WO2013035720A1 - 非水電解液電池用セパレータ及び非水電解液電池 - Google Patents

非水電解液電池用セパレータ及び非水電解液電池 Download PDF

Info

Publication number
WO2013035720A1
WO2013035720A1 PCT/JP2012/072560 JP2012072560W WO2013035720A1 WO 2013035720 A1 WO2013035720 A1 WO 2013035720A1 JP 2012072560 W JP2012072560 W JP 2012072560W WO 2013035720 A1 WO2013035720 A1 WO 2013035720A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame retardant
separator
protective layer
porous
battery
Prior art date
Application number
PCT/JP2012/072560
Other languages
English (en)
French (fr)
Inventor
辻川 知伸
荒川 正泰
正 芦浦
Original Assignee
株式会社Nttファシリティーズ
新神戸電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttファシリティーズ, 新神戸電機株式会社 filed Critical 株式会社Nttファシリティーズ
Priority to US14/342,916 priority Critical patent/US20140234693A1/en
Priority to KR20147009068A priority patent/KR20140069099A/ko
Priority to CN201280043170.7A priority patent/CN103782414A/zh
Publication of WO2013035720A1 publication Critical patent/WO2013035720A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a separator for a non-aqueous electrolyte battery and a non-aqueous electrolyte battery using the separator.
  • the separator is formed of a thermoplastic resin such as polyethylene in consideration of insulation and solvent resistance.
  • a thermoplastic resin such as polyethylene
  • the thermoplastic resin separator is thermally deformed or contracted, and a short circuit is likely to occur between the separator and the electrode plate.
  • a protective layer containing a heat resistant material such as alumina particles is formed on the surface of the separator.
  • non-aqueous electrolyte batteries use volatile organic solvents that are easily ignited
  • non-aqueous electrolyte batteries are subject to overcharge / over-discharge when placed in a high temperature environment.
  • the battery ignites and emits smoke due to combustion of the non-aqueous electrolyte when abnormal heat is generated. Therefore, in the separator described in Patent Document 1 (Japanese Patent Laid-Open No. 2010-50076), a heat-resistant porous layer (protective layer) is formed on the surface of the porous substrate.
  • gap of a heat resistant porous layer is formed with the template agent used as the flame retardant of electrolyte solution, when melt
  • the dissolved template agent serves as a flame retardant and suppresses ignition and smoke generation during abnormal heat generation.
  • the conventional separator has a structure in which the mechanical strength of the heat-resistant porous layer (protective layer) remaining after the template agent is dissolved is weak. That is, in a non-aqueous electrolyte battery using a conventional separator, the mechanical strength of the separator after the template agent is dissolved in the electrolytic solution is lowered, and the separator is likely to be thermally deformed or contracted. As a result, there was a problem that a short circuit occurred partially between the separator and the electrode plate, and the battery performance deteriorated.
  • An object of the present invention is to provide a separator for a non-aqueous electrolyte battery that can make a battery flame-retardant and can suppress a decrease in battery performance.
  • Another object of the present invention is to provide a non-aqueous electrolyte battery that can suppress a decrease in battery performance even if the battery is made flame retardant.
  • the present invention is for a non-aqueous electrolyte battery in which a porous surface-side protective layer for protecting a porous substrate so that the porous base material is not thermally deformed or contracted is formed on the surface of the porous substrate.
  • the separator is targeted for improvement.
  • the porous substrate is formed of a polyolefin resin having a large number of continuous micropores.
  • the surface side protective layer is formed with the material which gives heat resistance to a porous base material so that a porous base material may not carry out a heat deformation or heat shrink.
  • a flame retardant layer containing a flame retardant having a melting point lower than the ignition temperature of the non-aqueous electrolyte is formed on the surface of the surface side protective layer.
  • the solid flame retardant contained in the flame retardant layer traps radicals (or active species) released from the positive electrode active material by melting and dispersing in the non-aqueous electrolyte during abnormal battery heat generation.
  • This solid flame retardant is retained in the solid state in the flame retardant layer when the battery is used at a normal temperature (when not abnormally heated), but the flame retardant layer Is porous and does not inhibit ion permeability.
  • the flame retardant The agent layer can be formed on the surface of the separator separately from the protective layer. That is, since the flame retardant is not contained in the protective layer, even if a part or all of the flame retardant melts or decomposes due to an increase in internal temperature, the mechanical strength of the protective layer does not decrease. Therefore, thermal deformation or thermal contraction of the separator can be prevented. As a result, it is difficult for a short circuit to occur between the separator and the electrode plate, so that a decrease in battery performance can be suppressed.
  • the flame retardant in the flame retardant layer provided separately from the protective layer dissolves in the non-aqueous electrolyte and traps the radicals generated in the battery, thereby flame retardant. Sex is demonstrated. Therefore, according to the present invention, the non-aqueous electrolyte battery can be made flame retardant while maintaining the battery performance.
  • protection layer refers to a front surface side protective layer and / or a back surface side protective layer
  • flame retardant layer refers to a front surface side flame retardant layer and / or a back surface side flame retardant layer. Indicates.
  • a porous back side protective layer different from the surface side protective layer is formed on the back side of the porous substrate. May be.
  • This back side protective layer is also a material that gives heat resistance to the porous substrate so that the porous substrate is not thermally deformed or shrunk in the same manner as the surface side protective layer formed on the surface of the porous substrate.
  • a protective layer is formed not only on the surface of the porous substrate but also on the back surface, so that the heat resistance of the separator is further improved while maintaining the function of suppressing the thermal shrinkage of the separator. be able to.
  • a porous backside flame retardant layer containing a solid flame retardant having a melting point lower than the ignition temperature of the non-aqueous electrolyte separately from the porous front side flame retardant layer You may form on the back surface of a material.
  • the back surface side flame retardant layer is formed on the surface of the back surface side protective layer.
  • the flame retardancy of the battery can be enhanced not only on the front side but also on the back side of the separator.
  • the solid flame retardant contained in the porous front side flame retardant layer and the back side flame retardant layer it is preferable to use a cyclic phosphazene compound having a melting point of 90 ° C. or higher. Since the cyclic phosphazene compound having such a melting point maintains a solid state when the battery is normal (internal temperature is less than 90 ° C.), the flame retardant itself does not inhibit ion permeability, Further, the mechanical strength of the front-side flame retardant layer and the back-side flame retardant layer is not lowered.
  • the flame retardant dissolves, it is when the temperature of the battery has reached an abnormally high temperature, so that it will not be used as a battery after that, the front side flame retardant layer and the back side flame retardant There is no problem even if the mechanical strength of the agent layer is lowered. Therefore, when such a cyclic phosphazene compound is used as a flame retardant, the battery can be made flame retardant while maintaining the battery performance.
  • the cyclic phosphazene compound used as a flame retardant is represented by the general formula (NPR 2 ) 3 or (NPR 2 ) 4 , and R in the general formula is a halogen element or a monovalent substituent,
  • R in the general formula is a halogen element or a monovalent substituent
  • a cyclic phosphazene compound in which the substituent is an alkoxy group, an aryloxy group, an alkyl group, an aryl group, an amino group, an alkylthio group or an arylthio group is preferable. Since the cyclic phosphazene compound having such a chemical structure has a melting point of 90 ° C. or higher, the solid state can be maintained in the flame retardant layer when the battery is normal (internal temperature is less than 90 ° C.).
  • the content of the cyclic phosphazene compound is 2.5 with respect to the weight of the active material contained in the electrode plate facing the flame retardant layer (front side flame retardant layer and / or back side flame retardant layer). It is preferable that the content be ⁇ 15.0% by weight.
  • the content of the flame retardant in the flame retardant layer or in another flame retardant layer is 2.5 to 15.0% by weight with respect to 100% by weight of the active material, the ion permeability in the separator
  • the battery can be made flame-retardant to the extent that there is no practical problem without substantially obstructing (without significantly reducing battery performance such as discharge capacity).
  • the surface area of the flame retardant layer may be 60% or more of the surface area of the non-aqueous electrolyte battery separator. If the flame retardant layer is formed so that the surface area of the flame retardant layer is at least 60% with respect to the surface area of 100% of the separator for the non-aqueous electrolyte battery, the surface of the separator (or protective layer) Since the ion permeability is high at the portion where the flame retardant layer is not formed, the ion permeability becomes large as a whole separator, and the battery performance can be improved. Further, if the flame retardant layer is partially formed, the amount of the flame retardant used can be substantially reduced, so that the production cost can be reduced. In addition, when the surface area of the flame retardant layer is less than 60% with respect to the surface area of the separator of 100%, the flame retardant layer contained in the flame retardant layer has a small content, so that sufficient flame retardancy is achieved. Cannot be obtained.
  • a filler (alumina particles, etc.) that maintains a large number of voids inside the protective layer after the solvent is volatilized by binding to the surface of the porous substrate with a binder.
  • a filler it is preferable to use a filler having a melting point of 120 ° C. or higher. The filler having such a melting point remains solid even when the internal temperature of the battery rises to 120 ° C. or more, which is the thermal decomposition temperature of the non-aqueous electrolyte, and causes thermal deformation or shrinkage of the porous substrate. Can be prevented.
  • the mechanical strength of the front surface side protective layer and / or the back side protective layer of the separator does not change after battery assembly.
  • the battery performance does not deteriorate.
  • the mechanical strength of the flame retardant layer will decrease. There is no problem.
  • nonaqueous electrolyte batteries such as lithium ion secondary batteries
  • the nonaqueous electrolyte often ignites inside the battery due to the high temperature of the positive electrode plate when the battery is abnormally heated.
  • a separator in which a surface side protective layer and a surface side flame retardant layer are formed on the surface of a porous substrate is used for a nonaqueous electrolyte battery.
  • the non-aqueous electrolyte battery separator is preferably disposed so that the surface-side flame retardant layer faces the positive electrode plate and the back surface of the porous substrate faces the negative electrode plate.
  • the battery may ignite when the battery is abnormally heated, similarly to the positive electrode plate or when the negative electrode plate is hotter than the positive electrode plate.
  • the non-aqueous electrolyte battery separator of the present invention provided with a surface side flame retardant layer and a negative electrode side flame retardant layer may be used.
  • FIG. 1 is a schematic view showing the inside of a lithium ion secondary battery as an example of an embodiment of a nonaqueous electrolyte battery according to the present invention as seen through.
  • the lithium ion secondary battery (cylindrical battery) 1 includes a bottomless cylindrical battery container 3 and two disk-shaped battery covers 5 disposed at both ends of the battery container 3 as casings. Yes.
  • a positive plate and a negative plate (not shown) centered on a hollow cylindrical polypropylene core 7 are separators (separators 43, 143, 243, which will be described in detail later). 343) is infiltrated and accommodated in a non-aqueous electrolyte (not shown).
  • such a lithium ion secondary battery 1 was produced as follows.
  • a positive electrode plate constituting the electrode group 9 was produced by the following method. Lithium manganate (LiMn 2 O 4 ) powder as a positive electrode active material, flake graphite (average particle size: 20 ⁇ m) as a conductive agent, and polyvinylidene fluoride (PVDF) as a binder are mixed, and this mixture After adding N-methyl-2-pyrrolidone (NMP) as a dispersion solvent, the mixture was kneaded to prepare a slurry. This slurry was applied to both surfaces of an aluminum foil (positive electrode current collector) having a thickness of 20 ⁇ m to form a positive electrode mixture layer.
  • NMP N-methyl-2-pyrrolidone
  • an uncoated portion having a width of 50 mm was left on one of the side edges with respect to the longitudinal direction of the aluminum foil. Thereafter, drying, pressing and cutting were performed to obtain a positive electrode plate having a width of 389 mm and a length of 5100 mm.
  • the thickness of the positive electrode mixture layer (however, the thickness of the current collector is not included) was 275 ⁇ m, and the amount of the positive electrode active material applied per one side of the current collector was 350 g / m 2 .
  • a non-coated portion with a width of 50 mm formed on the positive electrode plate was cut out and a part thereof was removed to form a rectangular (comb-shaped) portion as the positive electrode lead piece 11 for current collection.
  • variety of the positive electrode lead piece 11 was about 10 mm, and the space
  • the negative electrode plate which comprises the electrode group 9 was produced with the following method. Artificial graphite powder as a negative electrode active material and PVDF as a binder were mixed, NMP was added as a dispersion solvent to this mixture, and then kneaded to prepare a slurry. This slurry was applied to both surfaces of a rolled copper foil (negative electrode current collector) having a thickness of 10 ⁇ m to form a negative electrode mixture layer. When applying the slurry, an uncoated portion having a width of 50 mm was left on one side edge with respect to the longitudinal direction of the copper foil.
  • the thickness of the negative electrode mixture layer (not including the current collector thickness) was 201 ⁇ m, and the negative electrode active material coating amount per side of the current collector was 130.8 g / m 2 .
  • a notched portion with a width of 50 mm formed on the negative electrode plate was cut out and a part thereof was removed to form a rectangular portion, which was used as a negative electrode lead piece 13 for current collection.
  • the width of the negative electrode lead piece 13 was about 10 mm, and the interval between the adjacent negative electrode lead pieces 13 was about 20 mm.
  • the width of the application part of the negative electrode active material is set so that a positional deviation does not occur between the application part of the positive electrode active material and the application part of the negative electrode active material.
  • the width of the coated portion of the positive electrode active material was larger.
  • the positive electrode plate and the negative electrode plate were wound in a state of being sandwiched between two porous separators mainly made of polyolefin-based polyethylene having a thickness of 36 ⁇ m to form an electrode group 9. A total of four separators were used. Further, the winding is performed by first heat-welding the front end of the separator to the shaft core 7 and aligning the positions of the positive electrode plate, the negative electrode plate, and the separator to reduce the possibility of winding misalignment. The separator was wound. The positive electrode lead piece 11 and the negative electrode lead piece 13 were arranged so as to be located on the opposite sides of the electrode group 9, respectively. By cutting the positive electrode plate, the negative electrode plate, and the separator with appropriate lengths at the time of winding, the diameter of the electrode group 9 was set to 63.6 ⁇ 0.1 mm.
  • the positive electrode lead pieces 11 led out from the positive electrode plate are collected in a bundle and bent and deformed, and then brought into contact with the peripheral edge of the flange portion 17 of the positive electrode pole 15, and the peripheral edges of the positive electrode lead piece 11 and the flange portion 17. Were electrically connected by welding (joining) using an ultrasonic welding apparatus. Similarly, the negative electrode lead piece 13 and the peripheral edge of the flange portion 21 of the negative electrode pole column 19 were also ultrasonically welded and electrically connected to the negative electrode plate.
  • the flange 17 of the positive electrode pole 15, the flange 21 of the negative electrode pole 19, and the entire outer peripheral surface of the electrode group 9 were covered with an insulating coating 23.
  • an insulating coating 23 a polyimide adhesive tape having one side coated with an adhesive made of hexamethacrylate was used. After adjusting the number of turns of the adhesive tape so that the outer peripheral portion of the electrode group 9 is covered with the insulating coating 23 and slightly smaller than the inner diameter of the stainless steel battery container 3, the electrode group 9 is inserted into the battery container 3. did.
  • the battery container 3 of this embodiment has an outer diameter of 67 mm and an inner diameter of 66 mm.
  • the first ceramic washer 25 was fitted in the tip of each of the terminal portion 27 (positive electrode) and the terminal portion 29 (negative electrode) in the portion that contacts the outer surface of the battery lid 5. Then, the plate-like second ceramic washer 31 was placed on the battery lid 5, and each of the terminal portions 27 and 29 was passed through the second ceramic washer 31.
  • the periphery of the battery lid 5 was fitted into the opening of the battery container 3, and the entire contact portion between the battery lid 5 and the battery container 3 was laser welded.
  • the terminal portions 27 and 29 pass through a hole formed in the center of the battery lid 5 and project outside.
  • the metal washers 35 smoother than the bottom surface of the metal nut 33 were fitted into the terminal portions 27 and 29 so as to contact the second ceramic washer 31.
  • One (upper side in FIG. 1) is provided with a cleavage valve 36 that cleaves as the internal pressure of the battery increases, and the cleavage pressure is set to 13 to 18 kg / cm 2 .
  • the lithium-ion secondary battery 1 of the present embodiment is not provided with a current interruption mechanism that operates in response to an increase in the pressure inside the battery unlike a so-called small-sized consumer lithium-ion secondary battery.
