WO2013027771A1 - フッ化ビニリデン系重合体の製造方法 - Google Patents

フッ化ビニリデン系重合体の製造方法 Download PDF

Info

Publication number
WO2013027771A1
WO2013027771A1 PCT/JP2012/071210 JP2012071210W WO2013027771A1 WO 2013027771 A1 WO2013027771 A1 WO 2013027771A1 JP 2012071210 W JP2012071210 W JP 2012071210W WO 2013027771 A1 WO2013027771 A1 WO 2013027771A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinylidene fluoride
polymerization
fluoride polymer
producing
polymerization initiator
Prior art date
Application number
PCT/JP2012/071210
Other languages
English (en)
French (fr)
Inventor
民人 五十嵐
勝雄 堀江
靖浩 多田
正臣 ▲吉▼田
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to CN201280037601.9A priority Critical patent/CN103732630B/zh
Priority to JP2013530041A priority patent/JP5881713B2/ja
Publication of WO2013027771A1 publication Critical patent/WO2013027771A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/20Aqueous medium with the aid of macromolecular dispersing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • C08F14/22Vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers

Definitions

  • the present invention relates to a method for producing a vinylidene fluoride polymer.
  • the vinylidene fluoride polymer can be synthesized by various polymerization methods, but in industrial production, it is synthesized by an emulsion polymerization method or a suspension polymerization method.
  • a latex having a small particle size of about 0.2 to 0.5 ⁇ m is formed. Therefore, after the polymerization, a granulation treatment using a flocculant is performed. In order to remove, complicated post-processing is required.
  • the suspension polymerization method beads having a particle size of about 50 to 300 ⁇ m are formed, and a polymer with few impurities can be obtained by a simple washing treatment.
  • suspension polymerization is usually carried out in the presence of a polymerization initiator.
  • a polymerization initiator is used in combination with or dissolved in a suitable solvent.
  • the solvent used is limited due to the strong hydrogen abstraction action of the growing radical, and chain transfer is limited. Fluorine-based solvents have often been used to suppress side reactions.
  • a method for producing a fluorinated polymer by polymerizing a fluorine monomer using a specific hydrofluoroalkyl ether as a polymerization medium has been proposed (see, for example, Patent Documents 2 and 3).
  • the production method of the fluoropolymer is intended to replace chlorofluorocarbon which is a causative substance of ozone layer destruction, and is characterized by using a polymerization medium having a low ozone layer destruction coefficient and a high polymerization rate.
  • the method for producing the fluoropolymer uses a specific hydrofluoroalkyl ether as a polymerization medium, the amount used thereof is large, increasing the production cost of the fluoropolymer, and the hydrofluoroalkyl ether is contained in the fluoropolymer. There was a problem of remaining.
  • Patent Document 4 discloses that the hydrofluoroether has a low possibility of global warming and ozone layer destruction and can be easily obtained.
  • a hydrofluoroether having a fluorinated alkyl group having a relatively large carbon number is used.
  • the dispersibility and miscibility of the polymerization initiator is still inferior, and improvement has been desired.
  • JP 2002-220403 A JP 2005-29704 A JP-A-11-92507 JP 2010-501673 A
  • the present invention has been made in view of the above-described problems of the prior art, and the amount of suspended solids in waste water generated when a vinylidene fluoride polymer is produced by suspension polymerization is more than the conventional production method. It is an object of the present invention to provide a method for producing a vinylidene fluoride polymer that can be reduced. Since the method for producing a vinylidene fluoride polymer of the present invention can reduce the amount of suspended solids, it is possible to reduce wastewater treatment costs and improve productivity.
  • the present inventors reduced the amount of suspended solids in wastewater by performing suspension polymerization under the condition that a specific amount of a specific fluorine compound exists.
  • the present invention has been completed.
  • the method of manufacture of vinylidene fluoride polymers present invention a monomer containing at least vinylidene fluoride, in the manufacturing method of the vinylidene fluoride polymer to suspension polymerization in the presence of a polymerization initiator of the general formula R 1 the -O-R 2 (wherein R 1 and R 2 are each independently an alkyl group, or a part or all of the hydrogen atoms of the alkyl group are fluorinated fluoroalkyl group, R 1 and R 2 Suspension polymerization is performed in the presence of at least one fluorine-based compound selected from hydrofluoroethers having a molecular weight of 100 to 800 and cyclic hydrofluorocarbons, at least one of which is the fluorinated alkyl group,
  • the fluorine-based compound is used in an amount of 10 to 1000% by mass based on 100% by mass of the polymerization initiator, and the polymerization initiator is suspended. Which comprises using 0.01 to 5 parts by weight with
  • the alkyl group is preferably an alkyl group having 1 to 2 carbon atoms
  • the fluorinated alkyl group is preferably a fluorinated alkyl group having 1 to 4 carbon atoms.
  • the fluorine compound is at least one fluorine compound selected from CF 3 CH 2 OCF 2 CHF 2 , CHF 2 CF 2 CH 2 OCF 2 CHF 2 , and CF 3 CF 2 CH 2 OCF 2 CHF 2. Is preferable, and CF 3 CH 2 OCF 2 CHF 2 is more preferable.
  • suspension polymerization is performed in a state where the polymerization initiator is dissolved in the fluorine-based compound. It is preferable to dissolve the polymerization initiator in the fluorine compound outside the polymerization system, and add the resulting solution into the polymerization system.
  • the method for producing a vinylidene fluoride polymer according to the present invention can reduce the amount of suspended solids in waste water generated when a vinylidene fluoride polymer is produced by suspension polymerization, compared to the conventional production method. It is. For this reason, the manufacturing method of the vinylidene fluoride polymer of the present invention can reduce wastewater treatment costs and improve productivity.
  • the compound is used in an amount of 10 to 1000% by mass with respect to 100% by mass of the polymerization initiator, and the polymerization initiator is used in suspension polymerization. Which comprises using 0.01 to 5 parts by weight with respect to total
  • R 1 —O—R 2 (wherein R 1 and R 2 are each independently an alkyl group or a fluorinated fluorinated part or all of the hydrogen atoms of the alkyl group).
  • At least one fluorine-based compound selected from hydrofluoroethers and cyclic hydrofluorocarbons having a molecular weight of 100 to 800 represented by an alkyl group and at least one of R 1 and R 2 is the fluorinated alkyl group) Is also referred to as a specific fluorine-based compound.
  • vinylidene fluoride In the method for producing a vinylidene fluoride polymer of the present invention, at least vinylidene fluoride may be used as a monomer, and other monomers may be used in combination.
  • vinylidene fluoride In the method for producing a vinylidene fluoride polymer of the present invention, vinylidene fluoride is usually 50 mol% or more, preferably 80 mol% per 100 mol% of all monomers (vinylidene fluoride and other monomers) in total. It is above, More preferably, it is 85 mol% or more. Further, when a vinylidene fluoride homopolymer is obtained as the vinylidene fluoride polymer, all the monomers are vinylidene fluoride.
  • a monomer other than vinylidene fluoride (another monomer) may be used.
  • the other monomer is usually 50 mol% or less, preferably 20 mol% or less, more preferably 15 mol per 100 mol% in total of all monomers. % Or less.
  • Examples of the other monomers include fluorine monomers copolymerizable with vinylidene fluoride, hydrocarbon monomers such as ethylene and propylene, carboxyl group-containing monomers, and carboxylic acid anhydride group-containing monomers.
  • the other monomers may be used alone or in combination of two or more.
  • fluorine-based monomer copolymerizable with vinylidene fluoride examples include vinyl fluoride, trifluoroethylene, tetrafluoroethylene, chlorotrifluoroethylene, hexafluoropropylene, and perfluoroalkyl vinyl ethers typified by perfluoromethyl vinyl ether. Can be mentioned.
  • unsaturated monobasic acid unsaturated dibasic acid, monoester of unsaturated dibasic acid and the like are preferable.
  • unsaturated monobasic acid include acrylic acid, methacrylic acid, 2-carboxyethyl acrylate, 2-carboxyethyl methacrylate and the like.
  • unsaturated dibasic acid include maleic acid and citraconic acid.
