JP6551749B2 - 二次電池の容量回復方法および容量回復システム - Google Patents

二次電池の容量回復方法および容量回復システム Download PDF

Info

Publication number
JP6551749B2
JP6551749B2 JP2016233576A JP2016233576A JP6551749B2 JP 6551749 B2 JP6551749 B2 JP 6551749B2 JP 2016233576 A JP2016233576 A JP 2016233576A JP 2016233576 A JP2016233576 A JP 2016233576A JP 6551749 B2 JP6551749 B2 JP 6551749B2
Authority
JP
Japan
Prior art keywords
temperature
facing portion
secondary battery
active material
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016233576A
Other languages
English (en)
Other versions
JP2018092748A (ja
Inventor
義友 竹林
義友 竹林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016233576A priority Critical patent/JP6551749B2/ja
Priority to US15/819,886 priority patent/US10615469B2/en
Priority to CN201711171848.0A priority patent/CN108123184B/zh
Publication of JP2018092748A publication Critical patent/JP2018092748A/ja
Application granted granted Critical
Publication of JP6551749B2 publication Critical patent/JP6551749B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4242Regeneration of electrolyte or reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、二次電池の容量回復方法および容量回復システムに関する。
リチウムイオン二次電池等の二次電池は、典型的には、正極活物質層を有する正極と、負極活物質層を有する負極と、電解質とを備えている。上記負極活物質層は、負極における電荷担体の析出を抑制する観点等から、正極活物質層よりも面積が広く形成される場合がある。かかる場合、負極活物質層は、正極活物質層に対向する対向部と、正極活物質層に対向しない非対向部とを有することになる。このような二次電池では、充放電によって負極活物質層の非対向部にも電荷担体が拡散される。しかし、非対向部は正極活物質層との距離が離れている。このため、非対向部に拡散された電荷担体は、放電時においても放出され難く、非対向部にそのまま留まり易い。したがって、対向部と非対向部とを有する負極活物質層を備えた二次電池では、充放電の繰り返しによって電荷担体の一部が非対向部に蓄積される。その結果、非対向部に蓄積された電荷担体の分だけ電池容量が低下してしまう。
そこで、充放電の繰り返しによって低下した電池容量を回復させるために、種々の容量回復方法や電池制御方法が提案されている(特許文献1〜3参照)。例えば特許文献1には、45〜65℃の温度環境下で二次電池を放置することにより、非対向部に蓄積された電荷担体を対向部へと移動させる容量回復方法が開示されている。
特開2012−028024号公報 特開2011−175935号公報 特開2014−110131号公報
しかしながら、本発明者の検討によれば、上記技術には更なる改善の余地が認められた。すなわち、特許文献1の容量回復方法では、45〜65℃の温度環境下で二次電池を放置する際、対向部において、負極活物質の表面に形成された皮膜が分解する等の副反応を生じる。このため、上記容量回復の処理を長期にわたって複数回繰り返し行うと、抵抗の増加等が生じて、電池特性が低下する。
本発明はかかる点に鑑みてなされたものであり、その目的は、電池の劣化を抑えつつ、効率よく電池容量を回復することのできる容量回復方法および容量回復システムを提供することにある。
本発明により、正極活物質層を有する正極と、負極活物質層を有する負極と、電解質と、を備え、上記負極活物質層が上記正極活物質層に対向する対向部と上記正極活物質層に対向しない非対向部とを有している二次電池の容量回復方法が提供される。この二次電池の容量回復方法では、上記非対向部の温度が上記対向部の温度よりも高い状態で、上記二次電池を所定の時間保持する。
上記容量回復方法によれば、非対向部に蓄積された電荷担体の移動速度を向上して、当該電荷担体を対向部へと迅速に移動させることができる。このことにより、電池容量を効率的に回復させることができる。また、上記容量回復方法によれば、正極活物質層と負極活物質層とが対向している対向部では、副反応が生じることを抑制することができる。したがって、容量回復の処理を繰り返しても、電池の劣化を抑えることができる。
ここで開示される容量回復方法の好適な一態様では、上記非対向部の温度が上記対向部の温度以下である場合に、上記非対向部を加熱する。これにより、一層安定的に、かつ効率よく容量回復の処理を行うことができる。
ここで開示される容量回復方法の他の好適な一態様では、上記非対向部の温度が上記対向部の温度以下である場合に、上記対向部を冷却する。これにより、一層安定的に、かつ効率よく容量回復の処理を行うことができる。