  • the nut 33 is screwed to the terminal portions 27 and 29, and the battery cover 5 is tightened between the flange portion 17 and the nut 33 via the metal washer 35, the first ceramic washer 25, and the second ceramic washer 31. Fixed.
  • the tightening torque value at this time was 6.86 N ⁇ m.
  • the injection port 40 is connected to the injection plug 41.
  • the cylindrical lithium ion secondary battery 1 was completed by sealing with.
  • FIG. 2 is an enlarged view of a cross section of the separator 43 according to the first embodiment of the present invention cut in the thickness direction.
  • the separator 43 of FIG. 2 has a structure in which a surface side protective layer 47 is formed on a porous substrate 45 made of a polyolefin resin, and a surface side flame retardant layer 49 is provided on the surface side protective layer 47.
  • a porous protective layer base material of the surface-side protective layer 47
  • the separator sheet is a composite sheet made of a porous polyolefin resin (polyethylene) and having a porous surface side protective layer in which a filler of alumina particles is bound on the surface of a sheet substrate.
  • a surface side flame retardant layer is formed on the surface of the separator sheet made of this composite sheet.
  • a solid cyclic phosphazene compound having a melting point of 112 ° C. Phoslite (registered trademark) manufactured by Bridgestone Corporation] as a flame retardant, polyvinylidene fluoride as a binder, solvent
  • N-methylpyrrolidone was mixed at a weight ratio of 20:20:60.
  • the chemical structure of the cyclic phosphazene compound used is represented by the general formula (NPR 2 ) 3 and R is represented by a phenoxy group. This slurry was applied to the surface of the surface side protective layer of the composite sheet to form a coating layer.
  • the coating layer was formed so that the coating amount of the coating layer was 40 g / m 2 with respect to the composite sheet.
  • the coating layer was formed so that the coating area of the surface-side flame retardant layer 49 was 100% to 40% with respect to the surface area (area seen in a plane) of the surface-side protective layer 47 of the separator 43. (See FIGS. 7 and 8).
  • the surface-side protective layer 47 has a surface area as shown in FIG.
  • the coating layer was formed so that the stripe-form surface side flame retardant layer 49 was formed on the surface.
  • this coating layer was dried under drying conditions of a drying temperature of 60 ° C. and a drying time of 3 hours.
  • the coating layer after drying formed on the surface of the composite sheet is not particularly shown, it is a porous layer having a large number of continuous micropores formed therein.
  • the cyclic phosphazene compound used in the present embodiment is dispersed in a solid state in the surface-side flame retardant layer 49 by being dissolved in a solvent and then precipitated in the drying process of the coating layer. After the coating layer was dried in this manner, the cut sheet was used as a separator 43.
  • the separator 43 in which the surface side protective layer 47 is formed on the surface 45A of the porous substrate 45 and the surface side flame retardant layer 49 is formed on the surface 47A of the surface side protective layer 47 is obtained. It was. In the separator 43 shown in FIG. 2, neither the protective layer nor the flame retardant layer is formed on the back surface 45 ⁇ / b> A of the porous substrate 45.
  • FIG. 3 shows a cross-sectional structure of the separator 143 according to the second embodiment of the present invention.
  • the separator 143 shown in FIG. 3 has the same structure as the separator 43 of FIG. 2 except that the back side flame retardant layer 151 is formed on the back side 145B of the porous substrate 145. Therefore, the separator 143 shown in FIG. 3 is given the same number as the number added to the separator 43 shown in FIG. Description is omitted.
  • an application layer containing a flame retardant is formed on the surface of the composite sheet (becomes a surface side flame retardant layer after drying). Simultaneously with the formation, an application layer containing the same flame retardant was also formed on the back surface of the composite sheet. And the coating layer was dried on the same conditions as the separator 43, and the separator 143 was obtained.
  • FIG. 4 shows a cross-sectional structure of the separator 243 according to the third embodiment of the separator of the present invention.
  • This separator 243 has the same structure as the separator 143 in FIG. 3 except that the flame retardant layer (the surface side flame retardant layer 149 in FIG. 3) is not formed on the surface 247A of the surface side protective layer 247. have. Therefore, the separator 243 shown in FIG. 4 is given the same number as the number of the reference numeral shown in FIG. 3 plus 100 in the same part as the constituent part of the separator 143 shown in FIG. Description is omitted.
  • FIG. 5 shows a cross-sectional structure of the separator 343 according to the fourth embodiment of the separator of the present invention.
  • This separator 343 has the same structure as the separator 143 in FIG. 3 except that the back surface side protective layer 350 is formed on the back surface 345B of the porous substrate 345. Therefore, in the separator 343 shown in FIG. 5, the same number as the reference numeral added to the separator 143 in FIG. 3 is added to the structure part common to the separator 143 shown in FIG. 3. The description is omitted.
  • FIG. 343 When manufacturing this separator 343, on the surface and the back surface of a commercially available separator sheet with a double-sided protective layer in which a porous protective layer is formed on both sides of a porous sheet substrate made of a polyolefin-based resin, FIG.
  • the paste containing the flame retardant used in the production of the separator 43 is simultaneously applied to form a double-sided coating layer, and under the same drying conditions as in the production of the separator 43 in FIG.
  • the coating layer was dried.
  • the separator 343 provided with the surface side flame retardant layer 349 on the surface side protective layer 347 and provided with the back surface side flame retardant layer 351 on the surface 350A of the back surface side protective layer 350 was obtained.
  • the electrode group 9 in which the positive electrode plate, the negative electrode plate, the separator 43, and the like are wound with the separator 43, 143, 243, or 343 sandwiched between the positive electrode plate and the negative electrode plate manufactured as described above has a battery capacity. It produced so that it might become about 50Ah.
  • the non-aqueous electrolyte battery (lithium ion secondary battery 1) produced as described above was evaluated for flame retardancy (battery safety).
  • the flame retardancy was evaluated by a nail penetration test. In this nail penetration test, first, a charge / discharge cycle with a current density of 0.1 mA / cm 2 was repeated twice in a voltage range of 4.2 to 2.7 V under an environment of 25 ° C., and further to 4.2 V. The battery was charged.
  • the non-aqueous electrolyte battery (lithium ion secondary battery 1) was confirmed for flame retardancy and battery performance. Specifically, in the following Experimental Examples 1 to 6, the battery ignition / smoke status was confirmed from the results of the nail penetration test, and the change in the discharge capacity was confirmed from the discharge capacity test. The results are shown in Table 2 and FIG.
  • Example 4 Experiments were conducted on a battery using a separator in which a surface-side flame retardant layer 49 was formed on the entire surface 47A of the surface-side protective layer 47 as in the separator 43 shown in FIGS.
  • the content of the above-mentioned cyclic phosphazene compound contained as a flame retardant in the surface-side flame retardant layer 49 was 15% by weight with respect to 100% by weight of the positive electrode active material of the positive electrode plate.
  • Example 5 Like the separator 43 shown in FIG. 2 and FIG. 8, a separator in which a stripe-shaped surface side flame retardant layer 49 is formed on the surface of the surface side protective layer 47 so that a part of the surface side protective layer 47 is exposed.
  • the battery was used for experiments.
  • the surface area of the surface-side flame retardant layer 49 is about 50% with respect to the surface area of the surface-side protective layer 47.
  • Example 6 As shown in the separator 143 shown in FIG. 3, the surface side protective layer 147 and the surface side flame retardant layer 149 are formed on the surface 145A of the porous substrate 145, and the back side flame retardant is not formed without forming the back side protective layer. An experiment was conducted on a battery using a separator in which only the agent layer 151 was formed.
  • the melting (decomposition) of the agent decreased the mechanical strength of the surface-side protective layer (decreased heat resistance), and the separator was thermally deformed or contracted.
  • the flame retardant decomposed disassembled in electrolyte solution inhibited the ionic permeability (ionic conductivity) also for the reason that battery performance fell in the battery of Experimental Example 3.
  • the present invention is such that the surface side flame retardant is not contained in the surface side protective layer, and the surface side flame retardant layer containing a fixed flame retardant is formed on the surface side protective layer.
  • the separator battery batteries of Experimental Examples 4 and 5
  • the protective layer is not broken even when abnormal heat is generated, and the micropores in the protective layer are not blocked. It is considered possible.
  • the surface 45A of the porous substrate 45 faces the positive electrode plate, and the back surface 45B of the porous substrate 45 Is disposed so as to face the negative electrode plate (see FIG. 2).
  • the surface-side flame retardant layer 49 formed on the surface 47A of the surface-side protective layer 47 dissolves the solid flame retardant when abnormal heat is generated.
  • the surface-side flame retardant layer 49 remains in a state containing the flame retardant. The mechanical strength of the surface side protective layer 47 remains unchanged.
  • the flame retardant in the surface-side flame retardant layer 49 dissolves in the positive electrode plate that causes the battery to ignite during abnormal heat generation without causing deterioration in battery performance in a normal state. It is considered that flame retardancy is exhibited by trapping radicals generated from the positive electrode plate at the joint surface with the plate.
  • the separator shown in FIG. 3 instead of the separator (Experimental example 4) shown in FIG.
  • the surface side flame retardant layer 149 on the surface 145A side of the porous substrate 145 faces the positive electrode plate
  • the back surface side flame retardant layer 151 on the back surface 145B side of the porous substrate 145 is the negative electrode plate.
  • the separator 143 may be disposed so as to face each other.
  • the back-side flame retardant layer 151 is formed on the back surface 145 ⁇ / b> B of the porous substrate 145. Therefore, the surface side protective layer 147 is not destroyed in normal times, and high flame resistance can be exhibited by the presence of the surface side flame retardant layer 149 and the back side flame retardant layer 151.
  • a separator in which the surface-side flame retardant layer 149 is not formed on the surface 147A of the surface-side protective layer 147 in the separator shown in FIG. 3 may be used instead of the separator in FIG. .
  • the surface-side protective layer 247 is formed on the surface 245A of the porous substrate 245, and the back-side flame retardant layer 251 is formed on the back surface 245B of the porous substrate 245.
  • the front side protective layer 247 is not destroyed in a normal state, and the presence of the back side flame retardant layer 251 can exhibit high flame retardancy.
  • the separator 43, 143 or 243 of FIGS. 2 to 4 is replaced with the surface side flame retardant on the surface 245A, 145A and 245A side of the porous substrate 45, 145 or 245A.
  • the agent layers 49 and 149 or the back side flame retardant layer 251 may be disposed in the battery so as to face the negative electrode plate.
  • the flame retardancy is improved even when the surface side flame retardant layer is partially formed on the surface of the surface side protective layer so that a part of the surface side protective layer is exposed.
  • a decrease in battery performance discharge capacity
  • the battery can be made flame retardant while suppressing a decrease in discharge capacity without forming a flame retardant layer on the entire surface of the protective layer as in Experimental Example 4. Therefore, if the flame retardant layer is partially formed as in Experimental Example 5, the amount of the flame retardant used can be substantially reduced, so that the production cost can be reduced.
  • the non-aqueous electrolyte battery lithium ion secondary battery 1
  • the content and flame retardancy of the flame retardant contained in the surface side flame retardant layer and the back side flame retardant layer, and the battery The relationship with performance was investigated. Specifically, for the following experimental examples 7 to 13, the state of battery ignition / smoke was confirmed from the results of the nail penetration test, and the high rate discharge capacity (%) was confirmed from the results of the discharge capacity test.
  • the optimum content of the flame retardant contained in the agent layer was investigated.
  • the content of the flame retardant contained in the flame retardant layer is based on the condition of Experimental Example 4 described above (when the surface side flame retardant layer is formed on the entire surface of the surface side protective layer). Adjusted and shown in weight percent with respect to the weight of the positive electrode active material. The results are shown in Table 3.
  • Example 12 The surface side flame retardant layer was formed so that the content of the flame retardant was 15.0% by weight. This example is the same as Experimental Example 4 described above.
  • the content of the flame retardant contained in the flame retardant layer is preferably in the range of 2.5 to 15.0% by weight (Experimental Examples 9 to 12).
  • the content of the flame retardant contained in the flame retardant layer is less than 2.5% by weight (Experimental Examples 7 and 8) with respect to the weight of the positive electrode active material, the flame retardant layer is rendered flame retardant. It is considered that sufficient flame retardancy could not be exhibited due to the small content of the agent.
  • the flame retardant layer is rendered flame retardant. It is considered that the high-rate discharge capacity was lowered because the content of the agent increased and the flame retardant inhibited the ion permeability in the flame retardant layer.
  • the non-aqueous electrolyte battery lithium ion secondary battery 1
  • the relationship between the area of the flame retardant layer (the area of the portion surrounded by the outline viewed in plan), the flame retardancy of the battery, and the battery performance I investigated.
  • the battery ignition / smoke status was confirmed from the results of the nail penetration test, and the high rate discharge capacity (%) was confirmed from the results of the discharge capacity test.
  • the lower limit of the area of the flame retardant layer that provides flame retardancy and battery performance was confirmed.
  • the area of a flame retardant layer is shown by the ratio (%) with respect to the area of a protective layer.
  • the thickness of the flame retardant layer is adjusted to be about 70 ⁇ m. The results are shown in Table 4.
  • Example 14 A surface flame retardant layer was formed on the entire surface of the surface protective layer. That is, the surface flame retardant layer was formed such that the area of the surface flame retardant layer was 100% with respect to the area of the surface protective layer.
  • the content of the cyclic phosphazene compound contained as a flame retardant in the surface flame retardant layer is 15.0% by weight with respect to the weight of the positive electrode active material of the positive electrode plate.
  • the surface flame retardant layer was formed such that the area of the surface side flame retardant layer was 80% with respect to the area of the surface side protective layer.
  • the content of the cyclic phosphazene compound contained as a flame retardant in the surface flame retardant layer is 12.0% by weight with respect to the weight of the positive electrode active material of the positive electrode plate.
  • the surface flame retardant layer was formed so that the area of the surface flame retardant layer was 60% with respect to the area of the surface protective layer.
  • the content of the cyclic phosphazene compound contained as a flame retardant in the surface flame retardant layer is 9.0% by weight with respect to the weight of the positive electrode active material of the positive electrode plate.
  • the surface flame retardant layer was formed so that the area of the surface flame retardant layer was 50% with respect to the area of the surface protective layer.
  • the content of the cyclic phosphazene compound contained as a flame retardant in the surface flame retardant layer is 7.5% by weight with respect to the weight of the positive electrode active material of the positive electrode plate.
  • the surface flame retardant layer was formed so that the surface area of the surface flame retardant layer was 40% with respect to the area of the surface protective layer.
  • the content of the cyclic phosphazene compound contained as a flame retardant in the surface flame retardant layer is 6.0% by weight with respect to the weight of the positive electrode active material of the positive electrode plate.
  • the flame retardant layer is made flame retardant so that the area of the flame retardant layer is at least 60% with respect to the area of the nonaqueous electrolyte battery separator (protective layer). It was found that the agent layer needs to be formed. When the area of the flame retardant layer is less than 60% (Experimental Examples 17 and 18), the content of the flame retardant agent itself decreases, and it is considered that sufficient flame retardancy was not obtained.
  • the electrode group 9 is configured as a wound body, but the present invention can naturally be applied to a stacked lithium ion secondary battery in which the electrode group is configured as a stacked body.
  • the surface-side flame retardant layer containing a solid flame retardant having a melting point that does not dissolve in a normal temperature state is formed on the surface of the surface-side protective layer.
  • a flame retardant layer can be formed on the surface of the separator separately from the protective layer. Therefore, since the flame retardant is not contained in the protective layer, the mechanical strength of the protective layer does not decrease even if part or all of the flame retardant melts or decomposes due to an increase in internal temperature. Therefore, thermal deformation or thermal contraction of the separator can be prevented. As a result, it is difficult for a short circuit to occur between the separator and the electrode plate, so that a decrease in battery performance can be suppressed.
  • the flame retardant in the flame retardant layer provided separately from the protective layer dissolves in the non-aqueous electrolyte and traps the radicals generated in the battery, thereby flame retardant. Can demonstrate its sexuality. Therefore, according to the present invention, the non-aqueous electrolyte battery can be made flame retardant while maintaining the battery performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

