WO2013046651A1 - 蛍光体分散液、およびled装置の製造方法 - Google Patents

蛍光体分散液、およびled装置の製造方法 Download PDF

Info

Publication number
WO2013046651A1
WO2013046651A1 PCT/JP2012/006112 JP2012006112W WO2013046651A1 WO 2013046651 A1 WO2013046651 A1 WO 2013046651A1 JP 2012006112 W JP2012006112 W JP 2012006112W WO 2013046651 A1 WO2013046651 A1 WO 2013046651A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
dispersion liquid
phosphor dispersion
led device
fine particles
Prior art date
Application number
PCT/JP2012/006112
Other languages
English (en)
French (fr)
Inventor
佐藤 淳
Original Assignee
コニカミノルタアドバンストレイヤー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタアドバンストレイヤー株式会社 filed Critical コニカミノルタアドバンストレイヤー株式会社
Priority to CN201280046815.2A priority Critical patent/CN103828075A/zh
Priority to KR1020147007486A priority patent/KR20140054321A/ko
Priority to JP2013535904A priority patent/JP6076909B2/ja
Priority to EP20120836066 priority patent/EP2763197A4/en
Priority to US14/346,854 priority patent/US9309461B2/en
Publication of WO2013046651A1 publication Critical patent/WO2013046651A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the present invention relates to a phosphor dispersion liquid in which phosphor particles are dispersed, and a method for manufacturing an LED device using the same.
  • a light-emitting device (LED device) using an LED chip has been applied to various uses as the light-emitting device has higher brightness and higher demand for energy saving.
  • a white LED device that emits white light by combining blue light and yellow light by combining a blue LED chip and a phosphor that emits yellow light by receiving blue light is known.
  • Such white LED devices have come to be used as lighting for electric lights that require white light, backlights for liquid crystal display devices, and the like.
  • white light is also obtained by combining an LED chip that emits ultraviolet light and a phosphor that emits blue, green, and red light by ultraviolet light.
  • white LED devices white LED devices that emit white light by combining LED chips that emit blue light, and phosphors that emit red and green light, and the like are also being studied.
  • a white LED device combining such an LED chip and a phosphor can obtain white light with a single LED chip, and therefore, compared with a white LED device that combines a plurality of LED chips of different colors to produce white light.
  • the device can be simplified. Further, it is preferably used because power consumption can be suppressed.
  • the light from the white LED device that combines the LED chip and the phosphor is colored when the balance between the light emitted from the LED chip and the fluorescence from the phosphor is lost. Further, when the light from the white LED device is colored, there also arises a problem of “color unevenness” in which the color (chromaticity) varies depending on the observation angle of the white LED device.
  • the light from the white LED device is colored or uneven in color is because the phosphors in the LED device are unevenly present.
  • a curable resin composition in which phosphor particles are dispersed is applied to an LED chip and cured to provide a phosphor layer around the LED chip to obtain a white LED device. It was.
  • the phosphor is an inorganic metal compound having a very high specific gravity. Therefore, the phosphor in the curable resin composition is precipitated, and the phosphor particles are likely to be deposited unevenly on the LED chip. As a result, the light from the white LED device is colored or uneven in color.
  • the liquid sealing material contains phosphor particles and an anti-settling material for the phosphor particles. Accordingly, a technique for preventing sedimentation of phosphor particles having a high specific gravity is disclosed (see Patent Document 1). Furthermore, after providing the phosphor particle-containing sealing layer around the LED chip, the sealing layer is cured while rotating the light emitting device, thereby reducing the chromaticity difference, that is, color unevenness in the light emitting device (patent) Reference 1).
  • a white LED device is obtained by depositing phosphor particles on a light emitting surface of an LED chip (see Patent Document 2).
  • phosphor particles cannot be applied to the corners and side surfaces of LED chips, and the phosphor-containing coating is applied to the problem that the wavelength conversion efficiency is reduced and chromaticity deviation and color tone unevenness occur in each direction. It describes that these problems can be improved by spraying the liquid while rotating it in a mist and spiral manner (see Patent Document 2).
  • coloring and color unevenness in one white LED device that is, chromaticity deviation due to the angle of light from one white LED device can be improved to some extent.
  • a white lighting device including a plurality of white LED devices has been developed, and has come to be used in a lighting device for automobiles that require high brightness, a lighting device for stores in which chromaticity is particularly important, and the like. . In such a white lighting device, it has become important to strictly match the chromaticity of each white LED device.
  • illumination from a white illuminating device with high brightness using a plurality of white LED devices is recognized as illumination with uneven color at a distance when there is a difference in chromaticity of light from the plurality of white LED devices. . Therefore, it is more important to suppress chromaticity variation between white LED devices than in the past.
  • a coating device such as a dispenser or a spray is used. If these coating devices are used, a plurality of white LED devices can be manufactured continuously.
  • the liquid substance containing the phosphor particles stored in the coating liquid tank is stirred by the stirring apparatus in the coating liquid tank, and the phosphor in the liquid substance is uniformly dispersed by this stirring. To do.
  • the liquid substance containing the fluorescent substance stirred in the coating liquid tank is supplied to the head of the coating apparatus, and is applied onto the LED chip through the nozzle. In this way, the variation in the emission color of the LED device is reduced.
  • the phosphor becomes sufficiently dispersed. There was a problem that it took time.
  • the storage container usually does not have a stirring device, a part of the phosphor particles may settle and adhere to the inner wall of the storage container. Since the amount of the sticking also changes depending on the storage time in the storage container, the amount of the liquid phosphor put into the coating solution tank slightly changes depending on the storage time in the storage container. As a result, it was not possible to sufficiently reduce the variation in chromaticity of light emission of the obtained LED device.
  • the present invention provides a phosphor dispersion liquid in which a phosphor is a dispersoid, and the phosphor dispersion liquid that hardly precipitates even when left standing and hardly adheres to the inner wall of a storage container.
  • the first of the present invention relates to the phosphor dispersion liquid shown below.
  • a phosphor dispersion liquid including a dispersion solvent, phosphor particles dispersed in the dispersion solvent, layered clay mineral fine particles, and oxide fine particles, and the phosphor filled in 5 ml in a glass bottle having an inner diameter of 15 mm.
  • a phosphor dispersion liquid in which, when the dispersion liquid is allowed to stand, the time until a supernatant layer is generated by sedimentation of the phosphor particles is 4 hours or more.
  • the phosphor dispersion liquid according to [1] wherein the phosphor dispersion liquid has a viscosity of 80 cp to 1000 cp.
  • a step of preparing an LED chip mounting package including a package and an LED chip having a light emitting surface arranged in the package; and the phosphor dispersion liquid according to [1] on the light emitting surface of the LED chip.
  • a method of manufacturing an LED device comprising: applying a phosphor to form a phosphor layer.
  • the phosphor dispersion liquid is applied by a spray coating apparatus, and the spray coating apparatus coats a coating liquid tank for storing the phosphor dispersion liquid, a head having a nozzle for discharging the phosphor dispersion liquid,
  • the generation time of the supernatant layer generated by the sedimentation of the phosphor is 4 hours or more, and the phosphor is difficult to settle. Therefore, when the phosphor dispersion liquid is applied by a coating apparatus, the time necessary for dispersing the phosphor dispersion liquid before the start of application is shortened. Therefore, the working efficiency of applying the phosphor dispersion liquid is improved.
  • the phosphor dispersion liquid even if the phosphor dispersion liquid is stored in the storage container for a long time, the phosphor dispersion liquid hardly adheres to the inner wall of the storage container and can be stored for a long time.
  • the phosphor dispersion liquid includes a dispersion solvent, and phosphor particles, layered clay mineral fine particles, and oxide fine particles dispersed in the dispersion solvent.
  • the phosphor dispersion liquid may further contain an arbitrary additive.
  • the phosphor particles are excited by the wavelength (excitation wavelength) of the emitted light from the LED chip, and emit fluorescence having a wavelength different from the excitation wavelength.
  • the phosphor particles emit yellow fluorescence, thereby obtaining a white LED device.
  • Examples of phosphors that emit yellow fluorescence include YAG (yttrium, aluminum, garnet) phosphors.
  • the YAG phosphor can emit excitation light composed of blue light (wavelength 420 nm to 485 nm) emitted from the blue LED chip and emit yellow light (wavelength 550 nm to 650 nm).
  • phosphors can be obtained by, for example, 1) mixing an appropriate amount of a fluoride such as ammonium fluoride as a flux into a mixed raw material having a predetermined composition and pressurizing it to obtain a molded body, and 2) placing the obtained molded body in a crucible. It can be manufactured by packing and firing in air at a temperature range of 1350 to 1450 ° C. for 2 to 5 hours to obtain a sintered body.
  • a fluoride such as ammonium fluoride
  • a mixed raw material having a predetermined composition is obtained by sufficiently mixing the oxides of Y, Gd, Ce, Sm, Al, La, and Ga, or compounds that easily become oxides at high temperatures in a stoichiometric ratio. Can do.
  • the mixed raw material having a predetermined composition is a coprecipitation oxidation obtained by firing a solution obtained by dissolving a rare earth element of Y, Gd, Ce, and Sm in an acid in a stoichiometric ratio and coprecipitating with oxalic acid. It can be obtained by mixing a material with aluminum oxide and gallium oxide.
  • the kind of the phosphor is not limited to the YAG phosphor, and other phosphors such as a non-garnet phosphor not containing Ce can also be used.
  • the average particle size of the phosphor is preferably 1 ⁇ m or more and 50 ⁇ m or less.
  • the particle size of the phosphor is too large, a gap generated at the interface between the phosphor and the binder in the phosphor layer increases, and the film strength of the phosphor layer decreases.
  • the average particle diameter of the phosphor can be measured, for example, by a Coulter counter method.
  • the main component of the layered clay mineral fine particles is a layered silicate mineral, preferably a swellable clay mineral having a mica structure, a kaolinite structure, a smectite structure, etc., and a swellable clay mineral having a smectite structure rich in swelling properties. More preferred.
  • the layered clay mineral fine particles are present as a card house structure in the phosphor dispersion liquid, and the viscosity of the phosphor dispersion liquid can be significantly increased with a small amount. Further, since the layered clay mineral fine particles have a flat plate shape, the film strength of the phosphor layer (see FIG. 1) can be improved.
  • the content of the layered clay mineral fine particles in the phosphor dispersion is preferably 0.1 to 5% by weight.