  • the unsaturated dibasic acid monoester preferably has 5 to 8 carbon atoms, and examples thereof include maleic acid monomethyl ester, maleic acid monoethyl ester, citraconic acid monomethyl ester, and citraconic acid monoethyl ester. Can do.
  • acrylic acid, methacrylic acid, maleic acid, citraconic acid, maleic acid monomethyl ester, and citraconic acid monomethyl ester are preferable as the carboxyl group-containing monomer.
  • carboxyl group-containing monomer acryloyloxyethyl succinic acid, methacryloyloxyethyl succinic acid, acryloyloxyethyl phthalic acid, methacryloyloxyethyl phthalic acid, or the like may be used.
  • Examples of the carboxylic acid anhydride group-containing monomer include acid anhydrides of the unsaturated dibasic acid, specifically maleic anhydride and citraconic anhydride.
  • Polymerization initiator In the method for producing a vinylidene fluoride polymer according to the present invention, the monomer is subjected to suspension polymerization in the presence of a polymerization initiator.
  • polymerization initiator those having a 10-hour half-life temperature of 30 to 90 ° C. are preferably used, and preferred examples thereof include diisopropyl peroxydicarbonate, dinormal propyl peroxydicarbonate, and t-butyl peroxypivalate. From the viewpoint of the affinity between the polymerization initiator and the specific fluorine-based compound, diisopropyl peroxydicarbonate and dinormalpropyl peroxydicarbonate are more preferable, and diisopropyl peroxydicarbonate is most preferable.
  • the polymerization initiator is used in an amount of 0.01 to 5 parts by weight, preferably 0.05 to 2 parts by weight, particularly preferably 0.1 to 1 part by weight, based on 100 parts by weight of all monomers used for suspension polymerization. It is used in the range of 5 parts by mass. If the amount of the polymerization initiator used is less than 0.01 parts by mass, the polymerization time will be extremely long. When the amount of the polymerization initiator used is greater than 5 parts by mass, the product is colored yellowish brown or the amount of suspended solids increases. For this reason, it is preferable to use a polymerization initiator in the said range.
  • the method for producing the vinylidene fluoride polymer of the present invention has the general formula R 1 —O—R 2 (wherein R 1 and R 2 are each independently an alkyl group or a hydrogen atom of an alkyl group). Hydrofluoroethers and cyclic hydrofluorocarbons having a molecular weight of 100 to 800, which are partially or fully fluorinated alkyl groups and at least one of R 1 and R 2 is the fluorinated alkyl group) Suspension polymerization is performed in the presence of at least one fluorine-based compound selected from:
  • the method for producing a vinylidene fluoride polymer of the present invention is a wastewater generated when a vinylidene fluoride polymer is produced by suspension polymerization by performing suspension polymerization in the presence of a specific fluorine compound. It is possible to reduce the amount of suspended solids in the process compared to the conventional production method. Therefore, the method for producing a vinylidene fluoride polymer of the present invention can reduce wastewater treatment costs and improve productivity. .
  • the molecular weight of the hydrofluoroether is 100 to 800, preferably 150 to 500. Further, the fluorine content of the hydrofluoroether is preferably 30 to 90 wt%, more preferably 50 to 75 wt%. The fluorine content is the ratio of the mass of fluorine atoms occupying the fluorine compound molecules.
  • the alkyl group is preferably an alkyl group having 1 to 2 carbon atoms
  • the fluorinated alkyl group is preferably a fluorinated alkyl group having 1 to 4 carbon atoms.
  • the alkyl group has 1 to 2 carbon atoms and the fluorinated alkyl group has 1 to 4 carbon atoms, it has excellent solubility in the polymerization initiator and hydrogen abstraction occurs during the polymerization reaction of the vinylidene fluoride monomer. It is preferable because it is difficult.
  • hydrofluoroether examples include 1,1,2,2-tetrafluoroethyl 2,2,2-trifluoroethyl ether (CF 3 CH 2 OCF 2 CHF 2 ), 1,1,2,2-tetrafluoroethyl.
  • 2,2,3,3-tetrafluoropropyl ether CHF 2 CF 2 CH 2 OCF 2 CHF 2
  • 1,1,2,2-tetrafluoroethyl 2,2,3,3,3-pentafluoropropyl ether CF 3 CF 2 CH 2 OCF 2 CHF 2
  • heptafluoropropyl methyl ether nonafluorobutyl methyl ether, nonafluorobutyl ethyl ether, 1,1,1,2,3,4,4,5,5,5 -Decafluoro-3-methoxy-2- (trifluoromethyl) pentane and the like.
  • cyclic hydrofluorocarbon those having a carbon number of 4 to 10 and a fluorine content of 30% to 90% are usually used.
  • cyclic hydrofluorocarbon those having 5 to 8 carbon atoms and 50 to 75% fluorine content are preferably used.
  • cyclic hydrofluorocarbon examples include 1,1,2,2,3,3,4-heptafluorocyclopentane and octafluorocyclopentene.
  • the specific fluorine-based compound used in the present invention may be one type or two or more types of hydrofluoroethers, one type or two or more types of cyclic hydrofluorocarbons, and two types of hydrofluoroethers and cyclic hydrofluorocarbons. A mixture of the above may also be used.
  • the specific fluorine compound used in the present invention is at least one selected from CF 3 CH 2 OCF 2 CHF 2 , CHF 2 CF 2 CH 2 OCF 2 CHF 2 , and CF 3 CF 2 CH 2 OCF 2 CHF 2 .
  • a fluorine-based compound is preferable, and CF 3 CH 2 OCF 2 CHF 2 is more preferable.
  • the specific fluorine-based compound is preferably used in an amount of 10 to 1000% by mass, more preferably 25 to 500% by mass, and particularly preferably 50 to 300% by mass, based on 100% by mass of the polymerization initiator. .
  • the addition amount of the specific fluorine compound when the polymerization initiator is 100% by mass is less than 10%, the dispersibility / miscibility of the polymerization initiator is inferior and the utilization efficiency of the polymerization initiator is lowered. Even if the specific fluorine compound is added in excess of 1000% by mass, the improvement in the dispersion / miscibility of the polymerization initiator is small, which leads to an increase in product cost, which is not preferable.
  • the specific fluorine-based compound of the present invention is preferably 0.001 to 4.8 parts by mass, preferably 0.005 to 3.0 parts by mass, based on 100 parts by mass of all monomers used for suspension polymerization. Is more preferable, and 0.01 to 1.2 parts by mass is particularly preferable. Within this range, the polymerization initiator is excellent in dispersibility and miscibility, and is preferred from the viewpoint of product cost.
  • the monomer is usually dispersed in an aqueous medium containing a suspending agent, and suspension polymerization is performed in the presence of a polymerization initiator and the specific fluorine-based compound. Done.
  • a suspending agent is usually used.
  • the suspending agent is not particularly limited, but includes cellulose derivatives such as methylcellulose, methoxylated methylcellulose, propoxylated methylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxyethylmethylcellulose, polyvinyl alcohol, polyethylene oxide, gelatin and the like. Can be used.
  • the suspending agent a cellulose derivative is preferably used, and methylcellulose, hydroxyethylcellulose, hydroxypropylmethylcellulose and the like are preferable.
  • the amount of the suspending agent used is preferably 0.02 parts by mass or more and less than 0.25 parts by mass with respect to 100 parts by mass of the total monomers used for suspension polymerization, As mentioned above, it is more preferable that it exists less than 0.2 mass part, and it is especially preferable to exist 0.05 mass part or more and 0.15 mass part or less. Within the above range, it is preferable that the suspended particles of the monomer are stable and the generation of bubbles is small.
  • aqueous medium purified water such as ion exchange water or pure water is preferably used.
  • the amount of the aqueous medium used for the suspension polymerization is preferably 100 to 1000 parts by mass, more preferably 200 to 500 parts by mass with respect to 100 parts by mass of all monomers used.
  • the method for producing a vinylidene fluoride polymer according to the present invention includes the above-mentioned monomer containing at least vinylidene fluoride by suspension polymerization in the presence of the specific fluorine compound and a polymerization initiator. A vinylidene polymer is obtained. Moreover, this manufacturing method is normally performed in the aqueous medium containing a suspending agent.
  • the specific fluorine compound preferably acts as a solvent for a polymerization initiator. That is, it is preferable that suspension polymerization is performed in a state where the polymerization initiator is dissolved in the specific fluorine-based compound.
