WO2013031578A1 - 水蒸気バリアフィルム、水蒸気バリアフィルム用分散液、水蒸気バリアフィルムの製造方法、太陽電池バックシート、及び、太陽電池 - Google Patents

水蒸気バリアフィルム、水蒸気バリアフィルム用分散液、水蒸気バリアフィルムの製造方法、太陽電池バックシート、及び、太陽電池 Download PDF

Info

Publication number
WO2013031578A1
WO2013031578A1 PCT/JP2012/071062 JP2012071062W WO2013031578A1 WO 2013031578 A1 WO2013031578 A1 WO 2013031578A1 JP 2012071062 W JP2012071062 W JP 2012071062W WO 2013031578 A1 WO2013031578 A1 WO 2013031578A1
Authority
WO
WIPO (PCT)
Prior art keywords
vapor barrier
barrier film
water vapor
dispersion
clay mineral
Prior art date
Application number
PCT/JP2012/071062
Other languages
English (en)
French (fr)
Inventor
誠二 坂東
大祐 見正
加瑞範 川▲崎▼
蛯名 武雄
林 拓道
考志 中村
吉田 学
Original Assignee
住友精化株式会社
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社, 独立行政法人産業技術総合研究所 filed Critical 住友精化株式会社
Priority to CA2846027A priority Critical patent/CA2846027A1/en
Priority to US14/239,909 priority patent/US20140251426A1/en
Priority to JP2013531223A priority patent/JP6019518B2/ja
Priority to KR1020147005833A priority patent/KR20140070541A/ko
Priority to AU2012303090A priority patent/AU2012303090B2/en
Priority to EP12826958.6A priority patent/EP2752443B1/en
Priority to CN201280040737.5A priority patent/CN103764730B/zh
Publication of WO2013031578A1 publication Critical patent/WO2013031578A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/215Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase at least one additive being also premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a water vapor barrier film having high mechanical strength and excellent in flexibility, flame retardancy, and water vapor barrier properties.
  • the present invention also provides a water vapor barrier film dispersion used in the production of the water vapor barrier film, a method for producing the water vapor barrier film, a solar cell backsheet using the water vapor barrier film, the water vapor barrier film, or the solar cell.
  • the present invention relates to a solar cell using a back sheet.
  • films for electronic devices have mainly been produced using organic polymer materials as substrates.
  • a film having gas barrier properties a film in which a gas barrier layer is formed on one side or both sides of the polymer resin film using a polymer resin film as a base material is generally used.
  • the gas barrier layer aluminum oxide, oxide A material made of silicon, silicon nitride or the like is formed by various methods such as a CVD method and a PVD method.
  • the heat resistant film for example, a film using a fluororesin and a thin glass plate have been developed.
  • the fluororesin is expensive and has poor dimensional stability and low water vapor barrier properties.
  • the maximum use temperature is as low as around 200 ° C., and there is a drawback that it cannot be used at high temperatures.
  • the heat resistance of the organic polymer material is about 350 ° C., the highest engineering plastic, and could not be used for applications that require a gas barrier or water vapor barrier at higher temperatures.
  • the thin glass is inexpensive and has excellent heat resistance and water vapor barrier properties, the flexibility is not sufficient. Therefore, an inorganic sheet or a metal sheet has to be used as a material having gas barrier properties and water vapor barrier properties at high temperatures.
  • the inorganic sheet is obtained by processing a natural or synthetic mineral such as mica or vermiculite into a sheet shape, and has high heat resistance, and is used as a gland packing as a temporary gas seal member.
  • these inorganic sheets are difficult to be densely molded, and there is a problem that the path through which minute gas molecules flow cannot be completely blocked, the gas barrier property is not so high, and there is no flexibility.
  • a metal sheet is excellent in gas barrier properties, it has drawbacks in weather resistance, electrical insulation, chemical resistance, etc., and its use is limited.
  • weather resistance such as UV resistance, moisture resistance, heat resistance, salt resistance, water vapor barrier properties, electrical insulation properties, mechanical strength, Chemical properties, adhesion to sealing materials, etc. are required.
  • gas barrier properties there is a demand for films that can be used in harsher environments than conventional materials.
  • plastic films such as polyimide films are flexible, but have poor water vapor barrier properties and heat resistance.
  • attempts have been made to produce even more sophisticated films by mixing synthetic resins and inorganic compounds. Many have been made.
  • the heat resistance improves as the blending amount of the inorganic compound is increased, on the contrary, since the flexibility and mechanical strength are inferior, a film having excellent flexibility and water vapor barrier properties and high mechanical strength is obtained. It was difficult to manufacture.
  • Patent Documents 1 to 4 disclose a film prepared by preparing a material in which an interlayer ion of clay is replaced with an organic ion as an additive in order to obtain a uniform dispersion of polyimide and an inorganic compound. Since an organic substance is contained in clay, the produced film has low heat resistance and has a drawback of burning when exposed to a flame. Furthermore, there is a drawback that the water vapor barrier property is not high.
  • Patent Documents 5 and 6 disclose films prepared using a dilute dispersion in which the non-volatile component is 5% by weight or less of the total amount of the film dispersion. No more than 8% by weight of the film was obtained, and the majority of organic components were inferior in heat resistance.
  • Patent Documents 7 and 8 disclose films in which the content of the inorganic compound is 80% by weight or more based on the total nonvolatile components.
  • the obtained film has a problem that it is easily broken and has poor mechanical strength and is difficult to handle. Further, it is difficult to give the film a thickness, and when a film having a thickness of more than 40 ⁇ m is to be manufactured, there is a drawback that a crack or a crack occurs.
  • Patent Document 9 in a solar cell backsheet composed of a laminate in which at least two layers of substrates are bonded together with a polyurethane adhesive, a polyurethane adhesive is used in an accelerated test at 85 ° C. and 85% RH. Techniques for improving the durability of the agent are disclosed. However, even if the technique disclosed in Patent Document 9 is used, since the adhesive is used, the durability is not sufficient.
  • An object of this invention is to provide the water vapor
  • the present invention also provides a water vapor barrier film dispersion used in the production of the water vapor barrier film, a method for producing the water vapor barrier film, a solar cell backsheet using the water vapor barrier film, the water vapor barrier film, or the solar cell. It aims at providing the solar cell which uses a back seat
  • the present invention is a water vapor barrier film containing a layered silicate mineral and a synthetic resin, comprising a non-swelling clay mineral and a swelling clay mineral as the layered silicate mineral,
  • the water content of the mineral is 30% by weight or more and 90% by weight or less with respect to the total weight of the water vapor barrier film, and the water vapor permeability in an environment of 40 ° C. and 90% RH is 0.5 g / m 2 ⁇ day. It is the following water vapor barrier film.
  • the present invention is described in detail below.
  • the present inventors have a high mechanical strength by blending a specific amount of a layered silicate mineral containing a non-swellable clay mineral and a swellable clay mineral, flexibility, flame retardancy, and The inventors have found that a water vapor barrier film having excellent water vapor barrier properties can be obtained, and have completed the present invention.
  • Conventional water vapor barrier films have used swellable clay minerals to exhibit water vapor barrier properties. It is known that since the swellable clay mineral has interlayer ions, it swells and peels in the dispersion medium, and is gradually laminated while the dispersion medium is removed, and exhibits gas barrier properties such as water vapor.
  • a film using a swellable clay mineral for example, a composite film of a swellable clay mineral, a non-swellable clay mineral and a synthetic resin, is difficult to prepare a uniform dispersion and to form a uniform film. It was. In general, it is difficult to increase the thickness of a film using a swellable clay mineral, and it is difficult to produce a film having a thickness of 40 ⁇ m or more because cracks and cracks occur in the film forming process. Moreover, since a non-swellable clay mineral cannot usually obtain a film in which plate crystals are highly oriented, it has been difficult to produce a film having a high water vapor barrier property using a non-swellable clay mineral.
  • the present inventors first found that a uniform dispersion containing specific amounts of swellable clay mineral and non-swellable clay mineral can be prepared by using a specific mixing method. Furthermore, surprisingly, a single non-swelling clay mineral does not result in a film with highly oriented plate crystals, but by using this uniform dispersion, all clay minerals including non-swelling clay minerals can be obtained. It has been found that the film is highly oriented and exhibits a high water vapor barrier. Thereby, it succeeded in developing the water vapor
  • the water vapor barrier film of the present invention contains a layered silicate mineral.
  • the water vapor barrier film of the present invention contains a non-swellable clay mineral and a swellable clay mineral as the layered silicate mineral.
  • the “non-swelling” means that it hardly swells when added to water or an organic solvent. Specifically, the swelling power is less than 5 mL / 2 g.
  • the “swelling force” is a method according to the standard test method JBAS-104-77 of the Japan Bentonite Industry Association and the method of measuring the swelling force of bentonite (powder), and the powder of clay mineral in a 100 mL graduated cylinder containing 100 mL of water.
  • a preferable upper limit of the swelling power of the non-swellable clay mineral is 4 mL / 2 g, and a more preferable upper limit is 3 mL / 2 g.
  • the preferred lower limit is 0.5 mL / 2 g from a practical viewpoint.
  • non-swellable clay mineral examples include natural or synthetic mica, talc, kaolin, pyrophyllite and the like.
  • a clay mineral having a layer charge of 0 is preferable, and at least one selected from the group consisting of talc, kaolin, and pyrophyllite is more preferable.
  • the said non-swellable clay mineral may be used independently and may use 2 or more types together.
  • the “swellability” means swelling when added to water or an organic solvent. Ions such as sodium ions exist between the layers of the swellable clay mineral, and the swellable clay mineral swells due to the affinity between the ions and the solvent. Specifically, the “swelling force” mentioned above is 5 mL / 2 g or more. When the swellable clay mineral is not contained and only the non-swellable clay mineral having a swelling power of less than 5 mL / 2 g is contained, the lamination of the clay mineral in the resulting film is deteriorated and the water vapor permeability is increased.
  • a preferable lower limit of the swelling power of the swellable clay mineral is 18 mL / 2 g, a more preferable lower limit is 50 mL / 2 g, and a still more preferable lower limit is 80 mL / 2 g.
  • the preferable upper limit is 105 mL / 2 g from a practical viewpoint.
  • swellable clay mineral examples include vermiculite, montmorillonite, beidellite, saponite, hectorite, stevensite, magadiite, isralite, kanemite, illite, and sericite.
  • Somasif made by Corp Chemical
  • Kunipia made by Kunimine Kogyo Co., Ltd.
  • clay minerals having a layer charge of 0.2 to 0.6 per 1 ⁇ 2 unit cell are preferred from the viewpoint of smoothness of the resulting film and water vapor barrier properties.
  • Montmorillonite, saponite, hectorite, and steven are preferred. More preferred is at least one selected from the group consisting of sites.
  • the said swellable clay mineral may be used independently and may use 2 or more types together.
  • the swellable clay mineral is preferably modified by reacting with a silylating agent for the purpose of improving the dispersibility of the dispersion.
  • a silylating agent examples include methyltrimethoxysilane, methyltriethoxysilane, propyltrimethoxysilane, butyltrimethoxysilane, hexyltrimethoxysilane, octyltrimethoxysilane, dodecyltrimethoxysilane, octadecyltrimethoxysilane, and the like. Can be mentioned.
  • the swellable clay mineral is obtained by exchanging interlayer cations for the purpose of improving the swellability and water resistance.
  • interlayer cation for example, it is preferable to exchange for metal ions such as sodium ion, lithium ion, magnesium ion, potassium ion, calcium ion, onium ion such as ammonium ion compound, phosphonium ion compound, hydrogen ion, etc. More preferred are sodium ions, lithium ions, potassium ions, ammonium ion compounds, phosphonium ion compounds, hydrogen ions, etc., whose interlayer ions are monovalent. From the viewpoint of enhancing the water resistance effect, it is more preferable to exchange with lithium ions.
  • the properties of the water vapor barrier film obtained also vary depending on the average particle size of the layered silicate mineral, it is preferable to use the layered silicate mineral after selecting the particle size.
  • the preferable lower limit of the average particle diameter of the swellable clay mineral is 0.01 ⁇ m, and the preferable upper limit is 50 ⁇ m.
  • the average particle diameter of the swellable clay mineral is less than 0.01 ⁇ m, lamination of the clay mineral in the film may be deteriorated, and the water vapor permeability may be increased.
  • the average particle size of the swellable clay mineral exceeds 50 ⁇ m, the resulting film may be inferior in surface flatness.
  • the more preferable lower limit of the average particle diameter of the swellable clay mineral is 0.05 ⁇ m, the more preferable upper limit is 20 ⁇ m, the still more preferable lower limit is 0.1 ⁇ m, and the still more preferable upper limit is 15 ⁇ m.
  • the preferable minimum of the average particle diameter of the said non-swellable clay mineral is 0.1 micrometer, and a preferable upper limit is 50 micrometers.
  • a preferable upper limit is 50 micrometers.
  • the average particle size of the non-swellable clay mineral is less than 0.1 ⁇ m, the resulting film may be inferior in mechanical strength.
  • the average particle diameter of the non-swellable clay mineral exceeds 50 ⁇ m, the resulting film may be inferior in surface flatness.
  • the more preferable lower limit of the average particle diameter of the non-swellable clay mineral is 0.2 ⁇ m, the more preferable upper limit is 20 ⁇ m, the still more preferable lower limit is 0.5 ⁇ m, and the still more preferable upper limit is 15 ⁇ m.
  • the average particle size of the swellable clay mineral and the non-swellable clay mineral can be determined by measuring the particle size distribution using a laser diffraction particle size distribution meter or the like.
  • the lower limit of the content of the layered silicate mineral is 30% by weight and the upper limit is 90% by weight with respect to the total weight of the water vapor barrier film.
  • the preferred lower limit of the content of the layered silicate mineral is 35% by weight, the preferred upper limit is 85% by weight, the more preferred lower limit is 40% by weight, the more preferred upper limit is 80% by weight, the still more preferred lower limit is 50% by weight, and still more preferred.
  • the upper limit is 70% by weight, and a particularly preferred lower limit is 60% by weight.
  • the content of the swellable clay mineral is preferably 2% by weight and preferably 80% by weight with respect to the total weight of the layered silicate mineral.
  • the content of the swellable clay mineral is less than 2% by weight, the water vapor permeability of the resulting film may be increased. If the content of the swellable clay mineral exceeds 80% by weight, the resulting film may be inferior in mechanical strength.
  • the more preferred lower limit of the content of the swellable clay mineral is 5% by weight, the more preferred upper limit is 70% by weight, the still more preferred lower limit is 10% by weight, the still more preferred upper limit is 60% by weight, and the particularly preferred lower limit is 20% by weight.
  • a preferred upper limit is 50% by weight.
  • the ratio of the non-swellable clay mineral to the swellable clay mineral is preferably 98: 2 to 20:80 by weight.
  • the ratio of the non-swellable clay mineral is less than 20%, the resulting film may be inferior in mechanical strength.
  • the ratio of the non-swellable clay mineral exceeds 98%, the water vapor permeability of the resulting film may be increased.
  • the water vapor barrier film of the present invention contains a synthetic resin.
  • the synthetic resin is not particularly limited.
  • the synthetic resin is preferably a heat resistant synthetic resin, and is preferably a super engineering plastic (super engineering plastic).
  • the heat-resistant synthetic resin examples include polyimide resin, polyamideimide resin, fluorine resin, polyphenylene sulfide resin, polysulfone resin, polyarylate resin, polyethersulfone resin, polyetherimide resin, polyetheretherketone resin, polybenzoxazole.
  • examples thereof include resins and polybenzimidazole resins.
  • a polyimide resin and / or a polyamideimide resin is preferably used.
  • the polyimide resin is a compound having a repeating structure of the following formula (1)
  • the polyamideimide resin is a compound having a repeating structure of the following formula (2).
  • R 1 is a tetravalent organic group having one or two benzene rings.
  • R 1 preferably has a structure represented by the following formula (3)
  • the polyimide resin may have a structure represented by the following formula (3) alone as R 1 , or two types. It may be a copolymer having the above.
  • R 2 is trivalent and is an organic group having one or two benzene rings.
  • R 2 preferably has a structure represented by the following formula (4)
  • the polyamideimide resin may have a structure represented by the following formula (4) as R 2 alone, It may be a copolymer having more than one kind.
  • R 3 is a divalent organic group having one or two benzene rings.
  • R 3 preferably has a structure represented by the following formula (5), and the polyimide resin and the polyamideimide resin may have the structure represented by the following formula (5) alone as R 3. It may be a copolymer having two or more types.
  • R ⁇ 1 >, R ⁇ 2 > and R ⁇ 3 > are structures shown in following formula (6).
  • the polyimide resin may have a structure represented by the following formula (6) as R 1 and R 3 , or may be a copolymer having two or more types.
  • the polyamideimide resin may have a structure represented by the following formula (6) as R 2 and R 3 , or may be a copolymer having two or more types.
  • the water vapor barrier film of the present invention may contain a coupling agent such as a silane coupling agent and a titanate coupling agent in order to increase mechanical strength.
  • a coupling agent such as a silane coupling agent and a titanate coupling agent
  • the silane coupling agent include amino silane coupling agents, ureido silane coupling agents, vinyl silane coupling agents, methacrylic silane coupling agents, epoxy silane coupling agents, and mercapto silane cups.
  • a ring agent, an isocyanate type silane coupling agent, etc. are mentioned.
  • titanate coupling agent examples include a titanate coupling agent having an alkylate group having at least 1 to 60 carbon atoms, a titanate coupling agent having an alkyl phosphite group, and a titanate coupling agent having an alkyl phosphate group. And titanate coupling agents having an agent or an alkyl pyrophosphate group.
  • the coupling agent may be mixed with a layered silicate mineral in advance to act, or may be mixed in a water vapor barrier film dispersion described later.
  • the preferred lower limit of the amount of the coupling agent used is 0.1% by weight and the preferred upper limit is 3.0% by weight with respect to the total weight of the layered silicate mineral. If the amount of the coupling agent used is less than 0.1% by weight, the effect of using the coupling agent may not be sufficiently exhibited. Even if the coupling agent is used in an amount exceeding 3.0% by weight, an effect commensurate with the amount used may not be obtained.
  • a more preferable lower limit of the amount of the coupling agent used is 0.5% by weight, and a more preferable upper limit is 2.0% by weight.
  • the thickness of the water vapor barrier film of the present invention is preferably 10 ⁇ m or more. When the thickness of the water vapor barrier film is less than 10 ⁇ m, not only the water vapor barrier property is lowered, but also the mechanical strength is lowered and the handling may be difficult.
  • the thickness of the water vapor barrier film is more preferably 20 ⁇ m or more, further preferably 40 ⁇ m or more, still more preferably 45 ⁇ m or more, and particularly preferably 50 ⁇ m or more.
  • steam barrier film of this invention is 250 micrometers or less. If the thickness of the water vapor barrier film is larger than 250 ⁇ m, it may become hard and the bending strength may be lowered.
  • the thickness of the water vapor barrier film is more preferably 200 ⁇ m or less.
  • the water vapor barrier film of the present invention has a water vapor permeability of 0.5 g / m 2 ⁇ day or less in an environment of 40 ° C. and 90% RH.
  • the water vapor permeability at 40 ° C. and 90% RH is preferably 0.2 g / m 2 ⁇ day or less, and more preferably 0.1 g / m 2 ⁇ day or less.