ここで開示される容量回復方法の好適な一態様では、上記二次電池を所定の時間保持する前に、上記二次電池を放電させて、上記二次電池の充電状態(SOC)を0%以下とする。これにより、非対向部に蓄積された電荷担体をよりスムーズに対向部へと移動させることができる。
また、本発明により、正極活物質層を有する正極と、負極活物質層を有する負極と、電解質と、を備え、上記負極活物質層が上記正極活物質層に対向する対向部と上記正極活物質層に対向しない非対向部とを有している二次電池と、上記対向部の温度を検知する第1の温度センサと、上記非対向部の温度を検知する第2の温度センサと、上記非対向部の温度が上記対向部の温度以下である場合に、上記対向部および上記非対向部のうちの少なくとも一方の温度を調節する温度調節器と、上記二次電池と上記第1の温度センサと上記第2の温度センサと上記温度調節器とを制御する制御装置と、を備えた二次電池の容量回復システムが提供される。上記制御装置は、上記非対向部の温度が上記対向部の温度よりも高い状態で、上記二次電池を所定の時間保持するように構成されている。
一実施形態に係る容量回復システムのブロック図である。 一実施形態に係る二次電池の外観を模式的に示す平面図である。 一実施形態に係る二次電池を模式的に示す縦断面図である。 一実施形態に係る電極体を模式的に示す斜視図である。 一実施形態に係る容量回復方法のフローチャートである。 他の一実施形態に係る容量回復システムのブロック図である。 他の一実施形態に係る二次電池の外観を模式的に示す平面図である。
以下、適宜図面を参照しつつ、本発明の一実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、本発明を特徴付けない構成要素や電池の一般的な電池構築プロセス)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。また、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付し、重複する説明は省略または簡略化することがある。各図における寸法関係(長さ、幅、厚み等)は必ずしも実際の寸法関係を反映するものではない。
≪容量回復システム≫
図1は、一実施形態に係る容量回復システム1のブロック図である。本実施形態の容量回復システム1は、二次電池10と温度センサ40と加熱器50と制御装置60とを備えている。二次電池10は、容量回復の対象となるものである。二次電池10は1つであってもよく、複数であってもよい。また、複数の二次電池10は、バスバー等の部材を介して相互に電気的に接続されていてもよい。図2は、一実施形態に係る二次電池10の外観を模式的に示す平面図である。温度センサ40および加熱器50は、二次電池10の外部に配置されている。二次電池10と温度センサ40と加熱器50とは、それぞれ、制御装置60と電気的に接続されており、制御装置60によって制御される。以下、各部材について順に説明する。
図3は、一実施形態に係る二次電池10を模式的に示す縦断面図である。二次電池10は、電極体20と図示しない電解質とが電池ケース30の内部に収容され、構成されている。電池ケース30は、電池ケース本体32と、その開口を塞ぐ蓋体34とを備えている。蓋体34の上部には、正極端子12Aと負極端子14Aとが突出している。電池ケース30の材質は特に限定されないが、例えば、アルミニウム等の軽量な金属製である。電池ケース30は、有底の直方体形状(角形)を有する。ただし、電池ケース30は、円筒形等であってもよいし、ラミネートフィルム製の袋形状であってもよい。
電極体20の構成は特に限定されず、従来公知の二次電池と同様でよい。図4は、一実施形態に係る電極体20の斜視図である。本実施形態の電極体20は、帯状の正極シート12と、帯状の負極シート14と、帯状のセパレータシート16とを有している。電極体20は、正極シート12と負極シート14とがセパレータシート16を介在させた状態で積層され、長手方向に捲回されてなる捲回電極体である。ただし、電極体20は、矩形状の正極シートと矩形状の負極シートとが、矩形状のセパレータシートを介して積層されてなる積層電極体であってもよい。
正極シート12は、正極集電体と、その表面に固着された正極活物質層13とを備えている。正極集電体としては、導電性の良好な金属(例えばアルミニウム、ニッケル等)からなる導電性部材が好適である。正極活物質層13は、正極集電体の表面に、幅方向Wに沿って所定の幅で形成されている。正極活物質層13は、正極活物質を含んでいる。正極活物質としては、例えば、LiNi1/3Co1/3Mn1/3、LiNi0.5Mn1.5等のリチウム遷移金属複合酸化物が好適である。
負極シート14は、負極集電体と、その表面に固着された負極活物質層15とを備えている。負極集電体としては、導電性の良好な金属(例えば、銅、ニッケル等)からなる導電性材料が好適である。負極活物質層15は、負極集電体の表面に、幅方向Wに沿って所定の幅で形成されている。負極活物質層15は、負極活物質を含んでいる。負極活物質としては、例えば、天然黒鉛、人造黒鉛、非晶質コート黒鉛(黒鉛粒子の表面に非晶質カーボンをコートした形態のもの)等の黒鉛系炭素材料が好適である。
本実施形態では、幅方向Wにおいて、負極活物質層15の長さが正極活物質層13の長さよりも長い。そのため、負極活物質層15は、正極活物質層13に対向する対向部15Fと、正極活物質層13に対向しない一対の非対向部15Nと、を有している。対向部15Fは、幅方向Wの中央部に位置している。非対向部15Nは、幅方向Wの中央部を挟んだ両側にそれぞれ位置している。