  • 1,2,2,2-tetrafluoroethyl 2,2,2-trifluoroethyl is used as the specific fluorine compound. It is particularly preferable to use ether. This combination is preferable because the amount of suspended solids in the waste water can be particularly suitably reduced.
  • the polymerization initiator is added to the specific fluorine compound by dispersing and mixing the aqueous medium, the specific fluorine compound, and the polymerization initiator in the polymerization system.
  • the polymerization may be dissolved, but the polymerization initiator is dissolved in the specific fluorine compound outside the polymerization system, and the resulting solution is added to the polymerization system. This is preferable because the initiator concentration becomes uniform and the utilization efficiency of the polymerization initiator is improved.
  • the polymerization initiator When a specific fluorine-based compound and a polymerization initiator are mixed, the polymerization initiator is dissolved and assists the polymerization initiator to be uniformly used for suspension polymerization. Even if a fluorine-based compound is present, the range of improvement in dispersion and miscibility of the polymerization initiator is small, which leads to an increase in product cost, which is not preferable.
  • a polymerization initiator is preferably dissolved outside the polymerization system in the specific fluorine compound, except that suspension polymerization is performed in the presence of the specific fluorine compound.
  • the obtained solution can be used in the same manner as conventional suspension polymerization except that it is used for the production of a vinylidene fluoride polymer.
  • the types and amounts of the monomers, polymerization initiators, specific fluorine compounds, suspending agents, and aqueous media that contain at least vinylidene fluoride used in the method for producing the vinylidene fluoride polymer of the present invention are as described above. It is as follows.
  • a vinylidene fluoride polymer obtained by adding a chain transfer agent such as ethyl acetate, methyl acetate, diethyl carbonate, acetone, ethanol, n-propanol, acetaldehyde, propyl aldehyde, ethyl propionate, carbon tetrachloride, etc. It is also possible to adjust the degree of polymerization.
  • the amount used is usually 0.01 to 5 parts by mass, preferably 0.02 to 4 parts by mass, based on 100 parts by mass of all monomers used for suspension polymerization.
  • the polymerization temperature T in suspension polymerization is appropriately selected according to the 10-hour half-life temperature T 10 of the polymerization initiator, and is usually selected in the range of T 10 ⁇ 25 ° C. ⁇ T ⁇ T 10 + 25 ° C.
  • T 10 for t-butyl peroxypivalate and diisopropyl peroxydicarbonate are 54.6 ° C. and 40.5 ° C., respectively. Therefore, in the polymerization using t-butyl peroxypivalate and diisopropyl peroxydicarbonate as polymerization initiators, the polymerization temperatures T are 29.6 ° C. ⁇ T ⁇ 79.6 ° C. and 15.5 ° C. ⁇ T ⁇ , respectively.
  • the polymerization time is not particularly limited, but is preferably 100 hours or less in consideration of productivity and the like.
  • the polymerization pressure is usually carried out under pressure, and is preferably 1.0 to 8.0 MPa-G.
  • a vinylidene fluoride polymer can be obtained by suspension polymerization of the monomer under the above conditions.
  • the method for producing a vinylidene fluoride polymer according to the present invention can reduce the amount of suspended solids in waste water generated when a vinylidene fluoride polymer is produced by suspension polymerization, compared to the conventional production method. Therefore, it is possible to reduce wastewater treatment costs and improve productivity.
  • Vinylidene fluoride polymer As a vinylidene fluoride polymer obtained by the production method of the present invention, it can be used for various applications in which a vinylidene fluoride polymer obtained by a conventional production method is used. That is, the vinylidene fluoride polymer obtained by the production method of the present invention may be used as a material for producing various films and molded products by melt molding, or may be used as a paint or a binder resin.
  • the average particle size of the vinylidene fluoride polymer obtained by the production method of the present invention is not particularly limited, but is usually from 80 to 250 ⁇ m, preferably from 130 to 230 ⁇ m.
  • the inherent viscosity of the vinylidene fluoride polymer obtained by the production method of the present invention (the logarithmic viscosity at 30 ° C. of a solution obtained by dissolving 4 g of resin in 1 liter of N, N-dimethylformamide. The same applies hereinafter)
  • the value is preferably within the range of 0.5 to 5.0 dl / g, more preferably within the range of 0.8 to 4.0 dl / g, and 1.0 to 3.5 dl / g. Most preferably, the value is within the range.
  • ⁇ rel is the sample solution outflow time / solvent outflow time
  • C the sample solution concentration (0.4 g / dl).
  • the particle size distribution of the vinylidene fluoride polymer powder was measured by a dry sieving method in accordance with JIS K 0069-3.1 using a low tap type II type sieve shaker D type manufactured by Hiraiko Seisakusho.
  • the average particle size was calculated by the log normal distribution method based on the measurement result of the particle size distribution.
  • the average particle size was a particle size showing a 50% cumulative value (D50) in the particle size cumulative distribution.
  • the polymer slurry was centrifugally dehydrated, and the wastewater was subjected to measurement of the amount of suspended solids.
  • the centrifugally dehydrated polymer was re-dispersed in water, heat-treated at 95 ° C. for 30 minutes, centrifuged, washed with water, and further dried at 80 ° C. for 20 hours to obtain a vinylidene fluoride polymer powder (c1).
  • the inherent viscosity of the obtained vinylidene fluoride polymer powder (c1) was 1.08 dl / g. The results are shown in Table 1.
  • Example 1 1,1,2-Dichloro-1,1,2,2,3-pentafluoropropane is converted to 1,1,2,2-tetrafluoroethyl 2,2,2-trifluoroethyl ether (Asahi Glass Co., Ltd.)
  • the vinylidene fluoride polymer powder (1) was obtained in the same manner as in Comparative Example 1 except that it was replaced with AE3000.
  • the suspension polymerization was carried out for a total of 28 hours and 00 minutes.
  • the pressure at the completion of the polymerization was 1.7 MPa, the polymerization yield was 89.3%, and the average particle size was 162 ⁇ m.
  • the inherent viscosity of the obtained vinylidene fluoride polymer powder (1) was 1.07 dl / g. The results are shown in Table 1.
  • the polymer slurry was centrifugally dehydrated, and the wastewater was subjected to measurement of the amount of suspended solids.
  • the centrifugally dehydrated polymer was re-dispersed in water, heat-treated at 95 ° C. for 30 minutes, dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a vinylidene fluoride polymer powder (c2).
  • the inherent viscosity of the obtained vinylidene fluoride polymer powder was 1.90 dl / g. The results are shown in Table 2.
  • Example 2 Comparative Example 2 except that 1,3-dichloro-1,1,2,2,3-pentafluoropropane was replaced with 1,1,2,2-tetrafluoroethyl 2,2,2-trifluoroethyl ether In the same manner as above, a vinylidene fluoride polymer powder (2) was obtained.
  • the suspension polymerization was carried out for a total of 17 hours and 20 minutes.
  • the pressure at the completion of the polymerization was 1.9 MPa, the polymerization yield was 84.6%, and the average particle size was 166 ⁇ m.
  • the inherent viscosity of the obtained vinylidene fluoride polymer powder (2) was 1.89 dl / g. The results are shown in Table 2.
  • the polymer slurry was centrifugally dehydrated, and the wastewater was subjected to measurement of the amount of suspended solids.
  • the centrifugally dehydrated polymer was redispersed in water, heat-treated at 95 ° C. for 30 minutes, dehydrated, washed with water, and further dried at 80 ° C. for 20 hours to obtain a vinylidene fluoride polymer powder (c3).
  • the inherent viscosity of the obtained vinylidene fluoride polymer powder (c3) was 1.00 dl / g. The results are shown in Table 3.
  • Example 3 Comparative Example 3 except that 1,3-dichloro-1,1,2,2,3-pentafluoropropane was replaced with 1,1,2,2-tetrafluoroethyl 2,2,2-trifluoroethyl ether In the same manner as above, a vinylidene fluoride polymer powder (3) was obtained.
  • the suspension polymerization was carried out for a total of 1 hour and 00 minutes.
  • the pressure at the completion of the polymerization was 1.4 MPa, the polymerization yield was 91.3%, and the average particle size was 152 ⁇ m.
  • the inherent viscosity of the obtained vinylidene fluoride polymer powder (3) was 1.02 dl / g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