  • the water vapor barrier film of the present invention preferably has a flammability classification of VTM-0 in the UL94 standard thin material vertical combustion test (VTM test).
  • VTM test a film test piece was wound in a cylindrical shape, attached vertically to a clamp, and subjected to a 3 second indirect flame with a 20 mm size flame twice. This determination is performed.
  • the film thickness when performing the UL94 standard VTM test is preferably 200 ⁇ m or less, and more preferably 150 ⁇ m or less.
  • the water vapor barrier film of the present invention preferably has a flammability classification of V-0 in the UL94 standard vertical combustion test (V test).
  • V test is mounted vertically on the test piece clamp, 10-second indirect flame with a flame of 20 mm is performed twice, and the combustibility classification shown in Table 2 is determined based on the combustion behavior. .
  • the water vapor barrier film preferably has a flammability classification of 5V-A or 5V-B in the UL94 standard 125 mm vertical combustion test (5V test).
  • 5V test a strip test piece is mounted vertically on a clamp, a 5-second indirect flame with a flame of 125 mm is performed five times, and the flammability classification is determined based on the combustion behavior. Is held horizontally, and a 5-second indirect flame of 125 mm in size is performed five times from below, and the combustibility classification shown in Table 3 is determined based on the combustion behavior.
  • the water vapor barrier film of the present invention preferably corresponds to “non-flammability” of the material combustion test for railway vehicles based on the Ministry of Land, Infrastructure, Transport and Tourism Ordinance No. 151 “Law for establishing technical standards relating to railways”.
  • the water vapor barrier film of the present invention has a total calorific value of 20 MJ / m 2 or less with respect to the sample area in a heat generation test using a cone calorimeter in accordance with ISO 5660-1, and 20 minutes after the start of heating.
  • the maximum heat generation rate per minute is preferably 300 kW / m 2 or less relative to the sample area, and the time from the start of the test to ignition is preferably 60 seconds or more.
  • the tear strength of the water vapor barrier film of the present invention is preferably 25 N / mm or more. When the tear strength is less than 25 N / mm, the film is easily broken and handling becomes difficult.
  • the tear strength is more preferably 30 N / mm or more, and still more preferably 40 N / mm or more. In the present specification, the tear strength is a value determined by a measurement method based on JIS K7128-1.
  • the tensile strength of the water vapor barrier film of the present invention is preferably 25 N / mm 2 or more. When the tensile strength is less than 25 N / mm 2 , the film is easily broken and handling becomes difficult.
  • the tensile strength is more preferably 30 N / mm 2 or more, more preferably 40N / mm 2 or more.
  • the tensile strength is a value determined by a measurement method based on JIS K7127-1, and is measured using a tensile strength tester under the conditions of a grip interval of 80 mm and a tensile speed of 20 mm / min.
  • the water vapor barrier film of the present invention preferably has a mandrel diameter of 20 mm or less in which the film is cracked in a bending resistance test by a cylindrical mandrel method according to JIS K5600-5-1 (1999). If the mandrel diameter at which the film is cracked exceeds 20 mm, the flexibility may be inferior.
  • the mandrel diameter at which the film is cracked is more preferably 15 mm or less, still more preferably 12 mm or less, and particularly preferably 10 mm or less.
  • the water vapor barrier film of the present invention preferably has a dielectric breakdown voltage of 20 kV / mm or more.
  • the dielectric breakdown voltage is more preferably 25 kV / mm or more, and further preferably 30 kV / mm or more.
  • the water vapor barrier film of the present invention preferably has a partial discharge voltage of at least 700 V or more when a partial discharge test according to IEC 61730-2: 2004, section 11.1 is performed.
  • the partial discharge voltage is preferably 1000 V or higher, more preferably 1500 V or higher, and still more preferably 2000 V or higher.
  • the water absorption after being immersed in water at 40 ° C. for 24 hours is preferably 2.0% by weight or less.
  • the water absorption is more preferably 1.0% by weight.
  • the moisture absorption rate after leaving for 24 hours in an environment of 40 ° C. and RH 90% is preferably 2.0% by weight or less.
  • the moisture absorption rate is more preferably 1.0% by weight or less.
  • the water vapor barrier film of the present invention is preferably subjected to a weather resistance test stored in an environment of 85 ° C. and 85% RH.
  • a weather resistance test stored in an environment of 85 ° C. and 85% RH.
  • the time during which the discoloration or peeling change appears on the surface or cross section in the weather resistance test is more preferably 1000 hours or more, further preferably 2000 hours or more, and particularly preferably 3000 hours or more.
  • a dispersion for a water vapor barrier film used in the production of the water vapor barrier film of the present invention comprising a dispersion medium, a layered silicate mineral that is a non-volatile component, and a synthetic resin and / or a precursor of a synthetic resin,
  • a dispersion for a water vapor barrier film in which the content of the layered silicate mineral is 30% by weight or more and 90% by weight or less based on the total weight of the nonvolatile components is also one aspect of the present invention.
  • the water vapor barrier film of the present invention comprises a step 1 for preparing a swellable clay mineral dispersion containing a dispersion medium and a swellable clay mineral, a dispersion medium, a non-swellable clay mineral, a synthetic resin and / or a synthetic resin.
  • Step 2 for preparing a non-swellable clay mineral dispersion containing a precursor of a resin, and a mixture of the swellable clay mineral dispersion and the non-swellable clay mineral dispersion, and the dispersion for water vapor barrier film of the present invention
  • the step 3 for preparing the dispersion for the water vapor barrier film, the step 4 for spreading the prepared dispersion for the water vapor barrier film on the substrate, and leaving the dispersion, the dispersion medium for the water vapor barrier film developed on the substrate is removed to form a film. It can manufacture by the method which has the process 5 which shape
  • a water vapor barrier film of the present invention for preparing a water vapor barrier film dispersion of the present invention by mixing a swellable clay mineral dispersion and a non-swellable clay mineral dispersion it is difficult in the past.
  • the water vapor barrier film having high mechanical strength and excellent in flexibility, flame retardancy, and water vapor barrier properties can be produced.
  • steam barrier film of this invention has the process 1 which prepares the swellable clay mineral dispersion liquid containing a dispersion medium and a swellable clay mineral.
  • the swellable clay mineral is modified by reacting with a silylating agent, and the interlayer cation is further changed. It is preferable to exchange.
  • the method of reacting the swellable clay mineral with a silylating agent include a method of ball milling the swellable clay mineral and the silylating agent, and a method of mixing with a rotation and revolution mixer.
  • Examples of the method for exchanging interlayer cations of the swellable clay mineral include, for example, a method of mixing and dispersing an aqueous solution containing a cation to be exchanged with the swellable clay mineral, a method of stirring with a stirrer, and a rotation and revolution mixer And the like.
  • the swellable clay mineral is gelled by mixing the swellable clay mineral and the dispersion medium, and further added with the dispersion medium, whereby the swellable clay mineral dispersion is obtained. Is obtained.
  • Step 1 when the gel is used without being made into a swellable clay mineral dispersion, lumps are generated in the resulting dispersion for a water vapor barrier film, making it impossible to produce a uniform water vapor barrier film.
  • the content of the swellable clay mineral in the swellable clay mineral dispersion prepared in Step 1 is preferably 1% by weight and preferably 20% by weight with respect to the total weight of the swellable clay mineral dispersion. It is. When the content of the swellable clay mineral is less than 1% by weight, the amount of the dispersion medium increases, and it may take time to remove the dispersion medium. If the content of the swellable clay mineral exceeds 20% by weight, the viscosity of the water vapor barrier film dispersion may increase, and film formation may not be possible.
  • the minimum with more preferable content of the said swellable clay mineral is 1.5 weight%, and a more preferable upper limit is 15 weight%.
  • Examples of the dispersion medium in the swellable clay mineral dispersion include hydrocarbon solvents such as n-pentane, n-hexane, n-octane, and n-decane, methanol, ethanol, 1-propanol, 2-propanol, Alcohol solvents such as 1-butanol, 2-butanol, isobutanol, tert-butanol, 1-pentanol, 2-pentanol, 1-hexanol, 2-hexanol, ethylene glycol, propylene glycol, acetone, methyl ethyl ketone, diethyl Ketone solvents such as ketone, methyl-isobutylketone, cyclohexanone, amide solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylpropionamide, N-methyl-2-pyrrolidone, , Diethyl ether
  • N-methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, tetrahydrofuran, sulfolane, and water Of these, at least one is preferable.
  • These dispersion media may be used alone or in combination of two or more.
  • the method for producing a water vapor barrier film of the present invention includes a step 2 of preparing a non-swellable clay mineral dispersion containing a dispersion medium, a non-swellable clay mineral, and a synthetic resin and / or a precursor of the synthetic resin. .
  • the content of nonvolatile components in the non-swellable clay mineral dispersion prepared in Step 2 is preferably 18% by weight and preferably 65% by weight with respect to the total weight of the non-swellable clay mineral dispersion. is there.
  • the content of the non-volatile component is less than 18% by weight, the dispersion for the water vapor barrier film may become non-uniform, and a uniform film may not be obtained.
  • the content of the non-volatile component exceeds 65% by weight, the viscosity of the water vapor barrier film dispersion may increase, and film formation may not be possible.
  • a more preferable lower limit of the content of the nonvolatile component is 20% by weight, and a more preferable upper limit is 55% by weight.
  • nonvolatile component means a component having no boiling point at normal pressure or having a boiling point of 300 ° C. or higher.
  • the ratio of the non-volatile component can be obtained from the weight of the remaining solid after removing the dispersion medium by vacuum evaporation using thermogravimetry (TG), differential thermo-thermogravimetric measurement (TG-DTA), evaporator, etc. it can.
  • Examples of the synthetic resin in the dispersion for the water vapor barrier film of the present invention include those similar to the water vapor barrier film of the present invention described above.
  • Examples of the synthetic resin precursor include polyamic acid. By imidizing the polyamic acid, a polyimide resin or a polyamidoimide resin is obtained.
  • Examples of the method for imidizing the polyamic acid include a method in which the polyamic acid is heated to cyclize and imidize, and a method in which the polyamic acid is chemically cyclized to imidize.
  • the method of imidizing the polyamic acid by heat-closing there is no particular limitation on the method of imidizing the polyamic acid by heat-closing, and examples thereof include a method in which the polyamic acid is dispersed in a dispersion medium and heated at 120 to 400 ° C. for 0.5 to 24 hours.
  • the same dispersion medium as in the swellable clay mineral dispersion can be used.
  • steam barrier film of this invention has the process 3 which mixes a swellable clay mineral dispersion and a non-swelling clay mineral dispersion, and prepares the water
  • the lower limit of the content of the layered silicate mineral in the water vapor barrier film dispersion of the present invention is 30% by weight and the upper limit is 90% by weight with respect to the total weight of the nonvolatile components.
  • the content of the layered silicate mineral is less than 30% by weight, the water vapor permeability of the obtained film is increased.
  • the content of the layered silicate mineral exceeds 90% by weight, the resulting film is inferior in mechanical strength.
  • the preferred lower limit of the content of the layered silicate mineral is 35% by weight, the preferred upper limit is 85% by weight, the more preferred lower limit is 40% by weight, the more preferred upper limit is 80% by weight, the still more preferred lower limit is 50% by weight, and still more preferred.
  • the upper limit is 70% by weight, and a particularly preferred lower limit is 60% by weight.
  • Examples of the method for developing the dispersion on the substrate in the step 4 include a method of applying the dispersion in a film shape using a doctor blade, a bar coater, or the like.
  • the thickness of the dispersion developed on the substrate is preferably 100 ⁇ m or more. If the thickness of the dispersion is less than 100 ⁇ m, the resulting water vapor barrier film may be thin and the mechanical strength may be low. A more preferable lower limit of the thickness of the dispersion is 150 ⁇ m, and a more preferable lower limit is 200 ⁇ m.
  • the substrate on which the dispersion is developed is made of glass, polyethylene terephthalate, polyimide, polyethylene, or polypropylene. Is preferred.
  • the step 5 as a method for removing the dispersion medium from the dispersion for the water vapor barrier film developed on the substrate, various solid-liquid separation methods such as centrifugation, filtration, vacuum drying, freeze vacuum drying, and heat evaporation are used. Or a combination of these methods is possible.
  • various solid-liquid separation methods such as centrifugation, filtration, vacuum drying, freeze vacuum drying, and heat evaporation are used. Or a combination of these methods is possible.
  • the temperature condition is 20 to 150 ° C. in a forced air oven.
  • the film is preferably obtained by drying under a temperature condition of 30 to 120 ° C. for about 0.5 to 24 hours, preferably 2 to 12 hours.
  • the temperature at which the dispersion medium is removed is 150 ° C. or lower in the step 5.
  • the water vapor barrier film can be obtained by further heating the obtained film using an electric furnace or the like.
  • a water vapor barrier film can be obtained by heat-treating the film obtained above at 120 to 400 ° C. for 0.5 to 24 hours. .
  • the water vapor barrier film of the present invention has flexibility, moisture resistance, and high mechanical strength, it can be used for a solar battery back sheet.
  • a solar battery back sheet is also one aspect of the present invention.
  • a solar cell using the water vapor barrier film of the present invention or the solar cell backsheet of the present invention is also one aspect of the present invention. Since the water vapor barrier film of the present invention and the solar cell backsheet of the present invention have flexibility, moisture resistance, and high mechanical strength, the solar cell of the present invention using this has excellent durability and weather resistance. It becomes. Further, since the solar cell backsheet usually has a multilayer structure composed of a plurality of resin layers, there has been a problem that an adhesive layer or the like for bonding the resin layers deteriorates when used for a long period of time. However, since the water vapor barrier film of the present invention can be used for a solar cell back sheet as a single layer or a laminate in which two or more layers are laminated and integrated, it is possible to suppress such aged deterioration of the solar cell.
  • FIG. 1 A schematic cross-sectional view showing an example of the solar cell of the present invention is shown in FIG.
  • a solar cell 1 of the present invention has a solar cell element 2 that converts light energy into electric energy by photovoltaic power, and the solar cell element 2 is sealed with a sealant 3.
  • the solar cell 1 of the present invention has the light transmissive substrate 4 on the surface that receives sunlight, and the solar cell backsheet 5 of the present invention on the surface opposite to the light transmissive substrate 4.
  • FIG. 2 the cross-sectional schematic diagram showing another example of the solar cell of this invention is shown in FIG.
  • the solar cell element 2 is sealed with the sealant 3.
  • the solar cell 1 of the present invention has a light transmissive substrate 4 on the surface receiving sunlight, and has the water vapor barrier film 6 of the present invention on the surface opposite to the light transmissive substrate 4.
  • the solar cell element 2 is not particularly limited as long as it can convert light energy into electric energy by photovoltaic power.
  • single crystal silicon, polycrystalline silicon, amorphous silicon, compound semiconductor Group 3-5, Group 2-6, etc.
  • polycrystalline silicon, amorphous silicon, and CIGS copper, indium, gallium, selenium are preferable.
  • sealant 3 examples include an ethylene-vinyl acetate copolymer, an ethylene-aliphatic unsaturated carboxylic acid copolymer, an ethylene-aliphatic carboxylic acid ester copolymer, or a saponified product thereof. Stop agents are mentioned.
  • the light-transmitting substrate 4 is located on the outermost surface layer of the solar cell 1 on the side receiving sunlight, it is preferable to have excellent weather resistance, water repellency, contamination resistance, mechanical strength and the like in addition to transparency.
  • the material of the light transmissive substrate 4 include a resin substrate made of a polyester resin, a fluororesin, an acrylic resin, an ethylene-vinyl acetate copolymer, a glass substrate, and the like.
  • a glass substrate is preferred because it is excellent in impact properties and can be produced at low cost.
  • a fluororesin is also preferably used.
  • the method of manufacturing the solar cell 1 of the present invention is not particularly limited, for example, the light-transmitting substrate 4, the sealing agent 3 in which the solar cell element 2 is sealed, and the solar cell backsheet 5 of the present invention are stacked in this order.
  • Examples thereof include a vacuum laminating method, a light transmissive substrate 4, a sealing agent 3, and a solar cell element 2 formed on the water vapor barrier film 6 of the present invention in this order and vacuum laminating.
  • steam barrier film which is excellent in a softness
  • a dispersion for a water vapor barrier film used in the production of the water vapor barrier film, a method for producing the water vapor barrier film, a solar cell backsheet using the water vapor barrier film, the water vapor barrier film, or the A solar cell using the solar cell backsheet can be provided.
  • FIG. 1 It is a cross-sectional schematic diagram showing an example of the solar cell of this invention. It is a cross-sectional schematic diagram showing another example of the solar cell of this invention. 2 is an electron micrograph of cross sections of films produced in Examples 1 to 4 and Comparative Example 1. FIG.
  • Example 1 Preparation of lithium exchange modified clay
  • Kunipia F (manufactured by Kunimine Kogyo Co., Ltd.), which is a natural purified bentonite and is composed mainly of montmorillonite (layer charge per 1/2 unit cell 0.2 to 0.6, average particle size 1.1 ⁇ m) It was sufficiently dried at a temperature of 110 ° C. or higher. 300 g of the bentonite was placed in a ball mill pot together with alumina balls.
  • a silylating agent manufactured by Chisso Corporation, “Syra Ace S330”
  • the inside of the pot was replaced with nitrogen gas
  • ball mill treatment was performed for 1 hour to obtain a modified clay.
  • 24 g of the obtained modified clay was added to 400 mL of 0.5 N lithium nitrate aqueous solution, and mixed and dispersed by shaking. The mixture was shaken and dispersed for 2 hours to exchange the interlayer ions of the clay with lithium ions, thereby obtaining a dispersion.
  • the obtained dispersion was subjected to solid-liquid separation by centrifugation, and the obtained solid was washed with a mixed solution of 280 g of distilled water and 120 g of ethanol to remove excess salt. This washing operation was repeated twice or more.
  • the obtained product was sufficiently dried in an oven and then crushed to obtain lithium exchange modified clay (layer charge per 1/2 unit cell 0.2 to 0.6).
  • the mixing process was performed for 10 minutes in the mixing mode (2000 rpm) using the rotation revolution mixer. Compared to the first mixing treatment, the whole became a clay pregel. The pure water 50mL was added there, and it knead
  • a uniform non-swellable clay mineral dispersion having a talc ratio of 41.9% by weight and a non-volatile component ratio of 28.1% by weight to the total amount of the dispersion was obtained.
  • the polyamic acid contained in “U-Varnish A” is an aromatic polyamic acid having a repeating structural unit of the following formula (7).
  • the obtained dispersion for water vapor barrier film was applied to a polypropylene sheet having a flat bottom and a rectangular bottom using a doctor blade so that the thickness was 2000 ⁇ m.
  • the polypropylene sheet was kept horizontal and dried in a forced air oven at 50 ° C. for 10 hours to form a film on the polypropylene sheet.