  • the surface of the layered clay mineral fine particles may be modified (surface treatment) with an ammonium salt or the like.
  • the oxide fine particles may be fine particles such as silicon oxide, titanium oxide, and zinc oxide.
  • the binder in the phosphor layer is a ceramic that is a cured product of a silicon-containing organic compound such as polysiloxane
  • the oxide fine particles may be silicon oxide from the viewpoint of stability with respect to the formed ceramic. preferable.
  • the content of oxide fine particles in the phosphor dispersion is preferably 1 to 40% by weight.
  • Oxide fine particles function as a filler that fills the gap formed at the interface between the binder and the phosphor and lamellar clay mineral fine particles, function as a thickener that increases the viscosity of the phosphor dispersion liquid, It can function as a film-strengthening agent that improves the film strength.
  • the average particle diameter of the oxide fine particles is preferably 0.001 ⁇ m or more and 50 ⁇ m or less in consideration of the respective effects described above.
  • the average particle diameter of the oxide fine particles can be measured, for example, by a Coulter counter method.
  • the surface of the oxide fine particles may be treated with a silane coupling agent or a titanium coupling agent. By the surface treatment, the compatibility of the oxide fine particles with the organometallic compound and the organic solvent is increased.
  • the dispersion solvent in the phosphor dispersion liquid preferably contains alcohols.
  • the alcohol may be a monohydric alcohol such as methanol, ethanol, propanol, or butanol, or a dihydric or higher polyhydric alcohol. Two or more alcohols may be combined. If a divalent or higher alcohol is used as a dispersion solvent, it is easy to increase the viscosity of the phosphor dispersion liquid and to prevent sedimentation of the phosphor particles as the dispersoid.
  • the boiling point of the dispersion solvent is preferably 250 ° C. or lower. This is to facilitate drying of the dispersion solvent from the dispersion solution. If the boiling point is too high, the dispersion solvent evaporates slowly, and when the dispersion solution is applied to form a coating film, the phosphor flows in the coating film.
  • Any polyhydric alcohol can be used as long as it can be used as a solvent.
  • the polyhydric alcohol that can be used include ethylene glycol, propylene glycol, diethylene glycol, glycerin, 1,3-butanediol, 1,4-butanediol, and preferably ethylene glycol, propylene glycol, and 1,3-butane. Diol, 1,4-butanediol, and the like.
  • a part of the dispersion solvent in the phosphor dispersion liquid may be water.
  • water When water is contained in the phosphor dispersion liquid, water enters between the layers of the layered clay mineral fine particles, the layered clay mineral fine particles swell, and the viscosity of the phosphor dispersion liquid is more likely to increase.
  • the content of water in the dispersion solvent is preferably 5% by weight or more based on the total amount of the solvent. If the proportion of water is less than 5% by weight, the thickening effect may not be sufficiently obtained; if the proportion of water exceeds 60% by weight, the viscosity decreases due to excessive mixing of water rather than the thickening effect. It becomes easy. Therefore, the ratio of water is preferably 5% by weight to 60% by weight and more preferably 7% by weight to 55% by weight with respect to the total amount of solvent.
  • the viscosity of the phosphor dispersion is usually 10 to 1000 cp, preferably 80 to 1000 cp, and more preferably 200 to 450 cp.
  • the viscosity is low, the phosphor particles easily settle in the phosphor dispersion liquid, and the time until the supernatant layer is generated is shortened.
  • the viscosity is too high, it is difficult to apply the phosphor dispersion, particularly by spraying.
  • the phosphor dispersion liquid of the present invention is characterized in that phosphor particles that are dispersoids are difficult to settle. Specifically, when the phosphor dispersion liquid (5 ml) of the present invention was filled in a glass bottle having an inner diameter of 15 mm and allowed to stand for 4 hours, no supernatant layer was generated. Generation
  • production of a supernatant layer can be confirmed visually and generation
  • the phosphor dispersion liquid of the present invention is obtained by adding phosphor particles, layered clay mineral fine particles and oxide fine particles and, if necessary, other additives to a dispersion solvent to obtain a mixed solution; It can be produced by stirring.
  • each component is not particularly limited, but when water is used as a part of the dispersion solvent, 1) Preliminarily mix the layered clay mineral fine particles (one that has been lipophilicly surface-treated) with a dispersion solvent other than water. Then, phosphor particles, oxide fine particles, other additives, and water are added and mixed, and stirred. 2) Preliminary mixing of layered clay mineral fine particles (lipophilic surface-treated) and water And the aspect which stirs phosphor particle
  • the stirring of the mixed liquid can be performed using, for example, a stirring mill, a blade kneading stirring device, a thin film swirl type dispersing machine, or the like. By adjusting the stirring conditions, it is possible to suppress the precipitation of the phosphor particles in the phosphor dispersion.
  • the phosphor dispersion liquid of the present invention can be used to form a phosphor layer in an LED device (described later).
  • the phosphor dispersion liquid of the present invention is preferably combined with a binder solution and applied to an LED chip to form a phosphor layer.
  • the binder to be combined may be an organic resin or a transparent ceramic.
  • the LED device includes a package, an LED chip, and a phosphor layer that covers a light emitting surface of the LED chip.
  • FIG. 1 is a cross-sectional view illustrating an example of the LED device 100.
  • the LED device includes a package 1 having a recess 11, a metal part (metal wiring) 2, an LED chip 3 disposed in the recess 11 of the package 1, and a protruding electrode 4 that connects the metal part 2 and the LED chip 3.
  • the aspect which connects the metal part 2 and LED chip 3 via the protruding electrode 4 is called flip chip type.
  • Package 1 is, for example, liquid crystal polymer or ceramic, but the material is not particularly limited as long as it has insulation and heat resistance.
  • the LED chip 3 is, for example, a blue LED chip.
  • blue LED chip configurations include an n-GaN compound semiconductor layer (cladding layer), an InGaN compound semiconductor layer (light emitting layer), and a p-GaN compound semiconductor layer (cladding layer) stacked on a sapphire substrate. ) And a transparent electrode layer.
  • the LED chip 3 has a surface of, for example, 200 to 300 ⁇ m ⁇ 200 to 300 ⁇ m, and the height of the LED chip 3 is, for example, several tens of ⁇ m.
  • one LED chip 3 is disposed in the recess 11 of the package 1; however, a plurality of LED chips 3 may be disposed in the recess 11 of the package 1.
  • the LED device 100 has a phosphor layer 6 that covers the light emitting surface of the LED chip 3.
  • the phosphor layer 6 is a layer containing phosphor particles.
  • the phosphor layer 6 only needs to cover the light emitting surface of the LED chip 3 (typically, the upper surface of the LED chip), and may cover the side surface of the LED chip 3 as shown in FIG. Good.
  • the thickness of the phosphor layer 6 is not particularly limited, but is preferably 15 ⁇ m to 300 ⁇ m.
  • the phosphor layer 6 is a layer that receives light (excitation light) emitted from the LED chip 3 and emits fluorescence. By mixing excitation light and fluorescence, light of a desired color is emitted from the LED device 100. For example, if the light from the LED chip 3 is blue and the fluorescence from the phosphor layer 6 is yellow, the LED device 100 is a white LED device.
  • the phosphor layer 6 is required to have phosphor particles uniformly present. This is to make the light emitted from the LED device 100 have a desired color.
  • the phosphor dispersion liquid of the present invention can be used to form the phosphor layer 6.
  • the phosphor layer 6 contains phosphor particles, layered clay mineral fine particles and oxide fine particles, a binder, and other optional components.
  • the content of the phosphor particles in the phosphor layer 6 is preferably 50 to 95% by weight.
  • the binder may be a transparent organic resin such as a silicone resin, or may be a transparent ceramic such as glass; however, from the viewpoint of improving the heat resistance of the phosphor layer 6, the binder is a transparent ceramic. It is preferable.
  • the content of the binder (transparent ceramic) in the phosphor layer 6 is preferably 2% by weight or more and 50% by weight or less, and more preferably 2.5% by weight or more and 30% by weight or less.
  • the content of the binder (transparent ceramic) in the phosphor layer 6 is less than 2% by weight, the ceramic as the binder is too little, and thus the strength of the phosphor layer 6 after heating and firing is lowered.
  • the content of the binder (transparent ceramic) exceeds 50% by weight, the content of layered clay mineral fine particles and inorganic fine particles is relatively lowered.
  • the strength of the phosphor layer 6 is lowered.
  • the content of the layered clay mineral fine particles in the phosphor layer 6 is relatively lowered, the content of the layered clay mineral fine particles in the phosphor dispersion liquid is likely to be lowered, and the viscosity of the phosphor dispersion liquid is also liable to be lowered.
  • the content of the layered silicate mineral in the phosphor layer 6 is preferably 0.5% by weight to 20% by weight, and more preferably 0.5% by weight to 10% by weight.
  • the content of the layered silicate mineral in the phosphor layer 6 is less than 0.5% by weight, the effect of increasing the viscosity of the phosphor dispersion cannot be obtained sufficiently.
  • the content of the layered silicate mineral exceeds 20% by weight, the strength of the ceramic layer is lowered.
  • the content of the oxide fine particles in the phosphor layer 6 is preferably 0.5% by weight to 50% by weight, and more preferably 1% by weight to 40% by weight. When the content of the oxide fine particles in the phosphor layer 6 is less than 0.5% by weight or more than 50% by weight, the strength of the phosphor layer 6 is not sufficiently increased.
  • the LED device has a step of preparing an LED chip mounting package in which the LED chip is mounted on the package, and a phosphor layer is formed by applying “phosphor dispersion liquid” and “binder solution” to the light emitting surface of the LED chip. And a process including the steps of:
  • the LED chip mounting package 90 includes a package 1 and an LED chip 3 arranged on the package 1 (see FIG. 2).
  • the phosphor dispersion liquid and the binder solution are applied to the light emitting surface of the LED chip 3 of the LED chip mounting package 90, but the order of applying the phosphor dispersion liquid and the binder solution is not limited, and may be applied simultaneously.
  • the application of the phosphor dispersion liquid and the application of the binder solution may be repeated a plurality of times.
  • the phosphor dispersion liquid described above can be used as the phosphor dispersion liquid applied to the LED chip.
  • Binder solution contains a binder or a precursor thereof.
  • the binder is preferably a silicone resin or a transparent ceramic.
  • the binder is a silicone resin, it is preferable to add a silicone resin to the binder solution.
  • the binder is a transparent ceramic, it is preferable to mix an organometallic compound that is a precursor of the transparent ceramic into the binder solution.
  • the organometallic compound contained in the binder solution becomes a transparent ceramic (preferably a glass ceramic) through a sol-gel reaction.
  • the generated ceramic combines the phosphor, the layered silicate mineral, and the inorganic fine particles to form a phosphor layer that seals the LED chip.
