WO2013038737A1 - 膀胱癌細胞の検出方法、膀胱癌細胞の検出方法に用いるプライマー及び膀胱癌マーカ - Google Patents

膀胱癌細胞の検出方法、膀胱癌細胞の検出方法に用いるプライマー及び膀胱癌マーカ Download PDF

Info

Publication number
WO2013038737A1
WO2013038737A1 PCT/JP2012/056605 JP2012056605W WO2013038737A1 WO 2013038737 A1 WO2013038737 A1 WO 2013038737A1 JP 2012056605 W JP2012056605 W JP 2012056605W WO 2013038737 A1 WO2013038737 A1 WO 2013038737A1
Authority
WO
WIPO (PCT)
Prior art keywords
bladder cancer
mir
seq
primer
represented
Prior art date
Application number
PCT/JP2012/056605
Other languages
English (en)
French (fr)
Inventor
清水 崇
拓 鈴木
豊田 実
泰司 塚本
Original Assignee
北海道公立大学法人 札幌医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北海道公立大学法人 札幌医科大学 filed Critical 北海道公立大学法人 札幌医科大学
Priority to KR1020147007424A priority Critical patent/KR20140064899A/ko
Priority to CA2848999A priority patent/CA2848999A1/en
Priority to CN201280044395.4A priority patent/CN103857796A/zh
Priority to US14/345,226 priority patent/US20150024389A1/en
Priority to EP12832069.4A priority patent/EP2757154A4/en
Publication of WO2013038737A1 publication Critical patent/WO2013038737A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/154Methylation markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA

Definitions

  • the present invention relates to a method for detecting cancer of a subject from a sample obtained from the subject, particularly a method for detecting bladder cancer cells, a primer used in the method, and a substance that serves as a bladder cancer marker.
  • urine cytology is most widely used for detection of bladder cancer.
  • bladder cells that have been detached from the bladder and dropped into the urine are collected from the urine, and their shape is observed with a microscope to detect cancer cells.
  • microRNA which is a short RNA that performs gene regulation on tissues
  • microRNA may be used interchangeably with “miRNA”, “miR”, and “hsa-miRNA”.
  • Research has been conducted on a method for detecting cancer tissue by detecting the expression level of.
  • Patent Document 1 discloses a cancer detection method for detecting canceration of a specimen using a decrease in gene expression of miRNA containing miR-9 and miR-137 as an index in the specimen, and cancer suppression by expressing them. Methods and cancer inhibitors are disclosed.
  • Patent Document 2 discloses a method of measuring the level of a miRNA gene product in a test sample from a subject, and detecting whether or not there is a risk of developing breast cancer.
  • Patent Document 3 discloses a method for increasing the efficacy of an anti-cancer treatment of a BCL2-related cancer, comprising administering at least one anti-cancer treatment to a subject and at least one miR gene product in the BCL2 gene transcript.
  • methods for diagnosis and therapy of BCL2-related cancers by administering a miR gene product comprising a nucleotide sequence that is complementary to the nucleotide sequence of.
  • the bladder has been described as a cancer tissue that may have reduced miRNA expression.
  • miR-137 and miR-9 are exemplified as miRNA that can be used for diagnosis and therapy of BCL2-related cancer.
  • Patent Document 4 discloses a method for determining gynecological cancer using microRNA containing miR-137 as a biomarker for gynecological cancer. As a method for determining gynecological cancer, a method for directly detecting the expression level of miRNA is described.
  • Patent Document 5 discloses a method for predicting survival after treatment of a cancer patient, wherein the expression level of a microRNA containing hsa-miR137 in a cancer patient who has been treated is detected, and based on the expression level of the microRNA.
  • a method for predicting survival after treatment of a cancer patient comprising calculating a patient's risk score and determining a prospect of post-treatment survival based on the value of the risk score.
  • cancers to be predicted include lung cancer, leukemia, breast cancer, pancreatic cancer, adenocarcinoma, squamous cell carcinoma, colon cancer or hepatocellular carcinoma.
  • Patent Document 6 discloses a method of measuring the level of at least one miR gene product and determining whether the subject has solid cancer or is at risk of developing it.
  • Non-Patent Document 1 describes the expression of miR-137 in colorectal cancer.
  • Non-Patent Document 2 describes the expression of miRNA containing miR-137 in oral cancer.
  • Non-Patent Document 3 describes the expression of miR-137 in colorectal cancer.
  • urine cytology widely used for detection of bladder cancer has a problem in the sensitivity of detection of bladder cancer.
  • bladder cancer cells can be specifically detected if cells that can be clearly recognized as tumor cells can be detected from the shape, but low malignant tumors that cannot be detected from the shape It cannot be detected for cells. For this reason, it has been difficult to detect tumors with low malignancy.
  • Patent Document 1 describes a method for detecting cancer by detecting miRNA, a method for suppressing cancer by expressing them, and a cancer suppressant.
  • it is disclosed for oral squamous cell carcinoma. The bladder cancer tissue has not been verified.
  • Patent Document 2 describes a method and a composition for detecting breast cancer or the risk of developing breast cancer, but the tissue of bladder cancer has not been verified.
  • the bladder is included in one of many cancer tissues exemplified that the expression of miRNA may generally be reduced, but a gene whose expression is decreased in bladder cancer is specifically described. However, there is no evidence that it can be applied to bladder cancer.
  • miR-137 and miR-9 are mentioned as miRNA genes to be administered, the expression of BCL2 gene is theoretically reduced under the hypothesis that reducing BCL2 gene expression leads to cancer treatment. It is only exemplified as one of many possible miRNA candidates, and it has not been verified whether these actually reduce BCL2 gene expression. In addition, this method is limited to the possibility of treating cancer associated with overexpression of the BCL2 gene and / or gene product, and does not verify whether administration of miR-137 and miR-9 actually leads to cancer treatment. Not done.
  • Patent Document 4 describes a determination method and determination kit for so-called gynecological cancer, but does not describe bladder cancer. Furthermore, it has been confirmed that miR-137 expression is increased in endometrial cancer.
  • Patent Document 5 discloses a method for predicting survival after treatment of a cancer patient, but does not describe a method for detecting whether or not the patient is a cancer patient. In addition, bladder cancer is not described for cancer.
  • miR-137 is not changed in 6 types of cancer (milk, large intestine, lung, pancreas, prostate, stomach). miR-137 is listed as a gene that is not selected as a gene to be measured (paragraph [0037]), and is particularly listed as one that is not selected for each of the six types of cancer described above.
  • Non-Patent Documents 1 to 3 describe the relationship between the expression of miRNA including miR-137 and the onset of colorectal cancer, oral cancer, and invasion of colorectal cancer, but bladder cancer has not been verified. .
  • an object of the present invention is to provide a method for detecting a bladder cancer cell having high detection sensitivity and capable of detecting a bladder cancer tissue having high specificity and low malignancy, a primer used for this method, and a bladder cancer marker. It is to provide.
  • the method for detecting bladder cancer cells of the present invention comprises detecting the expression level of a bladder cancer marker comprising one or more miRNAs selected from miR-124, miR-9 and miR-137 from a subject sample collected from the subject. including.
  • bladder cancer tissue miRNAs that are specifically expressed differently than normal tissues are detected as bladder cancer markers.
  • the presence or amount of miRNA in the tissue can be quantitatively detected quickly and accurately by means such as real-time reverse-transcription PCR (real-time reverse transcription PCR, real-time RT-PCR, quantitative RT-PCR). Therefore, bladder cancer cells can be specifically detected by detecting the expression level of one or more miRNAs selected from miR-124, miR-9 and miR-137, and low-grade bladder cancer tissue Even it can be detected.
  • the detection of the expression level of the bladder cancer marker is preferably performed by detecting a decrease in the expression level of the bladder cancer marker by detecting methylation (methylated cytosine) of the bladder cancer marker gene.
  • methylation methylated cytosine
  • the expression of miR-124, miR-9, miR-137, etc. is suppressed by methylation on the genome gene to which each is encoded, so miR-124 is miR-124-2
  • the detection of methylation in the miR-124-3 gene, miR-9-3 gene for miR-9, miR-137 gene for miR137, and miR-137 gene for miR137 decreased the expression level of these miRNAs in bladder cancer cells and bladder cancer Cells can be detected.
  • cancer tissue When cancer tissue is included in normal tissue that expresses a large amount of the target miRNA, expression in the normal tissue is detected by means of directly detecting the expression level, so the target miRNA in the cancer tissue is detected. In some cases, it is difficult to detect the presence of phenoline, but by detecting a decrease in the expression level as a positive signal of methylation, its presence can be clearly and reliably detected.
  • the method for detecting bladder cancer cells comprises the level of methylation of one or more genes selected from the miR-137 gene, miR-124-2 gene, miR-124-3 gene, and miR-9-3 gene. Detecting from a subject sample taken from the subject. In this detection method, it is preferable to compare the methylation level with a threshold value. The above-mentioned gene in the tissue to be detected with respect to this threshold value, using the methylation level of the above-mentioned gene in another tissue or other site tissue that has been found not to be cancerous tissue as a threshold value By comparing the levels of methylation, bladder cancer cells can be detected. When the level of methylation in the subject sample is higher than the threshold value, it can be determined that the subject sample is a cancer tissue.
  • the detection of methylation is preferably performed by the bisulfite pyrosequencing method. According to this method, since the target miRNA can be detected precisely and quantitatively, the tissue of bladder cancer cells can be reliably detected.
  • the bladder cancer marker includes at least miR-137. Since miR-137 has a markedly different expression level in bladder cancer cells compared to normal tissues, miR-137 can detect bladder cancer cells with the highest certainty.
  • a cancer tissue can be detected by comparing the expression level of miRNA of another tissue that is known not to be a cancer tissue or a tissue of another site as a threshold. When the expression level of the bladder cancer marker in the subject sample is lower than the threshold value, it can be determined that the subject sample is a cancer tissue.
  • the threshold value is preferably the expression level of the bladder cancer marker in a control sample collected from a normal tissue. Since expression of miR-124, miR-9, miR-137 and the like is suppressed in bladder cancer cells, bladder cancer cells can be detected by a decrease in the expression level compared to normal tissues.
  • the threshold value is preferably the expression level of the bladder cancer marker in a control sample collected at different times from the subject or collected from different tissues of the subject.
  • bladder cancer cells can be detected by comparison with when the cancer does not develop or when the cancer is excised. Since temporal data on the expression of bladder cancer cells can be obtained, the occurrence of cancer and the outcome of treatment can be determined.
  • bladder cancer cells can be detected by comparison with a tissue that has not developed cancer. By collecting a sample for each site, the site of the tissue in which cancer has occurred can be detected.
  • the subject sample is a urine sample.
  • a urine sample can be collected frequently, safely, simply and quickly without invasiveness regardless of surgery.
  • the amount of miRNA contained is smaller than that in the blood sample or excised sample.
  • the bisulfite pyrosequencing method is used. Since methylation is detected by, for example, detection with sufficiently high specificity and sensitivity is possible with a urine sample.
  • the primer used for the bladder cancer cell detection method is represented by SEQ ID NO: 1 as the primer sequence used for the amplification of the miR-137 gene by the bisulfite pyrosequencing method.
  • the forward primer (GGGTTTTAGYGAGTAGTAAGAGTTTTG) and the reverse primer (CCCCCTACCRCTCATAACTACTCCTCTC) represented by SEQ ID NO: 2 are preferable, and the sequence of the primer used for the sequencing reaction is preferably GGATTTTTGGGTGGAATAAT represented by SEQ ID NO: 3.
  • the primer used for the bladder cancer cell detection method has the sequence of the primer used for amplification of the miR-124-2 gene by the bisulfite pyrosequencing method as SEQ ID NO: 4 It is preferable that the forward primer (GTTGGGATTGTTATAGAGAGATTATTTG) and the reverse primer (ACTACRAAAATCCAAAAAAAAATACATAC) shown in SEQ ID NO: 5 are preferable, and that the primer sequence used in the sequencing reaction is YGTTTTTTTGTTTGTTTTTGTTT, which is preferably shown in SEQ ID NO: 6.
  • the primer used for the detection method of the bladder cancer cell is the sequence of the primer used for amplification of the miR-124-3 gene by the bisulfite pyrosequencing method. It is preferable that it is a forward primer (AAAAGAGAGAYGAGTTTTTATTTTTTGAGTAT) shown by (5) and a reverse primer (TCCTCCRCCAACTACTCTCCCCTA) shown by SEQ ID NO: 8, and it is preferable that the sequence of the primer used for the sequence reaction is GAGATTYGTTTTTTATA shown by SEQ ID NO: 9.
  • the primer used for the detection method of the bladder cancer cell is the sequence of the primer used for amplification of the miR-9-3 gene by the bisulfite pyrosequencing method.
  • the reverse primer (TCTCRAAAACTCACRTAAAACACCC) represented by SEQ ID NO: 11 and the primer sequence used in the sequence reaction are preferably TGGATTGAYGTTTTTTT represented by SEQ ID NO: 12.
  • the forward primer represented by (GATTTTGAATGGGAGTTTGTATTGT) and the reverse primer represented by SEQ ID NO: 11 are preferred.
  • MSP method methylation-specific PCR method
  • the primer used in the bladder cancer cell detection method is a forward primer in which the primer sequence used for detection of miR-137 gene methylation is represented by SEQ ID NO: 13 as a methylation allele-specific primer.
  • SEQ ID NO: 13 a methylation allele-specific primer.
  • GTAGCGGGTAGTAGCGGGTAGCGGT and reverse primer (GCTAATACTCTCCTCGAACTACCGCG) shown in SEQ ID NO: 14, forward primer (TGGTTAGTGGGTAGTAGTGTAGTGGT) and reverse primer shown in SEQ ID NO: 16 Is preferred.
  • the primer used for the bladder cancer cell detection method has the sequence of the primer used for detection of the methylation of the miR-124-2 gene represented by SEQ ID NO: 17 as a methylation allele-specific primer.
  • Forward primer AGGGGGCGTATTTTGGGGTTTTTGC
  • reverse primer shown in SEQ ID NO: 18
  • forward primer shown in SEQ ID NO: 19 as an unmethylated allele specific primer TTTAGGGGTGTTTGTCATCAT reverse
  • the primer used for the bladder cancer cell detection method has the sequence of the primer used for detection of the methylation of the miR-124-3 gene represented by SEQ ID NO: 21 as a methylation allele-specific primer.
  • Forward primer (GTTTTAGGTGATATCGGTCTCGTACTC) and reverse primer shown in SEQ ID NO: 22 (TCTCACGAAATCCACGCTCAAAACG), forward primer shown in SEQ ID NO: 23 as an unmethylated allele specific primer
  • GTTTTAGGTGATATCGGTCTCGTACTC forward primer shown in SEQ ID NO: 22
  • SEQ ID NO: 23 as an unmethylated allele specific primer
  • the primer used for the bladder cancer cell detection method has the sequence of the primer used for detection of the methylation of the miR-9-3 gene represented by SEQ ID NO: 25 as a methylation allele-specific primer.
  • Forward primer GATGGACGTTATTTTTTCGCGGGGC
  • reverse primer CGAAACTCACGTAAAACACCCCGCG
  • forward primer TTGATTGATCGTACTGCTCCTGCTGATCGATCGATCGATCGATCGACTGCG
  • the bladder cancer marker of the present invention contains one or more miRNAs selected from miR-124, miR-9, and miR-137.
  • miRNAs that specifically differ in expression level from the normal tissue are detected as bladder cancer markers in the bladder cancer tissue. Since the expression level of miRNA in the tissue and the methylation level of the gene can be quantitatively detected by the means such as real-time PCR and bisulfite pyrosequencing method, the presence or absence and the amount thereof can be quantitatively detected.
  • the expression level of one or more miRNAs selected from miR-124, miR-9 and miR-137 and the methylation level of the gene bladder cancer cells can be specifically detected, and the grade of malignancy Even bladder cancer tissues with low levels can be detected.
  • the bladder cancer marker of the present invention is used in a method for detecting bladder cancer cells, which includes detecting the expression level of a bladder cancer marker from a subject sample collected from the subject.
  • the detection of the expression level of the bladder cancer marker is a method for detecting bladder cancer cells, comprising detecting a decrease in the expression level of the bladder cancer marker by detecting methylation of a genomic gene encoding the bladder cancer marker. Use.
  • detection is performed from a subject sample collected from a subject having a depth of penetration pTa or a variant G1 / G2.
  • the nucleic acid molecule of the present invention comprises SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11.
  • SEQ ID NO: 12 SEQ ID NO: 13, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 20, SEQ ID NO: 21, SEQ ID NO: 22, SEQ ID NO: 23, SEQ ID NO: 23 It has the nucleotide sequence of SEQ ID NO: 24, SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, or SEQ ID NO: 28. These molecules can be used in a method for detecting bladder cancer cells.
  • miRNA having a specific expression level different from that in a normal tissue is detected as a bladder cancer marker in a bladder cancer tissue.
  • the expression level of miRNA in the tissue and the methylation level of the gene can be rapidly and accurately quantitatively detected by means such as real-time PCR or bisulfite pyrosequencing, so miR-124, miR-9
  • bladder cancer cells can be specifically detected by detecting the expression level of one or more miRNAs selected from miR-137 and the methylation level of the gene, and low-grade bladder cancer tissue. Can be detected.
  • FIG. 3 is a graph showing the results of analyzing the methylation status of miR-9-1, miR-9-3, miR-10b, and miR-34b among the miRNAs of FIG. 1 by the bisulfite pyrosequencing method.
  • 2 is a graph showing the results of analyzing the methylation status of miR-124-1, miR-124-2, miR-124-3, and miR-137 of the miRNA of FIG. 1 by the bisulfite pyrosequencing method.
  • 2 is a graph showing the results of analyzing the methylation status of miR-200b, miR-203, miR-409, and miR-675 of the miRNAs of FIG. 1 by the bisulfite pyrosequencing method.
  • 2 is a graph showing the results of analysis of miR-137 miRNA expression level (a) and miR-137 gene methylation (b) for each bladder cancer cell line. It is a graph which shows the result of having analyzed the expression of miR-137 in a cancer part tissue (T) and the tissue (DN) considered to be normal.
  • the graph which shows the result of analyzing methylation analysis by the bisulfite pyrosequencing method and its ROC curve of NMIBC (non-invasive, superficial), MIBC (invasive), and both cases for the miR-9-3 gene It is. It is a graph which shows the result of having analyzed the methylation (a) of the miR-137 gene of a urine sample, and its ROC curve (b) before and after cancer tissue removal surgery. It is a graph which shows the result of having analyzed the methylation of the miR-137 gene in the urine sample before and after the operation of cancer tissue extraction surgery (a), and before and after (b) non-cancer patients.
  • Bladder cancer in the present embodiment refers to cancer that occurs in the bladder, such as urothelial cancer (transitional cell carcinoma), squamous cell carcinoma or adenocarcinoma.
  • one or more miRNA selected from one or more miR-124, miR-9, and miR-137 is used as a bladder cancer marker.
  • the miRNA is a short single-stranded RNA of 10 base pairs or more having the sequence described below, and has a 5'-phosphate, 3'-OH structure, and the 3 'end may protrude by 2 bases. In the present embodiment, it refers to either artificially chemically synthesized or synthesized in a living organism.
