WO2013027654A1 - ポリカーボネート樹脂、それを含有する塗工液、及びそれを用いて成形してなる成形体 - Google Patents

ポリカーボネート樹脂、それを含有する塗工液、及びそれを用いて成形してなる成形体 Download PDF

Info

Publication number
WO2013027654A1
WO2013027654A1 PCT/JP2012/070852 JP2012070852W WO2013027654A1 WO 2013027654 A1 WO2013027654 A1 WO 2013027654A1 JP 2012070852 W JP2012070852 W JP 2012070852W WO 2013027654 A1 WO2013027654 A1 WO 2013027654A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
polycarbonate resin
resin
substituent
Prior art date
Application number
PCT/JP2012/070852
Other languages
English (en)
French (fr)
Inventor
森下 浩延
賢吾 平田
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to CN201280040444.7A priority Critical patent/CN103732650B/zh
Priority to JP2013529989A priority patent/JP5990522B2/ja
Priority to EP12825093.3A priority patent/EP2746314B1/en
Priority to US14/239,645 priority patent/US8927680B2/en
Priority to KR1020147004215A priority patent/KR101870487B1/ko
Publication of WO2013027654A1 publication Critical patent/WO2013027654A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • C08G64/08Aromatic polycarbonates not containing aliphatic unsaturation containing atoms other than carbon, hydrogen or oxygen
    • C08G64/10Aromatic polycarbonates not containing aliphatic unsaturation containing atoms other than carbon, hydrogen or oxygen containing halogens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/04Aromatic polycarbonates
    • C08G64/06Aromatic polycarbonates not containing aliphatic unsaturation
    • C08G64/14Aromatic polycarbonates not containing aliphatic unsaturation containing a chain-terminating or -crosslinking agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • C08G65/42Phenols and polyhydroxy ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D169/00Coating compositions based on polycarbonates; Coating compositions based on derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0557Macromolecular bonding materials obtained otherwise than by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/0564Polycarbonates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0557Macromolecular bonding materials obtained otherwise than by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/0578Polycondensates comprising silicon atoms in the main chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14708Cover layers comprising organic material
    • G03G5/14713Macromolecular material
    • G03G5/14747Macromolecular material obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G5/14756Polycarbonates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/147Cover layers
    • G03G5/14708Cover layers comprising organic material
    • G03G5/14713Macromolecular material
    • G03G5/14747Macromolecular material obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G5/14773Polycondensates comprising silicon atoms in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31507Of polycarbonate