正極集電体の幅方向Wの一方の端部(図3、4の左側端部)には、正極活物質層13の形成されていない正極活物質層非形成部分12nが設けられている。正極シート12は、正極活物質層非形成部分12nに設けられた正極集電板12cを介して、正極端子12Aと電気的に接続されている。また、負極集電体の幅方向Wの一方の端部(図3、4の右側端部)には、負極活物質層15の形成されていない負極活物質層非形成部分14nが設けられている。負極シート14は、負極活物質層非形成部分14nに設けられた負極集電板14cを介して、負極端子14Aと電気的に接続されている。
セパレータシート16は、正極シート12と負極シート14との間に配置されている。セパレータシート16は、正極活物質層13と負極活物質層15とを絶縁する。セパレータシート16は、電荷担体が通過可能なように多孔質に構成されている。セパレータシート16としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)等の樹脂シートが好適である。
電解質は、例えば、非水溶媒と支持塩とを含む非水電解液である。非水溶媒としては、例えば、カーボネート類やエステル類等が例示される。支持塩は、非水溶媒中で解離して電荷担体を生成する。支持塩としては、リチウム塩、ナトリウム塩、マグネシウム塩等が例示される。電解質中には、例えば、ホウ素原子および/またはリン原子を含むオキサラト錯体化合物、ビニレンカーボネート(VC)等の皮膜形成剤、分散剤、増粘剤等の各種添加剤等を含んでいてもよい。電解質は、ポリマー状(ゲル状)であってもよい。その場合、電極体20はセパレータシート16を有していなくてもよい。
温度センサ40は、電池ケース30の外表面に配置されている。図2の態様において、温度センサ40は、幅方向Wに沿って3つ配置されている。温度センサ40は、幅方向Wの中央に位置する第1温度センサ42と、幅方向Wの両端に位置する2つの第2温度センサ44とを有している。第1温度センサ42は、対向部15Fが位置している部分、すなわち、正極活物質層13と負極活物質層15とが対向している部分の温度を検知するものである。2つの第2温度センサ44は、非対向部15Nが位置している部分の温度を検知するものである。
温度センサ40は、ここではいずれも熱電対センサである。ただし、温度センサ40は温度を検知可能なものであれば特に限定されない。温度センサ40は、例えば、サーミスタ等であってもよい。また、温度センサ40は、二次電池10の内部に配置することもできる。また、第1温度センサ42は、ここでは1つであるが、例えば幅方向Wと直交する高さ方向H(図2の上下方向)に沿って、等間隔で複数個配置することもできる。同様に、第2温度センサは、ここでは一対の非対向部15Nにそれぞれ1つずつ配置されているが、複数個配置することもできる。
温度センサ40は、制御装置60からの信号によって駆動される。これにより、第1温度センサ42は、二次電池10の対向部15Fの温度を検知する。第2温度センサ44は、二次電池10の非対向部15Nの温度を検知する。温度センサ40で検知された温度は、制御装置60に入力される。
加熱器50は、電池ケース30の外表面に接するように配置されている。図2の態様において、加熱器50は、幅方向Wの両端、すなわち二次電池10の非対向部15Nにそれぞれ配置されている。加熱器50は、非対向部15Nの温度を高めるものである。加熱器50は、例えば、非対向部15Nの温度を、40〜60℃の範囲内で予め定められた温度まで加熱して、その状態を保持するように構成されていてもよい。加熱器50は、温度調節器の一例である。
加熱器50は、ここでは電熱線ヒータである。ただし、加熱器50は、非対向部15Nの温度を高める機能を有するものであれば特に限定されない。加熱器50は、例えば、加熱用熱媒体が流通可能に構成されている加熱板であってもよい。加熱板の材質は、例えば、アルミニウム等の金属材料や、ポリプロピレン(PP)、ポリフェニレンサルファイド(PPS)等の樹脂材料製である。加熱板には、複数の溝部が形成されている。この複数の溝部には、加熱用熱媒体が流通される。加熱用熱媒体としては、例えば、シリコーン油等の液体、空気等の気体が例示される。加熱用熱媒体は、例えば、容量回復システム1が搭載される装置、例えば車両等のエンジンから排出される排ガスであってもよい。加熱器50は、ここでは電池ケース30から着脱可能である。ただし、加熱器50は、電池ケース30と一体化されていてもよい。
加熱器50は、電池ケース30を厚み方向(図2の手前から奥側に向かう方向)の両側から挟み込むように、非対向部15Nに配置されている。加熱器50は、幅方向Wにおいて、非対向部15Nと同じ長さである。加熱器50は、高さ方向Hにおいて、非対向部15Nと同じ長さである。このことにより、加熱器50は、幅方向Wおよび高さ方向Hにおいて、非対向部15Nの側面を覆っている。ただし、加熱器50は、幅方向Wにおいて、非対向部15Nよりも短くてもよい。加熱器50は、高さ方向Hにおいて、非対向部15Nよりも長くてもよいし、短くてもよい。
加熱器50は、制御装置60からの信号によって駆動され、所定の温度となる。これによって、二次電池10の外部から非対向部15Nが加熱される。
制御装置60は、二次電池10と温度センサ40と加熱器50とを制御する。制御装置60の構成は特に限定されないが、例えば、プログラムの命令を実行する中央演算処理装置(CPU)と、CPUが実行するプログラムを格納したROMと、プログラムを展開するワーキングエリアとして使用されるRAMと、を備えている。
図1に示す制御装置60は、温度制御部61と電圧制御部62とを備えている。
温度制御部61は、非対向部15Nを対向部15Fの温度よりも高い温度に調整するように構成されている。例えば、温度制御部61は、温度センサ40を制御して、対向部15Fおよび非対向部15Nの温度を検知する。温度制御部61は、非対向部15Nの温度が対向部15Fの温度以下である場合には、加熱器50を駆動して、非対向部15Nを加熱する。そして、温度制御部61は、非対向部15Nの温度が対向部15Fの温度よりも高い状態で、二次電池10を所定の時間保持するように構成されている。