  • organometallic compounds include metal alkoxides, metal acetylacetonates, metal carboxylates, etc., but metal alkoxides that are easily gelled by hydrolysis and polymerization reactions are preferred.
  • metal alkoxides that are easily gelled by hydrolysis and polymerization reactions are preferred.
  • There is no limitation on the type of metal as long as a translucent glass ceramic can be formed. From the viewpoint of the stability of the formed glass ceramic and the ease of production, it is preferable to contain silicon.
  • a plurality of types of organometallic compounds may be combined.
  • the metal alkoxide may be a single molecule such as tetraethoxysilane, or may be a polysiloxane in which an organic siloxane compound is linked in a chain or in a cyclic manner; according to polysiloxane, the viscosity of the binder solution can be increased.
  • organometallic compounds include polysilazanes.
  • Polysilazane can be represented by the general formula: (R 1 R 2 SiNR 3 ) n .
  • R 1 , R 2 and R 3 each independently represent a hydrogen atom or an alkyl group, an aryl group, a vinyl group or a cycloalkyl group, but at least one of R 1 , R 2 and R 3 is A hydrogen atom, preferably all hydrogen atoms, and n represents an integer of 1 to 60.
  • the molecular shape of polysilazane may be any shape, for example, linear or cyclic.
  • the binder solution may contain a reaction accelerator together with an organometallic compound (particularly polysilazane).
  • the reaction accelerator may be an acid or a base.
  • Specific examples of reaction accelerators include bases such as triethylamine, diethylamine, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, hydrochloric acid, oxalic acid, fumaric acid, sulfonic acid, Examples include, but are not limited to, acetic acid, metal carboxylates including nickel, iron, palladium, iridium, platinum, titanium, and aluminum.
  • a particularly preferred reaction accelerator is a metal carboxylate, and the addition amount is preferably 0.01 to 5 mol% based on polysilazane.
  • the binder solution may contain a solvent.
  • the solvent include aliphatic hydrocarbons, aromatic hydrocarbons, halogen hydrocarbons, ethers, esters and the like.
  • Preferred solvents are methyl ethyl ketone, tetrahydrofuran, benzene, toluene, xylene, dimethyl fluoride, chloroform, carbon tetrachloride, ethyl ether, isopropyl ether, dibutyl ether, ethyl butyl ether and the like.
  • the concentration of polysilazane in the binder solution is preferably 5 to 50 wt% (wt%).
  • the binder solution When using a polysilazane solution as a binder solution, it is preferable to apply the binder solution and heat the coating film or to irradiate the coating film with light so that the coating film becomes a ceramic film.
  • the temperature at which the coating film is heated is preferably 150 ° C. to 500 ° C., more preferably 150 ° C. to 350 ° C., from the viewpoint of suppressing deterioration of the liquid crystal polymer used as the LED chip package.
  • UVU radiation eg, excimer light
  • heat curing is further performed to further improve the moisture penetration preventing effect. it can.
  • the phosphor dispersion liquid and the binder solution are applied to the LED chip by a coating device to form a phosphor layer.
  • a coating device examples include a spray coating device and a dispenser coating device. If these coating apparatuses are used, a some LED apparatus can be manufactured continuously.
  • the coating apparatus includes a coating liquid tank that stores a coating liquid (phosphor dispersion liquid or binder solution), a head having a nozzle for discharging the coating liquid, and a connecting pipe that communicates the coating liquid tank with the nozzle. It is preferable.
  • FIG. 2 shows an outline of a spray device for applying the coating liquid.
  • the coating liquid 220 in the coating liquid tank 210 in the coating apparatus 200 shown in FIG. 2 is supplied with pressure to the head 240 through the connecting pipe 230.
  • the coating liquid 220 supplied to the head 240 is discharged from the nozzle 250 and applied to the application target (LED chip).
  • the coating liquid is discharged from the nozzle 250 by wind pressure.
  • An opening that can be freely opened and closed is provided at the tip of the nozzle 250, and the opening may be opened and closed to control on / off of the discharge operation.
  • a stirring device 260 is provided inside the coating liquid tank 210 of the coating device 200.
  • the stirring device 260 is, for example, a blade-like movable piece disposed inside, and may be configured to be driven via magnetic force or electric force, and the configuration is not particularly limited.
  • the agitator 260 agitates the coating solution in the coating solution tank 210 to uniformly disperse the solute or dispersoid in the coating solution.
  • a discharge liquid 270 made of a uniform coating liquid can be discharged from the nozzle 250.
  • the phosphor dispersion liquid (coating liquid 220) stored for a long time in the storage container 300 that stores the coating liquid to be put into the coating liquid tank 210, the phosphor has settled or the storage container 300 May stick to the wall.
  • a phosphor dispersion liquid is put into the coating liquid tank 210, it takes a long time to uniformly disperse the phosphor even if the stirring device 260 of the coating liquid tank 210 stirs it. Therefore, the coating efficiency is reduced.
  • the concentration of the phosphor in the phosphor dispersion to be applied becomes uneven.
  • the concentration of the phosphor in the phosphor dispersion to be applied becomes uneven.
  • the phosphor may settle and adhere to the wall surface of the connecting tube 230. Even in this case, unevenness occurs in the concentration of the phosphor in the phosphor dispersion to be applied.
  • the phosphor dispersion liquid of the present invention hardly causes sedimentation of phosphor particles, and a uniform dispersion state is easily maintained. Therefore, even when stored in the storage container 300 for a long time, the phosphor particles of the phosphor dispersion liquid of the present invention are uniformly dispersed. Therefore, the phosphor dispersion liquid of the present invention may be supplied to the head 240 and discharged from the nozzle 250 immediately after being charged into the coating liquid tank 210 of the coating apparatus, thereby improving the coating efficiency. Further, the concentration of the phosphor in the phosphor dispersion liquid becomes constant, and the phosphor concentration in the phosphor layer becomes uniform.
  • the phosphor layer 6 is formed, and the LED device 100 shown in FIG. 1 is obtained.
  • the LED device 100 is further provided with other optical components (such as a lens) and used as various optical members.
  • the desired fired product was obtained by pulverizing, washing, separating and drying the obtained fired product.
  • the obtained phosphor was pulverized to obtain phosphor particles having a particle size of about 10 ⁇ m.
  • the composition of the obtained phosphor particles was examined to confirm that it was the desired phosphor. When the emission wavelength with respect to the excitation light having a wavelength of 465 nm was examined, the peak wavelength was approximately 570 nm.
  • Example 1 90 g of the phosphor particles, 2.5 g of layered clay mineral fine particles (Lucentite SWN manufactured by Corp Chemical Co., Ltd.), 4 g of oxide fine particles (RX300 manufactured by Nippon Aerosil Co., Ltd., particle size 7 nm), 100 g of propylene glycol and 90 g of isopropyl alcohol In the mixed solvent.
  • the phosphor dispersion liquid was prepared by agitating it. Stirring was performed using a TK auto homomixer (Primix).
  • Example 2 90 g of the phosphor particles, 2.5 g of layered clay mineral fine particles (Micromica MK-100 manufactured by Corp Chemical Co., Ltd.), 4 g of oxide fine particles (RX300 manufactured by Nippon Aerosil Co., Ltd., particle size 7 nm), 100 g of propylene glycol and isopropyl alcohol It added in the mixed solvent with 70g.
  • the phosphor dispersion liquid was prepared by agitating it. Stirring was performed in the same manner as in Comparative Example 1.
  • Example 3 100 g of the phosphor particles, 2.5 g of layered clay mineral fine particles (Micromica MK-100 manufactured by Corp Chemical Co., Ltd.), 4 g of oxide fine particles (Silicia 470 manufactured by Fuji Silysia Chemical Co., Ltd.) and 100 g of 1,3-butanediol It added in the mixed solvent with 70 g of isopropyl alcohol.
  • the phosphor dispersion liquid was prepared by agitating it. Stirring was performed using an apex mill (manufactured by Kotobuki Industries Co., Ltd.).
  • Example 4 100 g of the phosphor particles, 5 g of layered clay mineral fine particles (Lucentite SWN manufactured by Corp Chemical Co., Ltd.), 6.5 g of oxide fine particles (Silicia 470 manufactured by Fuji Silysia Chemical Co., Ltd.), 100 g of 1,3-butanediol and isopropyl alcohol It added in the mixed solvent with 40g.
  • the phosphor dispersion liquid was prepared by agitating it. Stirring was performed in the same manner as in Example 3.
  • Example 5 100 g of the phosphor particles, 2.5 g of layered clay mineral fine particles (Lucentite SWN manufactured by Corp Chemical Co., Ltd.), and 6.5 g of oxide fine particles (RX300 manufactured by Nippon Aerosil Co., Ltd., particle size: 7 nm) were added to 1,3-butanediol.
  • a phosphor dispersion liquid was prepared by adding 100 g and 80 g of isopropyl alcohol in a mixed solvent and stirring it. Stirring was performed in the same manner as in Example 1.
  • Example 6 100 g of the phosphor particles, 2.5 g of layered clay mineral fine particles (Lucentite SWN manufactured by Corp Chemical Co., Ltd.), and 6.5 g of oxide fine particles (RX300 manufactured by Nippon Aerosil Co., Ltd., particle size: 7 nm) were added to 1,3-butanediol. It added in the mixed solvent of 100g and isopropyl alcohol 70g. The phosphor dispersion liquid was prepared by agitating it. Stirring was performed in the same manner as in Comparative Example 1.
  • Example 7 100 g of the phosphor particles, 5 g of layered clay mineral fine particles (Micromica MK-100 manufactured by Coop Chemical Co., Ltd.), and 6.5 g of oxide fine particles (RX300 manufactured by Nippon Aerosil Co., Ltd., particle size 7 nm) were added to 1,3-butanediol. It added in the mixed solvent of 100g and 60g of isopropyl alcohol. The phosphor dispersion liquid was prepared by stirring this. Stirring was performed in the same manner as in Example 1.
  • Example 8 100 g of the phosphor particles, 5 g of layered clay mineral fine particles (Lucentite SWN manufactured by Corp Chemical Co., Ltd.), 6.5 g of oxide fine particles (Silicia 470 manufactured by Fuji Silysia Chemical Co., Ltd.), 100 g of 1,3-butanediol and isopropyl alcohol It added in the mixed solvent with 20g.
  • the phosphor dispersion liquid was prepared by stirring this. Stirring was performed in the same manner as in Example 3.
  • Example 9 100 g of the fluorescent particle body, 5 g of layered clay mineral fine particles (Lucentite SWN manufactured by Corp Chemical Co., Ltd.), 6.5 g of oxide fine particles (Silicia 470 manufactured by Fuji Silysia Chemical Co., Ltd.), 100 g of 1,3-butanediol and isopropyl alcohol It added in the mixed solvent with 60g.
  • the phosphor dispersion liquid was prepared by stirring this. Stirring was performed in the same manner as in Comparative Example 1.
  • the phosphor dispersion liquid was supplied to a coating liquid tank equipped with a stirring device in the coating apparatus and stirred, and applied every 5 minutes. Chromaticity was measured by selecting five coated samples. As a measuring device, a spectral radiance meter CS-1000A manufactured by Konica Minolta Sensing Co., Ltd. was used. Thereafter, the standard deviation of the measured values (chromaticity) of the five samples was calculated, and the uniformity of chromaticity was evaluated. The phosphor dispersion liquid when the standard deviation was 0.02 or less was used as a sufficiently dispersed phosphor dispersion liquid.
  • the phosphor dispersion liquid of the present invention is suitably used as a raw material liquid for forming a phosphor layer of an LED device. And the dispersion