Definitions

  • the present invention relates to a polycarbonate resin having a specific structure containing a fluorine atom at a polymer terminal, a coating liquid containing the polycarbonate resin and a non-halogen solvent, and a molded article formed by using the coating liquid. .
  • Polycarbonate resin has been used as a material for molded products in various industrial fields because of its excellent mechanical properties, thermal properties, transparency and electrical properties. Furthermore, in recent years, polycarbonate resins have been widely used in the field of functional products that utilize these properties as well as optical properties.
  • a polycarbonate resin is dissolved in an organic solvent to prepare a coating solution, and the coating solution is formed by coating the coating solution on a drum, sheet, or film.
  • a cast film formed from a liquid is known. More specific products include electrophotographic photosensitive drums used in electrophotographic printers, coating films formed on the surfaces of drums and rolls such as charging rolls and developing rolls, films used for electrical products and in-vehicle products. Examples thereof include coating films for insert molding films, retardation compensation films and conductive films used for liquid crystal displays, and surface protective films such as touch panels and windows.
  • Patent Documents 1 to 6 disclose a molded article that imparts water repellency and antifouling properties and imparts low surface properties such as a low friction coefficient by using a polycarbonate resin introduced with fluorine at the terminal. Yes.
  • JP-A-4-323263 Special table 2008-525581 JP 2007-277524 A JP 2005-126727 A Japanese Patent Laid-Open No. 10-130383 JP-A-8-225639
  • Patent Documents 1 to 6 are still insufficient from the viewpoint of improving the water repellency, surface lubricity, and wear resistance of molded articles produced from the resins.
  • the present invention is a polycarbonate resin capable of producing a molded article having excellent transparency, water repellency and oil repellency, a low coefficient of friction, excellent surface lubricity, and improved wear resistance. It aims at providing the molded object formed by shape
  • a polycarbonate resin represented by the following general formula (1) [In the formula (1), R f represents a perfluoroalkyl group having 5 or more carbon atoms and 11 or more fluorine atoms, or a perfluoroalkyloxy group represented by the following general formula (2). Show. W represents a divalent group containing a structural unit represented by the following general formula (3) or a naphthalene ring. ] [In the formula (2), R f2 is a linear or branched perfluoroalkyl group having 1 to 5 carbon atoms. n 6 is an integer of 1 to 3.
  • R 1 to R 4 are each independently a halogen atom, an optionally substituted alkyl group having 1 to 6 carbon atoms, an optionally substituted alkoxy group having 1 to 6 carbon atoms, A C1-C6 fluoroalkyl group which may have a substituent, a C1-C6 fluoroalkoxy group which may have a substituent, or a phenyl which may have a substituent Indicates a group.
  • X may have a single bond, an alkylene group having 1 to 18 carbon atoms which may have a substituent, an alkylidene group having 2 to 18 carbon atoms which may have a substituent, or a substituent.
  • n 1 and n 2 are each independently an integer of 0 to 4.
  • Y may have a single bond, an alkylene group having 1 to 18 carbon atoms which may have a substituent, an alkylidene group having 2 to 18 carbon atoms which may have a substituent, or a substituent.
  • n 3 and n 4 are each independently an integer of 0 to 4, but n 3 and n 4 are both 0 and Y is not an isopropylidene group.
  • the benzene ring in the formula (5) may be substituted with an alkyl group having 1 to 22 carbon atoms or an optionally substituted phenyl group.
  • W in the general formula (1) further has an organosiloxane-containing group.
  • the organosiloxane-containing group is a divalent group having a structure represented by the following general formula (6).
  • R 21 and R 22 each independently represents a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 12 carbon atoms, or a substituted or unsubstituted alkoxy group having 1 to 12 carbon atoms. Or a substituted or unsubstituted aryl group having 6 to 12 carbon atoms.
  • R 23 each independently represents a substituted or unsubstituted alkyl group having 1 to 12 carbon atoms or a substituted or unsubstituted aryl group having 6 to 12 carbon atoms.
  • n 21 is each independently an integer of 2 to 4, and n 22 is an integer of 1 to 600.
  • polycarbonate resin represented by the general formula (1) includes at least one of structural units represented by the following general formulas (7) to (13).
  • the polycarbonate resin in any one.
  • R 5 to R 7 are each independently a hydrogen atom, a halogen atom, an optionally substituted alkyl group having 1 to 6 carbon atoms, or an optionally substituted carbon number.
  • the polycarbonate resin having the specific structure of the present invention can be dissolved in various non-halogen organic solvents to form a uniform solution, and a molded product formed using this solution as a coating liquid has excellent transparency. In addition, it exhibits good water repellency and oil repellency, and has a low coefficient of friction and excellent surface lubricity, and can be a molded article excellent in wear resistance.
  • the polycarbonate resin of the present invention a polycarbonate resin-containing coating solution comprising a non-halogen solvent containing the polycarbonate resin (hereinafter, also simply referred to as “coating solution”), and molded using the coating solution.
  • coating solution a polycarbonate resin-containing coating solution comprising a non-halogen solvent containing the polycarbonate resin
  • the polycarbonate resin of the present invention is a polycarbonate resin represented by the following general formula (1).
  • R f is a perfluoroalkyl group having 5 or more carbon atoms and 11 or more fluorine atoms, or a perfluoroalkyloxy group represented by the following general formula (2). Indicates.
  • R f2 is a linear or branched perfluoroalkyl group having 1 to 5 carbon atoms.
  • n 6 is an integer of 1 to 3.
  • the polycarbonate resin of the present invention has a perfluoroalkyl group containing a predetermined or more fluorine atom or a perfluoroalkyloxy group having a specific structure as a terminal functional group, and the functional group is bonded through an ether bond. Therefore, the transparency of the molded body using the polycarbonate resin is improved, good water repellency and oil repellency are exhibited, the friction coefficient is lowered, and the surface lubricity is improved.
  • the surface of the molded body to which the polycarbonate of the present invention is applied is resistant to wear, and further, it is possible to suppress the deterioration of the coefficient of friction and the decrease in water repellency after wear.
  • R f is a perfluoroalkyl group
  • the perfluoroalkyl group has 5 or more carbon atoms, preferably 6-8. If the carbon number is less than 5, it is not preferable because sufficient water repellency, oil repellency and a low friction coefficient cannot be obtained.
  • the number of fluorine atoms in the perfluoroalkyl group is 11 or more, preferably 12-17. When the number of fluorine atoms is less than 11, the water repellency and oil repellency of the molded body using the polycarbonate resin are not sufficiently exhibited, which is not preferable.
  • R f is a perfluoroalkyloxy group represented by the general formula (2)
  • the number of carbon atoms of the group represented by the general formula (2) is preferably 3 to 11, more preferably Is 5-9.
  • the number of fluorine atoms in the perfluoroalkyloxy group is preferably 7-21, more preferably 11-17.
  • the carbon number of R f2 in the general formula (2) is 1 to 5, preferably 2 to 5, more preferably 3 to 4, and n 6 is an integer of 1 to 3. Is preferably an integer of 1 to 2.
  • W in the general formula (1) is a divalent group containing a structural unit represented by the following general formula (3) or a naphthalene ring.
  • p and q indicate the composition ratio (molar ratio) of the structural units in parentheses.
  • the composition ratio (molar ratio) [p / q] of p and q is preferably 30/70 to 95/5, more preferably 40/60 to 90/10, more preferably from the viewpoint of solubility and wear resistance. It is preferably 45/55 to 85/15.
  • R 1 to R 4 in the general formula (3) are each independently a halogen atom, an optionally substituted alkyl group having 1 to 6 carbon atoms, or an optionally substituted carbon atom.
  • the phenyl group which may have is shown.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Examples of the alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, t-pentyl group, and n-hexyl group. From the viewpoints of transparency and wear resistance, an alkyl group having 1 to 3 carbon atoms is preferred. Examples of the substituent include a halogen atom such as a chlorine atom. Examples of the alkoxy group having 1 to 6 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentyloxy group, a hexyloxy group, and the like.
  • the carbon number is 1 1-3 alkoxy groups are preferred.
  • the substituent include a halogen atom such as a chlorine atom.
  • the fluoroalkyl group having 1 to 6 carbon atoms include a fluoromethyl group, a trifluoromethyl group, a fluoroethyl group, a pentafluoroethyl group, a heptafluoropropyl group, and a nonafluorobutyl group.
  • the fluoroalkoxy group having 1 to 6 carbon atoms include a trifluoromethoxy group and a difluoromethoxy group.
  • Examples of the substituent in the phenyl group which may have a substituent include a halogen atom and the above alkyl group having 1 to 6 carbon atoms.
  • a halogen atom, an alkyl group having 1 to 6 carbon atoms which may have a substituent, and an alkyl group having 1 to 6 carbon atoms which may have a substituent are preferable, and a methyl group, a phenyl group, fluorine, and a trifluoromethyl group are more preferable.
  • X in the general formula (3) is a single bond, an alkylene group having 1 to 18 carbon atoms which may have a substituent, an alkylidene group having 2 to 18 carbon atoms which may have a substituent, A cycloalkylene group having 5 to 15 carbon atoms which may have a substituent, a cycloalkylidene group having 5 to 15 carbon atoms which may have a substituent, -S-, -SO-, -SO 2- , -O-, -CO-, or a divalent group represented by the following formula (4) or the following formula (5).
  • Examples of the substituent in the alkylene group, alkylidene group, cycloalkylene group, and cycloalkylidene group that may have a substituent represented by X include, for example, an alkyl group having 1 to 6 carbon atoms, a fluorine atom, chlorine A halogen atom such as an atom, a bromine atom or an iodine atom, or a phenyl group may be mentioned.
  • Examples of the alkyl group include the same groups as those exemplified for the alkyl group having 1 to 6 carbon atoms represented by R 1 to R 4 in the above general formula (3), and preferred ones are also the same. .
  • As the halogen atom a chlorine atom is preferable.
  • the benzene ring in the formula (5) may be substituted with an alkyl group having 1 to 22 carbon atoms or a phenyl group which may have a substituent.
  • substituent include an alkyl group having 1 to 6 carbon atoms and a halogen atom.
  • the 1-methylethylidene group is preferably bonded at the 1,3-position or 1,4-position of the benzene ring.
  • An alkylidene group having 18 to 18 carbon atoms and an optionally substituted cycloalkylidene group having 5 to 15 carbon atoms are preferable.
  • alkylene group having 1 to 18 carbon atoms examples include methylene group, ethylene group, n-propylene group, isopropylene group, n-butylene group, isobutylene group, n-pentylene group, n-hexylene group, and n-heptylene group.
  • N-octylene group 2-ethylhexylene group, n-nonylene group, n-decylene group, n-undecylene group, n-dodecylene group, n-tridecylene group, n-tetradecylene group, n-pentadecylene group, n- A hexadecylene group, an n-heptadecylene group, an n-octadecylene group, and the like can be mentioned.
  • An alkylene group having 1 to 8 carbon atoms is preferable, and an alkylene group having 1 to 4 carbon atoms is more preferable.
  • alkylidene group having 2 to 18 carbon atoms examples include ethylidene group, n-propylidene group, isopropylidene group, n-butylidene group, isobutylidene group, sec-butylidene group, n-pentylidene group, isopentylidene group, n- Examples thereof include a hexylidene group, an n-heptylidene group, an n-octylidene group, an isooctylidene group, and the like.
  • An alkylidene group having 2 to 5 carbon atoms is preferable, and an ethylidene group, a propylidene group, an isopropylidene group, and a sec-butylidene group are more preferable.
  • Examples of the cycloalkylene group having 5 to 15 carbon atoms include a cyclopentylene group, a cyclohexylene group, a cyclooctylene group, a cyclodecylene group, a cyclotetradecylene group, a 1,3-adamantyl group, and the like. 5-10 cycloalkylene groups are preferred.
  • Examples of the cycloalkylidene group having 5 to 15 carbon atoms include cyclopentylidene group, cyclohexylidene group, cyclooctylidene group, cyclodecylidene group, 2,2-adamantyl group, and the like.
  • An alkylidene group is preferred, and a cyclohexylidene group is more preferred.
  • Y represents a single bond, an alkylene group having 1 to 18 carbon atoms which may have a substituent, an alkylidene group having 2 to 18 carbon atoms which may have a substituent, A cycloalkylene group having 5 to 15 carbon atoms which may have a substituent, a cycloalkylidene group having 5 to 15 carbon atoms which may have a substituent, -S-, -SO-, -SO 2- , -O-, -CO-, or a divalent group represented by the above formula (4) or the above formula (5).
  • alkylene group having 1 to 18 carbon atoms the alkylidene group having 2 to 18 carbon atoms, the cycloalkylene group having 5 to 15 carbon atoms, and the cycloalkylidene group having 5 to 15 carbon atoms are exemplified by X described above.
  • the same groups as those described above can be mentioned, and preferred groups are also the same.
  • divalent groups Y a single bond and a divalent group represented by the above formula (5) are preferable from the viewpoint of wear resistance and mechanical strength.
  • a cycloalkylidene group having 5 to 15 carbon atoms is preferred from the viewpoint of water repellency / oil repellency and surface lubricity.
  • n 1 and n 2 are each independently an integer of 0 to 4.
  • N 3 and n 4 are each independently an integer of 0 to 4, but n 3 and n 4 are both 0, and Y is not an isopropylidene group.
  • X and Y may be the same.
  • R 1 to R 4 may be Having an optionally substituted alkyl group having 1 to 6 carbon atoms, an optionally substituted alkoxy group having 1 to 6 carbon atoms, or an optionally substituted phenyl group It is necessary.
  • W in the general formula (1) preferably further has an organosiloxane-containing group.
  • the organosiloxane-containing group is preferably a divalent group having a structure represented by the following general formula (6).
  • R 21 and R 22 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 12 carbon atoms, a substituted or unsubstituted group having 1 to 12 carbon atoms.
  • R 23 each independently represents a substituted or unsubstituted alkyl group having 1 to 12 carbon atoms or a substituted or unsubstituted aryl group having 6 to 12 carbon atoms.
  • Examples of the halogen atom represented by R 21 and R 22 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Examples of the substituted or unsubstituted alkyl group having 1 to 12 carbon atoms represented by R 21 and R 22 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and the like. An atom etc. are mentioned.
  • Specific examples of the alkyl group constituting the substituted or unsubstituted alkoxy group having 1 to 12 carbon atoms represented by R 21 and R 22 include the above alkyl groups, and examples of the substituent include a halogen atom. It is done.
  • Examples of the substituted or unsubstituted aryl group having 6 to 12 carbon atoms represented by R 21 and R 22 include a phenyl group, and the substituent includes a halogen atom and an alkyl group having 1 to 12 carbon atoms. Can be mentioned.
  • Examples of the substituted or unsubstituted alkyl group having 1 to 12 carbon atoms represented by R 23 include the same groups as R 21 and R 22 , preferably a methyl group.
  • Examples of the substituted or unsubstituted aryl group having 6 to 12 carbon atoms represented by R 23 include a phenyl group, and examples of the substituent include a halogen atom and an alkyl group having 1 to 12 carbon atoms.
  • n 21 is each independently an integer of 2 to 4.
  • N 22 is an integer of 1 to 600, preferably 2 to 100, more preferably 3 to 50.
  • the content ratio (molar ratio) of the organosiloxane-containing group needs to be high elastic modulus, wear resistance, low friction coefficient, etc. of the molded body. In this case, it is preferably 0.05 to 10 mol%, more preferably 0.1 to 5 mol%, still more preferably 0.15 to 3 mol%. On the other hand, when a low elastic modulus and high extensibility of the molded body are required, the amount is preferably 3 to 15 mol%.
  • the polycarbonate resin represented by the general formula (1) is a structural unit represented by the following general formulas (7) to (13) in the polycarbonate resin from the viewpoint of mechanical strength such as solubility and abrasion resistance. It is preferable that at least one of them is included.
  • R 5 to R 7 are each independently a hydrogen atom, a halogen atom, an optionally substituted alkyl group having 1 to 6 carbon atoms, or a substituent.
  • An optionally substituted alkoxy group having 1 to 6 carbon atoms, an optionally substituted fluoroalkyl group having 1 to 6 carbon atoms, and an optionally substituted fluoro having 1 to 6 carbon atoms An alkoxy group or a phenyl group which may have a substituent is shown.
  • R 5 to R 7 represent a halogen atom, an optionally substituted alkyl group having 1 to 6 carbon atoms, an optionally substituted alkoxy group having 1 to 6 carbon atoms, and a substituent.
  • optionally substituted fluoroalkyl group having 1 to 6 carbon atoms and the optionally substituted fluoroalkoxy group having 1 to 6 carbon atoms include the aforementioned R 1 to R 4. Examples thereof are the same as those exemplified in the above, and preferable examples are also the same.
  • the polycarbonate resin represented by the general formula (1) is synthesized by using the corresponding bisphenols or dihydroxynaphthalene of the following general formulas (17) and (18) and the fluorine-containing alcohol of the following general formula (19) as starting materials. be able to.
  • Examples of the bisphenol compound of the general formula (17) or (18) include 1,1-bis (3-methyl-4-hydroxyphenyl) ethane and 9,9-bis (3-phenyl-4-hydroxyphenyl). Fluorene, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 1,2-bis (4-hydroxyphenyl) ethane, 2,2-bis (3-methyl-4-hydroxy) Phenyl) butane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxyphenyl) octane, 4,4-bis (4-hydroxyphenyl) heptane, 1,1-bis (4 -Hydroxyphenyl) -1,1-diphenylmethane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 1,1-bis ( -Hydroxyphenyl) -1-phenylmethane, bis (4-hydroxyphenyl) ether, bis (4
  • bisphenol compounds may be used alone or in combination of two or more.
  • 2,2-bis (4-hydroxyphenylpropane) bisphenol A
  • bisphenol A 2,2-bis (4-hydroxyphenylpropane)
  • problems such as a decrease in solubility and easy crystallization may occur.
  • a compound in which two hydroxy groups are bonded to a naphthalene ring such as 2,7-dihydroxynaphthalene may be used.
  • 2,2-bis (4-hydroxyphenyl) butane 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (3-methyl-4-hydroxyphenyl) cyclohexane, 2,2 -Bis (3-methyl-4-hydroxyphenyl) propane, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 4,4'-dihydroxybiphenyl, 3,3'-dimethyl-4,4 ' -Dihydroxybiphenyl, 4,4'-dihydroxydiphenyl ether, 2,2-bis (4-hydroxyphenyl) hexafluoropropane.
  • the polycarbonate resin according to the present invention may be derived from two or more bisphenols represented by the above general formula (17) or (18), but the above general formula ( 17) or other bisphenol compounds other than (18) (hereinafter also referred to as “third component”) may be included.
  • the third component include 2,2-bis (4-hydroxyphenyl) propane (bisphenol A), bisphenol containing an organic siloxane group, and the like.
  • R 21 to R 23 , n 21 and n 22 are the same as those in the general formula (6)).
  • Fluorine-containing alcohol represented by the general formula (19) is used as a terminal terminator.
  • any one of fluorine-containing alcohols represented by the following general formulas (14), (15), and (15a) is preferably used as a terminal terminator.
  • n 31 is an integer of 5 to 8
  • n 32 in formula (15) is an integer of 0 to 2
  • n 33 is an integer of 1 to 3
  • n 34 in formula (15a) is 1. It is an integer of ⁇ 3.
  • fluorine-containing alcohol those having 2 to 6 continuous fluoroalkyl chains, which are connected via an ether bond, and having 13 to 19 total fluorine atoms are preferable.
  • the total number of fluorine atoms is 13 or more, sufficient water repellency and oil repellency can be exhibited.
  • it is 19 or less the reactivity fall at the time of superposition
  • polymerization can be suppressed and the mechanical strength of the obtained polycarbonate resin, surface hardness, heat resistance, etc. can improve.
  • a fluorine-containing alcohol having two or more ether bonds is preferable. By using such a fluorine-containing alcohol, the dispersibility of the resin is improved, the wear resistance is improved, and the surface lubricity, water repellency and oil repellency after wear can be maintained.
  • Examples of the fluorine-containing alcohol include the following compounds.
  • end terminators can also be used in the polycarbonate resin of the present invention together with the above-mentioned fluorine-containing alcohol.
  • monovalent carboxylic acids and derivatives thereof, monovalent phenols, and the like can be mixed and used, for example, p-tert-butylphenol, p-phenylphenol, p-cumylphenol.
  • P-perfluorononylphenol p- (perfluorononylphenyl) phenol, p-perfluorooctylphenol, p-perfluoroheptylphenol, p-perfluorohexylphenol, p-perfluoropentylphenol, p-perfluorobutylphenol, p-tert-perfluorobutylphenol, 1- (p-hydroxybenzyl) perfluorodecane, p- [2- (1H, 1H-perfluorotridodecyloxy) -1,1,1,3,3,3-hexa Fluoropropyl] phenol, 3,5- (Perfluorohexyloxycarbonyl) phenol, perfluorododecyl p-hydroxybenzoate, p- (1H, 1H-perfluorooctyloxy) phenol, 2H, 2H, 9H-perfluorononanoic acid, 1,1,1, Examples include 3,3,
  • phenol, 1,1-dihydro-1-perfluoroalkyl alcohol, in which part or all of the molecular ends contain a perfluoroalkyl group or a terminal hydrogen-substituted perfluoroalkyl group, 1, 1, ⁇ -trihydro-1-perfluoroalkyl alcohol and the like are preferable.
  • the addition ratio of the end terminator is preferably 0.05 to 30 mol%, more preferably 0.1 to 10 mol% as a copolymer composition ratio. If it is 0.05 mol% or more, the moldability is good, and if it is 30 mol% or less, the mechanical strength is good.
  • a branching agent can be introduced into the polycarbonate resin of the present invention.
  • the branching agent include phloroglucin, pyrogallol, 4,6-dimethyl-2,4,6-tris (4-hydroxyphenyl) -2-heptene, 2,6-dimethyl-2,4,6-tris (4 -Hydroxyphenyl) -3-heptene, 2,4-dimethyl-2,4,6-tris (4-hydroxyphenyl) heptane, 1,3,5-tris (2-hydroxyphenyl) benzene, 1,3,5 Tris (4-hydroxyphenyl) benzene, 1,1,1-tris (4-hydroxyphenyl) ethane, tris (4-hydroxyphenyl) phenylmethane, 2,2-bis [4,4-bis (4-hydroxy Phenyl) cyclohexyl] propane, 2,4-bis [2-bis (4-hydroxyphenyl) -2-propyl] phenol, 2,6-bis (2-
  • the addition amount of these branching agents is preferably 30 mol% or less, more preferably 5 mol% or less, as a copolymer composition ratio. If the addition amount is 30 mol% or less, the moldability is good.
  • the molecular weight of the polycarbonate resin according to the present invention varies in an appropriate range depending on the application of the coating liquid, etc., but in general, from the viewpoint of moldability, a solution having a concentration of 0.5 g / dl using methylene chloride as a solvent.
  • the reduced viscosity [ ⁇ sp / c] at a temperature of 20 ° C. is preferably 0.2 to 2 dl / g, more preferably 0.2 to 1.1 dl / g.
  • the polycarbonate resin is obtained by interfacial polymerization using a bisphenol or dihydroxynaphthalene represented by the general formulas (17) and (18) and a carbonate precursor such as a fluorine-containing alcohol and phosgene represented by the general formula (19). Can be manufactured. It can also be produced by a known non-phosgene production method such as a transesterification method.
  • a catalyst is used as necessary.
  • a known acid acceptor such as sodium hydroxide or a molecular weight regulator (end stopper such as the above-mentioned fluorine-containing alcohol)
  • end stopper such as the above-mentioned fluorine-containing alcohol
  • a catalyst is used as necessary.
  • the above-mentioned branching agent is added and the said bisphenol and the other bisphenol compound used as needed, the said fluorine-containing alcohol, and carbonate precursors, such as phosgene, are made to react.
  • Examples of the inert organic solvent to be used include dichloromethane (methylene chloride); trichloromethane; carbon tetrachloride; 1,1-dichloroethane; 1,2-dichloroethane; 1,1,1-trichloroethane; 1,1,1,2-tetrachloroethane; 1,1,2,2-tetrachloroethane; pentachloroethane; chlorinated hydrocarbons such as chlorobenzene, toluene, acetophenone, and the like.
  • methylene chloride is preferable.
  • a phase transfer catalyst is preferable, and examples thereof include tertiary amines or salts thereof, quaternary ammonium salts, and quaternary phosphonium salts.
  • examples of the tertiary amine include triethylamine, tributylamine, N, N-dimethylcyclohexylamine, pyridine, dimethylaniline and the like, and examples of the tertiary amine salt include hydrochlorides of these tertiary amines, bromine Examples include acid salts.
  • Examples of the quaternary ammonium salt include trimethylbenzylammonium chloride, triethylbenzylammonium chloride, tributylbenzylammonium chloride, trioctylmethylammonium chloride, tetrabutylammonium chloride, tetrabutylammonium bromide and the like.
  • Examples of the quaternary phosphonium salt include tetrabutylphosphonium chloride and tetrabutylphosphonium bromide. Among these, a tertiary amine is preferable and triethylamine is more preferable. In addition, you may use these catalysts individually or in combination of 2 or more types.
  • a method using bischloroformate of the following general formula (16) as an intermediate is preferable.
  • bisphenol and the like which are easily crystallized when made into a polycarbonate can control a wide range of monomer sequences in the polymer by using this method. Therefore, the polycarbonate resin manufactured using bischloroformate of the following general formula (16) as one of the raw materials has good transparency and solubility.
  • R 1 , R 2 , X, n 1 and n 2 are the same as those in the general formula (3).
  • n 8 represents the average number of bischloroformate oligomers, and the numerical value is 1.0 to 1.99.
  • a method for producing the polycarbonate of the present invention there may be mentioned a method of once synthesizing the bischloroformate monomer or its oligomer and then reacting the post-added monomers. At that time, it is preferable to react the bischloroformate with a fluorine-containing alcohol or a siloxane raw material first. The reason for this is that when reacted with other monomers such as bisphenol at the same time, a small amount of fluorine monomer or siloxane monomer may remain unreacted in the resin, resulting in a decrease in properties such as a decrease in transparency during molding. Because there is.
  • a polycarbonate resin which is a constituent component of the coating liquid of the present invention can be obtained.
  • the polycarbonate resin thus obtained is excellent in solvent solubility and can be stably dissolved in a non-halogen solvent.
  • the polycarbonate resin-containing coating solution of the present invention contains a polycarbonate resin represented by the above general formula (1) and a non-halogen solvent.
  • the non-halogen solvent contained in the coating liquid of the present invention is at least selected from an aromatic solvent, an ether solvent, a ketone solvent, an amide solvent, and an ester solvent from the viewpoint of solubility. One type is preferable.
  • aromatic solvent examples include toluene, xylene, anisole, trimethylbenzene, and other aromatic high-boiling solvents (for example, commercially available products such as “Ipsol (trade name, manufactured by Idemitsu Kosan Co., Ltd.)”).
  • ether solvent examples include tetrahydrofuran, dioxane, cyclopentyl monomethyl ether, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate (PMA), diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, and the like.
  • Examples of the ketone solvent include cyclohexanone, methyl isobutyl ketone, methyl ethyl ketone, diisobutyl ketone and the like.
  • Examples of the amide solvent include dimethylformamide, dimethyl sulfoxide, diethylformamide and the like.
  • Examples of the ester solvent include ethyl acetate, ethyl cellosolve, methyl acetate, butyl acetate, methoxybutyl acetate, cellosolve acetate, amyl acetate, normal propyl acetate, isopropyl acetate, methyl lactate, ethyl lactate, and butyl lactate. These non-halogen solvents may be used alone or in combination of two or more.
  • the solid content concentration of the coating liquid of the present invention can be appropriately adjusted depending on the film thickness to be applied and the molecular weight of the resin, but is preferably 1 to 50% by mass, more preferably 1 to 30% by mass, and still more preferably. 5 to 20% by mass.
  • the content is 1% by mass or more, the productivity of the molded product is improved, and when the content is 50% by mass or less, an increase in viscosity is suppressed, and the production of the molded product does not become difficult.
  • the resin contained in the coating solution may be used by mixing with other resins different from the polycarbonate resin of the present invention. Moreover, you may mix
  • Various additives include colorants such as dyes and pigments, conductive materials, charge transport materials, electron transport materials, hole transport materials, functional compounds such as charge generation materials, inorganic or organic fillers, fibers, fine particles, etc.
  • Resin additives such as fillers, antioxidants, ultraviolet absorbers, light stabilizers, and oxygen scavengers.
  • the molded body of the present invention include a cast film formed by casting the coating solution by a casting method, and a coating film formed by forming the coating solution by a coating method.
  • coating methods for obtaining these molded products include bar coating, dip coating, spray coating, roll coating, gravure coating, flexo coating, screen coating, spin coating, and flow coating. Can be mentioned.
  • the contact angle of water on the surface of the molded body of the present invention is 95 degrees or more and has excellent water repellency. Further, the contact angle of hexadecane on the surface of the molded article of the present invention is 20 degrees or more, and has excellent oil repellency. In addition, in this invention, the contact angle of water and hexadecane shows the value measured by the method as described in an Example.
  • the molded object of this invention has the outstanding characteristics, such as the softness
  • the molded product of the present invention can be used as a binder resin for an electrophotographic photosensitive member used in an electrophotographic copying machine, a printer, or the like, and an electrophotographic photosensitive member having a molded product can be obtained.
  • Drums, rolls, belts, electrophotographic photoreceptors, and the like include at least the molded product of the present invention, so that excellent characteristics (flexibility, water repellency, surface lubricity, wear resistance, transparency, etc.) according to each application. Etc.).
  • the phrase “including at least a molded body” means not only the case where the structure made of the molded body is included in part, but also the case of the molded body.
  • Examples of cast film and coating film applications include retardation films, conductive films, optical waveguides, inkjet coating films, antifouling films, surface coating agents for touch panels, mobile phones, personal computers, and housings for electrical appliances. Examples thereof include a film for film insert molding used.
  • the base material used when producing a laminated molded body such as a coating film is not particularly limited, and plastics such as polyethylene terephthalate, metals such as aluminum, inorganic materials such as glass, paper, wood, and stone, electrodeposition Examples include painted plates and laminated plates. Among these uses, it is preferably used as a binder resin for an electrophotographic photoreceptor.
  • examples used for the electrophotographic photoreceptor will be described in detail.
  • Examples of the electrophotographic photosensitive member of the present invention include an electrophotographic photosensitive member having a photosensitive layer on a conductive substrate. If necessary, an undercoat layer is provided between the conductive substrate and the photosensitive layer. Alternatively, it may have a blocking layer that plays the role of charge blocking, and may have a conductive or insulating protective layer on the photosensitive layer, if necessary, and is bonded between the layers. A layer may be provided.
  • an electrophotographic photosensitive member having a photosensitive layer including at least one charge generating layer and at least one charge transporting layer, or an electrophotographic image containing a charge generating material and a charge transporting material in a single layer A photoreceptor is preferred.
  • a charge transport layer may be laminated on the charge generation layer, and a charge generation layer may be laminated on the charge transport layer. Also good.
  • coating of each layer can be performed using a well-known coating apparatus, As an application apparatus, an applicator, a spray coater, a bae coater, a chip coater, a roll coater, a dip coater, a doctor blade etc. are mentioned, for example.
  • the polycarbonate resin of the present invention may be used in any part of the electrophotographic photosensitive member.
  • a charge transfer material in the charge transport layer It is preferable to use (2) as a binder resin for a single photosensitive layer, or (3) as a resin for a surface protective layer.
  • the polycarbonate resin of the present invention may be used for one of the above (1) to (3), or may be used for two or more applications.
  • it is preferably used as a binder resin for at least one charge transport layer.
  • the content ratio of the polycarbonate resin of the present invention relative to the total resin mixed is preferably 20% by mass or more, more preferably 50% by mass or more, still more preferably 80% by mass or more, still more preferably 90% by mass or more, Even more preferably, it is substantially 100% by mass.
  • the material for the conductive substrate As the material for the conductive substrate, known materials can be used. Specifically, aluminum, nickel, chromium, palladium, titanium, molybdenum, indium, gold, platinum, silver, copper, zinc, brass, stainless steel, lead oxide, tin oxide, indium oxide, ITO (indium tin oxide: tin Plates, drums, sheets made of doped indium oxide) or graphite; glass, cloth, paper or plastic films, sheets, and seamless sieve belts that have been electrically conductive treated by vapor deposition, sputtering, coating, etc .; metal by electrode oxidation, etc. Examples thereof include an oxidized metal drum.