電圧制御部62は、二次電池10に出入りする電流を検知する電流検知回路と、二次電池10の端子間電圧を検出する電圧検知回路とを含んでいる。電圧制御部62は、二次電池10の充電状態(SOC:State of Charge)を調整するように構成されている。ただし、制御装置60は、電圧制御部62を有していなくてもよい。
さらに、容量回復システム1は、図示しないモータ等の外部負荷を含んでいてもよい。容量回復システム1は、図示しない充電器を含んでいてもよい。
また、容量回復システム1の二次電池10は、二次電池10に蓄電した電力を消費する外部負荷と電気的に接続されていてもよい。容量回復システム1の二次電池10は、二次電池10に電力を供給可能な充電器と電気的に接続されていてもよい。
ここに開示される容量回復システム1は各種用途に利用可能であるが、例えば、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)、電気自動車(EV)等の車両に駆動用電源として搭載される高容量タイプの二次電池の容量を回復させるために好適に用いることができる。
≪容量回復方法≫
次に、容量回復システム1における容量回復方法について説明する。二次電池10の電極体20では、充放電によって負極活物質層15の非対向部15Nにも電荷担体が拡散される。しかし、非対向部15Nに拡散された電荷担体は、放電時に放出され難く、非対向部15Nにそのまま留まり易い。したがって、非対向部15Nに拡散された電荷担体は、非対向部15Nに少しずつ蓄積されていく。その結果、二次電池10を繰り返し充放電すると、非対向部15Nに蓄積された電荷担体の分、電池容量が徐々に低下する。ここに開示される容量回復方法は、このような場合に有効である。つまり、ここに開示される容量回復方法によって、非対向部15Nに蓄積された電荷担体を対向部15Fへと移動させる。このことにより、非対向部15Nに蓄積された電荷担体、つまりは充放電に寄与しない電荷担体の量を低減して、電池容量を回復させることができる。
ここに開示される容量回復方法は、例えば、二次電池10の使用開始から所定の期間が経過した場合や、容量回復処理を行ってから所定の期間が経過した場合等に、適宜に実行される。この容量回復方法は、容量回復システム1が搭載される装置の使用期間、例えば車両の走行距離が所定の値に到達した場合に自動的に実行されるようにしてもよい。この容量回復方法は、典型的には所定の期間毎に定期的に実行される。
図5は、一実施形態に係る容量回復方法のフローチャートである。本実施形態の容量回復方法は、(ステップS1)温度検知工程と、(ステップS2)温度判定工程と、(ステップS3)温度調節工程と、(ステップS4)放電工程と、(ステップS5)温度保持工程と、を包含する。以下、各工程について順に説明する。
まず、ステップS1では、二次電池10の対向部15Fおよび非対向部15Nの温度を検知する。具体的には、制御装置60の温度制御部61が、第1および第2温度センサ42、44を制御して、対向部15Fの温度と非対向部15Nの温度とを検知する。第1および第2温度センサ42、44で検知された温度は、制御装置60の温度制御部61に入力される。
なお、過充電耐性の向上等を目的として、制御装置60の温度制御部61が対向部15Fの温度と非対向部15Nの温度とを常時モニタリングしている場合、あるいは、所定の周期で対向部15Fの温度と非対向部15Nの温度とを検出するように構成されている場合等には、かかる結果を利用することで、ステップS1を省略することもできる。
次に、ステップS2では、ステップS1の検知結果に基づいて、温度調節の要否を判定する。具体的には、対向部15Fの温度と非対向部15Nの温度との関係を評価する。つまり、非対向部15Nの温度が対向部15Fの温度よりも高いか否かを判定する。ステップS2ではさらに、例えば、非対向部15Nの温度が、対向部15Fの温度よりも概ね5℃以上、典型的には10℃以上、例えば15℃以上高いか否かを判定してもよい。対向部15Fと非対向部15Nとの温度差を所定値以上とすることで、ここに開示される技術の効果をより高いレベルで発揮することができる。
好適な一態様では、対向部15Fの温度と非対向部15Nの温度との関係に加えて、加熱器50の配置されている部分、ここでは非対向部15Nの絶対的な温度を評価する。例えば、非対向部15Nの温度が、概ね30℃以上、典型的には40℃以上、例えば45℃以上であるか否かを判定する。
そして、温度調節が必要(ステップS2:YES)と判定される場合には、ステップS3に進む。一方、温度調節が不要(ステップS2:NO)と判定される場合には、ステップS4に進む。
次に、ステップS3では、加熱器50の配置されている部分の温度を調節する。ここでは、非対向部15Nを加熱する。具体的には、制御装置60の温度制御部61が、加熱器50を制御して、加熱器50を所定の温度に設定する。非対向部15Nの温度は、対向部15Fの温度よりも高くなるように調節される。ステップS3ではさらに、例えば、非対向部15Nの温度が、対向部15Fの温度よりも概ね5℃以上、典型的には10℃以上、例えば15℃以上高くなるように調節してもよい。また、非対向部15Nと対向部15Fとの温度差が概ね50℃以下、典型的には30℃以下、例えば20℃以下となるように非対向部15Nの温度を調節してもよい。
好適な一態様では、対向部15Fの温度と非対向部15Nの温度との関係に加えて、例えば、非対向部15Nの温度が、概ね30℃以上、典型的には40℃以上、例えば45℃以上となるように調節してもよい。非対向部15Nの温度を所定値以上とすることで、電荷担体の移動速度をより良く向上することができる。