 電池を難燃化することができて、しかも電池性能の低下を抑制することができる非水電解液電池用セパレータを提供する。ポリオレフィン系樹脂からなる多孔質基材45の表面45A上に、多孔質基材45が熱変形または熱収縮しないように多孔質基材45を保護する多孔質の表面側保護層47を形成し、表面側保護層47の上に非水電解液の発火温度よりも低い融点を有する固体の難燃化剤を含む多孔質の表面側難燃化剤層49を形成する。

Description

非水電解液電池用セパレータ及び非水電解液電池
 本発明は、非水電解液電池用のセパレータ及びこのセパレータを用いた非水電解液電池に関するものである。
 リチウムイオン二次電池等の非水電解液電池では、絶縁性、耐溶剤性等と考慮してセパレータがポリエチレン等の熱可塑性樹脂で形成されている。このような非水電解液電池は、内部温度が上昇すると、熱可塑性樹脂のセパレータが熱変形または熱収縮して、セパレータと電極板との間で短絡が発生し易い。このようなセパレータの熱変形または熱収縮を防止するため、従来の非水電解液電池では、セパレータの表面上にアルミナ粒子等の耐熱材料を含む保護層が形成されている。
 また、非水電解液電池では、非水電解液に発火し易い揮発性の有機溶媒が用いられていることから、非水電解液電池が高温環境に置かれた場合または過充電・過放電が起こった場合等の異常発熱時に、非水電解液の燃焼によって電池が発火・発煙する等の問題がある。そこで特許文献1(特開2010-50076号公報)に記載のセパレータでは、多孔質基体の表面上に耐熱性多孔質層(保護層)を形成している。そしてこのセパレータでは、耐熱性多孔質層の空隙を、電解液に溶解した際に電解液の難燃化剤となるテンプレート剤により形成している。すなわちテンプレート剤が電解液に溶解することにより、耐熱性多孔質層中に複数の空隙が形成されている。このセパレータを用いた非水電解液電池では、溶解したテンプレート剤が難燃化剤となって、異常発熱時の発火・発煙を抑制する。
特開2010-50076号公報
 しかしながら、セパレータの耐熱性多孔質層(保護層)を多孔質にする複数の空隙は、溶解して電解液中の難燃化剤となるテンプレート剤が、電解液中に溶解した結果として形成されるものである。そのため従来のセパレータでは、テンプレート剤が溶解した後に残る耐熱性多孔質層(保護層)の機械的強度が弱い構造になっている。すなわち、従来のセパレータを用いた非水電解液電池では、テンプレート剤が電解液に溶解した後のセパレータの機械的強度が低下して、セパレータが熱変形または熱収縮し易くなる。その結果、セパレータと電極板との間で部分的に短絡が発生して、電池性能が低下するという問題があった。
 本発明の目的は、電池を難燃化することができて、しかも電池性能の低下を抑制することができる非水電解液電池用セパレータを提供することにある。
 本発明の他の目的は、電池を難燃化しても、電池性能の低下を抑制することができる非水電解液電池を提供することにある。
 本発明は、多孔質基材の表面上に、多孔質基剤が熱変形または熱収縮しないように多孔質基材を保護する多孔質の表面側保護層が形成された非水電解液電池用セパレータを改良の対象とする。本発明の非水電解液電池用セパレータにおいて、多孔質基材は、連続する多数の微孔を有するポリオレフィン系樹脂で形成されている。また、表面側保護層は、多孔質基材が熱変形または熱収縮しないように多孔質基材に耐熱性を与える材料で形成されている。
 本発明では、表面側保護層の表面上に、常温では固体で非水電解液の発火温度よりも低い融点を有する難燃化剤を含む難燃化剤層が形成されている。難燃化剤層に含まれる固体の難燃化剤は、電池の異常発熱時に融解して非水電解液中に分散することにより、正極活物質から放出されたラジカル(または活性種)をトラップする機能を有する。この固体の難燃化剤は、電池が正常な温度状態で使用されている場合(異常発熱時でない場合)は、難燃化剤層内で固体状態で保持されるものの、難燃化剤層が多孔質であるために、イオン透過性を阻害することはない。
 本発明のように、電池が正常な温度状態では溶解することがない融点を有する固体の難燃化剤を含む表面側難燃化剤層を表面側保護層の表面上に形成すると、難燃化剤層を保護層とは別個にセパレータの表面に形成することができる。すなわち、難燃化剤が保護層に含まれていないため、内部温度の上昇によって難燃化剤の一部または全部が融解または分解しても、保護層の機械的強度が低下することがないため、セパレータの熱変形または熱収縮を防ぐことができる。その結果、セパレータと電極板との間で短絡が発生し難くなるため、電池性能の低下を抑制することができる。その上で、異常発熱時には、保護層と別個に設けられた難燃化剤層中の難燃化剤が、非水電解液中に溶解して電池内で発生するラジカルをトラップし、難燃性が発揮される。したがって、本発明によれば、電池性能を維持しながら、非水電解液電池を難燃化することができる。
なお、本明細書において「保護層」は表面側保護層及び/または裏面側保護層を示し、「難燃化剤層」は表面側難燃化剤層及び/または裏面側難燃化剤層を示す。
 また、上述のように多孔質基材の表面に表面側保護層を形成した上で、この表面側保護層とは別の多孔質の裏面側保護層を多孔質基材の裏面上に形成してもよい。この裏面側保護層も、多孔質基材の表面上に形成された表面側保護層と同様に、多孔質基材が熱変形または熱収縮しないように多孔質基材に耐熱性を与える材料で形成する。このような構造を採用すると、多孔質基材の表面上だけでなく裏面上にも保護層が形成されるため、セパレータの熱収縮抑制の機能を維持しながら、セパレータの耐熱性をさらに向上させることができる。さらに、多孔質の表面側難燃化剤層とは別に非水電解液の発火温度よりも低い融点を有する固体の難燃化剤を含む多孔質の裏面側難燃化剤層を多孔質基材の裏面上に形成してもよい。多孔質基材の裏面上に裏面側保護層が形成されている場合は、裏面側難燃化剤層は、この裏面側保護層の表面に形成する。このようにセパレータの表面側だけでなく裏面側にも裏面側難燃化剤層を形成すると、セパレータの表面側だけでなく裏面側でも、電池の難燃性を高めることができる。なお裏面側保護層を形成しない場合には、裏面側難燃化剤層を、多孔質基剤の裏面上に直接形成してもよい。
 多孔質の表面側難燃化剤層及び裏面側難燃化剤層に含まれる固体の難燃化剤としては、融点が90℃以上の環状ホスファゼン化合物を用いるのが好ましい。このような融点を有する環状ホスファゼン化合物は、電池の正常時(内部温度が90℃未満)では、固体状態が保持されるため、難燃化剤それ自体がイオン透過性を阻害することはなく、また表面側難燃化剤層及び裏面側難燃化剤層の機械的強度が低下することもない。そして難燃化剤が溶解するときには、電池の温度が異常に高い温度に達しているときであるため、以後電池として使用されることはなく、表面側難燃化剤層及び裏面側難燃化剤層の機械的強度が低下しても問題は生じない。そのため、このような環状ホスファゼン化合物を難燃化剤として用いると、電池性能を維持しながら電池を難燃化することができる。 
 難燃化剤として用いる環状ホスファゼン化合物は、一般式(NPRまたは(NPRで表され、かつ一般式中のRが、ハロゲン元素または一価の置換基であり、一価の置換基が、アルコキシ基、アリールオキシ基、アルキル基、アリール基、アミノ基、アルキルチオ基またはアリールチオ基である環状ホスファゼン化合物が好ましい。このような化学構造を有する環状ホスファゼン化合物は、90℃以上の融点を有するので、電池の正常時(内部温度が90℃未満)に難燃化剤層内で固体状態を保持することができる。
 環状ホスファゼン化合物の含有量は、難燃化剤層(表面側難燃化剤層および/または裏面側難燃化剤層)が対向する電極板に含まれる活物質の重量に対して2.5~15.0重量%とするのが好ましい。活物質100重量%に対して難燃化剤層中または別の難燃化剤層中の難燃化剤の含有量を2.5~15.0重量%とすると、セパレータ中のイオン透過性を殆ど阻害することなく(放電容量等の電池性能を大幅に低下させることなく)、実用上問題のない程度に電池を難燃化することができる。
 難燃化剤層の表面積は、非水電解液電池用セパレータの表面積の60%以上にすればよい。非水電解液電池用セパレータの表面積100%に対して難燃化剤層の表面積が少なくとも60%となるように難燃化剤層を形成すれば、セパレータ(または保護層)の表面上のうち難燃化剤層が形成されない部分ではイオン透過性が高くなるため、セパレータ全体としてイオン透過性が大きくなって電池性能を向上させることができる。また、難燃化剤層を部分的に形成すれば、難燃化剤の使用量を実質的に減らすことができるので、生産コストを低減することができる。なお、セパレータの表面積100%に対して、難燃化剤層の表面積が60%未満の場合は、難燃化剤層に含まれる難燃化剤の含有量が少ないため、十分な難燃性が得られない。
 表面側保護層及び裏面側保護層の形成には、バインダにより多孔質基材の表面に結着されて溶媒が揮発した後に保護層の内部に多数の空隙を維持するフィラー(アルミナ粒子等)を用いることができる。このようなフィラーを用いると、連続する複数の空隙を備えてイオン透過性を有する多孔質の保護層を形成することができる。また、フィラーには、融点が120℃以上のフィラーを用いるのが好ましい。このような融点を有するフィラーは、電池の内部温度が非水電解液の熱分解温度である120℃以上に上昇しても固体のまま維持されて、多孔質基材の熱変形または熱収縮を防ぐことができる。
 本発明の非水電解液電池用セパレータを用いて非水電解液電池を形成すると、電池組立後に、セパレータの表面側保護層及び/または裏面側保護層の機械的強度が変化することがないので、電池が正常な状態においては、電池性能が低下することはない。そして電池の温度が異常温度まで上昇して難燃化剤の一部または全部が融解または分解した後は、電池として使用することはないため、難燃化剤層の機械的強度が低下しても問題となることはない。
 なお、リチウムイオン二次電池等の非水電解液電池では、電池の異常発熱時に正極板が高温となって電池内部で非水電解液が発火することが多い。そこで、本発明の非水電解液電池用セパレータのうち、多孔質基材の表面上に表面側保護層と表面側難燃化剤層とが形成されたセパレータを非水電解液電池に用いる場合は、表面側難燃化剤層が正極板と対向し、かつ多孔質基材の裏面が負極板と対向するように非水電解液電池用セパレータを配置するのが好ましい。このような構成では、表面側保護層は常に機械的強度が低下することはないためセパレータの熱変形または熱収縮を抑制し、しかも表面側難燃化剤層から溶解した難燃化剤が難燃性を発揮して正極板から発生するラジカルを正極板の表面でトラップすることができる。その結果、正常時における電池性能を低下させることなく、電池を難燃化することができる。
 また、リチウムイオン二次電池等の非水電解液電池では、電池の異常発熱時に正極板と同様にまたは正極板よりも負極板が高温となって電池が発火する場合もあり得る。この場合は、表面側難燃化剤層と負極側難燃化剤層とを備えた本発明の非水電解液電池用セパレータを用いればよい。