  • the charge generation layer has at least a charge generation material.
  • This charge generation layer is formed by forming a layer of a charge generation material on the underlying conductive substrate or other layer by vacuum deposition or sputtering, or on the underlying conductive substrate or other layer. It can be obtained by forming a layer formed by binding a charge generating substance with a binder resin on the layer.
  • the content ratio (mass ratio) of the charge generation material and the binder resin in the charge generation layer is not particularly limited, but is preferably 20/80 to 80 / 20, more preferably 30/70 to 70/30.
  • a known method can be used as a method for forming the charge generation layer using the binder resin.
  • Examples of the solvent used in preparing the coating liquid include aromatic solvents such as benzene, toluene, xylene, and chlorobenzene; ketones such as acetone, methyl ethyl ketone, and cyclohexanone; alcohols such as methanol, ethanol, and isopropanol; and ethyl acetate.
  • aromatic solvents such as benzene, toluene, xylene, and chlorobenzene
  • ketones such as acetone, methyl ethyl ketone, and cyclohexanone
  • alcohols such as methanol, ethanol, and isopropanol
  • ethyl acetate examples include ethyl acetate.
  • esters such as ethyl cellosolve; halogenated hydrocarbons such as carbon tetrachloride, carbon tetrabromide, chloroform, dichloromethane, and tetrachloroethane; ethers such as tetrahydrofuran, dioxolane, and dioxane; dimethylformamide, dimethylsulfoxide, diethylformamide, and the like. . In addition, you may use these solvents individually or in mixture of 2 or more types.
  • the solid concentration of the coating solution for forming the charge generation layer is preferably 0.1 to 30% by mass, more preferably 0.1 to 20% by mass.
  • the thickness of the charge generation layer is preferably 0.01 to 2 ⁇ m, more preferably 0.1 to 0.8 ⁇ m. If the thickness of the charge generation layer is 0.01 ⁇ m or more, it is easy to form a layer with a uniform thickness, and if it is 2 ⁇ m or less, there is no possibility of deteriorating electrophotographic characteristics.
  • charge generation material Various known materials can be used as the charge generation material. Specifically, selenium alone such as amorphous selenium and trigonal selenium, selenium alloys such as selenium-tellurium, selenium compounds such as As 2 Se 3 or selenium-containing compositions, zinc oxide, CdS—Se, etc.
  • Inorganic materials consisting of Group 12 and Group 16 elements, oxide-based semiconductors such as titanium oxide, silicon-based materials such as amorphous silicon, metal-free phthalocyanine pigments such as ⁇ -type metal-free phthalocyanine and ⁇ -type metal-free phthalocyanine, ⁇ Type copper phthalocyanine, ⁇ type copper phthalocyanine, ⁇ type copper phthalocyanine, ⁇ type copper phthalocyanine, X type copper phthalocyanine, A type titanyl phthalocyanine, B type titanyl phthalocyanine, C type titanyl phthalocyanine, D type titanyl phthalocyanine, E type titanyl phthalocyanine, F Type titanyl phthalocyanine, G type titanyl phthalocyanine, Type titanyl phthalocyanine, K type titanyl phthalocyanine, L type titanyl phthalocyanine, M type titanyl phthalocyanine, N type titanyl phthalocyanine
  • Z 1 to Z 4 each independently form an aromatic hydrocarbon ring or a heterocyclic ring which may have a substituent together with two carbon atoms on the pyrrole ring.
  • M represents a metal atom or a metal compound which may have two hydrogen atoms or a ligand.
  • Ar 1 represents a t-valent residue having a conjugated system that may contain an aromatic hydrocarbon ring or a heterocyclic ring, t is an integer of 1 or more, and Cp is an aromatic
  • the coupler residue which has a group system hydroxyl group is shown. When t is 2 or more, each Cp may be the same or different.
  • X 1 to X 4 each independently represents an oxygen atom, a sulfur atom, or a selenium atom
  • R P and R Q each represent an alkyl group or an aryl group having 1 to 12 carbon atoms.
  • X 1 or X 2 and R P , X 3 or X 4 and R Q may form a heterocyclic ring which may have a substituent.
  • the binder resin used for the charge generation layer is not particularly limited, and various known resins can be used. Specifically, polystyrene, polyvinyl chloride, polyvinyl acetate, vinyl chloride-vinyl acetate copolymer, polyvinyl acetal, alkyd resin, acrylic resin, polyacrylonitrile, polycarbonate, polyurethane, epoxy resin, phenol resin, polyamide, polyketone, Polyacrylamide, butyral resin, polyester resin, vinylidene chloride-vinyl chloride copolymer, methacrylic resin, styrene-butadiene copolymer, vinylidene chloride-acrylonitrile copolymer, vinyl chloride-vinyl acetate-maleic anhydride copolymer, silicone Resin, silicone-alkyd resin, phenol-formaldehyde resin, styrene-alkyd resin, melamine resin, polyether resin, benzoguanamine resin, epoxy acrylate resin,
  • the charge transport layer can be obtained as a wet molded body by forming a layer formed by binding a charge transport material with a binding resin on a conductive base or other layer as a base.
  • a method for forming the charge transport layer various known methods can be used. For example, a method in which a coating liquid in which a charge transport material is dispersed or dissolved in a suitable solvent together with a polycarbonate resin mixture is applied on a conductive substrate or other layer as a predetermined base and dried to obtain a wet molded body Is preferred.
  • the content ratio (mass ratio) of the charge transport material and the binder resin in the charge transport layer is preferably 10:90 to 80:20, more preferably 20:80 to 80:20. More preferably, it is 30:70 to 70:30.
  • this binder resin may contain the polycarbonate resin of this invention, and all may be the polycarbonate resin of this invention.
  • Examples of the solvent used when preparing the coating liquid include the same solvents as those used for forming the charge generation layer, but ether is preferable, and tetrahydrofuran is more preferable.
  • the solid concentration of the coating liquid for forming the charge transport layer is preferably 0.1 to 30% by mass, more preferably 0.1 to 20% by mass.
  • the thickness of the charge transport layer is preferably 5 to 100 ⁇ m, more preferably 10 to 30 ⁇ m. If the thickness of the charge transport layer is 5 ⁇ m or more, there is no fear that the initial potential is lowered, and if it is 100 ⁇ m or less, the electrophotographic characteristics are good.
  • Such compounds include carbazole compounds, indole compounds, imidazole compounds, oxazole compounds, pyrazole compounds, oxadiazole compounds, pyrazoline compounds, thiadiazole compounds, aniline compounds, hydrazone compounds, aromatic amine compounds, aliphatic amine compounds, stilbenes.
  • charge transport materials having these structures in the main chain or side chain.
  • charge transport materials compounds exemplified in paragraphs [0121] to [0166] of JP-A No. 11-172003 and charge transport materials represented by the following structures are preferable.
  • binder resin of a charge transport layer there is no restriction
  • binder resin include the same resins as those used in the above-described charge generation layer.
  • binder resin can also be used individually or in mixture of 2 or more types.
  • the polycarbonate resin of the present invention alone may be used as a binder resin, or may be mixed with other binder resins.
  • the content ratio of the polycarbonate resin mixture of the present invention with respect to the total binder resin is preferably 20 to 100% by mass, more preferably 50 to 100% by mass, more preferably 80 to 100% by mass, and still more preferably 90 to 100% by mass. More preferably, it is substantially 100% by mass.
  • the polycarbonate resin of the present invention is preferably used as a binder resin for at least one of the charge generation layer and the charge transport layer.
  • an undercoat layer that is usually used can be provided between the conductive substrate and the photosensitive layer.
  • the material for the undercoat layer include titanium oxide, aluminum oxide, zirconia, titanic acid, zirconic acid, lanthanum lead, titanium black, silica, lead titanate, barium titanate, tin oxide, indium oxide, and silicon oxide.
  • Inorganic fine particles, polyamide resin, phenol resin, casein, melamine resin, benzoguanamine resin, polyurethane resin, epoxy resin, cellulose, nitrocellulose, polyvinyl alcohol, polyvinyl butyral resin, and the like can be used.
  • a binder resin that can be used for the charge generation layer and the charge transport layer may be used, or the polycarbonate resin of the present invention may be used.
  • These inorganic fine particles and resins can be used alone or in admixture of two or more. When used as a mixture of two or more, it is preferable to use inorganic fine particles and a resin together from the viewpoint of forming a film having good smoothness.
  • the thickness of the undercoat layer is preferably 0.01 to 10 ⁇ m, more preferably 0.1 to 7 ⁇ m. If the thickness of the undercoat layer is 0.01 ⁇ m or more, it is easy to form the undercoat layer uniformly, and if it is 10 ⁇ m or less, the electrophotographic characteristics are good.
  • a known blocking layer that is usually used can be provided between the conductive substrate and the photosensitive layer.
  • a binder resin that can be used for the charge generation layer and the charge transport layer may be used, or the polycarbonate resin of the present invention may be used.
  • the thickness of the blocking layer is preferably 0.01 to 20 ⁇ m, more preferably 0.1 to 10 ⁇ m. If the thickness of the blocking layer is 0.01 ⁇ m or more, it is easy to form the blocking layer uniformly, and if it is 20 ⁇ m or less, the electrophotographic characteristics are good.
  • the electrophotographic photoreceptor may have a protective layer on the photosensitive layer.
  • a binder resin that can be used for the charge generation layer and the charge transport layer may be used, or the polycarbonate resin of the present invention may be used.
  • the thickness of the protective layer is preferably 0.01 to 20 ⁇ m, more preferably 0.1 to 10 ⁇ m.
  • the protective layer contains a conductive material such as the charge generation material, the charge transport material, an additive, a metal or its oxide, a nitride, a salt, an alloy, carbon black, or an organic conductive compound. May be.
  • the photosensitive layer contains a binder, a plasticizer, a curing catalyst, a fluidity imparting agent, a pinhole control agent, a spectral sensitivity sensitizer (sensitizing dye), and the like. It may be added.
  • various chemical substances such as antioxidants, surfactants, anti-curling agents, leveling agents, etc. are used for the purpose of preventing an increase in residual potential, a decrease in charging potential, and a decrease in sensitivity due to repeated use. Additives can be added.
  • binder examples include silicone resin, polyamide resin, polyurethane resin, polyester resin, epoxy resin, polyketone resin, polycarbonate resin, polystyrene resin, polymethacrylate resin, polyacrylamide resin, polybutadiene resin, polyisoprene resin, melamine resin, Benzoguanamine resin, polychloroprene resin, polyacrylonitrile resin, ethyl cellulose resin, nitrocellulose resin, urea resin, phenol resin, phenoxy resin, polyvinyl butyral resin, formal resin, vinyl acetate resin, vinyl acetate / vinyl chloride copolymer resin, polyester carbonate resin Etc.
  • a thermosetting resin and / or a photocurable resin can also be used. In any case, there is no particular limitation as long as it is an electrically insulating resin that can form a film in a normal state and does not impair the effects of the present invention.
  • plasticizer examples include biphenyl, biphenyl chloride, o-terphenyl, halogenated paraffin, dimethylnaphthalene, dimethyl phthalate, dibutyl phthalate, dioctyl phthalate, diethylene glycol phthalate, triphenyl phosphate, diisobutyl adipate, dimethyl sebacate, dibutyl.
  • plasticizer examples include biphenyl, biphenyl chloride, o-terphenyl, halogenated paraffin, dimethylnaphthalene, dimethyl phthalate, dibutyl phthalate, dioctyl phthalate, diethylene glycol phthalate, triphenyl phosphate, diisobutyl adipate, dimethyl sebacate, dibutyl.
  • sebacate butyl laurate, methyl phthalyl ethyl glycolate, dimethyl glycol phthalate, methyl naphthalene, benzophenone, polyprop
  • Examples of the curing catalyst include methanesulfonic acid, dodecylbenzenesulfonic acid, dinonylnaphthalenedisulfonic acid, and the like.
  • Examples of the fluidity-imparting agent include modaflow and acronal 4F.
  • Examples of the pinhole control agent include benzoin and dimethyl phthalate.
  • Each content of the plasticizer, the curing catalyst, the flow imparting agent, and the pinhole control agent is preferably 5 parts by mass or less, more preferably 3 parts by mass or less with respect to 100 parts by mass of the charge transport material. .
  • a sensitizing dye for example, triphenylmethane dyes such as methyl violet, crystal violet, knight blue and victoria blue, erythrosine, rhodamine B, rhodamine 3R, acridine orange Acridine dyes such as frappeosin, thiazine dyes such as methylene blue and methylene green, oxazine dyes such as capri blue and meldra blue, cyanine dyes, merocyanine dyes, styryl dyes, pyrylium salt dyes and thiopyrylium salt dyes are preferred.
  • the content of the spectral sensitivity sensitizer is preferably 5 parts by mass or less, more preferably 3 parts by mass or less with respect to 100 parts by mass of the charge transport material.
  • antioxidant a hindered phenol-based antioxidant, an aromatic amine-based antioxidant, a hindered amine-based antioxidant, a sulfide-based antioxidant, an organic phosphate-based antioxidant, and the like are preferable.
  • Specific examples of such antioxidants include compounds represented by the chemical formulas ([Chemical Formula 94] to [Chemical Formula 101]) described in the specification of JP-A No. 11-172003. In addition, you may use these antioxidants individually or in combination of 2 or more types.
  • the content of the antioxidant is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the charge transport material. Part.
  • the antioxidant may be contained in the undercoat layer, the blocking layer, or the surface protective layer.
  • an electron-accepting substance it is preferable to add an electron-accepting substance to the photosensitive layer from the viewpoints of improving sensitivity, reducing residual potential, and reducing fatigue during repeated use.
  • the electron accepting substance include succinic anhydride, maleic anhydride, dibromomaleic anhydride, phthalic anhydride, tetrachlorophthalic anhydride, tetrabromophthalic anhydride, 3-nitrophthalic anhydride, and 4-nitrophthalic anhydride.
  • the electron accepting substance may be contained in either the charge generation layer or the charge transport layer in the photosensitive layer.
  • the content of the electron-accepting substance is preferably 0.01 to 200 parts by mass, more preferably 0 with respect to 100 parts by mass of the charge generating substance or charge transporting substance. 1 to 50 parts by mass.
  • a surface modifier may be added to the photosensitive layer from the viewpoint of improving surface properties.
  • the surface modifier include tetrafluoroethylene resin, trifluorinated ethylene chloride resin, tetrafluoroethylene hexafluoropropylene resin, vinyl fluoride resin, vinylidene fluoride resin, ethylene difluoride dichloride resin and Such copolymers, fluorine-based graft polymers and the like can be mentioned.
  • the content of the surface modifier is preferably 0.1 to 60 parts by mass, more preferably 5 to 40 parts by mass with respect to 100 parts by mass of the binder resin. It is. If it is 0.1 parts by mass or more, surface modification such as surface durability and surface energy reduction is sufficient, and if it is 60 parts by mass or less, there is no possibility of deteriorating electrophotographic characteristics.
  • the photosensitive layer of the electrophotographic photoreceptor can be easily formed using the above-described charge generation material, charge transport material, additive, and the like.
  • the thickness of the photosensitive layer in the electrophotographic photosensitive member is preferably 5 to 100 ⁇ m, more preferably 8 to 50 ⁇ m. If the thickness of the photosensitive layer is 5 ⁇ m or more, the initial potential tends to be high, and if it is 100 ⁇ m or less, the electrophotographic characteristics are good.
  • the coating solution does not become cloudy at the time of preparing the photosensitive layer, It does not gel.
  • it has excellent electrophotographic characteristics and can maintain excellent electrophotographic characteristics over a long period of time.
  • corona discharge corotron, scorotron
  • contact charging charging roll, charging brush
  • any of a halogen lamp, a fluorescent lamp, a laser (semiconductor, He—Ne), an LED, and a photoreceptor internal exposure method may be employed.
  • a dry development method such as cascade development, two-component magnetic brush development, one-component insulating toner development, one-component conductive toner development, or the like is used.
  • electrostatic transfer methods such as corona transfer, roller transfer, belt transfer, pressure transfer method, and adhesive transfer method are used.
  • toner For fixing, heat roller fixing, radiant flash fixing, open fixing, pressure fixing, or the like is used. Further, for cleaning and static elimination, a brush cleaner, a magnetic brush cleaner, an electrostatic brush cleaner, a magnetic roller cleaner, a blade cleaner, and a cleaner in which the cleaner is omitted are used. Further, as the resin for toner, styrene resin, styrene-acrylic copolymer resin, polyester, epoxy resin, cyclic hydrocarbon polymer, and the like can be applied. The shape of the toner may be spherical or indeterminate, and can be applied even if it is controlled to a certain shape (spheroid, potato, etc.). The toner may be any of a pulverizing type, a suspension polymerization toner, an emulsion polymerization toner, a chemical granulation toner, or an ester extension toner.
  • the following examples further illustrate the present invention, but the present invention is not limited to these examples.
  • the reduced viscosity, chemical structure and copolymer composition of the polycarbonate resin obtained in each example, and the characteristics of the film obtained in each example were measured according to the following methods.
  • Reduced viscosity [ ⁇ SP / C] A polycarbonate resin solution (solvent: methylene chloride, concentration: 0.5 g / dl) was prepared, and the reduced viscosity [ ⁇ SP / C] was measured at 20 ° C. The reduced viscosity was measured by using an automatic viscosity measuring device “VMR-052USPC” (model name, manufactured by Koiso Co., Ltd.) with a Ubbelohde improved viscometer (RM type) for automatic viscosity.
  • VMR-052USPC model name, manufactured by Koiso Co., Ltd.
  • Friction coefficient measurement Using a surface property tester “HEIDON TYPE 14DR” (model name, manufactured by Shinto Kagaku Co., Ltd.), the static friction coefficient and the dynamic friction coefficient were measured with a steel ball as the measurement indenter and a load of 50 g.
  • Evaluation method of wear resistance (durability) Suga Wear Test The wear resistance of the cast surface of the obtained film sample was evaluated using a Suga wear tester “NUS-ISO-3 type” (model name, manufactured by Suga Test Instruments Co., Ltd.).
  • the test conditions were 3 ⁇ m abrasive paper and evaluated with a load of 500 g and 2000 times. The mass reduction amount of the film sample was measured and used as an index of durability.
  • B. Taber Abrasion Test The wear resistance of the cast surface of the obtained film sample was evaluated using a Taber abrasion tester “Rotary Ablation Tester TS” (model name, manufactured by Toyo Seiki Co., Ltd.). The test conditions were evaluated using a wear wheel CS-10F with a load of 500 g and a rotation of 500 times. The mass reduction amount of the film sample was measured and used as an index of durability.
  • the remaining liquid was washed with 73 mL of pure water, 4.5 mL of concentrated hydrochloric acid, and 0.47 g of hydrosulfite. Thereafter, washing with 330 mL of pure water was repeated four times to obtain a methylene chloride solution of bisphenol Z bischloroformate having a chloroformate group at the molecular end.
  • the resulting solution had a chloroformate concentration of 1.1 mol / L, a solid content concentration of 0.22 kg / L, and an average number of monomers of 1.1.
  • Ar 1 is a moiety other than the hydroxyl group constituting the bisphenol compound or the biphenol compound.
  • biphenol monomer solution (10 mL of 2N aqueous sodium hydroxide solution was prepared, cooled to room temperature or lower, and then 0.1 g of hydrosulfite and 2.6 g of 4,4′-biphenol were used as an antioxidant. 7 ml of a solution obtained by complete dissolution and cooling until the temperature in the reactor reaches 15 ° C., and then 0.2 mL of an aqueous triethylamine solution (7% by volume) is added with stirring. Stirring was continued for 15 minutes. Thereafter, the remaining biphenol monomer solution was added, and stirring was continued for another hour. The resulting reaction mixture was diluted with 0.2 L of methylene chloride and 0.1 L of water and washed.
  • the lower layer was separated, and further washed with 0.1 L of water once, 0.1 L of 0.03N hydrochloric acid once, and 0.1 L of water five times in this order.
  • the obtained methylene chloride solution was dropped into a mixed solution of water and 2-propanol (volume ratio 3: 2) heated to about 70 ° C. with stirring to evaporate the methylene chloride and obtain a resin solid. It was.
  • the obtained resin solid was filtered and dried to produce a polycarbonate resin (A-1) having the above structure.
  • the polycarbonate resin (A-1) thus obtained has a reduced viscosity [ ⁇ sp / C] of 1.1 dl / g. From the NMR analysis, the polycarbonate resin (A-1) comprising the above repeating unit and composition is used. It was confirmed that there was.
  • the layer was dropped into a mixture of water and 2-propanol (volume ratio 3: 2) heated to approximately 70 ° C. in the same manner as in Example 1 to obtain the polycarbonate resin (A-2) shown above.
  • the polycarbonate resin (A-2) thus obtained has a reduced viscosity [ ⁇ sp / C] of 0.6 dl / g. From the NMR analysis, the reduced viscosity [ ⁇ sp / C] is a polycarbonate resin (A-2) comprising the above repeating units and composition. It was confirmed that there was.
  • the layer was dropped into a mixture of water and 2-propanol (volume ratio 3: 2) heated to about 70 ° C. in the same manner as in Example 1 to obtain the polycarbonate resin (A-3) shown above.
  • the polycarbonate resin (A-3) thus obtained has a reduced viscosity [ ⁇ sp / C] of 0.4 dl / g. From the NMR analysis, the reduced viscosity [ ⁇ sp / C] is the polycarbonate resin (A-3) comprising the above repeating units and composition. It was confirmed that there was.
  • this reaction solution was allowed to stand and obtain a methylene chloride solution of bisphenol B-biscresol fluorene co-bischloroformate oligomer having a degree of polymerization of 2 to 6 in the organic layer and having a chloroformate group at the molecular end. It was.
  • the resulting solution had a chloroformate concentration of 0.41 mol / L and a solid content concentration of 0.25 kg / L.
  • the layer was dropped into a mixed liquid of water and 2-propanol (volume ratio 3: 2) heated to approximately 70 ° C. in the same manner as in Example 1 to obtain the polycarbonate resin (B-1) shown above.
  • the polycarbonate resin (B-1) thus obtained has a reduced viscosity [ ⁇ sp / C] of 0.6 dl / g. From the NMR analysis, the reduced viscosity [ ⁇ sp / C] of the polycarbonate resin (B-1) comprising the above repeating unit and composition is as follows. It was confirmed that there was.
  • reaction solution was left to stand to obtain a methylene chloride solution of bisphenol Z-biscresol fluorene co-bischloroformate oligomer having a degree of polymerization of 2 to 6 in the organic layer and having a chloroformate group at the molecular end. It was.
  • the resulting solution had a chloroformate concentration of 0.21 mol / L and a solid content concentration of 0.21 kg / L.
  • the layer was dropped into a mixed liquid of water and 2-propanol (volume ratio 3: 2) heated to approximately 70 ° C. in the same manner as in Example 1 to obtain the polycarbonate resin (B-2) shown above.
  • the polycarbonate resin (B-2) thus obtained has a reduced viscosity [ ⁇ sp / C] of 0.7 dl / g, which is determined from NMR analysis by the polycarbonate resin (B-2) having the above repeating units and composition. It was confirmed that there was.
  • Example 1 instead of 0.13 g of 2,2-difluoro-2- (perfluorohexyloxy) ethanol, 2,2-difluoro-2- (1,1,2,2-tetrafluoro-2- ( Synthesis was carried out in the same manner as in Example 1 except that 1,1,2,3,3,3-hexafluoro-2- (trifluoromethyl) propoxy) ethoxy) ethanol was used, and the polycarbonate resin (A- 4) was obtained.
  • the polycarbonate resin (A-4) obtained in this manner has a reduced viscosity [ ⁇ sp / C] of 1.1 dl / g. From the NMR analysis, the polycarbonate resin (A-4) having the above repeating units and composition is used. It was confirmed that there was.
  • Example 1 In Example 1, except that 1,1-bis (3-methyl-4-hydroxyphenyl) cyclohexane (bisphenol Z) was used instead of 1,1-bis (4-hydroxyphenyl) cyclohexane (bisphenol Z). Synthesis was performed in the same manner as in Example 1 to obtain the polycarbonate resin (A-5) shown above.
  • the polycarbonate resin (A-5) thus obtained has a reduced viscosity [ ⁇ sp / C] of 1.0 dl / g. From the NMR analysis, the reduced viscosity [ ⁇ sp / C] is a polycarbonate resin (A-5) comprising the above repeating unit and composition. It was confirmed that there was.
  • Example 2 instead of 1,1-bis (4-hydroxyphenyl) cyclohexane (bisphenol Z), 2,2-bis (3-methyl-4-hydroxyphenyl) propane was used and 4,4′-biphenol was used. 4,4′-dihydroxydiphenyl ether is used instead of 2,2-difluoro-2- (perfluorohexyloxy) ethanol instead of 2,2-difluoro-2- (1,1,2,2 Synthesis was performed in the same manner as in Example 2 except that -tetrafluoro-2- (1,1,2,3,3,3-hexafluoro-2- (trifluoromethyl) propoxy) ethoxy) ethanol was used. The polycarbonate resin (A-6) shown below was obtained.
  • the polycarbonate resin (A-6) thus obtained has a reduced viscosity [ ⁇ sp / C] of 0.5 dl / g. From the NMR analysis, the reduced viscosity [ ⁇ sp / C] is a polycarbonate resin (A-6) comprising the above repeating unit and composition. It was confirmed that there was.
  • Example 2 instead of 1,1-bis (4-hydroxyphenyl) cyclohexane (bisphenol Z), 2,2-bis (4-hydroxyphenyl) hexafluoropropane, 2,2-difluoro-2- (par Instead of fluorohexyloxy) ethanol, 2,2-difluoro-2- (1,1,2,2-tetrafluoro-2- (1,1,2,3,3,3-hexafluoro-2- ( Synthesis was performed in the same manner as in Example 2 except that trifluoromethyl) propoxy) ethoxy) ethanol was used to obtain the polycarbonate resin (A-7) shown above.
  • the polycarbonate resin (A-7) thus obtained has a reduced viscosity [ ⁇ sp / C] of 0.5 dl / g, which is determined by NMR analysis from a polycarbonate resin (A-7) comprising the above repeating unit and composition. It was confirmed that there was.
  • Example 2 In the same manner as in Example 1, except that the added “2,2-difluoro-2- (perfluorohexyloxy) ethanol 0.13 g” was changed to “p-tert-butylphenol 0.04 g”, the same as described above.
  • the polycarbonate resin (C-1) shown below was obtained.
  • the polycarbonate resin (C-1) obtained had a reduced viscosity [ ⁇ sp / C] of 1.1.
  • Example 2 In the same manner as in Example 2, except that the added “2,2-difluoro-2- (perfluorohexyloxy) ethanol 0.13 g” was changed to “4- (perfluorooctyl) phenol 4.1 g”. Thus, the polycarbonate resin (C-2) shown above was obtained. The polycarbonate resin (C-2) obtained had a reduced viscosity [ ⁇ sp / C] of 0.7.
  • Example 5 In Example 5, except that (PDMS-1) was not added and “2,2-difluoro-2- (perfluorohexyloxy) ethanol 1.5 g” was changed to “p-tert-butylphenol 0.5 g”. In the same manner, the polycarbonate resin (C-3) shown above was obtained. The polycarbonate resin (C-3) obtained had a reduced viscosity [ ⁇ sp / C] of 0.7.
  • Example 4 the added “2,2-difluoro-2- (perfluorohexyloxy) ethanol 2.5 g” was added to “2,2,3,3,4,4,5,5,6,6, A polycarbonate resin (C-4) shown above was obtained in the same manner except that the amount was changed to 2.0 g of 7,7-dodecafluoroheptan-1-ol.
  • the polycarbonate resin (C-4) obtained had a reduced viscosity [ ⁇ sp / C] of 0.7.
  • Example 10 (Preparation of coating film on polycarbonate film) A coating solution in which the resin (A-1) synthesized in Example 1 was dissolved in toluene was prepared. It was applied on a polycarbonate film (manufactured by Sumitomo Bakelite Co., Ltd., product name “Polycar Ace” thickness 0.3 mm) with an applicator so that the film thickness after drying was 20 ⁇ m, and dried to prepare a film sample. About the film sample, the contact angle with respect to haze, water, and hexadecane, and a friction coefficient were evaluated by the above-mentioned measuring method. The results are shown in Table 1.
  • Example 11 A film sample was prepared in the same manner as in Example 10 except that the resin (A-2) synthesized in Example 2 was used instead of the resin (A-1), and each evaluation was performed. The results are shown in Table 1.
  • Example 12 A film sample was prepared in the same manner as in Example 10 except that the resin (A-3) synthesized in Example 3 was used instead of the resin (A-1), and each evaluation was performed. The results are shown in Table 1.
  • Example 13 A film sample was prepared in the same manner as in Example 10 except that the resin (B-1) synthesized in Example 4 was used instead of the resin (A-1), and each evaluation was performed. The results are shown in Table 1.
  • Example 14 In Example 10, a film sample was prepared in the same manner except that the resin (B-2) synthesized in Example 5 was used instead of the resin (A-1), and each evaluation was performed. The results are shown in Table 1.
  • Example 15 In Example 10, a film sample was prepared in the same manner except that the resin (A-4) synthesized in Example 6 was used instead of the resin (A-1), and each evaluation was performed. The results are shown in Table 1.
  • Example 16 A film sample was prepared in the same manner as in Example 10 except that the resin (A-5) synthesized in Example 7 was used instead of the resin (A-1), and each evaluation was performed. The results are shown in Table 1.
  • Example 17 A film sample was prepared in the same manner as in Example 10 except that the resin (A-6) synthesized in Example 8 was used instead of the resin (A-1), and each evaluation was performed. The results are shown in Table 1.
  • Example 18 In Example 10, a film sample was prepared in the same manner except that the resin (A-7) synthesized in Example 9 was used instead of the resin (A-1), and each evaluation was performed. The results are shown in Table 1.
  • Comparative Example 5 In Example 10, a film sample was prepared in the same manner except that the resin (C-1) synthesized in Comparative Example 1 was used instead of the resin (A-1), and each evaluation was performed. The results are shown in Table 1.
  • Comparative Example 6 In Example 10, a film sample was prepared in the same manner except that the resin (C-2) synthesized in Comparative Example 2 was used instead of the resin (A-1), and each evaluation was performed. The results are shown in Table 1.
  • Comparative Example 7 In Example 10, a film sample was prepared in the same manner except that the resin (C-3) synthesized in Comparative Example 3 was used instead of the resin (A-1), and each evaluation was performed. The results are shown in Table 1.
  • Comparative Example 8 In Example 10, a film sample was prepared in the same manner except that the resin (C-4) synthesized in Comparative Example 4 was used instead of the resin (A-1), and each evaluation was performed. The results are shown in Table 1.
  • the films of Examples 10 to 18 produced using the polycarbonate resin of the present invention have excellent transparency and good water repellency and oil repellency, and the coefficient of friction. Is low, and it is understood that the surface lubricity is excellent. On the other hand, in the films of Comparative Examples 5 to 8, one of the above results is inferior.
  • the coating film coated with the coating liquid containing the polycarbonate resin of the present invention is excellent in wear resistance, has good water and oil repellency even after wear, and has a friction coefficient. Since it is low, surface lubricity is also good.
  • Example 28 Manufactures an electrophotographic photosensitive member using a polyethylene terephthalate resin film (Toray Metal Me) vapor-deposited aluminum metal as a conductive substrate, and a charge generating layer and a charge transport layer are sequentially laminated on the surface to form a laminated photosensitive layer.
  • a polyethylene terephthalate resin film Toray Metal Me
  • a charge generation substance 0.5 parts by mass of oxotitanium phthalocyanine was used as the charge generation substance
  • 0.5 parts by mass of butyral resin was used as the binder resin.
  • These are added to 19 parts by mass of methylene chloride as a solvent, dispersed by a ball mill, and this dispersion is applied to the surface of the conductive substrate film by a bar coater and dried to obtain a charge having a thickness of about 0.5 ⁇ m.
  • a generation layer was formed.
  • an aromatic amine compound (CTM-1) represented by the following formula as a charge transport material and 0.5 g of the polycarbonate resin (A-1) obtained in Example 1 as a binder resin were added to tetrahydrofuran.
  • a coating solution was prepared by dispersing in 10 ml. The coating solution thus obtained was applied onto the charge generation layer with an applicator and dried to form a charge transport layer having a thickness of about 20 ⁇ m, thereby producing an electrophotographic photoreceptor.
  • the obtained electrophotographic photoreceptor was evaluated for abrasion resistance as described above. The results are shown in Table 2.
  • Comparative Example 13 An electrophotographic photosensitive member was prepared in the same manner as in Example 28 except that the resin (C-1) obtained in Comparative Example 1 was used instead of the resin (A-1), and the abrasion resistance was evaluated. Went. The results are shown in Table 3.
  • the electrophotographic photoreceptor of Example 28 produced using the polycarbonate resin of the present invention has a smaller amount of wear and excellent friction resistance than the photoreceptor of Comparative Example 13. I understand.
  • the water repellency and the surface lubricity are good, and it can be seen that both excellent water repellency and surface lubricity are maintained even after wear.
  • the polycarbonate resin having the specific structure of the present invention can be dissolved in various non-halogen organic solvents to form a uniform solution, and a molded product formed using this solution as a coating solution is excellent in transparency. In addition, it exhibits good water repellency and oil repellency, and has a low coefficient of friction, excellent surface lubricity, and a molded article excellent in wear resistance. Therefore, the polycarbonate resin of the present invention can be suitably used for a coating material on the surface of an electrophotographic photosensitive member, a charging roll, a developing roll, or a belt thereof. Moreover, it is applicable also to optical film, such as a product made from a polycarbonate, polyester, and acrylics, or coating of the surface, such as glass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Thermal Sciences (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 下記一般式(1)で表されるポリカーボネート樹脂を含む塗工液から成形してなる成形体は、透明性に優れ、撥水性、撥油性が良好であり、摩擦係数が低く表面潤滑性に優れ、耐摩耗性の向上し得る成形体となり得る。 [式(1)中、Rfは、炭素数が5以上で、且つ、フッ素原子数が11以上であるパーフルオロアルキル基、あるいは特定構造を有するパーフルオロアルキルオキシ基を示す。Wは、特定の構造単位を含有する2価の基を示す。]

