WO2013042482A9 - ポリスチレンスルホン酸共重合体、それを用いた分散剤、およびナノカーボン材料水性分散体、ならびにポリスチレンスルホン酸共重合体の製造方法 - Google Patents

ポリスチレンスルホン酸共重合体、それを用いた分散剤、およびナノカーボン材料水性分散体、ならびにポリスチレンスルホン酸共重合体の製造方法 Download PDF

Info

Publication number
WO2013042482A9
WO2013042482A9 PCT/JP2012/070335 JP2012070335W WO2013042482A9 WO 2013042482 A9 WO2013042482 A9 WO 2013042482A9 JP 2012070335 W JP2012070335 W JP 2012070335W WO 2013042482 A9 WO2013042482 A9 WO 2013042482A9
Authority
WO
WIPO (PCT)
Prior art keywords
sulfonic acid
monomer
maleimide
copolymer
polystyrene sulfonic
Prior art date
Application number
PCT/JP2012/070335
Other languages
English (en)
French (fr)
Other versions
WO2013042482A1 (ja
Inventor
真治 尾添
Original Assignee
東ソー有機化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー有機化学株式会社 filed Critical 東ソー有機化学株式会社
Priority to JP2013534638A priority Critical patent/JP5850474B2/ja
Publication of WO2013042482A1 publication Critical patent/WO2013042482A1/ja
Publication of WO2013042482A9 publication Critical patent/WO2013042482A9/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/30Sulfur