本発明の非水電解液電池用セパレータを用いた非水電解液電池(リチウムイオン二次電池)の内部を透視した状態で示した概略図である。 本発明の非水電解液電池用セパレータの第1の実施の形態の断面図である。 本発明の非水電解液電池用セパレータの第2の実施の形態の断面図である。 本発明の非水電解液電池用セパレータの第3の実施の形態の断面図である。 本発明の非水電解液電池用セパレータの第4の実施の形態(多孔質基材の表面上及び裏面上に保護層が形成されている例)の断面図である。 本発明の非水電解液電池用セパレータについて、放電容量を示すグラフである。 本発明の非水電解液電池用セパレータの一例(保護層の表面全体に難燃化剤層を形成した例)を多孔質基材の表面側から見た図である。 本発明の非水電解液電池用セパレータの一例(保護層の表面の一部に難燃化剤層をストライプ状に形成した例)を多孔質基材の表面側から見た図である。
 以下、本発明の実施の形態について詳細に説明する。図1は、本発明の非水電解液電池の実施の形態の一例であるリチウムイオン二次電池の内部を透視した状態で示した概略図である。このリチウムイオン二次電池(円筒型電池)1は、ケーシングとして、無底円筒状の電池容器3と、電池容器3の両端部に配置された2つの円盤状の電池蓋5とを有している。ケーシング(電池容器3及び電池蓋5)内には、中空円筒状でポリプロピレン製の軸芯7を中心に、図示しない正極板および負極板が、後に詳しく説明するセパレータ(セパレータ43,143,243,343)を介して配置された電極群9が非水電解液(不図示)に浸潤されて収容されている。本実施の形態では、このようなリチウムイオン二次電池1を、以下のように作製した。
[作製手順]
 次に、本実施形態のリチウムイオン二次電池1についてさらに詳しく説明するとともに、リチウムイオン二次電池1の作製手順について説明する。
[正極板の作製]
 電極群9を構成する正極板を以下の方法で作製した。正極用活物質としてマンガン酸リチウム(LiMn)粉末と、導電剤として燐片状黒鉛(平均粒径:20μm)と、結着剤としてポリフッ化ビニリデン(PVDF)とを混合し、この混合物に分散溶媒としてN-メチル-2-ピロリドン(NMP)を添加した後、混練してスラリーを作成した。このスラリーを厚み20μmのアルミニウム箔(正極集電体)の両面に塗布して正極合剤層とした。スラリーの塗布の際に、アルミニウム箔の長寸方向に対して、側縁の一方に幅50mmの未塗布部分を残した。その後、乾燥、プレス、裁断して幅389mm、長さが5100mmの正極板を得た。なお、正極合剤層の厚さ(ただし、集電体の厚さは含まない)を275μm、集電体片面あたりの正極活物質塗布量を350g/mとした。
 正極板に形成した幅50mmの未塗布部に切り欠きを入れてその一部を除去し、矩形状(櫛状)の部分を形成したものを集電用の正極リード片11として用いた。なお、正極リード片11の幅を約10mm、隣り合う正極リード片11の間隔を約20mmとした。
[負極板の作製]
 一方、電極群9を構成する負極板を以下の方法で作製した。負極用活物質として人造黒鉛粉末と、結着剤としてPVDFとを混合し、この混合物に分散溶媒としてNMPを添加した後、混練してスラリーを作成した。このスラリーを厚みが10μmの圧延銅箔(負極集電体)の両面に塗布して負極合剤層を形成した。スラリーの塗布の際には、銅箔の長寸方向に対して、側縁の一方に幅50mmの未塗布部を残した。その後乾燥、プレス、裁断して幅395mm、長さ5290mmの負極板を得た。負極合剤層の厚さ(集電体厚さは含まない。)を201μm、集電体片面あたりの負極活物質塗布量を130.8g/mとした。
 負極板に形成した幅50mmの未塗布部に切り欠きを入れてその一部を除去し、矩形状の部分を形成して集電用の負極リード片13として用いた。なお、負極リード片13の幅を約10mm、隣り合う負極リード片13の間隔を約20mmとした。
 なお、正極板と負極板の幅方向においても、正極用活物質の塗布部と負極用活物質の塗布部との対向に位置ズレが起きないように、負極用活物質の塗布部の幅は、正極用活物質の塗布部の幅よりも大きくした。
[電極群の作製]
 正極板と負極板を厚みが36μmのポリオレフィン系のポリエチレンを主体とした2枚の多孔質セパレータで挟んだ状態で捲回して電極群9を作成した。セパレータは合計4枚使用した。また、捲回は最初にセパレータの先端部分を軸芯7に熱溶着し、正極板、負極板、セパレータの位置を合わせて巻きズレの可能性を低減させた上で、これら正極板、負極板、セパレータを捲回した。なお、正極リード片11と負極リード片13とは、それぞれ電極群9の反対側に位置するように配置した。捲回時に正極板、負極板、セパレータを適当な長さで切断することにより、電極群9の直径を63.6±0.1mmとした。
[電池の作製]
 正極板から導出されている正極リード片11を集めて束にした状態で折り曲げて変形させた後、正極極柱15の鍔部17の周縁に接触させ、正極リード片11と鍔部17の周縁とを、超音波溶接装置を用いて溶接(接合)して電気的に接続した。なお、負極板についても同様に、負極リード片13と負極極柱19の鍔部21の周縁とを超音波溶接して電気的に接続した。
 その後、正極極柱15の鍔部17、負極極柱19の鍔部21および電極群9の外周面全体を絶縁被覆23で覆った。この絶縁被覆23として、片面にヘキサメタアクリレートからなる粘着剤を塗布したポリイミド製の粘着テープを用いた。電極群9の外周部分が絶縁被覆23で覆われ、ステンレス製の電池容器3の内径よりも僅かに小さくなるように粘着テープの巻き数を調整した後、電極群9を電池容器3内に挿入した。なお、本実施形態の電池容器3は、外径が67mm、内径が66mmである。
 次に、電池蓋5の外側の面と当接する部分に第1のセラミックワッシャ25を、端子部27(正極)および端子部29(負極)のそれぞれの先端に嵌め込んだ。そして、平板状の第2のセラミックワッシャ31を電池蓋5に載置し、端子部27,29のそれぞれを第2のセラミックワッシャ31に通した。
 その後、電池蓋5の周縁を電池容器3の開口部に嵌合させ、電池蓋5と電池容器3の接触部分の全域をレーザ溶接した。このとき、端子部27,29は、電池蓋5の中心に形成された穴を貫通して外部に突出している。そして、第2のセラミックワッシャ31に当接するように、金属製のナット33の底面よりも平滑な金属ワッシャ35を端子部27,29のそれぞれ嵌め込んだ。一方(図1の上側)の電池蓋5には、電池の内部圧力の上昇に応じて開裂する開裂弁36が設けられており、その開裂圧力は13~18kg/cmに設定されている。なお、本実施形態のリチウムイオン二次電池1には、いわゆる小型民生用リチウムイオン二次電池のように電池内部の圧力上昇に応じて作動する電流遮断機構は設けられていない。
 ナット33を、端子部27,29にそれぞれ螺着し、金属ワッシャ35、第1のセラミックワッシャ25、第2のセラミックワッシャ31を介して電池蓋5を鍔部17とナット33の間で締め付けて固定した。このときの締め付けトルク値は、6.86N・mとした。電池蓋5の裏面と突出部37の間に介在させたゴム製(EPDM製)のOリング39を締め付け時に圧縮することにより、電池容器3の内部の発電要素等は外気から遮断される。
 次いで、他方(図1の下側)の電池蓋5に形成された注液口40から、所定量の非水電解液を電池容器3内に注入した後、注液口40を注液栓41で封止することにより円筒形リチウムイオン二次電池1を完成させた。
[セパレータの作製]
 図2は、本発明の第1の実施の形態のセパレータ43を厚み方向に切断した断面を拡大した図である。図2のセパレータ43は、ポリオレフィン系樹脂からなる多孔質基材45の上に表面側保護層47が形成され、表面側保護層47の上に表面側難燃化剤層49を備えた構造を有している。本例では、まず、厚みが25μmのシート基板(多孔質基材45のベース材料)の表面上に、厚みが5μmの多孔質の保護層(表面側保護層47のベース材料)が形成されたセパレータシートを用意する。セパレータシートは、多孔質のポリオレフィン系樹脂(ポリエチレン)製でシート基板の表面上に、アルミナ粒子のフィラーが結着された多孔質の表面側保護層が形成された複合シートである。
 本例では、この複合シートからなるセパレータシートの表面に表面側難燃化剤層を形成する。表面側難燃化剤層を形成するために、まず、難燃化剤として融点が112℃の固体の環状ホスファゼン化合物[株式会社ブリヂストン製のホスライト(登録商標)]、バインダとしてポリフッ化ビニリデン、溶媒としてN-メチルピロリドンを、それぞれ重量比20:20:60で混合してスラリーを作製した。なお、使用した環状ホスファゼン化合物の化学構造は、一般式(NPRで表され、かつRがフェノキシ基で表される。このスラリーを、複合シートの表面側保護層の表面に塗布して塗布層を形成した。
 塗布層の形成は、塗布層の塗布量が複合シートに対して40g/mとなるように行った。また、セパレータ43の表面側保護層47の表面積(平面で見た面積)に対して、表面側難燃化剤層49の塗布面積が100%~40%となるようにそれぞれ塗布層を形成した(図7及び図8参照)。なお、セパレータ43の表面側保護層47の表面積に対して表面側難燃化剤層49の塗布面積を80%~40%とする場合には、図8に示すように表面側保護層47の表面上にストライプ状の表面側難燃化剤層49が形成されるように塗布層を形成した。
 次いで、この塗布層を、乾燥温度60℃、乾燥時間3時間とする乾燥条件の下で乾燥した。複合シートの表面上に形成された乾燥後の塗布層は、特に図示しないが、内部に多数の連続する微孔が形成された多孔質層となっている。なお本実施の形態で使用した環状ホスファゼン化合物は、溶媒に溶解した後、塗布層の乾燥工程において析出することにより、表面側難燃化剤層49中に固体状態で分散して存在する。このように塗布層を乾燥した後、切り取ったシートをセパレータ43とした。このようにして、多孔質基材45の表面45A上に表面側保護層47が形成され、表面側保護層47の表面47A上に表面側難燃化剤層49が形成されたセパレータ43を得た。なお、図2に示すセパレータ43では、多孔質基材45の裏面45A上に、保護層及び難燃化剤層のいずれも形成されていない。
 また、図3は、本発明の第2の実施の形態のセパレータ143の断面構造を示す。図3に示したセパレータ143は、多孔質基材145の裏面145B上に裏面側難燃化剤層151が形成されている点を除けば図2のセパレータ43と同じ構造を有している。そこで図3に示したセパレータ143には、図2に示したセパレータ43と共通する部分に、図2のセパレータ43に付された符号の数に100の数を加えた数の符号を付して説明を省略する。図3のセパレータ143を製造する場合には、図2のセパレータ43を形成するために、複合シートの表面に難燃化剤を含む塗布層(乾燥後に表面側難燃化剤層となる)を形成するのと同時に、複合シートの裏面にも同じ難燃化剤を含む塗布層を形成した。そして、セパレータ43と同じ条件で塗布層を乾燥しセパレータ143を得た。