  • miR-137 (5′-uuauugcuuaagaauacccguag-3 ′) (MIMAT000029) (SEQ ID NO: 29) miR-124 (5′-uaagggacggcggugaaugcc-3 ′) (MIMAT000022) (SEQ ID NO: 30) miR-9 (5′-ucuuugguuuaucucucuugauga-3 ′) (MIMAT0000441) (SEQ ID NO: 31) miR-137 gene (5'-ggtcctctactactctctctggtgacgggtatttttggggtgataatacggattacgttgttattgcttagagaatacgcgttagcgaggagacgaccagc
  • miR-137 among bladder cancers can be a clear indicator of bladder cancer cells in bladder cancer.
  • a plurality of the above-described miRNAs may be detected and the results may be compared and verified. By comparing and verifying a plurality of miRNAs, detection with higher specificity and sensitivity becomes possible.
  • the expression level of the miRNA in the subject sample collected from the subject who is the target for detecting bladder cancer cells is detected.
  • the subject sample can be obtained by collecting a bladder cancer tissue or a biological sample containing the tissue, and can be detected from a urine sample, a blood sample, a sample excised and collected by an endoscope, or the like. In this embodiment, a sample excised by an endoscope or a sample collected from a total cystectomy specimen is used.
  • the target expression level of the bladder cancer marker is detected by comparing the expression level of the bladder cancer marker in a subject sample collected from a subject who is a target for detecting bladder cancer cells with a threshold value.
  • the tissue of the subject sample can be determined as bladder cancer.
  • the threshold is set for a control sample collected from normal tissue, and the expression level is compared.
  • the control sample may be a normal tissue of a normal subject different from a subject suspected of having bladder cancer, or the same subject taken when the subject suspected of having bladder cancer is healthy or from a healthy tissue It may be.
  • a normal tissue that is sufficiently separated from a tissue that is likely to have cancer in the same subject is used as a control sample.
  • the expression level of the target miRNA is decreased. Therefore, when the frequency of methylation of the genomic sequence encoding the target miRNA in the subject sample is high, the presence of bladder cancer cells can be determined. According to the detection of methylation, detection can be performed with high accuracy regardless of the background of the miRNA expression level in the tissue.
  • methylation detection means can be used for the detection of methylation, including bisulfite sequencing, methylation-specific PCR (MSP), quantitative MSP, COBRA (cobra), and bisulfite pyro.
  • a sequence method or the like can be used. Any of these methods may be used alone, or two or more of these methods may be used in combination.
  • the bisulfite pyrosequencing method is preferably used in that it can accurately and quantitatively detect the target miRNA, and the methylation-specific PCR method (MSP method) is quick and simple.
  • MSP method methylation-specific PCR method
  • it is preferably used because methylation can be detected from a small amount of DNA sample.
  • MSP method is Methods Mol Med. 2005; 113: 279-91 and Taku Suzuki, Minoru Toyoda, Kozo Imai: Bisulfite PCR Method New Genetic Engineering Handbook Revision 4th Edition (Masamatsu Muramatsu and Masaru Yamamoto), Yodosha, pp 99-106, 2003, Bisulfite Sequence The method is described in Methods. 2002 Jun; 27 (2): 101-7 and Taku Suzuki, Minoru Toyoda, Kozo Imai: bisulfite PCR method. New Genetic Engineering Handbook Revised 4th Edition (Masamatsu Muramatsu, Masaru Yamamoto), Yodosha, pp99-106, 2003, Bisulfite pyrosequencing method is described in Nat Protoc.
  • the cobra method is Methods Mol Biol. 2002; 200: 71-85 and Taku Suzuki, Minoru Toyota, Kozo Imai: bisulfite PCR method.
  • New 4th edition of Genetic Engineering Handbook (Masamatsu Muramatsu, Masaru Yamamoto), Yodosha, pp99-106, 2003, Methylite method is Methods. 2001 Dec; 25 (4): 456-62, etc., or these can be used with appropriate modifications.
  • the bisulfite pyrosequencing method is generally sometimes abbreviated as the pyrosequencing method, and the pyrosequencing method in this case and the bisulfite pyrosequencing method in this specification indicate the same method.
  • the gene expression level can also be detected by directly detecting the miRNA expression level.
  • miRNA detection means such as real-time RT-PCR method or Northern blot method can be appropriately used. Any of these methods may be used alone, or two or more of these methods may be used in combination. Among the above, detection by the real-time RT-PCR method is preferable from the viewpoint of simplicity and sensitivity.
  • Bladder cancer cells can be detected using either the direct detection of the target miRNA expression level or the detection of methylation of the genomic sequence encoding the target miRNA, or a combination of both. You can also.
  • FIG. 27, FIG. 28, and FIG. 29 show the primers used in the above and the sequences that are the basis thereof.
  • the figure shows the sequences upstream of the miR-137 gene, miR-124-2 gene, miR-124-3 gene, miR-9-3 gene (SEQ ID NOs: 36, 38, 40, 42), after bisulfite conversion, respectively.
  • Sequence (underlined indicates the sequence used as a primer) (SEQ ID NO: 37, 39, 41, 43), forward primer and reverse primer used for PCR in simultaneous amplification of methylated allele and unmethylated allele, and An example of a combination of a primer used for a sequence reaction after PCT amplification, a methylated allele-specific forward primer and a reverse primer, and an unmethylated allele-specific forward primer and a reverse primer used for detection by the MSP method is shown.
  • the forward primer is GGGTTTAGYGAGTAGTAGATAGTTTG
  • the reverse primer is CCCCCTACCRCTATAATCTCTCTCTC.
  • GGTATTTTTGGGTGGAATAAT is used as a primer used for the sequencing reaction.
  • a primer used for PCR amplification by the bisulfite pyrosequencing method GTTGGAGTGTATAGAAGGATTATTTG is used as a forward primer, and ACTACRAAAATCCAAAAAAAAATACATAC is used as a reverse primer.
  • YGTTTTTATTGTTTTAGTTTT is used as a primer for the sequencing reaction.
  • AAAAGAGAYGAGGTTTTATTTTTTGAGTAT is used as a forward primer and TCCTCCRCAACTACTTCTCCCTA is used as a reverse primer as primers for PCR amplification by the bisulfite pyrosequencing method.
  • GAGATTYGTTTTTTAAT is used as a primer used for the sequence reaction.
  • GATTTTAAATTGGAGTTGTGTATTGTGT is used as a forward primer and TCCCRAAACTCACRTAAAACACCC is used as a reverse primer.
  • TTGGATTGAYGTTTATTT is used as a primer for the sequencing reaction.
  • the primer sequences used for detection of miR-137 are as follows: GTAGCGGGTAGTAGCGGGTAGCGGT as a forward primer as a methylated allele specific primer, GCTAATACTCTCCTCGATACCGCGCT as a reverse primer, TGGTAGCTAGTAGCTTAGTAGTTAG
  • sequences of the primers used for detection of miR-124-2 are as follows: AGGGGCGGTATTTTTGGGGTTTTTGC as a methylated allele-specific primer, CCCCTTACGACGTAATCGTACCCG as a non-methylated allele-specific primer, .
  • sequences of the primers used for detection of miR-124-3 are as follows. .
  • the primer sequences used for detection of miR-9-3 are: GATTGACGGTTTATTTTTTCGCGGGGC as a forward primer as a methylated allele-specific primer, CGAAAACTCACGTAAAACACCCGCG as a reverse primer, and TGGATCATTGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATGTATTTATGTATGTT .
  • the miR-137 gene, the miR-124-2 gene, the miR-124-3 gene, and the miR-9-3 gene have primers such as bisulfite shown in FIGS. You may select the other arrangement
  • the subject sample is a urine sample collected from the subject.
  • a urine sample after treatment for bladder cancer, for example, excision of the bladder is used.
  • the expression level of miRNA is detected by detecting methylation as in the above embodiment.
  • Other points are the same as in the above-described embodiment.
  • control sample is less methylated than the subject sample, it can be determined that the bladder cancer tissue has been removed by treatment.
  • a urine sample is desirable because it is not invasive to the subject and suffers minimal pain and can be collected very easily. Since the urinary epithelial cells peeled off in the urine are detected in the urine sample, the amount of miRNA contained is smaller than that of the blood sample or the excised sample.
  • the bisulfite pyrosequencing method is used. Detection of methylation by means of urine samples enables detection with sufficiently high specificity and sensitivity.
  • Bladder cancer inhibitor Another embodiment of the present invention is a bladder cancer inhibitor containing one or more miRNA selected from miR-124, miR-9, and miR-137.
  • the present inventors have found that bladder cancer can be suppressed by administering or expressing these genes whose expression is suppressed in cancer cells of bladder cancer to cancer tissues.
  • a bladder cancer suppressor contains the above-described miRNA as an active ingredient, and this active ingredient is blended into a base used as a gene therapy agent.
  • a buffer solution or an amino acid or other nutrient can be added to form a solution or powdered injection. Or it can mix
  • the above-described miRNA can be introduced into cells and used as a drug for expression in cancer cells.
  • a drug for encapsulating the above-described miRNA in a liposome or the like to introduce a nucleic acid molecule into a tissue a drug for a method for introducing a nucleic acid molecule into a cell by a microinjection method, a cell administered to a living body via a viral vector It can be set as the chemical
  • miRNAs whose expression increased after drug treatment were found in common in the two cell lines T24 and UM-UC-3.
  • CpG islands were present in the region within 5 kb upstream of pre-miRNA, and were the following 23 types (registered in the above-mentioned miR BASE). Since the expression of these genes is increased when methylation is inhibited, the expression of these genes may be suppressed by methylation in these cell lines.
  • hsa-miR-10b hsa-miR-124, hsa-miR-132, hsa-miR-137, hsa-miR-147b, hsa-miR-148a, hsa-miR-152, hsa-miR-185a, hsa- miR-193a-5p, hsa-miR-200b, hsa-miR-200b *, hsa-miR-203, hsa-miR-22, hsa-miR-330-5p, hsa-miR-34c-5p, hsa-miR -409-3p, hsa-miR-409-5p, hsa-miR-449b, hsa-miR-545 *, hsa-miR-636, hsa-miR-639, hsa-
  • FIG. 2 The results of further analysis of the methylation status of these genes by the bisulfite pyrosequencing method are shown in FIG. 2, FIG. 3, and FIG.
  • Primary Bladder Cancer Tissue is DNA derived from surgically removed bladder cancer tissue
  • Blade Cancer Cell Lines is DNA from bladder cancer tissue cell lines (T24, UM-UC3, HT1197, HT-1376, SW780)
  • SV-U 1 shows the result of analysis of DNA derived from a normal urothelial cell line
  • Normal Urothelium analyzed for DNA derived from normal urothelium purchased from BioChain.
  • FIG. 5 shows real-time RT-PCR analysis using PCR (Applied Biosystems). This result indicates that miR-137 has low expression in HT1197 and SW780.
  • FIG. 5 (b) shows the results of analyzing the methylation of the miR-137 gene by bisulfite pyrosequencing for these bladder cancer cell lines. This result indicates that the miR-137 gene is methylated in UM-UC-3, HT1197, HT-1376, and SW780.
  • the results in FIGS. 5 (a) and 5 (b) indicate that miR-137 expression is decreased in bladder cancer cell lines, and that the decrease may be due to methylation.
  • RNA is extracted from the cancer tissue (T) and the tissue (DN: Distant Normal-appearing tissue) that is sufficiently separated from the cancer and obtained at the time of cancer removal, and the expression level of miR-137 is determined in real-time RT -Results of PCR analysis are shown in FIG. In this result, a tendency that the expression level is low in the cancerous part (T) is recognized. Although there is no difference that can be compared at the level of expression level, it is considered that it is difficult to detect a gene having a decreased expression level because T also contains normal tissue.
  • FIG. 7 (b) shows the result of analyzing the methylation of the miR-137 gene by the bisulfite pyrosequencing method. From this result, it is recognized that there is an inverse correlation between the expression level of miRNA and the methylation in the encoded genomic gene, that is, the expression level of miRNA is decreased by methylation of the gene CpG island on the genome. From these results, it was shown that by analyzing the methylation of the miR-137 gene, it is possible to detect a decrease in the expression level, that is, whether or not it is a cancer cell.
  • FIG. 8 shows the results of analyzing the methylation of the miR-137 gene for DN by the bisulfite pyrosequencing method. The results from the same individual are connected by a line.
  • ROC receiver operating characteristic
  • FIG. 14 shows a bisulfite pyro before and after surgery for cancer tissue removal surgery (a), and before and after surgery for a non-cancerous subject (example that was found not to be cancer after removal).
  • the result of the analysis of the methylation of miR-137 gene by the sequencing method is shown. The results from the same individual are connected by a line.
  • the miR-137 gene methylation was reduced by excision of the cancer tissue, and when it was not cancer, there was no change, which correlated with the result in the urine sample shown in FIG. From these results, it is considered that methylation of miR-137 gene in urine samples is useful as a diagnostic marker for bladder cancer cells, and analysis of methylation in urine can be applied to the examination of the presence of cancer tissue. Indicated.
  • FIG. 16 shows the results before and after surgery for cancer tissue removal surgery (a), and before and after surgery for surgery for a non-cancer subject. The results from the same individual are connected by a line.
  • the miR-124-2 gene methylation was reduced by the removal of cancer tissue, and when it was not cancer, there was no change, correlating with the result in the urine sample shown in FIG. 15 (a). From these results, it is considered that methylation of miR-124-2 gene in urine specimens is useful as a diagnostic marker for bladder cancer, and analysis of methylation in urine can be applied to the presence or absence of cancer tissue It has been shown.
  • FIG. 18 shows the results before and after the operation for removing cancer tissue (a), and before and after the operation for removing non-cancer subjects (b).
  • the results from the same individual are connected by a line.
  • the miR-124-3 gene methylation is reduced by the removal of cancer tissue, and there is no change when it is not cancer, which correlates with the result in the urine sample shown in FIG. 17 (a). From these results, it is considered that methylation of miR-124-3 gene in urine specimens is useful as a diagnostic marker for bladder cancer, and analysis of methylation in urine can be applied to the presence or absence of cancer tissue It has been shown.
  • FIG. 20 shows the results before and after the surgical operation for removing cancer tissue (a), and before and after the surgical operation for a non-cancer subject (b).
  • the results from the same individual are connected by a line.
  • the methylation of the miR-9-3 gene is reduced by the removal of the cancer tissue, and there is no change when it is not cancer, which correlates with the result in the urine sample shown in FIG. 19 (a). From these results, it is considered that methylation of miR-9-3 gene in urine specimens is useful as a diagnostic marker for bladder cancer, and analysis of methylation in urine can be applied to the presence or absence of cancer tissue It has been shown.
  • bladder cancer using a urine sample by combining the methylation detection results of four types of genes, miR-137 gene, miR-124-2 gene, miR-124-3 gene and miR-9-3 gene We examined and analyzed the diagnostic method.
  • the panel detection method is shown in FIG. 21 and FIG.
  • the numerical values that provide the best sensitivity (sensitivity, Sens) and specificity (specificity, Spec) are used as the cutoff values, and 5.2% for the miR-137 gene and miR-124- Set 2% for 2 genes, 12% for miR-124-3 gene, and 7.2% for miR-9-3 gene. If this value is met, add 1 point for each gene. (Summing the number of “Yes”). This was designated as miRscore, and an ROC curve was created at each point. As a result, the sensitivity was 94% and the specificity was 64% between 0-1 points. Between 1-2 points, the sensitivity was 81% and the specificity was 89%.
  • the sensitivity was 65% and the specificity was 97%. Moreover, this was made into the training set (Training Set) shown in FIG. 21, and it examined again as a test set (Test Set) shown in FIG. 22 using another urine sample. As a result, the sensitivity was 94% and the specificity was 64% between 0-1 points. Between 1-2 points, the sensitivity was 82% and the specificity was 91%. The sensitivity was 71% and the specificity was 91% between 2-3 points. From this result, reproducibility was confirmed for this detection method.
  • the detection method based on the Tree diagram is shown in FIG. 23 and FIG.
  • the methylation of the miR-137 gene which has the highest sensitivity at a specificity of 100%, is divided by a cutoff value of 9.8% (sensitivity is 57%). If this is satisfied, classify as category 3. If this is not satisfied, the methylation of miR-9-3 gene is further divided by a cutoff value of 6.7%.
  • the methylation of the miR-137 gene was 9.8% or less, ROC curves were prepared for each of the miR-124-2, miR-124-3, and miR-9-3 genes. In this case, the values with the highest sensitivity and specificity were 87% and 75%, respectively.
  • category 2 When this is satisfied, it is classified as category 2, and when it is not satisfied, it is classified as category 1. In addition, this was used as a training set shown in FIG. 23, and the test set shown in FIG. 24 was examined again using another urine sample. As a result, specificity for category 3 was 100% and sensitivity was 68%, and in classifications of categories 1 and 2, specificity was 55% and sensitivity was 91%. From this result, reproducibility was confirmed for this detection method. Note that category 3 has a specificity of 100%, and if it is classified into this category, it is determined that it is cancer with a considerable probability. If it is classified into category 1, it is determined that it is unlikely that it is cancer, and if it is classified into category 2, it is determined that it is probably cancer.
  • Table 2 shows the results of urine cytology in the above urine specimen.
  • FIG. 25 shows the results of miR-137 transiently introduced into bladder cancer cells (SW780) and forced expression, and comparison of cell viability with miR-cont (which expresses a random sequence). Viability in the figure indicates cell viability. Since the expression level of miR-137 decreases for a long time due to the introduction of the transient, analysis was performed every 24 hours up to 72 hours. The result was that the expression of miR-137 decreased the cell viability of cancer cells. From these results, it was shown that miR-137 can be used as an inhibitor of bladder cancer.
  • Table 3 shows the results of extracting only the data of patients whose depth of penetration pTa and atypical degree G1 / G2 classified as early cancers from Table 1.
  • FIG. 31 shows a detection method in which ROC curves are generated by combining the results of these genes and analyzing with the same panel detection method and tree diagram as in FIG. 21-24. From these results, it was revealed that the analysis of methylation of each gene can detect early bladder cancer in patients with pTa and G1 / G2 by using each gene alone or in combination.
  • Table 4 shows the results of urine cytology in the urine specimen of the above-mentioned early cancer patient.
  • the present invention can be widely applied in the medical and pharmaceutical fields by cancer treatment and prevention.