次に、ステップS4では、二次電池10を所定の充電状態(SOC)まで放電させる。例えば、容量回復システム1が充電器を含んでいる場合には、制御装置60の電圧制御部62が二次電池10を放電させて、その分の電力を充電器に蓄電させる。あるいは、容量回復システム1が外部負荷を含んでいる場合には、制御装置60の電圧制御部62が二次電池10を放電させて、その分の電力を外部負荷で消費してもよい。
好適な一態様では、SOCが0%以下になるまで二次電池10を放電させる。例えば、SOC100%が3.8〜4.2V程度となる二次電池では、端子間電圧が1.5V以下になるまで放電させてもよい。これにより、対向部15Fに含まれる電荷担体の量が顕著に少なくなり、対向部15Fと非対向部15Nとで電荷担体の濃度差が大きくなる。そのため、電荷担体の移動速度をより良く向上することができる。
なお、容量回復システム1が充電器や外部負荷を含んでいない場合等には、ステップS4を省略することもできる。この場合、ステップS2の後で、ステップS5に進むこともできる。また、本実施形態ではステップS3において温度調節を行った後にステップS4において放電処理を行っているが、二次電池10の放電は、ステップS5より前に行えばよく、例えばステップS1の前後等に行うこともできる。
次に、ステップS5では、非対向部15Nの温度が対向部15Fの温度よりも高い状態を、所定の時間保持する。電荷担体の移動速度は、例えば、ステップS3における非対向部15Nの温度の調節や、ステップS4におけるSOCの調整等によって異なり得る。したがって、ステップS5の保持時間は特に限定されない。好適な一態様では、ここに開示される技術の効果をより良く発揮する観点から、保持時間を概ね10分以上、例えば30分以上とするとよい。他の好適な一態様では、作業効率を向上する観点や負極集電体への負荷を軽減する観点から、保持時間を概ね24時間以内、典型的には12時間以内、好ましくは6時間以内、例えば1時間以内とするとよい。
好適な一態様では、制御装置60の電圧制御部62が、二次電池10のSOCを上記ステップS4で調整した値と同等に、例えばSOC0%以下に維持する。このことにより、ここに開示される技術の効果をより高いレベルで発揮することができる。
以上により、容量回復の処理が終了する。ここに開示される容量回復方法では、非対向部15Nの温度を対向部15Fの温度よりも高くして、所定の時間維持する。このことにより、非対向部15Nに蓄積された電荷担体の移動速度を向上して、当該電荷担体を対向部へと効率的に移動させることができる。また、正極活物質層13と負極活物質層15とが対向している部分では、副反応を抑制することができる。したがって、電池の劣化を低く抑えながら、電池容量を回復させることができる。
以下、本発明に関する実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。
先ず、電極体と非水電解液とを備える二次電池を用意した。電極体は、正極集電体上に正極活物質層を有する正極と、負極集電体上に負極活物質層を有する負極と、セパレータとを有する。正極と負極とは、セパレータを介在させた状態で対向している。負極活物質層は、正極活物質層よりも面積が大きい。このため、負極活物質層は、正極活物質層に対向する対向部と正極活物質層に対向しない非対向部とを有している。
このような二次電池を、60℃の環境下において、SOC0〜100%の範囲で複数回充放電させて、電池容量を低下させた。これにより、電池容量の低下した二次電池を計10つ用意した。
次に、各二次電池の外表面に、温度センサを取り付けた。温度センサは、負極活物質層の対向部が配置されている対向部と、負極活物質層の非対向部が配置されている非対向部とにそれぞれ取り付けた。また、各二次電池には、非対向部を加熱するための電熱線ヒータを配置した。
<容量回復率の測定>
まず、25℃の温度環境下において、各二次電池を1/3Cの定電流で充放電させ、このときの放電容量を回復処理前の電池容量とした。
次に、各二次電池の対向部と非対向部とを、表1に示す温度に調節した。具体的には、表1の対向部の欄に示す温度に設定した恒温槽の内部に、各二次電池を設置した。そして、実施例1,2については、非対向部が表1に示す設定温度となるように、非対向部を電熱線ヒータで加熱した。これにより、実施例1,2では、非対向部の温度を対向部の温度よりも高くしている。一方、比較例1〜3では、非対向部を加熱せずに、対向部の温度を非対向部の温度と同じにしている。
次に、各二次電池を、端子間電圧が1.5Vとなるまで定電流放電させ、SOC0%の状態に調整した。そして、各二次電池について、上記温度を維持したまま、1.5Vの定電圧で30分間定電圧放電させ、容量回復処理を行った。その後、25℃の温度環境下において、各二次電池の放電容量を再び測定し、回復処理後の電池容量とした。
回復処理後の電池容量から回復処理前の電池容量を差し引いて、回復処理前の電池容量で除すことにより、容量回復率(%)を求めた。結果を表1に示す。
<抵抗増加率の測定>
まず、25℃の温度環境下において、各二次電池を定電流放電させ、SOC20%の状態に調整した。SOC20%の状態の各二次電池を、5Cの電流レートで10秒間放電させ、回復処理前の電池抵抗を測定した。
次に、各二次電池の対向部と非対向部とを、表1に示す設定温度に調節した。これについては、容量回復率の測定時と同様である。
次に、各二次電池を、端子間電圧が1.5Vとなるまで定電流放電させ、SOC0%の状態に調整した。そして、各二次電池について、上記温度を維持したまま、1.5Vの定電圧で7日間定電圧放電させ、容量回復処理を行った。25℃の温度環境下において、各二次電池を再びSOC20%の状態に調整し、回復処理後の電池抵抗を測定した。
回復処理後の電池抵抗から回復処理前の電池抵抗を差し引いて、回復処理前の電池抵抗で除すことにより、抵抗増加率(%)を求めた。結果を表1に示す。