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

 蛍光体分散液における蛍光体の沈降を抑制することで、LED装置に均一な蛍光体層を成膜することを目的とする。 本発明では、蛍光体粒子、層状粘土鉱物微粒子および酸化物微粒子を溶媒に分散した蛍光体分散液であって、内径15mmのガラス瓶に5ml充填した前記蛍光体分散液を静置したときに、蛍光体粒子の沈降によって上澄み層が発生するまでの時間が4時間以上である蛍光体分散液を提供する。蛍光体分散液の粘度は、好ましくは80cp~1000cpとする。

Description

蛍光体分散液、およびLED装置の製造方法
 本発明は、蛍光体粒子が分散した蛍光体分散液、およびそれを用いたLED装置の製造方法に関する。
 LEDチップを用いた発光装置(LED装置)は、発光装置の高輝度化および省エネルギーへの要望の高まりに伴い、様々な用途に適用を拡大している。特に、青色LEDチップと、青色光を受けることで黄色光を出射する蛍光体とを組み合わせて、青色光と黄色光とを混色させて白色光を出射する白色LED装置が知られている。このような白色LED装置は、白色光が必要とされる電灯、液晶表示装置のバックライトなどの照明として用いられるようになってきている。
 また、LEDチップと蛍光体とを組み合わせた白色LED装置として、さらに、紫外光を出射するLEDチップと、紫外光により青、緑、赤の光を出射する蛍光体とを組み合わせて白色光とする白色LED装置、青色光を出射するLEDチップと、赤、緑の光を出射する蛍光体とを組み合わせて白色光とする白色LED装置なども検討されている。
 このようなLEDチップと蛍光体とを組み合わせた白色LED装置は、一つのLEDチップで白色光が得られることから、色の異なる複数のLEDチップを組み合わせて白色光とする白色LED装置と比べて、装置が簡素化できる。また、消費電力も抑制可能であることから、好ましく用いられている。
 ところが、LEDチップと蛍光体とを組み合わせた白色LED装置からの光は、LEDチップからの出射光と蛍光体からの蛍光とのバランスが崩れると着色する。また、白色LED装置からの光が着色すると、白色LED装置の観察角度によって色(色度)が異なる「色むら」という問題も発生する。
 白色LED装置からの光が着色したり、色むらが生じたりする原因の一つは、LED装置における蛍光体が不均一に存在しているためである。従来は、一般的に、蛍光体粒子が分散している硬化性樹脂組成物を、LEDチップに塗布して硬化させることで、LEDチップの周辺に蛍光体層を設けて、白色LED装置を得ていた。ところが、一般的に、蛍光体は非常に比重の高い無機金属化合物である。そのため、硬化性樹脂組成物中の蛍光体が沈殿して、蛍光体粒子がLEDチップ上に不均一に堆積しやすい。その結果、白色LED装置からの光に着色が生じたり、色むらが生じたりする。
 着色や色むらの発生を抑制するために、以下のような技術が検討されている。
 白色LED装置の色むらの低減のために、液状の封止材料に、蛍光体粒子と蛍光体粒子の沈降防止材とを含有させる。それにより、比重の重い蛍光体粒子の沈降を防止する技術が開示されている(特許文献1を参照)。さらに、LEDチップ周辺に、蛍光体粒子含有封止層を設けた後、発光装置を回転させながら封止層を硬化させることで、発光装置内における色度差、即ち色むらを低減させる(特許文献1を参照)。
 LEDチップの発光面上に蛍光体粒子を堆積させて、白色LED装置を得ることが開示されている(特許文献2を参照)。特に、LEDチップの角部や側面において蛍光体粒子が塗布できず、波長変換効率が低下したり、各方位における色度のずれや色調ムラが発生するという課題に対し、蛍光体を含有した塗布液を霧状且つ螺旋状に回転させながら吹き付けることにより、これらの課題を改善することを記載している(特許文献2を参照)。
特開2004-153109号公報 特開2003-115614号公報
 上述の技術によれば、1つの白色LED装置内における着色および色むら、すなわち、1つの白色LED装置からの光の角度による色度のズレは、ある程度改善できる。ところが近年、複数の白色LED装置を含む白色照明装置が開発され、高輝度が求められる自動車の照明装置や、色度が特に重要視される店舗用の照明装置などに用いられるようになってきた。そのような白色照明装置において、白色LED装置それぞれにおける色度が、厳密に一致することが重要視されるようになってきている。
 特に、複数の白色LED装置を用いて高輝度化した白色照明装置からの照明は、複数の白色LED装置からの光の色度の違いがあると、遠方において色むらがある照明と認識される。そのため、従来よりも白色LED装置間の色度バラツキを抑制することが重要となる。
 LEDチップ上に蛍光体粒子を含む液状物を塗布するために、ディスペンサーやスプレーなどの塗布装置を用いる。これらの塗布装置を用いれば、複数の白色LED装置を連続的に製造することができる。塗布装置で塗布を行うときに、塗布液タンクで貯留されている蛍光体粒子を含む液状物は、塗布液タンクにある撹拌装置で撹拌され、この撹拌により液状物中の蛍光体が均一に分散する。その後、塗布液タンク内で撹拌されている蛍光体を含む液状物を、塗布装置のヘッドに供給し、ノズルを通ってLEDチップ上に塗布される。このようにして、LED装置の発光色のバラツキの低減を図っている。
 ところが、蛍光体を含む液状物を保存するのに用いられている保管容器から、塗布液タンクに液状物を投入し、液状物を撹拌した場合に、蛍光体が十分な分散状態になるまでに時間がかかるという問題があった。また通常、保管容器は撹拌装置を有していないので、保管容器内で蛍光体粒子の一部が沈殿して保管容器の内壁に固着することもあった。その固着量も、保管容器内での保存時間によって変化するため、保管容器での保存時間によって塗布液タンクに投入される液状物の蛍光体の量が微妙に変化してしまっていた。その結果、得られるLED装置の発光の色度のバラツキを十分に低減することができなかった。
 そこで本発明は、蛍光体を分散質とする蛍光体分散液であって、静置されても沈殿が生じにくく、保管容器の内壁に固着しにくい蛍光体分散液を提供する。
 本発明の第1は、以下に示す蛍光体分散液に関する。
 [1]分散溶媒と、前記分散溶媒中に分散された蛍光体粒子、層状粘土鉱物微粒子および酸化物微粒子と、を含む蛍光体分散液であって、内径15mmのガラス瓶に5ml充填した前記蛍光体分散液を静置したときに、蛍光体粒子の沈降によって上澄み層が発生するまでの時間が4時間以上である、蛍光体分散液。
 [2]前記蛍光体分散液の粘度は80cp~1000cpである、[1]に記載の蛍光体分散液。
 本発明の第2は、以下に示すLED発光装置の製造方法に関する。
 [3]パッケージと、前記パッケージに配置された発光面を有するLEDチップと、を含むLEDチップ実装パッケージを用意する工程と、前記LEDチップの発光面に、[1]に記載の蛍光体分散液を塗布して蛍光体層を成膜する工程とを含む、LED装置の製造方法。
 [4]前記蛍光体分散液はスプレー塗布装置によって塗布され、前記スプレー塗布装置は、蛍光体分散液を貯留する塗布液タンクと、蛍光体分散液を吐出するためのノズルを有するヘッドと、塗布液タンクとヘッドとを連通させる連結管と、を備える、[3]に記載のLED装置の製造方法。
 [5]前記LEDチップの発光面に、有機金属化合物を含む溶液を塗布する工程をさらに含む、[3]に記載のLED装置の製造方法。
 [6]前記LED装置は白色LED装置である、[3]に記載のLED装置の製造方法。 
 本発明の蛍光体分散液は、蛍光体の沈降によって発生する上澄み層の発生時間が4時間以上であり、蛍光体が沈降しにくい。そのため、蛍光体分散液を塗布装置で塗布する場合に、塗布開始前に蛍光体分散液を分散するために必要な時間が短縮される。そのため、蛍光体分散液の塗布の作業効率が向上する。
 また、蛍光体分散液を保管容器に長時間保管しても、保管容器の内壁への固着が発生しにくく、長時間保存が可能となる。
LED装置の断面を概略的に示す図である。 塗布装置の概要を示す図である。
1.蛍光体分散液について
 蛍光体分散液は、分散溶媒と、分散溶媒中に分散した蛍光体粒子、層状粘土鉱物微粒子および酸化物微粒子とを含む。蛍光体分散液には、さらに任意の添加剤が含まれていてもよい。
[蛍光体粒子]
 蛍光体粒子は、LEDチップの出射光の波長(励起波長)により励起されて、励起波長と異なる波長の蛍光を発する。LEDチップから青色光が出射される場合には、蛍光体粒子が黄色の蛍光を発することによって、白色LED装置が得られる。黄色の蛍光を発する蛍光体の例には、YAG(イットリウム・アルミニウム・ガーネット)蛍光体が挙げられる。YAG蛍光体は、青色LEDチップから出射される青色光(波長420nm~485nm)からなる励起光を受けて、黄色光(波長550nm~650nm)の蛍光を発することができる。
 蛍光体は、例えば、1)所定の組成を有する混合原料に、フラックスとしてフッ化アンモニウム等のフッ化物を適量混合して加圧し、成形体を得て、2)得られた成形体を坩堝に詰め、空気中1350~1450℃の温度範囲で2~5時間焼成し焼結体を得ることで製造されうる。