  • This film was peeled from the polypropylene sheet and, in order, heat treated at 120 ° C. for 1 hour, 150 ° C. for 1 hour, 200 ° C. for 1 hour, and 350 ° C. for 12 hours, and consisted of talc, montmorillonite, and polyimide resin.
  • a 90 ⁇ m-thick water vapor barrier film was obtained in which the ratio of the layered silicate mineral to the weight was 47.4% by weight, and the content of the swellable clay mineral was 20.0% by weight of the total weight of the layered silicate mineral.
  • Example 2 In “Preparation of Water Vapor Barrier Film Dispersion”, the same as Example 1 except that 99.0 g of the swellable clay mineral dispersion prepared in Example 1 and 37.4 g of the non-swellable clay mineral dispersion were used. A uniform water vapor barrier film in which the ratio of the layered silicate mineral to the total nonvolatile components is 52.0% by weight, and the content of the swellable clay mineral is 33.3% by weight of the total weight of the layered silicate mineral A dispersion was obtained.
  • “Film preparation” was carried out in the same manner as in Example 1 and consisted of talc, montmorillonite and polyimide resin, the ratio of the layered silicate mineral to the total weight was 52.0% by weight, and the content of the swellable clay mineral was A water vapor barrier film having a thickness of 110 ⁇ m, which is 33.3% by weight of the total weight of the layered silicate mineral, was obtained.
  • Example 3 In “Preparation of Water Vapor Barrier Film Dispersion”, the same procedure as in Example 1 was used except that 148.5 g of the swellable clay mineral dispersion prepared in Example 1 and 37.4 g of the non-swellable clay mineral dispersion were used. A uniform water vapor barrier film in which the ratio of the layered silicate mineral to the total nonvolatile components is 55.8% by weight and the content of the swellable clay mineral is 42.9% by weight of the total weight of the layered silicate mineral A dispersion was obtained.
  • Example 2 “Preparation of film” was performed in the same manner as in Example 1, and consisted of talc, montmorillonite, and polyimide resin, the ratio of the layered silicate mineral to the total nonvolatile components was 55.8% by weight, and the content of the swellable clay mineral However, a water vapor barrier film having a thickness of 90 ⁇ m, which was 42.9% by weight of the total weight of the layered silicate mineral, was obtained.
  • Example 4 In “Preparation of dispersion for water vapor barrier film”, the same as Example 1 except that 198.0 g of the swellable clay mineral dispersion prepared in Example 1 and 37.4 g of the non-swellable clay mineral dispersion were used. A uniform water vapor barrier film in which the ratio of the layered silicate mineral to the total nonvolatile components is 59.1% by weight, and the content of the swellable clay mineral is 50.0% by weight of the total weight of the layered silicate mineral A dispersion was obtained.
  • Example 2 “Preparation of film” was carried out in the same manner as in Example 1, consisting of talc, montmorillonite and polyimide resin, the ratio of layered silicate mineral to the total non-volatile components was 59.1% by weight, and the content of swellable clay mineral However, the water vapor
  • Example 5 Preparation of non-swellable clay mineral dispersion
  • Talc (Nippon Talc Co., Ltd., “Talc MS-K”) 2.2 g and 18.6% by weight polyamic acid N-methyl-2-pyrrolidone solution (Ube Industries, Ltd., “U-Varnish A”) 47 8 g in a plastic airtight container and stirred for 10 minutes in a rotating / revolving mixer (“ARE-310”, manufactured by Shinky Corporation) for 10 minutes.
  • the ratio of talc to the total nonvolatile components is 19.8% by weight.
  • a uniform non-swellable clay mineral dispersion having a non-volatile component ratio of 22.2% by weight to the total amount of the dispersion was obtained.
  • Example 2 “Film preparation” was carried out in the same manner as in Example 1 except that the thickness was 1500 ⁇ m using a doctor blade.
  • the film was composed of talc, montmorillonite, and polyimide resin, and the ratio of the layered silicate mineral to the total weight was 33.
  • Example 6 (Preparation of lithium exchange clay) Kunipia F (manufactured by Kunimine Kogyo Co., Ltd.), which is a natural purified bentonite and is composed mainly of montmorillonite (layer charge per 1/2 unit cell 0.2 to 0.6, average particle size 1.1 ⁇ m) It was sufficiently dried at a temperature of 110 ° C. or higher. 24 g of dry clay was added to 400 mL of a 0.5 N lithium nitrate aqueous solution, and mixed and dispersed by shaking. The mixture was shaken and dispersed for 2 hours to exchange the interlayer ions of the clay with lithium ions, thereby obtaining a dispersion.
  • Kunipia F manufactured by Kunimine Kogyo Co., Ltd.
  • the obtained dispersion was subjected to solid-liquid separation by centrifugation, and the obtained solid was washed with a mixed solution of 280 g of distilled water and 120 g of ethanol to remove excess salt. This washing operation was repeated twice or more.
  • the obtained product was sufficiently dried in an oven and then crushed to obtain lithium exchanged clay (layer charge per 1/2 unit cell 0.2 to 0.6).
  • N-methyl-2-pyrrolidone 350 g was placed in a container, and 100 g of a swellable clay mineral gel was added while stirring with a homogenizer (“ULUTRA TURRAX T50” manufactured by IKA). Stirring was continued at about 7000 rpm for about 30 minutes to obtain a swellable clay mineral dispersion.
  • the obtained dispersion for water vapor barrier film was applied to a polypropylene sheet having a flat bottom and a rectangular bottom using a doctor blade so as to have a thickness of 1500 ⁇ m.
  • the polypropylene sheet was kept horizontal and dried in a forced air oven at 50 ° C. for 10 hours to form a film on the polypropylene sheet.
  • This film was peeled from the polypropylene sheet and, in order, heat treated at 120 ° C. for 1 hour, 150 ° C. for 1 hour, 200 ° C. for 2 hours, and 350 ° C. for 12 hours, consisting of talc, montmorillonite, and polyimide resin.
  • a water vapor barrier film having a thickness of 80 ⁇ m was obtained in which the ratio of the layered silicate mineral to the weight was 53.4% by weight, and the content of the swellable clay mineral was 42.9% by weight of the total weight of the layered silicate mineral.
  • Example 7 (Preparation of water vapor barrier film dispersion) Except for using 114.0 g of the swellable clay mineral dispersion prepared in “Preparation of Water Vapor Barrier Film Dispersion” in Example 6 and 37.0 g of the non-swellable clay mineral dispersion, the same as Example 6 was used. For a uniform water vapor barrier film in which the ratio of the layered silicate mineral to the total nonvolatile components is 59.9% by weight, and the content of the swellable clay mineral is 56.0% by weight of the total weight of the layered silicate mineral A dispersion was obtained.
  • Example 6 Using the obtained dispersion for water vapor barrier film, “preparation of film” was carried out in the same manner as in Example 6.
  • the film was composed of talc, montmorillonite and polyimide resin, and the ratio of the layered silicate mineral to the total weight was 59.
  • a water vapor barrier film having a thickness of 100 ⁇ m was obtained, in which the content of the swellable clay mineral was 96.0% by weight and the content of the swellable clay mineral was 56.0% by weight of the total weight of the layered silicate mineral.
  • Example 8 (Preparation of non-swellable clay mineral dispersion)
  • talc Nippon Talc Co., Ltd., “Talc GAT-40”
  • average particle instead of talc (Nippon Talc Co., Ltd., “Talc MS-K”)
  • the ratio of talc to the total nonvolatile components was 39.6% by weight, and the ratio of the nonvolatile components to the total amount of the dispersion was 27.3% by weight, except that a diameter of 7.1 ⁇ m) was used.
  • a uniform non-swellable clay mineral dispersion was obtained.
  • Example 6 is the same as Example 6 except that 114.0 g of the swellable clay mineral dispersion prepared in “Preparation of water vapor barrier film dispersion” in Example 6 and 37.0 g of the non-swellable clay mineral dispersion were used. Similarly, a uniform water vapor barrier in which the ratio of the layered silicate mineral to the total nonvolatile components is 59.9% by weight, and the content of the swellable clay mineral is 56.0% by weight of the total weight of the layered silicate mineral A film dispersion was obtained.
  • Example 6 (Production of film) Using the obtained dispersion for water vapor barrier film, “preparation of film” was carried out in the same manner as in Example 6.
  • the film was composed of talc, montmorillonite and polyimide resin, and the ratio of the layered silicate mineral to the total weight was 59.
  • Example 9 (Preparation of non-swellable clay mineral dispersion)
  • talc Tetramethylcellulose
  • polyamic acid N-methyl-2 The ratio of talc to the total nonvolatile components was 58.8% by weight, except that 30.0 g of pyrrolidone solution ("U-Varnish A” manufactured by Ube Industries, Ltd.) was used.
  • U-Varnish A pyrrolidone solution
  • Example 6 (Preparation of water vapor barrier film dispersion) The same as Example 6 except that 45.0 g of the swellable clay mineral dispersion prepared in “Preparation of dispersion for water vapor barrier film” in Example 6 and 19.0 g of the non-swellable clay mineral dispersion were used. A uniform water vapor barrier film in which the ratio of the layered silicate mineral to the total nonvolatile components is 68.2% by weight and the content of the swellable clay mineral is 33.3% by weight of the total weight of the layered silicate mineral A dispersion was obtained.
  • Example 6 Using the obtained dispersion for water vapor barrier film, “preparation of film” was carried out in the same manner as in Example 6.
  • the film was composed of talc, montmorillonite, and polyimide resin, and the ratio of the layered silicate mineral to the total weight was 68.
  • a water vapor barrier film having a thickness of 90 ⁇ m was obtained, in which the content of .2% by weight and the swellable clay mineral was 33.3% by weight of the total weight of the layered silicate mineral.
  • Example 10 (Preparation of water vapor barrier film dispersion) Except for using 76.0 g of the swellable clay mineral dispersion prepared in “Preparation of Water Vapor Barrier Film Dispersion” in Example 6 and 19.0 g of the non-swellable clay mineral dispersion of Example 9, Example 6
  • the ratio of the layered silicate mineral to the total nonvolatile components is 72.6% by weight, and the content of the swellable clay mineral is 46.0% by weight of the total weight of the layered silicate mineral.
  • a water vapor barrier film dispersion was obtained.
  • Example 6 (Production of film) Using the resulting dispersion for water vapor barrier film, “preparation of film” was carried out in the same manner as in Example 6.
  • the film was composed of talc, montmorillonite, and polyimide resin, and the ratio of the layered silicate mineral to the total weight was 72.
  • a water vapor barrier film having a thickness of 100 ⁇ m was obtained which was .6% by weight and the content of the swellable clay mineral was 46.0% by weight of the total weight of the layered silicate mineral.
  • Example 11 (Preparation of non-swellable clay mineral dispersion)
  • kaolin Imeris, “XP01-6100”, layer charge 0, instead of talc (Nippon Talc, “talc MS-K”)
  • talc Nippon Talc, “talc MS-K”
  • 4.0 g average particle size 1 ⁇ m
  • the ratio of kaolin to the total nonvolatile components was 39.6% by weight
  • the ratio of the nonvolatile components to the total amount of the dispersion was 27.
  • a uniform non-swellable clay mineral dispersion of 3% by weight was obtained.
  • Example 6 (Production of film) Using the resulting dispersion for water vapor barrier film, “preparation of film” was carried out in the same manner as in Example 6.
  • the film was composed of kaolin, montmorillonite, and polyimide resin, and the ratio of the layered silicate mineral to the total weight was 53.
  • a water vapor barrier film having a thickness of 100 ⁇ m was obtained, in which the content of the swellable clay mineral was 42.9% by weight and 42.9% by weight of the total weight of the layered silicate mineral.
  • Example 12 (Preparation of non-swellable clay mineral dispersion)
  • non-swelling mica Yamaguchi Mica, “SJ-010”
  • talc Nihon Talc, “Talc MS-K”
  • the ratio of the non-swellable mica to the total nonvolatile components was 39.6% by weight in the same manner as in Example 6 except that 4.0 g (layer charge 0.6 to 1.0, average particle diameter 10 ⁇ m) was used.
  • a uniform non-swellable clay mineral dispersion having a non-volatile component ratio of 27.3% by weight to the total amount of the dispersion was obtained.
  • Example 13 45 g of the lithium exchange clay and 2955 g of water obtained in “Preparation of lithium exchange clay” in Example 6 were placed in a 5000 mL plastic beaker and stirred to obtain a uniform dispersion. This was moved to six 500 mL airtight containers, and centrifuged at 8000 rpm for 10 minutes using a centrifuge (manufactured by Kubota Shoji Co., Ltd., high-speed, large-capacity cooling centrifuge MODEL7000), the precipitate was removed, and the supernatant was collected. When this supernatant was placed between two polarizing plates, an iridescent pattern (crossed Nicol transmitted light image) was observed, confirming that liquid crystal transition was exhibited.
  • a centrifuge manufactured by Kubota Shoji Co., Ltd., high-speed, large-capacity cooling centrifuge MODEL7000
  • the obtained supernatant was sufficiently dried in an oven and then crushed to obtain 25 g of lithium exchanged clay exhibiting liquid crystal transition properties. Thereafter, except for using the lithium exchanged clay exhibiting the liquid crystal transition property, the procedure from “Preparation of swellable clay mineral gel” to “Preparation of film” was performed in the same manner as in Example 6 and consisted of talc, montmorillonite and polyimide resin.
  • a water vapor barrier film having a thickness of 85 ⁇ m is obtained in which the ratio of the layered silicate mineral to the total weight is 53.4% by weight, and the content of the swellable clay mineral is 42.9% by weight of the total weight of the layered silicate mineral. It was.
  • Example 14 Except for using the lithium-exchanged clay exhibiting liquid crystal transition property obtained in Example 13, the same procedure as in Example 7 was followed until “preparation of film”, consisting of talc, montmorillonite, and polyimide resin, and layered with respect to the total weight. A 100 ⁇ m-thick water vapor barrier film having a silicate mineral ratio of 59.9% by weight and a swellable clay mineral content of 56.0% by weight of the total weight of the layered silicate mineral was obtained.
  • Comparative Example 1 4.4 g of talc (manufactured by Nippon Talc Co., Ltd., “Talc MS-K”) and N-methyl-2-pyrrolidone solution of 18.6% by weight polyamic acid (“U-Vanice A” manufactured by Ube Industries, Ltd.) 33 0.0 g is put in a plastic sealed container and stirred with a rotating and rotating mixer ("ARE-310", manufactured by Sinky Corporation) for 10 minutes in a mixing mode (2000 rpm) and in a defoaming mode (2200 rpm) for 10 minutes.
  • ARE-310 rotating and rotating mixer
  • a uniform non-swellable clay mineral dispersion having a talc ratio of 41.8% by weight and a non-volatile component ratio of 28.2% by weight to the total amount of the dispersion was obtained.
  • a film was prepared in the same manner as in Example 1 except that the thickness was 400 ⁇ m using a doctor blade without adding the swellable clay mineral dispersion, and the ratio of the layered silicate mineral to the total weight was A water vapor barrier film having a thickness of 41.8% by weight and containing no swellable clay mineral and having a thickness of 80 ⁇ m was obtained.
  • Example 2 The swellable clay mineral gel prepared in Example 1 was not prepared with a swellable clay mineral dispersion, but 4.4 g of talc (“Talc MS-K” manufactured by Nippon Talc Co., Ltd.) and 18.6% by weight.
  • N-methyl-2-pyrrolidone solution of polyamic acid Ube Industries, “U-Varnish A” 33.0 g, N-methyl-2-pyrrolidone 38.5 g, swellable clay mineral gel 11.0 g
  • a mixing mode 2000 rpm
  • a defoaming mode 2200 rpm
  • ARE-310 rotating and rotating mixer
  • Example 3 120 g of the swellable clay mineral dispersion prepared in Example 1 and 4.8 g of an N-methyl-2-pyrrolidone solution of 18.6% by weight polyamic acid (Ube Industries, “U-Varnish A”) are made of plastic. Remove from non-swelling clay minerals in a sealed container and stirred with a rotating / revolving mixer ("ARE-310", manufactured by Sinky Corporation) in mixing mode (2000 rpm) for 10 minutes and defoaming mode (2200 rpm) for 10 minutes. A water vapor barrier film dispersion was obtained. In the same manner as in Example 1, it was applied using a doctor blade to a thickness of 2000 ⁇ m and dried. However, many cracks occurred in the dried film, and a uniform film could not be obtained. The film thickness after drying was 40 ⁇ m, and the thickness did not change even after firing.
  • ARE-310 rotating / revolving mixer
  • Example 4 (Preparation of non-swellable clay mineral dispersion) Other than using 50.0 g of the non-swellable clay mineral dispersion prepared in Example 5 and 25.0 g of the swellable clay mineral dispersion prepared in “Preparation of Water Vapor Barrier Film Dispersion” in Example 1
  • the ratio of the layered silicate mineral to the total nonvolatile components was 23.7% by weight, and the content of the swellable clay mineral was 20.2% by weight of the total weight of the layered silicate mineral. A uniform dispersion was obtained.
  • “Film preparation” was carried out in the same manner as in Example 1, consisting of talc, montmorillonite and polyimide resin, the ratio of the layered silicate mineral to the total weight was 23.7% by weight, and the content of the swellable clay mineral was A film having a thickness of 80 ⁇ m, which is 20.2% by weight of the total weight of the layered silicate mineral, was obtained.
  • Example 2 A uniform non-swellable clay mineral dispersion was obtained in which the ratio of talc to the component was 89.9% by weight and the ratio of the nonvolatile component to the total amount of the dispersion was 47.9% by weight.
  • Example was used except that 40.0 g of the non-swellable clay mineral dispersion and 40.0 g of the swellable clay mineral dispersion prepared in “Preparation of water vapor barrier film dispersion” in Example 1 were used.
  • the ratio of the layered silicate mineral to the total nonvolatile components is 90.9% by weight, and the content of the swellable clay mineral is 9.4% by weight of the total weight of the layered silicate mineral.
  • a dispersion was obtained.
  • the ratio of the non-swellable clay mineral to the total nonvolatile components is 50.0% by weight, and the ratio of the nonvolatile components to the total amount of the dispersion is 31.4% by weight. % Uniform non-swellable clay mineral dispersion.
  • a film was prepared in the same manner as in Example 1 except that the thickness was 400 ⁇ m using a doctor blade without adding the swellable clay mineral dispersion, and the ratio of the layered silicate mineral to the total weight was A water vapor barrier film having a thickness of 65 ⁇ m and containing no swellable clay mineral was obtained.
  • VTM-0 is the highest flammability classification, and flame retardancy decreases as VTM-1 and VTM-2. However, those not corresponding to any of the ranks of VTM-0 to VTM-2 were rejected.
  • the obtained water vapor barrier film was subjected to a bending resistance (cylindrical mandrel method) test by a method based on JIS-K5600-5-1.
  • a mandrel having a diameter of 1 to 5 mm was used, and one mandrel was tested in order from a large diameter mandrel to a small mandrel, and the mandrel diameter at which film cracking or cracking first occurred was shown.
  • the film in which no crack was generated even with a 1 mm mandrel was set to 1 mm or less.
  • FIG. 3 shows electron micrographs of cross sections of the films prepared in Examples 1 to 4 and Comparative Example 1.
  • (a) is the cross section of the film produced in Example 1
  • (b) is the cross section of the film produced in Example 2
  • (c) is the cross section of the film produced in Example 3
  • (d) is The cross section of the film produced in Example 4
  • (e) is the cross section of the film produced in Comparative Example 1.
  • steam barrier film which is excellent in a softness
  • a dispersion for a water vapor barrier film used in the production of the water vapor barrier film, a method for producing the water vapor barrier film, a solar cell backsheet using the water vapor barrier film, the water vapor barrier film, or the A solar cell using the solar cell backsheet can be provided.
  • the water vapor barrier film of the present invention is a film having sufficient mechanical strength and excellent flexibility, such as members of various electric materials and mechanical materials, for example, LCD substrate films, organic EL substrate films, Substrate film for electronic paper, sealing film for electronic device, film for PDP, film for LED, film for IC tag, back sheet for solar cell, protective film for solar cell, optical communication member, etc.
  • Gas barrier seal tape for a gas species including, multilayer packaging film, anti-oxidation coating, the corrosion barrier coating, weather-resistant film, incombustible coating, heat-resistant film, chemical resistance coating, etc., can be used in many products. We can provide new materials in these fields and contribute to the development of new technologies.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本発明は、柔軟性及び耐湿性に優れ、高い機械的強度を有する水蒸気バリアフィルムを提供することを目的とする。また、本発明は、該水蒸気バリアフィルムの製造に用いる水蒸気バリアフィルム用分散液、該水蒸気バリアフィルムの製造方法、該水蒸気バリアフィルムを用いてなる太陽電池バックシート、該水蒸気バリアフィルム又は該太陽電池バックシートを用いてなる太陽電池を提供することを目的とする。 本発明は、層状ケイ酸塩鉱物と合成樹脂とを含有する水蒸気バリアフィルムであって、前記層状ケイ酸塩鉱物として非膨潤性粘土鉱物と膨潤性粘土鉱物とを含有し、前記層状ケイ酸塩鉱物の含有量が水蒸気バリアフィルムの全重量に対して30重量%以上90重量%以下であり、かつ、40℃、90%RHの環境下での水蒸気透過度が0.5g/m・day以下である水蒸気バリアフィルムである。