 本発明は、フッ化ビニリデン系重合体を懸濁重合により製造する際に発生する、排水中の浮遊物質の量を従来の製法よりも減少させることが可能な製造方法を提供することを目的とする。本発明のフッ化ビニリデン系重合体の製造方法は、少なくともフッ化ビニリデンを含むモノマーを、重合開始剤存在下で懸濁重合する製法において、一般式R1‐O‐R2(R1、R2はアルキル基または、フッ化アルキル基であり、R1、R2の少なくとも片方がフッ化アルキル基)で表わされる分子量が100~800であるハイドロフルオロエーテルおよび環状ハイドロフルオロカーボンから選択される少なくとも1種のフッ素系化合物存在下で懸濁重合を行うこと、前記フッ素系化合物を、重合開始剤100質量%に対して10~1000質量%用いること、前記重合開始剤を、懸濁重合に使用する全モノマー100質量部に対して0.01~5質量部用いることを特徴とする。

Description

フッ化ビニリデン系重合体の製造方法
 本発明はフッ化ビニリデン系重合体の製造方法に関する。
 フッ化ビニリデン系重合体は様々な重合法により合成することができるが、工業的生産では、乳化重合法や懸濁重合法により合成されている。乳化重合法では、0.2~0.5μm程度の小粒径のラテックスが生成するため、重合後、凝集剤を用いた造粒処理が施されているが、乳化剤や凝集剤等を十分に除去する為には複雑な後処理が必要となる。一方、懸濁重合法では50~300μm程度の粒径のビーズが生成し、簡易な洗浄処理で不純物の少ない重合体が得られる。
 しかし、懸濁重合においては、重合反応中に水相に微粉が発生し、排水中の浮遊物質量が高くなりやすい。浮遊物質量が高くなれば環境負荷も大きくなる為、排水から浮遊物質を除去する為の排水処理設備(浮上分離など)が必要となる。一般に、浮遊物質の増大を防ぐ手段としては、重合禁止剤の添加や攪拌条件の最適化がなされるが、効果が不充分な場合や、重合反応の遅延、製品色調の変化が発生する問題があった。
 浮遊物質の生成については様々な原因が考えられるが、重合開始剤と懸濁剤の反応や、正常に形成されたモノマー懸濁粒子の外で重合開始剤とモノマーが反応した場合等に形成されると考えられる。
 ところで、懸濁重合は通常重合開始剤存在下で行われるが、重合開始剤の重合系内での分散性や混和性の向上、ハンドリングの向上、輸送・保管時の安全性の向上等の見地から、重合開始剤を適当な溶媒と併用若しくは溶解して用いられる事が一般的であるが、フッ化ビニリデンの重合においては成長ラジカルの強い水素引き抜き作用のため、使用溶媒が限定され、連鎖移動や副反応を抑制する為にフッ素系溶媒がしばしば用いられてきた。
 フッ化ビニリデン系重合体の懸濁重合においては、例えば水性媒体100質量部に対して、モノヒドロペンタフルオロジクロロプロパン等の特定のハロゲン化炭化水素溶剤を10~50質量部用いる方法が提案されている(例えば、特許文献1参照)。該方法は、熱安定性に優れたフッ化ビニリデン系重合体を製造することを目的としており、懸濁重合における排水中の浮遊物質量については検討されていない。
 ところで、重合媒体として特定のヒドロフルオロアルキルエーテルを用い、フッ素モノマーを重合することにより含フッ素重合体を製造する方法が提案されている(例えば、特許文献2、3参照)。該フッ素重合体の製造方法は、オゾン層破壊の原因物質であるクロロフルオロカーボンを代替することを目的としており、オゾン層破壊係数が小さく、重合速度が大きい重合媒体を用いることを特徴としている。該フッ素重合体の製造方法は、重合媒体として特定のヒドロフルオロアルキルエーテルを用いるため、その使用量が多量であり、フッ素重合体の製造コストの増加、フッ素重合体中に該ヒドロフルオロアルキルエーテルが残留するとの問題があった。
 また、特定のハイドロフルオロエーテルと水とを含む重合媒質中で、フッ素化モノマーを重合させてフルオロポリマーを得る方法が提案されている(例えば、特許文献4参照)。特許文献4には、該ハイドロフルオロエーテルは、地球温暖化およびオゾン層破壊の可能性が小さいこと、容易に入手できることが開示されている。該フルオロポリマーの製造方法は、ハイドロフルオロエーテルとして、比較的炭素数の大きなフッ素化アルキル基を有するものを用いていた。該フルオロポリマーの製造方法では、未だ重合開始剤の分散性・混和性が劣っており、改善が望まれていた。
特開2002-220403号公報 特開2005-29704号公報 特開平11-92507号公報 特開2010-501673号公報
 本発明は、上記従来技術の有する課題を鑑みてされたものであり、フッ化ビニリデン系重合体を懸濁重合により製造する際に発生する、排水中の浮遊物質の量を従来の製法よりも減少させることが可能なフッ化ビニリデン系重合体の製造方法を提供することを目的とする。本発明のフッ化ビニリデン系重合体の製造方法は、浮遊物質量を低減することが可能であるため、廃水処理コストの低減および生産性の向上が可能である。
 本発明者らは上記課題を達成するために鋭意研究を重ねた結果、特定のフッ素系化合物が特定量存在する条件で懸濁重合を行うことにより、排水中の浮遊物質の量を低減することが可能であることを見出し、本発明を完成させた。
 すなわち、本発明のフッ化ビニリデン系重合体の製造方法は、少なくともフッ化ビニリデンを含むモノマーを、重合開始剤存在下で懸濁重合するフッ化ビニリデン系重合体の製造方法において、一般式R1‐O‐R2(ここでR1およびR2はそれぞれ独立に、アルキル基または、アルキル基の水素原子の一部もしくは全部がフッ素化されたフッ化アルキル基であり、R1およびR2の少なくとも片方が前記フッ化アルキル基である)で表わされる分子量が100~800であるハイドロフルオロエーテルおよび環状ハイドロフルオロカーボンから選択される少なくとも1種のフッ素系化合物存在下で懸濁重合を行うこと、前記フッ素系化合物を、前記重合開始剤100質量%に対して10~1000質量%用いること、前記重合開始剤を、懸濁重合に使用する全モノマー100質量部に対して0.01~5質量部用いることを特徴とする。
 前記アルキル基が、炭素数1~2のアルキル基であり、前記フッ化アルキル基が炭素数1~4のフッ化アルキル基であることが好ましい。
 前記フッ素系化合物が、CF3CH2OCF2CHF2、CHF2CF2CH2OCF2CHF2、CF3CF2CH2OCF2CHF2から選択される少なくとも1種のフッ素系化合物であることが好ましく、CF3CH2OCF2CHF2であることがより好ましい。
 前記重合開始剤が、前記フッ素系化合物に溶解した状態で懸濁重合が行われることが好ましい。
 前記重合開始剤を、重合系外で前記フッ素系化合物に溶解させ、得られた溶液を重合系内に添加することが好ましい。
 本発明のフッ化ビニリデン系重合体の製造方法は、フッ化ビニリデン系重合体を懸濁重合により製造する際に発生する、排水中の浮遊物質の量を従来の製法よりも減少させることが可能である。このため本発明のフッ化ビニリデン系重合体の製造方法は、廃水処理コストの低減および生産性の向上が可能である。
 次に本発明について具体的に説明する。
 本発明のフッ化ビニリデン系重合体の製造方法は、少なくともフッ化ビニリデンを含むモノマーを、重合開始剤存在下で懸濁重合するフッ化ビニリデン系重合体の製造方法において、一般式R1‐O‐R2(ここでR1およびR2はそれぞれ独立に、アルキル基または、アルキル基の水素原子の一部もしくは全部がフッ素化されたフッ化アルキル基であり、R1およびR2の少なくとも片方が前記フッ化アルキル基である)で表わされる分子量が100~800であるハイドロフルオロエーテルおよび環状ハイドロフルオロカーボンから選択される少なくとも1種のフッ素系化合物存在下で懸濁重合を行うこと、前記フッ素系化合物を、前記重合開始剤100質量%に対して10~1000質量%用いること、前記重合開始剤を、懸濁重合に使用する全モノマー100質量部に対して0.01~5質量部用いることを特徴とする。