Abstract

 膀胱癌に対する特異度が高く、かつ悪性度の低い膀胱癌組織を検出することのできる検出感度の高い膀胱癌の検出方法及び膀胱癌マーカを提供する。miR-124、miR-9及びmiR-137から選ばれる1つ以上のmiRNAからなる膀胱癌マーカの発現量を被験者から採取された被験者サンプルから検出することを含む膀胱癌細胞の検出方法、膀胱癌細胞の検出方法に用いるプライマー及び膀胱癌マーカである。

Description

膀胱癌細胞の検出方法、膀胱癌細胞の検出方法に用いるプライマー及び膀胱癌マーカ
 本発明は、被験者から得られたサンプルより被験者の癌を検出する方法、特に膀胱癌細胞を検出する方法及びその方法に用いるプライマー、膀胱癌マーカとなる物質に関する。
 現在、膀胱癌の検出には、尿細胞診が最も広く用いられている。尿細胞診は、膀胱から剥離して尿内に脱落した膀胱の細胞を尿内から採取し、その形状を顕微鏡で観察することで、癌細胞を検出する。
 一方で、組織に対して、遺伝子制御を行う短いRNAであるマイクロRNA(以下、「マイクロRNA」は「miRNA」や「miR」、「hsa-miRNA」とそれぞれ交換可能に用いる場合がある。)の発現量を検出することで、癌組織の検出を行う方法について研究が進められている。こうした技術として、特許文献1には、検体においてmiR-9及びmiR-137を含むmiRNAの遺伝子発現の低下を指標として検体の癌化を検出する癌の検出方法及びこれらを発現させることによる癌抑制方法及び癌抑制剤が開示されている。
 特許文献2には、対象からの試験サンプル中のmiRNA遺伝子産物のレベルを測定し、乳癌を有しているか、又は発生するリスクの有無について検出する方法が開示されている。
 特許文献3には、BCL2関連癌の抗癌治療の効力を増加させる方法であって、対象に少なくとも1つの抗癌治療を投与すること及び対象に少なくとも1つのmiR遺伝子産物でBCL2遺伝子転写体中のヌクレオチド配列と相補的であるヌクレオチド配列を含んでなるmiR遺伝子産物を投与することによるBCL2関連癌の診断及び療法のための方法が開示されている。具体的には、癌のうち慢性リンパ球性白血病における、miR遺伝子のうちmiR-15及びmiR-16の投与についての検証結果が開示されている。miRNAの発現が減少している可能性がある癌組織として、膀胱が記載されている。またBCL2関連癌の診断及び療法に用いることができるmiRNAとしてmiR-137及びmiR-9が例示されている。
 特許文献4には、miR-137を含むマイクロRNAを婦人科がんのバイオマーカーとして使用する婦人科がんの判定方法が開示されている。婦人科がんの判定方法としては、miRNAの発現量を直接検出する方法が記載されている。
 特許文献5には、癌患者の治療後生存を予測する方法であって、治療を受けた癌患者のhsa-miR137を含むマイクロRNAの発現レベルを検出し、このマイクロRNAの発現レベルに基づいて患者のリスクスコアを計算すること、及びリスクスコアの値に基づいて治療後生存の見通しを決定することからなる癌患者の治療後生存予測の方法が開示されている。予測する癌の例としては肺癌、白血病、乳癌、膵臓癌、腺癌、扁平上皮癌、結腸癌又は肝細胞癌が記載されている。
 特許文献6には、少なくとも1種のmiR遺伝子産物のレベルを測定し、被験者は固形癌を有するか又はそれを発生する危険性があるかのいずれかを判断する方法が開示されている。
 非特許文献1には、miR-137の大腸癌での発現について記載されている。非特許文献2には、miR-137を含むmiRNAの口腔癌での発現について記載されている。非特許文献3には、miR-137の大腸癌での発現について記載されている。
特開2009-171876号公報 特表2009-505639号公報 特表2009-507918号公報 特開2010-154843号公報 特表2010-523156号公報 特表2009-531019号公報
F. Balaguer et al, Cancer Res 2010;70:6609-6618. K. Kozaki et al, Cancer Res 2008;68:2094-2105. M. Liu et al, Int. J. Cancer: 128, 1269-1279 (2011).
 現在、膀胱癌の検出に広く用いられている尿細胞診では、膀胱癌の検出の感度に問題があった。すなわち、尿細胞診は顕微鏡で細胞の形状を観察するので、その形状から明らかに腫瘍細胞と把握できる細胞を検出できれば特異的に膀胱癌細胞を検出できるが、形状から把握できない悪性度の低い腫瘍細胞については検出することができない。そのため、悪性度の低い腫瘍を検出することが困難であった。
 そこで本発明者らは、癌細胞に対する特異度と悪性度の低い腫瘍を検出できる検出感度を求めるため、遺伝子学的に癌細胞を検出する方法、特にmiRNAの検出による癌の検出方法に着目した。なお、特許文献1には、miRNAの検出による癌の検出方法及びこれらを発現させることによる癌抑制方法及び癌抑制剤について記載されているが、開示されているのは口腔扁平上皮癌に対するもので、膀胱癌の組織については検証されていない。
 特許文献2には、乳癌又は乳癌が発生するリスクについて検出する方法及び組成物について記載されているが、膀胱癌の組織については検証されていない。
 特許文献3では、miRNAの発現が一般的に減少していてもよいとして多数例示された癌組織のひとつに膀胱が含まれているが、膀胱癌において発現が低下している遺伝子については具体的に検証を行っておらず、膀胱癌に適用できるという根拠も示されていない。投与するmiRNA遺伝子としてmiR-137及びmiR-9が挙げられているが、BCL2遺伝子の発現を低下させることが癌の治療に繋がるという仮説のもと、そのBCL2遺伝子の発現を理論的に低下させる可能性のある多数のmiRNAの候補の中のひとつとして例示しているにすぎず、これらによって実際にBCL2遺伝子発現が低下するかどうかは検証されていない。また、この方法はBCL2遺伝子及び/又は遺伝子産物の過剰発現に関連する癌の治療可能性に限定され、miR-137及びmiR-9の投与が実際に癌の治療に繋がるかどうかについても一切検証していない。
 特許文献4には、いわゆる婦人科癌の判定方法及び判定キットについて記載されているが、膀胱癌については記載されていない。さらに、子宮体がんでは、miR-137の発現が逆に上昇していることが確認されている。
 特許文献5には、癌患者の治療後の生存を予測する方法が開示されているが、癌患者であるかどうかの検出方法については記載されていない。また、癌について、膀胱癌は記載されていない。
 特許文献6では、6種の癌(乳、大腸、肺、膵、前立腺、胃)において、miR-137の発現は変化していない。miR-137は、測定される遺伝子として選択されないもの(段落[0037])の中に挙げられ、特に上述の6種の癌の測定についてもそれぞれ選択されないものに挙げられている。
 非特許文献1~3では、miR-137を含むmiRNAの発現と、大腸癌、口腔癌の発症や、大腸癌の浸潤との関連についてそれぞれ記載されているが、膀胱癌については検証されていない。
 上記にあるとおり、癌種や癌の状態により関連するmiRNAや、その発現レベルに様々な差異があり、複雑な機構を示しているところ、本発明者らは、膀胱癌において発現抑制されているmiRNAを探索した。その結果、膀胱癌において発現抑制されているmiRNAを見出し、その発現量を測定することによる膀胱癌の検出方法を見出し、本発明を完成するに至った。
 従って本発明の目的は、膀胱癌に対する特異度が高く、かつ悪性度の低い膀胱癌組織を検出することのできる検出感度の高い膀胱癌細胞の検出方法、この方法に用いるプライマー及び膀胱癌マーカを提供することにある。
 本発明の膀胱癌細胞の検出方法は、miR-124、miR-9及びmiR-137から選ばれる1つ以上のmiRNAからなる膀胱癌マーカの発現量を被験者から採取された被験者サンプルから検出することを含む。
 膀胱癌の組織において、正常組織と比べて特異的に発現量が異なるmiRNAを膀胱癌マーカとして検出する。組織内のmiRNAは、リアルタイムreverse-transcription PCR(リアルタイム逆転写PCR、リアルタイムRT-PCR、定量RT-PCR)などの手段で迅速かつ正確に発現の有無及びその量を定量的に検出することができるので、miR-124、miR-9及びmiR-137から選ばれる1つ以上のmiRNAの発現量を検出することで特異的に膀胱癌細胞を検出することができ、かつ悪性度の低い膀胱癌組織であっても検出することができる。
 膀胱癌マーカの発現量の検出は、膀胱癌マーカ遺伝子のメチル化(メチル化シトシン)の検出により前記膀胱癌マーカの発現量の低下を検出することが好ましい。膀胱癌細胞においてはmiR-124、miR-9及びmiR-137などの発現が、それぞれがコードされているゲノム遺伝子上においてメチル化によって抑制されているため、miR-124についてはmiR-124-2遺伝子およびmiR-124-3遺伝子、miR-9についてはmiR-9-3遺伝子、miR137についてはmiR-137遺伝子におけるメチル化の検出によって、膀胱癌細胞におけるこれらのmiRNAの発現量の低下と膀胱癌細胞を検出することができる。対象miRNAを多量に発現している正常組織の中に癌組織が含まれている場合、発現量を直接に検出するという手段では、正常組織での発現が検出されてしまうので癌組織における対象miRNAについて検出することが困難な場合があるが、発現量の低下をメチル化という陽性のシグナルとして検出することで、その存在を明確かつ確実に検出することができる。
 なお、膀胱癌細胞の検出方法は、miR-137遺伝子、miR-124-2遺伝子、miR-124-3遺伝子、及びmiR-9-3遺伝子から選ばれる1つ以上の遺伝子のメチル化のレベルを被験者から採取された被験者サンプルから検出することを含む。この検出方法において、メチル化のレベルをしきい値と比較することが好ましい。癌組織でないことが判明している別の組織や他の部位の組織などにおける上述の遺伝子のメチル化のレベルをしきい値とし、このしきい値に対して検出対象とする組織における上述の遺伝子のメチル化のレベルを比較することで、膀胱癌細胞を検出できる。被験者サンプルにおけるメチル化のレベルがしきい値に比べて高い場合、被験者サンプルが癌組織であることを判定できる。
 メチル化の検出はバイサルファイト・パイロシークエンス法により行うことが好ましい。本法により、対象とするmiRNAの検出を精密かつ定量的に行うことができるので、膀胱癌細胞の組織の検出を確実に行うことができる。
 膀胱癌マーカが少なくともmiR-137を含むことが好ましい。miR-137は膀胱癌細胞において正常組織と比して発現量に特に顕著な差が見られるので、miR-137によって最も確実性が高く膀胱癌細胞を検出することができる。
 被験者サンプルにおける膀胱癌マーカの発現量をしきい値と比較することが好ましい。癌組織でないことが判明している別の組織や他の部位の組織などのmiRNAの発現量をしきい値とし、比較することで癌組織を検出できる。被験者サンプルにおける膀胱癌マーカの発現量がしきい値に比べて低い場合、被験者サンプルが癌組織であることを判定できる。
 しきい値は、正常組織から採取されたコントロールサンプルにおける前記膀胱癌マーカの発現量であることが好ましい。膀胱癌細胞においてはmiR-124、miR-9及びmiR-137などの発現が抑制されているため、正常組織と比較した発現量の低下によって膀胱癌細胞を検出することができる。
 しきい値は、被験者から異なる時に採取された又は被験者の異なる組織から採取されたコントロールサンプルにおける前記膀胱癌マーカの発現量であることが好ましい。被験者から異なる時に採取されたコントロールサンプルと比較することで、癌を発症していない際や癌を切除した際との比較で膀胱癌細胞を検出することができる。膀胱癌細胞の発現についての時間的なデータを得ることができるので、癌の発生や治療成果を判定することができる。被験者の異なる組織から採取されたコントロールサンプルと比較することで、癌を発症していない組織との比較で膀胱癌細胞を検出することができる。部位ごとにサンプルを採取することで、癌が発生している組織の部位を検出することができる。
 被験者サンプルが尿サンプルであることが好ましい。尿サンプルは手術等によらず侵襲性もなく安全、簡便かつ迅速に頻回を採取できる。尿サンプルは、尿中に剥離脱落した尿路上皮細胞が検出されるので、血液サンプルや切除採取したサンプルに比べて含有されるmiRNAの量が少ないが、本実施形態ではバイサルファイト・パイロシークエンス法等によるメチル化の検出を行うので、尿サンプルによって充分に特異度と感度の高い検出が可能である。
 膀胱癌マーカのメチル化の検出による発現量の検出において、膀胱癌細胞の検出方法に用いるプライマーは、バイサルファイト・パイロシークエンス法によるmiR-137遺伝子の増幅に用いるプライマーの配列が配列番号1で示されるフォワードプライマー(GGGTTTAGYGAGTAGTAAGAGTTTTG)及び配列番号2で示されるリバースプライマー(CCCCCTACCRCTAATACTCTCCTC)であることが好ましく、シークエンス反応に用いるプライマーの配列が配列番号3で示されるGGTATTTTTGGGTGGATAATであることが好ましい。
 膀胱癌マーカのメチル化の検出による発現量の検出において、膀胱癌細胞の検出方法に用いるプライマーは、バイサルファイト・パイロシークエンス法によるmiR-124-2遺伝子の増幅に用いるプライマーの配列が配列番号4で示されるフォワードプライマー(GTTGGGATTGTATAGAAGGATTATTTG)及び配列番号5で示されるリバースプライマー(ACTACRAAAATCCAAAAAAAAATACATAC)であることが好ましく、シークエンス反応に用いるプライマーの配列が配列番号6で示されるYGTTTTTATTGTTTTAGTTTであることが好ましい。
 膀胱癌マーカのメチル化の検出による発現量の検出において、膀胱癌細胞の検出方法に用いるプライマーは、バイサルファイト・パイロシークエンス法によるmiR-124-3遺伝子の増幅に用いるプライマーの配列が配列番号7で示されるフォワードプライマー(AAAAGAGAYGAGTTTTTATTTTTGAGTAT)及び配列番号8で示されるリバースプライマー(TCCTCCRCAACTACCTTCCCCTA)であることが好ましく、シークエンス反応に用いるプライマーの配列が配列番号9で示されるGAGATTYGTTTTTTTAATであることが好ましい。
 膀胱癌マーカのメチル化の検出による発現量の検出において、膀胱癌細胞の検出方法に用いるプライマーは、バイサルファイト・パイロシークエンス法によるmiR-9-3遺伝子の増幅に用いるプライマーの配列が配列番号10で示されるフォワードプライマー(GATTTGAATGGGAGTTTGTGATTGGT)及び配列番号11で示されるリバースプライマー(TCCCRAAACTCACRTAAAACACCC)であることが好ましく、シークエンス反応に用いるプライマーの配列が配列番号12で示されるTTGGATTGAYGTTATTTTであることが好ましい。
 メチル化の検出はメチル化特異的PCR法(MSP法)により行うことも好ましい。本法により、対象とするmiRNA遺伝子のメチル化の検出を迅速、簡便に、かつ少量のDNAサンプルから行うことができるので、膀胱癌の組織の検出を確実に行うことができる。
 メチル化特異的PCR法において、膀胱癌細胞の検出方法に用いるプライマーは、miR-137遺伝子のメチル化の検出に用いるプライマーの配列が、メチル化アレル特異的プライマーとして配列番号13で示されるフォワードプライマー(GTAGCGGTAGTAGCGGTAGCGGT)及び配列番号14で示されるリバースプライマー(GCTAATACTCTCCTCGACTACGCG)、非メチル化アレル特異的プライマーとして配列番号15で示されるフォワードプライマー(TGGTAGTGGTAGTAGTGGTAGTGGT)及び配列番号16で示されるリバースプライマー(CCACTAATACTCTCCTCAACTACACA)であることが好ましい。
 メチル化特異的PCR法において、膀胱癌細胞の検出方法に用いるプライマーは、miR-124-2遺伝子のメチル化の検出に用いるプライマーの配列が、メチル化アレル特異的プライマーとして配列番号17で示されるフォワードプライマー(AGGGGCGTATTTTGGGGTTTTTGC)及び配列番号18で示されるリバースプライマー(CCCCTACGACGTAATCGACCCG)、非メチル化アレル特異的プライマーとして配列番号19で示されるフォワードプライマー(TTTAGGGGTGTATTTTGGGGTTTTTGT)及び配列番号20で示されるリバースプライマー(CATCCCCTACAACATAATCAACCCA)であることが好ましい。
 メチル化特異的PCR法において、膀胱癌細胞の検出方法に用いるプライマーは、miR-124-3遺伝子のメチル化の検出に用いるプライマーの配列が、メチル化アレル特異的プライマーとして配列番号21で示されるフォワードプライマー(GTTTTAGTGATAATCGGTCGGTGTC)及び配列番号22で示されるリバースプライマー(TCCACGAAATCCACGCTACAAACG)、非メチル化アレル特異的プライマーとして配列番号23で示されるフォワードプライマー(TGTGTTTTAGTGATAATTGGTTGGTGTT)及び配列番号24で示されるリバースプライマー(ATATCCACAAAATCCACACTACAAACA)であることが好ましい。
 メチル化特異的PCR法において、膀胱癌細胞の検出方法に用いるプライマーは、miR-9-3遺伝子のメチル化の検出に用いるプライマーの配列が、メチル化アレル特異的プライマーとして配列番号25で示されるフォワードプライマー(GATTGACGTTATTTTTTCGCGGGGC)及び配列番号26で示されるリバースプライマー(CGAAACTCACGTAAAACACCCGCG)、非メチル化アレル特異的プライマーとして配列番号27で示されるフォワードプライマー(TTGGATTGATGTTATTTTTTTGTGGGGT)及び配列番号28で示されるリバースプライマー(CCCAAAACTCACATAAAACACCCACA)であることが好ましい。
 本発明の膀胱癌マーカは、miR-124、miR-9及びmiR-137から選ばれる1つ以上のmiRNAを含有する。
 膀胱癌マーカの発現量を被験者から採取された被験者サンプルから検出することで、膀胱癌の組織において、正常組織と比べて特異的に発現量が異なるmiRNAを膀胱癌マーカとして検出する。組織内のmiRNAの発現量や当該遺伝子のメチル化レベルは、リアルタイムPCRやバイサルファイト・パイロシークエンス法などの手段で迅速かつ正確に発現の有無及びその量を定量的に検出することができるので、miR-124、miR-9及びmiR-137から選ばれる1つ以上のmiRNAの発現量や当該遺伝子のメチル化レベルを検出することで特異的に膀胱癌細胞を検出することができ、かつ悪性度の低い膀胱癌組織であっても検出することができる。
 本発明の膀胱癌マーカは、膀胱癌マーカの発現量を被験者から採取された被験者サンプルから検出することを含む膀胱癌細胞の検出方法に用いる。この膀胱癌マーカの発現量の検出は、前記膀胱癌マーカがコードされているゲノム遺伝子のメチル化の検出により前記膀胱癌マーカの発現量の低下を検出することを含む膀胱癌細胞の検出方法に用いる。
 本発明の膀胱癌細胞の検出方法は、深達度pTa又は異型度G1/G2の被験者から採取された被験者サンプルから検出を行う。初期癌の患者に対して、miRNAの遺伝子のメチル化レベルを検出することで初期癌の検出を有効に行うことができる。
 本発明の核酸分子は、配列番号1、配列番号2、配列番号3、配列番号4、配列番号5、配列番号6、配列番号7、配列番号8、配列番号9、配列番号10、配列番号11、配列番号12、配列番号13、配列番号14、配列番号15、配列番号16、配列番号17、配列番号18、配列番号19、配列番号20、配列番号21、配列番号22、配列番号23、配列番号24、配列番号25、配列番号26、配列番号27、または配列番号28のヌクレオチド配列を有する。これらの分子を膀胱癌細胞の検出の方法に用いることができる。