Figure 0006551749
表1に示すように、比較例1〜3の比較から、二次電池の保持温度が高いほど容量回復率が増加することがわかる。しかし、対向部の温度と非対向部の温度とが同じである場合は、容量回復率が増加すると同時に、抵抗増加率も増加することがわかる。この理由としては、二次電池を高い温度で保持している間に、非対向部から対向部への電荷担体の移動のみならず、副反応による電池劣化が生じたことが考えられる。
これに対して、比較例1と実施例1との比較、および、比較例2と実施例2との比較から、非対向部の温度を対向部の温度よりも高くした実施例1,2では、容量回復率は増加する一方で、比較例1,2に比べて抵抗増加率の増加が抑えられていた。
以上の結果から、非対向部の温度を対向部の温度よりも高くすることで、二次電池の容量の回復を好適に行うことができる。つまり、非対向部の温度を相対的に高くすることで、電荷担体が非対向部から対向部へと移動する速度を向上することができる。このことにより、短時間で二次電池の容量を効率よく回復させることができる。また、対向部の温度を相対的に低くすることで、例えば、対向部の負極活物質表面に形成された皮膜が分解する等の副反応を抑制することができる。これにより、電池特性の低下を防ぎつつ、容量回復率を向上させることができる。
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
例えば、上記した実施形態では、温度調節器として加熱器50を用い、二次電池10の非対向部15Nに加熱器50を配置していた。しかし、これには限定されない。図6は、他の一実施形態に係る容量回復システム1aのブロック図である。図7は、他の一実施形態に係る二次電池10aの外観を模式的に示す平面図である。本実施形態の容量回復システム1aは、温度調節器として、加熱器50にかえて冷却器50aを備えている。それ以外は、上記した容量回復システム1と同様である。
図7に示すように、冷却器50aは電池ケース30aの外表面に配置されている。冷却器50aは、二次電池10aの対向部、すなわち幅方向Wの中央に配置されている。冷却器50aは、対向部の温度を低下させるものである。冷却器50aは、例えば、対向部の温度を、概ね0〜30℃、例えば5〜25℃の範囲内で予め定められた温度まで冷却して、その状態を保持するように構成されていてもよい。
冷却器50aは、ここでは放熱板である。ただし、冷却器50aは、対向部の温度を下げる機能を有するものであれば特に限定されない。冷却器50aは、例えば、ラジエータを利用した電動ファン等であってもよい。放熱板は、例えば、加熱板と同様の材料で構成されている。放熱板には、複数の溝部が形成されている。この複数の溝部には、冷却用熱媒体(所謂、冷媒)が流通される。冷媒としては、例えば、不凍液等の液体、空気や二酸化炭素等の気体が例示される。冷却器50aは、電池ケース30aから着脱可能であってもよいし、電池ケース30aと一体化されていてもよい。
冷却器50aは、電池ケース30aを厚み方向(図7の手前から奥側に向かう方向)の両側から挟み込むように、対向部に配置されている。冷却器50aは、幅方向Wにおいて、対向部と同じ長さである。冷却器50aは、高さ方向Hにおいて、対向部と同じ長さである。このことにより、冷却器50aは、幅方向Wおよび高さ方向Hにおいて、対向部の側面を覆っている。ただし、冷却器50aは、幅方向Wにおいて、対向部よりも短くてもよい。冷却器50aは、高さ方向Hにおいて、対向部よりも長くてもよいし、短くてもよい。
冷却器50aは、制御装置60からの信号によって駆動され、所定の温度となる。これによって、二次電池10aの外部から対向部が冷却される。
対向部に冷却器50aが配置されている態様の容量回復システム1aでは、上記容量回復方法のステップS2において、対向部の温度と非対向部の温度との関係に加えて、対向部の絶対的な温度を評価するようにしてもよい。例えば、対向部の温度が、概ね60℃以下、典型的には50℃以下、例えば45℃以下であるか否かを判定するようにしてもよい。
また、容量回復システム1aでは、上記容量回復方法のステップS3において、冷却器50aの配置されている部分、すなわち対向部を冷却する。具体的には、制御装置60の温度制御部61が、冷却器50aを制御して、冷却器50aを所定の温度に設定する。これにより、非対向部の温度が対向部の温度よりも高くなるように、言い換えれば、対向部の温度が非対向部の温度よりも低くなるように調節する。ステップS3ではさらに、例えば、対向部の温度が、非対向部の温度よりも概ね5℃以上、典型的には10℃以上、例えば15℃以上低くなるように調節してもよい。
好適な一態様では、対向部の温度と非対向部の温度との関係に加えて、例えば、対向部の温度が、概ね30℃以下、例えば25℃以下となるように調節してもよい。対向部の温度を所定値以下とすることで、対向部における副反応をより良く抑制することができる。
上記した実施形態の容量回復方法では、所定の期間毎に上記容量回復処理を実行するようにしていた。しかし、これには限定されない。例えば、容量回復方法を実行する前に、二次電池10の電池容量を測定して、電池容量の低下の度合いに基づいて容量回復処理の要否を判定するようにしてもよい。具体的には、まず、1/5〜2C程度の定電流で、SOC0〜100%の範囲を充放電して、二次電池10の電池容量を測定する。次に、測定された電池容量と、制御装置60に記憶されている初期の電池容量あるいは前回の容量回復処理後の電池容量とを比較する。そして、二次電池10の電池容量が所定の閾値よりも低下している場合には、容量回復処理が必要であると判定して、容量回復処理を実行するようにしてもよい。閾値としては、例えば容量低下率が5%とすることができる。
上記した実施形態の容量回復方法では、ステップS5で非対向部の温度が対向部の温度よりも高い状態を所定の時間保持した後、容量回復処理を終了としていた。しかし、これには限定されない。例えば、ステップS5に次いで、二次電池10の電池容量を測定し、電池容量が所定割合以上回復しているか否かを判定してもよい。そして、電池容量が所定割合以上回復していない場合には、再び、ステップS4あるいはステップS5に戻り、この工程を複数回繰り返して行うようにしてもよい。
1、1a 容量回復システム
10 二次電池
15 負極活物質層
15F 対向部
15N 非対向部
40 温度センサ
50 加熱器(温度調節器)
50a 冷却器(温度調節器)
60 制御装置
61 温度制御部
62 電圧制御部