Description

水蒸気バリアフィルム、水蒸気バリアフィルム用分散液、水蒸気バリアフィルムの製造方法、太陽電池バックシート、及び、太陽電池
本発明は、高い機械的強度を有し、柔軟性、難燃性、及び、水蒸気バリア性に優れる水蒸気バリアフィルムに関する。また、本発明は、該水蒸気バリアフィルムの製造に用いる水蒸気バリアフィルム用分散液、該水蒸気バリアフィルムの製造方法、該水蒸気バリアフィルムを用いてなる太陽電池バックシート、該水蒸気バリアフィルム又は該太陽電池バックシートを用いてなる太陽電池に関する。
近年、電子機器分野で小型化、薄膜化、高機能化に伴いフレキシブルかつ耐熱性、耐薬品性、耐加水分解性、難燃性、不燃性、寸法安定性、水蒸気バリア性に優れた、高機能なフィルムが求められている。
これまで、電子デバイス用のフィルムは、主に、基材として有機高分子材料を用いて製造されてきた。ガスバリア性を有するフィルムとしては、高分子樹脂フィルムを基材として、該高分子樹脂フィルムの片面又は両面に、ガスバリア層を形成したフィルムが一般的であり、該ガスバリア層としては、酸化アルミ、酸化ケイ素、窒化ケイ素等からなるものが、CVD法、PVD法等の様々な方法により形成されている。
耐熱性フィルムとしては、例えば、フッ素樹脂を用いたフィルムや薄板ガラスが開発されているが、フッ素樹脂は高価である上、寸法安定性に乏しく、水蒸気バリア性も低い。更に、最高使用温度が200℃前後と低く、高温での使用ができないという欠点がある。有機高分子材料の耐熱性は、最も高いエンジニアリングプラスチックで約350℃であり、更に高い温度でのガスバリア、水蒸気バリアが必要な用途には使用できなかった。また、薄板ガラスは安価で耐熱性や水蒸気バリア性は非常に優れるものの、柔軟性が充分ではなかった。そのため、高温におけるガスバリア性、水蒸気バリア性を有する材料としては、無機系シート又は金属シートを用いなければならなかった。
無機系シートは、マイカやバーミキュライト等の天然又は合成鉱物をシート状に加工したものであり、これらは、高い耐熱性を有し、グランドパッキンとして、一応のガスシール部材として用いられている。しかし、これらの無機シートは、緻密に成型することが困難であり、微小なガス分子の流れるパスを完全に遮断できず、ガスバリア性がそれほど高くはなく、柔軟性もないという問題がある。
また、金属シートは、ガスバリア性には優れているものの、耐候性、電気絶縁性、耐薬品性等に難点があり、その用途が限られる。例えば、太陽電池等過酷な環境下で用いられるデバイスの保護膜や、バックシートでは、耐紫外線、耐湿、耐熱、耐塩害等の耐候性や、水蒸気バリア性、電気絶縁性、機械的強度、耐薬品性、封止材との接着性等が要求される。ガスバリア性に対しても、従来材料より、厳しい環境下で用いることが可能なフィルムが求められている。
一般的に多く用いられているポリイミドフィルム等のプラスチックフィルムは柔軟であるものの、水蒸気バリア性や耐熱性に乏しく、近年、合成樹脂と無機化合物との混合によって更に高機能なフィルムを作製する試みが多くなされている。しかしながら、無機化合物の配合量を増加させるにつれて耐熱性が向上するものの、反対に柔軟性や機械的強度に劣るものとなるため、柔軟性、水蒸気バリア性に優れ、高い機械的強度を有するフィルムを製造することは困難であった。
また、ポリイミド樹脂に粘土等の無機化合物を配合したフィルムが報告されているが、無機化合物は一般的にポリイミド樹脂と均一に混合されず、無機化合物が分離するため均一なフィルムが得られない。特許文献1~4には、ポリイミドと無機化合物の均一な分散液を得るために、添加物として粘土の層間イオンを有機イオンに交換したものを調製して作製したフィルムが開示されているが、粘土に有機物を含むため、作製されたフィルムは耐熱性が低く、炎にさらすと燃焼するという欠点がある。更に、水蒸気バリア性が高くないという欠点もある。
また、特許文献5、6には、不揮発成分がフィルム用分散液の全体量の5重量%以下という希薄な分散液を用いて作製したフィルムが開示されているが、無機化合物含量が全不揮発成分の8重量%以下のフィルムしか得られておらず、有機成分が大多数を占めるため、耐熱性に劣るものであった。
更に、特許文献7、8には、無機化合物の含有量が全不揮発成分に対して80重量%以上であるフィルムが開示されている。しかしながら、得られたフィルムは破れやすく、機械的強度が低いためハンドリング性が悪く、扱いにくいという問題がある。さらに、フィルムに厚みを持たせることが困難で、40μmよりも厚いものを作製しようとすると、亀裂や割れが生じるという欠点があった。
一方、特許文献9には、少なくとも2層以上の基材をポリウレタン系接着剤にて貼り合わせた積層体からなる太陽電池バックシートにおいて、85℃、85%RHでの促進試験において、ポリウレタン系接着剤の耐久性を向上する技術が開示されている。
しかしながら、特許文献9に開示されている技術を用いても、接着剤を用いるため、耐久性は充分ではなかった。
特開2003-340919号公報 特開2002-322292号公報 特開2003-342471号公報 特許第3744634号公報 特表2010-533213号公報 特表2010-533362号公報 特開2006-77237号公報 特開2011-1237号公報 特開2008-4691号公報
本発明は、高い機械的強度を有し、柔軟性、難燃性、及び、水蒸気バリア性に優れる水蒸気バリアフィルムを提供することを目的とする。また、本発明は、該水蒸気バリアフィルムの製造に用いる水蒸気バリアフィルム用分散液、該水蒸気バリアフィルムの製造方法、該水蒸気バリアフィルムを用いてなる太陽電池バックシート、該水蒸気バリアフィルム又は該太陽電池バックシートを用いてなる太陽電池を提供することを目的とする。
本発明は、層状ケイ酸塩鉱物と合成樹脂とを含有する水蒸気バリアフィルムであって、前記層状ケイ酸塩鉱物として非膨潤性粘土鉱物と膨潤性粘土鉱物とを含有し、前記層状ケイ酸塩鉱物の含有量が水蒸気バリアフィルムの全重量に対して30重量%以上90重量%以下であり、かつ、40℃、90%RHの環境下での水蒸気透過度が0.5g/m・day以下である水蒸気バリアフィルムである。
以下に、本発明を詳述する。
本発明者らは、非膨潤性粘土鉱物と膨潤性粘土鉱物とを含有する層状ケイ酸塩鉱物を特定量配合することにより、高い機械的強度を有し、柔軟性、難燃性、及び、水蒸気バリア性に優れる水蒸気バリアフィルムを得ることができることを見出し、本発明を完成させるに至った。
これまでの水蒸気バリアフィルムは、水蒸気バリア性を発揮させるために膨潤性粘土鉱物を用いていた。膨潤性粘土鉱物は層間イオンを有するために分散媒中で膨潤と剥離をし、分散媒除去中に徐々に積層し、水蒸気等のガスバリア性を発揮することが知られている。しかしながら、膨潤性粘土鉱物を用いたフィルム、例えば、膨潤性粘土鉱物と非膨潤性粘土鉱物と合成樹脂とのコンポジットフィルムは、均一な分散液の調製が難しく、均一なフィルムの形成が困難であった。また、通常、膨潤性粘土鉱物を用いたフィルムは厚くすることが困難であり、製膜過程で亀裂や割れが生じるため40μm以上の厚みのものを作製することが困難であった。
また、非膨潤性粘土鉱物は通常、板状結晶が高配向したフィルムを得ることができないため、非膨潤性粘土鉱物を用いて高い水蒸気バリア性を有するフィルムを作製することは困難であった。そこで、本発明者らは、まず、膨潤性粘土鉱物と非膨潤性粘土鉱物とを特定量含有する均一な分散液を、特定の混合方法を用いることにより調製できることを見出した。更に、驚くべきことに、非膨潤性粘土鉱物単一では板状結晶が高配向したフィルムにならないが、この均一な分散液を用いることで、非膨潤性粘土鉱物を含めてすべての粘土鉱物が高配向したフィルムとなり、高い水蒸気バリアを発揮することを見出した。これにより、高い機械的強度を有し、柔軟性、難燃性、及び、水蒸気バリア性に優れる水蒸気バリアフィルムを開発することに成功した。
本発明の水蒸気バリアフィルムは、層状ケイ酸塩鉱物を含有する。
本発明の水蒸気バリアフィルムは、前記層状ケイ酸塩鉱物として、非膨潤性粘土鉱物と膨潤性粘土鉱物とを含有する。
なお、本明細書において、前記「非膨潤性」とは、水や有機溶媒に加えた際にほとんど膨潤しないことをいう。具体的には、膨潤力が5mL/2g未満であるものをいう。
前記「膨潤力」は、日本ベントナイト工業会標準試験方法JBAS-104-77、ベントナイト(粉状)の膨潤力測定方法に準じた方法で、水100mLの入った100mL容メスシリンダーに粘土鉱物の粉末2.0gを少量ずつ入れて自然沈降させ膨潤した粘土鉱物の見かけ容積を読むことで測定することができる。
前記非膨潤性粘土鉱物を含有せず、膨潤力が5mL/2g以上の膨潤性粘土鉱物のみを含有する場合、分散媒への分散性が悪くなり、フィルムが表面の平坦性に劣るものとなる。前記非膨潤性粘土鉱物の膨潤力の好ましい上限は4mL/2g、より好ましい上限は3mL/2gである。特に限定されるわけではないが、実用上の観点から、好ましい下限は0.5mL/2gである。
前記非膨潤性粘土鉱物としては、例えば、天然物又は合成物の雲母、タルク、カオリン、パイロフィライト等が挙げられる。なかでも、得られるフィルムの機械的強度や水蒸気バリア性の観点から、層電荷が0である粘土鉱物が好ましく、タルク、カオリン、パイロフィライトからなる群から選択される少なくとも一種がより好ましい。前記非膨潤性粘土鉱物は、単独で用いてもよいし、2種以上を併用してもよい。
本明細書において、前記「膨潤性」とは、水や有機溶媒に加えた際に膨潤することをいう。前記膨潤性粘土鉱物の層間にはナトリウムイオン等のイオンが存在し、それらのイオンと溶媒の親和力により膨潤性粘土鉱物は膨潤する。具体的には、上述した「膨潤力」が5mL/2g以上であるものをいう。
前記膨潤性粘土鉱物を含有せず、膨潤力が5mL/2g未満の非膨潤性粘土鉱物のみを含有する場合、得られるフィルム中の粘土鉱物の積層化が悪くなり、水蒸気透過度が大きくなる。前記膨潤性粘土鉱物の膨潤力の好ましい下限は18mL/2g、より好ましい下限は50mL/2g、更に好ましい下限は80mL/2gである。特に限定されるわけではないが、実用上の観点から、好ましい上限は105mL/2gである。
前記膨潤性粘土鉱物としては、例えば、バーミキュライト、モンモリロナイト、バイデライト、サポナイト、ヘクトライト、スチーブンサイト、マガディアイト、アイラライト、カネマイト、イライト、セリサイト等が挙げられる。また、市販品としては、例えば、ソマシフ(コープケミカル社製)、クニピア(クニミネ工業社製)等が挙げられ、クニピアが好ましく用いられる。なかでも、得られるフィルムの平滑性や水蒸気バリア性の観点から、層電荷が1/2単位胞あたり0.2~0.6である粘土鉱物が好ましく、モンモリロナイト、サポナイト、ヘクトライト、及び、スチーブンサイトからなる群から選択される少なくとも一種がより好ましい。前記膨潤性粘土鉱物は、単独で用いてもよいし、2種以上を併用してもよい。
前記膨潤性粘土鉱物は、分散液の分散性を向上させることを目的として、シリル化剤と反応させて変性したものであることが好ましい。
前記シリル化剤としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、プロピルトリメトキシシラン、ブチルトリメトキシシラン、ヘキシルトリメトキシシラン、オクチルトリメトキシシラン、ドデシルトリメトキシシラン、オクタデシルトリメトキシシラン等が挙げられる。
前記膨潤性粘土鉱物は、膨潤性や耐水性を向上させることを目的として、層間陽イオンを交換したものであることが好ましい。
前記層間陽イオンとしては、例えば、ナトリウムイオン、リチウムイオン、マグネシウムイオン、カリウムイオン、カルシウムイオン等の金属イオン、アンモニウムイオン化合物、ホスホニウムイオン化合物等のオニウムイオン、水素イオン等に交換することが好ましく、層間イオンが1価である、ナトリウムイオン、リチウムイオン、カリウムイオン、アンモニウムイオン化合物、ホスホニウムイオン化合物、水素イオン等がより好ましい。耐水性の効果を高める観点から、リチウムイオンに交換することが更に好ましい。
前記層状ケイ酸塩鉱物の平均粒子径によっても、得られる水蒸気バリアフィルムの性質が変わるため、前記層状ケイ酸塩鉱物は、粒子径を選択した上で使用することが好ましい。 
前記膨潤性粘土鉱物の平均粒子径の好ましい下限は0.01μm、好ましい上限は50μmである。前記膨潤性粘土鉱物の平均粒子径が0.01μm未満であると、フィルム中の粘土鉱物の積層化が悪くなり、水蒸気透過度が大きくなることがある。前記膨潤性粘土鉱物の平均粒子径が50μmを超えると、得られるフィルムが表面の平坦性に劣るものとなることがある。前記膨潤性粘土鉱物の平均粒子径のより好ましい下限は0.05μm、より好ましい上限は20μm、更に好ましい下限は0.1μm、更に好ましい上限は15μmである。
また、前記非膨潤性粘土鉱物の平均粒子径の好ましい下限は0.1μm、好ましい上限は50μmである。前記非膨潤性粘土鉱物の平均粒子径が0.1μm未満であると、得られるフィルムが機械的強度に劣るものとなることがある。前記非膨潤性粘土鉱物の平均粒子径が50μmを超えると、得られるフィルムが表面の平坦性に劣るものとなることがある。前記非膨潤性粘土鉱物の平均粒子径のより好ましい下限は0.2μm、より好ましい上限は20μm、更に好ましい下限は0.5μm、更に好ましい上限は15μmである。
なお、前記膨潤性粘土鉱物、前記非膨潤性粘土鉱物の平均粒子径は、レーザー回折式粒度分布計等を用いて粒度分布を測定することにより求めることができる。
前記層状ケイ酸塩鉱物の含有量は、水蒸気バリアフィルムの全重量に対して、下限が30重量%、上限が90重量%である。前記層状ケイ酸塩鉱物の含有量が30重量%未満であると、得られるフィルムの水蒸気透過度が高くなるだけでなく、耐熱性も悪くなる。前記層状ケイ酸塩鉱物の含有量が90重量%を超えると、得られるフィルムが機械的強度に劣るものとなる。前記層状ケイ酸塩鉱物の含有量の好ましい下限は35重量%、好ましい上限は85重量%、より好ましい下限は40重量%、より好ましい上限は80重量%、更に好ましい下限は50重量%、更に好ましい上限は70重量%、特に好ましい下限は60重量%である。
前記膨潤性粘土鉱物の含有量は、層状ケイ酸塩鉱物全重量に対して、好ましい下限が2重量%、好ましい上限が80重量%である。前記膨潤性粘土鉱物の含有量が2重量%未満であると、得られるフィルムの水蒸気透過度が高くなることがある。前記膨潤性粘土鉱物の含有量が80重量%を超えると、得られるフィルムが機械的強度に劣るものとなることがある。前記膨潤性粘土鉱物の含有量のより好ましい下限は5重量%、より好ましい上限は70重量%、更に好ましい下限は10重量%、更に好ましい上限は60重量%、特に好ましい下限は20重量%、特に好ましい上限は50重量%である。
即ち、前記非膨潤性粘土鉱物と前記膨潤性粘土鉱物との比は、重量比で98:2~20:80であることが好ましい。前記非膨潤性粘土鉱物の比率が20%未満であると、得られるフィルムが機械的強度に劣るものとなることがある。前記非膨潤性粘土鉱物の比率が98%を超えると、得られるフィルムの水蒸気透過度が高くなることがある。
本発明の水蒸気バリアフィルムは、合成樹脂を含有する。
前記合成樹脂は特に限定されず、例えば、ポリイミド樹脂、ポリアミドイミド樹脂、アルキド樹脂、ポリウレタン樹脂、エポキシ樹脂、フッ素樹脂、アクリル樹脂、メタクリル樹脂、フェノール樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリビニル樹脂、メラミン樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリエーテルイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリベンゾオキサゾール樹脂、ポリベンゾイミダゾール樹脂等が挙げられる。なかでも、耐熱性の観点から、前記合成樹脂は、耐熱性合成樹脂が好ましく、スーパーエンジニアリングプラスチック(スーパーエンプラ)が好ましい。
前記耐熱性合成樹脂としては、例えば、ポリイミド樹脂、ポリアミドイミド樹脂、フッ素樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリエーテルイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリベンゾオキサゾール樹脂、ポリベンゾイミダゾール樹脂等が挙げられる。なかでも、得られる不燃フィルムの製膜性、耐熱性、及び、機械的強度が特に優れるものとなることから、ポリイミド樹脂及び/又はポリアミドイミド樹脂が好適に使用される。
前記ポリイミド樹脂は、下記式(1)の繰り返し構造を有する化合物であり、前記ポリアミドイミド樹脂は、下記式(2)の繰り返し構造を有する化合物である。
Figure JPOXMLDOC01-appb-C000001
式(1)中、Rは4価であり、ベンゼン環を一つ又は二つ有する有機基である。なかでも、Rは下記式(3)に示す構造であることが好ましく、前記ポリイミド樹脂は、Rとして下記式(3)に示す構造を単独で有するものであってもよいし、2種類以上有する共重合体であってもよい。
Figure JPOXMLDOC01-appb-C000002
式(2)中、Rは3価であり、ベンゼン環を一つ又は二つ有する有機基である。なかでも、Rは下記式(4)に示す構造であることが好ましく、前記ポリアミドイミド樹脂は、Rとして下記式(4)に示す構造を単独で有するものであってもよいし、2種類以上有する共重合体であってもよい。
Figure JPOXMLDOC01-appb-C000003
式(1)及び式(2)中、Rは2価でありベンゼン環を一つ又は二つ有する有機基である。なかでも、Rは下記式(5)に示す構造であることが好ましく、前記ポリイミド樹脂及び前記ポリアミドイミド樹脂は、Rとして下記式(5)に示す構造を単独で有するものであってもよいし、2種類以上有する共重合体であってもよい。