Definitions

  • the present invention relates to a novel polystyrene sulfonic acid copolymer, its use as a dispersant, and an aqueous dispersion of a nanocarbon material produced therewith.
  • Carbon nanotubes are light weight high strength, high wear resistance, high thermal conductivity, high melting point, high conductivity, semiconductive, high specific surface area, hollow structure, high gas adsorptivity, biocompatible High strength materials, high thermal conductivity materials, conductive materials, LSI wiring, micromachines, carbon dioxide fixed materials, hydrogen gas storage materials, electromagnetic wave shielding materials, catalyst support materials, nanofilters, biosensors, etc. It is expected to be used for drug delivery systems, electrochemical devices (fuel cells, secondary batteries, capacitors, field emission displays, transistors, various electrodes) and the like.
  • CNTs tend to aggregate due to intermolecular force, and this property is the greatest obstacle to practical application in the above field. Therefore, there is a strong demand for a technique for stably nanodispersing in a solvent or various polymer matrices without aggregating CNTs. For example, fabrication of fine wiring of integrated circuit by inkjet printing method, fabrication of field emission cathode source by screen printing method and application research to flat panel display have been conducted, and therefore, many methods of fabricating CNT aqueous dispersions are necessary. Proposed.
  • a method of producing an aqueous CNT dispersion using a nonionic surfactant having a steroid skeleton is disclosed (see, for example, Patent Document 1), and an aqueous CNT dispersion using dodecylitaconic acid as a dispersant
  • the manufacturing method of is disclosed (for example, refer patent document 2).
  • a method of producing a CNT aqueous dispersion using a triphenylene derivative having a hydrophilic group as a dispersant and irradiating high-power ultrasonic waves see, for example, Patent Document 3
  • a cellulose derivative having a specific functional group The manufacturing method used (see, for example, Patent Document 4) is disclosed.
  • the dispersing effect is not always satisfactory, and there is a problem such as using a relatively expensive dispersant.
  • styrene sulfonic acid methods using styrene sulfonic acid are also known.
  • a method of producing a CNT aqueous dispersion using polystyrene sulfonate (homopolymer) is disclosed (see, for example, Patent Documents 5 and 6).
  • a method for producing a CNT aqueous dispersion using a styrene sulfonic acid-maleic acid copolymer salt is disclosed (see, for example, Patent Document 7).
  • These polystyrene sulfonic acid polymer salts are industrially produced with high safety and relatively low cost, but the dispersion effect is not sufficient and further improvement of the dispersion effect has been required.
  • JP, 2009-242126 A JP, 2010-13312, A JP, 2009-190940, A JP, 2011-127041, A JP, 2005-263608, A Unexamined-Japanese-Patent No. 2010-254546 Japanese Patent Application Publication No. 2006-525220
  • the present invention has been made in view of the above problems, and the object thereof is a novel polystyrene sulfonic acid copolymer which is useful as a dispersant for producing an aqueous dispersion of nanocarbon materials such as CNT, graphene and fullerene. It is to provide a union.
  • polystyrene sulfonic acid copolymers containing styrene sulfonic acid and N-substituted maleimide as main components are nanocarbon materials such as CNT, graphene, fullerene, etc.
  • the present invention has been found to be useful as a dispersant for producing an aqueous dispersion of the present invention.
  • the present invention provides (a) a styrene sulfonic acid monomer residue which is a repeating structural unit represented by the following formula (I), and (b) an N-substituted maleimide which is a repeating structural unit represented by the following formula (II) Polystyrene sulfonic acid comprising a residue and, if necessary, (c) another vinyl monomer residue which is a repeating structural unit represented by the following formula (III) copolymerizable with the (a) to (b). It relates to a copolymer.
  • X + represents a sodium cation, a lithium cation, a potassium cation, an ammonium cation, a quaternary ammonium cation or a proton
  • R 1 represents an aromatic hydrocarbon group or a substituted aromatic carbon
  • R 2 , R 3 , R 4 and R 5 each independently represent an aliphatic hydrocarbon group, a substituted aliphatic hydrocarbon group, an aromatic hydrocarbon group, a substituted aromatic hydrocarbon group, an ester group, Represents a cyano group, a carboxyl group or hydrogen, the ratio of styrene sulfonic acid monomer residue is k, the ratio of N-substituted maleimide monomer residue is m, and the ratio of other vinyl monomer residues is n, styrene sulfonic acid monomer The proportion k of residues is 95 to 30 mol%, the proportion m of N-substituted maleimi
  • N-substituted maleimide monomers one or more compounds selected from the group consisting of N-phenyl maleimide, N-chlorophenyl maleimide, N-methylphenyl maleimide, N-carboxyphenyl maleimide and N-naphthyl maleimide can be mentioned.
  • the weight average molecular weight of the polystyrene sulfonic acid copolymer of the present invention determined by gel permeation chromatography is preferably 2,000 to 200,000.
  • the present invention relates to a dispersant comprising the above-mentioned polystyrene sulfonic acid copolymer as an active ingredient.
  • the present invention also relates to a carbon nanotube aqueous dispersion produced using the above-mentioned polystyrene sulfonic acid copolymer as a dispersant. Furthermore, the present invention relates to a graphene aqueous dispersion produced using the above-mentioned polystyrene sulfonic acid copolymer as a dispersant. Furthermore, the present invention relates to a fullerene aqueous dispersion produced by using the above-mentioned polystyrene sulfonic acid copolymer as a dispersant.
  • a monomer mixed solution containing styrene sulfonic acid or a salt monomer thereof and an N-substituted maleimide monomer is selected from the group consisting of acetone, tetrahydrofuran, dioxane, dimethyl sulfoxide, N-methylpyrrolidone and dimethylformamide.
  • the present invention relates to a method for producing the above-described polystyrene sulfonic acid copolymer, which is radically copolymerized while being continuously added to a mixed solvent of one or more water-soluble solvents and water together with a radical polymerization initiator.
  • the present invention provides the above-described polystyrene sulfonic acid using a monomer mixed solution obtained by further adding a vinyl sulfonic acid or a salt monomer thereof and an N-substituted maleimide monomer, and another vinyl monomer copolymerizable therewith with a molecular weight modifier.
  • the present invention relates to a method for producing a copolymer.
  • the polystyrene sulfonic acid copolymer of the present invention has an extremely high ability to disperse nanocarbon materials such as CNT, graphene, fullerene and the like in an aqueous medium, and can be produced by a simple method.
  • the polystyrene sulfonic acid copolymer according to the present invention represents an FT-IR spectrum of the copolymer obtained in Production Example 1.
  • the polystyrene sulfonic acid copolymer of the present invention comprises the styrene sulfonic acid monomer residue which is the repeating structural unit represented by the above (a) formula (I), and the repeating unit represented by the (b) formula (II) It comprises a structural unit, an N-substituted maleimide monomer residue, and, if necessary, other vinyl monomer units copolymerizable with the above (a) to (b) represented by the formula (III).
  • X + represents a sodium cation, a lithium cation, a potassium cation, an ammonium cation, a quaternary ammonium cation or a proton
  • R 1 represents an aromatic hydrocarbon group or a substituted aromatic
  • R 2 , R 3 , R 4 and R 5 are each independently an aliphatic hydrocarbon group, a substituted aliphatic hydrocarbon group, an aromatic hydrocarbon group, a substituted aromatic hydrocarbon group, an ester Represents a group, a cyano group, a carboxyl group or hydrogen
  • k, m and n do not represent the degree of polymerization of each monomer residue.
  • the polystyrene sulfonic acid copolymer of the present invention comprises the above-mentioned repeating structural units (a) and (b), or (a), (b) and (c).
  • the polystyrene sulfonic acid copolymer of the present invention comprising these repeating structural units may be either a random copolymer, an alternating copolymer or a block copolymer.
  • the present invention is characterized by the combination of styrene sulfonic acid monomer residue and N-substituted maleimide monomer residue.
  • sodium polystyrene sulfonate can be used as a dispersant for pigments and the like (Adhesion technology, vol. 30, No. 2, 2010, page 56).
  • the ability to nano-disperse CNTs and the like in water is not always sufficient.
  • copolymerization with sodium styrene sulfonate and styrene improves the adsorptivity to CNTs by increasing the proportion of aromatic rings in the polymer and does not enhance the ability of CNTs to disperse in water. Thought was considered, it considered, but the improvement effect as expected was not recognized.
  • N-phenylmaleimide which is a typical example of N-substituted maleimide are known as highly heat resistant resins having a melting point of 400.degree. Since N-phenylmaleimide is copolymerized with a vinyl monomer such as styrene, it is used for the purpose of improving the heat resistance of styrenic resins.
  • the present inventors have found that copolymerization of styrene sulfonic acid and N-substituted maleimide such as N-phenyl maleimide in a specific ratio gives a polymer soluble in aqueous solvent, and is more suitable than styrene / styrene sulfonic acid copolymer. It has been found that the dispersing ability to water such as CNT and graphene is much higher.
  • the styrene sulfonic acid monomer residue contained in the polystyrene sulfonic acid copolymer of the present invention is sodium styrene sulfonate, potassium styrene sulfonate, lithium styrene sulfonate, ammonium styrene sulfonate, quaternary ammonium styrene sulfonate, styrene sulfonic acid And the like, and is an essential component for imparting water solubility and hydrophilicity to the copolymer of the present invention.
  • metal-free ammonium styrenesulfonate monomer residues and styrene sulfonic acid monomer residues are more preferable.
  • N-substituted maleimide monomer residue contained in the polystyrene sulfonic acid copolymer of the present invention is an essential component for imparting the copolymer with an adsorption ability to CNT, graphene, and fullerene.
  • the N-substituted maleimide is not particularly limited, but is preferably a maleimide having an aromatic substituent which is considered to have a high interaction with the CNT, for example, N-phenyl maleimide, N- (chlorophenyl) maleimide, N- (Methylphenyl) maleimide, N- (isopropylphenyl) maleimide, N- (sulfophenyl) maleimide, N-methylphenyl maleimide, N-bromophenyl maleimide, N-naphthyl maleimide, N-hydroxyphenyl maleimide, N-methoxyphenyl Maleimide, N-carboxyphenyl maleimide, N- (nitrophenyl) maleimide, N-benzyl maleimide, N- (4-acetoxy-1-naphthyl) maleimide, N- (4-oxy-1-naphthyl) maleimide, N-(- 3-Flu
  • N-phenyl maleimide N-chlorophenyl maleimide, N-methylphenyl maleimide, N-carboxyphenyl maleimide, N-naphthyl maleimide are preferable, and in consideration of cost, N- Phenyl maleimide is preferred.
  • N-substituted maleimide N-cyclohexyl maleimide, N-methyl maleimide, N-ethyl maleimide and the like can also be used.
  • the molar ratio of monomer residues constituting the polystyrene sulfonic acid copolymer of the present invention is 95 to 30 mol% of styrene sulfonic acid monomer residue (k) and 5 to 70 N-substituted maleimide monomer residue (m) %
  • the polymerization residue (n) of other vinyl monomers which are copolymerizable with them, although they are not essential components are 0 to 20 mol%.
  • the proportion of the styrene sulfonic acid monomer residue (k) is less than 30 mol%, the water solubility and the hydrophilicity of the copolymer decrease, and the workability at the time of producing an aqueous dispersion of nanocarbon materials such as CNTs deteriorates. As a result, the charge on the surface of the nanocarbon material such as CNTs becomes insufficient, and the dispersion stability decreases.
  • the proportion of the styrene sulfonic acid monomer residue (k) exceeds 95 mol%, the adsorptive power of the copolymer to nanocarbon materials such as CNTs is reduced, so that finer nanocarbon materials such as CNTs can be used.
  • styrene sulfonic acid monomer residue (k) and 10 to 60 N-substituted maleimide monomer residue (m) More preferred is a composition of 0 to 10% by mol of polymerized residues (n) of other vinyl monomers copolymerizable therewith.
  • the polymerization residue of the other vinyl monomers described above is not an essential component, but depending on the purpose, for example, the solubility of the polystyrene sulfonic acid copolymer, the hydrophilic-hydrophobic balance, the adjustment of polarity, the crosslinkability, and the reactivity Can be used if it is necessary to
  • Other vinyl monomers are not particularly limited as long as they can be copolymerized with styrene sulfonic acid monomers and N-substituted maleimide monomers, and examples thereof include dibutyl fumarate, dipropyl fumarate, diethyl fumarate and fumarate Acid esters of fumaric acid such as dicyclohexyl acid, butyl fumarate, fumaric acid propyl, fumaric acid fumaric acid monoesters, dibutyl maleate, dipropyl maleate, maleic acid diesters such as diethyl maleate, butyl maleate, Maleic acid mono
  • the weight average molecular weight of the polystyrene sulfonic acid copolymer of the present invention determined by GPC (gel permeation chromatography) is 2,000 to 200,000.
  • GPC gel permeation chromatography
  • the weight average molecular weight of the polystyrene sulfonic acid copolymer of the present invention can be easily adjusted by the amount of the polymerization initiator, the amount of the molecular weight modifier, the feed rate of the monomer and the polymerization initiator, and the like.
  • the method for producing the polystyrene sulfonic acid copolymer of the present invention will be described.
  • the method by general radical polymerization is illustrated as a 1st example.
  • a uniform solution of a styrene sulfonic acid monomer or a salt thereof and an N-substituted maleimide monomer mixture is charged into a reaction vessel, and a molecular weight modifier is added as necessary to deoxygenate the system, and then heated to a predetermined temperature. It may be polymerized while adding a polymerization initiator.
  • each monomer is used as a polymerization initiator or a molecular weight regulator rather than first charging all monomer mixtures into the reaction vessel.
  • the reaction solvent is not particularly limited, but in view of the solubility of styrene sulfonic acid monomer or a salt thereof and N-substituted maleimide, and the production of an aqueous dispersion of a nanocarbon material such as CNT, water and a water-soluble solvent Mixtures are preferred.
  • the water-soluble solvent is not particularly limited as long as it is a composition in which a mixture of a styrene sulfonic acid monomer or a salt thereof and an N-substituted maleimide monomer is dissolved, and acetone, tetrahydrofuran, dioxane, methanol, ethanol, n-propanol, isopropanol And methoxyethanol, ethoxyethanol, butanol, ethylene glycol, propylene glycol, glycerin, dimethyl sulfoxide, dimethylformamide, N-methylpyrrolidone and the like.
  • acetone, tetrahydrofuran, dioxane, dimethyl sulfoxide, N-methyl pyrrolidone and dimethylformamide are used.
  • the ratio of water to the water-soluble solvent is usually about 30/70 to 70/30 of water: water-soluble solvent (weight ratio).
  • the molecular weight modifier is not particularly limited, and, for example, diisopropylxanthogen disulfide, diethylxanthogen disulfide, diethylthiuram disulfide, 2,2'-dithiodipropionic acid, 3,3'-dithiodipropionic acid, 4,4 Disulfides such as' -dithiodibutanoic acid, 2,2'-dithiobisbenzoic acid, n-dodecyl mercaptan, octyl mercaptan, t-butyl mercaptan, thioglycolic acid, thiomalic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid, Thiosalicylic acid, 3-mercaptobenzoic acid, 4-mercaptobenzoic acid, thiomalonic acid, dithiosuccinic acid, thiomaleic acid, thiomaleic anhydride,
  • Halogenated hydrocarbons diphenylethylene, p-chlorodiphenylethylene, p-cyanodiphenylethylene, ⁇ -methylstyrene dimer, benzyl dithiobenzoate, 2-cyanoprop-2-yl dithiobenzoate, organic telluride Things, sulfur, sodium sulfite, potassium sulfite, sodium bisulfite, potassium bisulfite, sodium metabisulfite, potassium metabisulfite and the like.
  • the amount of the molecular weight modifier to be used is generally about 0.1 to 5.0% by weight based on the monomer component.
  • radical polymerization initiator examples include di-t-butyl peroxide, dicumyl peroxide, t-butylcumyl peroxide, benzoyl peroxide, dilauryl peroxide, cumene hydroperoxide, t-butyl hydroperoxide 1,1-bis (t-butylperoxy) -3,5,5-trimethylcyclohexane, 1,1-bis (t-butylperoxy) -cyclohexane, cyclohexanone peroxide, t-butylperoxybenzoate, t -Butyl peroxyisobutyrate, t-butyl peroxy-3,5,5-trimethylhexanoate, t-butyl peroxy-2-ethylhexanoate, t-butyl peroxyisopropyl carbonate, cumylperoxy octoate Eate, persulfate Peroxides such as ammonium, ammonium pers,
  • organic reducing agents such as ascorbic acid, erythorbic acid, aniline and tertiary amines may be used in combination.
  • the amount of the radical polymerization initiator used is usually about 0.1 to 10.0% by weight with respect to the monomer component.
  • the polymerization conditions are not particularly limited, but may be heated at 40 to 120 ° C. for 4 to 20 hours in an inert gas atmosphere, and may be appropriately adjusted according to the polymerization solvent, the monomer composition, and the polymerization initiator species.
  • styrene sulfonic acid such as methyl styrene sulfonate, ethyl styrene sulfonate, n-propyl styrene sulfonate, isopropyl styrene sulfonate, butyl styrene sulfonate etc.
  • the sulfonic acid monomer residue is obtained by hydrolyzing the sulfonic acid ester or chlorosulfone group with an alkali or the like.
  • the polystyrene sulfonic acid copolymer of the present invention can also be produced by converting it into