 本発明によれば、膀胱癌の組織において、正常組織と比べて特異的に発現量が異なるmiRNAを膀胱癌マーカとして検出する。組織内のmiRNAの発現量や当該遺伝子のメチル化レベルは、リアルタイムPCRやバイサルファイト・パイロシークエンス法などの手段で迅速かつ正確に定量的検出をすることができるので、miR-124、miR-9及びmiR-137から選ばれる1つ以上のmiRNAの発現量や当該遺伝子のメチル化レベルを検出することで特異的に膀胱癌細胞を検出することができ、かつ悪性度の低い膀胱癌組織であっても検出することができる。
膀胱癌細胞株で、miRNAをコードする各ゲノム遺伝子配列についてメチル化特異的PCR法によりメチル化の状態を解析した結果を示す図である。 図1のmiRNAのうちmiR-9-1、miR-9-3、miR-10b、miR-34bについてバイサルファイト・パイロシークエンス法によりメチル化状態を解析した結果を示すグラフである。 図1のmiRNAのうちmiR-124-1、miR-124-2、miR-124-3、miR-137についてバイサルファイト・パイロシークエンス法によりメチル化状態を解析した結果を示すグラフである。 図1のmiRNAのうちmiR-200b、miR-203、miR-409、miR-675についてバイサルファイト・パイロシークエンス法によりメチル化状態を解析した結果を示すグラフである。 各膀胱癌細胞株についてmiR-137のmiRNA発現量(a)及びmiR-137遺伝子のメチル化(b)を解析した結果を示すグラフである。 癌部組織(T)及び正常と思われる組織(DN)におけるmiR-137の発現を解析した結果を示すグラフである。 癌部組織(T)及び正常と思われる組織(DN)でのmiR-137の発現量を解析した結果(a)及びメチル化を解析した結果(b)を示すグラフである。 NMIBC(非浸潤性、表在性)(a)、MIBC(浸潤性)(b)症例の癌部組織(T)、正常と思われる組織(DN)及び癌部(Tの採取組織)から5mm離れた組織(AN;Adjacent Normal-appearing bladder tissue)のそれぞれから採取した組織でのバイサルファイト・パイロシークエンス法によるmiR-137のメチル化を解析した結果を示すグラフである。 miR-137遺伝子についてNMIBC(非浸潤性、表在性)、MIBC(浸潤性)、その両方のケースのバイサルファイト・パイロシークエンス法によるメチル化解析及びそのROC曲線を解析した結果を示すグラフである。 miR-124-2遺伝子についてNMIBC(非浸潤性、表在性)、MIBC(浸潤性)、その両方のケースのバイサルファイト・パイロシークエンス法によるメチル化解析及びそのROC曲線を解析した結果を示すグラフである。 miR-124-3遺伝子についてNMIBC(非浸潤性、表在性)、MIBC(浸潤性)、その両方のケースのバイサルファイト・パイロシークエンス法によるメチル化解析及びそのROC曲線を解析した結果を示すグラフである。 miR-9-3遺伝子についてNMIBC(非浸潤性、表在性)、MIBC(浸潤性)、その両方のケースのバイサルファイト・パイロシークエンス法によるメチル化解析及びそのROC曲線を解析した結果を示すグラフである。 癌組織摘出手術の術前及び癌組織摘出後について尿検体のmiR-137遺伝子のメチル化(a)及びそのROC曲線(b)を解析した結果を示すグラフである。 癌組織摘出手術の術前及び術後(a)、非癌患者の術前及び術後(b)の尿検体におけるmiR-137遺伝子のメチル化を解析した結果を示すグラフである。 癌組織摘出手術の術前及び癌組織摘出後について尿検体のmiR-124-2遺伝子のメチル化(a)及びそのROC曲線(b)を解析した結果を示すグラフである。 癌組織摘出手術の術前及び術後(a)、非癌患者の術前及び術後(b)の尿検体におけるmiR-124-2遺伝子のメチル化を解析した結果を示すグラフである。 癌組織摘出手術の術前及び癌組織摘出後について尿検体のmiR-124-3遺伝子のメチル化(a)及びそのROC曲線(b)を解析した結果を示すグラフである。 癌組織摘出手術の術前及び術後(a)、非癌患者の術前及び術後(b)の尿検体におけるmiR-124-3遺伝子のメチル化を解析した結果を示すグラフである。 癌組織摘出手術の術前及び癌組織摘出後について尿検体のmiR-9-3遺伝子のメチル化(a)及びそのROC曲線(b)を解析した結果を示すグラフである。 癌組織摘出手術の術前及び術後(a)、非癌患者の術前及び術後(b)の尿検体におけるmiR-9-3遺伝子のメチル化を解析した結果を示すグラフである。 パネル検出法のトレーニングセットについて示す概略図である。 パネル検出法のテストセットについて示す概略図である。 Tree図による検出法のトレーニングセットについて示す概略図である。 Tree図による検出法のテストセットについて示す概略図である。 膀胱癌細胞株にmiR-137を強制発現させ膀胱癌の抑制効果を解析した結果を示すグラフである。 miR-137遺伝子およびその近傍のゲノムDNA配列、ならびに本実施形態のバイサルファイト・パイロシークエンス法およびメチル化特異的PCR法(MSP)法で用いたプライマーの配列を示す図である。 miR-124-2遺伝子およびその近傍のゲノムDNA配列、ならびに本実施形態のバイサルファイト・パイロシークエンス法およびメチル化特異的PCR法(MSP)法で用いたプライマーの配列を示す図である。 miR-124-3遺伝子およびその近傍のゲノムDNA配列、ならびに本実施形態のバイサルファイト・パイロシークエンス法およびメチル化特異的PCR法(MSP)法で用いたプライマーの配列を示す図である。 miR-9-3遺伝子およびその近傍のゲノムDNA配列、ならびに本実施形態のバイサルファイト・パイロシークエンス法およびメチル化特異的PCR法(MSP)法で用いたプライマーの配列を示す図である。 pTa、G1/G2の患者に対してmiR-137、miR-124-2、miR-124-3及びmiR-9-3遺伝子のメチル化を解析した結果を示す図である。 図30の結果に基づくパネル検出法及びTree図による検出法を示す図である。
 以下、実施形態を示して本発明を詳細に説明する。
(膀胱癌細胞の検出方法)
 本実施形態における膀胱癌とは、尿路上皮癌(移行上皮癌)、扁平上皮癌又は腺癌といった癌で膀胱に発生するものを指す。
 本実施形態では、1以上のmiR-124、miR-9及びmiR-137から選ばれる1つ以上のmiRNAを膀胱癌マーカとして用いる。miRNAは、後述の配列を有する10塩基対以上の短鎖1本鎖RNAで、5’-リン酸、3’-OHの構造を有し、3’末端は2塩基突出している場合がある。本実施形態では、人工的に化学合成されたものや、生物内で合成されたものをいずれも指す。
 本発明で用いるmiRNAの配列情報及び各miRNAをコードするゲノム遺伝子の配列はmiR BASE(http://microrna.sanger.ac.uk/)に登録されている。配列とAccession番号はそれぞれ以下の通りである。
 miR-137(5’-uuauugcuuaagaauacgcguag-3’)(MIMAT0000429)(配列番号29)
 miR-124(5’-uaaggcacgcggugaaugcc-3’)(MIMAT0000422)(配列番号30)
 miR-9(5’-ucuuugguuaucuagcuguauga-3’)(MIMAT0000441)(配列番号31)
 miR-137遺伝子(5’-ggtcctctgactctcttcggtgacgggtattcttgggtggataatacggattacgttgttattgcttaagaatacgcgtagtcgaggagagtaccagcggca-3’
 ) (MI0000454)(配列番号32)
 miR-124-2遺伝子(5’-atcaagattagaggctctgctctccgtgttcacagcggaccttgatttaatgtcatacaattaaggcacgcggtgaatgccaagagcggagcctacggctgcacttgaa-3’ ) (MI0000444)(配列番号33)
 miR-124-3遺伝子(5’-tgagggcccctctgcgtgttcacagcggaccttgatttaatgtctatacaattaaggcacgcggtgaatgccaagagaggcgcctcc-3’ ) (MI0000445)(配列番号34)
 miR-9-3遺伝子(5’-ggaggcccgtttctctctttggttatctagctgtatgagtgccacagagccgtcataaagctagataaccgaaagtagaaatgattctca-3’ ) (MI0000468)(配列番号35)
 本発明者らは、膀胱癌においては上述のもののうちmiR-137が膀胱癌細胞の明確な指標にできることを見出している。また、上述のmiRNAのうち複数を検出しその結果を比較検証してもよい。複数のmiRNAを比較検証することでさらに特異度と感度の高い検出が可能となる。
 本実施形態の膀胱癌マーカの発現量の検出、すなわち上述のmiRNAの検出の方法としては、膀胱癌細胞を検出する対象である被検者から採取した被検者サンプルのmiRNAの発現量を検出する方法をとることができる。被検者サンプルとしては膀胱癌の組織又は組織を含む生体サンプルを採取して行うことができ、尿サンプル、血液サンプル又は内視鏡により切除採取したサンプル等からの検出を行うことができる。本実施形態では、内視鏡により切除採取したサンプルもしくは、膀胱全摘標本から採取したサンプルを用いている。
 目的とする膀胱癌マーカの発現量の検出は、膀胱癌細胞を検出する対象である被検者から採取した被験者サンプルでの膀胱癌マーカの発現量と、しきい値とを比較することにより行う。被験者サンプルでの膀胱癌マーカの発現量がしきい値と比較して減少している場合、被験者サンプルの組織は膀胱癌と判定することができる。しきい値は、正常組織から採取したコントロールサンプルについて行い、発現量を比較する。このコントロールサンプルは、膀胱癌が疑われる被験者とは別の正常な被験者の正常組織のものであってもよいし、膀胱癌が疑われる被験者が健常である時又は健常な組織から採取した同一被験者のものであってもよい。本実施形態では、同じ被験者の、癌が発生しているおそれのある組織から充分に離れた正常組織をコントロールサンプルとするものとする。
 膀胱癌細胞における上述の膀胱癌マーカの発現量の検出は、目的とするmiRNAをコードするゲノム配列のメチル化を検出、比較することで行うことが望ましい。被験者サンプルがコントロールサンプルに対して目的とするmiRNAをコードするゲノム配列のメチル化の度数が高い場合、目的とするmiRNAの発現量が低下している。そのため、被験者サンプルの目的とするmiRNAをコードするゲノム配列のメチル化の度数が高いときは、膀胱癌細胞の存在を判定することができる。メチル化の検出によると、組織におけるmiRNA発現量のバックグラウンドによらず高い精度で検出を行うことができる。メチル化の検出には、各種のメチル化検出手段を利用することができ、バイサルファイトシークエンス法、メチル化特異的PCR(MSP)法、定量的MSP法、COBRA(コブラ)法、バイサルファイト・パイロシークエンス法などを用いることができる。これらの方法は、いずれかを単独で用いてもよく、2つ以上を組み合わせて用いてもよい。前記のうち、バイサルファイト・パイロシークエンス法は、対象とするmiRNAの検出を精密かつ定量的に行うことができるという点で好ましく用いられ、メチル化特異的PCR法(MSP法)は迅速、簡便に、かつ少量のDNAサンプルからメチル化の検出を行うことができるという点から好ましく用いられる。
 なお、MSP法はMethods Mol Med. 2005;113:279-91および鈴木拓、豊田実、今井浩三:bisulfite PCR法 新 遺伝子工学ハンドブック改訂第4版(村松正實・山本雅編)、羊土社、pp99-106, 2003、バイサルファイトシークエンス法は、Methods. 2002 Jun;27(2):101-7および鈴木拓,豊田実,今井浩三:bisulfitePCR法.新遺伝子工学ハンドブック改訂第4版(村松正實・山本雅編),羊土社,pp99-106,2003、バイサルファイト・パイロシークエンス法は、Nat Protoc. 2007;2(9):2265-75、コブラ法はMethods Mol Biol. 2002;200:71-85および鈴木拓,豊田実,今井浩三:bisulfitePCR法.新 遺伝子工学ハンドブック改訂第4版(村松正實・山本雅編),羊土社,pp99-106, 2003、メチライト法はMethods. 2001 Dec;25(4):456-62などに記載されている方法、又はこれらを適宜変更して用いることができる。なお、バイサルファイト・パイロシークエンス法は、一般にパイロシークエンス法と省略する場合があり、その場合のパイロシークエンス法と本明細書におけるバイサルファイト・パイロシークエンス法とは同一の手法を指す。
 遺伝子の発現量の検出は、miRNAの発現量を直接検出することによって行うこともできる。miRNAの発現量を直接検出するには、リアルタイムRT-PCR法、ノーザンブロット法等のmiRNAの検出手段を適宜用いることができる。これらの方法は、いずれかを単独で用いてもよく、2つ以上を組み合わせて用いてもよい。前記のうち、リアルタイムRT-PCR法による検出が、簡易性や感度の面から好適である。
 膀胱癌細胞の検出は、目的とするmiRNAの発現量の直接検出と目的とするmiRNAをコードするゲノム配列のメチル化の検出のいずれか片方を用いて行うことも、両方を併用して行うこともできる。
 miR-137遺伝子、miR-124-2遺伝子、miR-124-3遺伝子、miR-9-3遺伝子については、バイサルファイト・パイロシークエンス法によるメチル化の検出に用いるプライマー及びMSP法によるメチル化の検出に用いるプライマーとその元となる配列をそれぞれ図26、図27、図28及び図29に示す。図にはそれぞれ、miR-137遺伝子、miR-124-2遺伝子、miR-124-3遺伝子、miR-9-3遺伝子の上流の配列(配列番号36、38、40、42)、バイサルファイト変換後の配列(下線部にプライマーに用いた配列を示す)(配列番号37、39、41、43)、メチル化アレルと非メチル化アレルを同時増幅する際のPCRに用いるフォワードプライマーとリバースプライマー、及びPCT増幅後のシークエンス反応に用いるプライマー、並びにMSP法による検出に用いるメチル化アレル特異的フォワードプライマーとリバースプライマー、及び非メチル化アレル特異的フォワードプライマーとリバースプライマーの組み合わせの一例を示している。
 miR-137遺伝子について、バイサルファイト・パイロシークエンス法によるPCR増幅に使用するプライマーとしては、フォワードプライマーをGGGTTTAGYGAGTAGTAAGAGTTTTG、リバースプライマーをCCCCCTACCRCTAATACTCTCCTCを用いる。シークエンス反応に使用するプライマーとしては、GGTATTTTTGGGTGGATAATを用いる。
 miR-124-2遺伝子について、バイサルファイト・パイロシークエンス法によるPCR増幅に使用するプライマーとしては、フォワードプライマーにGTTGGGATTGTATAGAAGGATTATTTG、リバースプライマーにACTACRAAAATCCAAAAAAAAATACATACを用いる。シークエンス反応に使用するプライマーとしては、YGTTTTTATTGTTTTAGTTTを用いる。
 miR-124-3遺伝子について、バイサルファイト・パイロシークエンス法によるPCR増幅に使用するプライマーとしては、フォワードプライマーにAAAAGAGAYGAGTTTTTATTTTTGAGTAT、リバースプライマーにTCCTCCRCAACTACCTTCCCCTAを用いる。シークエンス反応に使用するプライマーとしては、GAGATTYGTTTTTTTAATを用いる。
 miR-9-3遺伝子について、バイサルファイト・パイロシークエンス法によるPCR増幅に使用するプライマーとしては、フォワードプライマーにGATTTGAATGGGAGTTTGTGATTGGT、リバースプライマーにTCCCRAAACTCACRTAAAACACCCを用いる。シークエンス反応に使用するプライマーとしては、TTGGATTGAYGTTATTTTを用いる。
 メチル化特異的PCR法(MSP法)においては、以下のプライマーを用いる。miR-137の検出に用いるプライマーの配列は、メチル化アレル特異的プライマーとしてフォワードプライマーにGTAGCGGTAGTAGCGGTAGCGGT、リバースプライマーにGCTAATACTCTCCTCGACTACGCG、非メチル化アレル特異的プライマーとしてはフォワードプライマーにTGGTAGTGGTAGTAGTGGTAGTGGT、リバースプライマーにCCACTAATACTCTCCTCAACTACACAを用いる。
 miR-124-2の検出に用いるプライマーの配列は、メチル化アレル特異的プライマーとしてフォワードプライマーにAGGGGCGTATTTTGGGGTTTTTGC、リバースプライマーにCCCCTACGACGTAATCGACCCG、非メチル化アレル特異的プライマーとしてフォワードプライマーにTTTAGGGGTGTATTTTGGGGTTTTTGT、リバースプライマーにCATCCCCTACAACATAATCAACCCAを用いる。
 miR-124-3の検出に用いるプライマーの配列は、メチル化アレル特異的プライマーとしてフォワードプライマーにGTTTTAGTGATAATCGGTCGGTGTC、リバースプライマーにTCCACGAAATCCACGCTACAAACG、非メチル化アレル特異的プライマーとしてフォワードプライマーにTGTGTTTTAGTGATAATTGGTTGGTGTT、リバースプライマーにATATCCACAAAATCCACACTACAAACAを用いる。
 miR-9-3の検出に用いるプライマーの配列は、メチル化アレル特異的プライマーとしてフォワードプライマーにGATTGACGTTATTTTTTCGCGGGGC、リバースプライマーにCGAAACTCACGTAAAACACCCGCG、非メチル化アレル特異的プライマーとしてフォワードプライマーにTTGGATTGATGTTATTTTTTTGTGGGGT、リバースプライマーにCCCAAAACTCACATAAAACACCCACAを用いる。
 本実施形態の変更態様として、miR-137遺伝子、miR-124-2遺伝子、miR-124-3遺伝子、miR-9-3遺伝子のプライマーとしては、図26、27、28及び29に示すバイサルファイト変換後の配列中から選択される他の配列を選択してもよい。
(尿サンプルを被験者サンプルとする診断方法)
 本発明の他の実施形態では、被験者サンプルは被験者から採取した尿サンプルである。コントロールサンプルとしては、膀胱癌に対する治療、例えば膀胱の切除手術を行った後の尿サンプルを用いる。miRNAの発現量の検出は、上述の実施形態同様のメチル化の検出により行う。その他の点は上述の実施形態と同様である。
 コントロールサンプルが被験者サンプルに対してメチル化の度数が低い場合、治療によって膀胱癌の組織が除去されたことを判定することができる。
 この実施形態では、尿サンプルは被験者への侵襲性がなく苦痛が最小限で、きわめて容易に頻回を採取できるので望ましい。尿サンプルは、尿中に剥離脱落した尿路上皮細胞が検出されるので、血液サンプルや切除採取したサンプルに比べて含有されるmiRNAの量が少ないが、本実施形態ではバイサルファイト・パイロシークエンス法によるメチル化の検出を行うので、尿サンプルによって充分に特異度と感度の高い検出が可能である。
(膀胱癌抑制剤)
 本発明の他の実施形態は、miR-124、miR-9及びmiR-137から選ばれる1以上のmiRNAを含有する膀胱癌抑制剤である。本発明者らは、膀胱癌の癌細胞において発現が抑制されているこれらの遺伝子を癌組織に対して投与、又は発現させることで、膀胱癌を抑制することができることを見出している。