 所定の組成を有する混合原料は、Y、Gd、Ce、Sm、Al、La、Gaの酸化物、または高温で容易に酸化物となる化合物を、化学量論比で十分に混合して得ることができる。あるいは、所定の組成を有する混合原料は、Y、Gd、Ce、Smの希土類元素を化学量論比で酸に溶解した溶液を、シュウ酸で共沈したものを焼成して得られる共沈酸化物と、酸化アルミニウム、酸化ガリウムとを混合して得ることができる。
 蛍光体の種類はYAG蛍光体に限定されるものではなく、例えばCeを含まない非ガーネット系蛍光体などの他の蛍光体を使用することもできる。
 蛍光体の平均粒径は1μm以上50μm以下であることが好ましい。蛍光体の粒径が大きいほど発光効率(波長変換効率)は高くなる。一方で、蛍光体の粒径が大きすぎると、蛍光体層において蛍光体とバインダとの界面に生じる隙間が大きくなり、蛍光体層の膜強度が低下する。蛍光体の平均粒径は、例えばコールターカウンター法によって測定することができる。
[層状粘土鉱物微粒子]
 層状粘土鉱物微粒子の主成分は層状ケイ酸塩鉱物であり、雲母構造、カオリナイト構造、スメクタイト構造などの構造を有する膨潤性粘土鉱物が好ましく、膨潤性に富むスメクタイト構造を有する膨潤性粘土鉱物がより好ましい。層状粘土鉱物微粒子は、蛍光体分散液中においてカードハウス構造として存在し、少量で蛍光体分散液の粘度を大幅に高めることができる。また、層状粘土鉱物微粒子は平板状を呈するため、蛍光体層(図1参照)の膜強度を向上させることもできる。
 蛍光体分散液における層状粘土鉱物微粒子の含有量は0.1~5重量%であることが好ましい。
 蛍光体分散液での有機溶媒との相溶性を考慮して、層状粘土鉱物微粒子の表面は、アンモニウム塩等で修飾(表面処理)されていてもよい。
[酸化物微粒子]
 酸化物微粒子とは、酸化ケイ素、酸化チタン、酸化亜鉛などの微粒子でありうる。特に、蛍光体層におけるバインダを、ポリシロキサンなどの含ケイ素有機化合物の硬化物であるセラミックとする場合には、形成されるセラミックに対する安定性の観点から、酸化物微粒子を酸化ケイ素とすることが好ましい。
 蛍光体分散液における酸化物微粒子の含有量は、1~40重量%であることが好ましい。
 酸化物微粒子は、バインダと、蛍光体および層状粘土鉱物微粒子との界面に生じる隙間を埋める充填剤として機能したり、蛍光体分散液の粘性を増加させる増粘剤として機能したり、蛍光体層の膜強度を向上させる膜強化剤などとして機能しうる。
 酸化物微粒子の平均粒径は、上述したそれぞれの効果を考慮して0.001μm以上50μm以下であることが好ましい。酸化物微粒子の平均粒径は、例えばコールターカウンター法によって測定することができる。
 酸化物微粒子の表面は、シランカップリング剤やチタンカップリング剤で処理されていてもよい。表面処理によって、酸化物微粒子の、有機金属化合物や有機溶媒との相溶性が高まる。
[分散溶媒]
 蛍光体分散液における分散溶媒には、アルコール類が含まれることが好ましい。アルコール類は、メタノール、エタノール、プロパノール、ブタノールなどの1価アルコールでもよいし、2価以上の多価アルコールであってもよい。2種以上のアルコールを組み合わせてもよい。2価以上のアルコールを分散溶媒として用いれば、蛍光体分散液の粘度を高めやすく、分散質である蛍光体粒子の沈降が防止しやすくなる。
 分散溶媒の沸点は、250℃以下であることが好ましい。分散溶液から、分散溶媒を乾燥しやすくするためである。沸点が高すぎると分散溶媒の蒸発が遅いので、分散溶液を塗布して塗膜としたときに、塗膜中で蛍光体が流れてしまう。
 2価以上の多価アルコールは、溶媒として用いることができる限り、いずれの多価アルコールでも使用できる。使用できる多価アルコールは、例えばエチレングリコール、プロピレングリコール、ジエチレングリコール、グリセリン、1,3-ブタンジオール、1,4-ブタンジオールなどが挙げられ、好ましくは、エチレングリコール、プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオールなどである。
 蛍光体分散液における分散溶媒の一部は、水であってもよい。蛍光体分散液に水が含まれていると、層状粘土鉱物微粒子の層間に水が入り込んで層状粘土鉱物微粒子が膨潤し、蛍光体分散液の粘度がより高まりやすくなる。分散溶媒における水の含有量は、総溶媒量に対して5重量%以上とすることが好ましい。水の割合が5重量%未満になると、増粘効果を十分に得ることができない場合があり;水の割合が60重量%を超えると、増粘効果よりも水の混合過多により粘度が低下しやすくなる。そのため、水の割合は総溶媒量に対して5重量%以上60重量%以下が好ましく、7重量%以上55重量%以下がより好ましい。
 蛍光体分散液の粘度は、通常は10~1000cpであり、80~1000cpであることが好ましく、200~450cpであることがさらに好ましい。粘度が低いと、蛍光体分散液において蛍光体粒子が沈降しやすくなり、上澄み層が発生するまでの時間が短くなる。一方、粘度が高すぎると、蛍光体分散液の塗布、特にスプレーによる塗布が困難になる。
 本発明の蛍光体分散液は、分散質である蛍光体粒子が沈降しにくいことを特徴とする。具体的には、本発明の蛍光体分散液(5ml)を、内径15mmのガラス瓶に充填して4時間静置したときに、上澄み層が発生していない。上澄み層の発生は視認にて確認でき、1mm以上の上澄み層の発生を、上澄み層の発生と定義すればよい。
 [蛍光体分散液の製造方法]
 本発明の蛍光体分散液は、分散溶媒に、蛍光体粒子、層状粘土鉱物微粒子および酸化物微粒子と、さらに必要に応じて他の添加剤とを添加して混合液を得て;混合液を撹拌することで製造されうる。
 各成分の添加の順序は特に制限されないが、分散溶媒の一部に水を用いる場合は、1)水以外の分散溶媒に層状粘土鉱物微粒子(親油性に表面処理されたもの)を予備混合して、その後に蛍光体粒子、酸化物微粒子、他の添加剤、および水を添加混合して撹拌する態様、2)層状粘土鉱物微粒子(親油性に表面処理されたもの)と水とを予備混合して、その後に蛍光体粒子、酸化物微粒子、他の添加剤を、水以外の分散溶媒とともに撹拌する態様が例示される。このようにして、蛍光体分散液中に層状粘土鉱物微粒子を均一に分散させて、粘度をより高めることができる。
 混合液の撹拌は、例えば、撹拌ミル、ブレード混練撹拌装置、薄膜旋回型分散機などを用いて行うことができる。撹拌条件を調整することで、蛍光体分散液における蛍光体粒子の沈降を抑制することができる。
 [撹拌装置]
 混合液の撹拌に用いられる撹拌装置としては公知のものを全て使用できる。例えば、ウルトラタラックス(IKAジャパン社製)、TKオートホモミクサー(プライミクス社製)、TKパイプラインホモミクサー(プライミクス社製)、TKフィルミックス(プライミクス社製)、クレアミックス(エム・テクニック社製)、クレアSS5(エム・テクニック社製)、キャビトロン(ユーロテック社製)、ファインフローミル(太平洋機工社製)のようなメディアレス撹拌機、ビスコミル(アイメックス製)、アペックスミル(寿工業社製)、スターミル(アシザワ、ファインテック社製)、DCPスーパーフロー(日本アイリッヒ社製)、エムピーミル(井上製作所社製)、スパイクミル(井上製作所社製)、マイティーミル(井上製作所社製)、SCミル(三井鉱山社製)などのメディア攪拌機等やアルティマイザー(スギノマシン社製)、ナノマイザー(吉田機械社製)、NANO3000(美粒社製)などの高圧衝撃式分散装置が挙げられる。
 [蛍光体分散液の用途]
 本発明の蛍光体分散液は、LED装置における蛍光体層を成膜するために用いられうる(後述)。特に、本発明の蛍光体分散液は、バインダ溶液と組み合わされて、LEDチップに塗布されて蛍光体層とされることが好ましい。組み合わされるバインダは、有機樹脂であってもよいし、透明セラミックであってもよい。
2.LED装置について
 [LED装置]
 LED装置は、パッケージと、LEDチップと、LEDチップの発光面を覆う蛍光体層とを有する。図1は、LED装置100の例を示す断面図である。LED装置は、凹部11を有するパッケージ1と、メタル部(メタル配線)2と、パッケージ1の凹部11に配置されたLEDチップ3と、メタル部2とLEDチップ3とを接続する突起電極4とを有する。このように、突起電極4を介してメタル部2とLEDチップ3とを接続する態様を、フリップチップ型という。
 パッケージ1は、例えば液晶ポリマーやセラミックであるが、絶縁性と耐熱性を有していれば、その材質は特に限定されない。
 LEDチップ3は、例えば青色LEDチップである。青色LEDチップの構成の例には、サファイア基板に積層されたn-GaN系化合物半導体層(クラッド層)と、InGaN系化合物半導体層(発光層)と、p-GaN系化合物半導体層(クラッド層)と、透明電極層との積層体である。
 LEDチップ3は、例えば200~300μm×200~300μmの面を有し、LEDチップ3の高さは、例えば数十μmである。
 図1に示されるLED装置100には、パッケージ1の凹部11に、1つのLEDチップ3が配置されているが;パッケージ1の凹部11に、複数のLEDチップ3が配置されていてもよい。
 さらにLED装置100は、LEDチップ3の発光面を覆う蛍光体層6を有する。蛍光体層6とは、蛍光体粒子を含む層である。蛍光体層6は、LEDチップ3の発光面(典型的にはLEDチップの上面)を覆っていればよく、図1に示されているように、LEDチップ3の側面をも覆っていてもよい。蛍光体層6の厚みは特に制限されないが、15μm~300μmであることが好ましい。