Claims (5)

  1. 正極活物質層を有する正極と、負極活物質層を有する負極と、電解質と、を備え、前記負極活物質層が前記正極活物質層に対向する対向部と前記正極活物質層に対向しない非対向部とを有している二次電池の容量回復方法であって、
    前記非対向部の温度が前記対向部の温度よりも高い状態において、前記二次電池を定電圧で所定の時間保持する、二次電池の容量回復方法。
  2. 前記二次電池は、前記正極と前記負極と前記電解質とを収容し、前記非対向部を挟むように対向配置された一対の対向面を有する電池ケースをさらに備え、
    前記非対向部の温度が前記対向部の温度以下である場合に、前記電池ケースの前記一対の対向面から前記非対向部の全体を挟み込んで加熱する、
    請求項1に記載の二次電池の容量回復方法。
  3. 前記二次電池は、前記正極と前記負極と前記電解質とを収容し、前記対向部を挟むように対向配置された一対の対向面を有する電池ケースをさらに備え、
    前記非対向部の温度が前記対向部の温度以下である場合に、前記電池ケースの前記一対の対向面から前記対向部の全体を挟み込んで冷却する、
    請求項1に記載の二次電池の容量回復方法。
  4. 前記二次電池を所定の時間保持する前に、前記二次電池を放電させて、前記二次電池の充電状態(SOC)を0%以下とする、
    請求項1から3のいずれか1項に記載の容量回復方法。
  5. 正極活物質層を有する正極と、負極活物質層を有する負極と、電解質と、を備え、前記負極活物質層が前記正極活物質層に対向する対向部と前記正極活物質層に対向しない非対向部とを有している二次電池と、
    前記対向部の温度を検知する第1の温度センサと、
    前記非対向部の温度を検知する第2の温度センサと、
    記対向部および前記非対向部のうちの少なくとも一方の温度を調節する温度調節器と、
    前記二次電池と前記第1の温度センサと前記第2の温度センサと前記温度調節器とを制御する制御装置と、
    を備え、
    前記制御装置は、前記非対向部の温度が前記対向部の温度以下である場合に、前記温度調節器を制御し、前記非対向部の温度が前記対向部の温度よりも高い状態として、前記二次電池を定電圧で所定の時間保持するように構成されている、二次電池の容量回復システム。
JP2016233576A 2016-11-30 2016-11-30 二次電池の容量回復方法および容量回復システム Active JP6551749B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016233576A JP6551749B2 (ja) 2016-11-30 2016-11-30 二次電池の容量回復方法および容量回復システム
US15/819,886 US10615469B2 (en) 2016-11-30 2017-11-21 Capacity recovery method and capacity recovery system for secondary battery
CN201711171848.0A CN108123184B (zh) 2016-11-30 2017-11-22 二次电池的容量恢复方法和容量恢复系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016233576A JP6551749B2 (ja) 2016-11-30 2016-11-30 二次電池の容量回復方法および容量回復システム