  • the polystyrene sulfonic acid copolymer of the present invention can also be produced by living radical polymerization in addition to the general radical polymerization described above. Moreover, when styrene sulfonate ester is used, it can manufacture also by ionic polymerization.
  • living radical polymerization method for example, an atom transfer polymerization method, a stable nitroxyl-mediated polymerization method, a reversible addition-fragmentation transfer polymerization method, an organic tellurium-mediated polymerization method (Polymer Proceedings, vol. 64, No. 6, pp. 329 (2007), iodine transfer polymerization method (Japanese Unexamined Patent Publication No.
  • ionic polymerization for example, an anionic polymerization method using an amine compound (Polymer Preprints, Japan, Vol. 59, No. 1, 2010, page 565; Japan Rubber Association Journal 74, No. 7, 2001, 254 Page, and the use of styrene sulfonic acid ester is applicable to the present invention.
  • CNTs, graphenes, fullerenes and the like which are targets of the present invention are chemically equivalent as nano carbon materials.
  • the nanocarbon material is a generic name for carbon atoms collected and structured in nanometer (nm) units.
  • carbon nanotubes Carbon A nanotube (abbreviated as CNT) is a substance in which a six-membered ring network (graphene sheet) made of carbon is a single layer or a multilayer coaxial tube. An allotrope of carbon, sometimes classified as a type of fullerene.
  • graphene is a sheet of sp 2 -bonded carbon atoms having a thickness of 1 atom.
  • aqueous dispersions of nanocarbon materials such as this CNT, a graphene, a fullerene
  • a well-known method can be applied (for example, Unexamined-Japanese-Patent 2009-190940, 2010- 13312).
  • a nanocarbon material such as CNT is added to an aqueous solvent containing the polystyrene sulfonic acid copolymer of the present invention while stirring, and the CNT is dispersed by a bead mill, a homogenizer and / or ultrasonic irradiation.
  • nanocarbon materials such as CNT
  • 0.5-30 weight% of water-soluble solvent with respect to water and / or anionic emulsifier
  • nonionic emulsifier, cationic emulsifier, amphoteric emulsifier May be added.
  • the water-soluble solvent is not particularly limited, but acetone, methanol, ethanol, propanol, butanol, tetrahydrofuran, dioxane, ethoxyethanol, methoxyethanol, glycerin, propylene glycol, ethylene glycol, butanediol, acetic acid, propione An acid etc. are illustrated.
  • the emulsifier is not particularly limited.
  • the anionic emulsifier include rosin acid salt, fatty acid salt, alkenyl succinate, alkyl ether carboxylate, alkyl diphenyl ether disulfonate, and alkane sulfonate , Alkyl succinate sulfonate, polyoxyethylene polycyclic phenyl ether sulfate, ⁇ -olefin sulfonate, alkyl benzene sulfonate, naphthalene sulfonate formalin condensate, taurine derivative, polystyrene sulfonate, polystyrene sulfonate Methacrylic acid copolymer, polystyrene sulfonic acid acrylic acid copolymer, polystyrene sulfonic acid acrylic acid ester copolymer, styrene sulfonic acid maleic acid copolymer, s
  • Examples include betaine acetate, alkyl dimethylamino sulfobetaine, alkyl sulfobetaine and the like.
  • the amount of these emulsifiers used is about 0.1 to 30% by weight with respect to the polystyrene sulfonic acid copolymer component of the present invention.
  • the polystyrene sulfonic acid copolymer of the present invention is a novel copolymer having both water solubility and adsorption ability to CNT, graphene and fullerene, and is an aqueous dispersion of nanocarbon materials such as industrially useful CNT, graphene and fullerene. It is a very useful dispersant in the manufacture of the body.
  • the aqueous dispersion of nanocarbon material such as CNT of the present invention may contain a pH adjuster, an antifoamer, an antiseptic agent, a viscosity adjuster, a chelating agent and the like, as required.
  • the ratio of the nanocarbon material such as CNT, graphene, fullerene and the like and the aqueous medium such as water is 0.05 to 10% by weight of the nanocarbon material in the aqueous medium. %, Preferably 0.1 to 5% by weight. If the amount is less than 0.05% by weight, carbon nanomaterial network formation in the aqueous dispersion coating film may be insufficient, and conductivity may not be sufficiently obtained. On the other hand, if it exceeds 10% by weight, nanocarbon materials such as CNTs may not be sufficiently dispersed, and conductivity in proportion to the amount of nanocarbon material used may not be obtained.
  • the ratio of the nanocarbon material such as CNT to the polystyrene sulfonic acid copolymer of the present invention is such that the weight ratio of nano carbon material / polystyrene sulfonic acid copolymer is 1 It is 10/10 to 10/1 times, preferably 3/10 to 10/3 times. If it is less than 1/10, the amount of the polystyrene sulfonic acid copolymer is relatively large, and the dispersion effect commensurate with the amount of the added polystyrene sulfonic acid copolymer may not be obtained.
  • the nanocarbon material may not be sufficiently dispersed in an aqueous medium such as water because the amount of the polystyrene sulfonic acid copolymer to the nanocarbon material is insufficient.
  • the polystyrene sulfonic acid copolymer of the present invention comprises a carbon pigment, C.I. I. Pigment yellow 74, C.I. I. Pigment yellow 109, C.I. I. Pigment yellow 128, C.I. I. Pigment yellow 151, C.I. I. Pigment yellow 14, C.I. I. Pigment yellow 16, C.I. I. Azo pigments such as CI Pigment Yellow 17, copper phthalocyanine blue or derivatives thereof (CI pigment blue 15: 3, CI pigment blue 15: 4), phthalocyanine pigments such as aluminum phthalocyanine, C.I. I. Pigment orange 48, C.I. I. Pigment orange 49, C.I. I.
  • Pigment red 122 C.I. I. Pigment red 192, C.I. I. Pigment red 202, C.I. I. Pigment red 206, C.I. I. Pigment red 207, C.I. I. Pigment red 209, C.I. I. Pigment violet 19, C.I. I.
  • Pigment violet 42 and other quinacridone pigments isoindolinone pigments, dioxazine pigments, perylene pigments, perinone pigments, thioindigo pigments, anthraquinone pigments, quinophthalones, indanthrene pigments, diketopyrrolopyrrole pigments, aniline black pigments, It can also be expected to use as a dispersant for heterocyclic yellow pigments and the like.
  • the polystyrene sulfonic acid copolymer of the present invention contains a hydrophilic component and a hydrophobic component, its use as a rheology control agent for aqueous fluid can also be expected.
  • the present invention will be more specifically described by the following examples, but the present invention is not limited by these examples.
  • the copolymerization, the analysis of the copolymer and the CNT aqueous dispersion, and the evaluation were carried out under the following conditions.
  • ⁇ Precipitation> The above dispersion was centrifuged at 3,500 rpm for 30 minutes using a table-top centrifuge NT-8 manufactured by Microtech Inc., and the presence or absence of precipitate was visually observed. Those with precipitates were evaluated as ⁇ , and those with many precipitates were evaluated as ⁇ , respectively.
  • Production Example 1 (Production of Dispersant 1) (Use Example of Sodium Styrene Sulfonate) 80.50 g of pure water and 35.00 g of acetone were charged into a 1-L glass flask equipped with a reflux condenser, a nitrogen introduction pipe, and a paddle-type stirrer, and heated in a nitrogen atmosphere at 60 ° C. in an oil bath.
  • Dispersant 1 Use Example of Sodium Styrene Sulfonate
  • 80.50 g of pure water and 35.00 g of acetone 80.50 g of pure water and 35.00 g of acetone were charged into a 1-L glass flask equipped with a reflux condenser, a nitrogen introduction pipe, and a paddle-type stirrer, and heated in a nitrogen atmosphere at 60 ° C. in an oil bath.
  • styrene sulfonic acid monomer solution 35.00 g of sodium styrene sulfonate (purity 88.8%) and 4.38 g of 1-mercapto-2,3-propanediol are dissolved in 201.00 g of pure water]
  • N-phenylmaleimide monomer solution [23.49 g of N-phenylmaleimide dissolved in 218.80 g of acetone] for 3 hours
  • initiator solution [Azo initiator V-50, manufactured by Wako Pure Chemical Industries, Ltd., 1.75 g of pure water 43] The solution was added dropwise over 5 hours to conduct polymerization.
  • N-phenylmaleimide monomer residues 53: 47 mol% of the composition It was judged to be a copolymer having The weight average molecular weight of the copolymer determined by GPC was 24,000. The said polymer was set to copolymer A.
  • N-phenyl maleimides such as N-phenyl maleimide may be referred to as "PMI".
  • Production Example 2 (Production of Dispersant 2) (Use Example of Ammonium Styrene Sulfonate) 80.50 g of pure water and 35.00 g of acetone were charged into a 1-L glass flask equipped with a reflux condenser, a nitrogen introduction pipe, and a paddle-type stirrer, and heated in a nitrogen atmosphere at 60 ° C. in an oil bath.
  • Dispersant 2 Use Example of Ammonium Styrene Sulfonate
  • styrene sulfonic acid monomer solution [38.3 g of ammonium styrene sulfonate (purity 79.0%) and 3.70 g of 1-mercapto-2,3-propanediol are dissolved in 201.00 g of pure water]
  • N-phenylmaleimide monomer solution [16.00 g of N-phenylmaleimide dissolved in 200.00 g of acetone] for 3 hours
  • initiator solution [Azo initiator V-50 manufactured by Wako Pure Chemical Industries, Ltd., 1.75 g of pure water 43 The solution was added dropwise over 5 hours to conduct polymerization.
  • the oil bath temperature was raised to 80 ° C., and polymerization was continued for further 3 hours.
  • the weight average molecular weight of the copolymer determined by GPC was 22,000. The said polymer was set to copolymer B.
  • Production Example 3 (Production of Dispersant 3) (Example of Reducing PMI of Production Example 2)
  • a copolymer was synthesized under the same conditions as in Preparation Example 1 except that the amount of N-phenylmaleimide was reduced from 16.00 g to 9.00 g in Preparation Example 2.
  • the polymerization solution was clear, and as a result of analyzing the concentration of residual monomers in the solution, it was found that ammonium styrene sulfonate and N-phenylmaleimide were both ⁇ 0.1% by weight.
  • the weight average molecular weight of the copolymer determined by GPC was 14,000. The said polymer was set to copolymer C.
  • Production Example 4 (Production of Dispersant 4) (Example Using Styrene as a Third Component) 80.50 g of pure water and 35.00 g of acetone were charged into a 1-L glass flask equipped with a reflux condenser, a nitrogen introduction pipe, and a paddle-type stirrer, and heated in a nitrogen atmosphere at 60 ° C. in an oil bath.
  • styrene sulfonic acid monomer solution [38.3 g of ammonium styrene sulfonate (purity 79.0%) and 4.38 g of 1-mercapto-2,3-propanediol are dissolved in 201.00 g of pure water]
  • N-phenyl maleimide monomer solution [10.00 g of N-phenyl maleimide and 3.00 g of styrene dissolved in 218.20 g of acetone] for 3 hours
  • initiator solution [azo initiator V-50, manufactured by Wako Pure Chemical Industries, Ltd. 2. 20 g was dissolved in 50.00 g of pure water] was added dropwise over 6 hours to carry out polymerization.
  • the polymerization solution was a clear solution, and as a result of analyzing the concentration of residual monomers in the solution, it was found that ammonium styrene sulfonate, N-phenyl maleimide and styrene were all ⁇ 0.1 wt%.
  • Production Example 5 (Production 5 of Dispersant) (Example in which the type of PMI in Production Example 3 is changed)
  • a copolymer was synthesized under the same conditions as in Preparation Example 3 except that 13.00 g of o-methylphenyl maleimide was used instead of 9.00 g of N-phenylmaleimide in Preparation Example 3.
  • the polymerization solution was clear, and as a result of analyzing the residual monomer concentration in the solution, it was found that ammonium styrene sulfonate and o-methylphenyl maleimide were both ⁇ 0.1% by weight.
  • the weight average molecular weight of the copolymer determined by GPC was 21,000. The said polymer was set to copolymer E.
  • Production Example 6 (Production 6 of Dispersant) (Example in which the type of PMI of Production Example 5 is changed)
  • a copolymer was prepared under the same conditions as in Preparation Example 5 except that 10.00 g of o-methylphenyl maleimide and 5.00 g of p-carboxyphenyl maleimide were used in place of 13.00 g of o-methylphenylmaleimide in Preparation Example 5.
  • the polymerization solution was clear, and as a result of analyzing the residual monomer concentration in the solution, it was found that ammonium styrene sulfonate, o-methylphenyl maleimide and p-carboxyphenyl maleimide were all ⁇ 0.1% by weight.
  • Production Example 7 (Production 7 of Dispersant) (Example in which the type of CTA (molecular weight modifier) of Production Example 1 was changed)
  • a copolymer was synthesized under the same conditions as in Production Example 1 except that 5.20 g of cysteine was used instead of 4.38 g of 1-mercapto-2,3-propanediol in Production Example 1.
  • the polymerization solution was clear, and as a result of analyzing the residual monomer concentration in the solution, it was found that sodium styrene sulfonate and N-phenylmaleimide were both ⁇ 0.1% by weight.
  • the weight average molecular weight of the copolymer determined by GPC was 27,000. The said polymer was set to copolymer G.
  • Production Example 8 (Production of Dispersant 8) (Example in which CTA of Production Example 2 is Decreased) A copolymer was synthesized under the same conditions as in Preparation Example 2 except that, in Preparation Example 2, 3.70 g of 1-mercapto-2,3-propanediol was reduced to 2.50 g. The polymerization solution was clear, and as a result of analyzing the concentration of residual monomers in the solution, it was found that ammonium styrene sulfonate and N-phenylmaleimide were both ⁇ 0.1% by weight.
  • the weight average molecular weight of the copolymer determined by GPC was 62,000. The said polymer was set to copolymer H.
  • Production Example 9 (Production of Dispersant 9) (Example of Increasing PMI of Production Example 2)
  • 38.3 g of ammonium styrene sulfonate was reduced to 25.00 g, and 16.00 g of N-phenylmaleimide was increased to 40.00 g, instead of 3.70 g of 1-mercapto-2,3-propanediol.
  • the polymerization was started under the same conditions as in Preparation Example 2 except that 5.00 g of thiomalic acid was used, and the polymerization time after addition of the initiator was extended to 10 hours to synthesize a copolymer.
  • Production Example 10 (Production 10 of Dispersant) (Example in which PMI is reduced) 80.50 g of pure water and 35.00 g of acetone were charged into a 1-L glass flask equipped with a reflux condenser, a nitrogen introduction pipe, and a paddle-type stirrer, and heated in a nitrogen atmosphere at 60 ° C. in an oil bath.
  • styrene sulfonic acid monomer solution [40.00 of sodium styrene sulfonate (purity 88.8%) and 2.50 g of 1-mercapto-2,3-propanediol dissolved in 201.00 g of pure water]
  • N-phenylmaleimide monomer solution [1.20 g of N-phenylmaleimide dissolved in 200.00 g of acetone] for 3 hours
  • initiator solution [Azo initiator V-50 manufactured by Wako Pure Chemical Industries, Ltd., 1.00 g of pure water 43
  • the solution was added dropwise over 5 hours to conduct polymerization. Thereafter, the oil bath temperature was raised to 80 ° C., and polymerization was continued for further 3 hours.
  • Production Example 11 (Production of Dispersant 11) (Example Using PMI in Excess) 60.00 g of pure water and 50.00 g of dimethyl sulfoxide were charged into a 1-L glass flask equipped with a reflux condenser, a nitrogen introduction pipe, and a paddle-type stirrer, and heated in an oil bath at 60 ° C. under a nitrogen atmosphere.
  • styrene sulfonic acid monomer solution [20.00 of sodium styrene sulfonate (purity 88.8%) and 4.50 g of 1-mercapto-2,3-propanediol dissolved in 201.00 g of pure water]
  • N-phenyl maleimide monomer solution [40.00 g of N-phenyl maleimide dissolved in 220.00 g of dimethyl sulfoxide] for 3 hours
  • initiator solution [Azo initiator V-50, manufactured by Wako Pure Chemical Industries, Ltd., 2.00 g of pure water It melt
  • Examples 1 to 9 0.1 g of the vacuum-dried product of the polystyrene sulfonic acid copolymer obtained in Production Examples 1 to 9 was dissolved in a mixed solvent of 8 ml of pure water and 2 ml of acetone (0.1 wt% solution), multi-layered CNT (Tokyo Kasei Kogyo Co., Ltd.) After adding 0.1 g of product manufactured by Kogyo Co., Ltd.
  • the average particle size is shown in Tables 1 and 2.
  • Example 1 Multilayer CNT (manufactured by Tokyo Chemical Industry Co., Ltd., diameter 20 to 40 nm, length 1 to 2 ⁇ m) in a 1% by weight aqueous solution of sodium polystyrene sulfonate (PS-1 manufactured by Tosoh Organic Chemical Co., Ltd. (weight average molecular weight 21,000)) After 1 g was added, dispersion treatment was performed for 5 hours with an ultrasonic cleaner (200 W, 38 KHz) to obtain a CNT aqueous dispersion (CNT concentration: 1 wt%, weight ratio of CNT / polystyrene sulfonate: 1).
  • PS-1 sodium polystyrene sulfonate
  • the temperature of the solution was kept below 40 ° C.
  • the average particle size is shown in Table 2.
  • the N-substituted maleimide monomer residue in the polystyrene sulfonic acid copolymer because the particle size is large compared to the example. It is clear that the dispersion effect of the CNTs is low when there is no component.
  • the average particle size is shown in Table 2. It is apparent from the fact that the particle diameter is large compared to the examples, and the dispersing effect of the CNT is low when the amount of the N-substituted maleimide monomer residue component in the polystyrene sulfonic acid copolymer is small.
  • the liquid temperature was maintained at 40 ° C. or less.
  • the average particle size is shown in Table 2. From the fact that the particle size is large compared to the examples, it is clear that the dispersing effect of CNT is low even if there are too many N-substituted maleimide monomer residue components in the polystyrene sulfonic acid copolymer.
  • Aqueous dispersions of nanocarbon materials such as CNT, graphene, fullerene and the like utilizing the polystyrene sulfonic acid copolymer of the present invention are high strength materials, high thermal conductivity materials, conductive resins, LSI wiring, micromachines, carbon dioxide Applications of fixed material, hydrogen gas storage material, electromagnetic wave shielding material, catalyst support material, nano filter, biosensor, drug delivery system, electrochemical device (fuel cell, secondary battery, capacitor, field emission display, transistor, various electrodes) Can contribute to industrialization.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