Description

ポリカーボネート樹脂、それを含有する塗工液、及びそれを用いて成形してなる成形体
 本発明は、ポリマー末端にフッ素原子を含有する特定構造を有するポリカーボネート樹脂、このポリカーボネート樹脂と非ハロゲン系溶剤を含有する塗工液、及び、この塗工液を用いて成形してなる成形体に関する。
 ポリカーボネート樹脂は、機械的性質や熱的性質、透明性や電気的性質に優れていることから、様々な産業分野において成形品の素材に用いられてきた。さらに近年、ポリカーボネート樹脂は、これらの特性と共に光学的性質等をも併せて利用する機能的な製品の分野においても多用されている。
 このような機能的な製品としては、ポリカーボネート樹脂を有機溶剤に溶解して塗工液を調製し、この塗工液をドラムやシート、フィルム上にコーティングして形成したコーティング膜や、この塗工液から形成したキャストフィルムが知られている。より具体的な製品としては、電子写真方式の印刷機に用いられる電子写真感光体ドラム、帯電ロール、現像ロール等のドラムやロールの表面に形成したコーティング膜、電気製品や車載製品に用いられるフィルムインサート成型用フィルムのコーティング膜、液晶ディスプレイ等に使用される位相差補償フィルムや導電性フィルム、タッチパネルや窓等の表面保護フィルム等が挙げられる。
 ポリカーボネート樹脂の用途分野の拡大に伴って、要求性能も多様化している。このような要請に対して、従来から用いられてきた2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)や1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン(ビスフェノールZ)等を原料とするポリカーボネートの単独重合体では、十分な対応ができない場合がある。そのため、各種の用途毎に特有の要求特性に対応しうる、様々な化学構造を有するポリカーボネート系樹脂が求められている。
 例えば、特許文献1~6では、フッ素を末端に導入したポリカーボネート樹脂を用いることで、撥水性や防汚性を付与し、低摩擦係数化等の低表面性を付与した成形体が開示されている。
特開平4-323263号公報 特表2008-525581号公報 特開2007-277524号公報 特開2005-126727号公報 特開平10-130383号公報 特開平8-225639号公報
 しかしながら、上記の特許文献1~6に開示されたポリカーボネート樹脂では、当該樹脂より製造される成形体の撥水性、表面潤滑性、及び耐摩耗性の向上の観点では、未だ不十分である。
 本発明は、透明性に優れ、撥水性、撥油性が良好であり、摩擦係数が低く表面潤滑性に優れ、耐摩耗性の向上し得る成形体を製造し得るポリカーボネート樹脂、ポリカーボネート樹脂含有塗工液、及びその塗工液を用いて成形してなる成形体を提供することを目的とする。
 本発明者らは、鋭意研究を重ねた結果、特許文献1~6に開示されたポリカーボネート樹脂とは構造が異なる、ポリマー末端にパーフルオロアルキル基を有し、エーテル結合を含む特定構造のポリカーボネート樹脂が、上記課題を解決し得ることを見出した。
 すなわち、本発明は、下記〔1〕~〔15〕に関する。
〔1〕下記一般式(1)で表されるポリカーボネート樹脂。
Figure JPOXMLDOC01-appb-C000009
[式(1)中、Rfは、炭素数が5以上で、且つ、フッ素原子数が11以上であるパーフルオロアルキル基、あるいは下記一般式(2)で表されるパーフルオロアルキルオキシ基を示す。Wは、下記一般式(3)で表される構造単位、又はナフタレン環を含有する2価の基を示す。]
Figure JPOXMLDOC01-appb-C000010
[式(2)中、Rf2は炭素数1~5の直鎖もしくは分岐したパーフルオロアルキル基である。n6は1~3の整数である。]
Figure JPOXMLDOC01-appb-C000011
[式(3)中、p、qは、カッコ内の構造単位の組成比(モル比)を示す。R1~R4は、それぞれ独立に、ハロゲン原子、置換基を有していてもよい炭素数1~6のアルキル基、置換基を有していてもよい炭素数1~6のアルコキシ基、置換基を有していてもよい炭素数1~6のフルオロアルキル基、置換基を有していてもよい炭素数1~6のフルオロアルコシキ基、又は置換基を有していてもよいフェニル基を示す。Xは、単結合、置換基を有していてもよい炭素数1~18のアルキレン基、置換基を有していてもよい炭素数2~18のアルキリデン基、置換基を有していてもよい炭素数5~15のシクロアルキレン基、置換基を有していてもよい炭素数5~15のシクロアルキリデン基、-S-、-SO-、-SO2-、-O-、-CO-、又は下記式(4)もしくは下記式(5)で表される二価の基を示す。n1、n2は、それぞれ独立に、0~4の整数である。Yは、単結合、置換基を有していてもよい炭素数1~18のアルキレン基、置換基を有していてもよい炭素数2~18のアルキリデン基、置換基を有していてもよい炭素数5~15のシクロアルキレン基、置換基を有していてもよい炭素数5~15のシクロアルキリデン基、-S-、-SO-、-SO2-、-O-、-CO-、又は下記式(4)もしくは下記式(5)で表される二価の基を示す。n3、n4は、それぞれ独立に、0~4の整数であるが、n3及びn4が共に0で、且つ、Yがイソプロピリデン基であることはない。]
Figure JPOXMLDOC01-appb-C000012
[式(5)中のベンゼン環は、炭素数1~22のアルキル基又は置換基を有していてもよいフェニル基で置換されていてもよい。]
〔2〕前記一般式(1)中のWが、さらに有機シロキサン含有基を有する、上記〔1〕に記載のポリカーボネート樹脂。
〔3〕前記有機シロキサン含有基が、下記一般式(6)で表される構造を有する二価の基である、上記〔2〕に記載のポリカーボネート樹脂。
Figure JPOXMLDOC01-appb-C000013
[式(6)中、R21及びR22は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~12の置換もしくは無置換のアルキル基、炭素数1~12の置換もしくは無置換のアルコキシ基、又は炭素数6~12の置換もしくは無置換のアリール基を示す。R23は、それぞれ独立に、炭素数1~12の置換もしくは無置換のアルキル基、又は炭素数6~12の置換もしくは無置換のアリール基を示す。n21は、それぞれ独立に、2~4の整数であり、n22は1~600の整数である。]
〔4〕前記一般式(1)で表されるポリカーボネート樹脂が、下記一般式(7)~(13)で表される構造単位のうち少なくとも1つを含む、上記〔1〕~〔3〕のいずれかに記載のポリカーボネート樹脂。
Figure JPOXMLDOC01-appb-C000014
[式中、R5~R7は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~6のアルキル基、置換基を有していてもよい炭素数1~6のアルコキシ基、置換基を有していてもよい炭素数1~6のフルオロアルキル基、置換基を有していてもよい炭素数1~6のフルオロアルコシキ基、又は置換基を有していてもよいフェニル基を示す。]
〔5〕下記一般式(14)、(15)、(15a)で表されるフッ素含有アルコールのいずれかを末端停止剤として用いて製造された、上記〔1〕~〔4〕のいずれかに記載のポリカーボネート樹脂。
Figure JPOXMLDOC01-appb-C000015
[式中、n31は5~8の整数、n32は0~2の整数、n33は1~3の整数、n34は1~3の整数である。]
〔6〕下記一般式(16)で表されるビスクロロホーメートオリゴマーを、原料の一つとして用いて製造された、上記〔1〕~〔5〕のいずれかに記載のポリカーボネート樹脂。
Figure JPOXMLDOC01-appb-C000016
[式中、R1、R2、X、n1、n2は、前記一般式(3)と同じであり、n8はビスクロロホーメートオリゴマーの平均量体数を表し、その数値は1.0~1.99である。]
〔7〕上記〔1〕~〔6〕のいずれかに記載のポリカーボネート樹脂及び非ハロゲン系溶剤を含有する、ポリカーボネート樹脂含有塗工液。
〔8〕前記非ハロゲン系溶剤が、芳香族系溶剤、エーテル系溶剤、ケトン系溶剤、アミド系溶剤、及びエステル系溶剤の中から選ばれる少なくとも1種である、上記〔7〕に記載のポリカーボネート樹脂含有塗工液。
〔9〕上記〔7〕又は〔8〕に記載のポリカーボネート樹脂含有塗工液を用いて成形してなる、成形体。
〔10〕前記成形体の表面の水の接触角が95度以上で、且つ、ヘキサデカンの接触角が20度以上である、上記〔9〕に記載の成形体。
〔11〕少なくとも上記〔9〕又は〔10〕に記載の成形体を含む、電子写真感光体。
〔12〕少なくとも上記〔9〕又は〔10〕に記載の成形体を含む、ドラム。
〔13〕少なくとも上記〔9〕又は〔10〕に記載の成形体を含む、ロール。
〔14〕上記〔7〕又は〔8〕に記載のポリカーボネート樹脂含有塗工液を流延法により成形してなる、キャストフィルム。
〔15〕上記〔7〕又は〔8〕に記載のポリカーボネート樹脂含有塗工液を塗布法により成形してなる、コーティングフィルム。
 本発明の特定構造を有するポリカーボネート樹脂は、種々の非ハロゲン系有機溶剤に溶解して均一溶液を形成することができ、この溶液を塗工液として用いて形成した成形体は、透明性に優れ、良好な撥水性や撥油性を発現し、さらに、摩擦係数が低くなり表面潤滑性に優れ、また、耐摩耗性にも優れた成形体となり得る。
 以下、本発明のポリカーボネート樹脂、該ポリカーボネート樹脂を含有する非ハロゲン系溶剤からなるポリカーボネート樹脂含有塗工液(以下、単に「塗工液」ともいう)、該塗工液を用いて成形してなる成形体について、説明する。
〔ポリカーボネート樹脂〕
 本発明のポリカーボネート樹脂は、下記一般式(1)で表されるポリカーボネート樹脂である。
Figure JPOXMLDOC01-appb-C000017
 上記一般式(1)中、Rfは、炭素数が5以上で、且つ、フッ素原子数が11以上であるパーフルオロアルキル基、あるいは下記一般式(2)で表されるパーフルオロアルキルオキシ基を示す。
Figure JPOXMLDOC01-appb-C000018
[式(2)中、Rf2は炭素数1~5の直鎖もしくは分岐したパーフルオロアルキル基である。n6は1~3の整数である。]
 本発明のポリカーボネート樹脂は、末端の官能基として、所定以上のフッ素原子を含有するパーフルオロアルキル基、もしくは特定構造のパーフルオロアルキルオキシ基を有し、当該官能基はエーテル結合を介して結合されているため、該ポリカーボネート樹脂を用いた成形体の透明性が向上し、良好な撥水性及び撥油性が発現され、摩擦係数が低くなり表面潤滑性が向上する。特に、本発明のポリカーボネートを塗布した成型体の表面は、摩耗に強く、さらに摩耗後の摩擦係数の悪化や撥水性の低下等を抑制することができる。
 Rfがパーフルオロアルキル基である場合、当該パーフルオロアルキル基の炭素数は5以上であるが、好ましくは6~8である。当該炭素数が5未満であると、十分な撥水性、撥油性や低い摩擦係数が得られなくなるため好ましくない。
また、パーフルオロアルキル基のフッ素原子数は11以上であるが、好ましくは12~17である。当該フッ素原子数が11未満であると、ポリカーボネート樹脂を用いた成形体の撥水性及び撥油性が十分に発現されないため好ましくない。
 また、Rfが上記一般式(2)で表されるパーフルオロアルキルオキシ基である場合、一般式(2)で表される基の炭素数は、好ましくは3~11であるが、より好ましくは5~9である。また、パーフルオロアルキルオキシ基のフッ素原子数は、好ましくは7~21、より好ましくは11~17である。
 また、上記一般式(2)中のRf2の炭素数は、1~5であるが、好ましくは2~5、より好ましくは3~4であり、n6は、1~3の整数であるが、好ましくは1~2の整数である。
 また、上記一般式(1)中のWは、下記一般式(3)で表される構造単位又はナフタレン環を含有する2価の基である。
Figure JPOXMLDOC01-appb-C000019
 上記一般式(3)中、p、qは、カッコ内の構造単位の組成比(モル比)を示す。
 pとqの組成比(モル比)〔p/q〕は、溶解性や耐摩耗性等の観点から、好ましくは30/70~95/5、より好ましくは40/60~90/10、更に好ましくは45/55~85/15である。
 上記一般式(3)中のR1~R4は、それぞれ独立に、ハロゲン原子、置換基を有していてもよい炭素数1~6のアルキル基、置換基を有していてもよい炭素数1~6のアルコキシ基、置換基を有していてもよい炭素数1~6のフルオロアルキル基、置換基を有していてもよい炭素数1~6のフルオロアルコシキ基、又は置換基を有していてもよいフェニル基を示す。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 炭素数1~6のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、t-ペンチル基、n-ヘキシル基等が挙げられ、透明性、耐摩耗性の観点から、炭素数1~3のアルキル基が好ましい。置換基としては、塩素原子のようなハロゲン原子が挙げられる。
 炭素数1~6のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基等が挙げられ、透明性、耐摩耗性の観点から、炭素数1~3のアルコキシ基が好ましい。置換基としては、塩素原子のようなハロゲン原子が挙げられる。
 炭素数1~6のフルオロアルキル基としては、例えば、フルオロメチル基、トリフルオロメチル基、フルオロエチル基、ペンタフルオロエチル基、ヘプタフルオロプロピル基、ノナフルオロブチル基等が挙げられる。
 炭素数1~6のフルオロアルコキシ基としては、例えば、トリフルオロメトキシ基、ジフルオロメトキシ基等が挙げられる。
 置換基を有していてもよいフェニル基における置換基としては、ハロゲン原子や、上記の炭素数1~6のアルキル基が挙げられる。
 これらの中でも、透明性、耐摩耗性の観点から、ハロゲン原子、置換基を有していてもよい炭素数1~6のアルキル基、置換基を有していてもよい炭素数1~6のフルオロアルキル基、置換基を有していてもよいフェニル基が好ましく、メチル基、フェニル基、フッ素、トリフルオロメチル基がより好ましい。
 上記一般式(3)中のXは、単結合、置換基を有していてもよい炭素数1~18のアルキレン基、置換基を有していてもよい炭素数2~18のアルキリデン基、置換基を有していてもよい炭素数5~15のシクロアルキレン基、置換基を有していてもよい炭素数5~15のシクロアルキリデン基、-S-、-SO-、-SO2-、-O-、-CO-、又は下記式(4)もしくは下記式(5)で表される2価の基を示す。
 なお、Xが示す、置換基を有していてもよいアルキレン基、アルキリデン基、シクロアルキレン基、シクロアルキリデン基における置換基としては、例えば、炭素数1~6のアルキル基や、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、又はフェニル基が挙げられる。
 該アルキル基としては、前記した上記一般式(3)中のR1~R4が示す炭素数1~6のアルキル基において例示した基と同じものが挙げられ、また、好ましいものも同じである。該ハロゲン原子としては、塩素原子が好ましい。
 なお、式(5)中のベンゼン環は、炭素数1~22のアルキル基、又は置換基を有していてもよいフェニル基で置換されていてもよい。該置換基としては、炭素数1~6のアルキル基やハロゲン原子が挙げられる。また、式(4)において、1-メチルエチリデン基は、ベンゼン環の1,3位又は1,4位で結合するのが好ましい。
Figure JPOXMLDOC01-appb-C000020
 これらの二価の基Xの中でも、溶解性や耐摩耗等の観点から、置換基を有していてもよい炭素数1~18のアルキレン基、置換基を有していてもよい炭素数2~18のアルキリデン基、置換基を有していてもよい炭素数5~15のシクロアルキリデン基、が好ましい。
 炭素数1~18のアルキレン基としては、例えば、メチレン基、エチレン基、n-プロピレン基、イソプロピレン基、n-ブチレン基、イソブチレン基、n-ペンチレン基、n-ヘキシレン基、n-ヘプチレン基、n-オクチレン基、2-エチルヘキシレン基、n-ノニレン基、n-デシレン基、n-ウンデシレン基、n-ドデシレン基、n-トリデシレン基、n-テトラデシレン基、n-ペンタデシレン基、n-ヘキサデシレン基、n-ヘプタデシレン基、n-オクタデシレン基等が挙げられるが、炭素数1~8のアルキレン基が好ましく、炭素数1~4のアルキレン基がより好ましい。
 炭素数2~18のアルキリデン基としては、例えば、エチリデン基、n-プロピリデン基、イソプロピリデン基、n-ブチリデン基、イソブチリデン基、sec-ブチリデン基、n-ペンチリデン基、イソペンチリデン基、n-ヘキシリデン基、n-ヘプチリデン基、n-オクチリデン基、イソオクチリデン基等が挙げられ、炭素数2~5のアルキリデン基が好ましく、エチリデン基、プロピリデン基、イソプロピリデン基、sec-ブチリデン基がより好ましい。
 炭素数5~15のシクロアルキレン基としては、例えば、シクロペンチレン基、シクロヘキシレン基、シクロオクチレン基、シクロデシレン基、シクロテトラデシレン基、1,3-アダマンチル基等が挙げられ、炭素数5~10のシクロアルキレン基が好ましい。
 炭素数5~15のシクロアルキリデン基としては、例えば、シクロペンチリデン基、シクロヘキシリデン基、シクロオクチリデン基、シクロデシリデン基、2,2-アダマンチル基等が挙げられ、炭素数5~10のシクロアルキリデン基が好ましく、シクロヘキシリデン基が更に好ましい。
 上記一般式(3)中、Yは、単結合、置換基を有していてもよい炭素数1~18のアルキレン基、置換基を有していてもよい炭素数2~18のアルキリデン基、置換基を有していてもよい炭素数5~15のシクロアルキレン基、置換基を有していてもよい炭素数5~15のシクロアルキリデン基、-S-、-SO-、-SO2-、-O-、-CO-、又は上記式(4)もしくは上記式(5)で表される2価の基を示す。
 炭素数1~18のアルキレン基、炭素数2~18のアルキリデン基、炭素数5~15のシクロアルキレン基、炭素数5~15のシクロアルキリデン基の具体的な基については、前記したXで例示した基と同じものが挙げられ、また、好ましいものも同じである。
 これらの二価の基Yの中でも、耐摩耗性や機械強度の観点から、単結合、上記式(5)で表される2価の基が好ましい。一方、撥水性・撥油性や表面潤滑性の観点から、炭素数5~15のシクロアルキリデン基が好ましい。
 上記一般式(3)中、n1、n2は、それぞれ独立に、0~4の整数である。
 また、n3、n4は、それぞれ独立に、0~4の整数であるが、n3及びn4が共に0で、且つ、Yがイソプロピリデン基であることはない。上記、ビスフェノールAに由来する繰返し単位のみのポリカーボネートとなる場合を除き、XとYは同一であってもよい。ただし、XとYが共に、単結合、-O-、-CO-、メチレン基、エチリデン基の場合は、結晶化や溶解性の低下するおそれがあるため、R1~R4は、上記の置換基を有していてもよい炭素数1~6のアルキル基、置換基を有していてもよい炭素数1~6のアルコキシ基、又は置換基を有していてもよいフェニル基を有することが必要である。
 本発明において、上記一般式(1)中のWが、さらに有機シロキサン含有基を有することが好ましい。有機シロキサン含有基を含有することで、成形体の摩擦係数が低くなり表面潤滑性が向上する。有機シロキサン含有基としては、上記観点から、下記一般式(6)で表される構造を有する二価の基が好ましい。
Figure JPOXMLDOC01-appb-C000021
 上記一般式(6)中、R21及びR22は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~12の置換もしくは無置換のアルキル基、炭素数1~12の置換もしくは無置換のアルコキシ基、炭素数6~12の置換もしくは無置換のアリール基を示す。R23は、それぞれ独立に、炭素数1~12の置換もしくは無置換のアルキル基、又は炭素数6~12の置換もしくは無置換のアリール基を示す。
 R21及びR22が示すハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 R21及びR22が示す炭素数1~12の置換もしくは無置換のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基及びイソプロピル基等が挙げられ、該置換基としては、ハロゲン原子等が挙げられる。
 R21及びR22が示す炭素数1~12の置換もしくは無置換のアルコキシ基を構成するアルキル基としては、具体的には上記アルキル基が挙げられ、該置換基としては、ハロゲン原子等が挙げられる。
 R21及びR22が示す炭素数6~12の置換もしくは無置換のアリール基としては、例えばフェニル基等が挙げられ、該置換基としては、ハロゲン原子や炭素数1~12のアルキル基等が挙げられる。
 R23が示す炭素数1~12の置換もしくは無置換のアルキル基としては、R21及びR22と同じものが挙げられ、好ましくはメチル基である。R23が示す炭素数6~12の置換もしくは無置換のアリール基としては、例えば、フェニル基等が挙げられ、該置換基としては、ハロゲン原子や炭素数1~12のアルキル基が挙げられる。
 上記一般式(6)中、n21は、それぞれ独立に、2~4の整数である。また、n22は1~600の整数であるが、好ましくは2~100、より好ましくは3~50である。
 また、上記一般式(1)のWで表される構造中、有機シロキサン含有基の含有比率(モル比)は、成形体の高弾性率化や耐摩耗性、低摩擦係数化等が必要な場合は、好ましくは0.05~10モル%、より好ましくは0.1~5モル%、更に好ましくは0.15~3モル%である。一方、成形体の低弾性率化や高伸長性が必要な場合は、好ましくは3~15モル%である。
 上記一般式(1)で表されるポリカーボネート樹脂は、溶解性、耐摩耗性等の機械強度の観点から、該ポリカーボネート樹脂中、下記一般式(7)~(13)で表される構造単位のうち少なくとも1つを含むことが好ましい。
Figure JPOXMLDOC01-appb-C000022
 上記一般式(7)~(13)中、R5~R7は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~6のアルキル基、置換基を有していてもよい炭素数1~6のアルコキシ基、置換基を有していてもよい炭素数1~6のフルオロアルキル基、置換基を有していてもよい炭素数1~6のフルオロアルコシキ基、又は置換基を有していてもよいフェニル基を示す。
 R5~R7が示す、ハロゲン原子、置換基を有していてもよい炭素数1~6のアルキル基、置換基を有していてもよい炭素数1~6のアルコキシ基、置換基を有していてもよい炭素数1~6のフルオロアルキル基、置換基を有していてもよい炭素数1~6のフルオロアルコシキ基の具体的な基については、前述のR1~R4で例示した基と同じものが挙げられ、また、好ましいものも同じである。
〔ポリカーボネート樹脂の原料〕
 上記一般式(1)で表されるポリカーボネート樹脂は、対応する下記一般式(17)、(18)のビスフェノール類又はジヒドロキシナフタレン、及び下記一般式(19)のフッ素含有アルコールを出発原料として合成することができる。
Figure JPOXMLDOC01-appb-C000023
(式(17)中のR1、R2、X、n1、n2、式(18)中のR3、R4、Y、n3、n4、及び式(19)中のRfは、上記一般式(1)、(3)と同様である。)