 図4は、本発明のセパレータの第3の実施の形態のセパレータ243の断面構造を示す。このセパレータ243は、表面側保護層247の表面247A上に難燃化剤層(図3の表面側難燃化剤層149)が形成されていない点を除けば図3のセパレータ143と同じ構造を有している。そこで、図4に示したセパレータ243には、図3に示したセパレータ143の構成部分と共通する部分に、図3に示した符号の数に100の数を加えた数の符号を付して説明を省略する。図4に示した構造のセパレータ243を製造する場合には、図2のセパレータ43を製造する場合に使用した市販のセパレータシートの多孔質基材245の裏面245B上に、図2のセパレータ43を製造する際に使用した難燃化剤を含むペーストを塗布して、裏面側難燃化剤層251を形成するための塗布層を形成した。そしてこの塗布層を乾燥して裏面側難燃化剤層251を形成し、セパレータ243を得た。
 図5は、本発明のセパレータの第4の実施の形態のセパレータ343の断面構造を示す。このセパレータ343は、多孔質基材345の裏面345B上に裏面側保護層350が形成されている点を除けば図3のセパレータ143と同じ構造を有する。そこで図5に示したセパレータ343では、図3に示したセパレータ143と共通する構造部分に、図3のセパレータ143に付された符号の数にさらに200の数を加えた数の符号を付して説明を省略する。このセパレータ343を製造する場合には、ポリオレフィン系樹脂からなる多孔質のシート基板の両面に多孔質の保護層が形成された、市販の両面保護層付きセパレータシートの表面及び裏面上に、図2のセパレータ43を製造する際に用いた難燃化剤を含むペーストを同時に塗布して両面の塗布層を形成し、図2のセパレータ43を製造する際の乾燥条件と同じ乾燥条件で、両面の塗布層を乾燥した。その後、表面側保護層347の上に表面側難燃化剤層349を備え、裏面側保護層350の表面350A上に裏面側難燃化剤層351を備えたセパレータ343を得た。
[円筒型電池の作製]
 上記のようにして作製した正極板と負極板との間にセパレータ43,143,243または343を挟んで、正極板、負極板およびセパレータ43等が捲回された電極群9を、電池容量が約50Ahになるように作製した。
[非水電解液の調製]
 エチレンカーボネートとエチルメチルカーボネートとを体積比1:2で混合した混合溶媒を調製した。この混合溶媒に、1mol/Lの六フッ化リン酸リチウム(LiPF を溶解させて非水電解液を調製した。
[難燃性の評価/釘刺し試験]
 上記のように作製した非水電解液電池(リチウムイオン二次電池1)について、難燃性(電池の安全性)を評価した。難燃性の評価は、釘刺し試験により行った。この釘刺し試験では、まず、25℃の環境下で、4.2~2.7Vの電圧範囲で、0.1mA/cmの電流密度による充放電サイクルを2回繰り返し、さらに4.2Vまで電池の充電を行った。その後、同じ25℃の温度条件下で、軸部の直径が3mmのステンレス鋼製の釘を、速度0.5cm/sで電池の側面の中心に垂直に突き刺すことにより、電池の内部温度、発火・発煙の有無および電池の破裂・膨張の有無を確認した。
[電池性能の評価/放電容量試験]
 作製した非水電解液電池(リチウムイオン二次電池1)について、電池性能を評価した。電池性能の評価は、放電容量試験により行った。放電容量試験では、まず、上記の釘刺し試験と同じ条件で充放電サイクルを繰り返して4.2Vまで電池の充電を行った。充電した後、電流0.2C、0.5C、1.0C、2.0C、3.0C及び 終止電圧2.7Vの定電流放電を行った。詳細な試験条件を表1に示す。なお、表1に示す各電流値における放電前には、必ず1/3C充電を行っている。また、定電流定電圧充電では、終止電圧に達した後、その電圧で定電圧充電に切り替わる。さらに終止電流値まで電流が下がると動作終了となる。このようにして得られた相対容量を放電容量とした。
Figure JPOXMLDOC01-appb-T000001
 非水電解液電池(リチウムイオン二次電池1)について、難燃性および電池性能を確認した。具体的には、下記の実験例1~6について、釘刺し試験の結果から電池の発火・発煙の状況を、放電容量試験から放電容量の変化をそれぞれ確認した。結果を表2及び図6に示す。
[実験例1]
 セパレータの表面に、保護層も難燃化剤層も形成しないセパレータを用いた電池について実験を行った。
[実験例2]
 セパレータの表面に、表面側保護層のみを形成したセパレータを用いた電池について実験を行った。
[実験例3]
 特許文献1に示されたセパレータのように、電解液に溶解する難燃化剤を含む保護層を備えたセパレータを用いた電池について実験を行った。
[実験例4]
 図2及び図7に示すセパレータ43のように、表面側保護層47の表面47A全体に表面側難燃化剤層49を形成したセパレータを用いた電池について実験を行った。表面側難燃化剤層49に難燃化剤として含まれる上述の環状ホスファゼン化合物の含有量は、正極板の正極活物質100重量%に対して15重量%とした。
[実験例5]
 図2及び図8に示すセパレータ43のように、表面側保護層47の表面に表面側保護層47の一部が露出するようにストライプ状の表面側難燃化剤層49を形成したセパレータを用いて電池について実験を行った。表面側難燃化剤層49の表面積は、表面側保護層47の表面積に対して、約50%となっている。
[実験例6]
 図3に示すセパレータ143のように多孔質基材145の表面145Aに、表面側保護層147と表面側難燃化剤層149を形成し、裏面側保護層を形成しないで、裏面側難燃化剤層151のみを形成したセパレータを用いた電池について実験を行った。
 なお、実験例2~6については、保護層が正極板と対向するようにセパレータを配置した。
 表2において、難燃性については、リチウムイオン二次電池1で発火および発煙のいずれも生じない場合は○(良好)、発火および発煙のいずれかが発生した場合は×(不良)として評価した。また、電池性能は、多孔質基材の表面に保護層も難燃化剤層も形成しない場合(実験例1)を基準にして、放電容量の低下が相対的に小さい場合は○(良好)、放電容量の低下が相対的に大きい場合は×(不良)、放電容量の低下が相対的にやや大きい場合は△(やや不良)と評価した。
 さらに、難燃性および電池性能の評価結果から総合評価を行った。具体的には、難燃性および電池性能のいずれも評価が○の場合は、総合評価を○(良好)とした。また、難燃性および電池性能のいずれか1つでも評価が×の場合は、総合評価を×(不良)とした。また、難燃性および電池性能のいずれも×の評価ではないが、いずれか1つでも評価が△の場合は、総合評価を△(やや不良)とした。
Figure JPOXMLDOC01-appb-T000002
 表2及び図6から、実験例1の電池のように、セパレータの表面に保護層も難燃化剤層も形成しなかった例では、電池性能は良好であったが、難燃性は不良となった(総合評価×)。また、実験例2の電池のように、セパレータの表面に表面側保護層のみを形成して表面側難燃化剤層を形成しなかった例でも、電池性能は良好であったが、難燃性は不良となった(総合評価×)。さらに、実験例3の電池のように、セパレータの表面に難燃化を含む保護層を形成した電池(本発明の従来技術に相当するセパレータを用いた電池)では、難燃性は良好だったものの電池性能はやや不良となった(総合評価△)。
 これに対して、実験例4の電池のように、表面側保護層の表面全体に表面側難燃化剤層を形成したセパレータを用いた電池では、難燃性および電池性能ともに良好であった(総合評価○)。また、実験例5の電池のように、表面側保護層の表面にストライプ状の表面側難燃化剤層を形成したセパレータを用いた電池でも、実験例4の電池と同様に難燃性および電池性能ともに良好となった(総合評価○)。実験例6の電池のように、表面側に保護層と難燃化剤層とを備え、裏面側に難燃化剤層のみを備えたセパレータを用いた電池では、実験例4の電池と同様に難燃性および電池性能ともに良好となった(総合評価○)。
 これらの結果から、表面側保護層が形成された構造を備えるリチウムイオン二次電池を難燃化する場合は、実験例4の電池のように固体の難燃化剤を含む表面側難燃化剤層を表面側保護層の表面上に形成した方が、放電容量の低下(電池性能の低下)を抑制できることが分かった。従来のように表面側保護層内に電解液に溶解する難燃化剤を含む電池(実験例3の電池)において電池性能が低下した理由は、電池内部で表面側保護層内の難燃化剤が融解(分解)したことにより、表面側保護層の機械的強度が低下して(耐熱性が低下して)、セパレータが熱変形または熱収縮したためであることが考えられる。また、電解液中に分解した難燃化剤が、イオン透過性(イオン伝導性)を阻害したことも実験例3の電池で電池性能が低下した理由ではないかと考えられる。これに対して、表面側保護層に表面側難燃化剤が含まれておらず、表面側保護層の上に固定の難燃化剤を含む表面側難燃化剤層を形成した本発明のセパレータの電池(実験例4及び5の電池)では、異常発熱時でも保護層が破壊されず、保護層内の微孔が閉塞されることもないので、電池性能の低下を抑制することができるものと考えられる。
 具体的には、実験例4の電池では、放電により正極板が高温になり易いことを想定して、多孔質基材45の表面45Aが正極板と対向し、多孔質基材45の裏面45Bが負極板と対向するようにセパレータ43が配置されている(図2参照)。このようなセパレータを用いた電池では、表面側保護層47の表面47A上に形成された表面側難燃化剤層49が、異常発熱時において固体の難燃化剤を溶解して電解液中に放出するが、通常状態においては、表面側難燃化剤層49は難燃化剤を含んだままの状態にある。そして表面側保護層47の機械的強度は変わらない状態にある。そのため通常状態における電池性能の低下を生じさせることなく、異常発熱時には電池の発火原因となる正極板に対して、表面側難燃化剤層49中の難燃化剤が溶解することにより、正極板との接合面で正極板から発生するラジカルをトラップすることによって難燃性を発揮しているものと考えられる。
 また、図2に示すセパレータ(実験例4)の代わりに、図3に示すセパレータを用いてもよい。この場合は、多孔質基材145の表面145A側の表面側難燃化剤層149が正極板と対向し、多孔質基材145の裏面145B側の裏面側難燃化剤層151が負極板と対向するようにセパレータ143を配置すればよい。図3に示す構成では、多孔
質基材145の裏面145B上に裏面側難燃化剤層151が形成されている。そのため、通常時においては表面側保護層147が破壊されない上に、表面側難燃化剤層149および裏面側難燃化剤層151の存在により高い難燃性を発揮することができる。
 さらに、図3に示すセパレータにおいて表面側保護層147の表面147A上に表面側難燃化剤層149が形成されていないセパレータ(図4参照)を、図3のセパレータの代わりに用いてもよい。この場合は、多孔質基材245の表面245A上に表面側保護層247が形成され、多孔質基材245の裏面245B上に裏面側難燃化剤層251が形成されている。この場合も、通常時において表面側保護層247が破壊されない上に、裏面側難燃化剤層251の存在により高い難燃性を発揮することができる。
 なお、放電により負極板が高温になり易い場合には、図2~4のセパレータ43,143または243を、多孔質基材45,145または245の表面245A,145A及び245A側の表面側難燃化剤層49,149または裏面側難燃化剤層251が負極板と対向するようにそれぞれ電池内に配置すればよい。