 なお、本明細書では、一般式R1‐O‐R2(ここでR1およびR2はそれぞれ独立に、アルキル基または、アルキル基の水素原子の一部もしくは全部がフッ素化されたフッ化アルキル基であり、R1およびR2の少なくとも片方が前記フッ化アルキル基である)で表わされる分子量が100~800であるハイドロフルオロエーテルおよび環状ハイドロフルオロカーボンから選択される少なくとも1種のフッ素系化合物を、特定のフッ素系化合物とも記す。
 〔少なくともフッ化ビニリデンを含むモノマー〕
 本発明のフッ化ビニリデン系重合体の製造方法では、少なくともフッ化ビニリデンを含むモノマーを原料として用いる。
 なお、本発明のフッ化ビニリデン系重合体の製造方法では、モノマーとして少なくともフッ化ビニリデンを用い、他のモノマーを合わせて用いてもよい。
 本発明のフッ化ビニリデン系重合体の製造方法では、全モノマー(フッ化ビニリデンおよび他のモノマー)の合計100モル%あたりフッ化ビニリデンが、通常は50モル%以上であり、好ましくは80モル%以上であり、より好ましくは85モル%以上である。また、フッ化ビニリデン系重合体として、フッ化ビニリデン単独重合体を得る場合にはモノマーが全てフッ化ビニリデンである。
 本発明のフッ化ビニリデン系重合体の製造方法では前述のように、フッ化ビニリデン以外のモノマー(他のモノマー)を用いてもよい。本発明のフッ化ビニリデン系重合体の製造方法では、全モノマーの合計100モル%あたり他のモノマーが、通常は50モル%以下であり、好ましくは20モル%以下であり、より好ましくは15モル%以下である。
 前記他のモノマーとしては、例えばフッ化ビニリデンと共重合可能なフッ素系単量体あるいはエチレン、プロピレン等の炭化水素系単量体、カルボキシル基含有モノマー、カルボン酸無水物基含有モノマーが挙げられる。なお、他のモノマーは、一種単独でも、二種以上でもよい。
 前記フッ化ビニリデンと共重合可能なフッ素系単量体としては、フッ化ビニル、トリフルオロエチレン、テトラフルオロエチレン、クロロトリフルオロエチレン、ヘキサフルオロプロピレン、ペルフルオロメチルビニルエーテルに代表されるペルフルオロアルキルビニルエーテル等を挙げることができる。
 前記カルボキシル基含有モノマーとしては、不飽和一塩基酸、不飽和二塩基酸、不飽和二塩基酸のモノエステル等が好ましい。
 前記不飽和一塩基酸としては、アクリル酸、メタクリル酸、2-カルボキシエチルアクリレート、2-カルボキシエチルメタクリレート等が挙げられる。前記不飽和二塩基酸としては、マレイン酸、シトラコン酸等が挙げられる。また、前記不飽和二塩基酸のモノエステルとしては、炭素数5~8のものが好ましく、例えばマレイン酸モノメチルエステル、マレイン酸モノエチルエステル、シトラコン酸モノメチルエステル、シトラコン酸モノエチルエステル等を挙げることができる。中でも、カルボキシル基含有モノマーとしては、アクリル酸、メタクリル酸、マレイン酸、シトラコン酸、マレイン酸モノメチルエステル、シトラコン酸モノメチルエステルが好ましい。また、カルボキシル基含有モノマーとしてはアクリロイロキシエチルコハク酸、メタクリロイロキシエチルコハク酸、アクリロイロキシエチルフタル酸、メタクリロイロキシエチルフタル酸等を用いてもよい。
 前記カルボン酸無水物基含有モノマーとしては、前記不飽和二塩基酸の酸無水物、具体的には、無水マレイン酸、無水シトラコン酸が挙げられる。
 〔重合開始剤〕
 本発明のフッ化ビニリデン系重合体の製造方法では、重合開始剤存在下で前記モノマーの懸濁重合を行う。
 重合開始剤としては、10時間半減期温度が30~90℃のものが好ましく用いられ、その好ましい例としてはジイソプロピルパーオキシジカーボネート、ジノルマルプロピルパーオキシジカーボネート、t‐ブチルパーオキシピバレートが挙げられ、重合開始剤と特定のフッ素系化合物との親和性の観点からジイソプロピルパーオキシジカーボネートおよびジノルマルプロピルパーオキシジカーボネートがより好ましく、ジイソプロピルパーオキシジカーボネートが最も好ましい。重合開始剤の使用量は、懸濁重合に使用する全モノマーを100質量部とすると、0.01~5質量部、好ましくは0.05~2質量部、特に好ましくは0.1~1.5質量部の範囲で用いられる。重合開始剤の使用量が0.01質量部より小さいと重合時間が極端に長くなってしまう。重合開始剤の使用量が5質量部より大きくなると、製品が黄褐色に着色したり、浮遊物質量が増大する。この為、前記範囲で重合開始剤を使用することが好ましい。
 〔特定のフッ素系化合物〕
 本発明のフッ化ビニリデン系重合体の製造方法は、前述のように一般式R1‐O‐R2(ここでR1およびR2はそれぞれ独立に、アルキル基または、アルキル基の水素原子の一部もしくは全部がフッ素化されたフッ化アルキル基であり、R1およびR2の少なくとも片方が前記フッ化アルキル基である)で表わされる分子量が100~800であるハイドロフルオロエーテルおよび環状ハイドロフルオロカーボンから選択される少なくとも1種のフッ素系化合物存在下で懸濁重合を行うことを特徴とする。
 本発明のフッ化ビニリデン系重合体の製造方法は、特定のフッ素系化合物の存在下で懸濁重合を行うことにより、フッ化ビニリデン系重合体を懸濁重合により製造する際に発生する、排水中の浮遊物質の量を従来の製法よりも減少させることが可能であり、このため本発明のフッ化ビニリデン系重合体の製造方法は、廃水処理コストの低減および生産性の向上が可能である。
 前記ハイドロフルオロエーテルの分子量は100~800であるが、150~500であることが好ましい。また、前記ハイドロフルオロエーテルのフッ素含有率が30~90wt%であることが好ましく、フッ素含有率が50~75wt%であることがより好ましい。なおフッ素含有率とは、フッ素系化合物分子を占めるフッ素原子の質量の割合である。
 また、前記一般式において、アルキル基は炭素数1~2のアルキル基であることが好ましく、前記フッ化アルキル基が炭素数1~4のフッ化アルキル基であることが好ましい。前記アルキル基の炭素数が1~2であり、フッ化アルキル基の炭素数が1~4であると、重合開始剤に対する溶解力が優れると共に、フッ化ビニリデンモノマーの重合反応時に水素引き抜きが起こり難いため好ましい。
 前記ハイドロフルオロエーテルとしては、1,1,2,2-テトラフルオロエチル2,2,2-トリフルオロエチルエーテル(CF3CH2OCF2CHF2)、1,1,2,2-テトラフルオロエチル2,2,3,3-テトラフルオロプロピルエーテル(CHF2CF2CH2OCF2CHF2)、1,1,2,2-テトラフルオロエチル2,2,3,3,3-ペンタフルオロプロピルエーテル(CF3CF2CH2OCF2CHF2)、ヘプタフルオロプロピルメチルエーテル、ノナフルオロブチルメチルエーテル、ノナフルオロブチルエチルエーテル、1,1,1,2,3,4,4,5,5,5-デカフルオロ-3-メトキシ-2-(トリフルオロメチル)ペンタン等が挙げられる。
 前記環状ハイドロフルオロカーボンとしては、通常は炭素数が4~10、フッ素含有率が30%~90%であるものが用いられる。環状ハイドロフルオロカーボンとしては、炭素数が5~8、フッ素含有率が50%~75%で有るものを用いることが好ましい。