 蛍光体層6は、LEDチップ3から出射される光(励起光)を受けて、蛍光を発する層である。励起光と蛍光とが混ざることで、LED装置100から所望の色の光が発光する。例えば、LEDチップ3からの光が青色であり、蛍光体層6からの蛍光が黄色であれば、LED装置100は白色LED装置となる。
 蛍光体層6には、蛍光体粒子が均一に存在していることが求められる。LED装置100からの発光が所望の色になるようにするためである。本発明の蛍光体分散液は、蛍光体層6を成膜するために用いられうる。
 蛍光体層6には、蛍光体粒子、層状粘土鉱物微粒子および酸化物微粒子と、バインダと、他の任意成分とが含まれる。
 蛍光体層6における蛍光体粒子の含有量は、50~95重量%であることが好ましい。
 バインダは、シリコーン樹脂などの透明有機樹脂であってもよいし、ガラスなどの透明セラミックなどであってもよいが;蛍光体層6の耐熱性などを高める点からは、バインダは透明セラミックであることが好ましい。
 蛍光体層6におけるバインダ(透明セラミック)の含有量は、2重量%以上50重量%以下であることが好ましく、2.5重量%以上30重量%以下であることがより好ましい。蛍光体層6におけるバインダ(透明セラミック)の含有量が2重量%未満では、バインダとしてのセラミックが少な過ぎるために、加熱焼成後の蛍光体層6の強度が低下する。一方、バインダ(透明セラミック)の含有量が50重量%を超えると、層状粘土鉱物微粒子や無機微粒子の含有量が相対的に低下する。無機微粒子の含有量が相対的に低下すると、蛍光体層6の強度が低下する。また、蛍光体層6における層状粘土鉱物微粒子の含有量が相対的に低下すると、蛍光体分散液における層状粘土鉱物微粒子の含有量も低下しやすく、蛍光体分散液の粘度も低下しやすい。
 蛍光体層6における層状ケイ酸塩鉱物の含有量は0.5重量%以上20重量%以下とすることが好ましく、0.5重量%以上10重量%以下がより好ましい。蛍光体層6における層状ケイ酸塩鉱物の含有量が0.5重量%未満になると蛍光体分散液の粘性を増加させる効果が十分に得られない。一方、層状ケイ酸塩鉱物の含有量が20重量%を超えるとセラミック層の強度が低下する。
 蛍光体層6における酸化物微粒子の含有量は0.5重量%以上50重量%以下とすることが好ましく、1重量%以上40重量%以下がより好ましい。蛍光体層6における酸化物微粒子の含有量が0.5重量%未満であるか、または50重量%を超えると、蛍光体層6の強度が十分に高まらない。
 [LED装置の製造方法]
 LED装置は、パッケージにLEDチップが実装されたLEDチップ実装パッケージを用意する工程と、LEDチップの発光面に「蛍光体分散液」と「バインダ溶液」とを塗布して蛍光体層を成膜する工程と、を含むプロセスで製造されうる。
 LEDチップ実装パッケージ90は、パッケージ1とそれに配置されたLEDチップ3とを有する(図2参照)。LEDチップ実装パッケージ90のLEDチップ3の発光面に蛍光体分散液とバインダ溶液とを塗布するが、蛍光体分散液とバインダ溶液とを塗布する順序は限定されず、同時に塗布してもよい。蛍光体分散液の塗布とバインダ溶液の塗布とを、複数回ずつ繰り返し行ってもよい。
 LEDチップに塗布する蛍光体分散液として、前述の蛍光体分散液を用いることができる。
 バインダ溶液
 バインダ溶液には、バインダまたはその前駆体が含まれている。前述の通り、バインダはシリコーン樹脂または透明セラミックであることが好ましい。バインダをシリコーン樹脂とする場合には、バインダ溶液にシリコーン樹脂を配合することが好ましい。バインダを透明セラミックとする場合には、バインダ溶液に透明セラミックの前駆体である有機金属化合物を配合することが好ましい。
 バインダ溶液に含まれる有機金属化合物は、ゾル-ゲル反応することによって透明セラミック(好ましくはガラスセラミック)となる。生成するセラミックは、蛍光体、層状ケイ酸塩鉱物および無機微粒子を結合させて、LEDチップを封止する蛍光体層を構成する。
 有機金属化合物の例には、金属アルコキシド、金属アセチルアセトネート、金属カルボキシレートなどが含まれるが、加水分解と重合反応によりゲル化し易い金属アルコキシドが好ましい。透光性のガラスセラミックを形成可能であれば金属の種類に制限はない。形成されるガラスセラミックの安定性や製造の容易性の観点から、ケイ素を含有していることが好ましい。また、複数種の有機金属化合物を組み合わせてもよい。
 金属アルコキシドは、テトラエトキシシランのような単分子でもよいし、有機シロキサン化合物が鎖状または環状に連結したポリシロキサンでもよいが;ポリシロキサンによれば、バインダ溶液の粘性を高めることができる。
 有機金属化合物の他の例には、ポリシラザンが含まれる。ポリシラザンは、一般式:(RSiNRで表されうる。式中、R、RおよびRは、それぞれ独立して水素原子またはアルキル基、アリール基、ビニル基、シクロアルキル基を表すが、R、R、Rのうち少なくとも1つは水素原子であり、好ましくはすべてが水素原子であり、nは1~60の整数を表す。ポリシラザンの分子形状はいかなる形状であってもよく、例えば、直鎖状または環状であってもよい。
 バインダ溶液には、有機金属化合物(特に、ポリシラザン)とともに、反応促進剤が含まれていてもよい。反応促進剤は、酸または塩基などでありうる。反応促進剤の具体例には、トリエチルアミン、ジエチルアミン、N,N-ジエチルエタノールアミン、N,N-ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミンなどの塩基や、塩酸、シュウ酸、フマル酸、スルホン酸、酢酸や、ニッケル、鉄、パラジウム、イリジウム、白金、チタン、アルミニウムを含む金属のカルボン酸塩などが含まれるが、これに限られない。特に好ましい反応促進剤は金属カルボン酸塩であり、添加量はポリシラザンを基準にして0.01~5mol%が好ましい添加量である。
 バインダ溶液には、溶媒が含まれていてもよい。溶媒の例には、脂肪族炭化水素、芳香族炭化水素、ハロゲン炭化水素、エーテル類、エステル類などが含まれる。好ましい溶媒は、メチルエチルケトン、テトラヒドロフラン、ベンゼン、トルエン、キシレン、ジメチルフルオライド、クロロホルム、四塩化炭素、エチルエーテル、イソプロピルエーテル、ジブチルエーテル、エチルブチルエーテルなどである。
 バインダ溶液におけるポリシラザン濃度は高い方が好ましいが、ポリシラザン濃度が上昇すると、バインダ溶液の保存期間が短縮する。そのため、バインダ溶液におけるポリシラザンの濃度は、5~50wt%(重量%)であることが好ましい。
 ポリシラザン溶液をバインダ溶液として用いる場合には、バインダ溶液を塗布し、塗膜を加熱するかまたは塗膜に光を照射することで、塗膜をセラミック膜とすることが好ましい。塗膜を加熱する温度は、LEDチップのパッケージとして用いられる液晶ポリマー等の劣化を抑制する観点からは、150℃~500℃が好ましく、150℃~350℃とすることがより好ましい。特に、170~230nmの範囲の波長成分を含むUVU放射線(例えばエキシマ光)を塗膜に照射して硬化させた後に、さらに加熱硬化を行うことで、水分の浸透防止効果をより向上させることができる。
 蛍光体分散液やバインダ溶液は、塗布装置によってLEDチップに塗布されて蛍光体層を構成する。塗布装置の例には、スプレー塗布装置やディスペンサー塗布装置などが含まれる。これらの塗布装置を用いれば、複数のLED装置を連続して製造することができる。
 塗布装置は、塗布液(蛍光体分散液またはバインダ溶液)を貯留する塗布液タンクと、塗布液を吐出するためのノズルを有するヘッドと、塗布液タンクとノズルとを連通させる連結管とを有することが好ましい。図2には、塗布液を塗布するためのスプレー装置の概要が示される。
 図2に示される塗布装置200における塗布液タンク210内の塗布液220は、圧力をかけられて連結管230を通じてヘッド240に供給される。ヘッド240に供給された塗布液220は、ノズル250から吐出されて、塗布対象物(LEDチップ)に塗布される。スプレー塗布装置の場合には、ノズル250からの塗布液の吐出は風圧によって行われる。ノズル250の先端に開閉自在な開口部を設けて、この開口部を開閉操作して、吐出作業のオン・オフを制御する構成としてもよい。
 塗布装置200の塗布液タンク210の内部には、撹拌装置260が具備されていることが好ましい。撹拌装置260とは、例えば、内部に配設された羽根状の可動片であって、磁力や電気力を介して駆動される構成であればよく、特に、その構成は限定されない。撹拌装置260は、塗布液タンク210内の塗布液を撹拌することによって、塗布液中の溶質または分散質を均一に分散させる。このような塗布装置を用いることで、ノズル250から均一な塗布液からなる吐出液270を吐出することができる。
 しかしながら、塗布液タンク210に投入するための塗布液を保存している保管容器300において長時間貯留された蛍光体分散液(塗布液220)では、蛍光体が沈降していたり、保管容器300の壁面に固着したりしていることがある。そのような蛍光体分散液が塗布液タンク210に投入されると、塗布液タンク210の撹拌装置260がそれを撹拌しても蛍光体を均一に分散させるまでに長時間が必要となる。そのため、塗布効率が低下する。