 また、放電により正極板及び負極板のいずれもが高温になり易い場合またはいずれが高温になり易いかが不明な場合は、図5に示す構造を有するセパレータ343のように多孔質基材345の表面345A上に表面側保護層347及び表面側難燃化剤層349が形成され、多孔質基材345の裏面345B上に裏面側保護層350及び裏面側難燃化剤層351が形成されたセパレータ343を電池に用いるのが好ましい。
 また、実験例5からは、表面側難燃化剤層を表面側保護層の一部が露出するように表面側保護層の表面に部分的に形成した場合でも、難燃性を向上させることができて、電池性能(放電容量)の低下は防止できる。すなわち、実験例4のように難燃化剤層を保護層の表面全体に形成しなくても、放電容量の低下を抑制しながら電池を難燃化することができることが分かった。したがって、実験例5のように難燃化剤層を部分的に形成すれば、難燃化剤の使用量を実質的に減らすことができるので、生産コストを低減することができる。
 なお、実験例6の電池ように、セパレータの表面側保護層の上に表面側難燃化剤層を形成せずに、裏面側難燃化剤層のみを形成したセパレータ(図4のセパレータ)を用いた例でも、難燃性および電池性能ともに良好となった(総合評価○)。
 次に、非水電解液電池(リチウムイオン二次電池1)について、表面側難燃化剤層及び裏面側難燃化剤層中に含まれる難燃化剤の含有量と難燃性および電池性能との関係を調べた。具体的には、下記の実験例7~13について、釘刺し試験の結果から電池の発火・発煙の状況を、放電容量試験の結果から高率放電容量(%)をそれぞれ確認して、難燃化剤層に含まれる難燃化剤の最適な含有量を調べた。なお、難燃化剤層に含まれる難燃化剤の含有量は、上述の実験例4の条件(表面側保護層の表面全体に表面側難燃化剤層を形成する場合)をベースに調整し、正極活物質の重量に対する重量%で示してある。結果を表3に示す。
[実験例7]
 セパレータの表面に、表面側保護層のみを形成し、表面側難燃化剤層は形成しなかった。すなわち、難燃化剤の含有量は、0重量%である。この例は、上述の実験例2と同じである。
[実験例8]
 難燃化剤の含有量が1.0重量%となるように表面側難燃化剤層を形成した。
[実験例9]
 難燃化剤の含有量が2.5重量%となるように表面側難燃化剤層を形成した。
[実験例10]
 難燃化剤の含有量が5.0重量%となるように表面側難燃化剤層を形成した。
[実験例11]
 難燃化剤の含有量が10.0重量%となるように表面側難燃化剤層を形成した。
[実験例12]
 難燃化剤の含有量が15.0重量%となるように表面側難燃化剤層を形成した。この例は、上述の実験例4と同じである。
[実験例13]
 難燃化剤の含有量が20.0重量%となるように表面側難燃化剤層を形成した。
 なお、実験例7~13についても、表面側難燃化剤層が正極板と対向するようにセパレータを配置した。
 表3において、難燃性については、表2と同様に、リチウムイオン二次電池(円筒型電池)1が発火および発煙のいずれも生じない場合は○(良好)、発火および発煙のいずれかが発生した場合は×(不良)として評価した。また、電池性能は、セラミックの表面に保護層も難燃化剤層も形成しない場合(実験例7)の高率放電容量を100%として、高率放電容量が相対的に大きい場合(高率放電容量が70%以上の場合)は○(良好)、高率放電容量が相対的に小さい場合は×(不良)、高率放電容量が相対的にやや小さい場合は△(やや不良)と評価した。さらに、表3においても、表2と同様に、難燃性および電池性能の評価結果から総合評価を行った。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、難燃化剤の含有量が、正極活物質の重量に対して0~1.0重量%の範囲(実験例7及び8)では、電池性能(高率放電容量)は良好であったものの、難燃性は不良となった(総合評価×)。また、難燃化剤の含有量が20.0重量%(実験例13)では、難燃性は良好だったものの、電池性能はやや不良となった(総合評価△)。これに対して、難燃化剤層に含まれる難燃化剤の含有量が、正極活物質の重量に対して2.5~15.0重量%の範囲(実験例9~12)では、難燃性および電池性能のいずれも良好であった(総合評価○)。これらの結果から、セパレータの表面上に保護層が形成された構造の非水電解液電池において、電池性能の低下を抑制しながら電池を難燃化するためには、正極活物質の重量に対して難燃化剤層に含まれる難燃化剤の含有量を2.5~15.0重量%の範囲(実験例9~12)とするのが好ましいことが分かった。なお、正極活物質の重量に対して難燃化剤層に含まれる難燃化剤の含有量が2.5重量%未満(実験例7及び8)では、難燃化剤層に対する難燃化剤の含有量が少ないために十分な難燃性を発揮することができなかったことが考えられる。また、正極活物質の重量に対して難燃化剤層に含まれる難燃化剤の含有量が15.0重量%を超える範囲(実験例13)では、難燃化剤層に対する難燃化剤の含有量が多くなって、難燃化剤が難燃化剤層内のイオン透過性を阻害するため、高率放電容量が低下したことが考えられる。
 次に、非水電解液電池(リチウムイオン二次電池1)について、難燃化剤層の面積(平面で見た輪郭で囲まれる部分の面積)と電池の難燃性及び電池性能との関係を調べた。具体的には、下記の実験例14~18について、釘刺し試験の結果から電池の発火・発煙の状況を、放電容量試験の結果から高率放電容量(%)をそれぞれ確認して、良好な難燃性および電池性能が得られる難燃化剤層の面積の下限値を確認した。なお難燃化剤層の面積は、保護層の面積に対する割合(%)で示してある。また、難燃化剤層の厚みは約70μmになるように調整されている。結果を表4に示す。
[実験例14]
 表面保護層の表面全体に、表面難燃化剤層を形成した。すなわち、表面保護層の面積に対して表面難燃化剤層の面積が100%となるように表面難燃化剤層を形成した。表面難燃化剤層に難燃化剤として含まれる環状ホスファゼン化合物の含有量は、正極板の正極活物質の重量に対して15.0重量%となっている。この例は、上述の実験例4(実験例12)と同じである。
[実験例15]
 表面側保護層の面積に対して表面側難燃化剤層の面積が80%となるように表面難燃化剤層を形成した。表面難燃化剤層に難燃化剤として含まれる環状ホスファゼン化合物の含有量は、正極板の正極活物質の重量に対して12.0重量%となっている。
[実験例16]
 表面保護層の面積に対して表面難燃化剤層の面積が60%となるように表面難燃化剤層を形成した。表面難燃化剤層に難燃化剤として含まれる環状ホスファゼン化合物の含有量は、正極板の正極活物質の重量に対して9.0重量%となっている。
[実験例17]
 表面保護層の面積に対して表面難燃化剤層の面積が50%となるように表面難燃化剤層を形成した。表面難燃化剤層に難燃化剤として含まれる環状ホスファゼン化合物の含有量は、正極板の正極活物質の重量に対して7.5重量%となっている。
[実験例18]
 表面保護層の面積に対して表面難燃化剤層の表面積が40%となるように表面難燃化剤層を形成した。表面難燃化剤層に難燃化剤として含まれる環状ホスファゼン化合物の含有量は、正極板の正極活物質の重量に対して6.0重量%となっている。
 なお、実験例14~18についても、保護層が正極板と対向するようにセパレータを配置した。
 表4において、難燃性については、表2および表3と同様に、リチウムイオン二次電池(円筒型電池)1が発火および発煙のいずれも発生しない場合は○(良好)、発火および発煙のいずれかが生じた場合は×(不良)として評価した。また、電池性能は、保護層の面積に対して難燃化剤層の面積が100%の場合(実験例14)の放電容量を100%とした場合の高率放電容量(%)が相対的に大きい場合(高率放電容量が100%を超えた場合)は○(良好)、高率放電容量(%)が相対的に小さい場合は×(不良)と評価した。さらに、表4においても、表2と同様に、難燃性および電池性能の評価結果から総合評価を行った。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、保護層の面積が100%の場合(実験例14)に対して、難燃化剤層の面積が80%~60%の場合(実験例15及び16)は、難燃性および電池性能は良好であった(総合評価○)。これは、セパレータ(または保護層)の面上に難燃化剤層が形成されない露出部が形成され、この露出部ではイオン透過性が高くなるため、セパレータ全体としてイオン透過性が大きくなって電池性能が向上したものと考えられる。しかしながら、難燃化剤層の面積が50%~40%の場合(実験例17及び18)は、電池性能は良好であったが難燃性は不良となった(総合評価×)。すなわち、良好な難燃性および電池性能を得るためには、難燃化剤層の面積が非水電解液電池用セパレータ(保護層)の面積に対して少なくとも60%となるように難燃化剤層を形成する必要があることが分かった。難燃化剤層の面積が60%未満(実験例17及び18)では、難燃性化剤自体の含有量が少なくなるため、十分な難燃性が得られなかったことが考えられる。
 上記実施の形態及び実施例では、電極群9を捲回体として構成したが、積層体として電極群を構成した積層型リチウムイオン二次電池にも本発明は当然にして適用することができる。
 以上、本発明の実施の形態および実施例について具体的に説明した。しかしながら、本発明は、これらの実施の形態および実施例に限定されるものではなく、本発明の技術的思想に基づく変更が可能であるのは勿論である。
 本発明によれば、電池が正常な温度状態では溶解することがない融点を有する固体の難燃化剤を含む表面側難燃化剤層を表面側保護層の表面上に形成するので、難燃化剤層を保護層とは別個にセパレータの表面に形成することができる。そのため、難燃化剤が保護層に含まれていないので、内部温度の上昇によって難燃化剤の一部または全部が融解または分解しても、保護層の機械的強度が低下することがないため、セパレータの熱変形または熱収縮を防ぐことができる。その結果、セパレータと電極板との間で短絡が発生し難くなるため、電池性能の低下を抑制することができる。その上で、異常発熱時には、保護層と別個に設けられた難燃化剤層中の難燃化剤が、非水電解液中に溶解して電池内で発生するラジカルをトラップし、難燃性を発揮することができる。したがって、本発明によれば、電池性能を維持しながら、非水電解液電池を難燃化することができる。
 1 リチウムイオン二次電池(円筒型電池)
 3 電池容器
 5 電池蓋
 7 軸芯
 9 電極群
 11 正極リード片
 13 負極リード片
 15 正極極柱
 17 正極極柱の鍔部
 19 負極極柱
 21 負極極柱の鍔部
 23 絶縁被覆
 25 第1のセラミックワッシャ
 27 端子部(正極)
 29 端子部(負極)
 31 第2のセラミックワッシャ
 33 ナット
 35 金属ワッシャ
 36 開裂弁
 37 突出部
 39 Oリング
 41 注液栓
 43,143,243,343 セパレータ
 45,145,245,345 多孔質基材
 45A,145A,245A,345A 多孔質基材の表面
 45B,145B,245B,345B 多孔質基材の裏面
 47,147,247,347 表面側保護層
 47A,147A,247A,347A 表面保護層の表面
 49,149,249,349 表面側難燃化剤層
 350 裏面側保護層
 151,251,351 裏面側難燃化剤層