 膀胱癌抑制剤は、例えば遺伝子治療剤として、上述のmiRNAを有効成分とし、この有効成分を遺伝子治療剤に用いる基剤に配合する。例として、緩衝液やアミノ酸その他の栄養剤を添加し、溶液又は粉末化等した注射剤とすることができる。又は、液剤や徐放剤などとするために適宜必要な基材に配合することができる。
 細胞に上述のmiRNAを導入し、癌細胞に発現させるための薬剤とすることもできる。例えば、上述のmiRNAをリポソーム等に包摂させ組織に核酸分子を導入させるための薬剤、マイクロインジェクション法などで核酸分子を細胞に導入する方法のための薬剤、ウィルスベクターを介して生体に投与し細胞内に上述のmiRNAを導入するための薬剤とすることができる。
(癌細胞株におけるmiRNA発現の解析)
 膀胱癌細胞株(T24及びUM-UC-3)をDNAメチル化酵素阻害剤5-aza-2’-deoxycytidine (5-aza-dC)及びHDAC阻害剤4-phenylbutyric acid (4-PBA)で処理した。処理後の試料と処理していないコントロールの発現プロファイルを、TaqMan miRNA Low Density Array System (アプライドバイオシステム)を用いてそれぞれ解析した。処理後の試料でコントロールよりも発現が上昇しているmiRNAをスクリーニングした。
 その結果、T24及びUM-UC-3の2つの細胞株で共通して薬剤処理後に発現が上昇したmiRNAが146見つかった。それらのmiRNAのうち、CpGアイランドがpre-miRNAの上流5kb以内の領域に存在しているものは以下の23種であった(上述のmiR BASEに登録されている)。これらの遺伝子は、メチル化を阻害した場合に発現が上昇しているため、これらの細胞株においてメチル化によって発現が抑制されている可能性があるものである。
 hsa-miR-10b, hsa-miR-124, hsa-miR-132, hsa-miR-137, hsa-miR-147b, hsa-miR-148a, hsa-miR-152, hsa-miR-185a, hsa-miR-193a-5p, hsa-miR-200b, hsa-miR-200b*, hsa-miR-203, hsa-miR-22, hsa-miR-330-5p, hsa-miR-34c-5p, hsa-miR-409-3p, hsa-miR-409-5p, hsa-miR-449b, hsa-miR-545*, hsa-miR-636, hsa-miR-639, hsa-miR-675, hsa-miR-9。
 これらのmiRNAについて、膀胱癌細胞株であるT24及びUM-UC-3、HT1197、HT-1376、SW780を用いてMethylation-specific PCR(MSP)法を行ったところ、以下の12のmiRNA遺伝子についてメチル化を認めた。
 miR-34b、miR-9-1、miR-9-3、miR-124-1、miR-124-2、miR-124-3、miR-203、miR-10b、miR-675、miR-200b、miR-137、miR-409。これらのMSP法の結果について図1に示す。図中、Uはメチル化していないDNA(Unmethylated)、Mはメチル化したDNA(Methylated)を示す。
 これらの遺伝子についてのバイサルファイト・パイロシークエンス法によりメチル化状態をさらに解析した結果について図2、図3、図4に示す。図中の縦軸のMethylation(%)(メチル化%)がメチル化の程度を示している。Primary Bladder Cancer Tissueは手術で摘出した膀胱癌組織由来のDNA、Bladder Cancer Cell Linesは膀胱癌組織の細胞株(T24, UM-UC3, HT1197, HT-1376, SW780)由来のDNA、SV-HUC-1は正常尿路上皮細胞株由来のDNA、Normal Urotheliumは正常尿路上皮由来のDNA(BioChain社より購入)について解析した結果を示している。
 これらの結果より、膀胱癌組織及び膀胱癌細胞株においてメチル化されている12種類のmiRNAを見出した。
(膀胱癌細胞株におけるmiR-137の発現の解析)
 上述のmiRNAのうちmiR-137について、膀胱癌細胞株であるT24、UM-UC-3、HT1197、HT-1376、SW780、正常尿路上皮細胞株SV-HUC-1における発現量についてTaqMan RT-PCR(Applied Biosystems社)を用いてリアルタイムRT-PCR解析したものを図5(a)に示す。この結果は、miR-137がHT1197、SW780において発現が低いことを示している。
 これらの膀胱癌細胞株についてバイサルファイト・パイロシークエンス法によってmiR-137遺伝子のメチル化を解析した結果を図5(b)に示す。この結果は、miR-137遺伝子がUM-UC-3、HT1197、HT-1376、SW780においてメチル化されていることを示している。図5(a)、(b)の結果は、膀胱癌細胞株においてmiR-137の発現が低下し、その低下がメチル化によっている可能性を示している。
(癌部位ごとのmiRNAの発現の解析)
 癌部組織(T)及び癌摘出の際に得られた、癌から充分に離れ正常と思われる組織(DN;Distant Normal-appearing tissue)からRNAを抽出し、miR-137の発現量をリアルタイムRT-PCR解析した結果を図6に示す。この結果では、癌部(T)で発現量が低い傾向が認められる。発現量のレベルでの比較が可能なほどの差は認められないが、これはTについて正常組織も混入するので発現量が低下した遺伝子を検出するのが困難なためと考えられる。
 ついで、図6で用いた一部のサンプル(091218-2、100204-1、100217B-1)のT、DNを用いて、miR-137についてリアルタイムRT-PCRで発現量を解析した結果を図7(a)、バイサルファイト・パイロシークエンス法によってmiR-137遺伝子のメチル化を解析した結果を図7(b)に示す。この結果から、miRNAの発現量とそのコードされているゲノム遺伝子におけるメチル化との間に逆相関がある、すなわちゲノム上の遺伝子CpGアイランドのメチル化によってmiRNAの発現量が下がることが認められる。これらの結果より、miR-137遺伝子のメチル化を解析することによって発現量の低下を検出し、すなわち癌細胞であるか否かを検出することが可能であることが示された。
 NMIBC(非浸潤性、表在性)及びMIBC(浸潤性)の癌組織のそれぞれから採取したT、癌部(Tの採取組織)から5mm離れた組織(AN;Adjacent Normal-appearing bladder tissue)、DNについて、miR-137遺伝子のメチル化をバイサルファイト・パイロシークエンス法により解析した結果を図8(NMIBC(a)、MIBC(b))に示す。なお、同一個体からの結果を線で結んでいる。
 また、miR-137遺伝子のNMIBC及びMIBC、その両方のケースでのバイサルファイト・パイロシークエンス法によりメチル化の解析および検出の感度(Sensitivity)と特異度(Specificity)についてのROC(receiver operating characteristic)曲線を解析した結果を図9に示す。同様の解析をmiR-124-2遺伝子(図10)、miR-124-3遺伝子(図11)、miR-9-3遺伝子(図12)について行った結果も示す。miR-9-3遺伝子以外のmiRNAについてNMIBC及びMIBCではいずれもTとAN間およびTとDN間において有意差が見られ、T、AN、DNの順にメチル化が下がっていることが示された。miR-9-3遺伝子ではMIBCのTとAN間において有意差は見られなかったが、メチル化が下がる傾向は見られた。なお、図には示さないが、miR-9-1遺伝子についてもメチル化の解析を行ったが、メチル化の頻度はごく低かった。これらの結果から、これらのmiRNAについて癌部は非癌部より高メチル化され、メチル化の傾向により癌部位を特定することに役立つと考えられる。また、同じmiRNAをコードしているゲノム遺伝子配列であっても、メチル化の頻度には差があることが判明した。
(尿検体でのmiR-137遺伝子のメチル化状態の解析)
 被験者の癌組織摘出手術の術前(Pre-OP)及び癌組織摘出後(Post-OP)の尿検体について、バイサルファイト・パイロシークエンス法によるmiR-137遺伝子のメチル化の解析を行った。その結果(a)とROC曲線(b)を図13に示す。なお、Post-OPについては、開腹手術の場合は膀胱を全摘するので内視鏡切除例の尿検体しか得られないため、N数が少なくなっている。術後でmiR-137遺伝子のメチル化が減少している傾向が見られる。
 図13(a)の結果について、ROC曲線を作成し、感度(Sensitivity)と特異度(Specificity)の両方が最良になるようカットオフ値を調整すると、カットオフ値が5.2%において、感度=78%、特異度=78%、PPV=0.89、NPV=0.60の感度での検出が可能となった。
 図14に、癌組織の摘出手術の術前及び術後(a)、癌でない被験者の摘出手術(摘出後に癌でなかったと判明した例)の術前及び術後(b)のバイサルファイト・パイロシークエンス法によるmiR-137遺伝子のメチル化の解析の結果を示す。なお、同一個体からの結果を線で結んでいる。癌組織の摘出によりmiR-137遺伝子のメチル化は減少し、癌でなかった場合は変化がなく、図13(a)に示す尿検体における結果と相関している。これらの結果より、尿検体の中のmiR-137遺伝子のメチル化は膀胱癌細胞の診断マーカとして有用であると考えられ、尿中のメチル化の解析が癌組織の有無の検査に応用できることが示された。
(尿検体でのmiR-124-2遺伝子のメチル化状態の解析)
 被験者の癌組織摘出手術の術前(Pre-OP)及び癌組織摘出後(Post-OP)の尿検体について、バイサルファイト・パイロシークエンス法によるmiR-124-2遺伝子のメチル化の解析を行った。その結果(a)とROC曲線(b)を図15に示す。術後でmiR-124-2遺伝子のメチル化が減少している傾向が見られる。
 図15(a)の結果について、ROC曲線を作成し、感度と特異度の両方が最良になるようカットオフ値を調整すると、カットオフ値が5.2%において、感度=70%、特異度=89%、PPV=0.94、NPV=0.55の感度での検出が可能となった。
 図16に、癌組織の摘出手術の術前及び術後(a)、癌でない被験者の摘出手術の術前及び術後(b)の結果を示す。なお、同一個体からの結果を線で結んでいる。癌組織の摘出によりmiR-124-2遺伝子のメチル化は減少し、癌でなかった場合は変化がなく、図15(a)に示す尿検体における結果と相関している。これらの結果より、尿検体の中のmiR-124-2遺伝子のメチル化は膀胱癌の診断マーカとして有用であると考えられ、尿中のメチル化の解析が癌組織の有無の検査に応用できることが示された。
(尿検体でのmiR-124-3遺伝子のメチル化状態の解析)
 被験者の癌組織摘出手術の術前(Pre-OP)及び癌組織摘出後(Post-OP)の尿検体について、バイサルファイト・パイロシークエンス法によるmiR-124-3遺伝子のメチル化の解析を行った。その結果(a)とROC曲線(b)を図17に示す。術後でmiR-124-3遺伝子のメチル化が減少している傾向が見られる。
 図17(a)の結果について、ROC曲線を作成し、感度と特異度の両方が最良になるようカットオフ値を調整すると、カットオフ値が12%において、感度=65%、特異度=97%、PPV=0.98、NPV=0.54の感度での検出が可能となった。
 図18に、癌組織の摘出手術の術前及び術後(a)、癌でない被験者の摘出手術の術前及び術後(b)の結果を示す。なお、同一個体からの結果を線で結んでいる。癌組織の摘出によりmiR-124-3遺伝子のメチル化は減少し、癌でなかった場合は変化がなく、図17(a)に示す尿検体における結果と相関している。これらの結果より、尿検体の中のmiR-124-3遺伝子のメチル化は膀胱癌の診断マーカとして有用であると考えられ、尿中のメチル化の解析が癌組織の有無の検査に応用できることが示された。
(尿検体でのmiR-9-3遺伝子のメチル化状態の解析)
 被験者の癌組織摘出手術の術前(Pre-OP)及び癌組織摘出後(Post-OP)の尿検体について、バイサルファイト・パイロシークエンス法によるmiR-9-3遺伝子のメチル化の解析を行った。その結果(a)とROC曲線(b)を図19に示す。術後でmiR-9-3遺伝子のメチル化が減少している傾向が見られる。
 図19(a)の結果について、ROC曲線を作成し、感度と特異度の両方が最良になるようカットオフ値を調整すると、カットオフ値が7.2%において、感度=69%、特異度=86%、PPV=0.92、NPV=0.54の感度での検出が可能となった。
 図20に、癌組織の摘出手術の術前及び術後(a)、癌でない被験者の摘出手術の術前及び術後(b)の結果を示す。なお、同一個体からの結果を線で結んでいる。癌組織の摘出によりmiR-9-3遺伝子のメチル化は減少し、癌でなかった場合は変化がなく、図19(a)に示す尿検体における結果と相関している。これらの結果より、尿検体の中のmiR-9-3遺伝子のメチル化は膀胱癌の診断マーカとして有用であると考えられ、尿中のメチル化の解析が癌組織の有無の検査に応用できることが示された。
 また、miR-137遺伝子、miR-124-2遺伝子、miR-124-3遺伝子及びmiR-9-3遺伝子の4種類の遺伝子について、それぞれのメチル化検出結果を組み合わせ、尿検体を用いた膀胱癌診断の手法について検討及び解析を行った。
 まず、パネル検出法について、図21及び図22に示す。本方法では、前記にある感度(sensitivity、Sens)と特異度(specificity、Spec)の両方が最良となる数値をカットオフ値とし、それぞれmiR-137遺伝子については5.2%、miR-124-2遺伝子については5.2%、miR-124-3遺伝子については12%、miR-9-3遺伝子については7.2%と設定し、この数値を満たした場合に各遺伝子について1点ずつ加算する(Summing the number of “Yes”)。それをmiRscoreとし、各点数においてROC曲線を作成した。その結果、0-1点間で感度が94%、特異度が64%となった。1-2点間で、感度が81%、特異度が89%となった。2-3点間で感度が65%、特異度が97%となった。また、これを図21に示すトレーニングセット(Training Set)とし、新たに別の尿検体を用いて図22に示すテストセット(Test Set)として再度検討を行った。その結果、0-1点間で感度が94%、特異度が64%となった。1-2点間で、感度が82%、特異度が91%となった。2-3点間で感度が71%、特異度が91%となった。この結果より、この検出法について再現性が確認された。
 次に、Tree図による検出法について、図23及び図24に示す。本方法では、各4つの遺伝子のうち、特異度が100%において最も感度が高くなるmiR-137遺伝子のメチル化が9.8%というカットオフ値で分ける(感度は57%)。これが満たされる場合、カテゴリー3として分類する。これが満たされなかった場合、さらにmiR-9-3遺伝子のメチル化が6.7%というカットオフ値で分ける。この値はmiR-137遺伝子のメチル化が9.8%以下であった場合において、miR-124-2遺伝子、miR-124-3遺伝子及びmiR-9-3遺伝子のそれぞれでROC曲線を作成した場合に、もっとも感度、特異度が高くなった値であり、それぞれ87%および75%であった。これを満たす場合にカテゴリー2と分類し、これを満たさなかった場合にカテゴリー1と分類する。また、これを図23に示すトレーニングセットとし、新たに別の尿検体を用いて図24に示すテストセットとして再度検討を行った。その結果、カテゴリー3について特異度100%、感度68%となり、カテゴリー1と2の分類においては特異度55%、感度91%であった。この結果より、この検出法について再現性が確認された。なお、カテゴリー3は特異度100%であり、これに分類された場合にはかなりの確率で癌であることが判定される。カテゴリー1に分類された場合には癌である可能性が低いことが、カテゴリー2に分類された場合にはおそらく癌であることが判定される。
 上記パネル法およびTree図法から、miR-137遺伝子、miR-124-2遺伝子、miR-124-3遺伝子及びmiR-9-3遺伝子を組み合わせた癌の検出方法の有用性が示された。なお、上記の数値は一例であり、スクリーニングや術後フォローなどそれぞれの場面、目的に応じて必要とされる感度、特異度を示すカットオフ値の変更等行い、使い分けることができる。
 前記の実施例(図13、図15、図17及び図19)から得られた尿検体における感度と特異度の両方が最良となる各遺伝子のカットオフ値、及び当該カットオフ値を用いた場合の感度と特異度を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 また、上記の尿検体における尿細胞診の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から分かるように、従来の尿細胞診では、陽性(ClassIV、V)が19%しか検出できず、擬陽性(ClassIII)の17%を合計しても36%しか膀胱癌を検出することができなかった。これに対して、表1で示すように、同じ尿検体を用いた場合でもメチル化解析による感度の値はいずれの遺伝子でも0.65以上を示しており、4種類のmiRNAをそれぞれ単独で使用した場合でも、尿細胞診よりも高い感度が得られる。
(miRNAによる膀胱癌の抑制効果の解析)
 miR-137が膀胱癌において発現が低下していることから、miR-137を強制発現させることで、癌を制御する因子として働くかを解析した。膀胱癌細胞(SW780)に対してmiR-137をトランジエントで導入し強制発現し、miR-cont(ランダム配列を発現するもの)に対して細胞生存性を比較した結果を図25に示す。図中のviabilityが細胞生存性を示している。トランジエント導入のため長時間ではmiR-137の発現量が低下するため、72時間までの24時間ごとに解析した。miR-137の発現により、癌細胞の細胞生存性が低下しているという結果が得られた。この結果から、miR-137は膀胱癌の抑制剤として使用できる可能性が示された。
(初期癌の検出精度の解析)
 表1より、初期癌に分類される深達度pTa、異型度G1/G2であった患者のデータのみを抽出した結果を、表3に示す。
Figure JPOXMLDOC01-appb-T000003
 また、これらの遺伝子での結果を組み合わせ、図21-24同様のパネル検出法及びTree図で解析し、ROC曲線を作成した検出法について図31に示す。これらの結果により、各遺伝子のメチル化の解析により、各遺伝子単独あるいは組み合わせのいずれでもpTa、G1/G2の患者の初期膀胱癌を検出できることが明らかになった。
 また、上記の初期癌患者の尿検体における尿細胞診の結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4から分かるように、初期癌であったpTa、G1/G2の患者に対しては、尿細胞診では14%が擬陽性として検出できたのみで、陽性として検出することはできなかった。それに対して、上述した遺伝子のメチル化を解析することにより、尿細胞診では陽性としては検出できなかったlow gradeやlow stageの膀胱癌も検出することができることが示された。
 以上述べた実施形態及び実施例は全て本発明を例示的に示すものであって限定的に示すものではなく、本発明は他の種々の変形態様及び変更態様で実施することができる。従って本発明の範囲は特許請求の範囲及びその均等範囲によってのみ規定されるものである。
 本発明は癌の治療及び予防によって医療及び薬事分野に広く応用できるものである。

Claims (26)

  1.  miR-124、miR-9及びmiR-137から選ばれる1つ以上のmiRNAからなる膀胱癌マーカの発現量を被験者から採取された被験者サンプルから検出することを含む膀胱癌細胞の検出方法。
  2.  前記膀胱癌マーカの発現量の検出は、前記膀胱癌マーカがコードされているゲノム遺伝子のメチル化の検出により前記膀胱癌マーカの発現量の低下を検出することを特徴とする請求項1に記載の膀胱癌細胞の検出方法。
  3.  前記メチル化の検出はバイサルファイト・パイロシークエンス法により行うことを特徴とする請求項2に記載の膀胱癌細胞の検出方法。
  4.  前記膀胱癌マーカが少なくともmiR-137を含むことを特徴とする請求項1から3のいずれか1項に記載の膀胱癌細胞の検出方法。
  5.  前記被験者サンプルにおける前記膀胱癌マーカの発現量をしきい値と比較することを特徴とする請求項1から4のいずれか1項に記載の膀胱癌細胞の検出方法。
  6.  前記しきい値は、正常組織から採取されたコントロールサンプルにおける前記膀胱癌マーカの発現量であることを特徴とする請求項1から5のいずれか1項に記載の膀胱癌細胞の検出方法。
  7.  前記しきい値は、被験者から異なる時に採取された又は被験者の異なる組織から採取されたコントロールサンプルにおける前記膀胱癌マーカの発現量であることを特徴とする請求項1から5のいずれか1項に記載の膀胱癌細胞の検出方法。
  8.  前記被験者サンプルが尿サンプルであることを特徴とする請求項1から7のいずれか1項に記載の膀胱癌細胞の検出方法。
  9.  前記膀胱癌マーカの発現量の検出において、miR-137遺伝子の増幅に用いるプライマーの配列が配列番号1で示されるフォワードプライマー(GGGTTTAGYGAGTAGTAAGAGTTTTG)及び配列番号2で示されるリバースプライマー(CCCCCTACCRCTAATACTCTCCTC)であることを特徴とする請求項1から8のいずれか1項に記載の膀胱癌細胞の検出方法に用いるプライマー。
  10.  前記膀胱癌マーカの発現量の検出において、miR-137のシークエンス反応に用いるプライマーの配列が配列番号3で示されるGGTATTTTTGGGTGGATAATであることを特徴とする請求項1から9のいずれか1項に記載の膀胱癌細胞の検出方法に用いるプライマー。
  11.  前記膀胱癌マーカの発現量の検出において、miR-124-2の増幅に用いるプライマーの配列が配列番号4で示されるフォワードプライマー(GTTGGGATTGTATAGAAGGATTATTTG)及び配列番号5で示されるリバースプライマー(ACTACRAAAATCCAAAAAAAAATACATAC)であることを特徴とする請求項1から10のいずれか1項に記載の膀胱癌細胞の検出方法に用いるプライマー。
  12.  前記膀胱癌マーカの発現量の検出において、miR-124-2のシークエンス反応に用いるプライマーの配列が配列番号6で示されるYGTTTTTATTGTTTTAGTTTであることを特徴とする請求項1から11のいずれか1項に記載の膀胱癌細胞の検出方法に用いるプライマー。
  13.  前記膀胱癌マーカの発現量の検出において、miR-124-3の増幅に用いるプライマーの配列が配列番号7で示されるフォワードプライマー(AAAAGAGAYGAGTTTTTATTTTTGAGTAT)及び配列番号8で示されるリバースプライマー(TCCTCCRCAACTACCTTCCCCTA)であることを特徴とする請求項1から12のいずれか1項に記載の膀胱癌細胞の検出方法に用いるプライマー。
  14.  前記膀胱癌マーカの発現量の検出において、miR-124-3のシークエンス反応に用いるプライマーの配列が配列番号9で示されるGAGATTYGTTTTTTTAATであることを特徴とする請求項1から13のいずれか1項に記載の膀胱癌細胞の検出方法に用いるプライマー。
  15.  前記膀胱癌マーカの発現量の検出において、miR-9-3の増幅に用いるプライマーの配列が配列番号10で示されるフォワードプライマー(GATTTGAATGGGAGTTTGTGATTGGT)及び配列番号11で示されるリバースプライマー(TCCCRAAACTCACRTAAAACACCC)であることを特徴とする請求項1から14のいずれか1項に記載の膀胱癌細胞の検出方法に用いるプライマー。
  16.  前記膀胱癌マーカの発現量の検出において、miR-9-3のシークエンス反応に用いるプライマーの配列が配列番号12で示されるTTGGATTGAYGTTATTTTであることを特徴とする請求項1から15のいずれか1項に記載の膀胱癌細胞の検出方法に用いるプライマー。
  17.  前記メチル化の検出はメチル化特異的PCR法により行うことを特徴とする請求項2に記載の膀胱癌細胞の検出方法。
  18.  前記メチル化特異的PCR法において、miR-137の検出に用いるプライマーの配列が、メチル化アレル特異的プライマーとして配列番号13で示されるフォワードプライマー(GTAGCGGTAGTAGCGGTAGCGGT)及び配列番号14で示されるリバースプライマー(GCTAATACTCTCCTCGACTACGCG)、非メチル化アレル特異的プライマーとして配列番号15で示されるフォワードプライマー(TGGTAGTGGTAGTAGTGGTAGTGGT)及び配列番号16で示されるリバースプライマー(CCACTAATACTCTCCTCAACTACACA)であることを特徴とする請求項17に記載の膀胱癌細胞の検出方法に用いるプライマー。
  19.  前記メチル化特異的PCR法において、miR-124-2の検出に用いるプライマーの配列が、メチル化アレル特異的プライマーとして配列番号17で示されるフォワードプライマー(AGGGGCGTATTTTGGGGTTTTTGC)及び配列番号18で示されるリバースプライマー(CCCCTACGACGTAATCGACCCG)、非メチル化アレル特異的プライマーとして配列番号19で示されるフォワードプライマー(TTTAGGGGTGTATTTTGGGGTTTTTGT)及び配列番号20で示されるリバースプライマー(CATCCCCTACAACATAATCAACCCA)であることを特徴とする請求項17に記載の膀胱癌細胞の検出方法に用いるプライマー。
  20.  前記メチル化特異的PCR法において、miR-124-3の検出に用いるプライマーの配列が、メチル化アレル特異的プライマーとして配列番号21で示されるフォワードプライマー(GTTTTAGTGATAATCGGTCGGTGTC)及び配列番号22で示されるリバースプライマー(TCCACGAAATCCACGCTACAAACG)、非メチル化アレル特異的プライマーとして配列番号23で示されるフォワードプライマー(TGTGTTTTAGTGATAATTGGTTGGTGTT)及び配列番号24で示されるリバースプライマー(ATATCCACAAAATCCACACTACAAACA)であることを特徴とする請求項17に記載の膀胱癌細胞の検出方法に用いるプライマー。
  21.  前記メチル化特異的PCR法において、miR-9-3の検出に用いるプライマーの配列が、メチル化アレル特異的プライマーとして配列番号25で示されるフォワードプライマー(GATTGACGTTATTTTTTCGCGGGGC)及び配列番号26で示されるリバースプライマー(CGAAACTCACGTAAAACACCCGCG)、非メチル化アレル特異的プライマーとして配列番号27で示されるフォワードプライマー(TTGGATTGATGTTATTTTTTTGTGGGGT)及び配列番号28で示されるリバースプライマー(CCCAAAACTCACATAAAACACCCACA)であることを特徴とする請求項17に記載の膀胱癌細胞の検出方法に用いるプライマー。
  22.  miR-124、miR-9及びmiR-137から選ばれる1つ以上のmiRNAを含有する膀胱癌マーカ。
  23.  前記膀胱癌マーカの発現量を被験者から採取された被験者サンプルから検出することを含む膀胱癌細胞の検出方法に用いる請求項22の膀胱癌マーカ。
  24.  前記膀胱癌マーカの発現量の検出は、前記膀胱癌マーカがコードされているゲノム遺伝子のメチル化の検出により前記膀胱癌マーカの発現量の低下を検出することを含む膀胱癌細胞の検出方法に用いる請求項23の膀胱癌マーカ。
  25.  深達度pTa又は異型度G1/G2の被験者から採取された被験者サンプルから検出を行うことを特徴とする請求項2に記載の膀胱癌細胞の検出方法。
  26.  配列番号1、配列番号2、配列番号3、配列番号4、配列番号5、配列番号6、配列番号7、配列番号8、配列番号9、配列番号10、配列番号11、配列番号12、配列番号13、配列番号14、配列番号15、配列番号16、配列番号17、配列番号18、配列番号19、配列番号20、配列番号21、配列番号22、配列番号23、配列番号24、配列番号25、配列番号26、配列番号27、または配列番号28のヌクレオチド配列を有する核酸分子。
     
PCT/JP2012/056605 2011-09-16 2012-03-14 膀胱癌細胞の検出方法、膀胱癌細胞の検出方法に用いるプライマー及び膀胱癌マーカ WO2013038737A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147007424A KR20140064899A (ko) 2011-09-16 2012-03-14 방광암 세포의 검출 방법, 방광암 세포의 검출 방법에 사용하는 프라이머 및 방광암 마커
CA2848999A CA2848999A1 (en) 2011-09-16 2012-03-14 Method for detecting bladder cancer cells, primer used in method for detecting bladder cancer cells, and bladder cancer marker
CN201280044395.4A CN103857796A (zh) 2011-09-16 2012-03-14 膀胱癌细胞的检测方法、用于膀胱癌细胞的检测方法的引物及膀胱癌标记物
US14/345,226 US20150024389A1 (en) 2011-09-16 2012-03-14 Method for detecting bladder cancer cells, primer used in method for detecting bladder cancer cells, and bladder cancer marker
EP12832069.4A EP2757154A4 (en) 2011-09-16 2012-03-14 METHOD FOR DETECTING BLOOD TUMOR CELLS, PRIMER FOR USE IN THIS METHOD FOR DETECTING BLOOD TUMOR CELLS AND BLADDER CANCER MARKERS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011203705 2011-09-16
JP2011-203705 2011-09-16

Publications (1)

Publication Number Publication Date
WO2013038737A1 true WO2013038737A1 (ja) 2013-03-21

Family

ID=47882983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056605 WO2013038737A1 (ja) 2011-09-16 2012-03-14 膀胱癌細胞の検出方法、膀胱癌細胞の検出方法に用いるプライマー及び膀胱癌マーカ

Country Status (7)

Country Link
US (1) US20150024389A1 (ja)
EP (1) EP2757154A4 (ja)
JP (1) JPWO2013038737A1 (ja)
KR (1) KR20140064899A (ja)
CN (1) CN103857796A (ja)
CA (1) CA2848999A1 (ja)
WO (1) WO2013038737A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029947A1 (ja) * 2013-08-26 2015-03-05 北海道公立大学法人 札幌医科大学 大腸癌を検出する方法
CN108060231A (zh) * 2018-02-24 2018-05-22 韩林志 用于宫颈癌基因FAM19A4、miR-124-2甲基化检测的引物对、试剂盒及方法
WO2019208671A1 (ja) * 2018-04-25 2019-10-31 東レ株式会社 膀胱がんの検出のためのキット、デバイス及び方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104141009B (zh) * 2014-07-01 2016-11-16 蔡志明 早期膀胱癌的多靶标检测方法
WO2016061465A1 (en) * 2014-10-17 2016-04-21 The Regents Of The University Of Colorado, A Body Corporate Biomarkers for head and neck cancer and methods of their use
KR101759382B1 (ko) 2015-02-25 2017-07-19 충북대학교 산학협력단 Prac 메틸화를 이용한 방광암 예후 진단방법 및 이의 용도
CN105999269A (zh) * 2016-05-05 2016-10-12 温州医科大学 miR-411作为膀胱癌的靶标及其应用
CN106555003B (zh) * 2016-11-25 2020-01-17 广州中鑫基因医学科技有限公司 腺性膀胱炎和膀胱癌诊断区分标志物、诊断试剂或试剂盒
US20210172029A1 (en) * 2018-07-11 2021-06-10 Stichting Vumc Urine dna methylation markers for bladder cancer
CN111500716A (zh) * 2019-01-31 2020-08-07 中央大学 评估个体罹患泌尿上皮癌之风险的方法及其试剂盒

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505639A (ja) 2005-08-01 2009-02-12 ジ・オハイオ・ステイト・ユニバーシティ・リサーチ・ファウンデイション 乳癌の診断、予後及び治療のためのマイクロrnaに基づいた方法及び組成物
JP2009507918A (ja) 2005-09-12 2009-02-26 ジ・オハイオ・ステイト・ユニバーシティ・リサーチ・ファウンデイション Bcl2関連癌の診断及び療法のための組成物及び方法
JP2009171876A (ja) 2008-01-23 2009-08-06 Fujifilm Corp 癌の検出方法および癌抑制剤
JP2009531019A (ja) 2006-01-05 2009-09-03 ジ・オハイオ・ステイト・ユニバーシティ・リサーチ・ファウンデイション 固形癌の診断及び治療のためのマイクロrnaに基づく方法及び組成物
JP2010523156A (ja) 2007-04-10 2010-07-15 ナショナル タイワン ユニバーシティ マイクロrnaによる癌患者における治療後生存の予測
JP2010154843A (ja) 2008-06-27 2010-07-15 Keio Gijuku バイオマーカーとしてのマイクロrnaを用いた婦人科がんの診断・治療選択

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2290071B1 (en) * 2004-05-28 2014-12-31 Asuragen, Inc. Methods and compositions involving microRNA
EP3112464A1 (en) * 2007-09-14 2017-01-04 The Ohio State University Research Foundation Mirna expression in human peripheral blood microvesicles and uses thereof
JP2009100687A (ja) * 2007-10-24 2009-05-14 Chiba Univ microRNA発現プロファイリングに基づく膀胱癌の検出方法
JP2012507300A (ja) * 2008-10-30 2012-03-29 カリス ライフ サイエンシズ ルクセンブルク ホールディングス Rnaパターンを評価する方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505639A (ja) 2005-08-01 2009-02-12 ジ・オハイオ・ステイト・ユニバーシティ・リサーチ・ファウンデイション 乳癌の診断、予後及び治療のためのマイクロrnaに基づいた方法及び組成物
JP2009507918A (ja) 2005-09-12 2009-02-26 ジ・オハイオ・ステイト・ユニバーシティ・リサーチ・ファウンデイション Bcl2関連癌の診断及び療法のための組成物及び方法
JP2009531019A (ja) 2006-01-05 2009-09-03 ジ・オハイオ・ステイト・ユニバーシティ・リサーチ・ファウンデイション 固形癌の診断及び治療のためのマイクロrnaに基づく方法及び組成物
JP2010523156A (ja) 2007-04-10 2010-07-15 ナショナル タイワン ユニバーシティ マイクロrnaによる癌患者における治療後生存の予測
JP2009171876A (ja) 2008-01-23 2009-08-06 Fujifilm Corp 癌の検出方法および癌抑制剤
JP2010154843A (ja) 2008-06-27 2010-07-15 Keio Gijuku バイオマーカーとしてのマイクロrnaを用いた婦人科がんの診断・治療選択

Non-Patent Citations (23)

* Cited by examiner, † Cited by third party
Title
AGIRRE X. ET AL.: "Epigenetic Silencing of the Tumor Suppressor MicroRNA Hsa-miR-124a Regulates CDK6 Expression and Confers a Poor Prognosis in Acute Lymphoblastic Leukemia.", CANCER RESEARCH, vol. 69, no. 10, 2009, pages 4443 - 4453, XP055015619 *
ANDO T. ET AL.: "DNA methylation of microRNA genes in gastric mucosae of gastric cancer patients: Its possible involvement in the formation of epigenetic field defect.", INTERNATIONAL JOURNAL OF CANCER, vol. 124, 2009, pages 2367 - 2374, XP055148557 *
BANDRES E. ET AL.: "Epigenetic regulation of microRNA expression in colorectal cancer.", INTERNATIONAL JOURNAL OF CANCER, vol. 125, 2009, pages 2737 - 2743, XP055148563 *
CATTO J.W.F. ET AL.: "Distinct microRNA alterations characterize high- and low-grade bladder cancer.", CANCER RESEARCH, vol. 69, no. 21, 2009, pages 8472 - 8481, XP055148574 *
CHEN Q. ET AL.: "miR-137 is frequently down- regulated in gastric cancer and is a negative regulator of Cdc42.", DIGESTIVE DISEASES AND SCIENCES, vol. 56, no. 7, 8 January 2011 (2011-01-08), pages 2009 - 2016, XP019915040 *
DUDZIEC E. ET AL.: "Hypermethylation of CpG islands and shores around specific microRNAs and mirtrons is associated with the phenotype and presence of bladder cancer.", CLINICAL CANCER RESEARCH, vol. 17, no. 6, 2010, pages 1287 - 1296, XP055148540 *
F. BALAGUER ET AL., CANCER RES, vol. 70, 2010, pages 6609 - 6618
FURUTA M. ET AL.: "miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma.", CARCINOGENESIS, vol. 31, no. 5, 2010, pages 766 - 776, XP055148557 *
K. KOZAKI ET AL., CANCER RES, vol. 68, 2008, pages 2094 - 2105
LANGEVIN S.M. ET AL.: "MicroRNA-137 promoter methylation in oral rinses from patients with squamous cell carcinoma of the head and neck is associated with gender and body mass index.", CARCINOGENESIS, vol. 31, no. 5, 2010, pages 864 - 870, XP055148570 *
M. LIU ET AL., INT. J. CANCER, vol. 128, 2011, pages 1269 - 1279
METHODS MOL BIOL., vol. 200, 2002, pages 71 - 85
METHODS MOL MED., vol. 113, 2005, pages 279 - 91
METHODS, vol. 27, no. 2, June 2002 (2002-06-01), pages 101 - 7
METHODS., vol. 25, no. 4, December 2001 (2001-12-01), pages 456 - 62
NAT PROTOC., vol. 2, no. 9, 2007, pages 2265 - 75
See also references of EP2757154A4
SILBER J. ET AL.: "miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells.", BMC MEDICINE, vol. 6, no. 14, 2008, pages 1 - 17, XP055148560 *
TAKU SUZUKI; MINORU TOYOTA; KOZO IMAI: "New Genetic Engineering Handbook Revision Fourth Edition", 2003, YODOSHA, article "bisulfite PCR method", pages: 99 - 106
TAKU SUZUKI; MINORU TOYOTA; KOZO IMAI: "New Genetic Engineering Handbook Revision Fourth Edition", 2003, YODOSHA, pages: 99 - 106
TAKU SUZUKI; MINORU TOYOTA; KOZO IMAI: "PCR method, New Genetic Engineering Handbook", 2003, YODOSHA, pages: 99 - 106
WILTING S.M. ET AL.: "Methylation-mediated silencing and tumour suppressive function of hsa-miR-124 in cervical cancer.", MOLECULAR CANCER, vol. 9, no. 167, 2010, pages 1 - 14, XP021077905 *
WONG K.Y. ET AL.: "Epigenetic Inactivation of the miR-124-1 in Haematological Malignancies.", PLOS ONE, vol. 6, no. 4: E19, 22 April 2011 (2011-04-22), pages 1 - 8, XP008173080 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029947A1 (ja) * 2013-08-26 2015-03-05 北海道公立大学法人 札幌医科大学 大腸癌を検出する方法
CN108060231A (zh) * 2018-02-24 2018-05-22 韩林志 用于宫颈癌基因FAM19A4、miR-124-2甲基化检测的引物对、试剂盒及方法
WO2019208671A1 (ja) * 2018-04-25 2019-10-31 東レ株式会社 膀胱がんの検出のためのキット、デバイス及び方法

Also Published As

Publication number Publication date
EP2757154A1 (en) 2014-07-23
CA2848999A1 (en) 2013-03-21
JPWO2013038737A1 (ja) 2015-03-23
EP2757154A4 (en) 2015-10-14
KR20140064899A (ko) 2014-05-28
CN103857796A (zh) 2014-06-11
US20150024389A1 (en) 2015-01-22

Similar Documents

Publication Publication Date Title
WO2013038737A1 (ja) 膀胱癌細胞の検出方法、膀胱癌細胞の検出方法に用いるプライマー及び膀胱癌マーカ
JP5378687B2 (ja) Basp1遺伝子および/またはsrd5a2遺伝子中のメチル化シトシンを利用する、肝臓癌、肝臓癌発症リスク、肝臓癌再発リスク、肝臓癌悪性度および肝臓癌の経時的進展の検出方法
CN110546263B (zh) 用于检测卵巢肿瘤的试剂盒、装置和方法
Zhao et al. Screening of microRNA in patients with esophageal cancer at same tumor node metastasis stage with different prognoses
JP5731568B2 (ja) 肝癌への罹患リスクを評価する方法
EP2129796A2 (en) New markers for cancer
JP6975454B2 (ja) 膀胱癌を診断する方法
EP2808397B1 (en) Method for obtaining information on colon cancer and marker and kit for obtaining information on colon cancer
US20220228223A1 (en) Squamous cell carcinoma diagnostic or prognosis prediction marker and use thereof
JP2021511028A (ja) 肺癌を診断するためのキットおよび方法
EP4144859A1 (en) Tumor detection reagent and kit
US11840738B2 (en) Method for determining risk of urothelial carcinoma
JP5602355B2 (ja) 癌患者の外科的手術後の治療選択方法及び予後診断
CN109563548B (zh) 用于鉴定胰腺癌或胰腺导管内乳头状粘液性瘤的体外方法
CN103374630B (zh) 侦测罹患肝癌机率的方法
CN111440863A (zh) Kazn基因甲基化检测试剂在制备结直肠癌预后诊断试剂中的应用
Ahmed et al. MiRNAs for the diagnostic screening of early stages of colon cancer in stool or blood
Ahmed et al. MicroRNAs as molecular markers for colon cancer: diagnostic screening in stool and blood
CN102732637B (zh) 一种多重巢式甲基化特异性pcr检测试剂盒及其使用方法与应用
US20230071575A1 (en) Biomarkers for head and neck cancer and methods of their use
Fleischhacker et al. Extracellular nucleic acids and cancer
US20160265061A1 (en) Composition for diagnosing ovarian cancer metastasis by using cpg methylation in gene, and use thereof
Hayat et al. Mir-221 in the Detection of Head and Neck Squamous Cell Carcinoma
CN117965741A (zh) 胰腺癌的检测试剂盒或装置以及检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12832069

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013533538

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2848999

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147007424

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012832069

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012832069

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14345226

Country of ref document: US