Publications (2)

Publication Number Publication Date
JP2018092748A JP2018092748A (ja) 2018-06-14
JP6551749B2 true JP6551749B2 (ja) 2019-07-31

Family

ID=62190574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016233576A Active JP6551749B2 (ja) 2016-11-30 2016-11-30 二次電池の容量回復方法および容量回復システム

Country Status (3)

Country Link
US (1) US10615469B2 (ja)
JP (1) JP6551749B2 (ja)
CN (1) CN108123184B (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6958316B2 (ja) * 2017-12-14 2021-11-02 トヨタ自動車株式会社 電池システム及びリチウムイオン二次電池の容量回復方法
CN110988689B (zh) 2019-04-25 2021-05-25 宁德时代新能源科技股份有限公司 电池可恢复衰减容量的恢复方法、装置和系统
DE102019208116A1 (de) * 2019-06-04 2020-12-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Beheizbares Gehäuse für Hochtemperaturbatteriezellen
KR20210021822A (ko) * 2019-08-19 2021-03-02 주식회사 엘지화학 열처리에 의한 리튬 전지셀 회복방법 및 이를 포함하는 리튬 전지셀의 제조방법
JP2021051873A (ja) * 2019-09-24 2021-04-01 株式会社Soken 電池の容量回復方法
US11469452B2 (en) * 2019-11-12 2022-10-11 Hunt Energy Enterprises, L.L.C. Capacity regenerable excess electrolyte Zn ion battery
CN111063947B (zh) * 2019-12-02 2023-05-16 苏州易来科得科技有限公司 一种锂离子电池容量恢复方法
JP7441765B2 (ja) * 2020-09-15 2024-03-01 プライムプラネットエナジー&ソリューションズ株式会社 二次電池の検査方法
CN112701370B (zh) * 2021-01-14 2022-04-08 湖南机动车检测技术有限公司 激活磷酸铁锂梯次电池容量的方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277164A (ja) * 1999-03-25 2000-10-06 Toyota Central Res & Dev Lab Inc リチウム二次電池の電池性能回復法
US7038426B2 (en) * 2003-12-16 2006-05-02 The Boeing Company Method for prolonging the life of lithium ion batteries
CN101383434B (zh) * 2008-10-15 2011-04-20 中国移动通信集团甘肃有限公司 一种铅酸蓄电池容量恢复方法、装置和系统
JP2010198759A (ja) * 2009-02-23 2010-09-09 Toyota Motor Corp 電池システム、及び、自動車
JP2011175935A (ja) * 2010-02-25 2011-09-08 Toyota Motor Corp リチウムイオン二次電池の容量回復方法、及び、リチウムイオン二次電池の状態判定方法
JP2012028024A (ja) * 2010-07-20 2012-02-09 Toyota Motor Corp リチウムイオン二次電池の容量回復方法
JP2013054967A (ja) * 2011-09-05 2013-03-21 Ntt Facilities Inc 非水電解液電池用セパレータ及び非水電解液電池
JP5954144B2 (ja) 2012-11-30 2016-07-20 ソニー株式会社 制御装置、制御方法、制御システムおよび電動車両
JP6162431B2 (ja) * 2013-02-28 2017-07-12 株式会社東芝 電池
JP5728520B2 (ja) * 2013-04-12 2015-06-03 プライムアースEvエナジー株式会社 電池の容量回復方法、組電池の容量回復方法、電池の容量回復装置、及び、組電池の容量回復装置
JP2015187938A (ja) * 2014-03-26 2015-10-29 日産自動車株式会社 容量回復方法および容量回復システム
JP2016126881A (ja) * 2014-12-26 2016-07-11 トヨタ自動車株式会社 非水電解液二次電池

Also Published As

Publication number Publication date
JP2018092748A (ja) 2018-06-14
CN108123184A (zh) 2018-06-05
CN108123184B (zh) 2021-05-11
US10615469B2 (en) 2020-04-07
US20180151926A1 (en) 2018-05-31

Similar Documents

Publication Publication Date Title
JP6551749B2 (ja) 二次電池の容量回復方法および容量回復システム
JP4905609B2 (ja) 電池システム、及び、自動車
CN105594009B (zh) 具有内部相变材料的电池
CN105048021B (zh) 电池温度估计系统
US9478829B2 (en) Rechargeable battery with multiple resistance levels
JP2013101884A (ja) 二次電池の温度推定方法および二次電池の制御方法
JP2010198759A (ja) 電池システム、及び、自動車
JP6500789B2 (ja) 二次電池の制御システム
JP5821669B2 (ja) 推定装置、推定方法および制御方法
JP2008021569A (ja) 二次電池システム
KR102053963B1 (ko) 배터리 팩 및 이를 포함하는 자동차
CN112219334B (zh) 控制二次电池组的充电的装置和方法
JP2012075298A (ja) 二次電池システム
JP2015187938A (ja) 容量回復方法および容量回復システム
JP2012028024A (ja) リチウムイオン二次電池の容量回復方法
JP2017091923A (ja) リチウムイオン二次電池の容量回復方法
JP5771512B2 (ja) 二次電池システム、二次電池システムを用いた二次電池モジュールおよび二次電池の制御方法
JP2015095332A (ja) 非水電解質二次電池の製造方法
Rizk et al. Passive cooling of high capacity lithium-ion batteries
US20150288025A1 (en) Energy storage device
KR101811952B1 (ko) 재이용 가능한 비수 전해액 이차 전지의 선별 방법
JP2011192425A (ja) メモリ効果低減回路、電池電源装置、電池利用システム、及びメモリ効果低減方法
JP6365820B2 (ja) 二次電池の異常判定装置
JP2013118056A (ja) 蓄電システムおよび蓄電素子の温度推定方法
JP2019067669A (ja) 組電池

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190619

R151 Written notification of patent or utility model registration

Ref document number: 6551749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151