Figure JPOXMLDOC01-appb-C000004
なかでも、得られる水蒸気バリアフィルム支持層が安価で機械的強度に優れるものとなることから、R、R、及び、Rは、下記式(6)に示す構造であることが好ましい。前記ポリイミド樹脂は、R、Rとして下記式(6)に示す構造を単独で有するものであってもよいし、2種類以上有する共重合体であってもよい。また、前記ポリアミドイミド樹脂は、R、Rとして下記式(6)に示す構造を単独で有するものであってもよいし、2種類以上有する共重合体であってもよい。
Figure JPOXMLDOC01-appb-C000005
本発明の水蒸気バリアフィルムは、機械的強度を上げるため、シランカップリング剤、チタネートカップリング剤等のカップリング剤を含有していてもよい。
前記シラン系カップリング剤としては、例えば、アミノ系シランカップリング剤、ウレイド系シランカップリング剤、ビニル系シランカップリング剤、メタクリル系シランカップリング剤、エポキシ系シランカップリング剤、メルカプト系シランカップリング剤及びイソシアネート系シランカップリング剤等が挙げられる。
前記チタネート系カップリング剤としては、例えば、少なくとも炭素数1~60のアルキレート基を有するチタネート系カップリング剤、アルキルホスファイト基を有するチタネート系カップリング剤、アルキルホスフェート基を有するチタネート系カップリング剤もしくはアルキルパイロホスフェート基を有するチタネート系カップリング剤等が挙げられる。
前記カップリング剤は、事前に層状ケイ酸塩鉱物と混合させて作用させておいてもよいし、後述する水蒸気バリアフィルム用分散液に混合してもよい。
前記カップリング剤の使用量は、層状ケイ酸塩鉱物の全重量に対して好ましい下限は0.1重量%、好ましい上限は3.0重量%である。前記カップリング剤の使用量が0.1重量%未満であると、カップリング剤を使用する効果が充分に発揮されないことがある。前記カップリング剤を、3.0重量%を超えて使用しても、使用量に見合った効果が得られないことがある。前記カップリング剤の使用量のより好ましい下限は0.5重量%、より好ましい上限は2.0重量%である。
本発明の水蒸気バリアフィルムの厚みは、10μm以上であることが好ましい。水蒸気バリアフィルムの厚みが10μm未満であると、水蒸気バリア性が低下するだけでなく、機械的強度が低くなり、取り扱いが困難になることがある。水蒸気バリアフィルムの厚みは、20μm以上であることがより好ましく、40μm以上であることが更に好ましく、45μm以上であることが更により好ましく、50μm以上であることが特に好ましい。
また、本発明の水蒸気バリアフィルムの厚みは、250μm以下であることが好ましい。水蒸気バリアフィルムの厚みが250μmより大きいと、硬くなり曲げ強度が低下することがある。水蒸気バリアフィルムの厚みは200μm以下であることがより好ましい。
本発明の水蒸気バリアフィルムは、40℃、90%RHの環境下での水蒸気透過度が0.5g/m・day以下である。前記40℃、90%RHでの水蒸気透過度が0.5g/m・dayを超えると、電気材料等の用途に用いることが困難となる。前記40℃、90%RHでの水蒸気透過度は、0.2g/m・day以下であることが好ましく、0.1g/m・day以下であることがより好ましい。
本発明の水蒸気バリアフィルムは、UL94規格薄手材料垂直燃焼試験(VTM試験)において、燃焼性分類がVTM-0であることが好ましい。なお、前記VTM試験は、フィルム試験片を円筒状に巻き、クランプに垂直に取付け、20mmの大きさの炎による3秒間接炎を2回行い、その燃焼挙動により表1に示した燃焼性分類の判定を行うものである。
本発明の水蒸気バリアフィルムにおいて、UL94規格VTM試験を行う際のフィルム厚みは200μm以下であることが好ましく、150μm以下であることがより好ましい。 
Figure JPOXMLDOC01-appb-T000006
また、本発明の水蒸気バリアフィルムは、UL94規格垂直燃焼試験(V試験)において、燃焼性分類がV-0であることが好ましい。なお、前記V試験は、試験片クランプに垂直に取付け、20mmの大きさの炎による10秒間接炎を2回行い、その燃焼挙動により表2に示した燃焼性分類の判定を行うものである。
Figure JPOXMLDOC01-appb-T000007
更に、水蒸気バリアフィルムは、UL94規格125mm垂直燃焼試験(5V試験)において、燃焼性分類が5V-A又は5V-Bであることが好ましい。なお、前記5V試験は、短冊試験片をクランプに垂直に取付け、125mmの大きさの炎による5秒間接炎を5回行い、その燃焼挙動により燃焼性分類の判定を行い、更に、平板試験片を水平に保持し、下方から125mmの大きさの炎の5秒間接炎を5回行い、その燃焼挙動により表3に示した燃焼性分類の判定を行うものである。
Figure JPOXMLDOC01-appb-T000008
本発明の水蒸気バリアフィルムは、国土交通省令第151号「鉄道に関する技術上の基準を定める法令」に基づく鉄道車両用材料燃焼試験の「不燃性」に該当するものであることが好ましい。
本発明の水蒸気バリアフィルムは、ISO5660-1に準拠したコーンカロリーメーターによる発熱性試験において、加熱開始後20分間の総発熱量がサンプル面積に対して8MJ/m以下であり、加熱開始後20分間の最大発熱速度が、サンプル面積に対して300kW/m以下であり、かつ、試験開始から着火するまでの時間が60秒以上であることが好ましい。
本発明の水蒸気バリアフィルムの引裂強度は、25N/mm以上であることが好ましい。前記引裂強度が25N/mm未満であると、フィルムが破れやすくなり、取扱いが困難となる。前記引裂強度は、30N/mm以上であることがより好ましく、40N/mm以上であることが更に好ましい。
なお、本明細書において前記引裂強度は、JIS K7128-1に準拠した測定法によって求められる値である。
本発明の水蒸気バリアフィルムの引張強度は、25N/mm以上であることが好ましい。前記引張強度が25N/mm未満であると、フィルムが破れやすくなり、取扱いが困難となる。前記引張強度は、30N/mm以上であることがより好ましく、40N/mm以上であることが更に好ましい。
なお、本明細書において前記引張強度は、JIS K7127-1に準拠した測定法によって求められる値であり、引張強度試験機を用い、つかみ間隔80mm、引張速度20mm/分の条件で測定される。
本発明の水蒸気バリアフィルムは、JIS K5600-5-1(1999)に準拠した円筒形マンドレル法による耐屈曲性試験において、フィルムの割れの起こるマンドレル直径が20mm以下であることが好ましい。前記フィルムの割れの起こるマンドレル直径が20mmを超えると、柔軟性に劣るものとなることがある。前記フィルムの割れの起こるマンドレル直径は、15mm以下であることがより好ましく、12mm以下であることが更に好ましく、10mm以下であることが特に好ましい。
本発明の水蒸気バリアフィルムは、絶縁破壊電圧が20kV/mm以上であることが好ましい。前記絶縁破壊電圧が20kV/mm未満であると、電気材料等の用途に用いることが困難となる。前記絶縁破壊電圧は、25kV/mm以上であることがより好ましく、30kV/mm以上であることが更に好ましい。
本発明の水蒸気バリアフィルムは、IEC61730-2:2004 11.1項に準じた部分放電試験を行った際の部分放電電圧が少なくとも700V以上であることが好ましい。前記部分放電電圧が700V以下であると、電解集中が起こりフィルムの局所的な劣化が起こるため、電気材料に用いることが困難となる。前記部分放電電圧は1000V以上が好ましく、1500V以上であることがより好ましく、2000V以上であることが更に好ましい。
本発明の水蒸気バリアフィルムにおける、40℃の水に24時間浸漬した後の吸水率は、2.0重量%以下であることが好ましい。前記吸水率が2.0重量%を超えると、電気材料等の用途に用いることが困難となる。前記吸水率は、1.0重量%であることがより好ましい。
本発明の水蒸気バリアフィルムにおける、40℃、RH90%の環境下に24時間放置した後の吸湿率は、2.0重量%以下であることが好ましい。前記吸湿率が2.0重量%を超えると、電気材料等の用途に用いることが困難となる。前記吸湿率は、1.0重量%以下であることがより好ましい。
本発明の水蒸気バリアフィルムは、85℃、85%RHの環境下に保管する耐候性試験で、少なくとも500時間保管しても表面や断面に変色や剥離の変化が無いことが好ましい。前記耐候性試験において、500時間以下で変化が現れるものは、太陽電池等、屋外用途での使用が困難となる。前記耐候性試験で表面や断面に変色や剥離の変化が現れる時間は、1000時間以上であることがより好ましく、2000時間以上であることが更に好ましく、3000時間以上であることが特に好ましい。
本発明の水蒸気バリアフィルムの製造に用いる水蒸気バリアフィルム用分散液であって、分散媒と、不揮発成分である層状ケイ酸塩鉱物並びに合成樹脂及び/又は合成樹脂の前駆体とを含有し、前記層状ケイ酸塩鉱物の含有量が不揮発成分の全重量に対して30重量%以上90重量%以下である水蒸気バリアフィルム用分散液もまた、本発明の1つである。 
本発明の水蒸気バリアフィルムは、分散媒と、膨潤性粘土鉱物とを含有する膨潤性粘土鉱物分散液を調製する工程1と、分散媒と、非膨潤性粘土鉱物と、合成樹脂及び/又は合成樹脂の前駆体とを含有する非膨潤性粘土鉱物分散液を調製する工程2と、膨潤性粘土鉱物分散液と非膨潤性粘土鉱物分散液とを混合し、本発明の水蒸気バリアフィルム用分散液を調製する工程3と、調製した水蒸気バリアフィルム用分散液を基板上に展開して静置する工程4と、基板上に展開した水蒸気バリアフィルム用分散液から分散媒を除去してフィルム状に成形する工程5とを有する方法により、製造することができる。このような水蒸気バリアフィルムの製造方法もまた、本発明の1つである。
膨潤性粘土鉱物分散液と、非膨潤性粘土鉱物分散液を混合することにより、本発明の水蒸気バリアフィルム用分散液を調製する本発明の水蒸気バリアフィルムの製造方法によれば、従来は困難であった、高い機械的強度を有し、柔軟性、難燃性、及び、水蒸気バリア性に優れる水蒸気バリアフィルムを製造することができる。
本発明の水蒸気バリアフィルムの製造方法は、分散媒と、膨潤性粘土鉱物とを含有する膨潤性粘土鉱物分散液を調製する工程1を有する。
前記工程1の膨潤性粘土鉱物分散液の調製において、膨潤性粘土鉱物と分散媒とを混合する前に、前記膨潤性粘土鉱物をシリル化剤と反応させて変性し、更に、層間陽イオンを交換することが好ましい。
前記膨潤性粘土鉱物をシリル化剤と反応させる方法としては、例えば、膨潤性粘土鉱物とシリル化剤とをボールミル処理する方法、自転公転ミキサーで混合する方法等が挙げられる。
前記膨潤性粘土鉱物の層間陽イオンを交換する方法としては、例えば、膨潤性粘土鉱物と交換する陽イオンを含有する水溶液とを振とうにより混合分散させる方法、攪拌機で撹拌する方法、自転公転ミキサーで混合分散させる方法等が挙げられる。
前記工程1の膨潤性粘土鉱物分散液の調製では、膨潤性粘土鉱物と分散媒とを混合することにより、膨潤性粘土鉱物がゲル化し、更に分散媒を加えることにより、膨潤性粘土鉱物分散液が得られる。前記工程1において、膨潤性粘土鉱物分散液とせずにゲル化した状態のまま用いると、得られる水蒸気バリアフィルム用分散液にダマが発生し、均一な水蒸気バリアフィルムを作製することができなくなる。
前記工程1において調製される膨潤性粘土鉱物分散液における前記膨潤性粘土鉱物の含有量は、膨潤性粘土鉱物分散液の全重量に対して、好ましい下限が1重量%、好ましい上限が20重量%である。前記膨潤性粘土鉱物の含有量が1重量%未満であると、分散媒が多くなり、分散媒の除去に時間を要することがある。前記膨潤性粘土鉱物の含有量が20重量%を超えると、水蒸気バリアフィルム用分散液の粘性が高くなり、製膜できなくなることがある。前記膨潤性粘土鉱物の含有量のより好ましい下限は1.5重量%、より好ましい上限は15重量%である。
前記膨潤性粘土鉱物分散液における分散媒としては、例えば、n-ペンタン、n-ヘキサン、n-オクタン、n-デカン等の炭化水素系溶媒や、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブタノール、tert-ブタノール、1-ペンタノール、2-ペンタノール、1-ヘキサノール、2-ヘキサノール、エチレングリコール、プロピレングリコール等のアルコール系溶媒や、アセトン、メチルエチルケトン、ジエチルケトン、メチル-イソブチルケトン、シクロヘキサノン等のケトン系溶媒や、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルプロピオンアミド、N-メチル-2-ピロリドン等のアミド系溶媒や、ジエチルエーテル、メチル-tertブチルエーテル、ジオキサン、テトラヒドロフラン、シクロペンチルメチルエーテル等のエーテル系溶媒や、ベンゼン、クロロベンゼン、o-ジクロロベンゼン、m-ジクロロベンゼン、p-ジクロロベンゼン、トルエン、o-キシレン、p-キシレン、エチルベンゼン、フェノール、p-クロロフェノール、o-クロロフェノール、o-クレゾール等のベンゼン系溶媒や、ジメチルスルホキシド、ジメチルスルホン、スルホラン等の含硫黄系溶媒、水等を使用することができる。なかでも、合成樹脂の溶解性が高くなることから、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、テトラヒドロフラン、スルホラン、及び、水からなる群のうち少なくとも一種であることが好ましい。これらの分散媒は単独で使用してもよいし、2種類以上を併用してもよい。
本発明の水蒸気バリアフィルムの製造方法は、分散媒と、非膨潤性粘土鉱物と、合成樹脂及び/又は合成樹脂の前駆体とを含有する非膨潤性粘土鉱物分散液を調製する工程2を有する。
前記工程2において調製される非膨潤性粘土鉱物分散液における不揮発成分の含有量は、非膨潤性粘土鉱物分散液の全重量に対して、好ましい下限が18重量%、好ましい上限が65重量%である。前記不揮発成分の含有量が18重量%未満であると、水蒸気バリアフィルム用分散液が不均一になり、均一なフィルムが得られなくなることがある。前記不揮発成分の含有量が65重量%を超えると、水蒸気バリアフィルム用分散液の粘度が高くなり、製膜できなくなることがある。前記不揮発成分の含有量のより好ましい下限は20重量%、より好ましい上限は55重量%である。
なお、本明細書において前記「不揮発成分」とは、常圧で沸点を持たない、又は、沸点が300℃以上の成分を意味する。不揮発成分の割合は、熱重量測定(TG)や示差熱-熱重量同時測定(TG-DTA)やエバポレーター等を用いて真空蒸発により分散媒を除去し、残存した固形物の重量から求めることができる。
本発明の水蒸気バリアフィルム用分散液における膨潤性粘土鉱物、非膨潤性粘土鉱物については、本発明の水蒸気バリアフィルムと同様のものであるため、その説明を省略する。 
本発明の水蒸気バリアフィルム用分散液における合成樹脂としては、上述した本発明の水蒸気バリアフィルムと同様のものが挙げられる。
前記合成樹脂の前駆体としては、例えば、ポリアミド酸が挙げられ、該ポリアミド酸をイミド化することにより、ポリイミド樹脂又はポリアミドイミド樹脂が得られる。
前記ポリアミド酸をイミド化する方法としては、例えば、ポリアミド酸を加熱閉環してイミド化する方法、ポリアミド酸を化学閉環してイミド化する方法が挙げられる。
前記ポリアミド酸を加熱閉環してイミド化する方法は特に限定されず、例えば、前記ポリアミド酸を分散媒中に分散させて、120~400℃で0.5~24時間加熱する方法が挙げられる。
前記非膨潤性粘土鉱物分散液における分散媒としては、前記膨潤性粘土鉱物分散液における分散媒と同様のものを用いることができる。
本発明の水蒸気バリアフィルムの製造方法は、膨潤性粘土鉱物分散液と非膨潤性粘土鉱物分散液とを混合し、本発明の水蒸気バリアフィルム用分散液を調製する工程3を有する。 
本発明の水蒸気バリアフィルム用分散液における前記層状ケイ酸塩鉱物の含有量は、不揮発成分の全重量に対して、下限が30重量%、上限が90重量%である。前記層状ケイ酸塩鉱物の含有量が30重量%未満であると、得られるフィルムの水蒸気透過度が高くなる。前記層状ケイ酸塩鉱物の含有量が90重量%を超えると、得られるフィルムが機械的強度に劣るものとなる。前記層状ケイ酸塩鉱物の含有量の好ましい下限は35重量%、好ましい上限は85重量%、より好ましい下限は40重量%、より好ましい上限は80重量%、更に好ましい下限は50重量%、更に好ましい上限は70重量%、特に好ましい下限は60重量%である。
前記工程4において、分散液を基板上に展開する方法としては、ドクターブレードやバーコーター等を用いて膜状に塗布する方法等が挙げられる。
前記工程4において、基板上に展開する分散液の厚みは100μm以上であることが好ましい。前記分散液の厚みが100μm未満であると、得られる水蒸気バリアフィルムが薄くなり、機械的強度が低くなることがある。前記分散液の厚みのより好ましい下限は150μm、更に好ましい下限は200μmである。
前記分散液を展開する基板としては、分散液と基板との相溶性や濡れ性、乾燥後の剥離性の観点から、ガラス製、ポリエチレンテレフタレート製、ポリイミド製、ポリエチレン製、又は、ポリプロピレン製のものが好ましい。
前記工程5において、基板上に展開した水蒸気バリアフィルム用分散液から分散媒を除去する方法としては、種々の固液分離方法、例えば、遠心分離、ろ過、真空乾燥、凍結真空乾燥、加熱蒸発法や、これらの方法の組み合わせが可能である。これらの方法のうち、例えば、分散液を容器に流し込む加熱蒸発法を用いる場合、基板上に塗布された分散液を、水平を保った状態で、強制送風式オーブンで20~150℃の温度条件下、好ましくは、30~120℃の温度条件下で0.5~24時間程度、好ましくは2~12時間乾燥することにより、フィルムが得られる。