 カーボンナノチューブ、グラフェン、フラーレンなどのナノカーボン材料の水性分散体を製造するための分散剤として有用な新規なポリスチレンスルホン酸共重合体を提供する。 スチレンスルホン酸モノマー残基、およびN-置換マレイミドモノマー残基、ならびに必要に応じてこれらのモノマーと共重合可能な他のビニルモノマーの残基からなる、ポリスチレンスルホン酸共重合体、これを有効成分とする分散剤、この分散剤を用いたナノカーボン材料の水性分散体、さらに当該ポリスチレンスルホン酸共重合体の製造方法。

Description

ポリスチレンスルホン酸共重合体、それを用いた分散剤、およびナノカーボン材料水性分散体、ならびにポリスチレンスルホン酸共重合体の製造方法
 本発明は、新規なポリスチレンスルホン酸共重合体、及びその分散剤としての利用、並びにこれを用いて製造されるナノカーボン材料の水性分散体に関する。
 カーボンナノチューブ(以下、CNTと略記する)は、軽量高強度、高耐摩耗性、高熱伝導性、高融点、高導電性、半導電性、高比表面積、中空構造、高ガス吸着性、生体適合性などの特性を有することから、高強度材料、高熱伝導性材料、導電性材料、LSI配線、マイクロマシン、二酸化炭素固定材料、水素ガス吸蔵材料、電磁波遮蔽材料、触媒担持材料、ナノフィルター、バイオセンサー、ドラッグデリバリーシステム、電気化学デバイス(燃料電池、二次電池、キャパシタ、電界放出ディスプレイ、トランジスタ、各種電極)等への利用が期待されている。
 しかし、CNTは分子間力によって凝集し易く、この性質が上記分野での実用化の最大の妨げとなっている。従って、CNTを凝集させることなく、溶媒や各種ポリマーマトリックス中に安定にナノ分散させる技術が強く求められている。
 例えば、インクジェットプリント方式による集積回路の微細配線の作製、スクリーン印刷方式による電界放出陰極源の製造及びフラットパネルディスプレイへの応用研究がなされており、そのために必要なCNT水性分散体の製造方法が多数提案されている。例えば、ステロイド骨格を有するノニオン性界面活性剤を用いたCNT水性分散体の製造法が開示されており(例えば、特許文献1参照)、また、ドデシルイタコン酸を分散剤に用いたCNT水性分散体の製造法が開示されている(例えば、特許文献2参照)。更に、親水基を有するトリフェニレン誘導体を分散剤とし、高出力の超音波を照射しながら、CNT水分散体を製造する方法(例えば、特許文献3参照)や、特定の官能基を有するセルロース誘導体を用いた製造法(例えば、特許文献4参照)が開示されている。しかし、上記何れの方法も分散効果は必ずしも満足できるものではなく、比較的高価な分散剤を使用するなどの課題があった。
 一方、スチレンスルホン酸を利用した方法も知られている。例えば、ポリスチレンスルホン酸塩(単独重合体)を用いたCNT水分散体の製造法が開示されている(例えば、特許文献5及び特許文献6参照)。また、スチレンスルホン酸-マレイン酸共重合体塩を用いたCNT水分散体の製造法が開示されている(例えば、特許文献7参照)。これらポリスチレンスルホン酸重合体塩は、安全性が高く、比較的低コストで工業生産されているが、分散効果は十分と言えず、更なる分散効果の向上が求められていた。
特開2009-242126号公報 特開2010-13312号公報 特開2009-190940号公報 特開2011-127041号公報 特開2005-263608号公報 特開2010-254546号公報 特表2006-525220号公報
 本発明は、上記の課題に鑑みてなされたものであり、その目的は、CNT、グラフェン、フラーレンなどのナノカーボン材料の水性分散体を製造するための分散剤として有用な新規ポリスチレンスルホン酸共重合体を提供することにある。
 本発明者は、上記課題を解決すべく鋭意研究を行った結果、スチレンスルホン酸、及びN-置換マレイミドを主成分とするポリスチレンスルホン酸共重合体が、CNT、グラフェン、フラーレンなどのナノカーボン材料の水性分散体を製造するための分散剤として有用なことを見出し、本発明を完成するに至った。
 本発明は、(a)下記式(I)で表される繰り返し構造単位であるスチレンスルホン酸モノマー残基、および(b)下記式(II)で表される繰り返し構造単位であるN-置換マレイミド残基、ならびに必要に応じて(c)前記(a)~(b)と共重合可能な下記式(III)で表される繰り返し構造単位である他のビニルモノマー残基からなる、ポリスチレンスルホン酸共重合体に関する。
Figure JPOXMLDOC01-appb-C000002
〔式(I)~(III)中、Xは、ナトリウムカチオン、リチウムカチオン、カリウムカチオン、アンモニウムカチオン、第4級アンモニウムカチオン又はプロトンを、Rは、芳香族炭化水素基又は置換芳香族炭化水素基を、R、R、R及びRは、各々独立して脂肪族炭化水素基、置換脂肪族炭化水素基、芳香族炭化水素基、置換芳香族炭化水素基、エステル基、シアノ基、カルボキシル基又は水素を表し、スチレンスルホン酸モノマー残基の割合をk、N-置換マレイミドモノマー残基の割合をm、他のビニルモノマー残基の割合をnとすると、スチレンスルホン酸モノマー残基の割合kは95~30モル%、N-置換マレイミドモノマー残基の割合mは5~70モル%、他のビニルモノマー残基の割合nは0~20モル%(ただし、k+m+n=100モル%)である。〕
 以上のN-置換マレイミドモノマーとしては、N-フェニルマレイミド、N-クロロフェニルマレイミド、N-メチルフェニルマレイミド、N-カルボキシフェニルマレイミド及びN-ナフチルマレイミドからなる群より選ばれる1種以上の化合物が挙げられる。
 また、本発明のポリスチレンスルホン酸共重合体のゲル浸透クロマトグラフィーで求めた重量平均分子量は、好ましくは2千~20万である。
 次に、本発明は、上記ポリスチレンスルホン酸共重合体を有効成分とする分散剤に関する。
 また、本発明は、上記ポリスチレンスルホン酸共重合体を分散剤として用いて製造されてなるカーボンナノチューブ水性分散体に関する。
 さらに、本発明は、上記ポリスチレンスルホン酸共重合体を分散剤として用いて製造されてなるグラフェン水性分散体に関する。
 さらに、本発明は、上記ポリスチレンスルホン酸共重合体を分散剤として用いて製造されてなるフラーレン水性分散体に関する。
 次に、本発明は、スチレンスルホン酸又はその塩モノマー及びN-置換マレイミドモノマーを含むモノマー混合溶液を、アセトン、テトラヒドロフラン、ジオキサン、ジメチルスルホキシド、N-メチルピロリドン、およびジメチルホルムアミドからなる群より選ばれる1種以上の水溶性溶剤と水の混合溶媒中へ、ラジカル重合開始剤と共に連続的に添加しながらラジカル共重合する、上記ポリスチレンスルホン酸共重合体の製造方法に関する。
 また、本発明は、スチレンスルホン酸又はその塩モノマー及びN-置換マレイミドモノマーに、これらと共重合可能な他のビニルモノマーと分子量調節剤を更に加えてなるモノマー混合溶液を用いる、上記ポリスチレンスルホン酸共重合体の製造方法に関する。
 本発明のポリスチレンスルホン酸共重合体は、水性媒体中に、CNT、グラフェン、フラーレンなどのナノカーボン材料を分散させる能力が極めて高く、かつ簡便な方法で製造することができる。
本発明に関するポリスチレンスルホン酸共重合体で、製造例1で得られた共重合体のFT-IRスペクトルを表す。
 本発明のポリスチレンスルホン酸共重合体は、上記の、(a)式(I)で表される繰り返し構造単位であるスチレンスルホン酸モノマー残基、および(b)式(II)で表される繰り返し構造単位であるN-置換マレイミドモノマー残基、ならびに必要に応じて(c)式(III)で表される上記(a)~(b)と共重合可能な他のビニル系モノマー単位からなる。
 ここで、式(I)~(III)中、Xは、ナトリウムカチオン、リチウムカチオン、カリウムカチオン、アンモニウムカチオン、第4級アンモニウムカチオン又はプロトンを、Rは、芳香族炭化水素基又は置換芳香族炭化水素基を、R、R、R及びRは、各々独立して脂肪族炭化水素基、置換脂肪族炭化水素基、芳香族炭化水素基、置換芳香族炭化水素基、エステル基、シアノ基、カルボキシル基又は水素を表し、k、m及びnは、各々独立して共重合体に含まれる各々のモノマー残基のモル%を示すものであり、k=95~30モル%、m=5~70モル%、n=0~20モル%(ただし、k+m+c=100モル%)である。なお、k、m及びnは、各々のモノマー残基の重合度を表すものではない。
 本発明のポリスチレンスルホン酸共重合体は、上記の繰り返し構造単位(a)および(b)、あるいは(a)、(b)および(c)からなる。そして、これらの繰り返し構造単位からなる本発明のポリスチレンスルホン酸共重合体は、ランダム共重合体、交互共重合体、あるいはブロック共重合体のいずれであってもよい。
 本発明は、スチレンスルホン酸モノマー残基とN-置換マレイミドモノマー残基の組合せにその特徴がある。ポリスチレンスルホン酸ナトリウムが顔料等の分散剤として使用できることは公知である(接着の技術、vol.30、No.2、2010年、56頁)。
 しかし、CNTなどを水中にナノ分散させる能力は必ずしも十分ではない。本発明者は、スチレンスルホン酸ナトリウムとスチレンとの共重合により、ポリマー中の芳香環の比率を高めることによって、CNTへの吸着性が向上し、CNTの水への分散能力が高まるのではないかと考え、検討したが、期待したほどの改良効果は認められなかった。
 一方、N-置換マレイミドの代表例であるN-フェニルマレイミドの単独重合体は、400℃の融点を有する高耐熱性樹脂として知られている。N-フェニルマレイミドはスチレンなどのビニルモノマーと共重合するため、スチレン系樹脂の耐熱性を改良する目的で使用されている。本発明者は、スチレンスルホン酸とN-フェニルマレイミドなどのN-置換マレイミドを特定の比率で共重合すると、水性溶媒に可溶なポリマーが得られ、スチレン/スチレンスルホン酸共重合体よりも、CNTやグラフェンなどの水への分散能力がはるかに高いことを見出した。即ち、理由は定かではないが、スチレンと同じ芳香環を有するモノマーだが、N-フェニルマレイミド等のN-置換マレイミドモノマーとスチレンスルホン酸モノマーとの共重合によって得られる新規なポリスチレンスルホン酸共重合体が、CNT、グラフェン、及びフラーレンなどの水性分散体を製造するための分散剤として極めて有効であることを見出したものである。
 本発明のポリスチレンスルホン酸共重合体に含まれるスチレンスルホン酸モノマー残基は、スチレンスルホン酸ナトリウム、スチレンスルホン酸カリウム、スチレンスルホン酸リチウム、スチレンスルホン酸アンモニウム、スチレンスルホン酸4級アンモニウム、スチレンスルホン酸などの重合残基であり、本発明の共重合体に水溶性、親水性を付与するための必須成分である。重合溶媒への溶解性、CNTやグラフェンの水性分散体を電子材料へ適用する場合の金属イオンの影響を考慮すると、金属を含まないスチレンスルホン酸アンモニウムモノマー残基、スチレンスルホン酸モノマー残基がより好ましい。
 また、本発明のポリスチレンスルホン酸共重合体に含まれるN-置換マレイミドモノマー残基は、当該共重合体に、CNT、グラフェン、及びフラーレンに対する吸着能を付与するために不可欠な成分である。N-置換マレイミドは、特に限定するものではないが、CNTとの相互作用が高いと考えられる芳香族置換基を有するマレイミドが好ましく、例えば、N-フェニルマレイミド、N-(クロロフェニル)マレイミド、N-(メチルフェニル)マレイミド、N-(イソプロピルフェニル)マレイミド、N-(スルフォフェニル)マレイミド、N-メチルフェニルマレイミド、N-ブロモフェニルマレイミド、N-ナフチルマレイミド、N-ヒドロキシフェニルマレイミド、N-メトキシフェニルマレイミド、N-カルボキシフェニルマレイミド、N-(ニトロフェニル)マレイミド、N-ベンジルマレイミド、N-(4-アセトキシ-1-ナフチル)マレイミド、N-(4-オキシ-1-ナフチル)マレイミド、N-(3-フルオランチル)マレイミド、N-(5-フルオレセイニル)マレイミド、N-(1-ピレニル)マレイミド、N-(2,3-キシリル)マレイミド、N-(2,4-キシリル)マレイミド、N-(2,6-キシリル)マレイミド、N-(アミノフェニル)マレイミド、N-(トリブロモフェニル)マレイミド、N-[4-(2-ベンゾイミダゾリル)フェニル]マレイミド、N-(3,5-ジニトロフェニル)マレイミド、N-(9-アクリジニル)マレイミド等が挙げられる。重合時の溶解性、入手性を考慮すると、N-フェニルマレイミド、N-クロロフェニルマレイミド、N-メチルフェニルマレイミド、N-カルボキシフェニルマレイミド、N-ナフチルマレイミドが好ましく、更に、コストを考慮すると、N-フェニルマレイミドが好ましい。
 なお、N-置換マレイミドとしては、このほかN-シクロヘキシルマレイミド、N-メチルマレイミド、N-エチルマレイミドなども使用可能である。
 本発明のポリスチレンスルホン酸共重合体を構成するモノマー残基のモル比は、スチレンスルホン酸モノマー残基(k)が95~30モル%、N-置換マレイミドモノマー残基(m)が5~70モル%、及び必須成分ではないが、これらと共重合可能な他のビニルモノマーの重合残基(n)が0~20モル%である。スチレンスルホン酸モノマー残基(k)の比率が30モル%未満では、共重合体の水溶性、親水性が低下し、CNTなどのナノカーボン材料の水性分散体を製造する際の作業性が悪化すると共に、CNTなどのナノカーボン材料の表面の電荷が不十分となり、分散安定性が低下する。一方、スチレンスルホン酸モノマー残基(k)の比率が95モル%を超えると、共重合体のCNTなどのナノカーボン材料への吸着力が低下するため、より微細なCNTなどのナノカーボン材料の水性分散体を得ることが難しくなる。分散安定性とCNTなどのナノカーボン材料の微細化を両立させるためには、スチレンスルホン酸モノマー残基(k)が90~40モル%、N-置換マレイミドモノマー残基(m)が10~60モル%、これらと共重合可能な他のビニルモノマーの重合残基(n)が0~10モル%、の組成がより好ましい。