 前記環状ハイドロフルオロカーボンとしては、1,1,2,2,3,3,4-ヘプタフルオロシクロペンタン、オクタフルオロシクロペンテン等が挙げられる。
 本発明に用いる前記特定のフッ素系化合物としては、1種または2種以上のハイドロフルオロエーテルでもよく、1種または2種以上の環状ハイドロフルオロカーボンでもよく、ハイドロフルオロエーテルと環状ハイドロフルオロカーボンとの2種以上の混合物であってもよい。
 本発明に用いる特定のフッ素系化合物としては、CF3CH2OCF2CHF2、CHF2CF2CH2OCF2CHF2、CF3CF2CH2OCF2CHF2から選択される少なくとも1種のフッ素系化合物が好ましく、CF3CH2OCF2CHF2がより好ましい。
 前記特定のフッ素系化合物は、前記重合開始剤を100質量%とすると、10~1000質量%用いることが好ましく、25~500質量%用いることがより好ましく、50~300質量%用いることが特に好ましい。重合開始剤を100質量%とした時の特定のフッ素化合物の添加量が10%より小さいと、重合開始剤の分散性・混和性が劣り、重合開始剤の利用効率が低下する。特定のフッ素化合物を1000質量%を超えて添加しても、重合開始剤の分散・混和性の改善幅は小さく、製品コストの増大につながるため好ましくない。
 本発明の特定のフッ素系化合物は、懸濁重合を行う際に使用する全モノマー100質量部とすると、0.001~4.8質量部であることが好ましく、0.005~3.0質量部であることがより好ましく、0.01~1.2質量部であることが特に好ましい。前記範囲では重合開始剤の分散性・混和性に優れると共に、製品コスト面から好ましい。
 〔懸濁剤〕
 本発明のフッ化ビニリデン系重合体の製造方法は、通常前記モノマーを、懸濁剤を含む水性媒体中に分散し、重合開始剤および前記特定のフッ素系化合物存在下で懸濁重合することにより行われる。
 本発明のフッ化ビニリデン系重合体の製造方法では、通常懸濁剤を用いる。
 懸濁剤としては、特に限定はないが、メチルセルロース、メトキシ化メチルセルロース、プロポキシ化メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルメチルセルロース等のセルロース誘導体、ポリビニルアルコール、ポリエチレンオキシド、ゼラチン等を用いることができる。
 懸濁剤としてはセルロース誘導体を用いることが好ましく、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロース等が好ましい。
 懸濁剤の使用量としては、懸濁重合を行う際に使用する全モノマー100質量部に対して0.02質量部以上、0.25質量部未満存在することが好ましく、0.03質量部以上、0.2質量部未満存在することがより好ましく、0.05質量部以上、0.15質量部以下存在することが特に好ましい。前記範囲内では、モノマーの懸濁粒子が安定であり、気泡の発生も少なく好ましい。
 〔水性媒体〕
 本発明のフッ化ビニリデン系重合体の製造方法では、前述のように水性媒体中に前記フッ化ビニリデンを主成分とするモノマーを分散させ、懸濁重合を行う。
 水性媒体としては、イオン交換水、純水等の精製された水を用いることが好ましい。
 懸濁重合を行う際の水性媒体の使用量としては、使用する全モノマー100質量部に対して100~1000質量部であることが好ましく、より好ましくは200~500質量部である。
 〔懸濁重合〕
 本発明のフッ化ビニリデン系重合体の製造方法は、前述のように前記少なくともフッ化ビニリデンを含むモノマーを、前記特定のフッ素系化合物および重合開始剤存在下で懸濁重合することにより、フッ化ビニリデン系重合体を得る。また、該製造方法は、通常懸濁剤を含む水性媒体中で行われる。
 本発明のフッ化ビニリデン系重合体の製造方法では、前記特定のフッ素系化合物は、重合開始剤の溶媒として作用することが好ましい。すなわち、前記重合開始剤が、前記特定のフッ素系化合物に溶解した状態で懸濁重合が行われることが好ましい。
 本発明の製法方法により、排水中の浮遊物質の量が低減される機構は明らかではないが、本発明者らは以下のように推測した。重合開始剤の溶媒として従来使用されてきたハイドロクロロフルオロカーボン等のフッ素系溶媒と、前記ハイドロフルオロエーテル、環状ハイドロフルオロカーボン等の特定のフッ素系化合物とを比べると、前記懸濁剤、水性媒体、モノマー、重合開始剤の親和性が異なり、該親和性の違いが浮遊物質量の低減につながっていると推測した。浮遊物質の生成においては、重合開始剤と懸濁剤の反応、モノマー懸濁粒子外での開始剤とモノマーとの反応が寄与していると考えられ、開始剤を溶解する溶媒の選択が浮遊物質の形成に影響すると本発明者らは推測した。
 このような観点から、開始剤として、ジイソプロピルパーオキシジカーボネートを用いた場合には、前記特定のフッ素系化合物として、1,1,2,2‐テトラフルオロエチル2,2,2‐トリフルオロエチルエーテルを用いることが特に好ましい。該組み合わせでは排水中の浮遊物質の量を特に好適に低減することができるため好ましい。
 本発明のフッ化ビニリデン系重合体の製造方法では、重合系内で、前記水性媒体、特定のフッ素系化合物、重合開始剤を分散・混合することにより、特定のフッ素系化合物に重合開始剤を溶解させてもよいが、前記重合開始剤を、重合系外で前記特定のフッ素系化合物に溶解させ、得られた溶液を重合系内に添加することが特定のフッ素系化合物中に含まれる重合開始剤濃度が均一化し、重合開始剤の利用効率が向上するため好ましい。
 特定のフッ素系化合物と重合開始剤とを混合すると、重合開始剤が溶解され、重合開始剤が均一的に懸濁重合に利用されることを補助するが、重合系内に過剰量の特定のフッ素系化合物が存在しても、重合開始剤の分散・混和性の改善幅は小さく、製品コストの増大につながるため好ましくない。
 本発明のフッ化ビニリデン系重合体の製造方法においては、前記特定のフッ素系化合物存在下で懸濁重合を行う以外、好ましくは重合開始剤を重合系外で前記特定のフッ素系化合物に溶解し、得られた溶液をフッ化ビニリデン系重合体の製造に用いる以外は、従来の懸濁重合と同様の方法で行うことができる。なお、本発明のフッ化ビニリデン系重合体の製造方法において用いる、少なくともフッ化ビニリデンを含むモノマー、重合開始剤、特定のフッ素系化合物、懸濁剤、水性媒体の種類や使用量としては、前述の通りである。
 また、酢酸エチル、酢酸メチル、炭酸ジエチル、アセトン、エタノール、n-プロパノール、アセトアルデヒド、プロピルアルデヒド、プロピオン酸エチル、四塩化炭素等の連鎖移動剤を添加して、得られるフッ化ビニリデン系重合体の重合度を調節することも可能である。その使用量は、通常は、懸濁重合に使用する全モノマーを100質量部とすると、0.01~5質量部、好ましくは0.02~4質量部である。
 また、懸濁重合における重合温度Tは、重合開始剤の10時間半減期温度T10に応じて適宜選択され、通常はT10-25℃≦T≦T10+25℃の範囲で選択される。例えば、t‐ブチルパーオキシピバレートおよびジイソプロピルパーオキシジカーボネートのT10はそれぞれ、54.6℃および40.5℃である。したがって、t‐ブチルパーオキシピバレートおよびジイソプロピルパーオキシジカーボネートを重合開始剤として用いた重合では、その重合温度Tはそれぞれ29.6℃≦T≦79.6℃および15.5℃≦T≦65.5℃の範囲で適宜選択される。重合時間は特に制限されないが、生産性等を考慮すると100時間以下であることが好ましい。重合時の圧力は通常加圧下で行われ、好ましくは1.0~8.0MPa‐Gである。