Claims (13)

  1.  ポリオレフィン系樹脂からなる多孔質基材と、
     前記多孔質基材の表面上に形成されて前記多孔質基材が熱変形または熱収縮しないように前記多孔質基材を保護する多孔質の表面側保護層とを備えた非水電解液電池用セパレータであって、
     非水電解液の発火温度よりも低い融点を有する固体の難燃化剤を含む多孔質の表面側難燃化剤層が、前記表面側保護層の上に形成されており、
     前記多孔質基材の裏面上に、前記多孔質基材が熱変形または熱収縮しないように前記多孔質基材を保護する多孔質の裏面側保護層が形成されており、
     前記裏面側保護層の上に前記非水電解液の発火温度よりも低い融点を有する固体の難燃化剤を含む裏面側難燃化剤層が形成されており、
     前記固体の難燃化剤は、融点が90℃以上で前記発火温度よりも低い環状ホスファゼン化合物であり、
     前記環状ホスファゼン化合物の含有量は、前記表面側難燃化剤層または前記裏面側難燃化剤層が対向する電極板に含まれる活物質の重量に対して2.5~15.0重量%であり、
     前記表面側保護層は、バインダにより前記多孔質基材の表面に結着されて前記表面側保護層の内部に融点が120℃以上の複数のフィラーを含み、
     前記裏面側保護層は、バインダにより前記多孔質基材の表面に結着されて前記裏面側保護層の内部に融点が120℃以上の複数のフィラーを含むことを特徴とする非水電解液電池用セパレータ。
  2.  ポリオレフィン系樹脂からなる多孔質基材と、
     前記多孔質基材の表面上に形成されて前記多孔質基材が熱変形または熱収縮しないように前記多孔質基材を保護する多孔質の表面側保護層とを備えた非水電解液電池用セパレータであって、
     非水電解液の発火温度よりも低い融点を有する固体の難燃化剤を含む多孔質の表面側難燃化剤層が、前記表面側保護層の上に形成されていることを特徴とする非水電解液電池用セパレータ。
  3.  非水電解液よりも融点が低い固体の難燃化剤を含む多孔質の裏面側難燃化剤層が、前記多孔質基材の裏面上に形成されている請求項2に記載の非水電解液電池用セパレータ。
  4.  前記多孔質基材の裏面上に、前記多孔質基材が熱変形または熱収縮しないように前記多孔質基材を保護する多孔質の裏面側保護層が形成されている請求項2に記載の非水電解液電池用セパレータ。
  5.  前記裏面側保護層の上に前記非水電解液の発火温度よりも低い融点を有する固体の難燃化剤を含む裏面側難燃化剤層が、形成されている請求項4に記載の非水電解液電池用セパレータ。
  6.  ポリオレフィン系樹脂からなる多孔質基材と、
     前記多孔質基材の表面上に形成されて前記多孔質基材が熱変形または熱収縮しないように前記多孔質基材を保護する多孔質の表面側保護層とを備えた非水電解液電池用セパレータであって、
     非水電解液よりも融点が低い固体の難燃化剤を含む多孔質の裏面側難燃化剤層が、前記多孔質基材の裏面上に形成されていることを特徴とする非水電解液電池用セパレータ。
  7.  前記固体の難燃化剤は、融点が90℃以上で前記発火温度よりも低い環状ホスファゼン化合物である請求項2に記載の非水電解液電池用セパレータ。
  8.  前記環状ホスファゼン化合物の含有量は、前記表面側難燃化剤層または前記裏面側難燃化剤層が対向する電極板に含まれる活物質の重量に対して2.5~15.0重量%である請求項7に記載の非水電解液電池用セパレータ。
  9.  前記表面側保護層は、バインダにより前記多孔質基材の表面に結着されて前記表面側保護層の内部に融点が120℃以上の複数のフィラーを含む請求項2に記載の非水電解液電池用セパレータ。
  10.  前記裏面側保護層は、バインダにより前記多孔質基材の表面に結着されて前記裏面側保護層の内部に融点が120℃以上の複数のフィラーを含む請求項5に記載の非水電解液電池用セパレータ。
  11.  請求項1乃至10のいずれか1項に記載の非水電解液電池用セパレータを備えた非水電解液電池。
  12.  請求項1,2,3,4,5,7,8,9または10に記載の非水電解液電池用セパレータを用いた非水電解液電池であって、
     前記表面側難燃化剤層が正極板と対向し、かつ前記多孔質基材の裏面が負極板と対向することを特徴とする非水電解液電池。
  13.  請求項1,3,5,6または10に記載の非水電解液電池用セパレータを用いた非水電解液電池であって、
     前記表面側難燃化剤層が正極板と対向し前記裏面側難燃化剤層が負極板と対向することを特徴とする非水電解液電池。
PCT/JP2012/072560 2011-09-05 2012-09-05 非水電解液電池用セパレータ及び非水電解液電池 WO2013035720A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/342,916 US20140234693A1 (en) 2011-09-05 2012-09-05 Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
KR20147009068A KR20140069099A (ko) 2011-09-05 2012-09-05 비수 전해액 전지용 세퍼레이터 및 비수 전해액 전지
CN201280043170.7A CN103782414A (zh) 2011-09-05 2012-09-05 非水电解液电池用隔板和非水电解液电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011193288A JP2013054967A (ja) 2011-09-05 2011-09-05 非水電解液電池用セパレータ及び非水電解液電池
JP2011-193288 2011-09-05