なお、作製するフィルムの欠陥を無くす観点から、前記工程5において、分散媒を除去する際の温度は150℃以下であることが好ましい。
本発明の水蒸気バリアフィルム用分散液に合成樹脂の前駆体を配合した場合は、得られたフィルムを更に電気炉等を使用し加熱することにより、水蒸気バリアフィルムを得ることができる。具体的には例えば、合成樹脂の前駆体としてポリアミド酸を配合した場合、前記で得られたフィルムを120~400℃で0.5~24時間熱処理することにより、水蒸気バリアフィルムを得ることができる。
本発明の水蒸気バリアフィルムは、柔軟性、耐湿性、及び、高い機械的強度を有することから、太陽電池バックシートに使用することができる。このような太陽電池バックシートもまた、本発明の1つである。
本発明の水蒸気バリアフィルム又は本発明の太陽電池バックシートを用いてなる太陽電池もまた、本発明の1つである。本発明の水蒸気バリアフィルム及び本発明の太陽電池バックシートは柔軟性、耐湿性、及び、高い機械的強度を有するため、これを用いた本発明の太陽電池は、耐久性、耐候性に優れるものとなる。また、通常、太陽電池バックシートは、複数の樹脂層からなる多層構造を有するため、長期に亙って使用すると樹脂層間を接着する接着剤層等が劣化するという問題があった。しかしながら、本発明の水蒸気バリアフィルムは単層または2層以上積層させ一体化した積層体で太陽電池バックシートに用いることができるため、このような太陽電池の経年劣化を抑制することができる。
本発明の太陽電池の一例を表す断面模式図を図1に示す。
図1に示すように、本発明の太陽電池1は、光起電力により光エネルギーを電気エネルギーに変換する太陽電池素子2を有しており、該太陽電池素子2は封止剤3によって封止されている。また、本発明の太陽電池1は、太陽光を受ける側の表面に光透過性基板4を有し、光透過性基板4と反対側の面に、本発明の太陽電池バックシート5を有する。
また、本発明の太陽電池の別の一例を表す断面模式図を図2に示す。
図2では、図1と同様に、本発明の太陽電池1は、太陽電池素子2が封止剤3によって封止されている。本発明の太陽電池1は、太陽光を受ける側の表面に光透過性基板4を有し、光透過性基板4と反対側の面に、本発明の水蒸気バリアフィルム6を有する。
前記太陽電池素子2としては、光起電力により光エネルギーを電気エネルギーに変換できるものであれば特に限定されず、例えば、単結晶シリコン、多結晶シリコン、アモルファスシリコン、化合物半導体(3-5族、2-6族、その他)等を用いることができ、なかでも、多結晶シリコン、アモルファスシリコン、CIGS(銅、インジウム、ガリウム、セレン)が好ましい。
前記封止剤3としては、例えば、エチレン-酢酸ビニル共重合体、エチレン-脂肪族不飽和カルボン酸共重合体、エチレン-脂肪族カルボン酸エステル共重合体、あるいはこれらのけん化物等を含む封止剤が挙げられる。
前記光透過性基板4は太陽電池1の太陽光を受ける側の最表層に位置するため、透明性に加え、耐候性、撥水性、耐汚染性、機械強度等に優れることが好ましい。
前記光透過性基板4の材料としては、ポリエステル樹脂、フッ素樹脂、アクリル樹脂、エチレン-酢酸ビニル共重合体等からなる樹脂製の基板や、ガラス基板等が挙げられ、なかでも、耐候性及び耐衝撃性に優れ、安価に作製することができることからガラス基板が好ましい。また、特に耐侯性が優れることから、フッ素樹脂も好適に用いられる。
本発明の太陽電池1を製造する方法は特に限定されないが、例えば、光透過性基板4、太陽電池素子2が封止された封止剤3、本発明の太陽電池バックシート5の順に重ねて真空ラミネートする方法や、光透過性基板4、封止剤3、本発明の水蒸気バリアフィルム6上に形成された太陽電池素子2の順に重ねて真空ラミネートする方法等が挙げられる。
本発明によれば、柔軟性及び耐湿性に優れ、高い機械的強度を有する水蒸気バリアフィルムを提供することができる。また、本発明によれば、該水蒸気バリアフィルムの製造に用いる水蒸気バリアフィルム用分散液、該水蒸気バリアフィルムの製造方法、該水蒸気バリアフィルムを用いてなる太陽電池バックシート、該水蒸気バリアフィルム又は該太陽電池バックシートを用いてなる太陽電池を提供することができる。
本発明の太陽電池の一例を表す断面模式図である。 本発明の太陽電池の別の一例を表す断面模式図である。 実施例1~4及び比較例1で作製したフィルムの断面の電子顕微鏡写真である。
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。
(実施例1)
(リチウム交換変性粘土の作製)
天然の精製ベントナイトであり、モンモリロナイト(1/2単位胞あたりの層電荷0.2~0.6、平均粒子径1.1μm)を主成分とするクニピアF(クニミネ工業社製)を、オーブンで110℃以上の温度で、充分に乾燥させた。当該ベントナイト300gを、アルミナボールとともに、ボールミル用ポットに入れた。次に、ポット内にシリル化剤(チッソ社製、「サイラエースS330」)6gを加え、ポット内を窒素ガスに置換し、1時間ボールミル処理を行うことにより、変性粘土を得た。
得られた変性粘土24gを、0.5規定の硝酸リチウム水溶液400mLに加え、振とうにより、混合分散させた。2時間、振とう分散して、粘土の層間イオンをリチウムイオンに交換し、分散物を得た。
次に、得られた分散物について、遠心分離により固液分離し、得られた固体を280gの蒸留水と120gのエタノールの混合溶液で洗浄し、過剰の塩分を除いた。この洗浄操作を、二回以上繰り返した。得られた生成物を、オーブンで、充分に乾燥させた後、解砕して、リチウム交換変性粘土(1/2単位胞あたりの層電荷0.2~0.6)を得た。
(リチウム交換変性粘土の膨潤性評価)
水100mLの入った100mL容メスシリンダーに、作製したリチウム交換変性粘土の粉末2.0gを少量ずつ入れて自然沈降させ、全量を添加した後1時間静置し、膨潤した粘土鉱物の見かけ容積を読んだところ、膨潤力は85mL/2gであった。
(膨潤性粘土鉱物ゲルの調製)
得られたリチウム交換変性粘土10gを秤量し、容器に入れ、純水20mLを加え、10分程度放置し、該リチウム交換変性粘土に純水をなじませた。その後、ステンレス製スパチュラで軽く混練した。次いで、自転公転ミキサー(シンキー社製、「ARE-310」)を用い、混合モード(2000rpm)にて10分間混合処理を行った。これに、再度、純水20mLを加え、全体に純水が行き渡る様に、混練し、全体が一つにまとまる程度まで練り込んだ。
次に、自転公転ミキサーを用い、混合モード(2000rpm)にて10分間混合処理を行った。1回目の混合処理に比べ、全体がまとまった粘土プレゲルになった。そこへ、純水50mLを加え、ステンレス製スパチュラでよく混練した。大きなダマ(ゲルの塊)があれば極力つぶし、再度、自転公転ミキサーを用い、混合モード(2000rpm)にて10分間混合処理を行い、膨潤性粘土鉱物ゲルを得た。
(膨潤性粘土鉱物分散液の調製)
容器にN-メチル-2-ピロリドン350gを入れ、ホモジナイザー(IKA社製、「ULUTRA TURRAX T50」)で撹拌しながら、膨潤性粘土鉱物ゲル10gを加えた。約7000rpmで約30分間撹拌を続け、膨潤性粘土鉱物分散液を得た。
(非膨潤性粘土鉱物分散液の調製)
タルク(日本タルク社製、「タルクMS-K」、層電荷0、平均粒子径14μm)4.4g、及び、18.6重量%ポリアミド酸のN-メチル-2-ピロリドン溶液(宇部興産社製、「U-ワニスA」)33.0gをプラスチック製密閉容器にとり、自転公転ミキサー(シンキー社製、「ARE-310」)で混合モード(2000rpm)を10分間行って撹拌し、全不揮発成分に対するタルクの割合が41.9重量%、分散液の全体量に対する不揮発成分の割合が28.1重量%である均一な非膨潤性粘土鉱物分散液を得た。
なお、「U-ワニスA」に含まれるポリアミド酸は、下記式(7)の繰り返し構造単位を有する芳香族系ポリアミド酸である。
Figure JPOXMLDOC01-appb-C000009
(タルクの膨潤性評価)
水100mLの入った100mL容メスシリンダーに「非膨潤性粘土鉱物分散液の調製」に用いたタルク(日本タルク社製、「タルクMS-K」)の粉末2.0gを少量ずつ入れて自然沈降させ、全量を添加した後1時間静置し、膨潤した粘土鉱物の見かけ容積を読んだところ、膨潤力は2mL/2gであった。
(水蒸気バリアフィルム用分散液の調製)
膨潤性粘土鉱物分散液49.5gと非膨潤性粘土鉱物分散液37.4gをプラスチック製密閉容器にとり、自転公転ミキサー(シンキー社製、「ARE-310」)で混合モード(2000rpm)を10分間、脱泡モード(2200rpm)を10分間行って撹拌し、全不揮発成分に対する層状ケイ酸塩鉱物の割合が47.4重量%、膨潤性粘土鉱物の含有量が層状ケイ酸塩鉱物全重量の20.0重量%である均一な水蒸気バリアフィルム用分散液を得た。
(フィルムの作製)
得られた水蒸気バリアフィルム用分散液を、底面が平坦であり、底面の形状が長方形であるポリプロピレン製シートに、ドクターブレードを用いて厚みが2000μmとなるように塗布した。ポリプロピレン製シートを水平に保った状態で強制送風式オーブン中50℃の温度条件で10時間乾燥して、ポリプロピレン製シート上にフィルムを形成した。このフィルムをポリプロピレン製シートから剥離し、順に、120℃で1時間、150℃で1時間、200℃で1時間、350℃で12時間熱処理して、タルクとモンモリロナイトとポリイミド樹脂とからなり、全重量に対する層状ケイ酸塩鉱物の割合が47.4重量%、膨潤性粘土鉱物の含有量が層状ケイ酸塩鉱物全重量の20.0重量%である厚さ90μmの水蒸気バリアフィルムを得た。
(実施例2)
「水蒸気バリアフィルム用分散液の調製」において、実施例1で調製した膨潤性粘土鉱物分散液99.0gと非膨潤性粘土鉱物分散液37.4gを用いたこと以外は、実施例1と同様にして、全不揮発成分に対する層状ケイ酸塩鉱物の割合が52.0重量%、膨潤性粘土鉱物の含有量が、層状ケイ酸塩鉱物全重量の33.3重量%である均一な水蒸気バリアフィルム用分散液を得た。
実施例1と同様にして「フィルムの作製」を行い、タルクとモンモリロナイトとポリイミド樹脂とからなり、全重量に対する層状ケイ酸塩鉱物の割合が52.0重量%、膨潤性粘土鉱物の含有量が、層状ケイ酸塩鉱物全重量の33.3重量%である厚さ110μmの水蒸気バリアフィルムを得た。
(実施例3)
「水蒸気バリアフィルム用分散液の調製」において、実施例1で調製した膨潤性粘土鉱物分散液148.5gと非膨潤性粘土鉱物分散液37.4gを用いたこと以外は、実施例1と同様にして、全不揮発成分に対する層状ケイ酸塩鉱物の割合が55.8重量%、膨潤性粘土鉱物の含有量が、層状ケイ酸塩鉱物全重量の42.9重量%である均一な水蒸気バリアフィルム用分散液を得た。
実施例1と同様にして「フィルムの作製」を行い、タルクとモンモリロナイトとポリイミド樹脂とからなり、全不揮発成分に対する層状ケイ酸塩鉱物の割合が55.8重量%、膨潤性粘土鉱物の含有量が、層状ケイ酸塩鉱物全重量の42.9重量%である厚さ90μmの水蒸気バリアフィルムを得た。
(実施例4)
「水蒸気バリアフィルム用分散液の調製」において、実施例1で調製した膨潤性粘土鉱物分散液198.0gと非膨潤性粘土鉱物分散液37.4gを用いたこと以外は、実施例1と同様にして、全不揮発成分に対する層状ケイ酸塩鉱物の割合が59.1重量%、膨潤性粘土鉱物の含有量が、層状ケイ酸塩鉱物全重量の50.0重量%である均一な水蒸気バリアフィルム用分散液を得た。
実施例1と同様にして「フィルムの作製」を行い、タルクとモンモリロナイトとポリイミド樹脂とからなり、全不揮発成分に対する層状ケイ酸塩鉱物の割合が59.1重量%、膨潤性粘土鉱物の含有量が、層状ケイ酸塩鉱物全重量の50.0重量%である厚さ70μmの水蒸気バリアフィルムを得た。
(実施例5)
(非膨潤性粘土鉱物分散液の調製)
タルク(日本タルク社製、「タルクMS-K」)2.2g、及び、18.6重量%ポリアミド酸のN-メチル-2-ピロリドン溶液(宇部興産社製、「U-ワニスA」)47.8gをプラスチック製密閉容器にとり、自転公転ミキサー(シンキー社製、「ARE-310」)で混合モード(2000rpm)を10分間行って撹拌し、全不揮発成分に対するタルクの割合が19.8重量%、分散液の全体量に対する不揮発成分の割合が22.2重量%である均一な非膨潤性粘土鉱物分散液を得た。
(水蒸気バリアフィルム用分散液の調製)
次に前記非膨潤性粘土鉱物分散液50.0gと実施例1の「水蒸気バリアフィルム用分散液の調製」で調製した膨潤性粘土鉱物分散液99.0gとを用いたこと以外は、実施例1と同様にして、全不揮発成分に対する層状ケイ酸塩鉱物の割合が33.1重量%、膨潤性粘土鉱物の含有量が、層状ケイ酸塩鉱物全重量の50.0重量%である均一な水蒸気バリアフィルム用分散液を得た。
(フィルムの作製)
ドクターブレードを用いて厚みが1500μmとした以外は実施例1と同様にして「フィルムの作製」を行い、タルクとモンモリロナイトとポリイミド樹脂とからなり、全重量に対する層状ケイ酸塩鉱物の割合が33.1重量%、膨潤性粘土鉱物の含有量が、層状ケイ酸塩鉱物全重量の50.0重量%である厚さ85μmの水蒸気バリアフィルムを得た。
(実施例6)
(リチウム交換粘土の作製)
天然の精製ベントナイトであり、モンモリロナイト(1/2単位胞あたりの層電荷0.2~0.6、平均粒子径1.1μm)を主成分とするクニピアF(クニミネ工業社製)を、オーブンで110℃以上の温度で、充分に乾燥させた。乾燥粘土24gを、0.5規定の硝酸リチウム水溶液400mLに加え、振とうにより、混合分散させた。2時間、振とう分散して、粘土の層間イオンをリチウムイオンに交換し、分散物を得た。
次に、得られた分散物について、遠心分離により固液分離し、得られた固体を280gの蒸留水と120gのエタノールの混合溶液で洗浄し、過剰の塩分を除いた。この洗浄操作を、二回以上繰り返した。得られた生成物をオーブンで充分に乾燥させた後、解砕してリチウム交換粘土(1/2単位胞あたりの層電荷0.2~0.6)を得た。
(リチウム交換粘土の膨潤性評価)
水100mLの入った100mL容メスシリンダーに、作製したリチウム交換粘土の粉末2.0gを少量ずつ入れて自然沈降させ、全量を添加した後1時間静置し、膨潤した粘土鉱物の見かけ容積を読んだところ、膨潤力は90mL/2gであった。
(膨潤性粘土鉱物ゲルの調製)
得られたリチウム交換粘土20gを秤量し、容器に入れ、純水40mLを加え、10分程度放置し、該リチウム交換粘土に純水をなじませた。その後、ステンレス製スパチュラで軽く混練した。次いで、自転公転ミキサー(シンキー社製、「ARE-310」)を用い、混合モード(2000rpm)にて10分間混合処理を行った。これに、再度、純水40mLを加え、全体に純水が行き渡る様に、混練し、全体が一つにまとまる程度まで練り込んだ。
次に、自転公転ミキサーを用い、混合モード(2000rpm)にて10分間混合処理を行い、膨潤性粘土鉱物ゲルを得た。
(膨潤性粘土鉱物分散液の調製)
容器にN-メチル-2-ピロリドン350gを入れ、ホモジナイザー(IKA社製、「ULUTRA TURRAX T50」)で撹拌しながら、膨潤性粘土鉱物ゲル100gを加えた。約7000rpmで約30分間撹拌を続け、膨潤性粘土鉱物分散液を得た。
(非膨潤性粘土鉱物分散液の調製)
タルク(日本タルク社製、「タルクMS-K」)4.0g、及び、18.6重量%ポリアミド酸のN-メチル-2-ピロリドン溶液(宇部興産社製、「U-ワニスA」)33.0gをプラスチック製密閉容器にとり、自転公転ミキサー(シンキー社製、「ARE-310」)で混合モード(2000rpm)を10分間行って撹拌し、全不揮発成分に対するタルクの割合が39.6重量%、分散液の全体量に対する不揮発成分の割合が27.3重量%である均一な非膨潤性粘土鉱物分散液を得た。
(水蒸気バリアフィルム用分散液の調製)
膨潤性粘土鉱物分散液68.0gと非膨潤性粘土鉱物分散液37.0gをプラスチック製密閉容器にとり、自転公転ミキサー(シンキー社製、「ARE-310」)で混合モード(2000rpm)を10分間、脱泡モード(2200rpm)を10分間行って撹拌し、全不揮発成分に対する層状ケイ酸塩鉱物の割合が53.4重量%、膨潤性粘土鉱物の含有量が層状ケイ酸塩鉱物全重量の42.9重量%である均一な水蒸気バリアフィルム用分散液を得た。
(フィルムの作製)
得られた水蒸気バリアフィルム用分散液を、底面が平坦であり、底面の形状が長方形であるポリプロピレン製シートに、ドクターブレードを用いて厚みが1500μmとなるように塗布した。ポリプロピレン製シートを水平に保った状態で強制送風式オーブン中50℃の温度条件で10時間乾燥して、ポリプロピレン製シート上にフィルムを形成した。このフィルムをポリプロピレン製シートから剥離し、順に、120℃で1時間、150℃で1時間、200℃で2時間、350℃で12時間熱処理して、タルクとモンモリロナイトとポリイミド樹脂とからなり、全重量に対する層状ケイ酸塩鉱物の割合が53.4重量%、膨潤性粘土鉱物の含有量が層状ケイ酸塩鉱物全重量の42.9重量%である厚さ80μmの水蒸気バリアフィルムを得た。
(実施例7)
(水蒸気バリアフィルム用分散液の調製)
実施例6の「水蒸気バリアフィルム用分散液の調製」で調製した膨潤性粘土鉱物分散液114.0gと非膨潤性粘土鉱物分散液37.0gを用いたこと以外は、実施例6と同様にして、全不揮発成分に対する層状ケイ酸塩鉱物の割合が59.9重量%、膨潤性粘土鉱物の含有量が、層状ケイ酸塩鉱物全重量の56.0重量%である均一な水蒸気バリアフィルム用分散液を得た。
(フィルムの作製)
得られた水蒸気バリアフィルム用分散液を用いて、実施例6と同様にして「フィルムの作製」を行い、タルクとモンモリロナイトとポリイミド樹脂とからなり、全重量に対する層状ケイ酸塩鉱物の割合が59.9重量%、膨潤性粘土鉱物の含有量が、層状ケイ酸塩鉱物全重量の56.0重量%である厚さ100μmの水蒸気バリアフィルムを得た。
(実施例8)
(非膨潤性粘土鉱物分散液の調製)
実施例6の「非膨潤性粘土鉱物分散液の調製」において、タルク(日本タルク社製、「タルクMS-K」)の代わりにタルク(日本タルク社製、「タルクGAT-40」、平均粒子径7.1μm)を用いたこと以外は、実施例6と同様にして、全不揮発成分に対するタルクの割合が39.6重量%、分散液の全体量に対する不揮発成分の割合が27.3重量%である均一な非膨潤性粘土鉱物分散液を得た。
(タルクの膨潤性評価)
水100mLの入った100mL容メスシリンダーに「非膨潤性粘土鉱物分散液の調製」に用いたタルク(日本タルク社製、「タルクGAT-40」)の粉末2.0gを少量ずつ入れて自然沈降させ、全量を添加した後1時間静置し、膨潤した粘土鉱物の見かけ容積を読んだところ、膨潤力は2mL/2gであった。
(水蒸気バリアフィルム用分散液の調製)
実施例6の「水蒸気バリアフィルム用分散液の調製」で調製した膨潤性粘土鉱物分散液114.0gと、前記非膨潤性粘土鉱物分散液37.0gを用いたこと以外は、実施例6と同様にして、全不揮発成分に対する層状ケイ酸塩鉱物の割合が59.9重量%、膨潤性粘土鉱物の含有量が、層状ケイ酸塩鉱物全重量の56.0重量%である均一な水蒸気バリアフィルム用分散液を得た。
(フィルムの作製)
得られた水蒸気バリアフィルム用分散液を用いて、実施例6と同様にして「フィルムの作製」を行い、タルクとモンモリロナイトとポリイミド樹脂とからなり、全重量に対する層状ケイ酸塩鉱物の割合が59.9重量%、膨潤性粘土鉱物の含有量が、層状ケイ酸塩鉱物全重量の56.0重量%である厚さ80μmの水蒸気バリアフィルムを得た。
(実施例9)
(非膨潤性粘土鉱物分散液の調製)
実施例6の「非膨潤性粘土鉱物分散液の調製」において、タルク(日本タルク社製、「タルクMS-K」)8.0g、及び、18.6重量%ポリアミド酸のN-メチル-2-ピロリドン溶液(宇部興産社製、「U-ワニスA」)30.0gを用いたこと以外は実施例6と同様にして、全不揮発成分に対するタルクの割合が58.8重量%、分散液の全体量に対する不揮発成分の割合が35.8重量%である均一な非膨潤性粘土鉱物分散液を得た。 
(水蒸気バリアフィルム用分散液の調製)
実施例6の「水蒸気バリアフィルム用分散液の調製」で調製した膨潤性粘土鉱物分散液45.0gと前記非膨潤性粘土鉱物分散液19.0gを用いたこと以外は、実施例6と同様にして、全不揮発成分に対する層状ケイ酸塩鉱物の割合が68.2重量%、膨潤性粘土鉱物の含有量が、層状ケイ酸塩鉱物全重量の33.3重量%である均一な水蒸気バリアフィルム用分散液を得た。
(フィルムの作製)
得られた水蒸気バリアフィルム用分散液を用いて、実施例6と同様にして「フィルムの作製」を行い、タルクとモンモリロナイトとポリイミド樹脂とからなり、全重量に対する層状ケイ酸塩鉱物の割合が68.2重量%、膨潤性粘土鉱物の含有量が、層状ケイ酸塩鉱物全重量の33.3重量%である厚さ90μmの水蒸気バリアフィルムを得た。
(実施例10)
(水蒸気バリアフィルム用分散液の調製)
実施例6の「水蒸気バリアフィルム用分散液の調製」で調製した膨潤性粘土鉱物分散液76.0gと実施例9の非膨潤性粘土鉱物分散液19.0gを用いたこと以外は、実施例6と同様にして、全不揮発成分に対する層状ケイ酸塩鉱物の割合が72.6重量%、膨潤性粘土鉱物の含有量が、層状ケイ酸塩鉱物全重量の46.0重量%である均一な水蒸気バリアフィルム用分散液を得た。
(フィルムの作製)
得られた水蒸気バリアフィルム用分散液を用いて、実施例6と同様にして「フィルムの作製」を行い、タルクとモンモリロナイトとポリイミド樹脂とからなり、全重量に対する層状ケイ酸塩鉱物の割合が72.6重量%、膨潤性粘土鉱物の含有量が、層状ケイ酸塩鉱物全重量の46.0重量%である厚さ100μmの水蒸気バリアフィルムを得た。
(実施例11)
(非膨潤性粘土鉱物分散液の調製)
実施例6の「非膨潤性粘土鉱物分散液の調製」において、タルク(日本タルク社製、「タルクMS-K」)の代わりにカオリン(イメリス社製、「XP01-6100」、層電荷0、平均粒子径1μm)4.0gを用いたこと以外は、実施例6と同様にして、全不揮発成分に対するカオリンの割合が39.6重量%、分散液の全体量に対する不揮発成分の割合が27.3重量%である均一な非膨潤性粘土鉱物分散液を得た。
(カオリンの膨潤性評価)
水100mLの入った100mL容メスシリンダーに「非膨潤性粘土鉱物分散液の調製」に用いたカオリン(イメリス社製、「XP01-6100」)の粉末2.0gを少量ずつ入れて自然沈降させ、全量を添加した後1時間静置し、膨潤した粘土鉱物の見かけ容積を読んだところ、膨潤力は2mL/2gであった。
(フィルムの作製)
得られた水蒸気バリアフィルム用分散液を用いて、実施例6と同様にして「フィルムの作製」を行い、カオリンとモンモリロナイトとポリイミド樹脂とからなり、全重量に対する層状ケイ酸塩鉱物の割合が53.4重量%、膨潤性粘土鉱物の含有量が、層状ケイ酸塩鉱物全重量の42.9重量%である厚さ100μmの水蒸気バリアフィルムを得た。
(実施例12)
(非膨潤性粘土鉱物分散液の調製)
実施例6の「非膨潤性粘土鉱物分散液の調製」において、タルク(日本タルク社製、「タルクMS-K」)の代わりに非膨潤性雲母(ヤマグチマイカ社製、「SJ-010」、層電荷0.6~1.0、平均粒子径10μm)4.0gを用いたこと以外は、実施例6と同様にして、全不揮発成分に対する非膨潤性雲母の割合が39.6重量%、分散液の全体量に対する不揮発成分の割合が27.3重量%である均一な非膨潤性粘土鉱物分散液を得た。
(非膨潤性雲母の膨潤性評価)
水100mLの入った100mL容メスシリンダーに「非膨潤性粘土鉱物分散液の調製」に用いた非膨潤性雲母(ヤマグチマイカ社製、「SJ-010」)の粉末2.0gを少量ずつ入れて自然沈降させ、全量を添加した後1時間静置し、膨潤した粘土鉱物の見かけ容積を読んだところ、膨潤力は2mL/2gであった。
(フィルムの作製)
得られた水蒸気バリアフィルム用分散液を用いて、実施例6と同様にして「フィルムの作製」を行い、非膨潤性雲母とモンモリロナイトとポリイミド樹脂とからなり、全重量に対する層状ケイ酸塩鉱物の割合が53.4重量%、膨潤性粘土鉱物の含有量が、層状ケイ酸塩鉱物全重量の42.9重量%である厚さ100μmの水蒸気バリアフィルムを得た。
(実施例13)
実施例6の「リチウム交換粘土の作製」で得られたリチウム交換粘土45gと水2955gを5000mLのプラスチック製ビーカーに入れ撹拌し、均一な分散液とした。これを500mL密閉容器6本に移し、遠心分離機(久保田商事株式会社製 高速大容量冷却遠心機 MODEL7000)を用い8000rpmで10分間遠心分離を行い、沈殿物を除去し、上澄みを回収した。この上澄みを偏光板2枚の間に置くと、虹色模様(クロスニコル透過光像)が見られ、液晶転移性を示すことを確認した。得られた上澄みをオーブンで充分に乾燥させた後、解砕して液晶転移性を示すリチウム交換粘土を25g得た。
以降は前記液晶転移性を示すリチウム交換粘土を用いたこと以外は実施例6と同様に「膨潤性粘土鉱物ゲルの調製」から「フィルムの作製」まで行い、タルクとモンモリロナイトとポリイミド樹脂とからなり、全重量に対する層状ケイ酸塩鉱物の割合が53.4重量%、膨潤性粘土鉱物の含有量が層状ケイ酸塩鉱物全重量の42.9重量%である厚さ85μmの水蒸気バリアフィルムを得た。
(実施例14)
実施例13で得られた液晶転移性を示すリチウム交換粘土を用いたこと以外は実施例7と同様にして「フィルムの作製」まで行い、タルクとモンモリロナイトとポリイミド樹脂とからなり、全重量に対する層状ケイ酸塩鉱物の割合が59.9重量%、膨潤性粘土鉱物の含有量が層状ケイ酸塩鉱物全重量の56.0重量%である厚さ100μmの水蒸気バリアフィルムを得た。
(比較例1)
タルク(日本タルク社製、「タルクMS-K」)4.4g、及び、18.6重量%ポリアミド酸のN-メチル-2-ピロリドン溶液(宇部興産社製、「U-ワニスA」)33.0gをプラスチック製密閉容器にとり、自転公転ミキサー(シンキー社製、「ARE-310」)で混合モード(2000rpm)を10分間、脱泡モード(2200rpm)を10分間行って撹拌し、全不揮発成分に対するタルクの割合が41.8重量%、分散液の全体量に対する不揮発成分の割合が28.2重量%である均一な非膨潤性粘土鉱物分散液を得た。
膨潤性粘土鉱物分散液を加えず、ドクターブレードを用いて厚みが400μmとなるように塗布した以外は、実施例1と同様にしてフィルムを作成し、全重量に対する層状ケイ酸塩鉱物の割合が41.8重量%であり、膨潤性粘土鉱物を含有しない厚さ80μmの水蒸気バリアフィルムを得た。
(比較例2)
実施例1で作製した膨潤性粘土鉱物ゲルを、膨潤性粘土鉱物分散液の調製を行わず、タルク(日本タルク社製、「タルクMS-K」)4.4g、及び、18.6重量%ポリアミド酸のN-メチル-2-ピロリドン溶液(宇部興産社製、「U-ワニスA」)33.0g、N-メチル-2-ピロリドン38.5g、膨潤性粘土鉱物ゲル11.0gをプラスチック製密閉容器にとり、自転公転ミキサー(シンキー社製、「ARE-310」)で混合モード(2000rpm)を10分間、脱泡モード(2200rpm)を10分間行って撹拌した。しかし、得られた水蒸気バリアフィルム用分散液はダマが存在し、均一では無かったため、フィルムを作製することができなかった。
(比較例3)
実施例1で作製した膨潤性粘土鉱物分散液120gと、18.6重量%ポリアミド酸のN-メチル-2-ピロリドン溶液(宇部興産社製、「U-ワニスA」)4.8gをプラスチック製密閉容器にとり、自転公転ミキサー(シンキー社製、「ARE-310」)で混合モード(2000rpm)を10分間、脱泡モード(2200rpm)を10分間行って撹拌し、非膨潤性粘土鉱物を含まない水蒸気バリアフィルム用分散液を得た。
実施例1と同様にして、ドクターブレードを用いて厚みが2000μmとなるように塗布し、乾燥させた。しかし、乾燥後のフィルムには多数の割れが生じ、均一なフィルムを得ることができなかった。乾燥後のフィルム厚みは40μmであり、焼成後も厚みは変わらなかった。
(比較例4)
(非膨潤性粘土鉱物分散液の調製)
実施例5で調製した、非膨潤性粘土鉱物分散液50.0gと実施例1の「水蒸気バリアフィルム用分散液の調製」で調製した膨潤性粘土鉱物分散液25.0gとを用いたこと以外は、実施例1と同様にして、全不揮発成分に対する層状ケイ酸塩鉱物の割合が23.7重量%、膨潤性粘土鉱物の含有量が、層状ケイ酸塩鉱物全重量の20.2重量%である均一な分散液を得た。
実施例1と同様にして「フィルムの作製」を行い、タルクとモンモリロナイトとポリイミド樹脂とからなり、全重量に対する層状ケイ酸塩鉱物の割合が23.7重量%、膨潤性粘土鉱物の含有量が、層状ケイ酸塩鉱物全重量の20.2重量%である厚さ80μmのフィルムを得た。
(比較例5)
(非膨潤性粘土鉱物分散液の調製)
タルク(日本タルク社製、「タルクMS-K」)25.0g、及び、18.6重量%ポリアミド酸のN-メチル-2-ピロリドン溶液(宇部興産社製、「U-ワニスA」)15.0g、N-メチル-2-ピロリドン18.0gをプラスチック製密閉容器にとり、自転公転ミキサー(シンキー社製、「ARE-310」)で混合モード(2000rpm)を10分間行って撹拌し、全不揮発成分に対するタルクの割合が89.9重量%、分散液の全体量に対する不揮発成分の割合が47.9重量%である均一な非膨潤性粘土鉱物分散液を得た。
次に前記非膨潤性粘土鉱物分散液40.0gと実施例1の「水蒸気バリアフィルム用分散液の調製」で調製した膨潤性粘土鉱物分散液40.0gとを用いたこと以外は、実施例1と同様にして、全不揮発成分に対する層状ケイ酸塩鉱物の割合が90.9重量%、膨潤性粘土鉱物の含有量が、層状ケイ酸塩鉱物全重量の9.4重量%である均一な分散液を得た。
ドクターブレードを用いて厚みが750μmとした以外は実施例1と同様にして「フィルムの作製」を行い、タルクとモンモリロナイトとポリイミド樹脂とからなり、全重量に対する層状ケイ酸塩鉱物の割合が90.9重量%、膨潤性粘土鉱物の含有量が、層状ケイ酸塩鉱物全重量の9.4重量%である厚さ90μmの水蒸気バリアフィルムの作製を試みたが、乾燥後のフィルムは容易に割れが生じ、均一なフィルムを得ることができなかった。 
(比較例6)
タルク(日本タルク社製、「タルクMS-K」)2.2g、非膨潤性雲母(ヤマグチマイカ社製、「SJ-010」)3.4g、及び、18.6重量%ポリアミド酸のN-メチル-2-ピロリドン溶液(宇部興産社製、「U-ワニスA」)30.0gをプラスチック製密閉容器にとり、自転公転ミキサー(シンキー社製、「ARE-310」)で混合モード(2000rpm)を10分間、脱泡モード(2200rpm)を10分間行って撹拌し、全不揮発成分に対する非膨潤性粘土鉱物の割合が50.0重量%、分散液の全体量に対する不揮発成分の割合が31.4重量%である均一な非膨潤性粘土鉱物分散液を得た。
膨潤性粘土鉱物分散液を加えず、ドクターブレードを用いて厚みが400μmとなるように塗布した以外は、実施例1と同様にしてフィルムを作成し、全重量に対する層状ケイ酸塩鉱物の割合が50.0重量%であり、膨潤性粘土鉱物を含有しない厚さ65μmの水蒸気バリアフィルムを得た。
<評価>
実施例1~14及び比較例1、4、6で得られた水蒸気バリアフィルムについて以下の評価を行った。結果を表4~6に示した。
なお、比較例2ではフィルムを作製することができなかったため、以下の評価を行うことができず、比較例3、5ではフィルムに割れが生じたため、以下の評価は行わなかった。 
(水蒸気透過度)
JIS K 7126 A法(差圧法)に準じた差圧式のガスクロ法により、ガスや蒸気等の透過率や透湿度の測定が可能なガス・蒸気透過率測定装置を用いて、40℃、90%RHの条件で水蒸気バリアフィルムの水蒸気透過度の測定を行った。なお、ガス・蒸気透過率測定装置として、実施例1~5及び比較例1、4、6では、GTR-30XA(GTRテック社製)を用い、実施例6~14では、DELTAPERM(Technolox社製)を用いた。
(VTM試験による燃焼性分類)
得られた水蒸気バリアフィルムについて、UL94規格による薄手材料垂直燃焼試験(VTM試験)を行った。
表1に示した各判定基準において、各試験片(長さ約200mm、幅50mm)を5枚使用した。炎の大きさは20mmとした。
なお、接炎時間は3秒間とし、接炎後の残炎時間をそれぞれ測定した。また、火が消えると同時に2回目の接炎を3秒間行って、1回目と同様にして、接炎後の残炎時間をそれぞれ測定した。更に、落下する火種により試験片の下に置いた綿が発火するか否かについても同時に評価した。また、標線は試験片の下端から125mmの位置にあり、標識用綿は試験片の下端から300mm下方に配置した。
VTM試験において、燃焼性分類としては、VTM-0が最高のものであり、VTM-1、VTM-2となるに従って難燃性が低下することを示す。ただし、VTM-0~VTM-2のランクのいずれにも該当しないものは不合格とした。
(耐屈曲性)
得られた水蒸気バリアフィルムについて、JIS-K5600-5-1に準拠した方法で耐屈曲性(円筒形マンドレル法)試験を実施した。試験方法は、1~5mm径マンドレルを使用し、一つの試験片に対して大きい直径のマンドレルから小さいマンドレルへと順に試験し、フィルム割れやひび割れの初めて起こるマンドレル直径を示した。1mmのマンドレルでも割れの生じなかったフィルムについては1mm以下とした。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
図3に、実施例1~4及び比較例1で作製したフィルムの断面の電子顕微鏡写真を示す。図3において、(a)が実施例1で作製したフィルムの断面、(b)が実施例2で作製したフィルムの断面、(c)が実施例3で作製したフィルムの断面、(d)が実施例4で作製したフィルムの断面、(e)が比較例1で作製したフィルムの断面である。
図3から、比較例1の非膨潤性粘土鉱物のみでは、明確な積層化が見られないのに対し、実施例1の膨潤性粘土鉱物を20重量%添加した写真においては、明らかに積層化していることがわかる。
また、実施例2~4において、膨潤性粘土鉱物の割合を上げるに従って、更に積層化の状態が良くなっていることが確認できた。
本発明によれば、柔軟性及び耐湿性に優れ、高い機械的強度を有する水蒸気バリアフィルムを提供することができる。また、本発明によれば、該水蒸気バリアフィルムの製造に用いる水蒸気バリアフィルム用分散液、該水蒸気バリアフィルムの製造方法、該水蒸気バリアフィルムを用いてなる太陽電池バックシート、該水蒸気バリアフィルム又は該太陽電池バックシートを用いてなる太陽電池を提供することができる。
更に、本発明の水蒸気バリアフィルムは、充分な機械的強度と優れた柔軟性を持つフィルムであり、様々な電気材料、機械材料等の部材、例えば、LCD用基板フィルム、有機EL用基板フィルム、電子ペーパー用基板フィルム、電子デバイス用封止フィルム、PDP用フィルム、LED用フィルム、ICタグ用フィルム、太陽電池用バックシート、太陽電池用保護フィルム等の電子デバイス関連フィルム、光通信用部材、その他電子機器用フレキシブルフィルム、燃料電池用隔膜、燃料電池用封止フィルム、各種機能性フィルムの基板フィルムとして、また、食品包装用フィルム、飲料包装用フィルム、医薬品包装用フィルム、日用品包装用フィルム、工業製品包装用フィルム、その他各種製品の包装用フィルム、更に、二酸化炭素及び水素を含むガス種に対するガスバリアシールテープ、多層包装フィルム、抗酸化皮膜、耐食性皮膜、耐候性皮膜、不燃性皮膜、耐熱性皮膜、耐薬品性皮膜等、多くの製品に使用可能である。これらの分野に新素材を提供し、新技術への発展に貢献できる。
1 太陽電池
2 太陽電池素子
3 封止剤
4 光透過性基板
5 太陽電池バックシート
6 水蒸気バリアフィルム