 上記の条件で前記モノマーの懸濁重合を行うことにより、フッ化ビニリデン系重合体を得ることができる。
 本発明のフッ化ビニリデン系重合体の製造方法は、フッ化ビニリデン系重合体を懸濁重合により製造する際に発生する、排水中の浮遊物質の量を従来の製法よりも減少させることが可能であり、廃水処理コストの低減および生産性の向上が可能である。
 〔フッ化ビニリデン系重合体〕
 本発明の製造方法で得られるフッ化ビニリデン系重合体としては、従来の製法により得られるフッ化ビニリデン系重合体が用いられる各種用途に用いることが可能である。すなわち、本発明の製造方法で得られるフッ化ビニリデン系重合体は、溶融成型して各種フィルムや成形品を製造するための材料として用いてもよく、塗料やバインダー樹脂として用いてもよい。
 本発明の製造方法で得られるフッ化ビニリデン系重合体の平均粒径としては、特に限定はないが、通常は80~250μmであり、好ましくは130~230μmである。
 また、本発明の製造方法で得られるフッ化ビニリデン系重合体のインヘレント粘度(樹脂4gを1リットルのN,N-ジメチルホルムアミドに溶解させた溶液の30℃における対数粘度。以下、同様)は、0.5~5.0dl/gの範囲内の値であることが好ましく、0.8~4.0dl/gの範囲内の値であることがより好ましく、1.0~3.5dl/gの範囲内の値であることが最も好ましい。
 次に本発明について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。
 実施例、比較例で得られたフッ化ビニリデン系重合体粉末の物性は以下の方法で測定した。
 〔インヘレント粘度〕
 1リットルのN,N-ジメチルホルムアミドに、フッ化ビニリデン系重合体粉末4gを添加し、80℃で8時間かけて溶解させた溶液を調製した。この溶液および溶媒であるN,N-ジメチルホルムアミドを30℃に保持してウベローデ粘度計でそれぞれの流出時間を測定し、下式によりインヘレント粘度を求めた。
 [η]=ln(ηrel)/C
 ここでηrelは、試料溶液の流出時間/溶媒の流出時間、Cは試料溶液の濃度(0.4g/dl)を表す。
 〔平均粒径〕
 フッ化ビニリデン系重合体粉末の粒度分布を、(株)平工製作所製ロータップ式II型ふるい振とう機D型を用い、JIS K 0069-3.1に従って、乾式ふるい分け法により測定した。平均粒径の算出は、粒度分布の測定結果を元に、対数正規分布法にて求めた。平均粒径は、粒度累積分布において、50%累積値(D50)を示す粒径とした。
 〔浮遊物質量の測定〕
 重合完了後、重合体スラリーを遠心脱水して排水を回収した。遠心脱水においては通気性(JIS L1096)が70cm3/cm2・secのろ布を用いた。得られた排水について、JIS K0102記載の懸濁物質の測定方法に従い得られた懸濁物質量を浮遊物質量(SS)とした。
 〔比較例1〕
 内容積14.5リットルのオートクレーブに、7420gのイオン交換水、4.6gのメチルセルロース、3050gのフッ化ビニリデン、30.7gのマレイン酸モノメチルエステル、ジイソプロピルパーオキシジカーボネートを1,3‐ジクロロ‐1,1,2,2,3‐ペンタフルオロプロパン(旭硝子(株)製)(以下、225cbとも記す)に50wt%の濃度で溶解した開始剤溶液66.2g、6.2gの酢酸エチルを仕込み、29℃で26時間懸濁重合を進めた時点で45℃まで昇温し、合計28時間20分懸濁重合を行った。重合完了時の圧力は1.7MPa、重合収率は89.4%、平均粒子径は165μmであった。
 重合完了後、重合体スラリーを遠心脱水し、排水を浮遊物質量の測定に供した。遠心脱水した重合体は水に再分散し、95℃で30分間熱処理した後、遠心脱水、水洗し、さらに80℃で20時間乾燥してフッ化ビニリデン系重合体粉末(c1)を得た。得られたフッ化ビニリデン系重合体粉末(c1)のインヘレント粘度は1.08dl/gであった。
 結果を表1に示す。
 〔実施例1〕
 1,3‐ジクロロ‐1,1,2,2,3‐ペンタフルオロプロパンを1,1,2,2‐テトラフルオロエチル2,2,2‐トリフルオロエチルエーテル(旭硝子(株)製)(以下、AE3000とも記す)に代えた以外は、比較例1と同様に行い、フッ化ビニリデン系重合体粉末(1)を得た。
 なお、懸濁重合は合計28時間00分行った。重合完了時の圧力は1.7MPa、重合収率は89.3%、平均粒子径は162μmであった。得られたフッ化ビニリデン系重合体粉末(1)のインヘレント粘度は1.07dl/gであった。
 結果を表1に示す。
 〔比較例2〕
 内容積14.5リットルのオートクレーブに、8170gのイオン交換水、1.6gのメチルセルロース、2870gのフッ化ビニリデン、320gのヘキサフルオロプロピレン、ジイソプロピルパーオキシジカーボネートを1,3‐ジクロロ‐1,1,2,2,3‐ペンタフルオロプロパンに50wt%の濃度で溶解した開始剤溶液12.8g、30gの酢酸エチルを仕込み、29℃で17時間45分懸濁重合を行った。重合完了時の圧力は1.9MPa、重合収率は84.5%、平均粒子径は162μmであった。
 重合完了後、重合体スラリーを遠心脱水し、排水を浮遊物質量の測定に供した。遠心脱水した重合体は水に再分散し、95℃で30分間熱処理した後、脱水、水洗し、さらに80℃で20時間乾燥してフッ化ビニリデン系重合体粉末(c2)を得た。得られたフッ化ビニリデン系重合体粉末のインヘレント粘度は1.90dl/gであった。
 結果を表2に示す。
 〔実施例2〕
 1,3‐ジクロロ‐1,1,2,2,3‐ペンタフルオロプロパンを1,1,2,2‐テトラフルオロエチル2,2,2‐トリフルオロエチルエーテルに代えた以外は、比較例2と同様に行い、フッ化ビニリデン系重合体粉末(2)を得た。
 なお、懸濁重合は合計17時間20分行った。重合完了時の圧力は1.9MPa、重合収率は84.6%、平均粒子径は166μmであった。得られたフッ化ビニリデン系重合体粉末(2)のインヘレント粘度は1.89dl/gであった。
 結果を表2に示す。
 〔比較例3〕
 内容積14.5リットルのオートクレーブに、8170gのイオン交換水、1.6gのメチルセルロース、3190gのフッ化ビニリデン、ジイソプロピルパーオキシジカーボネートを1,3‐ジクロロ‐1,1,2,2,3‐ペンタフルオロプロパンに50wt%の濃度で溶解した開始剤溶液25.4g、127gの酢酸エチルを仕込み、26℃で12時間重合を進めた時点で40℃まで昇温し、合計17時間30分懸濁重合を行った。重合完了時の圧力は1.4MPa、重合収率は92.0%、平均粒子径は153μmであった。
 重合完了後、重合体スラリーを遠心脱水し、排水を浮遊物質量の測定に供した。遠心脱水した重合体は水に再分散し、95℃で30分間熱処理した後、脱水、水洗し、さらに80℃で20時間乾燥してフッ化ビニリデン系重合体粉末(c3)を得た。得られたフッ化ビニリデン系重合体粉末(c3)のインヘレント粘度は1.00dl/gであった。
 結果を表3に示す。
 〔実施例3〕
 1,3‐ジクロロ‐1,1,2,2,3‐ペンタフルオロプロパンを1,1,2,2‐テトラフルオロエチル2,2,2‐トリフルオロエチルエーテルに代えた以外は、比較例3と同様に行い、フッ化ビニリデン系重合体粉末(3)を得た。
 なお、懸濁重合は合計17時間00分行った。重合完了時の圧力は1.4MPa、重合収率は91.3%、平均粒子径は152μmであった。得られたフッ化ビニリデン系重合体粉末(3)のインヘレント粘度は1.02dl/gであった。
 結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