Publications (1)

Publication Number Publication Date
WO2013035720A1 true WO2013035720A1 (ja) 2013-03-14

Family

ID=47832165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072560 WO2013035720A1 (ja) 2011-09-05 2012-09-05 非水電解液電池用セパレータ及び非水電解液電池

Country Status (5)

Country Link
US (1) US20140234693A1 (ja)
JP (1) JP2013054967A (ja)
KR (1) KR20140069099A (ja)
CN (1) CN103782414A (ja)
WO (1) WO2013035720A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6396105B2 (ja) * 2013-09-30 2018-09-26 パナソニック株式会社 非水電解質二次電池
KR101637896B1 (ko) * 2013-12-02 2016-07-08 주식회사 엘지화학 절연용 액상물질 수용부를 구비한 전극조립체
JP6220656B2 (ja) * 2013-12-03 2017-10-25 富士機械工業株式会社 塗工装置
JP6249399B2 (ja) * 2013-12-19 2017-12-20 株式会社村田製作所 リチウムイオン二次電池用電極、リチウムイオン二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
KR101534975B1 (ko) * 2013-12-20 2015-07-07 현대자동차주식회사 리튬이차전지용 부직포 분리막 제조 방법 및 이를 포함하는 리튬이차전지
JP6576060B2 (ja) * 2015-03-11 2019-09-18 株式会社トーキン 固体電解コンデンサ及びその製造方法
WO2016160703A1 (en) 2015-03-27 2016-10-06 Harrup Mason K All-inorganic solvents for electrolytes
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
JP6551749B2 (ja) * 2016-11-30 2019-07-31 トヨタ自動車株式会社 二次電池の容量回復方法および容量回復システム
JP6907834B2 (ja) * 2017-09-06 2021-07-21 トヨタ自動車株式会社 非水電解質二次電池
JP6437070B2 (ja) * 2017-09-19 2018-12-12 富士機械工業株式会社 塗工装置
CN108832133A (zh) * 2018-06-14 2018-11-16 福建猛狮新能源科技有限公司 一种柔性集流体电池及其制造方法
KR20210047146A (ko) * 2019-10-21 2021-04-29 주식회사 엘지화학 난연층을 포함하는 분리막 및 이의 제조방법
CN115764168B (zh) * 2022-12-23 2024-01-12 蜂巢能源科技(上饶)有限公司 一种PZS@SiO2复合材料及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137789A (ja) * 2004-11-10 2006-06-01 Bridgestone Corp ポリオレフィン系微多孔膜、電池用セパレータ及び非水電解液電池
WO2010101180A1 (ja) * 2009-03-03 2010-09-10 株式会社Nttファシリティーズ 非水電解液電池
JP2011054298A (ja) * 2009-08-31 2011-03-17 Hitachi Maxell Ltd 電気化学素子
JP2011108515A (ja) * 2009-11-18 2011-06-02 Teijin Ltd 非水系二次電池用セパレータ及びそれを用いた非水系二次電池
JP2012059405A (ja) * 2010-09-06 2012-03-22 Ntt Facilities Inc 非水電解液電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100413608B1 (ko) * 2001-10-16 2004-01-03 주식회사 에너랜드 리튬이온 2차 전지용 격리막, 그의 제조방법 및 그를포함하여 제조되는 리튬이온 2차 전지
JP4766348B2 (ja) * 2008-10-10 2011-09-07 トヨタ自動車株式会社 リチウム二次電池およびその製造方法
CN101567434A (zh) * 2009-06-04 2009-10-28 复旦大学 一种锂离子隔膜及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137789A (ja) * 2004-11-10 2006-06-01 Bridgestone Corp ポリオレフィン系微多孔膜、電池用セパレータ及び非水電解液電池
WO2010101180A1 (ja) * 2009-03-03 2010-09-10 株式会社Nttファシリティーズ 非水電解液電池
JP2011054298A (ja) * 2009-08-31 2011-03-17 Hitachi Maxell Ltd 電気化学素子
JP2011108515A (ja) * 2009-11-18 2011-06-02 Teijin Ltd 非水系二次電池用セパレータ及びそれを用いた非水系二次電池
JP2012059405A (ja) * 2010-09-06 2012-03-22 Ntt Facilities Inc 非水電解液電池

Also Published As

Publication number Publication date
JP2013054967A (ja) 2013-03-21
KR20140069099A (ko) 2014-06-09
CN103782414A (zh) 2014-05-07
US20140234693A1 (en) 2014-08-21

Similar Documents

Publication Publication Date Title
WO2013035720A1 (ja) 非水電解液電池用セパレータ及び非水電解液電池
KR101401102B1 (ko) 이차전지용 전극조립체 및 이를 포함한 리튬 이차전지
US8389153B2 (en) Battery
JP6724785B2 (ja) 二次電池、電動車両、蓄電システム、および製造方法
JP4649502B2 (ja) リチウムイオン二次電池
KR100305101B1 (ko) 방폭형이차전지
JP7173121B2 (ja) 高安全性・高エネルギー密度電池
JP6016038B2 (ja) 非水電解質二次電池
JP2007095656A (ja) 非水系二次電池
KR20060053980A (ko) 비수 전해질 전지
WO2015002181A1 (ja) 非水電解液二次電池用電極、その製造方法及び非水電解液二次電池
KR20080092281A (ko) 비수 전해질 이차전지
JP2007103356A (ja) 非水系二次電池
US20130004827A1 (en) Nonaqueous electrolyte secondary battery
JP5602128B2 (ja) リチウムイオン電池
JP7000856B2 (ja) リチウムイオン二次電池
KR101002487B1 (ko) 전극조립체 및 이를 포함하는 이차전지
JP6586169B2 (ja) 二次電池
JP2011210549A (ja) 非水電解質二次電池、車両及び電池使用機器
WO2013035722A1 (ja) 非水電解液電池
JP2013054969A5 (ja)
JP2007087801A (ja) リチウムイオン二次電池
JP2009295554A (ja) 電池
WO2012033044A1 (ja) リチウムイオン電池
KR102701053B1 (ko) 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830515

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147009068

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14342916

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12830515

Country of ref document: EP

Kind code of ref document: A1