 さらには、塗布液タンク210に投入される塗布液220の蛍光体の濃度に微妙なバラツキが生じると、塗布される蛍光体分散液における蛍光体の濃度にムラが発生する。また、連結管230に留まっている蛍光体分散液でも同様に、蛍光体が沈降して連結管230の壁面に固着したりすることがある。この場合においても塗布される蛍光体分散液における蛍光体の濃度にムラが発生する。
 これに対して本発明の蛍光体分散液は、蛍光体粒子の沈降が生じにくく、均一な分散状態が維持されやすい。そのため、保管容器300に長時間貯留されても、本発明の蛍光体分散液の蛍光体粒子は均一に分散されている。よって、本発明の蛍光体分散液を塗布装置の塗布液タンク210に投入後、すぐにヘッド240に供給してノズル250から吐出してよく、塗布効率が向上する。また、蛍光体分散液における蛍光体の濃度も一定となり、蛍光体層における蛍光体濃度も均一になる。
 このようにして蛍光体層6を成膜して、図1に示されるLED装置100を得る。LED装置100には、さらに他の光学部品(レンズなど)が設けられて各種光学部材として用いられる。
 以下において、実施例を参照して本発明をより詳細に説明するが、これらの記載によって本発明は限定して解釈されない。
(1)蛍光体粒子の作製
 以下の手順で黄色蛍光体粒子を作製した。下記に示す組成の蛍光体原料を十分に混合した混合物を、アルミ坩堝に充填し、これにフラックスとしてフッ化アンモニウム等のフッ化物を適量混合した。充填物を、水素含有窒素ガスを流通させた還元雰囲気中において1350~1450℃の温度範囲で2~5時間焼成して、焼成品((Y0.72Gd0.243Al5O12:Ce0.04)を得た。
 [原料組成]
   Y ・・・ 7.41g
   Gd ・・・ 4.01g
   CeO ・・・ 0.63g
   Al ・・・ 7.77g
 得られた焼成品を粉砕、洗浄、分離、乾燥することで所望の蛍光体を得た。得られた蛍光体を粉砕して約10μmの粒径の蛍光体粒子とした。得られた蛍光体粒子の組成を調べて、所望の蛍光体であることを確認した。波長465nmの励起光に対する発光波長を調べたところ、おおよそ波長570nmにピーク波長を有していた。
(2)蛍光体分散液の調製以下に各比較例・実施例の蛍光体分散液の組成(g)を説明する。(2.1)比較例1
 前記蛍光体粒子85gを、プロピレングリコール100g中に添加して、それを撹拌することで、蛍光体分散液を調製した。撹拌は、TKフィルミックス(プライミクス社製)を用いて行った。
(2.2)比較例2
 前記蛍光体粒子81g、酸化物微粒子(日本アエロジル株式会社製RX300、粒径7nm)4gを、プロピレングリコール100g中に添加して、それを撹拌することで、蛍光体分散液を調製した。撹拌は、比較例1と同様にして行った。
(2.3)実施例1
 前記蛍光体粒子90g、層状粘土鉱物微粒子(コープケミカル株式会社製ルーセンタイトSWN)2.5g、酸化物微粒子(日本アエロジル株式会社製RX300、粒径7nm)4gを、プロピレングリコール100gとイソプロピルアルコール90gとの混合溶媒中に添加した。それを撹拌することで、蛍光体分散液を調製した。撹拌は、TKオートホモミクサー(プライミクス社製)を用いて行った。
(2.4)実施例2
 前記蛍光体粒子90g、層状粘土鉱物微粒子(コープケミカル株式会社製ミクロマイカMK-100)2.5g、酸化物微粒子(日本アエロジル株式会社製RX300、粒径7nm)4gを、プロピレングリコール100gとイソプロピルアルコール70gとの混合溶媒中に添加した。それを撹拌することで、蛍光体分散液を調製した。撹拌は、比較例1と同様にして行った。
(2.5)実施例3
 前記蛍光体粒子100g、層状粘土鉱物微粒子(コープケミカル株式会社製ミクロマイカMK-100)2.5g、酸化物微粒子(富士シリシア化学株式会社製サイリシア470)4gを、1,3-ブタンジオール100gとイソプロピルアルコール70gとの混合溶媒中に添加した。それを撹拌することで、蛍光体分散液を調製した。撹拌は、アペックスミル(寿工業社製)を用いて行った。
(2.6)実施例4
 前記蛍光体粒子100g、層状粘土鉱物微粒子(コープケミカル株式会社製ルーセンタイトSWN)5g、酸化物微粒子(富士シリシア化学株式会社製サイリシア470)6.5gを、1,3-ブタンジオール100gとイソプロピルアルコール40gとの混合溶媒中に添加した。それを撹拌することで、蛍光体分散液を調製した。撹拌は、実施例3と同様にして行った。
(2.7)実施例5
 前記蛍光体粒子100g、層状粘土鉱物微粒子(コープケミカル株式会社製ルーセンタイトSWN)2.5g、酸化物微粒子(日本アエロジル株式会社製RX300、粒径7nm)6.5gを、1,3-ブタンジオール100gとイソプロピルアルコール80gとの混合溶媒中に添加して、それを撹拌することで蛍光体分散液を調製した。撹拌は、実施例1と同様にして行った。
(2.8)実施例6
 前記蛍光体粒子100g、層状粘土鉱物微粒子(コープケミカル株式会社製ルーセンタイトSWN)2.5g、酸化物微粒子(日本アエロジル株式会社製RX300、粒径7nm)6.5gを、1,3-ブタンジオール100gとイソプロピルアルコール70gとの混合溶媒中に添加した。それを撹拌することで、蛍光体分散液を調製した。撹拌は、比較例1と同様にして行った。
(2.9)実施例7
 前記蛍光体粒子100g、層状粘土鉱物微粒子(コープケミカル株式会社製ミクロマイカMK-100)5g、酸化物微粒子(日本アエロジル株式会社製RX300、粒径7nm)6.5gを、1,3-ブタンジオール100gとイソプロピルアルコール60gとの混合溶媒中に添加した。これを撹拌することで、蛍光体分散液を調製した。撹拌は、実施例1と同様にして行った。
(2.10)実施例8
 前記蛍光体粒子100g、層状粘土鉱物微粒子(コープケミカル株式会社製ルーセンタイトSWN)5g、酸化物微粒子(富士シリシア化学株式会社製サイリシア470)6.5gを、1,3-ブタンジオール100gとイソプロピルアルコール20gとの混合溶媒中に添加した。これを撹拌することで、蛍光体分散液を調製した。撹拌は、実施例3と同様にして行った。
(2.11)実施例9
 前記蛍光粒子体100g、層状粘土鉱物微粒子(コープケミカル株式会社製ルーセンタイトSWN)5g、酸化物微粒子(富士シリシア化学株式会社製サイリシア470)6.5gを、1,3-ブタンジオール100gとイソプロピルアルコール60gとの混合溶媒中に添加した。これを撹拌することで、蛍光体分散液を調製した。撹拌は、比較例1と同様にして行った。
(3)各サンプルの評価
(3.1)粘度の測定
 比較例1、比較例2及び実施例1~9の蛍光体分散液の粘度を、振動式粘度計(CBC社製VM-10A-L)を用いて測定した。測定結果を表1に示す。
(3.2)蛍光体粒子の沈降によって発生する上澄み層の発生時間の測定
 比較例1、比較例2及び実施例1~9の蛍光体分散液を、内径15mmのガラス瓶に5ml充填して、室温にて静置した。時間毎に沈降によって発生した上澄み層の厚みを、スケールを用いて測定した。測定結果を各サンプルの組成と併せて表1に示す。
(3.3)保管容器内壁の固着の評価
 内径100mm、高さ150mmのステンレス製の保管容器に、比較例1、比較例2及び実施例1~9の蛍光体分散液を充填した。保管時間毎に保管容器から蛍光体分散液を他の容器に移し替え、保管容器の内壁への固着の状態を目視して、以下の基準にて評価した。評価結果を表2に示す。
 ◎ 固着なし
 ○ 固着があるが保管容器を複数回振った後蛍光体分散液を他の容器に移し替えれば固着物は消失する
 △ 固着があり、保管容器を複数回振った後蛍光体分散液を他の容器に移し替えても一部の固着物が消失しない
 × 固着があり、保管容器を複数回振った後蛍光体分散液を他の容器に移し替えても振らずに他の容器に移し替えた場合と同様の固着物が発生し固着物が全く消失しない
(3.4)塗布装置内での分散時間の測定
 蛍光体分散液を、塗布装置内にある撹拌装置を具備する塗布液タンクに供給して撹拌し、5分毎に塗布をした。塗布したサンプルをそれぞれ5個ずつ選定して色度を測定した。測定装置としてコニカミノルタセンシング社製分光放射輝度計CS-1000Aを用いた。その後、当該5個のサンプルの測定値(色度)の標準偏差を算出し、色度の均一性を評価した。標準偏差が0.02以下となったときの蛍光体分散液を、十分な分散状態の蛍光体分散液とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 比較例1および2の蛍光体分散液では、3時間以内に蛍光体微粒子の沈降が見られた。それに対して、実施例1~9の蛍光体分散液では4時間以内の蛍光体微粒子の沈降が確認できなかった。
 さらに、実施例1,2,5,6の蛍光体分散液では、保管容器の内壁に蛍光体が固着することもなかった。
 本発明の蛍光体分散液は、LED装置の蛍光体層を成膜するための原料液として好適に用いられる。そして、LED装置の発光の色度のバラツキなどを効果的に抑制する。
 1 パッケージ
 2 メタル部
 3 LEDチップ
 4 突起電極
 6 蛍光体層
 90 LEDチップ実装パッケージ
 100 LED装置
 200 塗布装置
 210 塗布液タンク
 220 塗布液
 230 連結管
 240 ヘッド
 250 ノズル
 260 撹拌装置
 270 吐出液
 300 保管容器
 