 上記一般式(17)あるいは(18)のビスフェノール化合物としては、例えば、1,1-ビス(3-メチル-4-ヒドロキシフェニル)エタン、9,9-ビス(3-フェニル-4-ヒドロキシフェニル)フルオレン、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,2-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、4,4-ビス(4-ヒドロキシフェニル)ヘプタン、1,1-ビス(4-ヒドロキシフェニル)-1,1-ジフェニルメタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルメタン、ビス(4-ヒドロキシフェニル)エーテル、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-ヒドロキシフェニル)スルホン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-フェニル-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)アダマンタン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)アダマンタン、1,3-ビス(4-ヒドロキシフェニル)アダマンタン、1,3-ビス(3-メチル-4-ヒドロキシフェニル)アダマンタン、2-(3-メチル-4-ヒドロキシフェニル)-2-(4-ヒドロキシフェニル)-1-フェニルエタン、ビス(3-メチル-4-ヒドロキシフェニル)スルフィド、ビス(3-メチル-4-ヒドロキシフェニル)スルホン、ビス(3-メチル-4-ヒドロキシフェニル)メタン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)シクロヘキサン、2,2-ビス(2-メチル-4-ヒドロキシフェニル)プロパン、1,1-ビス(2-ブチル-4-ヒドロキシ-5-メチルフェニル)ブタン、1,1-ビス(2-tert-ブチル-4-ヒドロキシ-3-メチルフェニル)エタン、1,1-ビス(2-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロパン、1,1-ビス(2-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)ブタン、1,1-ビス(2-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)イソブタン、1,1-ビス(2-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)ヘプタン、1,1-ビス(2-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)-1-フェニルメタン、1,1-ビス(2-tert-アミル-4-ヒドロキシ-5-メチルフェニル)ブタン、ビス(3-クロロ-4-ヒドロキシフェニル)メタン、ビス(3,5-ジブロモ-4-ヒドロキシフェニル)メタン、2,2-ビス(3-クロロ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-フルオロ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-ブロモ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジフルオロ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジクロロ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-ブロモ-4-ヒドロキシ-5-クロロフェニル)プロパン、2,2-ビス(3,5-ジクロロ-4-ヒドロキシフェニル)ブタン、2,2-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)ブタン、1-フェニル-1,1-ビス(3-フルオロ-4-ヒドロキシフェニル)エタン、ビス(3-フルオロ-4-ヒドロキシフェニル)エーテル、4,4’-ジヒドロキシビフェニル、3,3’-ジメチル-4,4’-ジヒドロキシビフェニル、3,3’-ジフルオロ-4,4’-ジヒドロキシビフェニル、1,1-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)シクロヘキサン、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、1,1-ビス(3-フェニル-4-ヒドロキシフェニル)シクロヘキサン、ビス(3-フェニル-4-ヒドロキシフェニル)スルホン、4,4’-(3,3,5-トリメチルシクロヘキシリデン)ジフェノール、4,4’-[1,4-フェニレンビス(1-メチルエチリデン)]ビスフェノール、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスフェノール、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン等が挙げられる。これらのビスフェノール化合物は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 なお、一般式(18)で表されるビスフェノール類は、2,2-ビス(4-ヒドロキシフェニルプロパン)(ビスフェノールA)は除かれる。上記一般式(17)と(18)で表されるビスフェノール類が共にビスフェノールAであると、溶解性の低下や、結晶化しやすい等の問題が起こり得るためである。また、2,7-ジヒドロキシナフタレンのようなナフタレン環に2個のヒドロキシ基が結合した化合物であってもよい。
 これらの中でも、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)シクロペンタン、4,4’-ジヒドロキシビフェニル、3,3’-ジメチル-4,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシジフェニルエーテル、4,4’-[1,4-フェニレンビス(1-メチルエチリデン)]ビスフェノール、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスフェノール、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、2,2、-ビス(4-ヒドロキシフェニル)アダマンタン、2,7-ジヒドロキシナフタレン、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパンが好ましい。
 更に好ましくは、2,2-ビス(4-ヒドロキシフェニル)ブタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)シクロヘキサン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、4,4’-ジヒドロキシビフェニル、3,3’-ジメチル-4,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシジフェニルエーテル、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパンである。
 また、本発明に係るポリカーボネート樹脂は、上記一般式(17)あるいは(18)で表されるビスフェノール類2種以上を由来としてもよいが、本発明の目的に反しない範囲で、上記一般式(17)あるいは(18)以外の他のビスフェノール化合物(以下、「第3成分」ともいう)を由来とするものを含んでもよい。
 このような第3成分としては、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)、有機シロキサン基を含有するビスフェノール等が挙げられ、下記一般式(20)で表される有機シロキサン基を含有するビスフェノールが挙げられる。
Figure JPOXMLDOC01-appb-C000024
(式(20)中、R21~R23、n21、n22は、前述の一般式(6)と同様である。)
 上記一般式(19)で表されるフッ素含有アルコールは、末端停止剤として用いられる。フッ素含有アルコールとしては、下記一般式(14)、(15)、(15a)で表されるフッ素含有アルコールのいずれかを末端停止剤として用いることが好ましい。
Figure JPOXMLDOC01-appb-C000025
(式(14)中のn31は5~8の整数、式(15)中のn32は0~2の整数、n33は1~3の整数、式(15a)中のn34は1~3の整数である。)
 フッ素含有アルコールとしては、連続するフルオロアルキル鎖が2~6で、それがエーテル結合を介して連結し、全フッ素原子数が13~19のものが好ましい。全フッ素原子数が13以上であれば、十分な撥水性、撥油性が発現させることができる。一方、19以下であれば、重合時の反応性の低下を抑制し、得られたポリカーボネート樹脂の機械的強度、表面硬度、耐熱性等が向上しうる。
 さらに、エーテル結合が2つ以上有するフッ素含有アルコールが好ましい。このようなフッ素含有アルコールを用いることで、樹脂の分散性が良くなり、耐摩耗性を向上させ、摩耗後の表面潤滑性や撥水性及び撥油性を保持することができる。
 上述のフッ素含有アルコールとしては、例えば、以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000026
 本発明のポリカーボネート樹脂には上記のフッ素含有アルコールと共に他の末端停止剤を用いることもできる。
 他の末端停止剤としては、一価のカルボン酸とその誘導体や、一価のフェノール等を混合して用いることができ、例えば、p-tert-ブチルフェノール、p-フェニルフェノール、p-クミルフェノール、p-パーフルオロノニルフェノール、p-(パーフルオロノニルフェニル)フェノール、p-パーフルオロオクチルフェノール、p-パーフルオロヘプチルフェノール、p-パーフルオロヘキシルフェノール、p-パーフルオロペンチルフェノール、p-パーフルオロブチルフェノール、p-tert-パーフルオロブチルフェノール、1-(p-ヒドロキシベンジル)パーフルオロデカン、p-〔2-(1H,1H-パーフルオロトリドデシルオキシ)-1,1,1,3,3,3-ヘキサフルオロプロピル〕フェノール、3,5-ビス(パーフルオロヘキシルオキシカルボニル)フェノール、p-ヒドロキシ安息香酸パーフルオロドデシル、p-(1H,1H-パーフルオロオクチルオキシ)フェノール、2H,2H,9H-パーフルオロノナン酸、1,1,1,3,3,3-テトラフロロ-2-プロパノール等や、下記式で示されるフッ化アルコール等が挙げられる。
 H(CF2nCH2OH (nは、1~12の整数である。)
 F(CF2mCH2OH (mは、1~12の整数である。)
 これらの他の末端停止剤の中でも、分子末端の一部又は全部が、パーフロロアルキル基又は末端水素置換パーフロロアルキル基を含むフェノール、1,1-ジヒドロ-1-パーフロロアルキルアルコール、1,1,ω-トリヒドロ-1-パーフロロアルキルアルコール等が好ましい。
 末端停止剤の添加割合は、共重合組成比として、好ましくは0.05~30モル%、さらに好ましくは0.1~10モル%である。0.05モル%以上であれば、成形性が良好であり、30モル%以下であれば機械的強度が良好となる。
 また、本発明のポリカーボネート樹脂には分岐剤を導入することが可能である。
 分岐剤としては、例えば、フロログルシン、ピロガロール、4,6-ジメチル-2,4,6-トリス(4-ヒドロキシフェニル)-2-ヘプテン、2,6-ジメチル-2,4,6-トリス(4-ヒドロキシフェニル)-3-ヘプテン、2,4-ジメチル-2,4,6-トリス(4-ヒドロキシフェニル)ヘプタン、1,3,5-トリス(2-ヒドロキシフェニル)ベンゼン、1,3,5-トリス(4-ヒドロキシフェニル)ベンゼン、1,1,1-トリス(4-ヒドロキシフェニル)エタン、トリス(4-ヒドロキシフェニル)フェニルメタン、2,2-ビス〔4,4-ビス(4-ヒドロキシフェニル)シクロヘキシル〕プロパン、2,4-ビス〔2-ビス(4-ヒドロキシフェニル)-2-プロピル〕フェノール、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール、2-(4-ヒドロキシフェニル)-2-(2,4-ジヒドロキシフェニル)プロパン、テトラキス(4-ヒドロキシフェニル)メタン、テトラキス〔4-(4-ヒドロキシフェニルイソプロピル)フェノキシ〕メタン、2,4-ジヒドロキシ安息香酸、トリメシン酸、シアヌル酸、3,3-ビス(3-メチル-4-ヒドロキシフェニル)-2-オキソ-2,3-ジヒドロインドール、3,3-ビス(4-ヒドロキシアリール)オキシインドール、5-クロロイサチン、5,7-ジクロロイサチン、5-ブロモイサチン等が挙げられる。
 これら分岐剤の添加量は、共重合組成比で、好ましくは30モル%以下、より好ましくは5モル%以下である。該添加量が30モル%以下であれば、成形性が良好である。
 本発明に係るポリカーボネート樹脂の分子量は、塗工液の用途等により適切な範囲が異なるが、一般的には、成形性の観点から、塩化メチレンを溶媒とする濃度0.5g/dlの溶液の温度20℃における還元粘度[ηsp/c]が、好ましくは0.2~2dl/g、より好ましくは0.2~1.1dl/gである。
〔ポリカーボネート樹脂の製造方法〕
 次に、本発明のポリカーボネート樹脂の製造方法について説明する。
 当該ポリカーボネート樹脂は、前記一般式(17)及び(18)で示されるビスフェノールあるいはジヒドロキシナフタレンと、上記一般式(19)で示されるフッ素含有アルコール及びホスゲン等のカーボネート前駆体を用いて界面重合法により製造することができる。
 また、エステル交換法等の公知の非ホスゲン法による製造方法でも製造可能である。具体的には、塩化メチレン等の不活性有機溶媒中において、水酸化ナトリウム等の公知の酸受容体や分子量調節剤(上述のフッ素含有アルコール等の末端停止剤)の存在下、必要に応じ触媒や、上述の分岐剤を添加し、前記ビスフェノール及び必要に応じて用いられる他のビスフェノール化合物と、前記フッ素含有アルコール、並びにホスゲン等のカーボネート前駆体を反応させる。
 用いる不活性有機溶剤としては、例えば、ジクロロメタン(塩化メチレン);トリクロロメタン;四塩化炭素;1,1-ジクロロエタン;1,2-ジクロロエタン;1,1,1-トリクロロエタン;1,1,2-トリクロロエタン;1,1,1,2-テトラクロロエタン;1,1,2,2-テトラクロロエタン;ペンタクロロエタン;クロロベンゼン等の塩素化炭化水素、トルエン、アセトフェノン等が挙げられる。これらの中でも、塩化メチレンが好ましい。なお、これらの不活性有機溶剤は、単独で又は2種以上を組み合わせて用いてもよい。
 用いる触媒としては、相間移動触媒が好ましく、例えば、第三級アミン又はその塩、第四級アンモニウム塩、第四級ホスホニウム塩等が挙げられる。
 第三級アミンとしては、例えば、トリエチルアミン、トリブチルアミン、N,N-ジメチルシクロヘキシルアミン、ピリジン、ジメチルアニリン等が挙げられ、第三級アミン塩としては、これらの第三級アミンの塩酸塩、臭素酸塩等が挙げられる。
 第四級アンモニウム塩としては、例えば、トリメチルベンジルアンモニウムクロリド、トリエチルベンジルアンモニウムクロリド、トリブチルベンジルアンモニウムクロリド、トリオクチルメチルアンモニウムクロリド、テトラブチルアンモニウムクロリド、テトラブチルアンモニウムブロミド等が挙げられる。
 第四級ホスホニウム塩としては、例えば、テトラブチルホスホニウムクロリド、テトラブチルホスホニウムブロミド等が挙げられる。
 これらの中でも、第三級アミンが好ましく、トリエチルアミンがより好ましい。なお、これらの触媒は、単独で又は2種以上を組み合わせて用いてもよい。
 上記の製造法の中でも、下記一般式(16)のビスクロロホーメートを中間体として用いる方法が好ましい。通常の方法では、ポリカーボネートにした時に結晶化しやすいビスフェノール等も、この方法を用いることでポリマー中のモノマーシーケンスを幅広くコントロールできる。そのため、下記一般式(16)のビスクロロホーメートを原料の一つとして用いて製造されたポリカーボネート樹脂は、透明性や溶解性等が良好となる。
Figure JPOXMLDOC01-appb-C000027
 上記一般式(16)中、R1、R2、X、n1、n2は、前記一般式(3)と同様である。n8は、ビスクロロホーメートオリゴマーの平均量体数を表し、その数値は1.0~1.99である。
 本発明のポリカーボネートを製造する方法として、一旦上記のビスクロロホーメートの単量体あるいはその数量体のオリゴマーを合成し、その後、後添加のモノマー類を反応させる方法が挙げられる。その際、先に、上記のビスクロロホーメートとフッ素含有アルコールやシロキサン原料を反応させることが好ましい。その理由は、他のビスフェノール等のモノマー類と同時に反応させた場合、微量のフッ素モノマーあるいはシロキサンモノマーが未反応のまま樹脂中に残留し、成型時に透明性の低下等特性を低下する可能性があるためである。
 このようにして、本発明の塗工液の構成成分であるポリカーボネート樹脂を得ることができる。こうして得られるポリカーボネート樹脂は溶剤溶解性に優れ、非ハロゲン系溶剤に安定に溶解することができる。
〔ポリカーボネート樹脂含有塗工液〕
 本発明のポリカーボネート樹脂含有塗工液は、上記一般式(1)で表されるポリカーボネート樹脂及び非ハロゲン系溶剤を含有する。
 本発明の塗工液に含有される非ハロゲン系溶剤としては、溶解性の観点から、芳香族系溶剤、エーテル系溶剤、ケトン系溶剤、アミド系溶剤、及びエステル系溶剤の中から選ばれる少なくとも1種であることが好ましい。
 芳香族系溶剤としては、例えば、トルエン、キシレン、アニソール、トリメチルベンゼン、その他芳香族系高沸点溶剤(例えば、「イプゾール(商品名、出光興産株式会社製)」等の市販品)等が挙げられる。
 エーテル系溶剤としては、例えば、テトラヒドロフラン、ジオキサン、シクロペンチルモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート(PMA)、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート等が挙げられる。
 ケトン系溶剤としては、例えば、シクロヘキサノン、メチルイソブチルケトン、メチルエチルケトン、ジイソブチルケトン等が挙げられる。
 アミド系溶剤として、例えば、ジメチルホルムアミド、ジメチルスルホキシド、ジエチルホルムアミド等が挙げられる。
 エステル系溶剤としては、例えば、酢酸エチル、エチルセロソルブ、酢酸メチル、酢酸ブチル、酢酸メトキシブチル、酢酸セロソルブ、酢酸アミル、酢酸ノルマルプロピル、酢酸イソプロピル、乳酸メチル、乳酸エチル、乳酸ブチル等が挙げられる。
 これらの非ハロゲン系溶剤は、単独で又は2種以上を組み合わせて用いてもよい。
 本発明の塗工液の固形分濃度は、塗工する膜厚や樹脂の分子量によって適宜調整することができるが、好ましくは1~50質量%、より好ましくは1~30質量%、更に好ましくは5~20質量%である。1質量%以上であれば、成形品の生産性が良好となり、50質量%以下であれば、粘性の上昇が抑制され、成形品の製造が困難になることがない。
 塗工液に含有する樹脂としては、本発明のポリカーボネート樹脂とは異なるその他の樹脂と混合して使用してもよい。
 また、本発明の塗工液には、各種添加剤を配合してもよい。各種添加剤としては、染料、顔料等の着色剤、導電性材料、電荷輸送材、電子輸送材、正孔輸送材、電荷発生材等の機能性化合物、無機又は有機のフィラー、ファイバー、微粒子等の充填材、酸化防止剤、紫外線吸収剤、光安定剤、酸素捕捉剤等の樹脂用添加剤が挙げられる。
〔成形体〕
 本発明のポリカーボネート樹脂含有塗工液を用いて成形して成形体を作製することができる。本発明の成形体としては、該塗工液を流延法にて成形してなるキャストフィルム、及び該塗工液を塗布法にて成形してなるコーティングフィルム等が挙げられる。
 これらの成形体を得るための塗工液の塗工方法としては、例えば、バーコート、ディップコート、スプレーコート、ロールコート、グラビアコート、フレキソコート、スクリーンコート、スピンコート、フローコート等の方法が挙げられる。
 本発明の成形体の表面の水の接触角は95度以上であり、優れた撥水性を有する。また、本発明の成形体の表面のヘキサデカンの接触角は20度以上であり、優れた撥油性を有する。なお、本発明において、水及びヘキサデカンの接触角は、実施例に記載の方法で測定された値を示す。
 また、本発明の成形体は、クラックが生じにくい柔軟性や付着性、良好な破断伸び等の優れた特性を有する。そのため、本発明の成形体は、ドラムやロール、ベルト、電子写真感光体等の用途に好適である。
 例えば、ドラムやロール、ベルトの表面にコート層として成形体を形成し、成形体(コート層)を有するドラムやロール、ベルトとすることで、例えば、帯電ロールや現像ロール、転写ロールや転写ベルト等として用いることができる。
 あるいは、電子写真方式の複写機やプリンター等に用いられる電子写真感光体のバインダー樹脂として本発明の成形体を用い、成形体を有する電子写真感光体とすることもできる。
 ドラムやロール、ベルト、電子写真感光体等は、少なくとも本発明の成形体を含むことで、それぞれの用途に応じた優れた特性(柔軟性、撥水性、表面潤滑性、耐摩耗性、透明性等)を付与することができる。なお、本発明において「少なくとも成形体を含む」とは、当該成形体からなる構成を一部に含む場合はもちろんのこと、当該成形体からなる場合も意味する。
 キャストフィルムやコーティングフィルムの用途としては、例えば位相差フィルム、導電性フィルム、光導波路、インクジェット用コートフィルム、防汚フィルム、タッチパネルの表面コート剤や携帯電話やパーソナルコンピューター、電化製品等の筐体に使用されるフィルムインサート成型用フィルム等を挙げることができる。
 コーティングフィルム等の積層成形体を製造する際に使用される基材は、特に限定されず、ポリエチレンテレフタレート等のプラスチック、アルミニウム等の金属、ガラス、紙、木質材、石材等の無機質材、電着塗装板、ラミネート板等が挙げられる。
 これらの用途の中でも、電子写真感光体のバインダー樹脂として用いられることが好ましい。以下、電子写真感光体に用いた例について詳述する。
〔電子写真感光体〕
 本発明の電子写真感光体の形態としては、例えば、導電性基体上に感光層を有する電子写真感光体が挙げられ、必要に応じて、導電性基体と感光層との間に、下引き層や、電荷のブロッキングの役目を果すブロッキング層を有していてもよいし、必要に応じて、感光層上に導電性又は絶縁性の保護層を有していてもよいし、各層間に接着層を設けてもよい。
 特に、少なくとも1層の電荷発生層と少なくとも1層の電荷輸送層とを含む感光層を有する電子写真感光体、もしくは、一層からなる感光層に電荷発生物質と電荷輸送物質とを含有する電子写真感光体とすることが好ましい。なお、感光層が電荷発生層と電荷輸送層の2層を有する場合、電荷発生層上に電荷輸送層が積層されていてもよく、また、電荷輸送層上に電荷発生層が積層されていてもよい。
 なお、各層の塗布は、公知の塗布装置を用いて行うことができ、塗布装置としては、例えば、アプリケーター、スプレーコーター、ベーコーター、チップコーター、ロールコーター、ディップコーター、ドクタブレード等が挙げられる。
 本発明のポリカーボネート樹脂は、電子写真感光体中のどの部分にも使用してもよいが、本発明の効果を十分に発揮するためには、例えば、(1)電荷輸送層中の電荷移動物質の結着樹脂として、(2)単一の感光層の結着樹脂として、又は(3)表面保護層用の樹脂として使用することが好ましい。本発明のポリカーボネート樹脂は、上記(1)~(3)のうちの1つの用途に用いられてもよいし、2つ以上の用途に用いられてもよい。なお、電荷輸送層を2層有する多層型の電子写真感光体の場合には、少なくとも1つの電荷輸送層の結着樹脂として使用することが好ましい。
 本発明のポリカーボネート樹脂を用いて、電子写真感光体を作製する際、必要に応じて、本発明のポリカーボネート樹脂とは異なるその他の樹脂と混合して使用してもよい。その場合、混合された全樹脂に対する本発明のポリカーボネート樹脂の含有割合は、好ましくは20質量%以上、より好ましくは50質量%以上、更に好ましくは80質量%以上、更に好ましくは90質量%以上、より更に好ましくは実質的に100質量%である。また、本発明のポリカーボネート樹脂に対して、必要に応じて、酸化防止剤等の添加物を混合してもよい。以下、各層について説明する。
(導電性基体)
 導電性基体の材料としては、公知のものを使用することができる。具体的には、アルミニウム、ニッケル、クロム、パラジウム、チタン、モリブデン、インジウム、金、白金、銀、銅、亜鉛、真鍮、ステンレス鋼、酸化鉛、酸化錫、酸化インジウム、ITO(インジウムチンオキサイド:錫ドープ酸化インジウム)もしくはグラファイトからなる板、ドラム、シート;蒸着、スパッタリング、塗布等によりコーティングする等して導電処理したガラス、布、紙もしくはプラスチックのフィルム、シート及びシームレスシーベルト;電極酸化等により金属酸化処理した金属ドラム等が挙げられる。