Claims (6)

  1.  少なくともフッ化ビニリデンを含むモノマーを、重合開始剤存在下で懸濁重合するフッ化ビニリデン系重合体の製造方法において、
     一般式R1‐O‐R2(ここでR1およびR2はそれぞれ独立に、アルキル基または、アルキル基の水素原子の一部もしくは全部がフッ素化されたフッ化アルキル基であり、R1およびR2の少なくとも片方が前記フッ化アルキル基である)で表わされる分子量が100~800であるハイドロフルオロエーテルおよび環状ハイドロフルオロカーボンから選択される少なくとも1種のフッ素系化合物存在下で懸濁重合を行うこと、
     前記フッ素系化合物を、前記重合開始剤100質量%に対して10~1000質量%用いること、
     前記重合開始剤を、懸濁重合に使用する全モノマー100質量部に対して0.01~5質量部用いることを特徴とするフッ化ビニリデン系重合体の製造方法。
  2.  前記アルキル基が、炭素数1~2のアルキル基であり、前記フッ化アルキル基が炭素数1~4のフッ化アルキル基である請求項1に記載のフッ化ビニリデン系重合体の製造方法。
  3.  前記フッ素系化合物が、CF3CH2OCF2CHF2、CHF2CF2CH2OCF2CHF2、CF3CF2CH2OCF2CHF2から選択される少なくとも1種のフッ素系化合物である請求項1に記載のフッ化ビニリデン系重合体の製造方法。
  4.  前記フッ素系化合物がCF3CH2OCF2CHF2である請求項1に記載のフッ化ビニリデン系重合体の製造方法。
  5.  前記重合開始剤が、前記フッ素系化合物に溶解した状態で懸濁重合が行われる請求項1~4のいずれか一項に記載のフッ化ビニリデン系重合体の製造方法。
  6.  前記重合開始剤を、重合系外で前記フッ素系化合物に溶解させ、得られた溶液を重合系内に添加することを特徴とする請求項1~5のいずれか一項に記載のフッ化ビニリデン系重合体の製造方法。
PCT/JP2012/071210 2011-08-24 2012-08-22 フッ化ビニリデン系重合体の製造方法 WO2013027771A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280037601.9A CN103732630B (zh) 2011-08-24 2012-08-22 偏氟乙烯类聚合物的制造方法
JP2013530041A JP5881713B2 (ja) 2011-08-24 2012-08-22 フッ化ビニリデン系重合体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011182667 2011-08-24
JP2011-182667 2011-08-24

Publications (1)

Publication Number Publication Date
WO2013027771A1 true WO2013027771A1 (ja) 2013-02-28

Family

ID=47746509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071210 WO2013027771A1 (ja) 2011-08-24 2012-08-22 フッ化ビニリデン系重合体の製造方法

Country Status (3)

Country Link
JP (1) JP5881713B2 (ja)
CN (1) CN103732630B (ja)
WO (1) WO2013027771A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015079936A1 (ja) * 2013-11-27 2015-06-04 株式会社クレハ フッ化ビニリデン系重合体水系組成物およびその用途
CN114920867A (zh) * 2022-06-08 2022-08-19 万华化学(四川)有限公司 一种粒径分布可控的偏氟乙烯共聚物及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005029704A (ja) * 2003-07-07 2005-02-03 Asahi Glass Co Ltd 含フッ素共重合体及びその造粒物の製造方法
JP2010501673A (ja) * 2006-08-24 2010-01-21 スリーエム イノベイティブ プロパティズ カンパニー フルオロポリマーの製造方法
JP2010053209A (ja) * 2008-08-27 2010-03-11 Asahi Glass Co Ltd 含フッ素共重合体及びその用途

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192507A (ja) * 1997-07-24 1999-04-06 Asahi Glass Co Ltd 含フッ素重合体の製造方法
JP4683735B2 (ja) * 2001-01-26 2011-05-18 株式会社クレハ フッ化ビニリデン重合体及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005029704A (ja) * 2003-07-07 2005-02-03 Asahi Glass Co Ltd 含フッ素共重合体及びその造粒物の製造方法
JP2010501673A (ja) * 2006-08-24 2010-01-21 スリーエム イノベイティブ プロパティズ カンパニー フルオロポリマーの製造方法
JP2010053209A (ja) * 2008-08-27 2010-03-11 Asahi Glass Co Ltd 含フッ素共重合体及びその用途

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015079936A1 (ja) * 2013-11-27 2015-06-04 株式会社クレハ フッ化ビニリデン系重合体水系組成物およびその用途
JP2015103464A (ja) * 2013-11-27 2015-06-04 株式会社クレハ フッ化ビニリデン系重合体水系組成物およびその用途
CN105723549A (zh) * 2013-11-27 2016-06-29 株式会社吴羽 偏二氟乙烯系聚合物水系组合物及其用途
CN105723549B (zh) * 2013-11-27 2017-05-03 株式会社吴羽 偏二氟乙烯系聚合物水系组合物及其用途
CN114920867A (zh) * 2022-06-08 2022-08-19 万华化学(四川)有限公司 一种粒径分布可控的偏氟乙烯共聚物及制备方法
CN114920867B (zh) * 2022-06-08 2024-02-02 万华化学(四川)有限公司 一种粒径分布可控的偏氟乙烯共聚物及制备方法

Also Published As

Publication number Publication date
JPWO2013027771A1 (ja) 2015-03-19
CN103732630B (zh) 2015-12-02
JP5881713B2 (ja) 2016-03-09
CN103732630A (zh) 2014-04-16

Similar Documents

Publication Publication Date Title
JP7315863B2 (ja) フルオロポリマーの製造方法
US7776946B2 (en) Aqueous emulsion polymerization of fluorinated monomers using a fluorinated surfactant
JP7112000B2 (ja) フルオロポリマーの製造方法、重合用界面活性剤及び界面活性剤の使用
JP7389366B2 (ja) フルオロポリマー水性分散液の製造方法、排水の処理方法、及び、フルオロポリマー水性分散液
EP1939222A1 (en) Aqueous polytetrafluoroethylene emulsion, and polytetrafluoroethylene fine powder and porous material produced from the same
JP7201948B2 (ja) フルオロポリマーの製造方法、ポリテトラフルオロエチレン組成物及びポリテトラフルオロエチレン粉末
JP5881713B2 (ja) フッ化ビニリデン系重合体の製造方法
JP5730093B2 (ja) フッ化ビニリデン系重合体の製造方法
JP4042724B2 (ja) フルオロポリマー凝集体及びその製造方法
EP3511362A1 (en) Fluoropolymer powder and method for producing same
JP2014501803A (ja) フッ化ビニル重合およびフッ化ビニルポリマーの水分散液
JP5916562B2 (ja) フッ化ビニリデン系重合体の製造方法
JP6606387B2 (ja) 懸濁重合用分散助剤およびその水性液、並びに、それらを用いるビニル系樹脂の製造方法
JP2023062153A (ja) フルオロポリマー水性分散液の製造方法及びフルオロポリマー水性分散液
WO2022191286A1 (ja) フルオロポリマー水性分散液の製造方法
WO2023182229A1 (ja) フルオロポリマーの製造方法および組成物
JP2020022966A (ja) 懸濁重合用分散助剤およびその水性液、並びに、それらを用いるビニル系樹脂の製造方法
JP6136214B2 (ja) フマル酸ジエステル重合体粒子の製造方法
JP2011057871A (ja) 耐酸着色性の優れたフッ化ビニリデン重合体の製造方法
WO2023210819A1 (ja) フルオロポリマーの製造方法
WO2022244784A1 (ja) フルオロポリマーの製造方法、ポリテトラフルオロエチレンの製造方法および組成物
WO2023277140A1 (ja) 高純度フルオロポリマー含有組成物の製造方法および高純度フルオロポリマー含有組成物
WO2023210820A1 (ja) フッ素樹脂を含有する組成物の製造方法およびフッ素樹脂を含有する組成物
WO2022163815A1 (ja) フルオロポリマー組成物の製造方法
JPS61141703A (ja) 塩化ビニル系単量体の懸濁重合方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12825517

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013530041

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12825517

Country of ref document: EP

Kind code of ref document: A1