 上記の他のビニルモノマーの重合残基は、必須成分ではないが、例えば、目的に応じてポリスチレンスルホン酸共重合体の溶解性、親水-疎水性バランス、極性の調整、架橋性、及び反応性を付与する必要がある場合に使用できる。他のビニルモノマーとしては、スチレンスルホン酸モノマー、及びN-置換マレイミドモノマーと共重合できるものであれば特に限定されるものではないが、例えば、フマル酸ジブチル、フマル酸ジプロピル、フマル酸ジエチル、フマル酸ジシクロヘキシルなどのフマル酸ジエステル類、フマル酸ブチル、フマル酸プロピル、フマル酸エチルなどのフマル酸モノエステル類、マレイン酸ジブチル、マレイン酸ジプロピル、マレイン酸ジエチルなどのマレイン酸ジエステル類、マレイン酸ブチル、マレイン酸プロピル、マレイン酸エチル、マレイン酸ジシクロヘキシルなどのマレイン酸モノエステル類、無水マレイン酸、無水シトラコン酸などの酸無水物、マレイミドなどのマレイミド類、スチレン、クロロスチレン、ジクロロスチレン、ブロモスチレン、ジブロモスチレン、フロロスチレン、トリフロロスチレン、ニトロスチレン、シアノスチレン、α-メチルスチレン、p-クロロメチルスチレン、p-シアノスチレン、p-アセトキシスチレン、塩化p-スチレンスルホニル、エチルp-スチレンスルホニル、メチルp-スチレンスルホニル、プロピルp-スチレンスルホニル、p-ブトキシスチレン、4-ビニル安息香酸、3-イソプロペニル-α,α’-ジメチルベンジルイソシアネートなどのスチレン類、イソブチルビニルエーテル、エチルビニルエーテル、2-フェニルビニルアルキルエーテル、ニトロフェニルビニルエーテル、シアノフェニルビニルエーテル、クロロフェニルビニルエーテルなどのビニルエーテル類、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸ペンチル、アクリル酸ヘキシル、アクリル酸デシル、アクリル酸ラウリル、アクリル酸オクチル、アクリル酸ドデシル、アクリル酸ステアリル、アクリル酸2-エチルヘキシル、アクリル酸シクロヘキシル、アクリル酸ボルニル、アクリル酸2-エトキシエチル、アクリル酸2-ブトキシエチル、アクリル酸2-ヒドロキシエチル、アクリル酸テトラヒドロフルフリル、アクリル酸メトキシエチレングリコール、アクリル酸エチルカルビトール、アクリル酸2-ヒドロキシプロピル、アクリル酸4-ヒドロキシブチル、アクリル酸3-(トリメトキシシリル)プロピル、ポリエチレングリコールアクリレート、アクリル酸グリシジル、2-(アクリロイルオキシ)エチルフォスフェート、アクリル酸2,2,3,3-テトラフロロプロピル、アクリル酸2,2,2-トリフロロエチル、アクリル酸2,2,3,3,3-ペンタフロロプロピル、アクリル酸2,2,3,4,4,4-ヘキサフロロブチルなどのアクリル酸エステル類、メタクリル酸メチル、メタクリル酸t-ブチル、メタクリル酸sec-ブチル、メタクリル酸i-ブチル、メタクリル酸i-プロピル、メタクリル酸デシル、メタクリル酸ラウリル、メタクリル酸オクチル、メタクリル酸ドデシル、メタクリル酸ステアリル、メタクリル酸シクロヘキシル、メタクリル酸ボルニル、メタクリル酸ベンジル、メタクリル酸フェニル、メタクリル酸グリシジル、ポリエチレングリコールメタクリレート、メタクリル酸2-ヒドロキシエチル、メタクリル酸テトラヒドロフルフリル、メタクリル酸メトキシエチレングリコール、メタクリル酸エチルカルビトール、メタクリル酸2-ヒドロキシプロピル、メタクリル酸4-ヒドロキシブチル、2-(メタクリロイルオキシ)エチルフォスフェート、メタクリル酸2-(ジメチルアミノ)エチル、メタクリル酸2-(ジエチルアミノ)エチル、メタクリル酸3-(ジメチルアミノ)プロピル、メタクリル酸2-(イソシアナート)エチル、メタクリル酸2,4,6-トリブロモフェニル、メタクリル酸2,2,3,3-テトラフロロプロピル、メタクリル酸2,2,2-トリフロロエチル、メタクリル酸2,2,3,3,3-ペンタフロロプロピル、メタクリル酸2,2,3,4,4,4-ヘキサフロロブチルなどのメタクリル酸エステル類、1,3-ブタジエン、2-メチル-1,3-ブタジエン、2-クロロ-1,3-ブタジエン、2,3-ジクロロ-1,3-ブタジエン、2-シアノ-1,3-ブタジエン、1-クロロ-1,3-ブタジエン、2-(N-ピペリジルメチル)-1,3-ブタジエン、2-トリエトキシメチル-1,3-ブタジエン、2-(N,N-ジメチルアミノ)-1,3-ブタジエン、N-(2-メチレン-3-ブテノイル)モルホリン、2-メチレン-3-ブテニルホスホン酸ジエチルなどの1,3-ブタジエン類、その他、アクリルアミド、メタクリルアミド、スルフォフェニルアクリルアミド、スルフォフェニルイタコンイミド、アクリロニトリル、メタクリロニトリル、フマロニトリル、α-シアノエチルアクリレート、無水シトラコン酸、ビニル酢酸、プロピオン酸ビニル、ピバリン酸ビニル、バーサミック酸ビニル、マレイン酸モノエステル、マレイン酸ジエステル、フマル酸モノエステル、フマル酸ジエステル、クロトン酸、イタコン酸、フマル酸、モノ2-(メタクリロイルオキシ)エチルフタレート、モノ2-(メタクリロイルオキシ)エチルサクシネート、モノ2-(アクリロイルオキシ)エチルサクシネート、メタクリロキシプロピルトリメトキシシラン、メタクリロキシプロピルジメトキシシラン、アクロレイン、ジアセトンアクリルアミド、ビニルメチルケトン、ビニルエチルケトン、ジアセトンメタクリレート、ビニルスルホン酸、イソプレンスルホン酸、アリルスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、2-アクリルアミド-1-メチルスルホン酸、2-メタクリルアミド-2-メチルプロパンスルホン酸、デヒドロアラニン、二酸化イオウ、イソブテン、N-ビニルカルバゾール、ビニリデンジシアニド、パラキノジメタン、クロロトリフルオロエチレン、テトラフルオロエチレン、ノルボルネン、N-ビニルカルバゾールなどが挙げられる。
 本発明のポリスチレンスルホン酸共重合体の、GPC(ゲル浸透クロマトグラフィー)で求めた重量平均分子量は、2千~20万である。重量平均分子量が20万を超えると、粘度が高くて作業性が悪いだけでなく、単位重量当りの共重合体鎖の数が減少するため、CNTやグラフェンのような微細化合物を分散させる場合には、効率が低下する。そのような意味で、共重合体の分子量が小さいほど、微細化合物を分散させる場合の効率は高くなるが、分散安定性は逆に低下する。分散安定性と分散剤の効率を考慮すると、3千から5万が好ましい。
 本発明のポリスチレンスルホン酸共重合体の重量平均分子量は、重合開始剤の量、分子量調節剤の量、モノマー及び重合開始剤のフィード速度などにより容易に調整することができる。
 次に、本発明のポリスチレンスルホン酸共重合体の製造法について説明する。
 特に限定するものではないが、第1例として、一般的なラジカル重合による方法を例示する。例えば、反応容器にスチレンスルホン酸モノマー又はその塩とN-置換マレイミドモノマー混合物の均一溶液を仕込み、必要に応じて分子量調節剤を加え、系内を脱酸素した後、所定温度に加熱し、ラジカル重合開始剤を添加しながら重合すれば良い。この際、急激な重合を避けるため、及び低分子量域での分子量制御性を考慮すると、最初に全てのモノマー混合物を反応容器に仕込むのではなく、各々のモノマーを、重合開始剤や分子量調節剤と共に、反応容器に少量ずつ連続添加するのが好ましい。
 反応溶媒は特に限定するものではないが、スチレンスルホン酸モノマー又はその塩及びN-置換マレイミドの溶解性、並びにCNTなどのナノカーボン材料の水性分散体の製造を考慮すると、水及び水溶性溶剤の混合物が好ましい。水溶性溶剤としては、スチレンスルホン酸モノマー又はその塩とN-置換マレイミドモノマーの混合物が溶解する組成であれば制限はないが、例えば、アセトン、テトラヒドロフラン、ジオキサン、メタノール、エタノール、n-プロパノール、イソプロパノール、メトキシエタノール、エトキシエタノール、ブタノール、エチレングリコール、プロピレングリコール、グリセリン、ジメチルスルホキシド、ジメチルホルムアミド、N-メチルピロリドン等があげられる。好ましくは、アセトン、テトラヒドロフラン、ジオキサン、ジメチルスルホキシド、N-メチルピロリドン、およびジメチルホルムアミドである。
 反応溶媒として、水および水溶性溶剤の混合物を用いる場合、水と水溶性溶剤の割合は、水:水溶性溶剤(重量比)が、通常、30/70~70/30程度である。
 分子量調節剤は特に限定されるものではないが、例えば、ジイソプロピルキサントゲンジスルフィド、ジエチルキサントゲンジスルフィド、ジエチルチウラムジスルフィド、2,2’-ジチオジプロピオン酸、3,3’-ジチオジプロピオン酸、4,4’-ジチオジブタン酸、2,2’-ジチオビス安息香酸などのジスルフィド類、n-ドデシルメルカプタン、オクチルメルカプタン、t-ブチルメルカプタン、チオグリコール酸、チオリンゴ酸、2-メルカプトプロピオン酸、3-メルカプトプロピオン酸、チオサリチル酸、3-メルカプト安息香酸、4-メルカプト安息香酸、チオマロン酸、ジチオコハク酸、チオマレイン酸、チオマレイン酸無水物、ジチオマレイン酸、チオグルタール酸、システイン、ホモシステイン、5-メルカプトテトラゾール酢酸、3-メルカプト-1-プロパンスルホン酸、3-メルカプトプロパン-1,2-ジオール、メルカプトエタノール、1,2-ジメチルメルカプトエタン、2-メルカプトエチルアミン塩酸塩、6-メルカプト-1-ヘキサノール、2-メルカプト-1-イミダゾール、3-メルカプト-1,2,4-トリアゾール、システイン、N-アシルシステイン、グルタチオン、N-ブチルアミノエタンチオール、N,N-ジエチルアミノエタンチオールなどのメルカプタン類、ヨードホルムなどのハロゲン化炭化水素、ジフェニルエチレン、p-クロロジフェニルエチレン、p-シアノジフェニルエチレン、α-メチルスチレンダイマー、ベンジルジチオベンゾエート、2-シアノプロプ-2-イルジチオベンゾエート、有機テルル化合物、イオウ、亜硫酸ナトリウム、亜硫酸カリウム、重亜硫酸ナトリウム、重亜硫酸カリウム、ピロ亜硫酸ナトリウム、ピロ亜硫酸カリウム等が挙げられる。
 分子量調節剤の使用量は、モノマー成分に対し、通常、0.1~5.0重量%程度である。
 上記ラジカル重合開始剤としては、例えば、ジ-t-ブチルパーオキサイド、ジクミルパーオキサイド、t-ブチルクミルパーオキサイド、ベンゾイルパーオキサイド、ジラウリルパーオキサイド、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、1,1-ビス(t-ブチルパーオキシ)-3,5,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-シクロヘキサン、シクロヘキサノンパーオキサイド、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソプロピルカーボネート、クミルパーオキシオクトエート、過硫酸カリウム、過硫酸アンモニウム、過酸化水素などのパーオキサイド類、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルプロピオニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、1-[(1-シアノ-1-メチルエチル)アゾ]ホルムアミド、ジメチル2,2’-アゾビス(2-メチルプロピオネート)、4,4’-アゾビス(4-シアノバレリックアシッド)、2,2’-アゾビス(2,4,4-トリメチルペンタン)、2,2’-アゾビス{2-メチル-N-[1,1’-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド}、2,2’-アゾビス{2-(2-イミダゾリン-2-イル)プロパン]ジハイドロクロライド、2,2’-アゾビス{2-(2-イミダゾリン-2-イル)プロパン]ジサルフェートジハイドレート、2,2’-アゾビス{2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル)プロパン]}ジハイドロクロライド、2,2’-アゾビス(1-イミノ-1-ピロリジノ-2-メチルプロパン)ジハイドロクロライド、2,2’-アゾビス(2-メチルプロピオンアミジン)ジハイドロクロライド、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]テトラハイドレートなどのアゾ化合物等があげられる。また、必要に応じて、アスコルビン酸、エリソルビン酸、アニリン、三級アミンなどの有機系還元剤等を併用しても良い。
 ラジカル重合開始剤の使用量は、モノマー成分に対し、通常、0.1~10.0重量%程度である。
 重合条件は特に限定するものではないが、不活性ガス雰囲気下、40~120℃で、4~20時間加熱すれば良く、重合溶媒、モノマー組成、及び重合開始剤種によって適宜調整すれば良い。
 本発明のポリスチレンスルホン酸共重合体の製造法の第2例として、スチレンスルホン酸モノマー又はその塩ではなく、スチレンスルホン酸エステルモノマーを用いる方法を説明する。例えば、スチレンスルホン酸ナトリウムなどの代わりに、有機溶媒への溶解性が高いスチレンスルホン酸メチル、スチレンスルホン酸エチル、スチレンスルホン酸n-プロピル、スチレンスルホン酸イソプロピル、スチレンスルホン酸ブチルなどのスチレンスルホン酸エステル又はクロロスルホン化スチレンとN-置換マレイミドを、第1例のラジカル重合法で共重合した後、スルホン酸エステル又はクロロスルホン基をアルカリ等で加水分解することによって、スルホン酸単量体残基へ変換することによっても、本発明のポリスチレンスルホン酸共重合体を製造することができる。
 本発明のポリスチレンスルホン酸共重合体は、上記の一般的なラジカル重合のほか、リビングラジカル重合によっても製造できる。また、スチレンスルホン酸エステルを用いた場合には、イオン重合によっても製造できる。
 リビングラジカル重合法としては、例えば、原子移動重合法、安定ニトロキシル媒介重合法、可逆的付加解裂移動重合法、有機テルル媒介重合法(高分子論文集、vol.64、No.6、pp.329、2007年)、ヨウ素移動重合法(特開2007-92014号公報;高分子論文集、vol.59、No.10、798頁、2010年)、ホスフィンと二硫化炭素のコンプレックスを用いる重合法(特開2006-233012号公報)、トリアルキルボランを用いる方法(接着、50巻、4号、23頁、2006年)があげられ、これらの方法が本発明にも適用できる。
 イオン重合としては、例えば、アミン化合物を用いたアニオン重合法(Polymer Preprints、Japan、Vol.59、No.1、2010年、565頁;日本ゴム協会誌、74巻、7号、2001年、254頁)があげられ、スチレンスルホン酸エステルを使用すれば、本発明にも適用できる。
 ところで、本発明の対象となるCNT、グラフェン、フラーレンなどは、ナノカーボン材料として化学的に同義である。ナノカーボン材料は、炭素原子が集まって、ナノメートル(nm)単位で構造化したものを総称する。このうち、カーボンナノチューブ(Carbon
nanotube、略称CNT)は、炭素によって作られる六員環ネットワーク(グラフェンシート)が単層あるいは多層の同軸管状になった物質である。炭素の同素体で、フラーレンの一種に分類されることもある。また、グラフェン (graphene) とは、1原子の厚さのsp2結合炭素原子のシートである。炭素原子とその結合からできた蜂の巣のような六角形格子構造をとっている。さらに、フラーレン(fullerene) は、最小の構造が多数の炭素原子で構成されるクラスターの総称である。構造の始まりが14個のダイヤモンドおよび6個のグラファイトと異なり、数十個の数の原子から始まる炭素元素同素体である。
 かかるCNT、グラフェン、フラーレンなどのナノカーボン材料の水性分散体の製造法については、特に限定されるものではなく、公知の方法が適用できる(例えば、特開2009-190940号公報、特開2010-13312号公報)。例えば、本発明のポリスチレンスルホン酸共重合体を含む水性溶媒に、攪拌しながらCNTなどのナノカーボン材料を添加し、ビーズミル、ホモジナイザー及び又は超音波照射によってCNTを分散させる。この際、CNTなどのナノカーボン材料の水濡れ性を向上させるため、水に対して0.5~30重量%の水溶性溶媒、及び又はアニオン性乳化剤、ノニオン性乳化剤、カチオン性乳化剤、両性乳化剤を添加しても良い。
 上記水溶性溶媒としては、特に限定されるものではないが、アセトン、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン、エトキシエタノール、メトキシエタノール、グリセリン、プロピレングリコール、エチレングリコール、ブタンジオール、酢酸、プロピオン酸などが例示される。
 上記乳化剤としては、特に限定されるものではないが、アニオン性乳化剤としては、例えば、ロジン酸塩、脂肪酸塩、アルケニルコハク酸塩、アルキルエーテルカルボン酸塩、アルキルジフェニルエーテルジスルホン酸塩、アルカンスルホン酸塩、アルキルサクシネートスルホン酸塩、ポリオキシエチレン多環式フェニルエーテル硫酸エステル塩、α-オレフィンスルホン酸塩、アルキルベンゼンスルホン酸塩、ナフタレンスルホン酸塩ホルマリン縮合物、タウリン誘導体、ポリスチレンスルホン酸、ポリスチレンスルホン酸メタクリル酸共重合体、ポリスチレンスルホン酸アクリル酸共重合体、ポリスチレンスルホン酸アクリル酸エステル共重合体、スチレンスルホン酸マレイン酸共重合体、スチレンスルホン酸アクリルアミド共重合体、スチレンスルホン酸メタクリルアミド共重合体、スチレンスルホン酸2-ヒドロキシエチルメタクリレート共重合体、ポリビニルホスホン酸共重合体、ポリビニルスルホン酸共重合体、ポリイソプレンスルホン酸共重合体、ポリアクリル酸エステルアクリル酸共重合体、ポリメタクリル酸エステルメタクリル酸共重合体、ポリアクリルアミドアクリル酸共重合体、ポリメタクリルアミドメタクリル酸共重合体、アルキルスルホコハク酸塩、アルキル硫酸エステル塩、アルキルエーテル硫酸エステル塩、アルキルプロペニルフェノールポリエチレンオキサイド付加物の硫酸エステル塩、アリルアルキルフェノールポリエチレンオキサイド付加物の硫酸エステル塩、アルキルリン酸エステル塩、ポリオキシエチレンアルキルエーテル燐酸エステル塩、高級脂肪酸アミドのスルホン酸塩、高級脂肪酸アルキロールアミドの硫酸エステル塩等があげられ、ノニオン性乳化剤としては、例えば、ポリオキシアルキレンアルキルアミン、アルキルアルカノールアミド、アミンオキシド系ノニオン乳化剤、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシアルキレン多環式フェニルエーテル、アルキルプロペニルフェノールポリエチレンオキサイド付加物、アリルアルキルフェノールポリエチレンオキサイド付加物、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、アルキルポリグルコキシド、ショ糖脂肪酸エステル、ポリオキシエチレンポリオキシプロピレングリコール、ポリビニルアルコール、カルボキシルメチルセルロース、ポリビニルピロリドン、ヒドロキシエチルセルロース、ポリアクリルアミド、ポリメタクリルアミド、ポリジメチルアミノエチルメタクリレート、ポリジメチルアミノエチルアクリレート、ポリジエチルアミノエチルメタクリレート、ポリジエチルアミノエチルアクリレート、ポリt-ブチルエチルアミノエチルメタクリレート、ポリt-ブチルアミノエチルアクリレート、ポリジメチルアミノエチルメタクリレート/メチルメタクリレート共重合体、ポリジメチルアミノエチルアクリレート/メチルメタクリレート共重合体、ポリジメチルアミノエチルメタクリレート/ブチルアクリレート共重合体、ポリジメチルアミノエチルアクリレート/エチルアクリレート共重合体等があげられ、カチオン性乳化剤としては、例えば、アルキルアミン塩、アルキル型四級アンモニウム塩、脂肪酸アミドアミン塩、アルキルアミノ酸塩等があげられ、両性乳化剤としては、例えば、アルキルジメチルアミノ酢酸ベタイン、アルキルジメチルアミノスルホベタイン、アルキルスルホベタイン等があげられる。
 なお、これらの乳化剤の使用量は、上記本発明のポリスチレンスルホン酸共重合体成分に対し、0.1~30重量%程度である。
 本発明のポリスチレンスホン酸共重合体は、水溶性とCNTやグラフェン、フラーレンへの吸着能を兼ね備えた新規な共重合体であり、産業上有用なCNT、グラフェン、フラーレンなどナノカーボン材料の水性分散体の製造において極めて有用な分散剤である。また、本発明のCNTなどのナノカーボン材料の水性分散体は、必要に応じて、pH調整剤、消泡剤、防腐剤、粘度調節剤、キレート剤などを含んで良い。
 ここで、本発明のナノカーボン材料水性分散体において、CNT、グラフェン、フラーレンなどのナノカーボン材料と水などの水性媒体の割合は、水性媒体中のナノカーボン材料の濃度が0.05~10重量%、好ましくは0.1~5重量%である。0.05重量%未満では、水性分散体塗膜中のカーボンナノ材料ネットワーク形成が不十分となり、導電性が充分には得られない場合がある。一方、10重量%を超えると、CNTなどのナノカーボン材料が十分に分散しきれない場合があり、また使用するナノカーボン材料の量に見合った導電性が得られないことがある。
 また、本発明のナノカーボン材料水性分散体において、CNTなどのナノカーボン材料と本発明のポリスチレンスルホン酸共重合体との割合は、ナノカーボン材料/ポリスチレンスルホン酸共重合体の重量比が、1/10~10/1倍、好ましくは3/10~10/3倍である。1/10未満の場合、相対的にポリスチレンスルホン酸共重合体の量が多くなり、添加したポリスチレンスルホン酸共重合体の量に見合った分散効果が得られない場合がある。一方、10/1を超えると、ナノカーボン材料に対するポリスチレンスルホン酸共重合体の量が不十分であるため、ナノカーボン材料が水などの水性媒体中で充分に分散しきれない場合がある。
 その他、本発明のポリスチレンスホン酸共重合体は、カーボン顔料、C.I.ピグメントイエロー74、C.I.ピグメントイエロー109、C.I.ピグメントイエロー128、C.I.ピグメントイエロー151、C.I.ピグメントイエロー14、C.I.ピグメントイエロー16、C.I.ピグメントイエロー17などのアゾ顔料、銅フタロシアニンブルー又はその誘導体(C.I.ピグメントブルー15:3、C.I.ピグメントブルー15:4)、アルミニウムフタロシアニンなどのフタロシアニン系顔料、C.I.ピグメントオレンジ48、C.I.ピグメントオレンジ49、C.I.ピグメントレッド122、C.I.ピグメントレッド192、C.I.ピグメントレッド202、C.I.ピグメントレッド206、C.I.ピグメントレッド207、C.I.ピグメントレッド209、C.I.ピグメントバイオレット19、C.I.ピグメントバイオレット42などのキナクリドン系顔料の他、イソインドリノン顔料、ジオキサジン顔料、ペリレン顔料、ペリノン顔料、チオインジゴ顔料、アントラキノン顔料、キノフタロン、インダンスレン系顔料、ジケトピロロピロール系顔料、アニリンブラック顔料、複素環式イエロー系顔料等の分散剤としての利用も期待できる。さらに、本発明のポリスチレンスホン酸共重合体は、親水性成分と疎水性成分を含むため、水性流体用のレオロジー制御剤としての利用も期待できる。
 以下の実施例により、本発明をさらに具体的に説明するが、本発明はこれらの実施例により何らの制限を受けるものではない。
 なお、以下の実施例において、共重合、共重合体、CNT水性分散体の分析、及び評価は以下の条件で実施した。
 <疎水性モノマーの転化率測定>
 重合溶液のメタノールで希釈後、上済み液中のN-置換マレイミドモノマー、及びスチレンモノマーをガスクロマトグラフィー(G-17A、島津製作所製)を用いて測定した(カラム=NEUTRA BOND-5、昇温プログラム=200℃×10分ホールド後、5℃/分で300℃まで昇温、検量線=アジポニトリル、又は1-メチルナフタレンを内部標準として使用した)。
 <スチレンスルホン酸モノマーの転化率測定>
 下記GPC重量平均分子量の測定において、スチレンスルホン酸モノマーの吸収ピーク強度から算出した。
 <GPC重量平均分子量の測定>
 カラム=TSK guardcolumn α、TSK gel α-3000、TSK gel α-6000、溶離液=硫酸ナトリウム0.05mol/L水溶液とアセトニトリルの65:35重量%溶液、カラム温度=40℃、流量=0.6ml/min、検出器=UV検出器(波長230nm)、注入量=100μl、検量線=創和科学の標準ポリスチレンスルホン酸ナトリウム、の条件により測定した。
 <共重合体の元素分析>
 炭素、水素、窒素については、乾燥試料(共重合体溶液を100℃で3時間真空乾燥後、乾燥ポリマーをその重量の100倍量のアセトンに投入し、24時間、常温で攪拌し、未溶解物を濾過回収し、50℃で1時間真空乾燥したものであり、未反応のN-置換マレイミドを除去したもの)を粉砕後、パーキンエルマー製2400II元素分析計にて測定した。
 元素分析において、イオウについては、上記乾燥、粉砕した試料を精秤し、酸素燃焼フラスコ法で燃焼吸収後、イオンクロマトグラフィーで測定した。
 イオンクロマトグラフィーでの測定条件は以下の通りである。
 カラム=TSK gel SuperIC-AP、溶離液=2.7mM炭酸水素ナトリウム+1.8mM炭酸ナトリウム、カラム温度=40℃、流量=0.8ml/min、検出器=電気伝導度
 <共重合体のFT-IR分析>
 KBr錠剤法で試料を作製し、パーキンエルマー システム2000を用いて測定した。測定波長範囲は4,000~400cm-1、測定回数は16回である。
<CNT水性分散体の粒径測定>
 CNT水性分散体の目視観察、及び動的光散乱式粒度分布計マイクロトラックUPA(日機装(株)製)による粒径測定により分散性を評価した。CNTは繊維状ではあるが、平均粒子径としてD50%粒子径(メジアン径)を用い、分散度の目安とした。
 <沈殿>
 上記分散体を(株)マイクロテック・ニチオン製の卓上遠心分離機NT-8を用い、3,500rpmで30分間遠心処理し、沈殿の有無を目視観察し、沈殿が全くないものを○、僅かに沈殿があるものを△、沈殿が多いものを×、とそれぞれ評価した。
 製造例1(分散剤の製造1)(スチレンスルホン酸ナトリウムの使用例)
 還流冷却管、窒素導入管、バドル型攪拌機を取り付けた1Lガラスフラスコに、純水80.50g、アセトン35.00gを仕込み、窒素雰囲気下、60℃のオイルバスで加熱した。ここに、別途調製したスチレンスルホン酸モノマー溶液[スチレンスルホン酸ナトリウム(純度88.8%)35.00gと1-メルカプト-2,3-プロパンジオール4.38gを純水201.00gに溶解]、N-フェニルマレイミドモノマー溶液[N-フェニルマレイミド23.49gをアセトン218.80gに溶解]を3時間、開始剤溶液[和光純薬工業社製アゾ開始剤V-50、1.75gを純水43.75gに溶解]を5時間かけて滴下し、重合を行った。その後、オイルバス温度を80℃に昇温し、更に3時間重合を継続した。
 重合溶液は透明であり、溶液中の残存モノマー濃度を分析した結果、スチレンスルホン酸ナトリウム、N-フェニルマレイミド何れも<0.1重量%だった。
 真空乾燥したポリマーの元素分析値は、炭素50.8重量%、水素4.5重量%、窒素3.3重量%、イオウ7.6重量%であり、仕込みモノマー組成とほぼ一致し、水に不溶なN-フェニルマレイミド成分を43重量%含有するにも関わらず、共重合体が水溶性であったこと、FT-IRスペクトル(図1)において、N-フェニルマレイミドとスチレンスルホン酸ナトリウム由来の吸収ピーク(各々1,707cm-1と1,040cm-1)が見られたことから、当該ポリマーは、スチレンスルホン酸ナトリウムモノマー残基:N-フェニルマレイミドモノマー残基=53:47モル%の組成を有する共重合体と判断した。GPCで求めた共重合体の重量平均分子量は、24,000だった。当該ポリマーを共重合体Aとした。なお、以下において、N-フェニルマレイミドなどのN-フェニルマレイミド類を「PMI」ということがある。
 製造例2(分散剤の製造2)(スチレンスルホン酸アンモニウムの使用例)
 還流冷却管、窒素導入管、バドル型攪拌機を取り付けた1Lガラスフラスコに、純水80.50g、アセトン35.00gを仕込み、窒素雰囲気下、60℃のオイルバスで加熱した。ここに、別途調製したスチレンスルホン酸モノマー溶液[スチレンスルホン酸アンモニウム(純度79.0%)38.3gと1-メルカプト-2,3-プロパンジオール3.70gを純水201.00gに溶解]、N-フェニルマレイミドモノマー溶液[N-フェニルマレイミド16.00gをアセトン200.00gに溶解]を3時間、開始剤溶液[和光純薬工業社製アゾ開始剤V-50、1.75gを純水43.75gに溶解]を5時間かけて滴下し、重合を行った。その後、オイルバス温度を80℃に昇温し、更に3時間重合を継続した。
 重合溶液は透明であり、溶液中の残存モノマー濃度を分析した結果、スチレンスルホン酸アンモニウム、N-フェニルマレイミド何れも<0.1重量%だった。
 真空乾燥したポリマーが水溶性であること、及び元素分析の結果から、当該ポリマーは、スチレンスルホン酸アンモニウムモノマー残基:N-フェニルマレイミドモノマー残基=62:38モル%の組成を有する共重合体と考えられる。
 GPCで求めた共重合体の重量平均分子量は、22,000だった。当該ポリマーを共重合体Bとした。
 製造例3(分散剤の製造3)(製造例2のPMIを減量した例)
 製造例2において、N-フェニルマレイミドを16.00gから9.00gへ減量した他は、全て製造例1と同じ条件で共重合体を合成した。
 重合溶液は透明であり、溶液中の残存モノマー濃度を分析した結果、スチレンスルホン酸アンモニウム、N-フェニルマレイミド何れも<0.1重量%だった。
 真空乾燥したポリマーが水溶性であること、及び元素分析の結果から、当該ポリマーは、スチレンスルホン酸アンモニウムモノマー残基:N-フェニルマレイミドモノマー残基=74:26モル%の組成を有する共重合体と考えられる。
 GPCで求めた共重合体の重量平均分子量は、14,000だった。当該ポリマーを共重合体Cとした。
 製造例4(分散剤の製造4)(第三成分としてスチレンを併用した例)
 還流冷却管、窒素導入管、バドル型攪拌機を取り付けた1Lガラスフラスコに、純水80.50g、アセトン35.00gを仕込み、窒素雰囲気下、60℃のオイルバスで加熱した。ここに、別途調製したスチレンスルホン酸モノマー溶液[スチレンスルホン酸アンモニウム(純度79.0%)38.3gと1-メルカプト-2,3-プロパンジオール4.38gを純水201.00gに溶解]、N-フェニルマレイミドモノマー溶液[N-フェニルマレイミド10.00gとスチレン3.00gをアセトン218.20gに溶解]を3時間、開始剤溶液[和光純薬工業社製アゾ開始剤V-50、2.20gを純水50.00gに溶解]を6時間かけて滴下し、重合を行った。その後、オイルバス温度を80℃に昇温し、更に10時間重合を継続した。
 重合溶液は透明溶液であり、溶液中の残存モノマー濃度を分析した結果、スチレンスルホン酸アンモニウム、N-フェニルマレイミド、スチレン何れも<0.1重量%だった。
 真空乾燥したポリマーが水溶性であること、及び元素分析の結果から、当該ポリマーは、スチレンスルホン酸アンモニウムモノマー残基:N-フェニルマレイミドモノマー残基:スチレンモノマー残基=57:32:11モル%の組成を有する共重合体と考えられる。
 GPCで求めた共重合体の重量平均分子量は、26,000だった。当該ポリマーを共重合体Dとした。
 製造例5(分散剤の製造5)(製造例3のPMIの種類を変えた例)
 製造例3において、N-フェニルマレイミド9.00gの代わりにo-メチルフェニルマレイミド13.00g用いた他は、全て製造例3と同じ条件で共重合体を合成した。
 重合溶液は透明であり、溶液中の残存モノマー濃度を分析した結果、スチレンスルホン酸アンモニウム、o-メチルフェニルマレイミド何れも<0.1重量%だった。
 真空乾燥したポリマーが水溶性であること、及び元素分析の結果から、当該ポリマーは、スチレンスルホン酸アンモニウムモノマー残基:o-メチルフェニルマレイミドモノマー残基=68:32モル%の組成を有する共重合体と考えられる。
 GPCで求めた共重合体の重量平均分子量は、21,000だった。当該ポリマーを共重合体Eとした。
 製造例6(分散剤の製造6)(製造例5のPMIの種類を変えた例)
 製造例5において、o-メチルフェニルマレイミド13.00gの代わりに、o-メチルフェニルマレイミド10.00g及びp-カルボキシルフェニルマレイミド5.00g用いた他は、全て製造例5と同じ条件で共重合体を合成した。
 重合溶液は透明であり、溶液中の残存モノマー濃度を分析した結果、スチレンスルホン酸アンモニウム、o-メチルフェニルマレイミド、p-カルボキシルフェニルマレイミド何れも<0.1重量%だった。
 真空乾燥したポリマーが水溶性であること、及び元素分析の結果から、当該ポリマーは、スチレンスルホン酸アンモニウムモノマー残基:o-メチルフェニルマレイミドモノマー残基:p-カルボキシルフェニルマレイミドモノマー残基=66:24:10モル%の組成を有する共重合体と考えられる。
 GPCで求めた共重合体の重量平均分子量は、23,000だった。当該ポリマーを共重合体Fとした。
 製造例7(分散剤の製造7)(製造例1のCTA(分子量調節剤)の種類を変えた例)
 製造例1において、1-メルカプト-2,3-プロパンジオール4.38gの代わりに、システイン5.20g用いた他は、全て製造例1と同じ条件で共重合体を合成した。
 重合溶液は透明であり、溶液中の残存モノマー濃度を分析した結果、スチレンスルホン酸ナトリウム、N-フェニルマレイミド何れも<0.1重量%だった。
 真空乾燥したポリマーが水溶性であること、及び元素分析の結果から、当該ポリマーは、スチレンスルホン酸ナトリウムモノマー残基:N-フェニルマレイミドモノマー残基=53:47モル%の組成を有する共重合体と考えられる。
 GPCで求めた共重合体の重量平均分子量は、27,000だった。当該ポリマーを共重合体Gとした。
 製造例8(分散剤の製造8)(製造例2のCTAを減量した例)
 製造例2において、1-メルカプト-2,3-プロパンジオール3.70gを2.50gに減量した他は、全て製造例2と同じ条件で共重合体を合成した。
 重合溶液は透明であり、溶液中の残存モノマー濃度を分析した結果、スチレンスルホン酸アンモニウム、N-フェニルマレイミド何れも<0.1重量%だった。
 真空乾燥した共重合が水溶性であること、及び元素分析の結果から、当該ポリマーは、スチレンスルホン酸アンモニウムモノマー残基:N-フェニルマレイミドモノマー残基=53:47モル%の組成を有する共重合体と考えられる。
 GPCで求めた共重合体の重量平均分子量は、62,000だった。当該ポリマーを共重合体Hとした。
 製造例9(分散剤の製造9)(製造例2のPMIを増量した例)
 製造例2において、スチレンスルホン酸アンモニウム38.3gを25.00gへ減量し、N-フェニルマレイミド16.00gを40.00gに増量し、1-メルカプト-2,3-プロパンジオール3.70gの代わりにチオリンゴ酸5.00gを用いた他は、全て製造例2と同じ条件で重合を開始し、開始剤添加後の重合時間を10時間に延長し、共重合体を合成した。
 重合溶液は透明であり、溶液中の残存モノマー濃度を分析した結果、スチレンスルホン酸アンモニウム、N-フェニルマレイミド何れも<0.1重量%だった。
 生成ポリマーが水/アセトン混合溶媒に可溶であること、及び元素分析の結果から、当該ポリマーは、スチレンスルホン酸アンモニウムモノマー残基:N-フェニルマレイミドモノマー残基=35:65モル%の組成を有する共重合体と考えられる。
 GPCで求めた共重合体の重量平均分子量は、23,000だった。当該ポリマーを共重合体Iとした。
 製造例10(分散剤の製造10)(PMIを減量した例)
 還流冷却管、窒素導入管、バドル型攪拌機を取り付けた1Lガラスフラスコに、純水80.50g、アセトン35.00gを仕込み、窒素雰囲気下、60℃のオイルバスで加熱した。ここに、別途調製したスチレンスルホン酸モノマー溶液[スチレンスルホン酸ナトリウム(純度88.8%)40.00と1-メルカプト-2,3-プロパンジオール2.50gを純水201.00gに溶解]、N-フェニルマレイミドモノマー溶液[N-フェニルマレイミド1.20gをアセトン200.00gに溶解]を3時間、開始剤溶液[和光純薬工業社製アゾ開始剤V-50、1.00gを純水43.75gに溶解]を5時間かけて滴下し、重合を行った。その後、オイルバス温度を80℃に昇温し、更に3時間重合を継続した。
 重合溶液は透明であり、溶液中の残存モノマー濃度を分析した結果、スチレンスルホン酸ナトリウム、N-フェニルマレイミド何れも<0.1重量%だった。
 真空乾燥したポリマーが水溶性であること、及び元素分析の結果から、当該ポリマーは、スチレンスルホン酸ナトリウムモノマー残基:N-フェニルマレイミドモノマー残基=96:4モル%の組成を有する共重合体と考えられる。
 GPCで求めた共重合体の重量平均分子量は、11,000だった。当該ポリマーを共重合体Jとした。
 製造例11(分散剤の製造11)(PMIを過剰に用いた例)
 還流冷却管、窒素導入管、バドル型攪拌機を取り付けた1Lガラスフラスコに、純水60.00g、ジメチルスルホキシド50.00gを仕込み、窒素雰囲気下、60℃のオイルバスで加熱した。ここに、別途調製したスチレンスルホン酸モノマー溶液[スチレンスルホン酸ナトリウム(純度88.8%)20.00と1-メルカプト-2,3-プロパンジオール4.50gを純水201.00gに溶解]、N-フェニルマレイミドモノマー溶液[N-フェニルマレイミド40.00gをジメチルスルホキシド220.00gに溶解]を3時間、開始剤溶液[和光純薬工業社製アゾ開始剤V-50、2.00gを純水44.00gに溶解]を6時間かけて滴下し、重合を行った。その後、オイルバス温度を80℃に昇温し、更に6時間重合を継続した。
 重合溶液は透明であり、溶液中の残存モノマー濃度を分析した結果、スチレンスルホン酸ナトリウム、N-フェニルマレイミド何れも<0.1重量%だった。
 生成ポリマーが水/ジメチルスルホキシド混合溶媒に可溶であること、及び元素分析の結果から、当該ポリマーは、スチレンスルホン酸ナトリウムモノマー残基:N-フェニルマレイミドモノマー残基=27:73モル%の組成を有する共重合体と考えられる。
 GPCで求めた共重合体の重量平均分子量は、25,000だった(カラム充填剤との相互作用が強く、参考値)。当該ポリマーを共重合体Kとした。
 実施例1~9
 製造例1~9で得たポリスチレンスルホン酸共重合体の真空乾燥物0.1gを純水8mlとアセトン2mlの混合溶媒に溶解した(0.1重量%溶液)、ここへ多層CNT(東京化成工業社製、直径20~40nm、長さ1~2μm)を0.1g添加した後、超音波洗浄器(200W、38KHz)にて、5時間分散処理し、CNT水性分散体を得た(CNT濃度1重量%、CNT/ポリスチレンスルホン酸共重合体重量比=1)。この際、液温は40℃以下に保持した。平均粒径を表1及び2に示した。
 比較例1(ポリスチレンスルホン酸ナトリウムを使用した例)
 ポリスチレンスルホン酸ナトリウム(東ソー有機化学製PS-1(重量平均分子量21,000)の1重量%水溶液に、多層CNT(東京化成工業社製、直径20~40nm、長さ1~2μm)を0.1g添加した後、超音波洗浄器(200W、38KHz)にて、5時間分散処理し、CNT水性分散体を得た(CNT濃度1重量%、CNT/ポリスチレンスルホン酸ナトリウム重量比=1)。この際、液温は40℃以下に保持した。平均粒径を表2に示した。実施例と比較して粒径が大きいことから、ポリスチレンスルホン酸共重合体中のN-置換マレイミドモノマー残基成分がない場合には、CNTの分散効果が低いことが明らかである。
 比較例2(PMIが少ない製造例10を使用した例)
 製造例10で得たポリスチレンスルホン酸共重合体の真空乾燥物の1重量%水溶液に、多層CNT(東京化成工業社製、直径20~40nm、長さ1~2μm)を0.1g添加した後、超音波洗浄器(200W、38KHz)にて、5時間分散処理し、CNT水性分散体を得た(CNT濃度1重量%、CNT/ポリスチレンスルホン酸共重合体重量比=1)。この際、液温は40℃以下に保持した。平均粒径を表2に示した。実施例と比較して粒径が大きいことから、ポリスチレンスルホン酸共重合体中のN-置換マレイミドモノマー残基成分が少ない場合には、CNTの分散効果が低いことが明らかである。
 比較例3(PMIの多い製造例11を使用した例)
 製造例11で得たポリスチレンスルホン酸共重合体の真空乾燥物0.1gを純水7mlとアセトン3mlの混合溶媒に溶解した(0.1重量%溶液)、ここへ多層CNT(東京化成工業社製、直径20~40nm、長さ1~2μm)を0.1g添加した後、超音波洗浄器(200W、38KHz)にて、5時間分散処理し、CNT水性分散体を得た(CNT濃度1重量%、CNT/ポリスチレンスルホン酸共重合体重量比=1)。この際、液温は40℃以下に保持した。平均粒径を表2に示した。実施例と比較して粒径が大きいことから、ポリスチレンスルホン酸共重合体中のN-置換マレイミドモノマー残基成分が多すぎても、CNTの分散効果は低いことが明らかである。
 比較例4(一般的な乳化剤を用いた場合)
 ドデシルベンゼンスルホン酸ナトリウム0.1gを純水10mlに溶解した(0.1重量%溶液)、ここへ多層CNT(東京化成工業社製、直径20~40nm、長さ1~2μm)を0.1g添加した後、超音波洗浄器(200W、38KHz)にて、5時間分散処理し、CNT水性分散体を得た(CNT濃度1重量%、CNT/ドデシルベンゼンスルホン酸ナトリウム重量比=1)。この際、液温は40℃以下に保持した。平均粒径を表2に示した。実施例と比較して粒径が大きいことから、一般的な市販の乳化剤では、CNTの分散効果が低いことが明らかである。
 
 
 
 
 
 
 
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
 
 
 本発明のポリスチレンスルホン酸共重合体を利用した利用したCNT、グラフェン、フラーレンなどのナノカーボン材料の水性分散体は、高強度材料、高熱伝導性材料、導電性樹脂、LSI配線、マイクロマシン、二酸化炭素固定材料、水素ガス吸蔵材料、電磁波遮蔽材料、触媒担持材料、ナノフィルター、バイオセンサー、ドラッグデリバリーシステム、電気化学デバイス(燃料電池、二次電池、キャパシタ、電界放出ディスプレイ、トランジスタ、各種電極)の用途に有用であり、産業化に貢献することができる。
 

Claims (9)

  1.  (a)下記式(I)で表される繰り返し構造単位であるスチレンスルホン酸モノマー残基、および(b)下記式(II)で表される繰り返し構造単位であるN-置換マレイミド残基、ならびに必要に応じて(c)前記(a)~(b)と共重合可能な下記式(III)で表される繰り返し構造単位である他のビニルモノマー残基からなる、ポリスチレンスルホン酸共重合体。
    Figure JPOXMLDOC01-appb-C000001
    〔式(I)~(III)中、Xは、ナトリウムカチオン、リチウムカチオン、カリウムカチオン、アンモニウムカチオン、第4級アンモニウムカチオン又はプロトンを、Rは、芳香族炭化水素基又は置換芳香族炭化水素基を、R、R、R及びRは、各々独立して脂肪族炭化水素基、置換脂肪族炭化水素基、芳香族炭化水素基、置換芳香族炭化水素基、エステル基、シアノ基、カルボキシル基又は水素を表し、スチレンスルホン酸モノマー残基の割合をk、N-置換マレイミドモノマー残基の割合をm、他のビニルモノマー残基の割合をnとすると、スチレンスルホン酸モノマー残基の割合kは95~30モル%、N-置換マレイミドモノマー残基の割合mは5~70モル%、他のビニルモノマー残基の割合nは0~20モル%(ただし、k+m+n=100モル%)である。〕
  2.  N-置換マレイミドモノマーが、N-フェニルマレイミド、N-クロロフェニルマレイミド、N-メチルフェニルマレイミド、N-カルボキシフェニルマレイミド及びN-ナフチルマレイミドからなる群より選ばれる1種以上の化合物である請求項1に記載のポリスチレンスルホン酸共重合体。
  3.  ゲル浸透クロマトグラフィーで求めた重量平均分子量が2千~20万である、請求項1に記載のポリスチレンスルホン酸共重合体。
  4.  請求項1~3の何れか1項に記載のポリスチレンスルホン酸共重合体を有効成分とする分散剤。
  5.  請求項1~3の何れか1項に記載のポリスチレンスルホン酸共重合体を分散剤として用いて製造されてなるカーボンナノチューブ水性分散体。
  6.  請求項1~3の何れか1項に記載のポリスチレンスルホン酸共重合体を分散剤として用いて製造されてなるグラフェン水性分散体。
  7.  請求項1~3の何れか1項に記載のポリスチレンスルホン酸共重合体を分散剤として用いて製造されてなるフラーレン水性分散体。
  8.  スチレンスルホン酸又はその塩モノマー及びN-置換マレイミドモノマーを含むモノマー混合溶液を、アセトン、テトラヒドロフラン、ジオキサン、ジメチルスルホキシド、N-メチルピロリドン、およびジメチルホルムアミドからなる群より選ばれる1種以上の水溶性溶剤と水の混合溶媒中へ、ラジカル重合開始剤と共に連続的に添加しながらラジカル共重合する、請求項1~3いずれかに記載のポリスチレンスルホン酸共重合体の製造方法。
  9.  スチレンスルホン酸又はその塩モノマー及びN-置換マレイミドモノマーに、これらと共重合可能な他のビニルモノマーと分子量調節剤を更に加えてなるモノマー混合溶液を用いる、請求項8に記載のポリスチレンスルホン酸共重合体の製造方法。
     
PCT/JP2012/070335 2011-09-20 2012-08-09 ポリスチレンスルホン酸共重合体、それを用いた分散剤、およびナノカーボン材料水性分散体、ならびにポリスチレンスルホン酸共重合体の製造方法 WO2013042482A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013534638A JP5850474B2 (ja) 2011-09-20 2012-08-09 ポリスチレンスルホン酸共重合体、それを用いた分散剤、およびナノカーボン材料水性分散体、ならびにポリスチレンスルホン酸共重合体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-204702 2011-09-20
JP2011204702 2011-09-20

Publications (2)

Publication Number Publication Date
WO2013042482A1 WO2013042482A1 (ja) 2013-03-28
WO2013042482A9 true WO2013042482A9 (ja) 2013-05-23

Family

ID=47914262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070335 WO2013042482A1 (ja) 2011-09-20 2012-08-09 ポリスチレンスルホン酸共重合体、それを用いた分散剤、およびナノカーボン材料水性分散体、ならびにポリスチレンスルホン酸共重合体の製造方法

Country Status (2)

Country Link
JP (1) JP5850474B2 (ja)
WO (1) WO2013042482A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102154790B1 (ko) * 2013-09-30 2020-09-11 몰레큘라 레바 디자인 엘엘씨 높은 탄소 나노튜브 함량 유체
KR101666478B1 (ko) * 2013-12-26 2016-10-14 주식회사 엘지화학 그래핀의 제조 방법과, 그래핀의 분산 조성물
KR20160114594A (ko) 2014-01-31 2016-10-05 니폰 제온 가부시키가이샤 카본 나노튜브 분산액, 도전막 및 도전성 필름
CN104399524B (zh) * 2014-11-14 2017-01-04 江苏大学 有机固体催化剂及其制备方法
CN109602538B (zh) * 2018-05-28 2024-05-07 东莞市荃鼎医疗用品有限公司 一种智能眼罩
JPWO2020158507A1 (ja) 2019-02-01 2021-12-09 日本ゼオン株式会社 分散液、導電膜およびその製造方法、電極、並びに、太陽電池
MX2021010070A (es) 2019-02-20 2021-09-21 Ppg Ind Ohio Inc Dispersiones que contienen nanoparticulas de carbono grafenico y resinas dispersantes.
CN112011137B (zh) * 2019-05-13 2021-10-08 中国科学院化学研究所 一种石墨烯/水溶性聚合物复合材料及其制备方法
CN112886009B (zh) * 2019-11-29 2022-06-24 恒大新能源技术(深圳)有限公司 导电剂及其制备方法、电极和二次电池
JP7535728B2 (ja) 2020-03-06 2024-08-19 学校法人早稲田大学 導電材、およびこれを利用した導電膜ならびに太陽電池
JP7567391B2 (ja) 2020-11-19 2024-10-16 セイコーエプソン株式会社 分散液、インクジェット記録用インク組成物、及び分散樹脂
WO2023145612A1 (ja) * 2022-01-31 2023-08-03 日本ゼオン株式会社 カーボンナノチューブ分散液、非水系二次電池負極用スラリー、非水系二次電池用負極及び非水系二次電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1220929A (en) * 1982-09-13 1987-04-28 S. Richard Turner Sodium styrene sulfonate-co-sodium-n-(4-sulfophenyl)- maleimide - an improved viscosity control additive
JP2004010768A (ja) * 2002-06-07 2004-01-15 Toray Ind Inc 高分子微粒子およびそれを含有する吸放湿性樹脂
JP5463674B2 (ja) * 2009-01-28 2014-04-09 株式会社豊田中央研究所 カーボンナノ複合体、それを含む分散液および樹脂組成物、ならびにカーボンナノ複合体の製造方法

Also Published As

Publication number Publication date
WO2013042482A1 (ja) 2013-03-28
JP5850474B2 (ja) 2016-02-03
JPWO2013042482A1 (ja) 2015-03-26

Similar Documents

Publication Publication Date Title
WO2013042482A1 (ja) ポリスチレンスルホン酸共重合体、それを用いた分散剤、およびナノカーボン材料水性分散体、ならびにポリスチレンスルホン酸共重合体の製造方法
JP5954798B2 (ja) 高純度パラスチレンスルホン酸(塩)、それを用いたポリスチレンスルホン酸(塩)、およびポリスチレンスルホン酸(塩)を用いた、分散剤、導電性ポリマードーパント、ナノカーボン材料水性分散体、導電性ポリマー水性分散体、ならびにポリスチレンスルホン酸(塩)の製造方法
JP5599076B2 (ja) ナノカーボン水系分散液及びナノカーボン分散樹脂組成物
US8143327B2 (en) Method for producing core-shell fine particle and method for producing intermediate which is used for production of the core-shell fine particle
JP2015105315A (ja) 有機溶剤への溶解性と耐熱性に優れたスチレンスルホン酸リチウム共重合体、ならびに当該スチレンスルホン酸リチウム共重合体を用いた帯電防止剤
WO2014061357A1 (ja) 色相が優れた高純度パラスチレンスルホン酸ナトリウム、その製造方法、それを用いた色相が優れたポリスチレンスルホン酸ナトリウム、ならびに当該ポリスチレンスルホン酸ナトリウムを用いた分散剤、および衣料仕上げ用の合成糊
JP2014181252A (ja) カルボン酸系重合体組成物
US20230212343A1 (en) Carbon material dispersion
JP2010018760A (ja) コロイド結晶、その製造方法及び固定化コロイド結晶
WO2022215291A1 (ja) カーボン材料分散液
Nutenki et al. Amphiphilic comb-like polymer-modified graphene oxide and its nanocomposite with polystyrene via emulsion polymerization
JP6320887B2 (ja) 炭素材料用分散剤
Hayashida et al. Miscible blends of poly (butyl methacrylate) densely grafted on fumed silica with poly (vinyl chloride)
JP5946094B2 (ja) 色相が優れた高純度パラスチレンスルホン酸ナトリウム、それを用いた色相が優れたポリスチレンスルホン酸ナトリウム、ならびに当該ポリスチレンスルホン酸ナトリウムを用いた分散剤、および衣料仕上げ用の合成糊
JP2008528783A (ja) イオン性芳香族モノマーから成るブロックコポリマーを含んでなる安定な顔料分散系
JP6777459B2 (ja) ポリマーエマルション及びその製造方法
WO2004078811A1 (ja) 重合反応用溶媒および重合体製造方法
WO2021095739A1 (ja) 重合体微粒子の製造方法及び分散安定剤
JP2011219556A (ja) カーボンブラック分散液、インク組成物及びインクジェット記録方法
JP2014205137A (ja) 分散剤及び固体粒子分散体
JP2019104809A (ja) (メタ)アクリル系重合体粒子の製造方法および(メタ)アクリル系重合体粒子
TWI695860B (zh) 聚合物組成物
Rusen et al. One Reaction: Two Types of Mechanism─ SARA-ATRP and SET-LRP─ for MMA Polymerization in the Presence of PVC
JP5043486B2 (ja) 重合体微粒子の製造方法
Alshareef Novel Polycyclic Aromatic Hydrocarbon Copolymer for Graphene Exfoliation and Functionalisation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833145

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013534638

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12833145

Country of ref document: EP

Kind code of ref document: A1