(電荷発生層)
 電荷発生層は、少なくとも電荷発生物質を有するものである。この電荷発生層は、その下地となる導電性基体上や他の層上に、真空蒸着やスパッタ法等により電荷発生物質の層を形成せしめるか、又はその下地となる導電性基体上や他の層上に、電荷発生物質を結着樹脂によって結着してなる層を形成せしめることによって得ることができる。
 後者の場合、電荷発生層における電荷発生物質と結着樹脂の含有割合(質量比)〔電荷発生物質/結着樹脂〕は、特に制限されるものではないが、好ましくは20/80~80/20、より好ましくは30/70~70/30である。
 結着樹脂を用いた電荷発生層の形成方法としては、公知の方法を使用することができるが、電荷発生物質を結着樹脂と共に適当な溶媒により分散又は溶解した塗工液を、所定の下地となる導電性基体上や他の層上に塗布し、乾燥せしめて湿式成形体として得る方法が好ましい。
 塗工液を調製する際に用いる上記溶媒としては、例えば、ベンゼン、トルエン、キシレン、クロロベンゼン等の芳香族系溶媒;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン;メタノール、エタノール、イソプロパノール等のアルコール;酢酸エチル、エチルセロソルブ等のエステル;四塩化炭素、四臭化炭素、クロロホルム、ジクロロメタン、テトラクロロエタン等のハロゲン化炭化水素;テトラヒドロフラン、ジオキソラン、ジオキサン等のエーテル;ジメチルホルムアミド、ジメチルスルホキシド、ジエチルホルムアミド等が挙げられる。なお、これらの溶媒は、単独で又は2種以上を混合して使用してもよい。
 電荷発生層形成用の塗工液の固形分濃度は、好ましくは0.1~30質量%、より好ましくは0.1~20質量%である。
 電荷発生層の厚さは、好ましくは0.01~2μm、より好ましくは0.1~0.8μmである。電荷発生層の厚さが0.01μm以上であれば、均一な厚さに層を形成することが容易に出来、2μm以下であれば、電子写真特性の低下を招くおそれがない。
 電荷発生物質としては、公知の各種のものを使用することができる。具体的には、非晶質セレンや三方晶セレン等のセレン単体、セレン-テルル等のセレン合金、As2Se3等のセレン化合物もしくはセレン含有組成物、酸化亜鉛、CdS-Se等の周期律表第12族及び第16族元素からなる無機材料、酸化チタン等の酸化物系半導体、アモルファスシリコン等のシリコン系材料、τ型無金属フタロシアニンやχ型無金属フタロシアニン等の無金属フタロシアニン顔料、α型銅フタロシアニン、β型銅フタロシアニン、γ型銅フタロシアニン、ε型銅フタロシアニン、X型銅フタロシアニン、A型チタニルフタロシアニン、B型チタニルフタロシアニン、C型チタニルフタロシアニン、D型チタニルフタロシアニン、E型チタニルフタロシアニン、F型チタニルフタロシアニン、G型チタニルフタロシアニン、H型チタニルフタロシアニン、K型チタニルフタロシアニン、L型チタニルフタロシアニン、M型チタニルフタロシアニン、N型チタニルフタロシアニン、Y型チタニルフタロシアニン、オキソチタニルフタロシアニン、X線回折図におけるブラック角2θが27.3±0.2度に強い回折ピークを示すチタニルフタロシアニン、ガリウムフタロシアニン等の金属フタロシアニン顔料、シアニン染料、アントラセン顔料、ビスアゾ顔料、ピレン顔料、多環キノン顔料、キナクリドン顔料、インジゴ顔料、ペリレン顔料、ピリリウム染料、スクェアリウム顔料、アントアントロン顔料、ベンズイミダゾール顔料、アゾ顔料、チオインジゴ顔料、キノリン顔料、レーキ顔料、オキサジン顔料、ジオキサジン顔料、トリフェニルメタン顔料、アズレニウム染料、トリアリールメタン染料、キサンチン染料、チアジン染料、チアピリリウム染料、ポリビニルカルバゾール、ビスベンゾイミダゾール顔料等が挙げられる。なお、これらの電荷発生物質は、単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、下記一般式(i)~(iii)のいずれかで表される電荷発生物質が好ましい。
Figure JPOXMLDOC01-appb-C000028
 上記一般式(i)中、Z1~Z4は、それぞれ独立に、ピロール環上の2個の炭素原子と共に、置換基を有していてもよい芳香族炭化水素環もしくは複素環を形成することができる原子団を示し、Mは、2個の水素原子又は配位子を有していてもよい金属原子もしくは金属化合物を示す。
Figure JPOXMLDOC01-appb-C000029
 上記一般式(ii)中、Ar1は、芳香族炭化水素環もしくは複素環を含んでいてもよい共役系を有するt価の残基を示し、tは1以上の整数であり、Cpは芳香族系水酸基を有するカップラー残基を示す。なお、tが2以上の場合、各Cpは同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000030
 上記一般式(iii)中、X1~X4は、それぞれ独立に、酸素原子、硫黄原子、セレン原子を示し、RP、RQは、炭素数1~12のアルキル基もしくはアリール基を示し、X1又はX2とRP、X3又はX4とRQとで置換基を有していてもよい複素環を形成していてもよい。
 電荷発生層に用いる結着樹脂としては、特に制限はなく、公知の各種のものを使用することができる。具体的には、ポリスチレン、ポリ塩化ビニル、ポリ酢酸ビニル、塩化ビニル-酢酸ビニル共重合体、ポリビニルアセタール、アルキッド樹脂、アクリル樹脂、ポリアクリロニトリル、ポリカーボネート、ポリウレタン、エポキシ樹脂、フェノール樹脂、ポリアミド、ポリケトン、ポリアクリルアミド、ブチラール樹脂、ポリエステル樹脂、塩化ビニリデン-塩化ビニル共重合体、メタクリル樹脂、スチレン-ブタジエン共重合体、塩化ビニリデン-アクリロニトリル共重合体、塩化ビニル-酢酸ビニル-無水マレイン酸共重合体、シリコーン樹脂、シリコーン-アルキッド樹脂、フェノール-ホルムアルデヒド樹脂、スチレン-アルキッド樹脂、メラミン樹脂、ポリエーテル樹脂、ベンゾグアナミン樹脂、エポキシアクリレート樹脂、ウレタンアクリレート樹脂、ポリ-N-ビニルカルバゾール、ポリビニルブチラール、ポリビニルホルマール、ポリスルホン、カゼイン、ゼラチン、ポリビニルアルコール、エチルセルロース、ニトロセルロース、カルボキシ-メチルセルロース、塩化ビニリデン系ポリマーラテックス、アクリロニトリル-ブタジエン共重合体、ビニルトルエン-スチレン共重合体、大豆油変性アルキッド樹脂、ニトロ化ポリスチレン、ポリメチルスチレン、ポリイソプレン、ポリチオカーボネート、ポリアリレート、ポリハロアリレート、ポリアリルエーテル、ポリビニルアクリレート、ポリエステルアクリレート等が挙げられる。これらの結着樹脂は、単独で又は2種以上を混合して用いることができる。また、該結着樹脂として、本発明のポリカーボネート樹脂を単独で又は上記結着樹脂と組み合わせて使用することもできる。
(電荷輸送層)
 電荷輸送層は、下地となる導電性基体上又はその他の層上に、電荷輸送物質を結着樹脂によって結着してなる層を形成することによって、湿式成形体として得ることができる。
 電荷輸送層の形成方法としては、公知の各種の方式を使用することができる。例えば、電荷輸送物質をポリカーボネート樹脂混合物と共に適当な溶媒に分散又は溶解した塗工液を、所定の下地となる導電性基体上や他の層上に塗布し、乾燥して湿式成形体として得る方法が好ましい。
 電荷輸送層における電荷輸送物質と結着樹脂との含有割合(質量比)〔電荷輸送物質:結着樹脂〕は、好ましくは10:90~80:20、より好ましくは20:80~80:20、更に好ましくは30:70~70:30である。なお、該結着樹脂は、本発明のポリカーボネート樹脂を含んでいてもよいし、全て本発明のポリカーボネート樹脂であってもよい。
 塗工液を調製する際に用いる溶媒としては、電荷発生層を形成する場合に用いられるものと同じ溶媒が挙げられるが、エーテルが好ましく、テトラヒドロフランがより好ましい。
 電荷輸送層形成用の塗工液の固形分濃度は、好ましくは0.1~30質量%、より好ましくは0.1~20質量%である。
 電荷輸送層の厚さは、好ましくは5~100μm、より好ましくは10~30μmである。電荷輸送層の厚さが5μm以上であれば、初期電位が低くなるおそれがなく、100μm以下であれば、電子写真特性が良好となる。
 電荷輸送物質としては、公知の各種の化合物を使用することができる。このような化合物としては、カルバゾール化合物、インドール化合物、イミダゾール化合物、オキサゾール化合物、ピラゾール化合物、オキサジアゾール化合物、ピラゾリン化合物、チアジアゾール化合物、アニリン化合物、ヒドラゾン化合物、芳香族アミン化合物、脂肪族アミン化合物、スチルベン化合物、フルオレノン化合物、ブタジエン化合物、エナミン系化合物、キノン化合物、キノジメタン化合物、チアゾール化合物、トリアゾール化合物、イミダゾロン化合物、イミダゾリジン化合物、ビスイミダゾリジン化合物、オキサゾロン化合物、ベンゾチアゾール化合物、ベンズイミダゾール化合物、キナゾリン化合物、ベンゾフラン化合物、アクリジン化合物、フェナジン化合物、ポリ-N-ビニルカルバゾール、ポリビニルピレン、ポリビニルアントラセン、ポリビニルアクリジン、ポリ-9-ビニルフェニルアントラセン、ピレン-ホルムアルデヒド樹脂、エチルカルバゾール樹脂、又はこれらの構造を主鎖や側鎖に有する重合体等が挙げられる。なお、これらの電荷輸送物質は、単独で又は2種以上を組み合わせて使用してもよい。
 これらの電荷輸送物質の中でも、特開平11-172003公報の段落[0121]~[0166]に例示されている化合物、及び以下の構造で表される電荷輸送物質が好ましい。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
 電荷輸送層の結着樹脂としては、特に制限はなく、本発明のポリカーボネート樹脂以外にも公知の樹脂を使用することもできる。このような公知の結着樹脂としては、上述の電荷発生層で用いられる樹脂と同じものが挙げられる。なお、結着樹脂は、単独で又は2種以上を混合して用いることもできる。
 特に、電荷輸送層における結着樹脂としては、本発明のポリカーボネート樹脂を使用することが好ましい。本発明のポリカーボネート樹脂を電荷輸送層における結着樹脂として使用する場合、本発明のポリカーボネート樹脂単独で結着樹脂としてもよいし、その他の結着樹脂と混合して用いてもよい。
 全結着樹脂に対する本発明のポリカーボネート樹脂混合物の含有割合は、好ましくは20~100質量%、より好ましくは50~100質量%、より好ましくは80~100質量%、更に好ましくは90~100質量%、より更に好ましくは実質的に100質量%である。
 なお、電子写真感光体においては、電荷発生層及び電荷輸送層の少なくとも一方に本発明のポリカーボネート樹脂を結着樹脂として用いることが好ましい。
(下引き層)
 電子写真感光体においては、前記導電性基体と感光層との間に、通常使用されるような下引き層を設けることができる。
 この下引き層の材料としては、例えば、酸化チタン、酸化アルミニウム、ジルコニア、チタン酸、ジルコン酸、ランタン鉛、チタンブラック、シリカ、チタン酸鉛、チタン酸バリウム、酸化錫、酸化インジウム、酸化珪素等の無機質微粒子、ポリアミド樹脂、フェノール樹脂、カゼイン、メラミン樹脂、ベンゾグアナミン樹脂、ポリウレタン樹脂、エポキシ樹脂、セルロース、ニトロセルロース、ポリビニルアルコール、ポリビニルブチラール樹脂等の樹脂を使用することができる。また、この下引き層に用いる樹脂として、前記電荷発生層や電荷輸送層に使用し得る結着樹脂を用いてもよいし、本発明のポリカーボネート樹脂を用いてもよい。これら無機質微粒子や樹脂は、単独で又は2種以上を混合して用いることができる。2種以上の混合物として用いる場合には、平滑性のよい皮膜を形成する観点から、無機質微粒子と樹脂を併用することが好ましい。
 下引き層を有する場合、下引き層の厚みは、好ましくは0.01~10μm、より好ましくは0.1~7μmである。下引き層の厚みが0.01μm以上であれば、下引き層を均一に形成することが容易であり、また、10μm以下であれば、電子写真特性が良好となる。
(ブロッキング層)
 前記導電性基体と感光層との間には、通常使用されるような公知のブロッキング層を設けることができる。このブロッキング層に用いる結着樹脂としては、前記電荷発生層や電荷輸送層に使用し得る結着樹脂を用いてもよいし、本発明のポリカーボネート樹脂を用いてもよい。
 ブロッキング層を有する場合、ブロッキング層の厚みは、好ましくは0.01~20μm、より好ましくは0.1~10μmである。ブロッキング層の厚みが0.01μm以上であれば、ブロッキング層を均一に形成することが容易であり、また、20μm以下であれば、電子写真特性が良好となる。
(保護層)
 さらに、電子写真感光体において、感光層の上に、保護層を有してもよい。この保護層には、前記電荷発生層や電荷輸送層に使用し得る結着樹脂を用いてもよいし、本発明のポリカーボネート樹脂を用いてもよい。
 感光層上に保護層を有する場合、保護層の厚みは、好ましくは0.01~20μm、より好ましくは0.1~10μmである。なお、この保護層には、前記電荷発生物質、前記電荷輸送物質、添加剤、金属やその酸化物、窒化物、塩、合金、カーボンブラック、有機導電性化合物等の導電性材料が含有されていてもよい。
-各種添加剤-
 さらに、この電子写真感光体の性能向上のために、感光層には、結合剤、可塑剤、硬化触媒、流動性付与剤、ピンホール制御剤、分光感度増感剤(増感染料)等を添加してもよい。また、繰り返し使用に対しての残留電位の増加、帯電電位の低下、感度の低下を防止する目的で、種々の化学物質、例えば、酸化防止剤、界面活性剤、カール防止剤、レベリング剤等の添加剤を添加することができる。
 前記結合剤としては、例えば、シリコーン樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリエステル樹脂、エポキシ樹脂、ポリケトン樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、ポリメタクリレート樹脂、ポリアクリルアミド樹脂、ポリブタジエン樹脂、ポリイソプレン樹脂、メラミン樹脂、ベンゾグアナミン樹脂、ポリクロロプレン樹脂、ポリアクリロニトリル樹脂、エチルセルロース樹脂、ニトロセルロース樹脂、尿素樹脂、フェノール樹脂、フェノキシ樹脂、ポリビニルブチラール樹脂、ホルマール樹脂、酢酸ビニル樹脂、酢酸ビニル/塩化ビニル共重合樹脂、ポリエステルカーボネート樹脂等が挙げられる。また、熱硬化性樹脂及び/又は光硬化性樹脂も使用できる。いずれにしても、電気絶縁性で通常の状態で皮膜を形成し得る樹脂であり、本発明の効果を損なわない範囲であれば、特に制限はない。
 前記可塑剤としては、例えば、ビフェニル、塩化ビフェニル、o-ターフェニル、ハロゲン化パラフィン、ジメチルナフタレン、ジメチルフタレート、ジブチルフタレート、ジオクチルフタレート、ジエチレングリコールフタレート、トリフェニルフォスフェート、ジイソブチルアジペート、ジメチルセバケート、ジブチルセバケート、ラウリル酸ブチル、メチルフタリールエチルグリコレート、ジメチルグリコールフタレート、メチルナフタレン、ベンゾフェノン、ポリプロピレン、ポリスチレン、フルオロ炭化水素等が挙げられる。
 硬化触媒としては、例えば、メタンスルホン酸、ドデシルベンゼンスルホン酸、ジノニルナフタレンジスルホン酸等が挙げられる。
 流動性付与剤としては、例えば、モダフロー、アクロナール4F等が挙げられる。
 ピンホール制御剤としては、例えば、ベンゾイン、ジメチルフタレート等が挙げられる。
 以上の可塑剤、硬化触媒、流動付与剤、ピンホール制御剤のそれぞれの含有量は、前記電荷輸送物質100質量部に対して、好ましくは5質量部以下、より好ましくは3質量部以下である。
 また、分光感度増感剤としては、増感染料を用いる場合には、例えば、メチルバイオレット、クリスタルバイオレット、ナイトブルー、ビクトリアブルー等のトリフェニルメタン系染料、エリスロシン、ローダミンB、ローダミン3R、アクリジンオレンジ、フラペオシン等のアクリジン染料、メチレンブルー、メチレングリーン等のチアジン染料、カプリブルー、メルドラブルー等のオキサジン染料、シアニン染料、メロシアニン染料、スチリル染料、ピリリュウム塩染料、チオピリリュウム塩染料等が好ましい。
 分光感度増感剤の含有量は、前記電荷輸送物質100質量部に対して、好ましくは5質量部以下、より好ましくは3質量部以下である。
 酸化防止剤としては、ヒンダードフェノール系酸化防止剤、芳香族アミン系酸化防止剤、ヒンダードアミン系酸化防止剤、スルフィド系酸化防止剤、有機リン酸系酸化防止剤等が好ましい。このような酸化防止剤の具体例としては、特開平11-172003号公報の明細書に記載された化学式([化94]~[化101])の化合物等が挙げられる。なお、これら酸化防止剤は、単独で又は2種以上を組み合わせて用いてもよい。
 感光層に酸化防止剤を含有させる場合、その酸化防止剤の含有量は、前記電荷輸送物質100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.1~2質量部である。また、酸化防止剤は、感光層のほか、下引き層、ブロッキング層又は表面保護層に含有されていてもよい。
 感光層には、感度の向上、残留電位の減少、反復使用時の疲労低減等の観点では、電子受容性物質を添加することが好ましい。
 電子受容性物質としては、例えば、無水コハク酸、無水マレイン酸、ジブロモ無水マレイン酸、無水フタル酸、テトラクロロ無水フタル酸、テトラブロモ無水フタル酸、3-ニトロ無水フタル酸、4-ニトロ無水フタル酸、無水ピロメリット酸、無水メリット酸、テトラシアノエチレン、テトラシアノキノジメタン、o-ジニトロベンゼン、m-ジニトロベンゼン、1,3,5-トリニトロベンゼン、p-ニトロベンゾニトリル、ピクリルクロライド、キノンクロルイミド、クロラニル、ブロマニル、ベンゾキノン、2,3-ジクロロベンゾキノン、ジクロロジシアノパラベンゾキノン、ナフトキノン、ジフェノキノン、トロポキノン、アントラキノン、1-クロロアントラキノン、ジニトロアントラキノン、4-ニトロベンゾフェノン、4,4’-ジニトロベンゾフェノン、4-ニトロベンザルマロンジニトリル、α-シアノ-β-(p-シアノフェニル)アクリル酸エチル、9-アントラセニルメチルマロンジニトリル、1-シアノ-(p-ニトロフェニル)-2-(p-クロロフェニル)エチレン、2,7-ジニトロフルオレノン、2,4,7-トリニトロフルオレノン、2,4,5,7-テトラニトロフルオレノン、9-フルオレニリデン-(ジシアノメチレンマロノニトリル)、ポリニトロ-9-フルオレニリデン-(ジシアノメチレンマロノジニトリル)、ピクリン酸、o-ニトロ安息香酸、p-ニトロ安息香酸、3,5-ジニトロ安息香酸、ペンタフルオロ安息香酸、5-ニトロサリチル酸、3,5-ジニトロサリチル酸、フタル酸、メリット酸等の電子親和力の大きい化合物が好ましい。
 電子受容性物質は、感光層中の電荷発生層、電荷輸送層のいずれに含有させてもよい。
 感光層に電子受容性物質を含有させる場合、その電子受容性物質の含有量は、電荷発生物質又は電荷輸送物質100質量部に対して、好ましくは0.01~200質量部、より好ましくは0.1~50質量部である。
 また、感光層には、表面性の改良の観点から、表面改質剤を添加してもよい。
 表面改質剤としては、例えば、四フッ化エチレン樹脂、三フッ化塩化エチレン樹脂、四フッ化エチレン六フッ化プロピレン樹脂、フッ化ビニル樹脂、フッ化ビニリデン樹脂、二フッ化二塩化エチレン樹脂及びそれらの共重合体、フッ素系グラフトポリマー等が挙げられる。
 感光層に表面改質剤を含有させる場合、その表面改質剤の含有量は、結着樹脂100質量部に対して、好ましくは0.1~60質量部、より好ましくは5~40質量部である。0.1質量部以上であれば、表面耐久性、表面エネルギー低下等の表面改質が十分となり、60質量部以下であれば、電子写真特性の低下を招くおそれがない。
 電子写真感光体の感光層は、上述の電荷発生物質、電荷輸送物質、添加剤等を用いて容易に形成することができる。
 電子写真感光体における感光層の厚さは、好ましくは5~100μm、より好ましくは8~50μmである。感光層の厚さが5μm以上であれば、初期電位が高くなりやすく、100μm以下であれば、電子写真特性が良好となる。
 以上のようにして得られる本発明のポリカーボネート樹脂を用いた電子写真感光体は、該ポリカーボネート樹脂を感光層に含有している場合には、感光層作製時に塗工液が白濁することがなく、ゲル化することもない。また、透明性、耐摩耗性(耐久性)に優れると共に、優れた電子写真特性をしており、長期間にわたって優れた電子写真特性を維持することができる。
 なお、電子写真感光体を使用するにあたっては、帯電には、コロナ放電(コロトロン、スコロトロン)、接触帯電(帯電ロール、帯電ブラシ)等が用いられる。また、露光には、ハロゲンランプや蛍光ランプ、レーザー(半導体、He-Ne)、LED、感光体内部露光方式のいずれを採用してもよい。現像には、カスケード現像、二成分磁気ブラシ現像、一成分絶縁トナー現像、一成分導電トナー現像等の乾式現像方式や湿式現像方式が用いられる。転写には、コロナ転写、ローラ転写、ベルト転写等の静電転写法や、圧力転写法、粘着転写法が用いられる。定着には、熱ローラ定着、ラジアントフラッシュ定着、オープン定着、圧力定着等が用いられる。さらに、クリーニング・除電には、ブラシクリーナー、磁気ブラシクリーナー、静電ブラシクリーナー、磁気ローラクリーナー、ブレードクリーナー及びクリーナーを省略したもの等が用いられる。また、トナー用の樹脂としては、スチレン系樹脂、スチレン-アクリル系共重合樹脂、ポリエステル、エポキシ樹脂、環状炭化水素の重合体等が適用できる。トナーの形状は、球形でも不定形でもよく、一定の形状(回転楕円体状、ポテト状等)に制御したものでも適用できる。トナーは、粉砕型、懸濁重合トナー、乳化重合トナー、ケミカル造粒トナー又はエステル伸長トナーのいずれでもよい。
 以下の実施例により、本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 なお、各例で得られたポリカーボネート樹脂の還元粘度、化学構造と共重合組成、及び各例で得られたフィルムの特性は以下に示す方法に従って測定した。
(1)還元粘度[ηSP/C]
 ポリカーボネート樹脂の溶液(溶媒:塩化メチレン、濃度:0.5g/dl)を調製し、20℃で還元粘度[ηSP/C]を測定した。還元粘度の測定には、自動粘度測定装置「VMR-052USPC」(機種名、離合社製)を用い、自動粘度用ウッベローデ改良型粘度計(RM型)により測定した。
(2)化学構造と共重合組成
 プロトン核磁共鳴分光(1H-NMR)装置(日本電子株式会社製、機種名「JNM-AL400」)を用い、ポリカーボネート樹脂の化学構造と共重合組成を決定した。
(3)ヘイズ測定
  日本電飾NDH5000を測定装置として用い、JIS K7136に従い測定した。
(4)水及びヘキサデカンに対する接触角
 接触角測定装置(協和界面科学株式会社製、機種名「DM700」)を用い、水及びヘキサデカンに対する接触角を測定した。なお、水やヘキサデカンに対する接触角が大きいほど、表面の撥水性、撥油性が高いことを示す。
(5)摩擦係数測定
 表面性試験機「HEIDON TYPE14DR」(機種名、新東科学株式会社製)を用い、測定圧子にスチールボール、荷重50gで、静摩擦係数及び動摩擦係数を測定した。
(6)耐摩耗性(耐久性)の評価方法
A.スガ摩耗試験
 得られたフィルムサンプルのキャスト面の耐摩耗性を、スガ摩耗試験機「NUS-ISO-3型」(機種名、スガ試験機社製)を用いて評価した。試験条件は、3μmの研磨紙を用い、荷重500g、2000回で評価した。フィルムサンプルの質量減少量を測定し、耐久性の指標とした。
B.テーバー摩耗試験
 得られたフィルムサンプルのキャスト面の耐摩耗性を、テーバー摩耗試験機「ロータリーアブレージョンテスタTS」(機種名、東洋精機社製)を用いて評価した。試験条件は、摩耗輪CS-10Fを用い、荷重500g、回転500回で評価した。フィルムサンプルの質量減少量を測定し、耐久性の指標とした。
実施例1:ポリカーボネート樹脂(A-1)の合成
Figure JPOXMLDOC01-appb-C000034
(1.ビスフェノールZビスクロロホーメートの合成)
 1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン(ビスフェノールZ)73.0g(0.272mol)を塩化メチレン410mLに懸濁し、そこにトリエチルアミン55.3g(0.546mol)を加えて溶解した。得られた溶液を、ホスゲン54.5g(0.551mol)を塩化メチレン225mLに溶解した液に14~18.5℃で2時間50分かけて滴下した。18.5℃~19℃で1時間撹拌後、10~22℃で塩化メチレン250mLを留去した。残液に純水73mL、濃塩酸4.5mL、ハイドロサルファイト0.47gを加え洗浄した。その後、純水330mLで4回洗浄を繰り返し、分子末端にクロロホーメート基を有するビスフェノールZビスクロロホーメートの塩化メチレン溶液を得た。得られた溶液のクロロホーメート濃度は、1.1mol/L、固形分濃度は0.22kg/L、平均量体数は1.1であった。
 なお、平均量体数(n’)は、次の数式を用いて求めた。
 平均量体数(n’)=1+(Mav-M1)/M2
(上記式において、Mavは、2×1000/CF価[CF価(N/kg)=CF値/濃度、CF値(N)=反応溶液1Lに含まれる下記一般式(a)で表されるビスクロロホーメート化合物中のクロル分子数。濃度(kg/L)=反応溶液1Lを濃縮して得られる固形分の量。]である。M1は、下記一般式(a)において、n=1のときのビスクロロホーメート化合物の分子量である。また、M2は、M1-98.92(98.92は、ビスクロロホーメート化合物同士の重縮合で脱離する2個の塩素原子、1個の酸素原子及び1個の炭素原子の合計原子量である。)である。)
Figure JPOXMLDOC01-appb-C000035
(上記一般式(a)中、Ar1は、ビスフェノール化合物又はビフェノール化合物を構成する水酸基以外の部分である。)
(2.ポリカーボネート樹脂(A-1)の合成)
 反応容器に、メカニカルスターラー、撹拌羽根、邪魔板を装着し、前記合成したビスフェノールZビスクロロホーメート(24mL)と塩化メチレン(36mL)を注入した。これに、末端停止剤として2,2-ジフルオロ-2-(パーフルオロヘキシルオキシ)エタノール0.13gを加え、十分に混合されるように撹拌した。
 この溶液に、別途調製したビフェノールモノマー溶液(2Nの水酸化ナトリウム水溶液10mLを調製し、室温以下に冷却した後、酸化防止剤としてハイドロサルファイトを0.1g及び4,4’-ビフェノール2.6gを添加し、完全に溶解して得た溶液)を約7ml添加し、反応器内の温度が15℃になるまで冷却した後、撹拌しながらトリエチルアミン水溶液(7体積%)を0.2mL添加し、15分間撹拌を継続した。その後、残りのビフェノールモノマー溶液を投入し、さらに1時間撹拌を継続した。
 得られた反応混合物を塩化メチレン0.2L及び水0.1Lで希釈し、洗浄を行った。下層を分離し、さらに水0.1Lで1回、0.03N塩酸0.1Lで1回、水0.1Lで5回の順で洗浄を行った。得られた塩化メチレン溶液を、撹拌しながらおよそ70℃に加熱した水と2-プロパノールとの混合液(容量比3:2)中に滴下投入し、塩化メチレンを蒸発させると共に樹脂固形分を得た。得られた樹脂固形分をろ過、乾燥することにより上記構造のポリカーボネート樹脂(A-1)を製造した。
 このようにして得られたポリカーボネート樹脂(A-1)の還元粘度[ηsp/C]は1.1dl/gであり、NMR分析から上記の繰り返し単位及び組成からなるポリカーボネート樹脂(A-1)であることが確認された。
実施例2:ポリカーボネート樹脂(A-2)の合成
Figure JPOXMLDOC01-appb-C000036
(1.ビスフェノールZビスクロロホーメートオリゴマーの合成)
 1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン(ビスフェノールZ)0.2kgを16質量%の水酸化カリウム水溶液1.2kgに溶解した溶液と、塩化メチレン1.4kgとを混合して撹拌しながら、冷却下、液中にホスゲンガスを1L/分の割合でpHが9以下になるまで吹き込んだ。次いで、この反応液を静置分離し、有機層に重合度が2~6であり、分子末端にクロロホーメート基を有するビスフェノールZビスクロロホーメートオリゴマーの塩化メチレン溶液を得た。得られた溶液のクロロホーメート濃度は0.41mol/L、固形分濃度は0.20kg/Lであった。
(2.ポリカーボネート樹脂(A-2)の合成)
 次に、上記ビスフェノールZビスクロロホーメートオリゴマー溶液349mlを塩化メチレン112mlに溶解し、さらに、末端停止剤である2,2-ジフルオロ-2-(パーフルオロヘキシルオキシ)エタノール3.5gを加えた後、2mol/L濃度の水酸化ナトリウム水溶液38mlを加え、触媒として7質量%濃度のトリエチルアミン水溶液を0.5ml加え、15分間、激しく撹拌した。その後、この溶液に4,4’-ビフェノール8.8gを2mol/L濃度の水酸化ナトリウム水溶液90mlに溶解した液を加えた。次いで、得られた混合液を激しく撹拌しながら、触媒として7質量%濃度のトリエチルアミン水溶液を1.0ml追加した。15℃において撹拌下で1.5時間反応を行った。反応終了後、反応生成物を塩化メチレン1000mlで希釈し、ついで、水200mlで2回、0.01mol/L濃度の塩酸200mlで1回、さらに水200mlで2回の順で洗浄した後、有機層を実施例1と同様に、およそ70℃に加熱した水と2-プロパノールとの混合液(容量比3:2)中に滴下し、上記に示すポリカーボネート樹脂(A-2)を得た。
 このようにして得られたポリカーボネート樹脂(A-2)の還元粘度[ηsp/C]は0.6dl/gであり、NMR分析から上記の繰り返し単位及び組成からなるポリカーボネート樹脂(A-2)であることが確認された。
実施例3:ポリカーボネート樹脂(A-3)の合成
Figure JPOXMLDOC01-appb-C000037
 実施例2で合成した上記ビスフェノールZビスクロロホーメートオリゴマー溶液349mlを塩化メチレン112mlに溶解し、さらに、末端停止剤である2,2-ジフルオロ-2-(パーフルオロヘキシルオキシ)エタノール3.8g及び下記構造の両末端オイゲノール変性ポリジメチルシロキサン(PDMS-1)1.6gを加えた後、2mol/L濃度の水酸化カリウム水溶液18mlを加え、触媒として7質量%濃度のトリエチルアミン水溶液を0.5ml加え、15分間、激しく撹拌した。その後、この溶液に1,1-ビス(3-メチル-4-ヒドロキシ)シクロヘキサン14gを2mol/L濃度の水酸化カリウム水溶液138mlに溶解した液を加えた。次いで、得られた混合液を激しく撹拌しながら、触媒として7質量%濃度のトリエチルアミン水溶液を1.0ml追加した。15℃において撹拌下で1.5時間反応を行った。反応終了後、反応生成物を塩化メチレン1000mlで希釈し、ついで、水200mlで2回、0.01mol/L濃度の塩酸200mlで1回、さらに水200mlで2回の順で洗浄した後、有機層を実施例1と同様に、およそ70℃に加熱した水と2-プロパノールとの混合液(容量比3:2)中に滴下し、上記に示すポリカーボネート樹脂(A-3)を得た。
 このようにして得られたポリカーボネート樹脂(A-3)の還元粘度[ηsp/C]は0.4dl/gであり、NMR分析から上記の繰り返し単位及び組成からなるポリカーボネート樹脂(A-3)であることが確認された。
Figure JPOXMLDOC01-appb-C000038
実施例4:ポリカーボネート樹脂(B-1)の合成
Figure JPOXMLDOC01-appb-C000039
(1.ビスフェノールB-ビスクレゾールフルオレン共ビスクロロホーメートオリゴマーの合成)
 2,2-ビス(4-ヒドロキシフェニル)ブタン(ビスフェノールB)92gとビスクレゾールフルオレン144gを16質量%の水酸化カリウム水溶液1.2kgに溶解した溶液と、塩化メチレン1.4kgとを混合して撹拌しながら、冷却下、液中にホスゲンガスを1L/分の割合でpHが9以下になるまで吹き込んだ。次いで、この反応液を静置分離し、有機層に重合度が2~6であり、分子末端にクロロホーメート基を有するビスフェノールB-ビスクレゾールフルオレン共ビスクロロホーメートオリゴマーの塩化メチレン溶液を得た。得られた溶液のクロロホーメート濃度は0.41mol/L、固形分濃度は0.25kg/Lであった。
(2.ポリカーボネート樹脂(B-1)の合成)
 次に、上記ビスフェノールB-ビスクレゾールフルオレン共ビスクロロホーメートオリゴマー溶液358mlを塩化メチレン189mlに溶解し、さらに、末端停止剤である2,2-ジフルオロ-2-(パーフルオロヘキシルオキシ)エタノール2.5gを加えた後、2mol/L濃度の水酸化カリウム水溶液60mlを加え、触媒として7質量%濃度のトリエチルアミン水溶液を0.8ml加え、15分間、激しく撹拌した。その後、この溶液にビスフェノールB 6.1gとビスクレゾールフルオレン9.7gを2mol/L濃度の水酸化カリウム水溶液140mlに溶解した液を加えた。次いで、得られた混合液を激しく撹拌しながら、触媒として7質量%濃度のトリエチルアミン水溶液を1.0ml追加した。15℃において撹拌下で1.5時間反応を行った。反応終了後、反応生成物を塩化メチレン1000mlで希釈し、ついで、水200mlで2回、0.01mol/L濃度の塩酸200mlで1回、さらに水200mlで2回の順で洗浄した後、有機層を実施例1と同様に、およそ70℃に加熱した水と2-プロパノールとの混合液(容積比3:2)中に滴下し、上記に示すポリカーボネート樹脂(B-1)を得た。
 このようにして得られたポリカーボネート樹脂(B-1)の還元粘度[ηsp/C]は0.6dl/gであり、NMR分析から上記の繰り返し単位及び組成からなるポリカーボネート樹脂(B-1)であることが確認された。
実施例5:ポリカーボネート樹脂(B-2)の合成
Figure JPOXMLDOC01-appb-C000040
(1.ビスフェノールZ-ビスクレゾールフルオレン共ビスクロロホーメートオリゴマーの合成)
 1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン(ビスフェノールZ)120gとビスクレゾールフルオレン115gを16質量%の水酸化カリウム水溶液1.2kgに溶解した溶液と、塩化メチレン1.4kgとを混合して撹拌しながら、冷却下、液中にホスゲンガスを1L/分の割合でpHが9以下になるまで吹き込んだ。次いで、この反応液を静置分離し、有機層に重合度が2~6であり、分子末端にクロロホーメート基を有するビスフェノールZ-ビスクレゾールフルオレン共ビスクロロホーメートオリゴマーの塩化メチレン溶液を得た。得られた溶液のクロロホーメート濃度は0.21mol/L、固形分濃度は0.21kg/Lであった。
(2.ポリカーボネート樹脂(B-2)の合成)
 次に、上記ビスフェノールZ-ビスクレゾールフルオレン共ビスクロロホーメートオリゴマー溶液377mlを塩化メチレン166mlに溶解し、さらに、末端停止剤である2,2-ジフルオロ-2-(パーフルオロヘキシルオキシ)エタノール1.5g及び上記の(PDMS-1)1.2gを加えた後、2mol/L濃度の水酸化カリウム水溶液60mlを加え、触媒として7質量%濃度のトリエチルアミン水溶液を0.8ml加え、15分間、激しく撹拌した。その後、この溶液にビスクレゾールフルオレン11gを2mol/L濃度の水酸化カリウム水溶液140mlに溶解した液を加えた。次いで、得られた混合液を激しく撹拌しながら、触媒として7質量%濃度のトリエチルアミン水溶液を1.0ml追加した。15℃において撹拌下で1.5時間反応を行った。反応終了後、反応生成物を塩化メチレン1000mlで希釈し、ついで、水200mlで2回、0.01mol/L濃度の塩酸200mlで1回、さらに水200mlで2回の順で洗浄した後、有機層を実施例1と同様に、およそ70℃に加熱した水と2-プロパノールとの混合液(容積比3:2)中に滴下し、上記に示すポリカーボネート樹脂(B-2)を得た。
 このようにして得られたポリカーボネート樹脂(B-2)の還元粘度[ηsp/C]は0.7dl/gであり、NMR分析から上記の繰り返し単位及び組成からなるポリカーボネート樹脂(B-2)であることが確認された。
実施例6:ポリカーボネート樹脂(A-4)の合成
Figure JPOXMLDOC01-appb-C000041
 実施例1において、2,2-ジフルオロ-2-(パーフルオロヘキシルオキシ)エタノール0.13gの代わりに、2,2-ジフルオロ-2-(1,1,2,2-テトラフルオロ-2-(1,1,2,3,3,3-ヘキサフルオロ-2-(トリフルオロメチル)プロポキシ)エトキシ)エタノールを用いた以外は実施例1と同様に合成を行い、上記に示すポリカーボネート樹脂(A-4)を得た。
 このようにして得られたポリカーボネート樹脂(A-4)の還元粘度[ηsp/C]は1.1dl/gであり、NMR分析から上記の繰り返し単位及び組成からなるポリカーボネート樹脂(A-4)であることが確認された。
実施例7:ポリカーボネート樹脂(A-5)の合成
Figure JPOXMLDOC01-appb-C000042
 実施例1において、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン(ビスフェノールZ)の代わりに、1,1-ビス(3-メチル-4-ヒドロキシフェニル)シクロヘキサン(ビスフェノールZ)を用いた以外は実施例1と同様に合成を行い、上記に示すポリカーボネート樹脂(A-5)を得た。
 このようにして得られたポリカーボネート樹脂(A-5)の還元粘度[ηsp/C]は1.0dl/gであり、NMR分析から上記の繰り返し単位及び組成からなるポリカーボネート樹脂(A-5)であることが確認された。
実施例8:ポリカーボネート樹脂(A-6)の合成
Figure JPOXMLDOC01-appb-C000043
 実施例2において、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン(ビスフェノールZ)の代わりに、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパンを用い、4,4‘-ビフェノールの代わりに、4,4’-ジヒドロキシジフェニルエーテルを用い、さらに2,2-ジフルオロ-2-(パーフルオロヘキシルオキシ)エタノールの代わりに、2,2-ジフルオロ-2-(1,1,2,2-テトラフルオロ-2-(1,1,2,3,3,3-ヘキサフルオロ-2-(トリフルオロメチル)プロポキシ)エトキシ)エタノールを用いた以外は実施例2と同様に合成を行い、上記に示すポリカーボネート樹脂(A-6)を得た。
 このようにして得られたポリカーボネート樹脂(A-6)の還元粘度[ηsp/C]は0.5dl/gであり、NMR分析から上記の繰り返し単位及び組成からなるポリカーボネート樹脂(A-6)であることが確認された。
実施例9:ポリカーボネート樹脂(A-7)の合成
Figure JPOXMLDOC01-appb-C000044
 実施例2において、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン(ビスフェノールZ)の代わりに、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2-ジフルオロ-2-(パーフルオロヘキシルオキシ)エタノールの代わりに、2,2-ジフルオロ-2-(1,1,2,2-テトラフルオロ-2-(1,1,2,3,3,3-ヘキサフルオロ-2-(トリフルオロメチル)プロポキシ)エトキシ)エタノールを用いた以外は実施例2と同様に合成を行い、上記に示すポリカーボネート樹脂(A-7)を得た。
 このようにして得られたポリカーボネート樹脂(A-7)の還元粘度[ηsp/C]は0.5dl/gであり、NMR分析から上記の繰り返し単位及び組成からなるポリカーボネート樹脂(A-7)であることが確認された。
比較例1:ポリカーボネート樹脂(C-1)の合成
Figure JPOXMLDOC01-appb-C000045
 上記実施例1において、加えた「2,2-ジフルオロ-2-(パーフルオロヘキシルオキシ)エタノール0.13g」を「p-tert-ブチルフェノール0.04g」に変更した以外は、同様にして、上記に示すポリカーボネート樹脂(C-1)を得た。得られたポリカーボネート樹脂(C-1)の還元粘度[ηsp/C]は1.1であった。
比較例2:ポリカーボネート樹脂(C-2)の合成
Figure JPOXMLDOC01-appb-C000046
 上記実施例2において、加えた「2,2-ジフルオロ-2-(パーフルオロヘキシルオキシ)エタノール0.13g」を「4-(パーフルオロオクチル)フェノール4.1g」に変更した以外は、同様にして、上記に示すポリカーボネート樹脂(C-2)を得た。得られたポリカーボネート樹脂(C-2)の還元粘度[ηsp/C]は0.7であった。
比較例3:ポリカーボネート樹脂(C-3)の合成
Figure JPOXMLDOC01-appb-C000047
 上記実施例5において、(PDMS-1)を加えず、「2,2-ジフルオロ-2-(パーフルオロヘキシルオキシ)エタノール1.5g」を「p-tert-ブチルフェノール0.5g」に変更した以外は、同様にして、上記に示すポリカーボネート樹脂(C-3)を得た。得られたポリカーボネート樹脂(C-3)の還元粘度[ηsp/C]は0.7であった。
比較例4
ポリカーボネート樹脂(C-4)
Figure JPOXMLDOC01-appb-C000048
 上記実施例4において、加えた「2,2-ジフルオロ-2-(パーフルオロヘキシルオキシ)エタノール2.5g」を「2,2,3,3,4,4,5,5,6,6,7,7-ドデカフルオロヘプタン-1-オール2.0g」に変更した以外は、同様にして、上記に示すポリカーボネート樹脂(C-4)を得た。得られたポリカーボネート樹脂(C-4)の還元粘度[ηsp/C]は0.7であった。
実施例10
(ポリカーボネートフィルムへのコーティング膜の作製)
 実施例1で合成した樹脂(A-1)をトルエンに溶解した塗工液を調整した。それをポリカーボネートフィルム(住友ベークライト社製、製品名「ポリカーエース」厚み0.3mm)上に、乾燥後の膜厚が20μmとなるようにアプリケーターで塗布し、乾燥し、フィルムサンプルを作製した。そのフィルムサンプルについて、ヘイズ、水及びヘキサデカンに対する接触角、摩擦係数を、上述の測定方法により評価した。その結果を表1に示す。
実施例11
 実施例10において、樹脂(A-1)に代えて、実施例2で合成した樹脂(A-2)を用いた以外は、同様にしてフィルムサンプルを作製し、各評価を行った。結果を表1に示す。
実施例12
 実施例10において、樹脂(A-1)に代えて、実施例3で合成した樹脂(A-3)を用いた以外は、同様にしてフィルムサンプルを作製し、各評価を行った。結果を表1に示す。
実施例13
 実施例10において、樹脂(A-1)に代えて、実施例4で合成した樹脂(B-1)を用いた以外は、同様にしてフィルムサンプルを作製し、各評価を行った。結果を表1に示す。
実施例14
 実施例10において、樹脂(A-1)に代えて、実施例5で合成した樹脂(B-2)を用いた以外は、同様にしてフィルムサンプルを作製し、各評価を行った。結果を表1に示す。
実施例15
 実施例10において、樹脂(A-1)に代えて、実施例6で合成した樹脂(A-4)を用いた以外は、同様にしてフィルムサンプルを作製し、各評価を行った。結果を表1に示す。
実施例16
 実施例10において、樹脂(A-1)に代えて、実施例7で合成した樹脂(A-5)を用いた以外は、同様にしてフィルムサンプルを作製し、各評価を行った。結果を表1に示す。
実施例17
 実施例10において、樹脂(A-1)に代えて、実施例8で合成した樹脂(A-6)を用いた以外は、同様にしてフィルムサンプルを作製し、各評価を行った。結果を表1に示す。
実施例18
 実施例10において、樹脂(A-1)に代えて、実施例9で合成した樹脂(A-7)を用いた以外は、同様にしてフィルムサンプルを作製し、各評価を行った。結果を表1に示す。
比較例5
 実施例10において、樹脂(A-1)に代えて、比較例1で合成した樹脂(C-1)を用いた以外は、同様にしてフィルムサンプルを作製し、各評価を行った。結果を表1に示す。
比較例6
 実施例10において、樹脂(A-1)に代えて、比較例2で合成した樹脂(C-2)を用いた以外は、同様にしてフィルムサンプルを作製し、各評価を行った。結果を表1に示す。
比較例7
 実施例10において、樹脂(A-1)に代えて、比較例3で合成した樹脂(C-3)を用いた以外は、同様にしてフィルムサンプルを作製し、各評価を行った。結果を表1に示す。
比較例8
 実施例10において、樹脂(A-1)に代えて、比較例4で合成した樹脂(C-4)を用いた以外は、同様にしてフィルムサンプルを作製し、各評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000049
 表1の結果によれば、本発明のポリカーボネート樹脂を用いて作製した実施例10~18のフィルムは、優れた透明性を有すると共に、良好な撥水性及び撥油性が発現され、さらに、摩擦係数が低く、表面潤滑性に優れていることが分かる。一方、比較例5~8のフィルムは、上記のいずれかが劣る結果となっている。
実施例19~27、比較例9~12
 上記実施例10~18、及び比較例5~8で作製した各フィルムサンプルについて、上述の方法に基づいて、スガ摩耗試験を行い、試験後の各フィルムサンプルについての摩耗量及び摩耗後の接触角及び摩擦係数を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000050
 表2の結果によれば、本発明のポリカーボネート樹脂を含む塗工液を塗布したコーティング膜は、耐摩耗性にも優れ、摩耗後においても良好な撥水及び撥油性を有し、摩擦係数も低いため、表面潤滑性も良好である。
実施例28
 導電性基体としてアルミニウム金属を蒸着したポリエチレンテレフタレート樹脂フィルム(東レ製メタルミー)を用い、その表面に、電荷発生層と電荷輸送層を順次積層して積層型感光層を形成した電子写真感光体を製造した。電荷発生物質としてオキソチタニウムフタロシアニン0.5質量部を用い、結着樹脂としてブチラール樹脂0.5質量部を用いた。これらを溶媒の塩化メチレン19質量部に加え、ボールミルにて分散し、この分散液をバーコーターにより、前記導電性基体フィルム表面に塗工し、乾燥させることにより、膜厚約0.5μmの電荷発生層を形成した。
 次に、電荷輸送物質として下記式で表される芳香族アミン化合物(CTM-1)0.5g並びに結着樹脂として実施例1で得られたポリカーボネート樹脂(A-1)0.5gを、テトラヒドロフラン10mlに分散して塗工液を調製した。こうして得られた塗工液を、アプリケーターにより前記電荷発生層上に塗布し、乾燥させることにより、膜厚約20μmの電荷輸送層を形成し、電子写真感光体を作製した。
 得られた電子写真感光体について、上述のとおり耐摩耗性の評価を行った。その結果を表2に示す。
Figure JPOXMLDOC01-appb-C000051
比較例13
 実施例28において、樹脂(A-1)に代えて、比較例1で得られた樹脂(C-1)を用いた以外は、同様にして電子写真感光体を作製し、耐摩耗性の評価を行った。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000052
 表3の結果によれば、本発明のポリカーボネート樹脂を用いて作製した実施例28の電子写真感光体は、比較例13の感光体に比べ、摩耗量が小さく、耐摩擦性に優れていることが分かる。また、撥水性や表面潤滑性も良好で、摩耗後においても、優れた撥水性及び表面潤滑性を共に保持していることがわかる。
 本発明の特定構造を有するポリカーボネート樹脂は、種々の非ハロゲン系有機溶剤に溶解して均一溶液を形成することができ、この溶液を塗工液として用いて形成した成形体は、透明性に優れ、良好な撥水性や撥油性を発現し、さらに、摩擦係数が低くなり表面潤滑性に優れ、また、耐摩耗性にも優れた成形体となり得る。
 そのため、本発明のポリカーボネート樹脂は、電子写真感光体や帯電ロールや現像ロール、あるいはそれらのベルト等表面のコーティング材料に好適に使用することができる。また、ポリカーボネート製、ポリエステル製、アクリル製等の光学フィルム、あるいはガラス等の表面のコーティングにも適用可能である。

Claims (15)

  1.  下記一般式(1)で表されるポリカーボネート樹脂。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、Rfは、炭素数が5以上で、且つ、フッ素原子数が11以上であるパーフルオロアルキル基、あるいは下記一般式(2)で表されるパーフルオロアルキルオキシ基を示す。Wは、下記一般式(3)で表される構造単位又はナフタレン環を含有する2価の基を示す。]
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、Rf2は炭素数1~5の直鎖もしくは分岐したパーフルオロアルキル基である。n6は1~3の整数である。]
    Figure JPOXMLDOC01-appb-C000003
    [式(3)中、p、qは、カッコ内の構造単位の組成比(モル比)を示す。R1~R4は、それぞれ独立に、ハロゲン原子、置換基を有していてもよい炭素数1~6のアルキル基、置換基を有していてもよい炭素数1~6のアルコキシ基、置換基を有していてもよい炭素数1~6のフルオロアルキル基、置換基を有していてもよい炭素数1~6のフルオロアルコシキ基、又は置換基を有していてもよいフェニル基を示す。Xは、単結合、置換基を有していてもよい炭素数1~18のアルキレン基、置換基を有していてもよい炭素数2~18のアルキリデン基、置換基を有していてもよい炭素数5~15のシクロアルキレン基、置換基を有していてもよい炭素数5~15のシクロアルキリデン基、-S-、-SO-、-SO2-、-O-、-CO-、又は下記式(4)もしくは下記式(5)で表される二価の基を示す。n1、n2は、それぞれ独立に、0~4の整数である。Yは、単結合、炭素数1~18のアルキレン基、炭素数2~18のアルキリデン基、炭素数5~15のシクロアルキレン基、炭素数5~15のシクロアルキリデン基、-S-、-SO-、-SO2-、-O-、-CO-、又は下記式(4)もしくは下記式(5)で表される二価の基を示す。n3、n4は、それぞれ独立に、0~4の整数であるが、n3及びn4が共に0で、且つ、Yがイソプロピリデン基であることはない。]
    Figure JPOXMLDOC01-appb-C000004
    [式(5)中のベンゼン環は、炭素数1~22のアルキル基又は置換基を有していてもよいフェニル基で置換されていてもよい。]
  2.  前記一般式(1)中のWが、さらに有機シロキサン含有基を有する、請求項1に記載のポリカーボネート樹脂。
  3.  前記有機シロキサン含有基が、下記一般式(6)で表される構造を有する二価の基である、請求項2に記載のポリカーボネート樹脂。
    Figure JPOXMLDOC01-appb-C000005
    [式(6)中、R21及びR22は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~12の置換もしくは無置換のアルキル基、炭素数1~12の置換もしくは無置換のアルコキシ基、又は炭素数6~12の置換もしくは無置換のアリール基を示す。R23は、それぞれ独立に、炭素数1~12の置換もしくは無置換のアルキル基、又は炭素数6~12の置換もしくは無置換のアリール基を示す。n21は、それぞれ独立に、2~4の整数であり、n22は1~600の整数である。]
  4.  前記一般式(1)で表されるポリカーボネート樹脂が、下記一般式(7)~(13)で表される構造単位のうち少なくとも1つを含む、請求項1~3のいずれかに記載のポリカーボネート樹脂。
    Figure JPOXMLDOC01-appb-C000006
    [式中、R5~R7は、それぞれ独立に、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1~6のアルキル基、置換基を有していてもよい炭素数1~6のアルコキシ基、置換基を有していてもよい炭素数1~6のフルオロアルキル基、置換基を有していてもよい炭素数1~6のフルオロアルコシキ基、又は置換基を有していてもよいフェニル基を示す。]
  5.  下記一般式(14)、(15)、(15a)で表されるフッ素含有アルコールのいずれかを末端停止剤として用いて製造された、請求項1~4のいずれかに記載のポリカーボネート樹脂。
    Figure JPOXMLDOC01-appb-C000007
    [式中、n31は5~8の整数、n32は0~2の整数、n33は1~3の整数、n34は1~3の整数である。]
  6.  下記一般式(16)で表されるビスクロロホーメートオリゴマーを、原料の一つとして用いて製造された、請求項1~5のいずれかに記載のポリカーボネート樹脂。
    Figure JPOXMLDOC01-appb-C000008
    [式中、R1、R2、X、n1、n2は、前記一般式(3)と同じであり、n8はビスクロロホーメートオリゴマーの平均量体数を表し、その数値は1.0~1.99である。]
  7.  請求項1~6のいずれかに記載のポリカーボネート樹脂及び非ハロゲン系溶剤を含有する、ポリカーボネート樹脂含有塗工液。
  8.  前記非ハロゲン系溶剤が、芳香族系溶剤、エーテル系溶剤、ケトン系溶剤、アミド系溶剤、及びエステル系溶剤の中から選ばれる少なくとも1種である、請求項7に記載のポリカーボネート樹脂含有塗工液。
  9.  請求項7又は8に記載のポリカーボネート樹脂含有塗工液を用いて成形してなる、成形体。
  10.  前記成形体の表面の水の接触角が95度以上で、且つ、ヘキサデカンの接触角が20度以上である、請求項9に記載の成形体。
  11.  少なくとも請求項9又は10に記載の成形体を含む、電子写真感光体。
  12.  少なくとも請求項9又は10に記載の成形体を含む、ドラム。
  13.  少なくとも請求項9又は10に記載の成形体を含む、ロール。
  14.  請求項7又は8に記載のポリカーボネート樹脂含有塗工液を流延法により成形してなる、キャストフィルム。
  15.  請求項7又は8に記載のポリカーボネート樹脂含有塗工液を塗布法により成形してなる、コーティングフィルム。
PCT/JP2012/070852 2011-08-19 2012-08-16 ポリカーボネート樹脂、それを含有する塗工液、及びそれを用いて成形してなる成形体 WO2013027654A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280040444.7A CN103732650B (zh) 2011-08-19 2012-08-16 聚碳酸酯树脂、含有其的涂布液、以及使用其成型而成的成型体
JP2013529989A JP5990522B2 (ja) 2011-08-19 2012-08-16 ポリカーボネート樹脂、それを含有する塗工液、及びそれを用いて成形してなる成形体
EP12825093.3A EP2746314B1 (en) 2011-08-19 2012-08-16 Polycarbonate resin and coating solution containing same, and molded article produced by molding said coating solution
US14/239,645 US8927680B2 (en) 2011-08-19 2012-08-16 Polycarbonate resin and coating solution containing same, and molded article produced by molding said coating solution
KR1020147004215A KR101870487B1 (ko) 2011-08-19 2012-08-16 폴리카보네이트 수지, 그것을 함유하는 도공액, 및 그것을 이용하여 성형하여 이루어지는 성형체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-179880 2011-08-19
JP2011179880 2011-08-19

Publications (1)

Publication Number Publication Date
WO2013027654A1 true WO2013027654A1 (ja) 2013-02-28

Family

ID=47746398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070852 WO2013027654A1 (ja) 2011-08-19 2012-08-16 ポリカーボネート樹脂、それを含有する塗工液、及びそれを用いて成形してなる成形体

Country Status (7)

Country Link
US (1) US8927680B2 (ja)
EP (1) EP2746314B1 (ja)
JP (1) JP5990522B2 (ja)
KR (1) KR101870487B1 (ja)
CN (1) CN103732650B (ja)
TW (1) TWI532761B (ja)
WO (1) WO2013027654A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016224108A (ja) * 2015-05-27 2016-12-28 京セラドキュメントソリューションズ株式会社 正帯電単層型電子写真感光体、プロセスカートリッジ、及び画像形成装置
WO2018150693A1 (ja) * 2017-02-20 2018-08-23 富士電機株式会社 電子写真感光体、その製造方法およびそれを用いた電子写真装置
WO2018230100A1 (ja) * 2017-06-12 2018-12-20 京セラドキュメントソリューションズ株式会社 電子写真感光体の製造方法
JP2019002950A (ja) * 2017-06-12 2019-01-10 京セラドキュメントソリューションズ株式会社 電子写真感光体、プロセスカートリッジ及び画像形成装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6450189B2 (ja) * 2012-06-19 2019-01-09 出光興産株式会社 ポリカーボネート共重合体、それを用いた塗工液、および電子写真感光体
CN107406666B (zh) * 2015-03-02 2020-02-21 国立大学法人东京农工大学 热分解性粘结剂
CN108885415B (zh) * 2016-03-29 2021-11-09 三菱化学株式会社 电子照相感光体、电子照相感光体盒、成像装置和氟系树脂用分散剂
WO2017170079A1 (ja) 2016-04-01 2017-10-05 国立大学法人東京農工大学 熱分解性バインダー
CN105860048B (zh) * 2016-04-27 2019-05-17 江苏理工学院 一种双酚z-双酚af共聚聚碳酸酯粘结树脂及其制备方法和应用
CN108995540A (zh) * 2018-06-19 2018-12-14 南通理工学院 一种具有风力发电功能的电动三轮车
CN112391088A (zh) * 2020-11-19 2021-02-23 湖南哲龙科技有限公司 一种提高感光鼓涂层耐磨性的涂料配方
CN112430430A (zh) * 2020-11-23 2021-03-02 湖南哲龙科技有限公司 一种提高感光鼓外涂层耐磨性的配方

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323263A (ja) 1990-11-15 1992-11-12 Bayer Ag フルオロアルキルフエノキシ末端ポリカーボネート−シロキサン共重合体
JPH08225639A (ja) 1994-12-20 1996-09-03 Idemitsu Kosan Co Ltd ポリカーボネート系の重合体、それを用いた樹脂塗工液及びそれを用いた電子写真感光体
JPH10130383A (ja) 1996-10-28 1998-05-19 Mitsubishi Gas Chem Co Inc 末端変性芳香族ポリカーボネート及びその製造法
JPH11172003A (ja) 1997-12-12 1999-06-29 Idemitsu Kosan Co Ltd 架橋ポリカーボネート樹脂の製造法および架橋ポリカーボネート樹脂ならびに電子写真感光体
JP2005126727A (ja) 1994-12-20 2005-05-19 Idemitsu Kosan Co Ltd ポリカーボネート系の重合体、それを用いた樹脂塗工液及びそれを用いた電子写真感光体
JP2007277524A (ja) 2006-03-17 2007-10-25 Idemitsu Kosan Co Ltd コーティング剤、同組成物を塗布した成型体および光学部材
JP2008525581A (ja) 2004-12-22 2008-07-17 ゼネラル・エレクトリック・カンパニイ フルオロアルキレン末端基を有するポリカーボネート
WO2012073970A1 (ja) * 2010-11-30 2012-06-07 出光興産株式会社 ポリカーボネート樹脂塗布液及びその用途

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4772526A (en) * 1987-10-13 1988-09-20 Eastman Kodak Company Electrophotographic element
JP3155843B2 (ja) * 1992-03-03 2001-04-16 出光興産株式会社 ポリカーボネート重合体とその製造法及びこれを用いた電子写真感光体
WO1996019522A1 (fr) * 1994-12-20 1996-06-27 Idemitsu Kosan Co., Ltd. Polymere de polycarbonate et son procede de fabrication, ainsi que preparation d'un fluide pour enduction de resine et d'un photorecepteur electrophotographique a partir dudit polymere
JP5680887B2 (ja) * 2009-06-26 2015-03-04 出光興産株式会社 ポリカーボネート共重合体、それを用いた塗工液、及び電子写真感光体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323263A (ja) 1990-11-15 1992-11-12 Bayer Ag フルオロアルキルフエノキシ末端ポリカーボネート−シロキサン共重合体
JPH08225639A (ja) 1994-12-20 1996-09-03 Idemitsu Kosan Co Ltd ポリカーボネート系の重合体、それを用いた樹脂塗工液及びそれを用いた電子写真感光体
JP2005126727A (ja) 1994-12-20 2005-05-19 Idemitsu Kosan Co Ltd ポリカーボネート系の重合体、それを用いた樹脂塗工液及びそれを用いた電子写真感光体
JPH10130383A (ja) 1996-10-28 1998-05-19 Mitsubishi Gas Chem Co Inc 末端変性芳香族ポリカーボネート及びその製造法
JPH11172003A (ja) 1997-12-12 1999-06-29 Idemitsu Kosan Co Ltd 架橋ポリカーボネート樹脂の製造法および架橋ポリカーボネート樹脂ならびに電子写真感光体
JP2008525581A (ja) 2004-12-22 2008-07-17 ゼネラル・エレクトリック・カンパニイ フルオロアルキレン末端基を有するポリカーボネート
JP2007277524A (ja) 2006-03-17 2007-10-25 Idemitsu Kosan Co Ltd コーティング剤、同組成物を塗布した成型体および光学部材
WO2012073970A1 (ja) * 2010-11-30 2012-06-07 出光興産株式会社 ポリカーボネート樹脂塗布液及びその用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2746314A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016224108A (ja) * 2015-05-27 2016-12-28 京セラドキュメントソリューションズ株式会社 正帯電単層型電子写真感光体、プロセスカートリッジ、及び画像形成装置
WO2018150693A1 (ja) * 2017-02-20 2018-08-23 富士電機株式会社 電子写真感光体、その製造方法およびそれを用いた電子写真装置
JPWO2018150693A1 (ja) * 2017-02-20 2019-06-27 富士電機株式会社 電子写真感光体、その製造方法およびそれを用いた電子写真装置
US10732527B2 (en) 2017-02-20 2020-08-04 Fuji Electric Co., Ltd. Electrophotographic photoreceptor, method for manufacturing same, and electrophotographic apparatus using same
WO2018230100A1 (ja) * 2017-06-12 2018-12-20 京セラドキュメントソリューションズ株式会社 電子写真感光体の製造方法
JP2019002950A (ja) * 2017-06-12 2019-01-10 京セラドキュメントソリューションズ株式会社 電子写真感光体、プロセスカートリッジ及び画像形成装置
JPWO2018230100A1 (ja) * 2017-06-12 2020-03-19 京セラドキュメントソリューションズ株式会社 電子写真感光体の製造方法

Also Published As

Publication number Publication date
US8927680B2 (en) 2015-01-06
TW201311761A (zh) 2013-03-16
TWI532761B (zh) 2016-05-11
JPWO2013027654A1 (ja) 2015-03-19
US20140206814A1 (en) 2014-07-24
CN103732650B (zh) 2016-06-08
CN103732650A (zh) 2014-04-16
EP2746314A1 (en) 2014-06-25
EP2746314A4 (en) 2015-04-22
KR101870487B1 (ko) 2018-06-22
JP5990522B2 (ja) 2016-09-14
EP2746314B1 (en) 2017-07-05
KR20140051313A (ko) 2014-04-30

Similar Documents

Publication Publication Date Title
JP5990522B2 (ja) ポリカーボネート樹脂、それを含有する塗工液、及びそれを用いて成形してなる成形体
JP5711902B2 (ja) ポリカーボネート共重合体、それを用いた塗工液、及び電子写真感光体
JP6093342B2 (ja) ポリカーボネート共重合体
WO2010150885A1 (ja) ポリカーボネート共重合体、それを用いた塗工液、及び電子写真感光体
EP2570447B1 (en) Polycarbonate copolymer, method for producing the same, molded body, optical material, and electrophotographic photosensitive body
JP5802742B2 (ja) 電子写真感光体及び樹脂組成物
JP5680887B2 (ja) ポリカーボネート共重合体、それを用いた塗工液、及び電子写真感光体
JP2017214584A (ja) ポリカーボネート共重合体の製造方法
JP4093917B2 (ja) 電子写真感光体
JP5349709B1 (ja) ポリカーボネート共重合体、それを用いた塗工液、及び電子写真感光体
JP5014390B2 (ja) ポリカーボネート共重合体、成形体、光学材料および電子写真感光体
TWI702243B (zh) 聚碳酸酯共聚物,塗佈液,電子照相感光體及電氣機器
JP5977762B2 (ja) ポリカーボネート共重合体、並びにそれを用いた塗工液及び電子写真感光体
JP5680886B2 (ja) ポリカーボネート共重合体、それを用いた塗工液、及び電子写真感光体
WO2021201225A1 (ja) ポリカーボネート共重合体、塗工液、電子写真感光体、ポリカーボネート共重合体の製造方法、および電気機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12825093

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013529989

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012825093

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147004215

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14239645

Country of ref document: US