Claims (13)

  1. 層状ケイ酸塩鉱物と合成樹脂とを含有する水蒸気バリアフィルムであって、
    前記層状ケイ酸塩鉱物として非膨潤性粘土鉱物と膨潤性粘土鉱物とを含有し、
    前記層状ケイ酸塩鉱物の含有量が水蒸気バリアフィルムの全重量に対して30重量%以上90重量%以下であり、かつ、
    40℃、90%RHの環境下での水蒸気透過度が0.5g/m・day以下である
    ことを特徴とする水蒸気バリアフィルム。
  2. 非膨潤性粘土鉱物は、タルク、カオリン、及び、パイロフィライトからなる群から選択される少なくとも一種であることを特徴とする請求項1記載の水蒸気バリアフィルム。
  3. 膨潤性粘土鉱物は、モンモリロナイト、サポナイト、ヘクトライト、及び、スチーブンサイトからなる群から選択される少なくとも一種であることを特徴とする請求項1又は2記載の水蒸気バリアフィルム。
  4. 膨潤性粘土鉱物の含有量が、層状ケイ酸塩鉱物の全重量に対して2重量%以上80重量%以下であることを特徴とする請求項1、2又は3記載の水蒸気バリアフィルム。
  5. 合成樹脂は、耐熱性合成樹脂であることを特徴とする請求項1、2、3又は4記載の水蒸気バリアフィルム。
  6. 耐熱性合成樹脂は、ポリイミド樹脂及び/又はポリアミドイミド樹脂であることを特徴とする請求項1、2、3、4、又は5記載の水蒸気バリアフィルム。
  7. 厚みが10μm以上であることを特徴とする請求項1、2、3、4、5又は6記載の水蒸気バリアフィルム。
  8. 請求項1、2、3、4、5、6又は7記載の水蒸気バリアフィルムの製造に用いる水蒸気バリアフィルム用分散液であって、
    分散媒と、不揮発成分である層状ケイ酸塩鉱物並びに合成樹脂及び/又は合成樹脂の前駆体とを含有し、
    前記層状ケイ酸塩鉱物の含有量が不揮発成分の全重量に対して30重量%以上90重量%以下であることを特徴とする水蒸気バリアフィルム用分散液。
  9. 請求項1、2、3、4、5、6又は7記載の水蒸気バリアフィルムを製造する方法であって、分散媒と、膨潤性粘土鉱物とを含有する膨潤性粘土鉱物分散液を調製する工程1と、分散媒と、非膨潤性粘土鉱物と、合成樹脂及び/又は合成樹脂の前駆体とを含有する非膨潤性粘土鉱物分散液を調製する工程2と、
    膨潤性粘土鉱物分散液と非膨潤性粘土鉱物分散液とを混合し、請求項8記載の水蒸気バリアフィルム用分散液を調製する工程3と、
    調製した水蒸気バリアフィルム用分散液を基板上に展開して静置する工程4と、
    基板上に展開した水蒸気バリアフィルム用分散液から分散媒を除去してフィルム状に成形する工程5とを有する
    ことを特徴とする水蒸気バリアフィルムの製造方法。
  10. 工程5において、分散媒を除去する際の温度が150℃以下であることを特徴とする請求項9記載の水蒸気バリアフィルムの製造方法。
  11. 基板は、ガラス、ポリエチレンテレフタレート、ポリイミド、ポリエチレン、又は、ポリプロピレンからなることを特徴とする請求項9又は10記載の水蒸気バリアフィルムの製造方法。
  12. 請求項1、2、3、4、5、6又は7記載の水蒸気バリアフィルムを用いてなることを特徴とする太陽電池バックシート。
  13. 請求項1、2、3、4、5、6若しくは7記載の水蒸気バリアフィルム、又は、請求項12記載の太陽電池バックシートを用いてなることを特徴とする太陽電池。
PCT/JP2012/071062 2011-08-29 2012-08-21 水蒸気バリアフィルム、水蒸気バリアフィルム用分散液、水蒸気バリアフィルムの製造方法、太陽電池バックシート、及び、太陽電池 WO2013031578A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA2846027A CA2846027A1 (en) 2011-08-29 2012-08-21 Vapor barrier film, dispersion for vapor barrier film, method for producing vapor barrier film, solar cell back sheet, and solar cell
US14/239,909 US20140251426A1 (en) 2011-08-29 2012-08-21 Vapor barrier film, dispersion for vapor barrier film, method for producing vapor barrier film, solar cell back sheet, and solar cell
JP2013531223A JP6019518B2 (ja) 2011-08-29 2012-08-21 水蒸気バリアフィルム、水蒸気バリアフィルム用分散液、水蒸気バリアフィルムの製造方法、太陽電池バックシート、及び、太陽電池
KR1020147005833A KR20140070541A (ko) 2011-08-29 2012-08-21 수증기 배리어 필름, 수증기 배리어 필름용 분산액, 수증기 배리어 필름의 제조 방법, 태양 전지 백 시트, 및, 태양 전지
AU2012303090A AU2012303090B2 (en) 2011-08-29 2012-08-21 Vapor barrier film, dispersion for vapor barrier film, method for producing vapor barrier film, solar cell back sheet, and solar cell
EP12826958.6A EP2752443B1 (en) 2011-08-29 2012-08-21 Vapor barrier film, dispersion for vapor barrier film, method for producing vapor barrier film, solar cell back sheet, and solar cell
CN201280040737.5A CN103764730B (zh) 2011-08-29 2012-08-21 水蒸气阻隔膜、水蒸气阻隔膜用分散液、水蒸气阻隔膜的制造方法、太阳能电池背板和太阳能电池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-186506 2011-08-29
JP2011186506 2011-08-29
JP2012170039 2012-07-31
JP2012-170039 2012-07-31

Publications (1)

Publication Number Publication Date
WO2013031578A1 true WO2013031578A1 (ja) 2013-03-07

Family

ID=47756072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071062 WO2013031578A1 (ja) 2011-08-29 2012-08-21 水蒸気バリアフィルム、水蒸気バリアフィルム用分散液、水蒸気バリアフィルムの製造方法、太陽電池バックシート、及び、太陽電池

Country Status (9)

Country Link
US (1) US20140251426A1 (ja)
EP (1) EP2752443B1 (ja)
JP (1) JP6019518B2 (ja)
KR (1) KR20140070541A (ja)
CN (1) CN103764730B (ja)
AU (1) AU2012303090B2 (ja)
CA (1) CA2846027A1 (ja)
TW (1) TWI541196B (ja)
WO (1) WO2013031578A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017110202A (ja) * 2015-12-14 2017-06-22 現代自動車株式会社Hyundai Motor Company 燃料注入管用ポリアミド複合樹脂組成物
TWI636105B (zh) * 2013-07-31 2018-09-21 日東電工股份有限公司 黏著片
KR20180108680A (ko) * 2016-02-03 2018-10-04 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 표준 가스 배리어 필름
JP2019038871A (ja) * 2017-08-22 2019-03-14 Dic株式会社 樹脂組成物、成形体、積層体、ガスバリア材、コーティング材及び接着剤
JP2019210354A (ja) * 2018-06-01 2019-12-12 Dic株式会社 樹脂組成物、成形体、積層体、ガスバリア材、コーティング材及び接着剤

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102939199B (zh) 2010-06-03 2015-03-25 独立行政法人产业技术综合研究所 水蒸气阻隔性膜及其制造方法
JP6318726B2 (ja) * 2013-03-26 2018-05-09 住友電気工業株式会社 集光型太陽光発電モジュール、集光型太陽光発電パネル及び集光型太陽光発電モジュール用フレキシブルプリント配線板
CN107112448A (zh) * 2015-01-06 2017-08-29 凸版印刷株式会社 蓄电装置用封装材料
US10312536B2 (en) 2016-05-10 2019-06-04 Hamilton Sundstrand Corporation On-board aircraft electrochemical system
US10300431B2 (en) 2016-05-31 2019-05-28 Hamilton Sundstrant Corporation On-board vehicle inert gas generation system
US10307708B2 (en) * 2016-06-24 2019-06-04 Hamilton Sundstrand Corporation Fuel tank system and method
US10427800B2 (en) 2016-10-31 2019-10-01 Hamilton Sundstrand Corporation Air separation system for fuel stabilization
US10150571B2 (en) 2016-11-10 2018-12-11 Hamilton Sundstrand Corporation On-board aircraft reactive inerting dried gas system
USD889141S1 (en) * 2018-04-23 2020-07-07 Stego Industries, LLC Vapor barrier wrap
CN109553960B (zh) * 2018-12-10 2021-07-20 中国五冶集团有限公司 一种用于制备隔汽层的组合物及其制备方法
CN111499913B (zh) * 2020-05-19 2021-04-30 中山大学 一种仿贝壳状稠密结构的高阻隔聚酰亚胺复合薄膜、制备方法及应用
CN112175219B (zh) * 2020-09-03 2023-02-03 苏州市雄林新材料科技有限公司 一种汽车头枕用低透tpu薄膜及其制备方法
CN115058037A (zh) * 2022-07-04 2022-09-16 江西师范大学 一种纳米蒙脱土/聚酰亚胺复合膜及制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11343409A (ja) * 1998-04-02 1999-12-14 Toray Ind Inc ポリアミド樹脂組成物および製造方法
JP2002322292A (ja) 2001-04-23 2002-11-08 Nitto Denko Corp 熱融着性ポリイミド樹脂フィルムとこれを用いた多層配線板
JP2003313322A (ja) * 2002-04-25 2003-11-06 Ube Ind Ltd 滑り性に優れたポリアミドフィルム
JP2003340919A (ja) 2002-05-30 2003-12-02 Teijin Ltd ポリイミド系フィルムの製造方法
JP2003342471A (ja) 2002-05-30 2003-12-03 Teijin Ltd ポリイミド系フィルム
JP2005194415A (ja) * 2004-01-08 2005-07-21 Unitika Ltd ポリ乳酸系シートおよびそれからなる成形体
JP3744634B2 (ja) 1997-02-17 2006-02-15 株式会社カネカ ポリイミド樹脂フィルム
JP2006077237A (ja) 2004-08-10 2006-03-23 National Institute Of Advanced Industrial & Technology 粘土配向膜からなる保護膜
JP2007277078A (ja) * 2006-03-11 2007-10-25 National Institute Of Advanced Industrial & Technology 変性粘土を用いた膜
JP2008004691A (ja) 2006-06-21 2008-01-10 Toppan Printing Co Ltd 太陽電池裏面封止用シート
JP2010533213A (ja) 2007-07-10 2010-10-21 三井化学株式会社 複合フィルムの製造方法
JP2010533362A (ja) 2007-07-10 2010-10-21 三井化学株式会社 回路用基板
JP2011001237A (ja) 2009-06-19 2011-01-06 National Institute Of Advanced Industrial Science & Technology 電子デバイス用防湿フィルム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8061079B2 (en) * 2005-06-29 2011-11-22 Weyerhaeuser Nr Company Method for selecting conifer trees
ES2332474T3 (es) * 2006-02-13 2010-02-05 Council Of Scientific And Industrial Research Composiciones de nanocompuesto polimerico de filosilicato exfoliado y un proceso para la preparacion de las mismas.

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3744634B2 (ja) 1997-02-17 2006-02-15 株式会社カネカ ポリイミド樹脂フィルム
JPH11343409A (ja) * 1998-04-02 1999-12-14 Toray Ind Inc ポリアミド樹脂組成物および製造方法
JP2002322292A (ja) 2001-04-23 2002-11-08 Nitto Denko Corp 熱融着性ポリイミド樹脂フィルムとこれを用いた多層配線板
JP2003313322A (ja) * 2002-04-25 2003-11-06 Ube Ind Ltd 滑り性に優れたポリアミドフィルム
JP2003340919A (ja) 2002-05-30 2003-12-02 Teijin Ltd ポリイミド系フィルムの製造方法
JP2003342471A (ja) 2002-05-30 2003-12-03 Teijin Ltd ポリイミド系フィルム
JP2005194415A (ja) * 2004-01-08 2005-07-21 Unitika Ltd ポリ乳酸系シートおよびそれからなる成形体
JP2006077237A (ja) 2004-08-10 2006-03-23 National Institute Of Advanced Industrial & Technology 粘土配向膜からなる保護膜
JP2007277078A (ja) * 2006-03-11 2007-10-25 National Institute Of Advanced Industrial & Technology 変性粘土を用いた膜
JP2008004691A (ja) 2006-06-21 2008-01-10 Toppan Printing Co Ltd 太陽電池裏面封止用シート
JP2010533213A (ja) 2007-07-10 2010-10-21 三井化学株式会社 複合フィルムの製造方法
JP2010533362A (ja) 2007-07-10 2010-10-21 三井化学株式会社 回路用基板
JP2011001237A (ja) 2009-06-19 2011-01-06 National Institute Of Advanced Industrial Science & Technology 電子デバイス用防湿フィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2752443A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI636105B (zh) * 2013-07-31 2018-09-21 日東電工股份有限公司 黏著片
JP2017110202A (ja) * 2015-12-14 2017-06-22 現代自動車株式会社Hyundai Motor Company 燃料注入管用ポリアミド複合樹脂組成物
KR20180108680A (ko) * 2016-02-03 2018-10-04 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 표준 가스 배리어 필름
JPWO2017135292A1 (ja) * 2016-02-03 2018-12-06 国立研究開発法人産業技術総合研究所 標準ガスバリアフィルム
KR102219619B1 (ko) 2016-02-03 2021-02-23 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 표준 가스 배리어 필름
JP2019038871A (ja) * 2017-08-22 2019-03-14 Dic株式会社 樹脂組成物、成形体、積層体、ガスバリア材、コーティング材及び接着剤
JP2019210354A (ja) * 2018-06-01 2019-12-12 Dic株式会社 樹脂組成物、成形体、積層体、ガスバリア材、コーティング材及び接着剤
JP7127771B2 (ja) 2018-06-01 2022-08-30 Dic株式会社 樹脂組成物、成形体、積層体、ガスバリア材、コーティング材及び接着剤

Also Published As

Publication number Publication date
AU2012303090B2 (en) 2015-09-10
AU2012303090A1 (en) 2014-03-13
JPWO2013031578A1 (ja) 2015-03-23
EP2752443A1 (en) 2014-07-09
CA2846027A1 (en) 2013-03-07
TWI541196B (zh) 2016-07-11
CN103764730A (zh) 2014-04-30
KR20140070541A (ko) 2014-06-10
TW201309591A (zh) 2013-03-01
JP6019518B2 (ja) 2016-11-02
US20140251426A1 (en) 2014-09-11
EP2752443A4 (en) 2015-05-06
CN103764730B (zh) 2016-09-28
EP2752443B1 (en) 2018-05-16

Similar Documents

Publication Publication Date Title
JP6019518B2 (ja) 水蒸気バリアフィルム、水蒸気バリアフィルム用分散液、水蒸気バリアフィルムの製造方法、太陽電池バックシート、及び、太陽電池
US9228113B2 (en) Water vapor barrier film and method for producing same
JP5553330B2 (ja) 電子デバイス用防湿フィルム及びその製造方法
JP5716080B2 (ja) 粘土薄膜の製造方法
JP5930549B2 (ja) 不燃フィルム、不燃フィルム用分散液、不燃フィルムの製造方法、太陽電池バックシート、フレキシブル基板、及び、太陽電池
WO2015159387A1 (ja) 放熱フィルム、熱放射層用分散液、放熱フィルムの製造方法、及び、太陽電池
JP5920693B2 (ja) 不燃水蒸気バリアフィルム、不燃水蒸気バリアフィルムの製造方法、太陽電池バックシート、及び、太陽電池
WO2011024782A1 (ja) 粘土分散液、及びその製造方法、粘土膜、及びその製造方法、並びに透明材
JP6292549B2 (ja) 放熱フィルム、熱放射層用分散液、放熱フィルムの製造方法、及び、太陽電池
JP2007268801A (ja) 薄膜およびそれを用いた薄膜積層体
JP5614524B2 (ja) 粘土分散液及びその製造方法、ならびに粘土膜
JP5534303B2 (ja) 透明材、その製造方法及び部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12826958

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013531223

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2846027

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2012826958

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147005833

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012303090

Country of ref document: AU

Date of ref document: 20120821

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14239909

Country of ref document: US