 
 
 

Claims (6)

  1.  分散溶媒と、前記分散溶媒中に分散された蛍光体粒子、層状粘土鉱物微粒子および酸化物微粒子と、を含む蛍光体分散液であって、
     内径15mmのガラス瓶に5ml充填した前記蛍光体分散液を静置したときに、蛍光体粒子の沈降によって上澄み層が発生するまでの時間が4時間以上である、蛍光体分散液。
  2.  前記蛍光体分散液の粘度は、80cp~1000cpである、請求項1に記載の蛍光体分散液。
  3.  パッケージと、前記パッケージに配置された発光面を有するLEDチップと、を含むLEDチップ実装パッケージを用意する工程と、
     前記LEDチップの発光面に、請求項1に記載の蛍光体分散液を塗布して蛍光体層を成膜する工程と、
     を含む、LED装置の製造方法。
  4.  前記蛍光体分散液はスプレー塗布装置によって塗布され、
     前記スプレー塗布装置は、蛍光体分散液を貯留する塗布液タンクと、蛍光体分散液を吐出するためのノズルを有するヘッドと、塗布液タンクとヘッドとを連通させる連結管とを備える、請求項3に記載のLED装置の製造方法。
  5.  前記LEDチップの発光面に、有機金属化合物を含む溶液を塗布する工程をさらに含む、請求項3に記載のLED装置の製造方法。
  6.  前記LED装置は白色LED装置である、請求項3に記載のLED装置の製造方法。
     
PCT/JP2012/006112 2011-09-26 2012-09-25 蛍光体分散液、およびled装置の製造方法 WO2013046651A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280046815.2A CN103828075A (zh) 2011-09-26 2012-09-25 荧光体分散液及led装置的制造方法
KR1020147007486A KR20140054321A (ko) 2011-09-26 2012-09-25 형광체 분산액 및 led 장치의 제조 방법
JP2013535904A JP6076909B2 (ja) 2011-09-26 2012-09-25 蛍光体分散液、およびled装置の製造方法
EP20120836066 EP2763197A4 (en) 2011-09-26 2012-09-25 LUMINOPHORE DISPERSION LIQUID AND METHOD FOR MANUFACTURING LED DEVICE
US14/346,854 US9309461B2 (en) 2011-09-26 2012-09-25 Phosphor dispersion liquid and method for manufacturing LED device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-209131 2011-09-26
JP2011209131 2011-09-26

Publications (1)

Publication Number Publication Date
WO2013046651A1 true WO2013046651A1 (ja) 2013-04-04

Family

ID=47994734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006112 WO2013046651A1 (ja) 2011-09-26 2012-09-25 蛍光体分散液、およびled装置の製造方法

Country Status (6)

Country Link
US (1) US9309461B2 (ja)
EP (1) EP2763197A4 (ja)
JP (1) JP6076909B2 (ja)
KR (1) KR20140054321A (ja)
CN (1) CN103828075A (ja)
WO (1) WO2013046651A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070156A (ja) * 2013-09-30 2015-04-13 サンケン電気株式会社 発光装置
US20160016192A1 (en) * 2014-07-15 2016-01-21 Seoul Semiconductor Co., Ltd. Apparatus for manufacturing wavelength conversion part and method of manufacturing wavelength conversion part using the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI591864B (zh) * 2015-08-26 2017-07-11 廣科精密股份有限公司 發光裝置及其製備方法
CN106486585A (zh) * 2015-08-25 2017-03-08 比亚迪股份有限公司 Led荧光膜、led组件、制备方法以及电子器件
CN116293491A (zh) * 2016-04-25 2023-06-23 日本特殊陶业株式会社 波长转换构件、其制造方法及发光装置
RU2711318C2 (ru) * 2017-12-28 2020-01-16 Федеральное государственное унитарное предприятие "Институт химических реактивов и особо чистых химических веществ Национального исследовательского центра "Курчатовский институт" Способ получения люминесцентной керамики на основе сложных оксидов со структурой граната

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003115614A (ja) 2001-10-03 2003-04-18 Nichia Chem Ind Ltd 発光装置の製造方法
JP2003297240A (ja) * 2002-03-28 2003-10-17 Matsushita Electric Ind Co Ltd 蛍光ランプの製造方法、その方法により製造された蛍光ランプおよび蛍光体塗布装置
JP2004000928A (ja) * 2002-03-29 2004-01-08 Toray Ind Inc 塗布ヘッドならびに塗液の塗布装置および塗布方法
JP2004055632A (ja) * 2002-07-17 2004-02-19 Toshiba Corp 半導体発光装置
JP2004153109A (ja) 2002-10-31 2004-05-27 Matsushita Electric Works Ltd 発光装置及びその製造方法
JP2005277441A (ja) * 2001-09-03 2005-10-06 Matsushita Electric Ind Co Ltd 半導体発光デバイスの製造方法
JP2008205511A (ja) * 2001-10-12 2008-09-04 Nichia Chem Ind Ltd 発光装置及びその製造方法
JP2010016292A (ja) * 2008-07-07 2010-01-21 Showa Denko Kk 照明装置および照明装置の製造方法
JP2010067862A (ja) * 2008-09-11 2010-03-25 Showa Denko Kk 発光装置、発光モジュール、表示装置
WO2011065321A1 (ja) * 2009-11-30 2011-06-03 コニカミノルタオプト株式会社 発光ダイオードユニットの製造方法
WO2011102272A1 (ja) * 2010-02-19 2011-08-25 東レ株式会社 蛍光体含有シリコーン硬化物、その製造方法、蛍光体含有シリコーン組成物、その組成物前駆体、シート状成型物、ledパッケージ、発光装置およびled実装基板の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2017901A1 (en) * 2001-09-03 2009-01-21 Panasonic Corporation Semiconductor light emitting device, light emitting apparatus and production method for semiconductor light emitting DEV

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005277441A (ja) * 2001-09-03 2005-10-06 Matsushita Electric Ind Co Ltd 半導体発光デバイスの製造方法
JP2003115614A (ja) 2001-10-03 2003-04-18 Nichia Chem Ind Ltd 発光装置の製造方法
JP2008205511A (ja) * 2001-10-12 2008-09-04 Nichia Chem Ind Ltd 発光装置及びその製造方法
JP2003297240A (ja) * 2002-03-28 2003-10-17 Matsushita Electric Ind Co Ltd 蛍光ランプの製造方法、その方法により製造された蛍光ランプおよび蛍光体塗布装置
JP2004000928A (ja) * 2002-03-29 2004-01-08 Toray Ind Inc 塗布ヘッドならびに塗液の塗布装置および塗布方法
JP2004055632A (ja) * 2002-07-17 2004-02-19 Toshiba Corp 半導体発光装置
JP2004153109A (ja) 2002-10-31 2004-05-27 Matsushita Electric Works Ltd 発光装置及びその製造方法
JP2010016292A (ja) * 2008-07-07 2010-01-21 Showa Denko Kk 照明装置および照明装置の製造方法
JP2010067862A (ja) * 2008-09-11 2010-03-25 Showa Denko Kk 発光装置、発光モジュール、表示装置
WO2011065321A1 (ja) * 2009-11-30 2011-06-03 コニカミノルタオプト株式会社 発光ダイオードユニットの製造方法
WO2011102272A1 (ja) * 2010-02-19 2011-08-25 東レ株式会社 蛍光体含有シリコーン硬化物、その製造方法、蛍光体含有シリコーン組成物、その組成物前駆体、シート状成型物、ledパッケージ、発光装置およびled実装基板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2763197A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070156A (ja) * 2013-09-30 2015-04-13 サンケン電気株式会社 発光装置
US20160016192A1 (en) * 2014-07-15 2016-01-21 Seoul Semiconductor Co., Ltd. Apparatus for manufacturing wavelength conversion part and method of manufacturing wavelength conversion part using the same
CN108321263A (zh) * 2014-07-15 2018-07-24 首尔半导体股份有限公司 波长转换部制造装置

Also Published As

Publication number Publication date
JP6076909B2 (ja) 2017-02-08
JPWO2013046651A1 (ja) 2015-03-26
EP2763197A1 (en) 2014-08-06
US9309461B2 (en) 2016-04-12
US20150232752A1 (en) 2015-08-20
KR20140054321A (ko) 2014-05-08
EP2763197A4 (en) 2015-04-29
CN103828075A (zh) 2014-05-28

Similar Documents

Publication Publication Date Title
WO2013051281A1 (ja) Led装置の製造方法、およびそれに用いる蛍光体分散液
JP5870923B2 (ja) 発光装置の製造方法
WO2013051280A1 (ja) 蛍光体分散液、及びこれを用いたled装置の製造方法
JP6076909B2 (ja) 蛍光体分散液、およびled装置の製造方法
WO2012086483A1 (ja) 蛍光体塗布装置および発光装置の製造方法
JP5999223B2 (ja) 発光装置の製造方法および蛍光体混合液
JP5869769B2 (ja) 蛍光体層の形成方法および発光装置の製造方法
JP2011238778A (ja) 波長変換素子の製造方法、波長変換素子および発光装置
JP5803541B2 (ja) Led装置およびその製造方法、並びにそれに用いる蛍光体分散液
JP5768816B2 (ja) 波長変換素子及びその製造方法、発光装置及びその製造方法
JP5880566B2 (ja) Led装置
JP5803940B2 (ja) 発光装置およびその製造方法
JP2014019844A (ja) 蛍光体分散液及びled装置の製造方法
WO2014103330A1 (ja) 蛍光体分散液、led装置およびその製造方法
WO2012090961A1 (ja) 発光装置、発光装置の製造方法、及び、塗布液
JP5870736B2 (ja) 蛍光体分散液の製造方法、およびそれを用いてled装置を製造する方法
JP5765428B2 (ja) Led装置の製造方法
JP2013168480A (ja) Led装置の製造方法
WO2012090999A1 (ja) 発光装置の製造方法
JP2012195522A (ja) 発光装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836066

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013535904

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147007486

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012836066

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14346854

Country of ref document: US

Ref document number: 2012836066

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE