を用いる方法の他に、液状のフィラーが混入された樹脂を塗布、噴霧、ディップする手法を用いても良い。樹脂層333Bは溶射膜333Aの範囲よりも狭い範囲に形成されるので、溶射膜範囲の縁の部分にマスキングを施して樹脂層333Bを形成する。マスキングにより樹脂層333Bが形成されなかった領域から、溶射膜333Aに対して樹脂を含浸する。また、樹脂シート3332を用いる場合と同様に、樹脂層333Bの表面に保護フィルム352を設置することで、含浸作業が容易となる。
 その後、図20に示すように、樹脂が含浸された溶射膜333A,樹脂層333Bおよび樹脂部333Cがそれぞれ形成された一対のケース側面部304Cを、フランジ304Bおよび枠部304Dから成るケース枠体に金属接合してモジュールケース304を形成する。金属接合は、樹脂部333Cから離れた薄肉部304Aの縁部分をレーザ溶接、摩擦攪拌接合など熱影響領域が小さい手法を用いてなされる。熱影響部が小さい手法を選択することで、樹脂層333Bや溶射膜に含浸された樹脂や樹脂部333Cの硬化進行度が維持できる。
 次いで、モジュールケース304内に一次封止体302を挿入するように固定する。そして、放熱部307A,307Bをケース内側方向に加圧しながら加熱して、放熱部307A,307Bの内周面を樹脂層333Bに接着する。その後、モジュールケース304内に封止樹脂351を充填することで、図18に示すパワーモジュールが完成する。
 なお、図19,20に示した例では、肉厚部である放熱部307A,307Bを薄肉部304Aよりもケース外側に突出するように形成したが、図21に示すように、放熱部307A,307Bを薄肉部304Aよりもケース内側に突出するように構成しても構わない。また、溶射膜333Aを、肉厚部である放熱部307A,307Bと同一面積にしてもよい。
 このように、第2の実施の形態では、別々に形成されたケース枠体とケース側面部304Cとを、金属接合して一体のモジュールケース304を形成する構成としているため、放熱部307A,307Bの内周面側に溶射膜333Aを容易に形成することができる。
 導体板315,318にCuやCu合金を用い、モジュールケース304にAlSiCやAlCなどの複合材を用いる場合、導体板315,318の方がモジュールケースよりも熱膨張係数が大きくなる。このような場合、絶縁層333を構成する部材の熱膨張係数が、導体板315側から放熱部307Bにかけて減少するような構成とすることで、使用中の温度変化で積層体の端部に発生する熱応力を小さくすることができる。そのために、熱膨張係数のより小さな溶射膜333Aを放熱部307Bに形成し、樹脂を含浸することで含浸樹脂と溶射膜333Aとを合わせた全体の熱膨張係数を放熱部307Bの熱膨張係数に近づける。一方、樹脂層333Bに関しては、熱膨張係数の大きな樹脂を選択するとともにフィラーの混入量を調整して、樹脂層333Bの熱膨張係数を導体板315の熱膨張係数に近づけるようにする。
 なお、絶縁層333を、樹脂が含浸された溶射膜333Aとフィラーが混入された樹脂層333Bとの積層体とすることで、導体板315と放熱部307との間の熱伝導性能が向上する点については、第1の実施の形態と同様である。さらに樹脂部333Cを設けたことで、積層体端部における熱応力の増加を緩和できる点についても第1の実施の形態と同様である。
-第3の実施の形態-
 図22は、第3の実施の形態を説明する図である。上述した第2の実施のように、溶射膜333Aおよび樹脂層333Bから成る積層体の周囲端部に、より弾性係数の低い、あるいは接着力の大きい樹脂部333Cを設けることにより、応力が端部に集中して端部から剥離が発生、進展していくのを防止するようにした。第3の実施の形態では、この樹脂部333Cを構成する樹脂の量を多くすることによって、応力集中の緩和効果をより高めた。
 図22に示す例では、含浸用の樹脂(樹脂部333Cと同じ樹脂)の溢れ出る量が多くなって、フィレット(隙間からはみ出した部分)333Fを形成している。第1の実施の形態に説明した積層体の形成方法では、溶射膜333Aに含浸する際の樹脂量を多くして積層体の周囲方向に大きく溢れ出させるようにする。以下では、樹脂を積層体の周囲方向に大きく溢れ出させる他の方法について説明する。以下に説明する積層体形成方法では、樹脂層333Bと放熱部または導体板とを接着する際の加圧を利用して、溢れた樹脂によりフィレット333Fを形成させるものである。
 図23は、第1の形成方法を説明する図である。図23(a)は放熱部307Bを一次封止体302方向に加圧して樹脂層333Bに接着する前の状態を示した図である。放熱部307B上には溶射膜333Aが形成されており、その溶射膜333A内には樹脂333Dが含浸されている。ただし、ここでは含浸させるための樹脂333Dの量を増やすことで、溶射膜333Aの上面側および側面側にも樹脂333Dが設けられている。
 図23(a)に示す段階では、樹脂333Dは硬化させない状態とする。ここでは、樹脂層333Bに用いられる樹脂シート3332と樹脂333Dとは異なる樹脂が用いられる。そして、樹脂シート3332を熱可塑性樹脂を主成分とした樹脂とし、加熱硬化する部位を有する組成物とする。樹脂333Dには室温から150℃の温度域での粘度が樹脂333Bよりも低い含浸性に優れる熱硬化性樹脂を選定する。図23(a)の状態にするには、樹脂シート3332を半硬化状態で一次封止体302に取り付け、その後樹脂333Dを塗布、噴霧、ディップすることで樹脂333Dを溶射膜333Aに塗布する手法を用いても良いし、樹脂333Dを溶射膜333Aに塗布し含浸させ樹脂シート3332を半硬化状態で取り付けた一次封止体302を搭載してもよい。
 図23(b)に示す工程では、放熱部307Bを一次封止体302方向へ加圧する。その結果、溶射膜333Aと樹脂層333Bとの間の樹脂333Dは、溶射膜333Aおよび樹脂層333Bの側方(図示左右方向)に押し出され、図23(b)に示すように溶射膜333Aおよび樹脂層333Bから成る積層体の周方向端部に集まる。そして、この状態で樹脂333Dおよび樹脂層333Bを硬化させる。樹脂333Dを周方向端部に排出するためには、加圧する温度において、樹脂シート3332の粘度が樹脂層333Dよりも十分大きい状態(例えば、50倍以上)で加圧する必要があり、樹脂シート3332を熱可塑性樹脂を主成分とした樹脂とし、加熱硬化する部位を有する組成物とする。樹脂333Dには室温から150℃の温度域での粘度が樹脂333Bよりも低い含浸性に優れる熱硬化性樹脂を選定することで、加圧により排出可能な加熱温度が広く存在することになる。そのため、生産安定性が向上するという効果が得られる。樹脂333Dを排出することで溶射膜333Aの凹部に、樹脂333Bに混入しているフィラーを配置できる、その結果、絶縁層333の放熱性を向上させることができる。図22に示す例では、樹脂層333Bにはフィラーが混入され、樹脂333Dにはフィラーは混入されないが、排出のための粘度が増加しない範囲であれば、樹脂333Dにフィラーを混入しても良い。圧着温度での樹脂層333Bの弾性係数が著しく大きい場合は、樹脂333Dにフィラーを入れることで、溶射膜333Aの凹部にフィラーを配置することができる。また、樹脂シート3332にガラス転移温度が高い樹脂を用い、樹脂333Dに樹脂シート3332よりもガラス転移温度が低い樹脂を用いる場合には、熱可塑性樹脂同士あるいは熱硬化性樹脂同士を用いても作製が可能である。この場合は、樹脂シート3332のガラス転移温度よりも低い温度で樹脂333Dを加圧し外部に排出する。
 図24は、積層体の他の形成方法を説明する図である。先ず、図24(a)に示すように、放熱部307B上に溶射膜333Aを形成し、溶射膜333Aの上に樹脂シート3332を配置する。この樹脂シート3332の量は、形成される樹脂層333Bの量よりも多く設定される。次いで、図24(b)に示すように、放熱部307Bを一次封止体302方向に加圧して、樹脂シート3332を一次封止体302に圧着し樹脂層333Bを形成する。この圧着の際に、樹脂シート3332は樹脂層333Bの厚さまで加圧されるため、樹脂シート3332の樹脂成分は、溶射膜333Aの空孔3330に含浸されるとともに、溶射膜333Aの周囲に溢れ出る。その結果、積層体の周囲に溢れ出た樹脂成分が樹脂部333Cおよびフィレット333Fを形成する。
 例えば、樹脂シート3332はフィラーの混入量が20vol%であるとする。そして、フィラーの大きさは、溶射膜333Aの表面凹部の大きさよりも小さく、溶射膜333A内の空孔3330よりも大きく設定されている。樹脂シート3332の樹脂成分が溶射膜333A内の空孔3330に含浸されるとともに、周方向端部に樹脂が流れ出るように加圧し、樹脂層333Bの樹脂成分が半分に減ったとすると、樹脂層333Bのフィラー混入率は約40vol%程度まで増加することになる。なお、樹脂シート3332の一部が周方向に流れ出る場合を考えると、樹脂部333Cやフィレット333Fにもフィラーが混入されることになる。また、樹脂シートでなく、フィラーを混入させた樹脂を塗布、ディップしても作製可能である。
 図25、26は変形例を示す図である。図25に示す変形例では、封止樹脂348の外周部の一部あるいは全周に凹部348aや段差348bを形成した。周方向に溢れ出た樹脂333Dは凹部348aや段差348bに入り込み、フィレット333Fの樹脂量がより大きくなる。その結果、積層体端部における応力緩和を向上させることができる。さらに、単に応力緩和に関与する樹脂の量が増えただけでなく、凹部348aや段差348bに入り込むことによるアンカー効果により、接着力が大きくなる。
 図26は、モジュールケース側(放熱部307A、307B)に凹部304eや段差304fを形成した場合を示す。なお、凹部304eや段差304fに代えて、放熱部307A、307Bの角部を面取りしてテーパー形状としても良い。図25、26に示すように、モジュールケース304の挿入口306側の封止樹脂348や放熱部307A,307Bに段差を設けた場合、溶射膜333Aの端部における隙間が増加する。そのため、溶射膜333Aと一次封止体302または放熱部307A,307Bとを接着した状態で、増加した隙間部分から樹脂の含浸を行うことが容易となる。
-第4の実施の形態-
 上述した実施の形態では、CAN型のモジュールケース304内に一次封止体302を挿入して樹脂封止したパワーモジュールについて説明したが、第4の実施の形態では、その他の構造のパワーモジュールについても積層体および樹脂部333C等の構造を適用できることを説明する。
 図27,28を用いてインバータ部140に使用される樹脂封止型の片面冷却パワーモジュール300の構成を説明する。図27は、図4の回路を実現する半導体チップと導体板の配置を示している。この配置では、導体板318、320が同電位となり一枚の導体板で形成できる(以下、導体板318と称す)。IGBT328,330およびダイオード156,166の表面主電極は、複数の金属ワイヤあるいは金属リボンにより接続され、さらに導体板318,319に接続される。ワイヤやリボンの材質は、Al,Al合金、Cu,Cu合金の単体および複合材である。IGBT328およびダイオード156の裏面電極は、金属接合材160により導体板315に金属接合される。導体板315,318と放熱部307は、絶縁層333を介して接合される。IGBT330およびダイオード166の裏面電極は、金属接合材160により導体板318に金属接合される。導体板315,318,319と放熱部307は、絶縁層333を介して接合される。
 図28(a)は、図27の破線で示した部分の断面図である。半導体チップから発熱した熱が導体板315、絶縁層333、放熱部307を通り効率良く外部に放熱される。ここでは、放熱部307側に溶射膜333Aを設け、導体板315,318,319側を樹脂層333Bで接合した例を示したが、導体板315,318,319側に溶射膜333Aを設け、放熱部307に樹脂層333Bを設けてもよい。
 高熱伝導なフィラーを分散した樹脂層333Bは、絶縁層333と当接する導体板315,318,319の底面積よりも大きく、溶射膜333Aの面積よりも小さい面積とし、放熱部307に仮付けする。その後、樹脂層333Bが仮付けされていない溶射膜333Aの余白部を利用して樹脂を含浸する。なお、積層体の周方向端部に樹脂部333Cが形成されるように樹脂の含浸を行う。含浸後、図28(b)に示すように、圧着して一体化する。
 パワー半導体素子裏面の導体板への接合とワイヤやリボンを用いた表面電極への接合した後に、封止樹脂348により封止することで、導体板と放熱部接着時の加圧力による機械的な損傷を防止することができる。また、この例では、放熱部307側に溶射膜333Aを形成したが、導体板315,318,319側に溶射膜333Aを形成する場合には、溶射工程での機械的な損傷を防止することができる。
 このように、片面冷却パワーモジュール300においても、導体板と放熱部307との間に配置される絶縁層333の構成を、樹脂が含浸された溶射膜333Aとフィラーが混入された樹脂層333Bとの積層体としたことにより、パワー半導体から放熱部307への放熱性能の向上を図ることができる。さらに、積層体の周方向端部に樹脂部333Cを設けたので、積層体端部における応力を緩和することができる。
 図29は、一次封止体302を一対の放熱部307Dで挟持する構成のパワーモジュール300を示す図である。放熱部307D内には冷媒流路3070が形成されていて、ここを冷媒が流れる。放熱部307Dの片面に樹脂が含浸された溶射膜333Aが形成され、その溶射膜333Aに積層するように樹脂層333Bが形成されている。積層体の周方向端部には樹脂部333Cが設けられている。なお、溶射膜333Aを一次封止体302側に形成するようにしても良い。
-第5の実施の形態-
 図30は第5の実施の形態を説明する図であり、樹脂が含浸された溶射膜333Aと樹脂層333Bとの積層体の周方向端部を示す拡大図である。ここでは、上述した第3の実施のように、溶射膜333Aおよび樹脂層333Bから成る積層体の周囲端部に、より弾性係数の低い、あるいは接着力の大きい樹脂部333Cを設けることにより、応力が端部に集中して端部から剥離が発生、進展していくのを防止するようにした。第5の実施の形態では、この樹脂部333Cを構成する樹脂の量を多くすることによって、応力集中の緩和効果をより高めている。以下では、それが可能となる、放熱部307Bや一次封止体302に形成される溶射膜333Aの厚さについて説明する。
 図30に示す例では、放熱部307側に溶射膜333Aを形成した場合を示す。樹脂層333Bの領域は放熱部307の放熱面領域よりも小さく、さらに、溶射膜333Aの領域は樹脂層333Bの領域よりも大きく設定されている。そのため、溶射膜333Aの縁の部分には樹脂層333Bが形成されない領域3337がある。領域3337は、導体板315直下にある溶射膜Aの厚さよりも薄くなっており、応力が大きくなる外周部において、樹脂333Bや樹脂333Cの厚さを大きくすることができる(図30は樹脂333Cの厚さが大きくなる例を示している)。
 また、パワーモジュールの絶縁層333の放熱性を決定する要素は、樹脂層333Bの熱伝導率や厚さ、樹脂含浸した溶射膜333Aの熱伝導率や厚さである。特に、熱伝導率の低い樹脂層333Bの厚さを薄くした方が放熱性を向上できる。樹脂層333Bの厚さは、溶射膜333Aが形成された放熱部307Bや一次封止体302の反りや傾きから決まる。これらの値が最も大きくなるのは、積層体の外周部である。
 よって、放熱部307Bの端(図示右側)が図示上側に反り返るように傾いていた場合を考える。溶射膜333Aの厚さが端まで一定の場合、溶射膜333Aが樹脂部333Cや樹脂層333Bから露出しないようにすると、樹脂層333Bの厚さが周辺と中央とで異なることになる。一方、図30のように、領域3337の溶射膜333Aの厚さを樹脂層333Bと対向する領域の溶射膜333Aの厚さよりも薄くすることで、全体の厚さばらつきを低減することができる。図30のように溶射膜333Aの外周部を薄くする構成は、溶射ガンの走査範囲を制御したり、走査速度を調整したり、マスクを設置することで容易に作製することができる。
 あるいは、図47に示すように領域3337(図30参照)の直下の放熱部307Bに段差を設け、放熱部307Bの表面高さ減らすことで、同じ厚さの溶射膜333Aを形成した場合でも、樹脂層333Cの厚さを増加させることが可能になる。段差の深さhは、形成する溶射膜の膜厚よりも小さくする。また、段差の角度θは、45°よりも小さい角度にした方が溶射膜333Aと基材(この場合には放熱部307B)との接着力を確保する点で好ましい。図48は、溶射膜333Aを一次封止体302側に形成した場合の段差構造を示したものである。
-第6の実施の形態-
 図49は第6の実施の形態を説明する図であり、樹脂が含浸された溶射膜333Aと樹脂層333Bとの積層体の周方向端部を示す拡大図である。ここでは、パワーモジュールの絶縁層333の生産性を向上させるための放熱部307Bや一次封止体302に形成する応力緩和層333Cに対する溢れ防止用の凸部307Dについて説明する。供給樹脂量が大きくなリすぎた場合に、含浸や接着時に溢れ出した樹脂成分が周囲に付着するおそれがある。そのため、付着を防止するマスクを設けることがあるが、図49に示すように333Cの外周部に枠形状の凸部307Dを設けることによってマスクを省略でき、生産性が向上する。なお、凸部307Dは放熱部307Bと一体に形成しても良いし、別個に形成しても良い。また、溶射膜333Aが一次封止体302側に形成される場合には、凸部307Dは一次封止体302側に形成される。
 図31と図32を用いて本発明に用いられる絶縁層333の絶縁性能を説明する。図31の横軸は放熱部307A,307Bに溶射膜333Aを形成した際の膜厚であり、縦軸は100μm厚の溶射膜単体の絶縁破壊電圧を1とした場合の規格化絶縁破壊電圧である。図32の横軸は放熱部307A,307Bに溶射膜333Aを形成した際の膜厚であり、縦軸は100μm厚の溶射膜単体のコロナ放電開始電圧を1とした場合の規格化部分放電開始電圧である。部分放電開始電圧は、部分放電測定システムを用いて測定する。すなわち、Al板に形成された溶射膜単体あるいは樹脂を含浸した溶射膜上にAl電極を設け、印加する交流電圧を、0Vから100V/sの速度で上昇させ、部分放電が開始する電圧を測定した。ここで、部分電圧開始の閾値は2pcとした。
 図31,32に示すように、溶射膜単体では膜中に空孔を有しているため絶縁性能に劣るが、樹脂が含浸されることで絶縁破壊電圧とコロナ放電開始電圧が向上する。特に、コロナ放電開始電圧は著しく向上する。このように、樹脂を含浸した溶射膜333Aとフィラーを混入させた樹脂層333Bとの積層体から成る絶縁層333は、溶射膜単体よりも絶縁性能に優れている。そのため、その積層体をパワーモジュールに適用する際に、絶縁に必要な厚さを薄くできる。絶縁層333の厚さを薄くできることで、絶縁層333の熱抵抗が低下し、パワーモジュールの放熱性を向上させることができる。
(比較例1)
 図33は絶縁層の構成に関する比較例である。ここでは、厚さ2mmの150mm角のAl板をアルミナを用いてサンドブラスト処理した後、粒径10~30μmのアルミナ粒子を出力40kWにてプラズマ溶射して溶射膜を形成した。この時、Al板に形成する溶射膜の気孔率を抑制し、冷却時の溶射膜の割れを防止するために、溶射されるAl板は180℃に予熱した。
 比較する絶縁層の構成は、樹脂含浸無しのアルミナ溶射膜単体(比較例A)と、空孔内にエポキシ樹脂を含浸したアルミナ溶射膜(比較例B)である。作製した溶射膜は気孔率が10%のもので厚さが1mmである。比較例Aおよび比較例Bに対して、Al板をエッチングで除去しアルミナ溶射膜単体とした。そのアルミナ溶射膜単体に対して、密度計による密度の測定、レーザフラッシュ法による熱拡散率の測定、示差走査熱量測定による比熱容量の測定をそれぞれ行い、アルミナ溶射膜単体の熱伝導率を算出した。
 比較例A,Bとは別に、以下のようにして比較例Cを作成した。アルミナを用いてサンドブラスト処理した厚さ2mmの150mm角のAl板を180℃に予熱し、粒径10~30μmのアルミナ粒子を用いてプラズマ溶射し、100μmの溶射膜を形成した。次に、アルミナ溶射膜へエポキシ樹脂を含浸し、それを厚さ2mm,100mm角のAlへ接着した。
 一方、比較例Dは、厚さ2mm,100mm角のAlへの接着を、アルミナフィラーを混合したエポキシ樹脂層を用いて行った点が比較例Cと異なり、その他の構成は比較例Cと同じである。ここで,比較例Dでは,アルミナ溶射膜の凹部にフィラーが入らないように,フィラー粒径を溶射膜の凹凸よりも大きくして作製した。
 なお、比較例C,Dのいずれの場合も、接着樹脂の厚さが25μmとなるように、スペーサを挿入して接着を行った。接着後に,超音波探傷にて樹脂接着層にボイドや未接合部がない10mm角の領域を選定し、その領域を切り出して熱抵抗を測定した。また、実際のAl板、絶縁層内の溶射膜、接着樹脂層の厚さは,測定後に絶縁層に対し垂直方向に切り出した断面を走査型電子顕微鏡で観察し,測長して確認した。これにより接合体全体の熱抵抗値から絶縁層自体の熱伝導率を算出した。図33の縦軸は、樹脂含浸無しの溶射膜単体の熱伝導率(W/m・K)を1と規格化した熱伝導率であり、溶射膜の気孔率は10%である。
 図34を参照して、本実施の形態の絶縁層333の放熱特性を説明する。上述した比較例の場合と同様に、厚さ2mmの150mm角のAl板をアルミナを用いてサンドブラスト処理した後、粒径10~30μmのアルミナ粒子をプラズマ溶射し100μmの溶射膜を形成した。その後、アルミナフィラー40vol%を混入した30μm厚のエポキシ樹脂シートを110℃、加圧2MPa、1分で仮付けした。その後、減圧下でエポキシ樹脂をアルミナ溶射膜中に含浸させた。次に、スペーサを挿入して厚さ2mm,100mm角のAl板を接着した。なお、フィラーの粒径を1~5μmとして溶射膜の凹部にもフィラーが配置できるようにした。さらに、接着時に加圧し樹脂層厚が25μmとなるようにした。接着後に,超音波探傷にて樹脂接着層にボイドや未接合部がない10mm角の領域を選定し、その領域を切り出して熱抵抗を測定した。また,実際のAl板、絶縁層内の溶射膜、接着樹脂層の厚さは、測定後に絶縁層に対し垂直方向に切り出した断面を走査型電子顕微鏡で観察し、測長して確認した。これにより接合体全体の熱抵抗値から絶縁層自体の熱伝導率を算出した。
 図34に示すように、比較例A、Bを比べると,溶射膜単体に樹脂を含浸することで5倍以上熱伝導率が向上することがわかった。これは,溶射膜孔内に存在する空気よりも含浸したエポキシ樹脂の方が,熱伝導率が大きいためである。しかし,比較例Cに示すように,フィラーがない樹脂層が層状に複合化されると、絶縁層の熱伝導率が大きく低下することがわかる。さらに,比較例Dに示すように、溶射膜凹部にもフィラーを配置しないと、樹脂濃縮層を島状に形成しても熱伝導率が低下することがわかった。このように、樹脂含浸した溶射膜を接合する際には接着する樹脂領域を減少することが重要となる。
 これに対し、溶射膜凹部にフィラーを配置した場合は、樹脂領域を減少することができ比較例C、Dを上回る熱伝導率を発現することがわかった。なお、比較しやすいように樹脂層333Bの厚さを25μmとしたが、スペーサを挿入しないで接合することで混入する最大フィラー径近くまで薄くすることが可能である。また、溶射膜の組成として、アルミナよりも熱伝導率が高い窒化アルミなどを溶射原料粉末に混合すれば、樹脂含浸後の溶射膜の熱伝導率をより高めることができる。同様に、樹脂接着層に混在するフィラーについても、アルミナよりも熱伝導率が高いセラミックスを用いれば絶縁層333の熱伝導率を向上させることが可能となる。
 以上の説明はあくまで一例であり、本発明は上記実施形態の構成に何ら限定されるものではない。例えば、樹脂層333Bの代わりに高熱伝導なグリスを用いてもよいし、接着性のない弾性シートを用いてもよい。溶射膜333Aに樹脂を含浸させる代わりに、ガラスを含浸させるようにしてもよい。また、以上の説明で用いた弾性係数とは、硬化後のヤング率のことを意味しており、動的粘弾性試験にて周波数10Hz、昇温速度が3℃/minで測定した貯蔵弾性率のことである。接着力は、JISK6850で測定した値である。樹脂の硬化度は、示差走査熱量測定(Differential Scanning Calorimetry)にて、未反応の樹脂を加熱した際に検出した熱量の面積を基準とし、面積比で規定する。なお、測定の加熱速度は10℃/minとする。樹脂の粘度は、パラレルプレート型粘度計を用いて、ずり速度10s-1で測定した値とする。樹脂のガラス転移温度は、動的粘弾性試験にて周波数10Hz、昇温速度が3℃/minで測定した際のtanδのピーク温度とする。ここで、tanδは損失正接(=(損失弾性率)/(貯蔵弾性率))である。
 上述したパワーモジュールは、例えば、ハイブリッド自動車や電気自動車に搭載される電力変換装置、電車や船舶、航空機などの電力変換装置、さらに工場の設備を駆動する電動機の制御装置として用いられる産業用電力変換装置、或いは家庭の太陽光発電システムや家庭の電化製品を駆動する電動機の制御装置に用いられたりする家庭用電力変換装置に適用可能である。以下では、図35~46を用いてハイブリッド自動車の電力変換装置に適用した場合を例に説明する。
 図35は、ハイブリッド自動車の制御ブロックを示す図である。図35において、ハイブリッド電気自動車(以下、「HEV」と記述する)110は1つの電動車両であり、2つの車両駆動用システムを備えている。その1つは、内燃機関であるエンジン120を動力源としたエンジンシステムである。エンジンシステムは、主としてHEVの駆動源として用いられる。もう1つは、モータジェネレータ192,194を動力源とした車載電機システムである。車載電機システムは、主としてHEVの駆動源及びHEVの電力発生源として用いられる。モータジェネレータ192,194は例えば同期機あるいは誘導機であり、運転方法によりモータとしても発電機としても動作するので、ここではモータジェネレータと記す。
 車体のフロント部には前輪車軸114が回転可能に軸支され、前輪車軸114の両端には1対の前輪112が設けられている。車体のリア部には後輪車軸が回転可能に軸支され、後輪車軸の両端には1対の後輪が設けられている(図示省略)。本実施形態のHEVでは、いわゆる前輪駆動方式を採用しているが、この逆、すなわち後輪駆動方式を採用しても構わない。前輪車軸114の中央部には前輪側デファレンシャルギア(以下、「前輪側DEF」と記述する)116が設けられている。前輪側DEF116の入力側にはトランスミッション118の出力軸が機械的に接続されている。トランスミッション118の入力側にはモータジェネレータ192の出力側が機械的に接続されている。モータジェネレータ192の入力側には動力分配機構122を介してエンジン120の出力側及びモータジェネレータ194の出力側が機械的に接続されている。
 インバータ部140,142は、直流コネクタ138を介してバッテリ136と電気的に接続される。バッテリ136とインバータ部140,142との相互において電力の授受が可能である。本実施形態では、モータジェネレータ192及びインバータ部140からなる第1電動発電ユニットと、モータジェネレータ194及びインバータ部142からなる第2電動発電ユニットとの2つを備え、運転状態に応じてそれらを使い分けている。なお、本実施形態では、バッテリ136の電力によって第1電動発電ユニットを電動ユニットとして作動させることにより、モータジェネレータ192の動力のみによって車両の駆動ができる。さらに、本実施形態では、第1電動発電ユニット又は第2電動発電ユニットを発電ユニットとしてエンジン120の動力或いは車輪からの動力によって作動させて発電させることにより、バッテリ136の充電ができる。
 バッテリ136はさらに補機用のモータ195を駆動するための電源としても使用される。補機としては例えば、エアコンディショナーのコンプレッサを駆動するモータ、あるいは制御用の油圧ポンプを駆動するモータである。バッテリ136からインバータ部43に直流電力が供給され、インバータ部43で交流の電力に変換されてモータ195に供給される。インバータ部43は、インバータ部140や142と同様の機能を持ち、モータ195に供給する交流の位相や周波数、電力を制御する。モータ195の容量がモータジェネレータ192や194の容量より小さいので、インバータ部43の最大変換電力がインバータ部140や142より小さいが、インバータ部43の回路構成は基本的にインバータ部140や142の回路構成と同じである。なお、電力変換装置200は、インバータ部140、インバータ部142、インバータ部43に供給される直流電流を平滑化するためのコンデンサモジュール500を備えている。
 図36を用いてインバータ部140やインバータ部142あるいはインバータ部43の電気回路構成を説明する。なお、図36では、代表例としてインバータ部140の説明を行う。
 インバータ回路144は、上アームとして動作するIGBT328及びダイオード156と、下アームとして動作するIGBT330及びダイオード166と、からなる上下アーム直列回路150をモータジェネレータ192の電機子巻線の各相巻線に対応して3相(U相、V相、W相)分を設けている。それぞれの上下アーム直列回路150は、その中点部分169(中間電極329に対応する)から交流端子159及び交流コネクタ188を通してモータジェネレータ192への交流電力線(交流バスバー)186と接続する。
 上アームのIGBT328のコレクタ電極153は正極端子(P端子)167を介してコンデンサモジュール500の正極側のコンデンサの電極に、下アームのIGBT330のエミッタ電極は負極端子(N端子)168を介してコンデンサモジュール500の負極側にコンデンサ電極にそれぞれ電気的に接続されている。
 制御部170は、インバータ回路144を駆動制御するドライバ回路174と、ドライバ回路174へ信号線176を介して制御信号を供給する制御回路172と、を有している。IGBT328やIGBT330は、制御部170から出力された駆動信号を受けて動作し、バッテリ136から供給された直流電力を三相交流電力に変換する。この変換された電力は、モータジェネレータ192の電機子巻線に供給される。
 IGBT328は、コレクタ電極153と、信号用エミッタ電極151と、ゲート電極154を備えている。また、IGBT330は、コレクタ電極163と、信号用のエミッタ電極165と、ゲート電極164を備えている。ダイオード156が、IGBT328と電気的に並列に接続されている。また、ダイオード158が、IGBT330と電気的に並列に接続されている。スイッチング用パワー半導体素子としてはMOSFET(金属酸化物半導体型電界効果トランジスタ)を用いてもよいが、この場合はダイオード156やダイオード158は不要となる。コンデンサモジュール500は、正極側コンデンサ端子506と負極側コンデンサ端子504と直流コネクタ138を介して、バッテリ136に電気的に接続されている。なお、インバータ部140は、直流正極端子314を介して正極側コンデンサ端子506と接続され、かつ直流負極端子316を介して負極側コンデンサ端子504と接続される。
 制御回路172は、IGBT328及びIGBT330のスイッチングタイミングを演算処理するためのマイクロコンピュータ(以下、「マイコン」と記述する)を備えている。マイコンには入力情報として、モータジェネレータ192に対して要求される目標トルク値、上下アーム直列回路150からモータジェネレータ192の電機子巻線に供給される電流値、及びモータジェネレータ192の回転子の磁極位置が入力されている。目標トルク値は、不図示の上位の制御装置から出力された指令信号に基づくものである。電流値は、電流センサ180から信号線182を介して出力された検出信号に基づいて検出されたものである。磁極位置は、モータジェネレータ192に設けられた回転磁極センサ(不図示)から出力された検出信号に基づいて検出されたものである。本実施形態では3相の電流値を検出する場合を例に挙げて説明するが、2相分の電流値を検出するようにしても構わない。
 制御回路172内のマイコンは、目標トルク値に基づいてモータジェネレータ192のd,q軸の電流指令値を演算し、この演算されたd,q軸の電流指令値と、検出されたd,q軸の電流値との差分に基づいてd,q軸の電圧指令値を演算し、この演算されたd,q軸の電圧指令値を、検出された磁極位置に基づいてU相、V相、W相の電圧指令値に変換する。そして、マイコンは、U相、V相、W相の電圧指令値に基づく基本波(正弦波)と搬送波(三角波)との比較に基づいてパルス状の変調波を生成し、この生成された変調波をPWM(パルス幅変調)信号として、信号線176を介してドライバ回路174に出力する。
 ドライバ回路174は、下アームを駆動する場合、PWM信号を増幅したドライブ信号を、対応する下アームのIGBT330のゲート電極に出力する。また、ドライバ回路174は、上アームを駆動する場合、PWM信号の基準電位のレベルを上アームの基準電位のレベルにシフトしてからPWM信号を増幅し、これをドライブ信号として、対応する上アームのIGBT328のゲート電極にそれぞれ出力する。
 また、制御部170は、異常検知(過電流、過電圧、過温度など)を行い、上下アーム直列回路150を保護している。このため、制御部170にはセンシング情報が入力されている。例えば各アームの信号用エミッタ電極155及び信号用エミッタ電極165からは各IGBT328とIGBT330のエミッタ電極に流れる電流の情報が、対応する駆動部(IC)に入力されている。これにより、各駆動部(IC)は過電流検知を行い、過電流が検知された場合には対応するIGBT328,IGBT330のスイッチング動作を停止させ、対応するIGBT328,IGBT330を過電流から保護する。上下アーム直列回路150に設けられた温度センサ(不図示)からは上下アーム直列回路150の温度の情報がマイコンに入力されている。また、マイコンには上下アーム直列回路150の直流正極側の電圧の情報が入力されている。マイコンは、それらの情報に基づいて過温度検知及び過電圧検知を行い、過温度或いは過電圧が検知された場合には全てのIGBT328,IGBT330のスイッチング動作を停止させる。
 なお、図36におけるゲート電極154および信号用エミッタ電極155は図1の信号端子325Uに対応し、ゲート電極164およびエミッタ電極165は図1の信号端子325Lに対応する。また、正極端子157は図1の直流正極端子315Bと同一のものであり、負極端子158は図1の直流負極端子319Bと同一のものである。また、交流端子159は、図1の交流端子320Bと同じものである。
 図37は、電力変換装置200を説明するための分解斜視図を示す。電力変換装置200は、トランスミッション118を収納するためのAlまたはAl合金製の筐体119に固定される。電力変換装置200は、底面及び上面の形状を略長方形としたことで、車両への取り付けが容易となり、また生産し易いという効果がある。冷却ジャケット12は、後述するパワーモジュール300及びコンデンサモジュール500を保持するとともに、冷却媒体によって冷却する。また、冷却ジャケット12は、筐体119に固定され、かつ筐体119との対向面に入口配管13と出口配管14が形成されている。入口配管13と出口配管14が筐体119に形成された配管と接続されることにより、トランスミッション118を冷却するための冷却媒体が、冷却ジャケット12に流入及び流出する。
 ケース10は、電力変換装置200を覆って、かつ筐体119側に固定される。ケース10の底は、制御回路172を実装した制御回路基板20と対向するように構成される。またケース10は、ケース10の底から外部に繋がる第1開口202と第2開口204を、ケース10の底面に形成する。コネクタ21は、制御回路基板20に接続されており、外部からの各種信号を当該制御回路基板20に伝送する。バッテリ負極側接続端子部510とバッテリ正極側接続端子部512は、バッテリ136とコンデンサモジュール500とを電気的に接続する。
 コネクタ21とバッテリ負極側接続端子部510とバッテリ正極側接続端子部512は、ケース10の底面に向かって延ばされ、コネクタ21は第1開口202から突出し、かつバッテリ負極側接続端子部510及びバッテリ正極側接続端子部512は第2開口204から突出する。ケース10には、その内壁の第1開口202及び第2開口204の周りにシール部材(不図示)が設けられる。
 コネクタ21等の端子の勘合面の向きは、車種により種々の方向となるが、特に小型車両に搭載しようとした場合、エンジンルーム内の大きさの制約や組立性の観点から勘合面を上向きにして出すことが好ましい。特に、本実施形態のように、電力変換装置200が、トランスミッション118の上方に配置される場合には、トランスミッション118の配置側とは反対側に向かって突出させることにより、作業性が向上する。また、コネクタ21は外部の雰囲気からシールする必要があるが、コネクタ21に対してケース10を上方向から組付ける構成となることで、ケース10が筐体119に組付けられたときに、ケース10と接触するシール部材がコネクタ21を押し付けることができ、気密性が向上する。
 図38は、電力変換装置200の分解斜視図である。冷却ジャケット12には、流路19(図39参照)が設けられ、該流路19の上面には、開口部400a~400cが冷媒の流れ方向418に沿って形成され、かつ開口部402a~402cが冷媒の流れ方向422に沿って形成される。開口部400a~400cがパワーモジュール300a~300cによって塞がれるように、かつ開口部402a~402cがパワーモジュール301a~301cによって塞がれる。
 また、冷却ジャケット12には、コンデンサモジュール500を収納するための収納空間405が形成される。コンデンサモジュール500は、収納空間405に収納されることにより、流路19内に流れる冷媒によって冷却されることになる。コンデンサモジュール500は、冷媒の流れ方向418を形成するための流路19と、冷媒の流れ方向422を形成するための流路19に挟まれるため、効率良く冷却することができる。
 冷却ジャケット12には、入口配管13と出口配管14と対向する位置に突出部407が形成される。突出部407は、冷却ジャケット12と一体に形成される。補機用パワーモジュール350は、突出部407に固定され、流路19内に流れる冷媒によって冷やされることになる。補機用パワーモジュール350の側部には、バスバーモジュール800が配置される。バスバーモジュール800は、交流バスバー186や電流センサ180(図36参照)等により構成される。
 このように冷却ジャケット12の中央部にコンデンサモジュール500の収納空間405を設け、その収納空間405を挟むように流路19を設け、それぞれの流路19に車両駆動用のパワーモジュール300a~300c及びパワーモジュール301a~301cを配置し、さらに冷却ジャケット12の上面に補機用パワーモジュール350を配置することで、小さい空間で効率良く冷却でき、電力変換装置全体の小型化が可能となる。また冷却ジャケット12の流路19の主構造を冷却ジャケット12と一体にAlまたはAl合金材の鋳造で作ることにより、流路19は冷却効果に加え機械的強度を強くする効果がある。またAl鋳造で作ることで冷却ジャケット12と流路19とが一体構造となり、熱伝達が良くなり冷却効率が向上する。
 なお、パワーモジュール300a~300cとパワーモジュール301a~301cを流路19に固定することで流路19を完成させ、水路の水漏れ試験を行う。水漏れ試験に合格した場合に、次にコンデンサモジュール500や補機用パワーモジュール350や基板を取り付ける作業を行うことができる。このように、電力変換装置200の底部に冷却ジャケット12を配置し、次にコンデンサモジュール500、補機用パワーモジュール350、バスバーモジュール800、基板等の必要な部品を固定する作業を上から順次行えるように構成されており、生産性と信頼性が向上する。
 ドライバ回路基板22は、補機用パワーモジュール350及びバスバーモジュール800の上方に配置される。また、ドライバ回路基板22と制御回路基板20の間には金属ベース板11が配置される。金属ベース板11は、ドライバ回路基板22及び制御回路基板20に搭載される回路群の電磁シールドの機能を奏すると共にドライバ回路基板22と制御回路基板20とが発生する熱を逃がし、冷却する作用を有している。
 図39は、流路19を有する冷却ジャケット12の下面図である。冷却ジャケット12と当該冷却ジャケット12の内部に設けられた流路19(19a~19e)は、一体に鋳造されている。冷却ジャケット12に下面には、1つに繋がった開口部404が形成されている。開口部404は、中央部に開口を有する下カバー420によって塞がれる。下カバー420と冷却ジャケット12の間には、シール部材409a及びシール部材409bが設けられ気密性を保っている。
 下カバー420には、一方の端辺の近傍であって当該端辺に沿って、入口配管13を挿入するための入口孔401と、出口配管14を挿入するための出口孔403が形成される。また下カバー420には、トランスミッション118の配置方向に向かって突出する凸部406が形成される。凸部406は、パワーモジュール300a~300c及びパワーモジュール301a~301c毎に設けられる。
 冷媒は、流れ方向417のように、入口孔401を通って、冷却ジャケット12の短手方向の辺に沿って形成された第1流路部19aに向かって流れる。そして冷媒は、流れ方向418のように、冷却ジャケット12の長手方向の辺に沿って形成された第2流路部19bを流れる。また冷媒は、流れ方向421のように、冷却ジャケット12の短手方向の辺に沿って形成された第3流路部19cを流れる。第3流路部19cは折り返し流路を形成する。また、冷媒は、流れ方向422のように、冷却ジャケット12の長手方向の辺に沿って形成された第4流路部19dを流れる。第4流路部19dは、コンデンサモジュール500を挟んで第2流路部19bと対向する位置に設けられる。さらに、冷媒は、流れ方向423のように、冷却ジャケット12の短手方向の辺に沿って形成された第5流路部19e及び出口孔403を通って出口配管14に流出する。
 第1流路部19a、第2流路部19b、第3流路部19c、第4流路部19d及び第5流路部19eは、いずれも幅方向より深さ方向が大きく形成される。パワーモジュール300a~300cが、冷却ジャケット12の上面側に形成された開口部400a~400cから挿入され(図38参照)、第2流路部19b内の収納空間に収納される。なお、パワーモジュール300aの収納空間とパワーモジュール300bの収納空間との間には、冷媒の流れを澱ませないための中間部材408aが形成される。同様に、パワーモジュール300bの収納空間とパワーモジュール300cの収納空間との間には、冷媒の流れを澱ませないための中間部材408bが形成される。中間部材408a及び中間部材408bは、その主面が冷媒の流れ方向に沿うように形成される。第4流路部19dも第2流路部19bと同様にパワーモジュール301a~301cの収納空間及び中間部材を形成する。また、冷却ジャケット12は、開口部404と開口部400a~400c及び402a~402cとが対向するように形成されているので、アルミ鋳造により製造し易い構成になっている。
 下カバー420には、筐体119と当接し、電力変換装置200を支持するための支持部410a及び支持部410bが設けられる。支持部410aは下カバー420の一方の端辺に近づけて設けられ、支持部410bは下カバー420の他方の端辺に近づけて設けられる。これにより、電力変換装置200を、トランスミッション118やモータジェネレータ192の円柱形状に合わせて形成された筐体119の側壁に強固に固定することができる。
 また、支持部410bは、抵抗器450を支持するように構成されている。この抵抗器450は、乗員保護やメンテナンス時における安全面に配慮して、コンデンサセルに帯電した電荷を放電するためのものである。抵抗器450は、高電圧の電気を継続的に放電できるように構成されているが、万が一抵抗器もしくは放電機構に何らかの異常があった場合でも、車両に対するダメージを最小限にするように配慮した構成とする必要がある。つまり、抵抗器450がパワーモジュールやコンデンサモジュールやドライバ回路基板等の周辺に配置されている場合、万が一抵抗器450が発熱、発火等の不具合を発生した場合に主要部品近傍で延焼する可能性が考えられる。
 そこで、パワーモジュール300a~300cやパワーモジュール301a~301cやコンデンサモジュール500は、冷却ジャケット12を挟んで、トランスミッション118を収納した筐体119とは反対側に配置され、かつ抵抗器450は、冷却ジャケット12と筐体119との間の空間に配置される。これにより、抵抗器450は、金属で形成された冷却ジャケット12及び筐体119で囲まれた閉空間に配置されることになる。なお、コンデンサモジュール500内のコンデンサセルに貯まった電荷は、図38に示されたドライバ回路基板22に搭載されたスイッチング手段のスイッチング動作によって、冷却ジャケット12の側部を通る配線を介して抵抗器450に放電制御される。本実施形態では、スイッチング手段によって高速に放電するように制御される。放電を制御するドライバ回路基板22と抵抗器450の間に、冷却ジャケット12が設けられているので、ドライバ回路基板22を抵抗器450から保護することができる。また、抵抗器450は下カバー420に固定されているので、流路19と熱的に非常に近い位置に設けられているので、抵抗器450の異常な発熱を抑制することができる。
 図40は、コンデンサモジュール500の分解斜視図である。積層導体板501は、薄板状の幅広導体で形成された負極導体板505及び正極導体板507、さらに負極導体板505と正極導体板507に挟まれた絶縁シート517により構成されているので、低インダクタンス化が図られている。積層導体板501は、略長方形形状を成す。バッテリ負極側端子508及びバッテリ負極側端子509は、積層導体板501の短手方向の一方の辺から立ち上げられた状態で形成される。
 コンデンサ端子503a~503cは、積層導体板501の長手方向の一方の辺から立ち上げられた状態で形成される。また、コンデンサ端子503d~503fは、積層導体板501の長手方向の他方の辺から立ち上げられた状態で形成される。なお、コンデンサ端子503a~503fは、積層導体板501の主面を横切る方向に立ち上げられている。コンデンサ端子503a~503cは、パワーモジュール300a~300cとそれぞれ接続される。コンデンサ端子503d~503fは、パワーモジュール301a~301cとそれぞれ接続される。コンデンサ端子503aを構成する負極側コンデンサ端子504aと正極側コンデンサ端子506aとの間には、絶縁シート517の一部が設けられ、絶縁が確保されている。他のコンデンサ端子503b~503fも同様である。なお、本実施形態では、負極導体板505、正極導体板507、バッテリ負極側端子508、バッテリ負極側端子509、コンデンサ端子503a~503fは、一体に成形された金属製板で構成され、インダクタンス低減及び生産性の向上を図っている。
 コンデンサセル514は、積層導体板501の下方に複数個設けられる。本実施形態では、8つのコンデンサセル514が積層導体板501の長手方向の一方の辺に沿って一列に並べられ、かつさらに別の8つのコンデンサセル514が積層導体板501の長手方向の他方の辺に沿って一列に並べられ、合計16個のコンデンサセルが設けられる。積層導体板501の長手方向のそれぞれの辺に沿って並べられたコンデンサセル514は、図40に示される破線部AAを境に対称に並べられる。これにより、コンデンサセル514によって平滑化された直流電流をパワーモジュール300a~300c及びパワーモジュール301a~301cに供給する場合に、コンデンサ端子503a~503cとコンデンサ端子503d~503fとの間の電流バランスが均一化され、積層導体板501のインダクタンス低減を図ることができる。また、電流が積層導体板501にて局所的に流れることを防止できるので、熱バランスが均一化されて耐熱性も向上させることができる。
 また、バッテリ負極側端子508とバッテリ負極側端子509も、図40に示される点線AAを境にて対称に並べられる。同様に、コンデンサ端子503a~503cとコンデンサ端子503d~503fとの間の電流バランスが均一化されて積層導体板501のインダクタンス低減を図ることができ、かつ熱バランスが均一化されて耐熱性も向上させることができる。
 本実施形態のコンデンサセル514は、コンデンサモジュール500の蓄電部の単位構造体であり、片面にAlなどの金属を蒸着したフィルムを2枚積層し巻回して、2枚の金属の各々を正極、負極としたフィルムコンデンサを用いる。コンデンサセル514の電極は、巻回した軸面がそれぞれ、正極、負極電極となり、Snなどの導電体を吹き付けて製造される。セル端子516及びセル端子518は、正極電極及び負極電極に接続され、かつ積層導体板501の開口部を通ってコンデンサセル514配置側とは反対側まで延ばされ、正極導体板507及び負極導体板505とはんだあるいは溶接により接続される。
 本実施形態のコンデンサセル514は、コンデンサモジュール500の蓄電部の単位構造体であり、片面にAlなどの金属を蒸着したフィルムを2枚積層し巻回して、2枚の金属の各々を正極、負極としたフィルムコンデンサを用いる。コンデンサセル514の電極は、巻回した軸面がそれぞれ、正極、負極電極となり、Snなどの導電体を吹き付けて製造される。セル端子516及びセル端子518は、正極電極及び負極電極に接続され、かつ積層導体板501の開口部を通ってコンデンサセル514配置側とは反対側まで延ばされ、正極導体板507及び負極導体板505とはんだあるいは溶接により接続される。
 収納部511の底面部513は、円筒形のコンデンサセル514の表面形状に合わせるように、なめらかな凹凸形状若しくは波形形状を成している。これにより、積層導体板501とコンデンサセル514が接続されたモジュールをコンデンサケース502に位置決めさることが容易になる。また、積層導体板501とコンデンサセル514がコンデンサケース502に収納された後に、コンデンサ端子503a~503fとバッテリ負極側端子508及びバッテリ負極側端子509を除いて、積層導体板501が覆われるようにコンデンサケース502内に充填材(図示せず)が充填される。底面部513がコンデンサセル514の形状に合わせて波形形状となっていることにより、充填材がコンデンサケース502内に充填される際に、コンデンサセル514が所定位置からずれることを防止できる。
 また、コンデンサセル514は、スイッチング時のリップル電流により、内部のフィルム上に蒸着された金属薄膜、内部導体の電気抵抗により発熱する。そこで、コンデンサセル514の熱をコンデンサケース502に逃がし易くするために、コンデンサセル514を充填材でモールドする。さらに樹脂製の充填材を用いることにより、コンデンサセル514の耐湿も向上させることができる。
 さらに、本実施形態では、コンデンサモジュール500は、収納部511の長手方向の辺を形成する側壁が流路19に挟まれように配置されているので、コンデンサモジュール500を効率良く冷やすことができる。また、コンデンサセル514は、当該コンデンサセル514の電極面の一方が収納部511の長手方向の辺を形成する内壁と対向するように配置されている。これにより、フィルムの巻回軸の方向に熱が伝達し易いので、熱がコンデンサセル514の電極面を介してコンデンサケース502に逃げやすくなっている。
 図41(a)は、冷却ジャケット12にパワーモジュールとコンデンサモジュールとバスバーモジュールを組み付けた外観斜視図である。図41(b)は、図41(a)の矩形囲み部の拡大図である。
 図41(b)に示されるように、直流負極端子319B、直流正極端子315B、交流端子321及び第2封止部601bは、コンデンサケース502の貫通孔519を通って、フランジ515aの上方まで延びている。直流負極端子319B及び直流正極端子315Bの電流経路の面積は、積層導体板501の電流経路の面積より非常に小さい。そのため、電流が積層導体板501から直流負極端子319B及び直流正極端子315Bに流れる際には、電流経路の面積が大きく変化することになる。つまり、電流が直流負極端子319B及び直流正極端子315Bに集中することになる。また、直流負極端子319B及び直流正極端子315Bが積層導体板501を横切る方向に突出する場合、言い換えると、直流負極端子319B及び直流正極端子315Bが積層導体板501とねじれの関係にある場合、新たな接続用導体が必要になり生産性低下やコスト増大の問題が生じる。
 そこで、負極側コンデンサ端子504aは、積層導体板501から立ち上がっている立ち上がり部と、当該立ち上がり部と接続されかつU字状に屈曲した折返し部と、当該折返し部と接続されかつ立ち上がり部とは反対側の面が直流負極端子319Bの主面と対向する接続部542とにより構成される。また、正極側コンデンサ端子506aは、積層導体板501から立ち上がっている立ち上がり部と、折返し部544と、当該折返し部544と接続されかつ立ち上がり部とは反対側の面が直流負極端子319Bの主面と対向する接続部545と、により構成される。特に、折返し部544は、その立ち上がり部と略直角に接続されかつ負極側コンデンサ端子504aと直流負極端子319Bと直流正極端子315Bの側部を跨ぐように構成される。さらに、負極側の立ち上がり部の主面と正極側の立ち上がり部の主面は絶縁シート517を介して対向する。同様に、負極側の折返し部の主面と正極側の折返し部544の主面は絶縁シート517を介して対向する。
 これにより、コンデンサ端子503aが接続部542の直前まで絶縁シート517を介した積層構造を成すため、電流が集中する当該コンデンサ端子503aの配線インダクタンスを低減することができる。また、折返し部544が負極側コンデンサ端子504aと直流負極端子319Bと直流正極端子315Bの側部を跨ぐように構成される。さらに、直流正極端子315Bの先端と接続部542の側辺とは溶接により接続され、同様に直流負極端子319Bの先端と接続部545の側辺とは溶接により接続される。
 これにより、直流正極端子315B及び直流負極端子319Bの溶接接続するための作業方向と折返し部544とが干渉することがなくなるので、低インダクタンスを図りながら生産性を向上させることができる。
 また、交流端子321の先端は交流バスバー802aの先端とは溶接により接続される。溶接をするための生産設備において、溶接機械を溶接対象に対して複数方向に可動出来るように作ることは、生産設備を複雑化させることにつながり生産性及びコスト的な観点から好ましくない。そこで、本実施形態では、交流端子321の溶接箇所と直流正極端子315Bの溶接箇所は、冷却ジャケット12の長手方向の辺に沿って一直線状に配置される。これにより、溶接機械を一方向に可動する間に、複数の溶接を行うことができ、生産性が向上する。
 さらに、図38及び図41(a)に示されるように、複数のパワーモジュール300a~300cは、冷却ジャケット12の長手方向の辺に沿って一直線状に配置される。これにより、複数のパワーモジュール300a~300cを溶接する際に、更に生産性を向上させることができる。
 図42は、パワーモジュールとコンデンサモジュールを組み付けた冷却ジャケット12とバスバーモジュール800の分解斜視図である。図43は、保持部材803を除いたバスバーモジュール800の外観斜視図である。
 図42及び図43に示されるように、第1交流バスバー802a~802fは、電流センサ180a又は電流センサ180bの設置箇所まで、当該第1交流バスバー802a~802fの主面がコンデンサモジュール500の積層導体板501の主面と略垂直になるように形成される。また、第1交流バスバー802a~802fは、電流センサ180aの貫通孔又は電流センサ180bの貫通孔の直前で略直角に折り曲げられる。これにより、電流センサ180a又は電流センサ180bを貫通する第1交流バスバー802a~802fの部分は、その主面が積層導体板501の主面と略平行になる。そして、第1交流バスバー802a~802fの端部には、第2交流バスバー804a~804fと接続する為の接続部805a~805fが形成される(接続部805d~805fは図示せず)。
 第2交流バスバー804a~804fは、接続部805a~805fの近傍で、コンデンサモジュール500側に向かって略直角に折り曲げられる。これにより、第2交流バスバー804a~804fの主面がコンデンサモジュール500の積層導体板501の主面と略垂直になるように形成される。さらに第2交流バスバー804a~804fは、電流センサ180a又は電流センサ180bの近傍から、図43に示された冷却ジャケット12の短手方向の一方の辺12aに向かって延ばされ、当該辺12aを横切るように形成される。つまり、複数の第2交流バスバー804a~804fの主面が向かい合った状態で、当該第2交流バスバー804a~804fが辺12aを横切るように形成される。
 これにより、装置全体を大型化させることなく、冷却ジャケット12の短い辺側から複数の板状交流バスバーを外部に突出させることができる。そして、冷却ジャケット12の一面側から複数の交流バスバーを突出させることで、電力変換装置200の外部での配線の取り回しが容易になり、生産性が向上する。
 図42に示されるように、第1交流バスバー802a~802f、電流センサ180a~180b及び第2交流バスバー804a~804fは、樹脂で構成された保持部材803によって、保持及び絶縁されている。この保持部材803により、第2交流バスバー804a~804fが金属製の冷却ジャケット12及び筐体119との間の絶縁性を向上させる。また保持部材803が冷却ジャケット12に熱的に接触又は直接接触することにより、トランスミッション118側から第2交流バスバー804a~804fに伝わる熱を、冷却ジャケット12に逃がすことができるので、電流センサ180a~180bの信頼性を向上させることができる。
 図42に示されるように、保持部材803は、図36に示されたドライバ回路基板22を支持するための支持部材807a及び支持部材807bを備える。支持部材807aは、複数設けられ、かつ冷却ジャケット12の長手方向の一方の辺に沿って一列に並べて形成される。また、支持部材807bは、複数設けられ、かつ冷却ジャケット12の長手方向の他方の辺に沿って一列に並べて形成される。支持部材807a及び支持部材807bの先端部には、ドライバ回路基板22を固定するための螺子穴が形成されている。
 さらに、保持部材803は、電流センサ180a及び電流センサ180bが配置された箇所から上方に向かって延びる突起部806a及び突起部806bを備える。突起部806a及び突起部806bは、それぞれ電流センサ180a及び電流センサ180bを貫通するように構成される。図42に示されるように、電流センサ180a及び電流センサ180bは、ドライバ回路基板22の配置方向に向かって延びる信号線182a及び信号線182bを備える。信号線182a及び信号線182bは、ドライバ回路基板22の配線パターンとはんだによって接合される。本実施形態では、保持部材803、支持部材807a~807b及び突起部806a~806bは、樹脂で一体に形成される。
 これにより、保持部材803が電流センサ180とドライバ回路基板22との位置決め機能を備えることになるので、信号線182aとドライバ回路基板22との間の組み付け及びはんだ接続作業が容易になる。また、電流センサ180とドライバ回路基板22を保持する機構を保持部材803に設けることで、電力変換装置全体としての部品点数を削減できる。
 電力変換装置200はトランスミッション118を収納した筐体119に固定されるので、トランスミッション118からの振動の影響を大きく受ける。そこで、保持部材803は、ドライバ回路基板22の中央部の近傍を指示するための支持部材808を設けて、ドライバ回路基板22に加わる振動の影響を低減している。なお、保持部材803は、冷却ジャケット12に螺子により固定される。
 また、保持部材803は、補機用パワーモジュール350の一方の端部を固定するためのブラケット809を設ける。また図38に示されるように、補機用パワーモジュール350は突出部407に配置されることにより、当該補機用パワーモジュール350の他方の端部が当該突出部407に固定される。これにより、補機用パワーモジュール350に加わる振動の影響を低減するとともに、固定用の部品点数を削減することができる。
 図44は、パワーモジュールとコンデンサモジュールとバスバーモジュール800と補機用パワーモジュール350を組み付けた冷却ジャケット12の外観斜視図である。電流センサ180は、約100℃の耐熱温度以上に熱せられると破壊するおそれがある。特に車載用の電力変換装置では、使用される環境の温度が非常に高温になるため、電流センサ180を熱から保護することが重要になる。特に、本実施形態に係る電力変換装置200はトランスミッション118に搭載されるので、当該トランスミッション118から発せられる熱から保護することが重要になる。
 そこで、電流センサ180a及び電流センサ180bは、冷却ジャケット12を挟んでトランスミッション118とは反対側に配置される。これにより、トランスミッション118が発する熱が電流センサに伝達し難くなり、電流センサの温度上昇を抑えられる。さらに、第2交流バスバー804a~804fは、図39に示された第3流路19cを流れる冷媒の流れ方向810を横切るように形成される。そして、電流センサ180a及び電流センサ180bは、第3流路部19cを横切る第2交流バスバー804a~804fの部分よりもパワーモジュールの交流端子321に近い側に配置される。これにより、第2交流バスバー804a~804fが冷媒によって間接的に冷却され、交流バスバーから電流センサ、更にはパワーモジュール内の半導体チップに伝わる熱を和らげることができるため、信頼性が向上する。
 図44に示される流れ方向811は、図39にて示された第4流路19dを流れる冷媒の流れ方向を示す。同様に、流れ方向812は、図39にて示された第2流路19bを流れる冷媒の流れ方向を示す。本実施形態に係る電流センサ180a及び電流センサ180bは、電力変換装置200の上方から投影したときに、電流センサ180a及び電流センサ180bの投影部が流路19の投影部に囲まれるように配置される。これにより電流センサをトランスミッション118からの熱から更に保護することができる。
 図45は、制御回路基板20と金属ベース板11を分離した電力変換装置200の分割斜視図である。図44にて示されたように、電流センサ180は、コンデンサモジュール500の上方に配置される。ドライバ回路基板22は、電流センサ180の上方に配置され、かつ図8に示されたバスバーモジュール800に設けられる支持部材807a及び807bによって支持される。金属ベース板11は、ドライバ回路基板22の上方に配置され、かつ冷却ジャケット12から立設された複数の支持部材15によって支持される。制御回路基板20は、金属ベース板11の上方に配置され、かつ金属ベース板11に固定される。
 電流センサ180とドライバ回路基板22と制御回路基板20が高さ方向に一列に階層的に配置され、かつ制御回路基板20が強電系のパワーモジュール300及び301から最も遠い場所に配置されるので、スイッチングノイズ等が混入することを抑制することができる。さらに、金属ベース板11は、グランドに電気的に接続された冷却ジャケット12に電気的に接続されている。この金属ベース板11によって、ドライバ回路基板22から制御回路基板20に混入するノイズを低減している。
 流路19に流れる冷媒の冷却対象が主に駆動用のパワーモジュール300及び301であるので、当該パワーモジュール300及び301は流路19内に収納されて直接に冷媒と接触して冷却される。一方、補機用パワーモジュール350も、駆動用パワーモジュールほどではないが冷却することが求められる。
 そこで、補機用パワーモジュール350の金属ベースで形成された放熱面が、流路19を介して、入口配管13及び出口配管14と対向するように形成される。特に、補機用パワーモジュール350を固定する突出部407が入口配管13の上方に形成されているので、下方から流入する冷媒が突出部407の内壁に衝突して、効率良く補機用パワーモジュール350から熱を奪うことができる。さらに、突出部407の内部には、流路19と繋がる空間を形成している。この突出部407内部の空間によって、入口配管13及び出口配管14近傍の流路19の深さが大きくなっており、突出部407内部の空間に液溜りが生じることになる。この液溜りにより効率良く補機用パワーモジュール350を冷却することができる。
 電流センサ180とドライバ回路基板22を電気的に繋ぐ際に、配線コネクタを用いると接続工程の増大や、接続ミスの危険性を招くことになる。
 そこで、図45に示されるように、本実施形態のドライバ回路基板22には、当該ドライバ回路基板22を貫通する第1孔24及び第2孔26が形成される。また第1孔24にはパワーモジュール300の信号端子325U及び信号端子325Lが挿入され、信号端子325U及び信号端子325Lはドライバ回路基板22の配線パターンと半田により接合される。さらに第2孔26には電流センサ180の信号線182が挿入され、信号線182はドライバ回路基板22の配線パターンとはんだにより接合される。なお、冷却ジャケット12との対向面とは反対側のドライバ回路基板22の面側からはんだ接合が行われる。
 これにより、配線コネクタを用いることなく信号線が接続できるので生産性を向上させることができる。また、パワーモジュール300の信号端子325と電流センサ180の信号線182を、同一方向からはんだにより接合されることにより、生産性を更に向上させることができる。また、ドライバ回路基板22に、信号端子325を貫通させるための第1孔24や、信号線182を貫通させるための第2孔26をそれぞれ設けることにより接続ミスの危険性を少なくすることができる。
 また、ドライバ回路基板22は、冷却ジャケット12と対向する面側に、ドライバICチップ等の駆動回路(図示せず)を実装している。これにより、はんだ接合の熱がドライバICチップ等に伝わることを抑制して、はんだ接合によるドライバICチップ等の損傷を防止している。また、ドライバ回路基板22に搭載されているトランスのような高背部品が、コンデンサモジュール500とドライバ回路基板22との間の空間に配置されるので、電力変換装置200全体を低背化することが可能となる。
 図46は、図45のB面で切り取った電力変換装置200をC方向から見た断面図である。モジュールケース304に設けられたフランジ304Bは、コンデンサケース502に設けられたフランジ515a又はフランジ515bによって冷却ジャケット12に押し付けられる。つまり、コンデンサセル514を収納したコンデンサケース502の自重を利用して、冷却ジャケット12にモジュールケース304を押しつけることにより、流路19の気密性を向上させることができる。
 パワーモジュール300の冷却効率を向上させるために、流路19内の冷媒をフィン305が形成された領域に流すようにする必要がある。モジュールケース304は薄肉部304Aのスペースを確保するために、モジュールケース304の下部にはフィン305が形成されていない。そこで下カバー420は、モジュールケース304の下部が、当該下カバー420に形成された凹部430に勘合されるように形成される。これにより、冷却フィンが形成されていない空間に冷媒が流れ込むことを防止することができる。
 図46に示されるように、パワーモジュール300とコンデンサモジュール500とパワーモジュール301の配列方向は、制御回路基板20とドライバ回路基板22とトランスミッション118の配列方向を横切るように並べて配置されている。特に、パワーモジュール300とコンデンサモジュール500とパワーモジュール301は、電力変換装置200の中では、最下層に並べて配置されている。これにより、電力変換装置200全体の低背化が可能となるとともに、トランスミッション118からの振動の影響を低減することができる。
 上述した実施の形態の作用効果をまとめると以下のようになる。
(1)図13に示すように、パワーモジュールは、一次封止体302と放熱部307Bとの間に配置され、放熱部307Bおよび少なくとも導体板315の放熱面の全域と接するように設けられた絶縁層333とを備える。そして、絶縁層333は、樹脂が含浸されたセラミックス溶射膜333Aおよび良熱伝導性のフィラーが混入された樹脂層333Bを積層した積層体と、その積層体の周囲端部を覆うように放熱部307Bと一次封止体32との隙間に設けられた樹脂部333Cとを有する。
 このように、空孔3330に樹脂を含浸した溶射膜333Aは、高熱伝導な絶縁シートのフィラー充填率よりも高い充填率(70~97%)であるため熱伝導性に優れる。その結果、絶縁特性および熱伝導特性に優れた溶射膜333Aが得られ、絶縁特性および熱伝導特性を溶射膜333Aで確保することで、接着用樹脂としての樹脂層333Bを薄くすることができる。また、樹脂層333Bにフィラーを混入させることで、樹脂層333Bの熱伝導性能への影響を抑えることができる。
 さらに、図16に示すように、積層体の面積を導体板315,318の放熱面の面積よりも大きく設定して、積層体が少なくとも放熱面の全域と接するように設けられていることにより、半導体チップで発生した熱を導体板315,318から放熱部307A,307Bへと効果的に放熱することができる。なお、図16に示す例では、溶射膜333Aの面積を接着用樹脂層333Bよりも大きく設定しているが、いずれが大きくても良いし、同じ大きさでも構わない。さらに、樹脂部333Cを樹脂含浸のときに同時に形成しているが、積層体を形成した後に形成しても良い。
 樹脂層333Bによる接着温度や溶射による温度上昇は、従来のろう材を用いたセラミックス板の接合温度よりもはるかに低いため、モジュール作製時の熱応力を低減できる。また、溶射膜333Aの厚さを、従来の絶縁シートの厚さと同等にまで薄くでき、パワーモジュール絶縁部の放熱性を向上できる。また、溶射膜333Aはセラミックス粒子同士が溶着し一定の強度を有しているため、放熱部307Bと樹脂層333Bとを接着させる際の加圧力を増加することができ、ボイドの少ない樹脂層333Bにすることができる。加圧力を増加すると樹脂層333Bの厚さ変化が大きくなり薄くなるが、樹脂を含浸した溶射膜333Aにより絶縁性能を確保することができる。
 ところで、導体板315と放熱部307Bとの間の熱膨張係数差に起因して発生する積層体の熱応力は、接着面の外周部で大きくなる。特に、パワーモジュールの場合には、半導体チップに大電流が流れるため導体板315は発生熱で加熱され、熱膨張量の差が大きくなりやすい。しかしながら、積層体の周囲端部にそれらを覆うように樹脂部333Cを設けたので、積層体周囲端部における熱応力を緩和することができる。その場合、樹脂部333Cに使用される樹脂の弾性率を樹脂層333Bに使用される樹脂の弾性率よりも小さくすることで、応力緩和の効果をより高めることができる。また、樹脂部333Cにフィラーを混入させる場合には、樹脂部333Cのフィラー充填率を樹脂層333Bよりも小さくすることで弾性率の低下が小さくなり、同様の効果が得られるとともに、接着力が大きくなるため、剥離の発生や進展に対する耐性が向上する。
(2)さらに、図25,26に示すように、一次封止体302や放熱部307B,307Aに凹凸部(凹部304e,348a、段差304f,348b)を形成し、その凹凸部に樹脂部333Cの樹脂が充填されるようにすることで、積層体周囲の樹脂量が増加し、上述した応力緩和効果をより高めることができる。さらに、凹凸部に樹脂が入り込むことによるアンカー効果により、応力の緩和効果がより大きくなる。
(3)樹脂シート3332に使用される樹脂を熱可塑性樹脂を主成分とした樹脂とし、加熱硬化する部位を有する組成物とし、樹脂333Dには室温から150℃の温度域での粘度が樹脂層333Bよりも低い含浸性に優れる熱硬化性樹脂を選定することで、加圧する温度において、樹脂シート3332の粘度が樹脂層333Dよりも十分大きい状態となる加熱温度が広くとれ生産性が向上する。図23のように放熱部307Bと樹脂層333Bとを接着させる際の加圧力によって、溶射膜333Aと樹脂層333Bとの間の樹脂333Dが溶射膜333A内や積層体周方向に押し流される。その結果、溶射膜333Aの凹凸部に樹脂層333Bのフィラーが入り込み境界領域での熱伝導性能の低下を防止することができ、積層体の熱伝導性能の向上を図ることができる。これは、樹脂シート3332に使用される樹脂をガラス温度が高い樹脂とし、樹脂333Dに樹脂シート3332よりもガラス転移温度が低い樹脂を用いることで、樹脂シート3332のガラス転移温度よりも低い温度で加熱すれば同様の効果を得ることができる。
(4)空孔3330の大きさが溶射膜表面の凹凸の大きさよりも小さくなるように溶射膜333Aを形成し、樹脂層333Bに混入されているフィラーの大きさを溶射膜表面の凹凸の大きさよりも小さく、かつ、空孔3330の大きさよりも大きく設定する。そうすることで、樹脂層333Bのフィラーを空孔3330に入れずに溶射膜表面の凹部に入り込ませることができる。その結果、溶射膜333Aと樹脂層333Bとの界面における熱伝導性能を向上させることができる。樹脂はセラミックスや金属に比較して著しく熱伝導率が小さく、放熱経路に樹脂の濃化層(フィラーが少ない層)が存在するとモジュール全体の放熱性が低下する。そのため、上述のように設定して、溶射膜333Aの凹部に存在する樹脂層333B内にフィラーを存在させることが重要となる。なお、溶射膜333Aの表面凹凸の制御は、溶射条件である、溶射温度、基材の予熱温度、噴射速度、雰囲気、粉末粒径により制御できる。また、必要に応じて溶射後に研削や研磨やレーザ照射などの表面加工を施しても良い。
(5)放熱部307Bの熱膨張係数が導体板315の熱膨張係数よりも大きい場合、例えば導体板315をAlやAl合金(AlSiCやAlCとAlの複合材など)とし、放熱部307BをCuやCu合金で形成した場合には、導体板315に熱膨張係数の大きな樹脂層333Bが配置され、放熱部307B側に熱膨張係数の小さな溶射膜333Aが配置されるように積層体を構成する。その結果、放熱部307Bから導体板315にかけて熱応力が傾斜され、積層体周囲端部における熱応力が緩和される。逆に、導体板315の熱膨張係数が放熱部307Bの熱膨張係数よりも大きい場合には、導体板側の熱膨張係数が放熱部側の熱膨張係数よりも大きくなるように積層体を構成すれば良い。樹脂層333Bの熱膨張係数は、フィラー充填量や樹脂の膨張係数を調整することで変化させることができる。溶射膜333Aの熱膨張係数は、含浸させる樹脂の熱膨張係数を調整することで変化させることができる。
 上述した各実施形態はそれぞれ単独に、あるいは組み合わせて用いても良い。それぞれの実施形態での効果を単独あるいは相乗して奏することができるからである。また、本発明の特徴を損なわない限り、本発明は上記実施の形態に何ら限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2011年第209815号(2011年9月26日出願)

Claims (13)

  1.  半導体チップが搭載された導体板を、該導体板の放熱面が露出するように樹脂で封止した封止体と、
     前記放熱面と対向するように配置された放熱部材と、
     前記封止体と前記放熱部材との間に配置された絶縁層と、を備え、
     前記絶縁層は、
     含浸用樹脂が含浸されたセラミックス溶射膜および良熱伝導性のフィラーが混入された接着用樹脂層を積層したものであって、前記放熱部材および少なくとも前記放熱面の全域と接するように設けられている積層体と、
     前記積層体の端部を全周にわたって覆うように、前記放熱部材と前記封止体との隙間に設けられた応力緩和用樹脂部とを有するパワーモジュール。
  2.  請求項1に記載のパワーモジュールにおいて、
     前記封止体および放熱部材の少なくとも一方の、前記積層体の外周側に位置する面に凹部を形成し、
     前記応力緩和用樹脂部を構成する樹脂の一部が前記凹部に充填されているパワーモジュール。
  3.  請求項1に記載のパワーモジュールにおいて、
     前記セラミックス溶射膜が対向する前記封止体または放熱部材の面に、前記応力緩和用樹脂部を囲む環状の凸部が形成されているパワーモジュール。
  4.  請求項1に記載のパワーモジュールにおいて、
     前記セラミックス溶射膜の周縁位置における前記放熱部材と前記封止体との間隔が、前記セラミックス溶射膜の周縁よりも内側の領域における間隔よりも大きくなるように、前記セラミックス溶射膜の周縁の厚さを該周縁よりも内側の領域の厚さよりも薄くしたパワーモジュール。
  5.  請求項1に記載のパワーモジュールにおいて、
     前記セラミックス溶射膜の周縁位置における前記放熱部材と前記封止体との間隔が、前記セラミックス溶射膜の周縁よりも内側の領域における間隔よりも大きくなるように、前記セラミックス溶射膜の周縁が接している前記封止体または前記放熱部材の面に段差が形成されているパワーモジュール。
  6.  請求項1乃至5のいずれか一項に記載のパワーモジュールにおいて、
     前記応力緩和用樹脂部に使用される樹脂の弾性率が、前記接着用樹脂層に使用される樹脂の弾性率よりも小さいパワーモジュール。
  7.  請求項1乃至6のいずれか一項に記載のパワーモジュールにおいて、
     前記応力緩和用樹脂部は、前記接着用樹脂層よりも低いフィラー充填率でフィラーが混入されているパワーモジュール。
  8.  請求項1乃至7のいずれか一項に記載のパワーモジュールにおいて、
     前記接着用樹脂層に使用される樹脂のガラス転移温度が、前記応力緩和用樹脂部に使用される樹脂のガラス転移温度よりも高いパワーモジュール。
  9.  請求項1乃至7のいずれか一項に記載のパワーモジュールにおいて、
     前記接着用樹脂層に使用される樹脂が熱可塑性樹脂であり、前記応力緩和用樹脂部に使用される樹脂が熱硬化性樹脂であるパワーモジュール。
  10.  請求項1乃至9のいずれか一項に記載のパワーモジュールにおいて、
     前記セラミックス溶射膜は、溶射膜内部に形成される空孔の大きさが該溶射膜の表面凹部の大きさよりも小さく、
     前記接着用樹脂層に混入されているフィラーの大きさは、前記表面凹部の大きさよりも小さく、かつ、前記空孔の大きさよりも大きいパワーモジュール。
  11.  請求項1乃至10のいずれか一項に記載のパワーモジュールにおいて、
     前記放熱部材の熱膨張係数が前記導体板の熱膨張係数よりも大きい場合には、前記積層体は放熱部材側の熱膨張係数が導体板側の熱膨張係数よりも大きくなるように構成され、逆に、前記導体板の熱膨張係数が前記放熱部材の熱膨張係数よりも大きい場合には、前記積層体は導体板側の熱膨張係数が放熱部材側の熱膨張係数よりも大きくなるように構成されているパワーモジュール。
  12.  請求項1乃至11のいずれか一項に記載のパワーモジュールにおいて、
     前記半導体チップはチップ表裏両面に電極を有し、
     前記導体板は、チップ表面側に接合される表面側導体板とチップ裏面側に接合される裏面側導体板とを含み、
     前記放熱部材は、前記半導体チップ、前記表面側導体板および前記裏面側導体板を樹脂で封止した前記封止体が収納されるモジュールケースであって、前記表面側導体板と対向する第1の放熱壁と、前記裏面側導体板と対向する第2の放熱壁と、前記第1及び第2の放熱壁の周囲に形成された薄肉の塑性変形可能部とを有し、
     前記絶縁層は、前記表面側導体板と前記第1の放熱壁との間に配置される第1の絶縁層と、前記裏面側導体板と前記第2の放熱壁との間に配置される第2の絶縁層とを含むパワーモジュール。
  13.  請求項1乃至11のいずれか一項に記載のパワーモジュールにおいて、
     前記半導体チップはチップ表裏両面に電極を有し、
     前記導体板は、チップ表面側に接合される表面側導体板とチップ裏面側に接合される裏面側導体板とを含み、
     前記放熱部材は、前記表面側導体板と対向する第1の放熱壁と、前記裏面側導体板と対向する第2の放熱壁とを含み、
     前記絶縁層は、前記表面側導体板と前記第1の放熱壁との間に配置される第1の絶縁層と、前記裏面側導体板と前記第2の放熱壁との間に配置される第2の絶縁層とを含むパワーモジュール。
PCT/JP2012/070361 2011-09-26 2012-08-09 パワーモジュール WO2013046954A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/237,975 US9439332B2 (en) 2011-09-26 2012-08-09 Power module
EP12834998.2A EP2763165B1 (en) 2011-09-26 2012-08-09 Power module
CN201280041440.0A CN103765577B (zh) 2011-09-26 2012-08-09 功率模块

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011209815A JP5542765B2 (ja) 2011-09-26 2011-09-26 パワーモジュール
JP2011-209815 2011-09-26

Publications (1)

Publication Number Publication Date
WO2013046954A1 true WO2013046954A1 (ja) 2013-04-04

Family

ID=47995006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070361 WO2013046954A1 (ja) 2011-09-26 2012-08-09 パワーモジュール

Country Status (5)

Country Link
US (1) US9439332B2 (ja)
EP (1) EP2763165B1 (ja)
JP (1) JP5542765B2 (ja)
CN (1) CN103765577B (ja)
WO (1) WO2013046954A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI557857B (zh) * 2015-01-22 2016-11-11 台達電子工業股份有限公司 功率模組之封裝結構
FR3075561A1 (fr) * 2017-12-18 2019-06-21 Valeo Equipements Electriques Moteur Procede de montage d'au moins une capacite sur un dissipateur de chaleur, assemblage ainsi obtenu et convertisseur de tension comportant un tel assemblage
US20220346286A1 (en) * 2021-04-22 2022-10-27 Hyundai Motor Company Power inverter

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4436843B2 (ja) * 2007-02-07 2010-03-24 株式会社日立製作所 電力変換装置
JP5581131B2 (ja) * 2010-06-30 2014-08-27 日立オートモティブシステムズ株式会社 パワーモジュール及びそれを用いた電力変換装置
JP5502805B2 (ja) 2011-06-08 2014-05-28 日立オートモティブシステムズ株式会社 パワーモジュールおよびそれを用いた電力変換装置
JP5542765B2 (ja) * 2011-09-26 2014-07-09 日立オートモティブシステムズ株式会社 パワーモジュール
JP5663462B2 (ja) 2011-12-15 2015-02-04 日立オートモティブシステムズ株式会社 パワー半導体モジュールおよびパワーモジュール
JP5941787B2 (ja) * 2012-08-09 2016-06-29 日立オートモティブシステムズ株式会社 パワーモジュールおよびパワーモジュールの製造方法
SG11201506985YA (en) * 2013-03-08 2015-10-29 Toshiba Kk Power converter for vehicle
EP2887787A3 (en) 2013-12-13 2015-08-19 Hitachi, Ltd. Cooling structure for heating element and power converter
JP5805838B1 (ja) 2014-09-29 2015-11-10 株式会社日立製作所 発熱体の冷却構造、電力変換器ユニットおよび電力変換装置
JP6093455B2 (ja) * 2014-01-27 2017-03-08 株式会社日立製作所 半導体モジュール
JP2015144216A (ja) 2014-01-31 2015-08-06 株式会社東芝 半導体装置及びその製造方法
WO2015198724A1 (ja) * 2014-06-23 2015-12-30 富士電機株式会社 冷却器一体型半導体モジュール
CN104733950B (zh) * 2015-03-09 2024-03-29 连展科技(深圳)有限公司 防水型插座电连接器
JP6544222B2 (ja) * 2015-12-11 2019-07-17 住友電気工業株式会社 半導体モジュール及び半導体モジュールユニット
DE102016117841A1 (de) 2016-09-21 2018-03-22 HYUNDAI Motor Company 231 Packung mit aufgerauter verkapselter Oberfläche zur Förderung einer Haftung
DE102016220553A1 (de) 2016-10-20 2018-04-26 Robert Bosch Gmbh Leistungsmodul
DE102016120778B4 (de) 2016-10-31 2024-01-25 Infineon Technologies Ag Baugruppe mit vertikal beabstandeten, teilweise verkapselten Kontaktstrukturen
JP2019080004A (ja) * 2017-10-26 2019-05-23 トヨタ自動車株式会社 半導体装置
US10850623B2 (en) 2017-10-30 2020-12-01 Sf Motors, Inc. Stacked electric vehicle inverter cells
JP2019102646A (ja) * 2017-12-01 2019-06-24 トヨタ自動車株式会社 半導体装置
US11538728B2 (en) 2017-12-20 2022-12-27 Mitsubishi Electric Corporation Semiconductor package comprising a heat dissipation structure and an outer peripheral frame used as a resin flow barrier
US10453777B2 (en) * 2018-01-30 2019-10-22 Toyota Motor Engineering & Manufacturing North America, Inc. Power electronics assemblies with cio bonding layers and double sided cooling, and vehicles incorporating the same
US10790758B2 (en) 2018-03-08 2020-09-29 Chongqing Jinkang New Energy Vehicle Co., Ltd. Power converter for electric vehicle drive systems
US10594230B2 (en) 2018-03-23 2020-03-17 Sf Motors, Inc. Inverter module having multiple half-bridge modules for a power converter of an electric vehicle
US10756649B2 (en) 2018-03-23 2020-08-25 Chongqing Jinkang New Energy Vehicle Co., Ltd. Inverter module having multiple half-bridge modules for a power converter of an electric vehicle
US10779445B2 (en) 2018-03-23 2020-09-15 Chongqing Jinkang New Energy Vehicle Co., Ltd. Inverter module having multiple half-bridge modules for a power converter of an electric vehicle
US10778117B2 (en) * 2018-04-17 2020-09-15 Chongqing Jinkang New Energy Vehicle Co., Ltd. Inverter module of an electric vehicle
US10772242B2 (en) * 2018-04-17 2020-09-08 Chongqing Jinkang New Energy Vehicle Co., Ltd. Inverter module of an electric vehicle
US10608423B2 (en) 2018-04-26 2020-03-31 Sf Motors, Inc. Electric vehicle inverter module laminated bus bar
US10600578B2 (en) 2018-04-26 2020-03-24 Sf Motors, Inc. Electric vehicle inverter module capacitors
US10660242B2 (en) 2018-04-26 2020-05-19 Chongqing Jinkang New Energy Vehicle Co., Ltd. Electric vehicle inverter module heat sink
DE102019200861A1 (de) * 2019-01-24 2020-07-30 Audi Ag Entladeschaltung für einen Zwischenkreis
FR3094834B1 (fr) * 2019-04-05 2021-04-30 Valeo Siemens eAutomotive France Bloc capacitif comprenant un cadre en materiau electrique isolant
EP3772095B1 (en) * 2019-07-30 2022-06-08 BRUSA Elektronik AG Cooler
DE102019218141A1 (de) * 2019-11-25 2021-05-27 Volkswagen Aktiengesellschaft Leistungselektronische Halbbrückenschaltung und Anordnung
US11470748B1 (en) * 2020-03-09 2022-10-11 Smart Wires Inc. Liquid cooling of high current devices in power flow control systems
EP3936722B1 (en) * 2020-07-06 2024-09-04 Schott Ag Housing part, especially housing part in particular for an electronic housing, preferably e-compressor terminal
JP7533857B2 (ja) * 2020-11-19 2024-08-14 ニデックエレシス株式会社 インバータ装置、モータユニットおよび車両
JP7072624B1 (ja) 2020-11-20 2022-05-20 三菱電機株式会社 電力用半導体装置および電力用半導体装置の製造方法
CN116636000A (zh) * 2020-12-10 2023-08-22 日立安斯泰莫株式会社 电路体、功率转换装置和电路体的制造方法
WO2022210617A1 (ja) * 2021-03-31 2022-10-06 株式会社Flosfia 半導体装置および半導体システム
US20230130147A1 (en) * 2021-10-21 2023-04-27 Luxshare Precision Industry (Jiangsu) Co.,Ltd. Liquid cooling system of charging gun and charging gun

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086342A (ja) * 2004-09-16 2006-03-30 Toyota Motor Corp 樹脂封入型半導体装置
JP2006128555A (ja) * 2004-11-01 2006-05-18 Mitsubishi Electric Corp 半導体装置及びその製造方法
JP2006165498A (ja) * 2004-11-10 2006-06-22 Fuji Electric Holdings Co Ltd 半導体装置および、半導体装置の製造方法
JP4023397B2 (ja) 2003-04-15 2007-12-19 富士電機機器制御株式会社 半導体モジュールおよびその製造方法
JP2010258315A (ja) * 2009-04-28 2010-11-11 Hitachi Automotive Systems Ltd パワーモジュール及び電力変換装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19529627C1 (de) * 1995-08-11 1997-01-16 Siemens Ag Thermisch leitende, elektrisch isolierende Verbindung und Verfahren zu seiner Herstellung
JP3886295B2 (ja) * 1999-06-15 2007-02-28 松下冷機株式会社 冷凍システムのパワー制御装置およびコンプレッサ
KR101384426B1 (ko) * 2006-03-13 2014-04-10 쇼와 덴코 가부시키가이샤 파워 모듈용 베이스
US8130499B2 (en) * 2007-11-30 2012-03-06 Panasonic Corporation Heat dissipating structure base board, module using heat dissipating structure base board, and method for manufacturing heat dissipating structure base board
US7778033B2 (en) * 2008-10-30 2010-08-17 Astec International Limited Thermally conductive covers for electric circuit assemblies
JP5557441B2 (ja) * 2008-10-31 2014-07-23 日立オートモティブシステムズ株式会社 電力変換装置および電動車両
JP5251791B2 (ja) * 2009-08-31 2013-07-31 株式会社デンソー 樹脂封止型半導体装置およびその製造方法
JP5481148B2 (ja) * 2009-10-02 2014-04-23 日立オートモティブシステムズ株式会社 半導体装置、およびパワー半導体モジュール、およびパワー半導体モジュールを備えた電力変換装置
JP5407881B2 (ja) * 2010-01-13 2014-02-05 トヨタ自動車株式会社 パワーモジュール製造方法およびその方法により製造したパワーモジュール
CN102340233B (zh) * 2010-07-15 2014-05-07 台达电子工业股份有限公司 功率模块
US9320131B2 (en) * 2010-09-17 2016-04-19 Intervention Technology Pty Ltd Power supply device and components thereof
JP5542646B2 (ja) * 2010-12-24 2014-07-09 日立オートモティブシステムズ株式会社 パワーモジュールの製造方法、パワーモジュールの設計方法
JP5447433B2 (ja) * 2011-05-13 2014-03-19 株式会社安川電機 電子機器および電子機器が設けられた電力変換装置
JP5520889B2 (ja) * 2011-06-24 2014-06-11 日立オートモティブシステムズ株式会社 パワー半導体モジュール及びそれを用いた電力変換装置
US8987777B2 (en) * 2011-07-11 2015-03-24 International Rectifier Corporation Stacked half-bridge power module
US10104812B2 (en) * 2011-09-01 2018-10-16 Infineon Technologies Ag Elastic mounting of power modules
JP5542765B2 (ja) * 2011-09-26 2014-07-09 日立オートモティブシステムズ株式会社 パワーモジュール
WO2013089099A1 (ja) * 2011-12-12 2013-06-20 三菱マテリアル株式会社 パワーモジュール用基板、ヒートシンク付パワーモジュール用基板、パワーモジュール、フラックス成分侵入防止層形成用ペーストおよび接合体の接合方法
JP5663462B2 (ja) * 2011-12-15 2015-02-04 日立オートモティブシステムズ株式会社 パワー半導体モジュールおよびパワーモジュール
CN102569223B (zh) * 2012-01-11 2016-09-14 华为技术有限公司 一种功率器件绝缘散热结构及电路板、电源设备
JP5661052B2 (ja) * 2012-01-18 2015-01-28 三菱電機株式会社 パワー半導体モジュールおよびその製造方法
JP5548722B2 (ja) * 2012-03-30 2014-07-16 三菱マテリアル株式会社 ヒートシンク付パワーモジュール用基板、及び、ヒートシンク付パワーモジュール用基板の製造方法
EP2854174B1 (en) * 2012-05-22 2019-02-20 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device and method for manufacturing same
US8847384B2 (en) * 2012-10-15 2014-09-30 Toyota Motor Engineering & Manufacturing North America, Inc. Power modules and power module arrays having a modular design
US9968012B2 (en) * 2012-10-16 2018-05-08 Mitsubishi Materials Corporation Heat-sink-attached power module substrate, heat-sink-attached power module, and method for producing heat-sink-attached power module substrate
TWI478479B (zh) * 2013-01-17 2015-03-21 Delta Electronics Inc 整合功率模組封裝結構
US9420731B2 (en) * 2013-09-18 2016-08-16 Infineon Technologies Austria Ag Electronic power device and method of fabricating an electronic power device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4023397B2 (ja) 2003-04-15 2007-12-19 富士電機機器制御株式会社 半導体モジュールおよびその製造方法
JP2006086342A (ja) * 2004-09-16 2006-03-30 Toyota Motor Corp 樹脂封入型半導体装置
JP2006128555A (ja) * 2004-11-01 2006-05-18 Mitsubishi Electric Corp 半導体装置及びその製造方法
JP2006165498A (ja) * 2004-11-10 2006-06-22 Fuji Electric Holdings Co Ltd 半導体装置および、半導体装置の製造方法
JP2010258315A (ja) * 2009-04-28 2010-11-11 Hitachi Automotive Systems Ltd パワーモジュール及び電力変換装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2763165A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI557857B (zh) * 2015-01-22 2016-11-11 台達電子工業股份有限公司 功率模組之封裝結構
FR3075561A1 (fr) * 2017-12-18 2019-06-21 Valeo Equipements Electriques Moteur Procede de montage d'au moins une capacite sur un dissipateur de chaleur, assemblage ainsi obtenu et convertisseur de tension comportant un tel assemblage
US20220346286A1 (en) * 2021-04-22 2022-10-27 Hyundai Motor Company Power inverter

Also Published As

Publication number Publication date
JP5542765B2 (ja) 2014-07-09
EP2763165A4 (en) 2016-04-13
EP2763165A1 (en) 2014-08-06
US9439332B2 (en) 2016-09-06
US20140168901A1 (en) 2014-06-19
CN103765577A (zh) 2014-04-30
EP2763165B1 (en) 2019-05-08
JP2013073964A (ja) 2013-04-22
CN103765577B (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
JP5542765B2 (ja) パワーモジュール
JP5663462B2 (ja) パワー半導体モジュールおよびパワーモジュール
JP5690752B2 (ja) パワー半導体モジュールおよびパワー半導体モジュールの製造方法
JP5591396B2 (ja) 半導体モジュール、および半導体モジュールの製造方法
JP5926654B2 (ja) パワー半導体モジュールおよびパワー半導体モジュールの製造方法
JP5581131B2 (ja) パワーモジュール及びそれを用いた電力変換装置
JP5427745B2 (ja) パワー半導体モジュール及びその製造方法
JP5634429B2 (ja) パワー半導体モジュール
US11631623B2 (en) Power semiconductor device and method of manufacturing the same, and power conversion device
JP6881238B2 (ja) 半導体モジュール、その製造方法及び電力変換装置
JP5486990B2 (ja) パワーモジュール及びそれを用いた電力変換装置
US11183457B2 (en) Semiconductor device, power converter, method for manufacturing semiconductor device, and method for manufacturing power converter
JP5948106B2 (ja) パワー半導体モジュール及びそれを用いた電力変換装置
JP5659171B2 (ja) 半導体装置およびそれを用いたインバータ装置
WO2023157522A1 (ja) 半導体装置
JP2023122391A (ja) 半導体装置
JP2022007599A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12834998

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012834998

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14237975

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE