WO2013024858A1 - 磁気探傷方法及び磁気探傷装置 - Google Patents

磁気探傷方法及び磁気探傷装置 Download PDF

Info

Publication number
WO2013024858A1
WO2013024858A1 PCT/JP2012/070723 JP2012070723W WO2013024858A1 WO 2013024858 A1 WO2013024858 A1 WO 2013024858A1 JP 2012070723 W JP2012070723 W JP 2012070723W WO 2013024858 A1 WO2013024858 A1 WO 2013024858A1
Authority
WO
WIPO (PCT)
Prior art keywords
flaw
magnetic field
flaw detection
alternating current
magnetic
Prior art date
Application number
PCT/JP2012/070723
Other languages
English (en)
French (fr)
Inventor
俊之 鈴間
喜之 中尾
誠 阪本
祥之 太田
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2012537618A priority Critical patent/JP5201495B2/ja
Priority to US14/238,958 priority patent/US9291599B2/en
Priority to BR112013031968-2A priority patent/BR112013031968B1/pt
Priority to EP12823776.5A priority patent/EP2746761B8/en
Priority to CN201280040270.4A priority patent/CN103733060B/zh
Priority to CA2837283A priority patent/CA2837283C/en
Publication of WO2013024858A1 publication Critical patent/WO2013024858A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9013Arrangements for scanning
    • G01N27/902Arrangements for scanning by moving the sensors

Definitions

  • the present invention when a flaw is formed by applying a magnetic field to a flaw detection material made of a magnetic material and there is a flaw that blocks the magnetic flux generated in the flaw detection material, the magnetic flux leaks to the surface space at the flaw-existing portion.
  • the present invention relates to a magnetic flaw detection method and a magnetic flaw detection apparatus that utilize the above.
  • the present invention solves the problem that the magnetizing means is enlarged when only the DC magnetic field is applied, and the problem that the flaw detection material generates heat when only the AC magnetic field is applied.
  • the present invention relates to a magnetic flaw detection method and a magnetic flaw detection apparatus that can detect flaws with high accuracy by magnetizing a flaw detection material.
  • a magnetic flaw detection method (leakage magnetic flux flaw detection method) is known as a method for nondestructively detecting a flaw existing in a flaw detection material such as a steel plate or a steel pipe.
  • a flaw detection method when a flaw is formed by applying a magnetic field to a flaw detection material made of a magnetic material, if there is a flaw that blocks the magnetic flux generated in the flaw detection material, the magnetic flux is transferred to the surface space at the part where the flaw is present.
  • This is a flaw detection method that utilizes the leakage to the surface.
  • a direct current or alternating current electromagnet or coil is used as a magnetizing means for applying a magnetic field to a material to be detected, and a Hall element is used as a detecting means for detecting leakage magnetic flux from a flaw.
  • a search coil or the like is used.
  • Patent Literatures 1 and 2 have been proposed as devices for efficiently magnetically saturating a material to be detected using a magnetizing means such as an electromagnet or a coil.
  • Patent Document 1 provides a magnetic pole and a flaw detection material by providing a brush-like yoke or a movable auxiliary yoke between a magnetic pole (yoke open end) and a flaw detection material (test material). The generation of leakage magnetic flux due to the gap is suppressed, and the magnetization efficiency is improved.
  • the magnetic properties of the ferromagnetic material constituting the material to be inspected such as a steel plate and a steel pipe generally have non-linear properties represented by a hysteresis curve. For this reason, magnetizing until the magnetic flux density in the flaw detection material reaches about 1.4 T can be realized by applying a relatively small magnetic field.
  • an extremely large magnetic field acts on the material to be inspected. It is necessary to let Further, in DC magnetic saturation, the magnetic flux is uniformly distributed in the thickness direction of the flaw detection material. For this reason, in order to magnetically saturate the material to be inspected using a DC electromagnet, a large magnetizing means corresponding to the size (thickness) of the material to be inspected is required.
  • Patent Document 2 In order to solve the above problem, as described in Patent Document 2, it is only necessary to use a magnetizing means using an AC electromagnet and magnetize only the surface layer of the flaw detection material by utilizing the skin effect. According to the apparatus described in Patent Document 2, the size of the magnetizing means can be reduced. However, as described in Patent Document 2, when an inspection magnetic field is magnetized until an AC magnetic field is applied to reach a magnetic saturation state, since the heat generated by the eddy current generated in the inspection target material is large, leakage magnetic flux is detected. There arises a problem that adverse effects such as a decrease in sensitivity and a decrease in life of the detection means occur.
  • the current flowing in the flaw detection material is accompanied by resistance heat generation and the flaw detection material is in a so-called induction heating state, it causes temperature fluctuations in the leakage magnetic flux detection means and its mounting jig provided in the periphery.
  • sensors such as a Hall element, a search coil, and a flux gate are used as leakage flux detection means, and all of these affect the detection sensitivity and life of leakage flux due to temperature changes.
  • An object of the present invention is to provide a magnetic flaw detection method and a magnetic flaw detection apparatus that can detect flaws with high accuracy by magnetizing a flaw detection material until the flaw detection material reaches a magnetic saturation state while solving the problem of heat generation.
  • the purpose of applying a DC magnetic field is not to generate a magnetic flux leaking from a flaw, but to increase the magnetic flux density of the entire flaw detection material including the vicinity of the flaw to a substantially uniform magnetic flux density to a certain extent. It is.
  • the present inventors have determined that the direction of the direct-current magnetic field to be applied is substantially the direction in which the path of the magnetic flux generated in the flaw detection material by the direct-current magnetic field is hardly obstructed by the flaw (that is, the direction in which the flaw extends). It was found that it was necessary to set a parallel direction).
  • the purpose of applying an alternating magnetic field is to generate a leakage magnetic flux from a flaw.
  • the present inventors have determined that the direction of the alternating magnetic field to be applied is substantially the direction in which the path of the magnetic flux generated in the flaw detection material by the alternating magnetic field is most likely to be hindered by the flaw (that is, the direction in which the flaw extends). It was found that the vertical direction is necessary.
  • a DC bias magnetic field is applied substantially in parallel to the direction in which the detection target flaw extends, and an AC magnetic field is applied substantially perpendicularly to the direction in which the detection target flaw extends.
  • an AC magnetic field is applied substantially perpendicularly to the direction in which the detection target flaw extends.
  • a flaw to be detected is detected based on the leakage magnetic flux generated thereby.
  • the magnetic flux density in the flaw detection material is likely to be relatively large by applying a DC bias magnetic field substantially parallel to the direction in which the detection target flaw (detection target flaw) extends.
  • a DC bias magnetic field substantially parallel to the direction in which the detection target flaw (detection target flaw) extends.
  • the detection target flaw detection target flaw
  • by applying an AC magnetic field in addition to the bias magnetic field it is possible to relatively easily bring the material to be flawed into a magnetic saturation state, and the direction of the AC magnetic field to be applied is not subject to detection. Therefore, the leakage magnetic flux from the detection target flaw can be efficiently generated, and as a result, the detection target flaw can be detected with high accuracy.
  • the flaw detection material is magnetized by applying a combination of a DC bias magnetic field and an AC magnetic field, so that the flaw detection material is made magnetic compared to the case where only the DC magnetic field is applied.
  • the magnetizing means for saturation does not increase in size.
  • the flaw detection material is magnetized by applying a combination of a DC bias magnetic field and an AC magnetic field, so that the flaw detection material is made magnetic compared to the case where only the AC magnetic field is applied and magnetized.
  • the flaw detection material does not generate excessive heat even when saturated.
  • the first invention of the present application described above is effective when the direction in which the detection target flaw extends is constant and the direction can be assumed in advance.
  • a direction in which a DC bias magnetic field is applied (a direction substantially parallel to the flaw extending direction).
  • the direction in which the alternating magnetic field is applied (direction substantially perpendicular to the direction in which the flaw extends) cannot be made constant.
  • the flaw detection material can be magnetized to detect flaws with high accuracy.
  • a rotating bias magnetic field excited by using an alternating current as an exciting current is applied to the flaw detection material, and the first alternating current having the same frequency as the alternating current and the first alternating current are applied.
  • a rotating bias magnetic field excited by using an alternating current as an exciting current is applied to the flaw detection material.
  • an alternating current is used as the exciting current for exciting the rotational bias magnetic field
  • the frequency is set to a low frequency (for example, about 10 Hz to 2 kHz)
  • the direct current bias magnetic field in the first invention of the present application described above is only in that direction. The behavior is the same as changing from moment to moment. For this reason, even with the rotational bias magnetic field of the second invention of the present application, flaws (flaws extending substantially parallel to the direction of the moment when the rotational bias magnetic field is present) are within a range where the magnetic flux density in the flaw detection material tends to be relatively large.
  • a rotational alternating magnetic field whose phase is shifted by 90 ° from the rotational bias magnetic field (that is, the direction of the rotational bias magnetic field at a certain moment and the direction of the rotational alternating magnetic field are orthogonal to each other. ).
  • This rotating AC magnetic field is a first AC current having the same frequency as the AC current that is the exciting current of the rotating bias magnetic field (if the frequency of the AC current that is the exciting current of the rotating bias magnetic field is low, the frequency of the first AC current is And a superposed alternating current superposed with a second alternating current having a frequency higher than that of the first alternating current (for example, about 1 kHz to 500 kHz) is used as the exciting current. Therefore, the alternating magnetic field generated by the high-frequency second alternating current predominantly acts on the flaw detection material, while the low-frequency first alternating current rotates the direction of the generated alternating magnetic field in the flaw detection material. To work for.
  • the rotating AC magnetic field in the second invention of the present application shows the same behavior as the AC magnetic field in the first invention of the present application that changes only its direction from time to time.
  • a rotating AC magnetic field whose phase is shifted by 90 ° from the rotating bias magnetic field is applied. Since the direction of the AC magnetic field is substantially perpendicular to the direction in which the above flaw (a flaw extending substantially in parallel with the instantaneous direction of the rotational bias magnetic field) extends, the leakage magnetic flux from the flaw can be efficiently generated. As a result, the above flaw can be detected with high accuracy.
  • the bias magnetic field is rotated and the AC magnetic field is also rotated by shifting the phase of the bias magnetic field by 90 °, it is possible to detect flaws extending in various directions existing in the flaw detection material. Further, according to the present invention, the advantage that the magnetizing means for magnetically saturating the flaw detection material does not increase in size and the flaw detection material does not generate excessive heat even if the flaw detection material is magnetically saturated can be obtained. Is the same as in the first invention.
  • the frequency of the first alternating current may be set in accordance with the relative moving speed of the magnetizing means that applies the rotating bias magnetic field and the rotating AC magnetic field with respect to the flaw detection material. Specifically, it is necessary to set the frequency of the first alternating current so that the rotational bias magnetic field and the rotational alternating magnetic field rotate at least once while the magnetizing means passes over the scratch. If the relative moving speed of the magnetizing means is increased, the frequency of the first alternating current needs to be set high, and accordingly, the frequency of the second alternating current that is a high frequency needs to be set high.
  • the ratio between the frequency of the first alternating current and the frequency of the second alternating current is preferably set to a ratio (for example, 1:10 or more) that allows synchronous detection using the second alternating current as a reference signal.
  • the present invention provides a first magnetizing means for applying a DC bias magnetic field substantially parallel to a direction in which a detection target flaw extends to a flaw detection material, and a detection target for the flaw detection material.
  • Second magnetizing means for applying an alternating magnetic field substantially perpendicularly to the direction in which the flaw extends, and detecting means for detecting leakage magnetic flux generated by magnetizing the flaw detection material by the first magnetizing means and the second magnetizing means. It is also provided as a magnetic flaw detector characterized by comprising.
  • the present invention provides a first rotating magnetization means for applying a rotational bias magnetic field excited by using an alternating current as an exciting current to the flaw detection material, and a flaw detection material.
  • the excitation current is excited by using, as an excitation current, a superimposed alternating current obtained by superimposing a first alternating current having the same frequency as the alternating current and a second alternating current having a frequency higher than that of the first alternating current.
  • the object while solving the problem that the magnetizing means is enlarged when only the DC magnetic field is applied, and the problem that the flaw detection material generates heat when only the AC magnetic field is applied, the object is covered until the magnetic saturation state is reached. It is possible to detect flaws with high accuracy by magnetizing the flaw detection material.
  • FIG. 1 is a diagram showing a schematic configuration of the magnetic flaw detector according to the first embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing the state of magnetic flux in the flaw detection material when the direction of the DC magnetic field applied to the flaw detection material is substantially perpendicular to the direction in which the flaw extends.
  • FIG. 3 is a diagram schematically showing the state of magnetic flux in the flaw detection material when the direction of the DC magnetic field applied to the flaw detection material is substantially parallel to the direction in which the flaw extends.
  • FIG. 4 is a diagram showing test results of Example 1 and Comparative Examples 1 and 2 of the present invention.
  • FIG. 5 is a diagram showing a schematic configuration of a magnetic flaw detector according to the second embodiment of the present invention.
  • FIG. 6 is a diagram schematically showing the relationship of the magnetic field generated by the magnetic flaw detector shown in FIG.
  • FIG. 7 is a diagram showing test results of Example 2 of the present invention.
  • the flaw detection material is a pipe, and a defect extending in the axial direction of the pipe (hereinafter referred to as an axial flaw) is a detection target.
  • FIG. 1 is a diagram showing a schematic configuration of the magnetic flaw detector according to the first embodiment of the present invention.
  • FIG. 1A shows an overall configuration diagram.
  • FIG. 1B shows a schematic external view of the flaw detection probe shown in FIG.
  • the magnetic flaw detection apparatus 100 according to the present embodiment extends in the direction in which an axial flaw F that is a detection target flaw extends in the pipe P (the axial direction of the pipe P (the X direction shown in FIG. 1)).
  • First magnetizing means 1 for applying a DC bias magnetic field substantially parallel to the first magnetizing means, second magnetizing means 2 for applying an AC magnetic field substantially perpendicular to the direction in which the axial flaw F extends to the tube P, and first magnetizing means.
  • a detecting means 3 for detecting a leakage magnetic flux generated by magnetizing the tube P with the first and second magnetizing means 2.
  • the magnetic flaw detector 100 according to the present embodiment supplies the second magnetizing means 2 with an alternating current or performs signal processing on the flaw detection signal output from the detecting means 3 to detect the axial flaw F.
  • Control means 4 is provided.
  • 1st magnetization means 1 consists of a pair of penetration coils 1a and 1b which penetrate tube P.
  • a direct current is supplied to each of the pair of through coils 1a and 1b, thereby generating a direct current magnetic field (bias magnetic field) A in a direction substantially parallel to the axial direction (X direction) of the tube P. That is, the direction of the bias magnetic field A is substantially parallel to the direction in which the axial flaw F extends.
  • the second magnetizing means 2 is an air-core type tangential coil. This tangential coil is obtained by winding a conducting wire 22 around the core 21 made of a non-magnetic material in the axial direction (X direction) of the tube P. By supplying an alternating current from the arithmetic control means 4 to the conducting wire 22, an alternating magnetic field B is generated in a direction (Y direction shown in FIG. 1) substantially perpendicular to the axial direction (X direction) of the tube P. If the second magnetizing means 2 is arranged on the outer surface of the tube P, the generated AC magnetic field B travels along the circumferential direction of the tube P. That is, the direction of the alternating magnetic field B is substantially perpendicular to the direction in which the axial flaw F extends.
  • the detection means 3 is a planar coil that detects leakage magnetic flux in the Z direction (see FIG. 1) that passes through the center of the second magnetization means (tangential coil) 2 and is orthogonal to the X direction and the Y direction.
  • the detection means 3 is attached to the lower surface of the core 21 provided in the second magnetization means 2.
  • the detection means 3 detects the leakage magnetic flux in the Z direction and outputs it to the arithmetic control means 4 as a flaw detection signal.
  • the detection means 3 is integrated with the second magnetization means (tangential coil) 2 to form a flaw detection probe 20.
  • the arithmetic control means 4 supplies an alternating current having a predetermined frequency to the second magnetization means (tangential coil) 2. Further, the arithmetic control unit 4 performs signal processing such as synchronous detection using the alternating current as a reference signal on the flaw detection signal output from the detection unit 3 to detect the axial flaw F.
  • the magnetic flux density in the tube P becomes relatively large by applying a DC bias magnetic field A substantially parallel to the direction (X direction) in which the axial flaw F extends.
  • a DC bias magnetic field A substantially parallel to the direction (X direction) in which the axial flaw F extends.
  • FIG. 2 is a diagram schematically showing the state of magnetic flux in the flaw detection material when the direction of the DC magnetic field applied to the flaw detection material is substantially perpendicular to the direction in which the flaw extends.
  • 2A is a plan view
  • FIG. 2B is a cross-sectional view taken along the CC line in FIG.
  • FIG. 3 is a diagram schematically showing the state of magnetic flux in the flaw detection material when the direction of the DC magnetic field applied to the flaw detection material is substantially parallel to the direction in which the flaw extends.
  • 3A is a plan view
  • FIG. 3B is a cross-sectional view taken along the arrow DD in FIG.
  • the magnetic flux generated by applying the DC magnetic field (indicated by solid arrows in FIG. 2). ) Does not go straight to the immediate vicinity of the flaw and change its direction abruptly. For this reason, a region having a small magnetic flux density as shown by a broken line in FIG. 2 exists around the flaw. Therefore, especially in the vicinity of the flaw, the DC magnetic field does not function as a bias magnetic field for increasing the leakage magnetic flux from the flaw.
  • the purpose of the DC magnetization is achieved to increase the magnetic flux density in the flaw detection material substantially uniformly. I can't.
  • a direct-current bias magnetic field A is applied substantially parallel to the direction in which the axial flaw F extends (X direction). It is possible to magnetize the tube P substantially uniformly up to a range in which the magnetic flux density tends to be relatively large.
  • an alternating magnetic field B is applied in addition to the bias magnetic field A.
  • the tube P can be brought into a magnetic saturation state relatively easily, and the direction of the alternating magnetic field B to be applied is substantially perpendicular to the direction in which the axial flaw F extends, so that the leakage magnetic flux from the axial flaw F Can be generated efficiently.
  • the axial flaw F can be detected with high accuracy.
  • the tube P is magnetized by applying a combination of the bias magnetic field A and the alternating magnetic field B, so that it is compared with the case where only the direct magnetic field is applied for magnetization.
  • the advantage that the magnetizing means for magnetically saturating the tube P is not increased is obtained.
  • the tube P is magnetized by acting in combination with the bias magnetic field A and the alternating magnetic field B, so that it is compared with the case where the magnetic field is magnetized by acting only the alternating magnetic field.
  • the advantage that the tube P does not generate excessive heat even when the tube P is magnetically saturated is also obtained.
  • Example 1 In the present embodiment, a carbon steel pipe containing 0.25% by mass of carbon was used as the pipe P that is a flaw detection material. An artificial axial flaw having a depth of 0.5 mm and a length of 25 mm was provided on the surface of the tube P. Moreover, as the penetration coils 1a and 1b, which are the first magnetizing means 1, ones having 1000 turns, an outer diameter of 140 mm, an inner diameter of 80 mm, and a length (length along the axial direction of the tube P) of 50 mm are used.
  • Each penetration coil 1a, 1b was arranged 40 mm apart in the axial direction of the pipe P.
  • the current value of the direct current supplied to each through coil 1a, 1b was 1.5A, and it was possible to apply an appropriate bias magnetic field (magnetic flux density of about 1.5 T in the flaw detection material).
  • the current value of the direct current required to magnetize to the extent that leakage flux flaw detection is possible with only the first magnetizing means 1 is about 9 A. Therefore, according to the present embodiment, it can be seen that flaw detection can be performed with a current value of about 1/6 as compared with the case where DC magnetic saturation is performed only by the first magnetization means 1.
  • the second magnetizing means (tangential coil) 2 is obtained by winding 50 turns of the conducting wire 22 in the axial direction of the tube P around the core 21 made of a nonmagnetic cube having a side of 6 mm.
  • the alternating current supplied to the conducting wire 22 had a frequency of 50 kHz and a current value of 200 mA. Those skilled in the art will recognize that this current value is very small compared to the value of the alternating current applied to the electromagnet used for normal AC magnetic flaw detection (magnetic flaw detection using only an AC magnetic field). Easy to understand.
  • the second magnetizing means 2 of the present embodiment is used as the magnetizing means for generating the alternating magnetic field, it can be significantly reduced in size and weight as compared with the conventional electromagnet. This is a great advantage when the material to be inspected goes straight in the axial direction, and the magnetizing means for generating an alternating magnetic field rotates in the circumferential direction of the material to be inspected to detect the entire surface of the material to be inspected. . This is because if the second magnetizing means 2 of the present embodiment is used as the magnetizing means for generating an alternating magnetic field, the mechanism for rotating it in the circumferential direction of the material to be inspected can be reduced in size and simplified.
  • a planar coil having a diameter of 5 mm and a turn number of 100 was used as the detection means 3.
  • the flaw detection test was conducted under the above conditions.
  • FIG. 4 is a diagram showing the test results of Example 1 and Comparative Examples 1 and 2.
  • 4A shows the test result of Example 1
  • FIG. 4B shows the test result of Comparative Example 1
  • FIG. 4C shows the test result of Comparative Example 2.
  • FIG. The waveform shown in FIG. 4 is obtained by synchronously detecting the flaw detection signal output from the detection means 3 using the alternating current supplied to the second magnetization means (tangential coil) 2 as a reference signal.
  • Comparative Example 1 compared to Comparative Example 1 in which the bias magnetic field is not applied, in Comparative Example 2 in which the bias magnetic field is applied, in the noise signal
  • the amplitude is decreasing.
  • the amplitude of the flaw signal is smaller in Comparative Example 2 in which a bias magnetic field is applied. This is because the direction of the bias magnetic field is not parallel to the direction in which the bias magnetic field extends (forms an angle of 60 °), so there is a region where the magnetic flux density is small due to the detour of the magnetic flux around the flaw, and the magnetic saturation around the flaw The reason is thought to be that the level is lowered to prevent the generation of leakage magnetic flux from the flaw.
  • FIG. 5 is a diagram showing a schematic configuration of a magnetic flaw detector according to the second embodiment of the present invention.
  • Fig.5 (a) is a front view which shows the whole structure in a cross section partially.
  • FIG. 5B is a plan view.
  • FIG. 5C is a rear view.
  • FIG. 5 (d) shows a schematic external view of the flaw detection probe shown in FIGS. 5 (a) to 5 (c). In FIG. 5B, the excitation coil is not shown.
  • FIG. 5 shows a schematic configuration of a magnetic flaw detector according to the second embodiment of the present invention.
  • Fig.5 (a) is a front view which shows the whole structure in a cross section partially.
  • FIG. 5B is a plan view.
  • FIG. 5C is a rear view.
  • FIG. 5 (d) shows a schematic external view of the flaw detection probe shown in FIGS. 5 (a) to 5 (c).
  • the excitation coil is not shown.
  • the magnetic flaw detection apparatus 100 ′ includes a first rotation magnetization means 1 ′ that applies a rotation bias magnetic field to the tube P that is a flaw detection material, and the tube P. Leakage caused by magnetizing the tube P with the second rotating magnetizing means 2 ′ for applying a rotating AC magnetic field whose phase is shifted by 90 ° from the rotating bias magnetic field, and the first rotating magnetizing means 1 ′ and the second rotating magnetizing means 2 ′ And detecting means 3 for detecting magnetic flux.
  • the magnetic flaw detection apparatus 100 ′ according to the present embodiment supplies an excitation current to the first rotation magnetization means 1 ′ and the second rotation magnetization means 2 ′ and performs signal processing on the flaw detection signal output from the detection means 3. Arithmetic control means 4 ′ for detecting an error is provided.
  • the first rotating magnetization means 1 ′ is composed of a first electromagnet 11 and a second electromagnet 12 that intersects the first electromagnet 11.
  • the first electromagnet 11 includes an inverted U-shaped yoke 111 and excitation coils 112 wound around both ends of the yoke 111.
  • a magnetic field in a direction substantially parallel to the axial direction of the tube P (the X direction shown in FIG. 5) is provided between the magnetic poles 111a and 111b of the yoke 111. Generated.
  • the second electromagnet 12 includes an inverted U-shaped yoke 121 and excitation coils 122 wound around both ends of the yoke 121.
  • an alternating current from the arithmetic control means 4 ′ to the exciting coil 122
  • X direction axial direction
  • 121a and 121b of the yoke 121 the Y direction shown in FIG. 5
  • the combined magnetic field generated by each excitation coil 112, 122 becomes the magnetic pole 111a, 111b, 121a, 121b. 360 degrees with respect to the center position.
  • the first rotating magnetization unit 1 ′ applies a rotating bias magnetic field to the tube P.
  • the second rotating magnetization means 2 ′ has the same configuration as the exciting coil described in Japanese Patent Application Laid-Open No. 2008-128733 proposed by the present inventors. Specifically, the second rotating magnetization means 2 ′ is formed of an air-core type tangential coil, like the second magnetization means 2 of the first embodiment. However, unlike the second magnetization means 2, the second rotational magnetization means 2 ′ not only winds the conductor 22 b around the core 21 made of a non-magnetic material in the axial direction (X direction) of the pipe P, but The conducting wire 22a is also wound in a direction (Y direction) substantially perpendicular to the axial direction of P.
  • an excitation current (X direction excitation current) By supplying an excitation current (X direction excitation current) to the conducting wire 22a from the arithmetic control means 4 ′, an AC magnetic field in a direction substantially parallel to the axial direction (X direction) of the tube P is generated. Further, by supplying an excitation current (Y direction excitation current) from the arithmetic control means 4 'to the conducting wire 22b, an AC magnetic field in a direction (Y direction) substantially perpendicular to the axial direction (X direction) of the tube P is generated. Is done.
  • the combined magnetic field of the alternating magnetic field generated by each of the conducting wires 22a and 22b is changed to that of the second rotating magnetization means 2 ′ (tangential coil). It will be rotated 360 ° around the center position. That is, a rotating AC magnetic field is generated.
  • the second rotational magnetization means 2 ′ includes a first alternating current having the same frequency as the alternating current supplied to the first rotational magnetization means 1 ′ (supplied to the excitation coils 112 and 122), A superimposed alternating current obtained by superimposing a second alternating current having a frequency higher than that of the first alternating current is supplied as an exciting current from the arithmetic control unit 4 ′. More specifically, an X-direction excitation current obtained by superimposing the first alternating current and the second alternating current is supplied to the conducting wire 22a of the second rotating magnetization means 2 ′.
  • the Y-direction exciting current whose first alternating current and second alternating current are superimposed and whose phase is shifted by 90 ° with respect to the X-direction exciting current is supplied to the conducting wire 22b of the second rotating magnetization means 2 ′. . Then, the X-direction excitation current and the Y-direction are set so that the phase of the rotating AC magnetic field generated by the second rotating magnetization unit 2 ′ is shifted by 90 ° from the phase of the rotating bias magnetic field generated by the first rotating magnetization unit 1 ′. The phase of the excitation current has been adjusted. As described above, the second rotating magnetization means 2 ′ applies a rotating AC magnetic field having a phase shifted by 90 ° from the rotating bias magnetic field to the tube P.
  • the detection means 3 detects the leakage magnetic flux in the Z direction (see FIG. 5) passing through the center of the second rotational magnetization means (tangential coil) 2 ′ and orthogonal to the X direction and the Y direction. It is a planar coil.
  • the detection means 3 is attached to the lower surface of the core 21 provided in the second rotational magnetization means 2 '.
  • the detection means 3 detects the leakage magnetic flux in the Z direction and outputs it to the arithmetic control means 4 'as a flaw detection signal.
  • the detection means 3 is integrated with the second rotary magnetization means (tangential coil) 2 'to form a flaw detection probe 20'.
  • the arithmetic control unit 4 ′ supplies AC currents whose phases are shifted by 90 ° to the first electromagnet 11 and the second electromagnet 12 included in the first rotational magnetization unit 1 ′. Further, the arithmetic control means 4 ′ is a superimposed alternating current obtained by superimposing a first alternating current having the same frequency as the alternating current supplied to the first rotating magnetization means 1 ′ and a second alternating current having a higher frequency than the first alternating current. Superimposed alternating currents (X-direction excitation current and Y-direction excitation current) that are 90 ° out of phase with each other are supplied to the conducting wires 22a and 22b of the second rotating magnetization means 2 ′.
  • the arithmetic control means 4 ′ is arranged so that the phase of the rotational bias magnetic field generated by the first rotational magnetization means 1 ′ and the phase of the rotational alternating magnetic field generated by the second rotational magnetization means 2 ′ are shifted by 90 °.
  • the phases of the X-direction excitation current and the Y-direction excitation current supplied to the two-rotation magnetization means 2 ′ are adjusted.
  • the arithmetic control unit 4 ′ performs signal processing such as synchronous detection using the second alternating current as a reference signal and synchronous detection using the first alternating current as a reference signal for the flaw detection signal output from the detecting unit 3.
  • signal processing such as synchronous detection using the second alternating current as a reference signal and synchronous detection using the first alternating current as a reference signal for the flaw detection signal output from the detecting unit 3.
  • FIG. 6 is a diagram schematically showing the relationship of the magnetic field generated by the magnetic flaw detector 100 ′ having the above configuration.
  • a rotating bias magnetic field that is excited by using an alternating current as an exciting current acts on the tube P.
  • an alternating current is used as an exciting current for exciting the rotational bias magnetic field, if the frequency is set to a low frequency, the direct current bias magnetic field generated by the magnetic flaw detector 100 according to the first embodiment described above is only in that direction. The behavior is the same as changing from moment to moment.
  • a flaw (with the direction of the moment when the rotational bias magnetic field is present) is within a range in which the magnetic flux density in the tube P tends to be relatively large. It is possible to magnetize the tube P substantially uniformly without significantly disturbing the path of the magnetic flux by the flaw (flaw extending substantially in parallel).
  • a rotational alternating magnetic field whose phase is shifted by 90 ° from the rotational bias magnetic field (that is, the direction and rotation of the rotational bias magnetic field at a certain moment).
  • the direction of the AC magnetic field is orthogonal). This rotating AC magnetic field exhibits the same behavior as the AC magnetic field described in the first embodiment changes only its direction every moment.
  • a rotating AC magnetic field that is 90 ° out of phase with the rotating bias magnetic field acts in addition to the rotating bias magnetic field, so that the tube P can be brought into a magnetic saturation state relatively easily.
  • the direction of the rotating AC magnetic field to be applied is substantially perpendicular to the direction in which the flaw (a flaw extending substantially parallel to the direction of the moment when the rotation bias magnetic field is present) F, and therefore, the leakage magnetic flux from the flaw F As a result, the flaw F can be detected with high accuracy.
  • the bias magnetic field is rotated, and the AC magnetic field is also rotated by shifting the phase of the bias magnetic field by 90 °, so that it is possible to detect flaws existing in the tube P extending in various directions. is there.
  • the advantage that the magnetizing means for magnetically saturating the tube P does not increase in size, and the tube P does not generate excessive heat even when the tube P is magnetically saturated.
  • the advantage is obtained as in the magnetic flaw detector 100 according to the first embodiment.
  • Example 2 Also in this example, as in Example 1 described above, a carbon steel pipe containing 0.25 mass% carbon was used as the pipe P that is a flaw detection material.
  • each exciting coil 112 provided in the first electromagnet 11 constituting the first rotating magnetization means 1 ′ one having 80 turns is used, and the alternating current supplied to each exciting coil 112 is: The current value was 10 A at a frequency of 100 Hz.
  • each exciting coil 122 included in the second electromagnet 12 constituting the first rotating magnetization means 1 ′ one having 80 turns is used, and the alternating current supplied to each exciting coil 122 has a frequency of 100 Hz, The current value was 10A.
  • the conductor 22b is wound 60 turns around the core 21 made of a non-magnetic cube having a side of 6 mm in the axial direction (X direction) of the tube P, A wire 22a wound 60 turns in a direction (Y direction) substantially perpendicular to the axial direction of the tube P was used.
  • the 1st alternating current supplied to conducting wire 22a, 22b was made into the electric current value 200mA with the frequency of 100 Hz.
  • the second alternating current supplied to the conducting wires 22a and 22b was set to a frequency of 20 kHz and a current value of 200 mA.
  • a planar coil having a diameter of 5 mm and a turn number of 100 was used as the detection means 3.
  • the flaw detection test was conducted under the above conditions.
  • FIG. 7 is a diagram showing test results of Example 2.
  • FIG. 7A shows the result of flaw detection in the axial direction
  • FIG. 7B shows the result of flaw detection in the 15 ° direction
  • FIG. 7C shows the result of flaw detection in the 45 ° direction.
  • d) shows the result of flaw detection in a 75 ° direction flaw.
  • the waveform shown in FIG. 7 is a Lissajous waveform created and displayed by the arithmetic control unit 4 ′ based on the flaw detection signal output from the detection unit 3.
  • the arithmetic control unit 4 ′ performs synchronous detection of the flaw detection signal using the second alternating current (high frequency) supplied to the second rotational magnetization unit (tangential coil) 2 ′ as a reference signal, and then the second rotational magnetization unit (tangential coil).
  • the first alternating current supplied to the coil) is synchronously detected as a reference signal (the signal obtained by synchronous detection is X signal), and the phase of the reference signal (first alternating current) is delayed by 90 ° to generate a flaw detection signal.
  • Synchronous detection is performed (the Y signal is obtained by synchronous detection).
  • the arithmetic control unit 4 ′ displays the signal as a vector on a two-dimensional plane of the XY coordinate system using the X signal as an X axis component and the Y signal as a Y axis component.
  • This vector-displayed signal waveform is a Lissajous waveform.

Abstract

【課題】直流磁界のみを作用させる場合に磁化手段が大型化する問題や、交流磁界のみを作用させる場合に被探傷材が発熱する問題を解決しつつ、被探傷材が磁気飽和状態になるまで被探傷材を磁化することにより、精度良くきずを検出可能な磁気探傷方法及び磁気探傷装置を提供する。 【解決手段】本発明に係る磁気探傷装置100は、被探傷材Pに対して検出対象きずFの延びる方向に略平行に直流のバイアス磁界を作用させる第1磁化手段1と、被探傷材Pに対して検出対象きずFの延びる方向に略垂直に交流磁界を作用させる第2磁化手段2と、第1磁化手段1及び第2磁化手段2で被探傷材Pを磁化することによって生ずる漏洩磁束を検出する検出手段3と、を備える。

Description

磁気探傷方法及び磁気探傷装置
 本発明は、磁性体からなる被探傷材に磁界を作用させて磁化した場合に、被探傷材に生ずる磁束を遮るようなきずが存在すると、このきずが存在する部位で磁束が表面空間に漏洩することを利用する磁気探傷方法及び磁気探傷装置に関する。
 特に、本発明は、直流磁界のみを作用させる場合に磁化手段が大型化する問題や、交流磁界のみを作用させる場合に被探傷材が発熱する問題を解決しつつ、磁気飽和状態になるまで被探傷材を磁化することにより、精度良くきずを検出可能な磁気探傷方法及び磁気探傷装置に関する。
 従来より、鋼板や鋼管等の被探傷材に存在するきずを非破壊的に検出する方法として、磁気探傷方法(漏洩磁束探傷方法)が知られている。この磁気探傷方法は、磁性体からなる被探傷材に磁界を作用させて磁化した場合に、被探傷材に生ずる磁束を遮るようなきずが存在すると、このきずが存在する部位で磁束が表面空間に漏洩することを利用する探傷方法である。
 斯かる磁気探傷方法では、きずからの漏洩磁束を検出可能なほど大きくするために、被探傷材が磁気飽和状態になるまで被探傷材を磁化する必要がある。そして、一般的に、被探傷材に磁界を作用させるための磁化手段としては、直流又は交流の電磁石やコイル等が用いられ、きずからの漏洩磁束を検出するための検出手段としては、ホール素子やサーチコイル等が用いられる。
 電磁石やコイル等の磁化手段を用いて、被探傷材を効率的に磁気飽和させる装置として、例えば、特許文献1、2に記載の装置が提案されている。
 特許文献1に記載の装置は、磁極(ヨーク開放端)と被探傷材(被検材)との間に、ブラシ状のヨークを設けたり、可動補助ヨークを設けることにより、磁極と被探傷材との隙間による漏れ磁束の発生を抑制して、磁化効率を改善するものである。
 しかしながら、特許文献1に記載の装置において、直流の電磁石を用いた場合には、表皮効果が望めないため、被探傷材の厚み方向全体を磁気飽和させる必要がある。換言すれば、被探傷材の厚み方向全体の断面積を超える磁極断面積が必要となるため、磁化手段が大型化するという問題がある。
 以下、より具体的に説明する。鋼板や鋼管等の被探傷材を構成する強磁性材料の磁気特性は、一般的にヒステリシスカーブで表される非線形特性を有する。このため、被探傷材中の磁束密度が1.4T程度になるまで磁化することは、比較的小さい磁界を作用させることで実現可能である。しかしながら、きずからの漏洩磁束を十分に得るために必要な飽和磁束密度付近(一般の炭素鋼で1.7~1.8T)の磁束密度を得るには、極めて大きな磁界を被探傷材に作用させる必要がある。さらに、直流磁気飽和では、被探傷材の厚み方向に均一に磁束が分布することになる。このため、直流の電磁石を用いて被探傷材を磁気飽和させるには、被探傷材の寸法(厚み)に応じた大型の磁化手段が必要となる。
 上記の問題を解消するには、特許文献2に記載のように、交流の電磁石を用いた磁化手段を採用し、表皮効果を利用することで被探傷材の表層のみを磁化すればよい。特許文献2に記載の装置によれば、磁化手段の小型化は可能である。しかしながら、特許文献2に記載のように、交流磁界を作用させて磁気飽和状態になるまで被探傷材を磁化する場合、被探傷材中に生じる渦電流による発熱が大きいため、漏洩磁束を検出する検出手段の感度低下や寿命低下などの悪影響が生じるという問題が生じる。
 以下、より具体的に説明する。交流磁界を作用させる場合、表皮効果により被探傷材の表層に磁束を集中させることが可能なため、直流磁界を作用させる場合に比べて、磁化手段が小型化できるという利点がある。しかしながら、被探傷材の材質に起因するノイズ信号を抑制するには、直流磁界を作用させる場合と同様に、被探傷材中の磁束密度を飽和磁束密度付近まで増大させる必要がある。交流磁界のみで磁気飽和状態になるまで被探傷材を磁化する場合、被探傷材中には磁束の時間変化に比例した起電力が発生し、これが渦電流を生じさせる。被探傷材中に流れる電流は抵抗発熱を伴い、被探傷材はいわゆる誘導加熱状態となるため、周辺に設けられた漏洩磁束の検出手段やその取り付け治具の温度変動の原因となる。一般に、漏洩磁束の検出手段としては、ホール素子、サーチコイル、フラックスゲート等のセンサが用いられるが、これらはいずれも、温度変化によって漏洩磁束の検出感度や寿命に影響が生じる。
日本国特開平8-152424号公報 日本国特開2001-41932号公報
 本発明は、斯かる従来技術の問題点を解決するべくなされたものであり、直流磁界のみを作用させる場合に磁化手段が大型化する問題や、交流磁界のみを作用させる場合に被探傷材が発熱する問題を解決しつつ、被探傷材が磁気飽和状態になるまで被探傷材を磁化することにより、精度良くきずを検出可能な磁気探傷方法及び磁気探傷装置を提供することを課題とする。
 前記課題を解決するため、本発明者らは鋭意検討した結果、被探傷材中の磁束密度が比較的大きくなりやすい範囲(1.4T程度)までは、直流磁界(バイアス磁界)を作用させて磁化すると共に、被探傷材を磁気飽和状態にしてきずからの漏洩磁束を検出するために交流磁界を作用させて更に磁化することで、磁化手段の小型化と被探傷材の発熱防止という双方の課題を解決できるのではないかということに着眼した。
 上記の着眼において、直流磁界を作用させる目的は、きずからの漏洩磁束を生じさせることではなく、きずの近傍を含む被探傷材全体の磁束密度を略均一に且つある程度の磁束密度まで増加させることである。本発明者らは、この目的に鑑みれば、作用させる直流磁界の方向は、直流磁界によって被探傷材中に発生する磁束の進路がきずによって最も妨げられにくい方向(すなわち、きずの延びる方向に略平行な方向)とする必要があることを知見した。
 一方、上記の着眼において、交流磁界を作用させる目的は、きずからの漏洩磁束を生じさせることである。本発明者らは、この目的に鑑みれば、作用させる交流磁界の方向は、交流磁界によって被探傷材中に発生する磁束の進路がきずによって最も妨げられやすい方向(すなわち、きずの延びる方向に略垂直な方向)とする必要があることを知見した。
 本発明は、以上に述べた本発明者らの知見により完成したものである。
 すなわち、本願の第1発明は、被探傷材に対して、検出対象きずの延びる方向に略平行に直流のバイアス磁界を作用させると共に、検出対象きずの延びる方向に略垂直に交流磁界を作用させ、これによって生ずる漏洩磁束に基づいて検出対象きずを検出することを特徴とする磁気探傷方法である。
 本願の第1発明によれば、検出対象きず(検出対象とするきず)の延びる方向に略平行に直流のバイアス磁界を作用させることにより、被探傷材中の磁束密度が比較的大きくなりやすい範囲までは、検出対象きずによって磁束の進路が大きく妨げられることなく、略均一に被探傷材を磁化することが可能である。そして、本発明によれば、上記バイアス磁界に加えて交流磁界を作用させることにより、被探傷材を比較的容易に磁気飽和状態にさせることができると共に、作用させる交流磁界の方向が検出対象きずの延びる方向に略垂直であるため、検出対象きずからの漏洩磁束を効率良く生じさせることができ、その結果、精度良く検出対象きずを検出可能である。
 また、本発明によれば、直流のバイアス磁界と交流磁界とを組み合わせて作用させることにより被探傷材を磁化するため、直流磁界のみを作用させて磁化する場合に比べて、被探傷材を磁気飽和させるための磁化手段が大型化しないという利点が得られる。
 さらに、本発明によれば、直流のバイアス磁界と交流磁界とを組み合わせて作用させることにより被探傷材を磁化するため、交流磁界のみを作用させて磁化する場合に比べて、被探傷材を磁気飽和させても被探傷材が過度に発熱しないという利点も得られる。
 以上に述べた本願の第1発明は、検出対象きずの延びる方向が一定であり且つ予めその方向が想定可能である場合に有効である。しかしながら、被探傷材に種々の方向に延びるきずが存在し、如何なる方向に延びるきずも検出する必要がある場合には、直流のバイアス磁界を作用させる方向(きずの延びる方向に略平行な方向)や、交流磁界を作用させる方向(きずの延びる方向に略垂直な方向)を一定にすることができない。きずの延びる方向が如何なる方向であっても検出できるようにするには、磁界の方向が時々刻々変化する回転磁界を作用させることが有効である。そして、この回転磁界を作用させる場合にも、前述した本発明者らの知見を活かせば、磁化手段が大型化する問題や被探傷材が発熱する問題を解決しつつ、磁気飽和状態になるまで被探傷材を磁化して、精度良くきずを検出可能である。
 すなわち、本願の第2発明は、被探傷材に対して、交流電流を励磁電流として用いることで励磁される回転バイアス磁界を作用させると共に、前記交流電流と同一周波数の第1交流電流と該第1交流電流よりも高周波の第2交流電流とを重畳した重畳交流電流を励磁電流として用いることで励磁され、前記回転バイアス磁界と位相が90°ずれた回転交流磁界を作用させ、これによって生ずる漏洩磁束に基づいてきずを検出することを特徴とする磁気探傷方法である。
 本願の第2発明によれば、被探傷材に対して、交流電流を励磁電流として用いることで励磁される回転バイアス磁界を作用させる。回転バイアス磁界を励磁する励磁電流としては交流電流を用いるものの、その周波数を低周波(例えば、10Hz~2kHz程度)とすれば、あたかも前述した本願の第1発明における直流のバイアス磁界がその方向だけを時々刻々変化させるのと同様の挙動となる。このため、本願の第2発明の回転バイアス磁界によっても、被探傷材の中の磁束密度が比較的大きくなりやすい範囲までは、きず(回転バイアス磁界のある瞬間の方向と略平行に延びるきず)によって磁束の進路が大きく妨げられることなく、略均一に被探傷材を磁化することが可能である。
 そして、本発明によれば、上記回転バイアス磁界に加えて該回転バイアス磁界と位相が90°ずれた回転交流磁界(すなわち、ある瞬間の回転バイアス磁界の方向と回転交流磁界の方向とが直交する)を作用させる。この回転交流磁界は、回転バイアス磁界の励磁電流である交流電流と同一周波数の第1交流電流(回転バイアス磁界の励磁電流である交流電流の周波数を低周波とすれば、第1交流電流の周波数も低周波となる)と該第1交流電流よりも高周波の第2交流電流(例えば、1kHz~500kHz程度)とを重畳した重畳交流電流を励磁電流として用いることで励磁される。従って、高周波の第2交流電流によって生成される交流磁界が支配的に被探傷材に作用する一方、低周波の第1交流電流は、前記生成された交流磁界の方向を被探傷材において回転させるために機能する。これは、被探傷材に生じる誘導起電力が励磁電流の周波数に比例するからである。換言すれば、本願の第2発明における回転交流磁界は、前述した本願の第1発明における交流磁界がその方向だけを時々刻々変化させるのと同様の挙動を示すことになる。
 本発明は、回転バイアス磁界に加えて該回転バイアス磁界と位相が90°ずれた回転交流磁界を作用させるため、被探傷材を比較的容易に磁気飽和状態にさせることができると共に、作用させる回転交流磁界の方向が上記のきず(回転バイアス磁界のある瞬間の方向と略平行に延びるきず)の延びる方向に略垂直となるため、上記のきずからの漏洩磁束を効率良く生じさせることができ、その結果、精度良く上記のきずを検出可能である。本発明は、バイアス磁界を回転させると共に、交流磁界もバイアス磁界と位相を90°ずらして回転させるため、被探傷材に存在する種々の方向に延びるきずを検出可能である。
 また、本発明によれば、被探傷材を磁気飽和させるための磁化手段が大型化しないという利点や、被探傷材を磁気飽和させても被探傷材が過度に発熱しないという利点が得られることは、第1発明と同様である。
 なお、第1交流電流の周波数は、回転バイアス磁界及び回転交流磁界を作用させる磁化手段の被探傷材に対する相対的な移動速度に応じて設定すればよい。具体的には、磁化手段がきず上を通過する間に、最低1回は回転バイアス磁界及び回転交流磁界が回転するように、第1交流電流の周波数を設定する必要がある。磁化手段の相対的な移動速度が速くなれば、第1交流電流の周波数を高く設定する必要があり、これに応じて高周波である第2交流電流の周波数も高く設定する必要がある。第1交流電流の周波数と第2交流電流の周波数の比率は、第2交流電流を参照信号として同期検波できる程度の比率(例えば、1:10以上)に設定することが好ましい。
 また、前記課題を解決するため、本発明は、被探傷材に対して検出対象きずの延びる方向に略平行に直流のバイアス磁界を作用させる第1磁化手段と、被探傷材に対して検出対象きずの延びる方向に略垂直に交流磁界を作用させる第2磁化手段と、前記第1磁化手段及び前記第2磁化手段で被探傷材を磁化することによって生ずる漏洩磁束を検出する検出手段と、を備えることを特徴とする磁気探傷装置としても提供される。
 さらに、前記課題を解決するため、本発明は、被探傷材に対して、交流電流を励磁電流として用いることで励磁される回転バイアス磁界を作用させる第1回転磁化手段と、被探傷材に対して、前記交流電流と同一周波数の第1交流電流と該第1交流電流よりも高周波の第2交流電流とを重畳した重畳交流電流を励磁電流として用いることで励磁され、前記回転バイアス磁界と位相が90°ずれた回転交流磁界を作用させる第2回転磁化手段と、前記第1回転磁化手段及び前記第2回転磁化手段で被探傷材を磁化することによって生ずる漏洩磁束を検出する検出手段と、を備えることを特徴とする磁気探傷装置としても提供される。
 本発明によれば、直流磁界のみを作用させる場合に磁化手段が大型化する問題や、交流磁界のみを作用させる場合に被探傷材が発熱する問題を解決しつつ、磁気飽和状態になるまで被探傷材を磁化することにより、精度良くきずを検出可能である。
図1は、本発明の第1実施形態に係る磁気探傷装置の概略構成を示す図である。 図2は、被探傷材に作用させる直流磁界の方向がきずの延びる方向に対して略垂直である場合の被探傷材中の磁束の状態を模式的に示す図である。 図3は、被探傷材に作用させる直流磁界の方向がきずの延びる方向に対して略平行である場合の被探傷材中の磁束の状態を模式的に示す図である。 図4は、本発明の実施例1及び比較例1、2の試験結果を示す図である。 図5は、本発明の第2実施形態に係る磁気探傷装置の概略構成を示す図である。 図6は、図5に示す磁気探傷装置によって生成される磁界の関係を模式的に示す図である。 図7は、本発明の実施例2の試験結果を示す図である。
 以下、添付図面を適宜参照しつつ、本発明の実施形態について説明する。
 <第1実施形態>
 本発明の第1実施形態に係る磁気探傷装置は、被探傷材が管であり、管の軸方向に延びるきず(以下、軸方向きずという)を検出対象とする。
 図1は、本発明の第1実施形態に係る磁気探傷装置の概略構成を示す図である。図1(a)は、全体構成図を示す。また、図1(b)は、図1(a)に示す探傷プローブの模式的な外観図を示す。
 図1に示すように、本実施形態に係る磁気探傷装置100は、管Pに対して検出対象きずである軸方向きずFの延びる方向(管Pの軸方向(図1に示すX方向))に略平行に直流のバイアス磁界を作用させる第1磁化手段1と、管Pに対して軸方向きずFの延びる方向に略垂直に交流磁界を作用させる第2磁化手段2と、第1磁化手段1及び第2磁化手段2で管Pを磁化することによって生ずる漏洩磁束を検出する検出手段3とを備えている。また、本実施形態に係る磁気探傷装置100は、第2磁化手段2に交流電流を供給したり、検出手段3から出力された探傷信号を信号処理して軸方向きずFを検出するための演算制御手段4を備えている。
 第1磁化手段1は、管Pを貫通させる一対の貫通コイル1a、1bからなる。一対の貫通コイル1a、1bにはそれぞれ直流電流が供給され、これにより管Pの軸方向(X方向)に対して略平行な方向に直流磁界(バイアス磁界)Aが生成される。すなわち、バイアス磁界Aの方向は、軸方向きずFの延びる方向に略平行となる。
 第2磁化手段2は、空心型のタンジェンシャルコイルからなる。このタンジェンシャルコイルは、非磁性体からなるコア21の周りに管Pの軸方向(X方向)に導線22を巻回したものである。演算制御手段4から導線22に交流電流を供給することにより、管Pの軸方向(X方向)に対して略垂直な方向(図1に示すY方向)に交流磁界Bが生成される。第2磁化手段2を管Pの外面に配置すれば、生成された交流磁界Bは管Pの周方向に沿って進行することになる。すなわち、交流磁界Bの方向は、軸方向きずFの延びる方向に略垂直となる。
 検出手段3は、第2磁化手段(タンジェンシャルコイル)2の中心を通りX方向及びY方向に直交するZ方向(図1参照)の漏洩磁束を検出する平面コイルとされている。検出手段3は、第2磁化手段2が具備するコア21の下面に取り付けられている。検出手段3は、Z方向の漏洩磁束を検出し、探傷信号として演算制御手段4に出力する。なお、検出手段3は、第2磁化手段(タンジェンシャルコイル)2と一体化されて、探傷プローブ20を形成している。
 演算制御手段4は、第2磁化手段(タンジェンシャルコイル)2に所定周波数の交流電流を供給する。また、演算制御手段4は、検出手段3から出力された探傷信号に、前記交流電流を参照信号とする同期検波等の信号処理を施し、軸方向きずFを検出する。
 以上の構成を有する磁気探傷装置100によれば、軸方向きずFの延びる方向(X方向)に略平行に直流のバイアス磁界Aを作用させることにより、管P中の磁束密度が比較的大きくなりやすい範囲までは、軸方向きずFによって磁束の進路が大きく妨げられることなく、略均一に管Pを磁化することが可能である。以下、この点について、図2及び図3を適宜参照しつつ、より具体的に説明する。
 図2は、被探傷材に作用させる直流磁界の方向がきずの延びる方向に対して略垂直である場合の被探傷材中の磁束の状態を模式的に示す図である。図2(a)は平面図を、図2(b)は図2(a)のCC矢視断面図を示す。
 図3は、被探傷材に作用させる直流磁界の方向がきずの延びる方向に対して略平行である場合の被探傷材中の磁束の状態を模式的に示す図である。図3(a)は平面図を、図3(b)は図3(a)のDD矢視断面図を示す。
 図2に示すように、被探傷材に作用させる直流磁界の方向がきずの延びる方向に対して略垂直である場合、直流磁界を作用させることによって生じる磁束(図2において実線の矢符で示す)は、きずの直近まで直進して急激に方向を変えて迂回するのではなく、きずに対して緩やかに方向を変えながら迂回する。このため、きずの周辺には、図2に破線で示すような磁束密度の小さい領域が存在することになる。従って、特にきずの周辺においては、直流磁界がきずからの漏洩磁束を増加させるためのバイアス磁界として機能していないことになる。換言すれば、きずの延びる方向と磁束の方向とが略垂直となるように直流磁気飽和させた場合には、被探傷材中の磁束密度を略均一に増大させるという直流磁化の目的を達成することができない。
 一方、図3に示すように、被探傷材に作用させる直流磁界の方向がきずの延びる方向に対して略平行である場合、直流磁界を作用させることによって生じる磁束(図3において実線の矢符で示す)は、きずによってその進路が大きく妨げられることはなく、きず近傍を迂回することが可能である。このため、図3(b)に示すように、きずの近傍まで磁束密度の大きい領域が存在し、きずを除く被探傷材中の磁束密度を略均一に増大させるという直流磁化の目的を達成することができる。
 以上に述べた理由から、本実施形態に係る磁気探傷装置100では、軸方向きずFの延びる方向(X方向)に略平行に直流のバイアス磁界Aを作用させており、これにより、管P中の磁束密度が比較的大きくなりやすい範囲まで、略均一に管Pを磁化することが可能である。
 また、本実施形態に係る磁気探傷装置100では、バイアス磁界Aに加えて交流磁界Bを作用させている。これにより、管Pを比較的容易に磁気飽和状態にさせることができると共に、作用させる交流磁界Bの方向が軸方向きずFの延びる方向に略垂直であるため、軸方向きずFからの漏洩磁束を効率良く生じさせることが可能である。この結果、精度良く軸方向きずFを検出可能である。
 また、本実施形態に係る磁気探傷装置100によれば、バイアス磁界Aと交流磁界Bとを組み合わせて作用させることにより管Pを磁化するため、直流磁界のみを作用させて磁化する場合に比べて、管Pを磁気飽和させるための磁化手段が大型化しないという利点が得られる。
 さらに、本実施形態に係る磁気探傷装置100によれば、バイアス磁界Aと交流磁界Bとを組み合わせて作用させることにより管Pを磁化するため、交流磁界のみを作用させて磁化する場合に比べて、管Pを磁気飽和させても管Pが過度に発熱しないという利点も得られる。
 以下、本実施形態に係る磁気探傷装置100を用いた探傷試験の一実施例について説明する。
 <実施例1>
 本実施例において、被探傷材である管Pとしては、0.25質量%の炭素を含有する炭素鋼管を用いた。この管Pの表面に、深さ0.5mmで長さ25mmの人工の軸方向きずを設けた。また、第1磁化手段1である貫通コイル1a、1bとしては、それぞれターン数1000で、外径140mm、内径80mm、長さ(管Pの軸方向に沿った長さ)50mmのものを用い、各貫通コイル1a、1bを管Pの軸方向に40mm隔てて配置した。各貫通コイル1a、1bに供給する直流電流の電流値は1.5Aとし、これにより、適正なバイアス磁界(被探傷材中の磁束密度約1.5T)を作用させることが可能であった。なお、この第1磁化手段1のみで漏洩磁束探傷が可能な程度にまで磁化する(被探傷材中の磁束密度約1.8T)のに必要な直流電流の電流値は約9Aである。従って、本実施例によれば、第1磁化手段1のみで直流磁気飽和させる場合に比べて、約1/6の電流値で探傷可能であることが分かる。
 また、本実施例において、第2磁化手段(タンジェンシャルコイル)2としては、一辺が6mmの非磁性の立方体からなるコア21の周りに管Pの軸方向に導線22を50ターン巻回したものを用いた。導線22に供給する交流電流は、周波数50kHzで、電流値200mAとした。この電流値は、通常の交流磁気探傷(交流磁界のみを作用させる磁気探傷)に用いられる電磁石に通電する交流電流の値と比べて、非常に小さいものであるということは、当業者であれば容易に理解可能である。また、交流磁界を生成する磁化手段として、本実施例の第2磁化手段2を用いれば、従来の電磁石と比べて、著しい小型化・軽量化を図れることが分かる。このことは、被探傷材が軸方向に直進し、交流磁界を生成する磁化手段が被探傷材の周方向に回転して、被探傷材の全面を探傷する必要がある場合に大きな利点となる。交流磁界を生成する磁化手段として本実施例の第2磁化手段2を用いれば、それを被探傷材の周方向に回転する機構の小型化・簡素化にも繋がるからである。
 さらに、本実施例において、検出手段3としては、直径5mmでターン数100の平面コイルを用いた。
 以上の条件で探傷試験を行った。
 <比較例1>
 第1磁化手段1によるバイアス磁界を作用させなかった点を除き、実施例と同様の条件で探傷試験を行った。
 <比較例2>
 管軸方向に対して60°傾斜した方向に延びる人工きず(深さ及び長さは、実施例1と同様)を管Pの表面に設け、第2磁化手段(タンジェンシャルコイル)2によって生成される交流磁界の方向が上記人工きずの延びる方向と略垂直になるように第2磁化手段2の向きを調整した点を除き、実施例と同様の条件で探傷試験を行った。
 <評価結果>
 図4は、実施例1及び比較例1、2の試験結果を示す図である。図4(a)は実施例1の試験結果を、図4(b)は比較例1の試験結果を、図4(c)は比較例2の試験結果を示す。図4に示す波形は、検出手段3から出力された探傷信号を、演算制御手段4が第2磁化手段(タンジェンシャルコイル)2に供給される交流電流を参照信号として同期検波したものである。
 図4に示す実施例1と比較例1とを比較すれば明らかなように、バイアス磁界を作用させなかった比較例1では、きず信号の振幅がやや小さく、ノイズ信号の振幅が大きいのに対し、きずの延びる方向に略平行にバイアス磁界を作用させる実施例1では、きず信号の振幅が増加し、逆にノイズ信号の振幅は減少している。この結果は、きずの延びる方向に略平行なバイアス磁界を作用させた場合、きずの近傍を含む管P全体の磁束密度が増加するため、空心型のタンジェンシャルコイルのように、生成する磁界強度の小さな磁化手段を用いた場合であっても、管Pが容易に磁気飽和状態に至ることを示している。そのため、きずからの漏洩磁束が増大する(従って、きず信号の振幅が増加する)と共に、鋼管材料の磁気的不均一性に起因するノイズ信号が抑制されることを示している。
 また、図4に示す比較例1と比較例2とを比較すれば明らかなように、バイアス磁界を作用させなかった比較例1と比べ、バイアス磁界を作用させた比較例2では、ノイズ信号の振幅は減少している。しかしながら、きず信号については、バイアス磁界を作用させた比較例2の方が逆に振幅が小さくなっている。これは、バイアス磁界の方向ときずの延びる方向とが平行ではない(60°の角度を成す)ため、きずの周辺に磁束の迂回によって生じる磁束密度の小さい領域が存在し、きず周辺の磁気飽和レベルを低下させて、きずからの漏洩磁束の発生を妨げることが理由であると考えられる。
 <第2実施形態>
 本発明の第2実施形態に係る磁気探傷装置は、被探傷材が管であり、種々の方向に延びるきずを検出対象とする。
 図5は、本発明の第2実施形態に係る磁気探傷装置の概略構成を示す図である。図5(a)は、全体の構成を部分的に断面で示す正面図である。図5(b)は、平面図である。図5(c)は裏面図である。図5(d)は、図5(a)~(c)に示す探傷プローブの模式的な外観図を示す。なお、図5(b)においては、励磁コイルの図示を省略している。
 図5に示すように、本実施形態に係る磁気探傷装置100’は、被探傷材である管Pに対して回転バイアス磁界を作用させる第1回転磁化手段1’と、管Pに対して前記回転バイアス磁界と位相が90°ずれた回転交流磁界を作用させる第2回転磁化手段2’と、第1回転磁化手段1’及び第2回転磁化手段2’で管Pを磁化することによって生ずる漏洩磁束を検出する検出手段3とを備えている。また、本実施形態に係る磁気探傷装置100’は、第1回転磁化手段1’や第2回転磁化手段2’に励磁電流を供給したり、検出手段3から出力された探傷信号を信号処理してきずを検出するための演算制御手段4’を備えている。
 第1回転磁化手段1’は、第1電磁石11と、第1電磁石11と交叉する第2電磁石12とから構成されている。
 第1電磁石11は、逆U字状のヨーク111と、ヨーク111の両端部にそれぞれ巻回された励磁コイル112とを具備する。演算制御手段4’から励磁コイル112に交流電流を供給することにより、ヨーク111の磁極111a、111b間に管Pの軸方向(図5に示すX方向)に対して略平行な方向の磁界が生成される。
 第2電磁石12は、逆U字状のヨーク121と、ヨーク121の両端部にそれぞれ巻回された励磁コイル122とを具備する。演算制御手段4’から励磁コイル122に交流電流を供給することにより、ヨーク121の磁極121a、121b間に管Pの軸方向(X方向)に対して略垂直な方向(図5に示すY方向)の磁界が生成される。
 そして、各励磁コイル112、122に供給する交流電流(励磁電流)の位相を90°ずらすことにより、各励磁コイル112、122で生成された磁界の合成磁界が、磁極111a、111b、121a、121bの中心位置を中心として360°回転することになる。
 以上のようにして、第1回転磁化手段1’は、管Pに対して回転バイアス磁界を作用させる。
 第2回転磁化手段2’は、本発明者らが提案した特開2008-128733号公報に記載の励磁コイルと同様の構成を有する。具体的には、第2回転磁化手段2’は、第1実施形態の第2磁化手段2と同様に、空心型のタンジェンシャルコイルからなる。ただし、第2回転磁化手段2’は、第2磁化手段2と異なり、非磁性体からなるコア21の周りに管Pの軸方向(X方向)に導線22bを巻回するのみならず、管Pの軸方向に略垂直な方向(Y方向)にも導線22aを巻回したものである。
 演算制御手段4’から導線22aに励磁電流(X方向励磁電流)を供給することにより、管Pの軸方向(X方向)に対して略平行な方向の交流磁界が生成される。
 また、演算制御手段4’から導線22bに励磁電流(Y方向励磁電流)を供給することにより、管Pの軸方向(X方向)に対して略垂直な方向(Y方向)の交流磁界が生成される。
 そして、各導線22a、22bに供給する励磁電流の位相を90°ずらすことにより、各導線22a、22bで生成された交流磁界の合成磁界が、第2回転磁化手段2’(タンジェンシャルコイル)の中心位置を中心として360°回転することになる。すなわち、回転交流磁界が生成される。
 具体的には、第2回転磁化手段2’には、第1回転磁化手段1’に供給される(励磁コイル112、122に供給される)交流電流と同一周波数の第1交流電流と、該第1交流電流よりも高周波の第2交流電流とを重畳した重畳交流電流が、励磁電流として演算制御手段4’から供給される。より具体的には、第2回転磁化手段2’の導線22aには、第1交流電流と第2交流電流とを重畳したX方向励磁電流が供給される。
 一方、第2回転磁化手段2’の導線22bには、第1交流電流と第2交流電流とが重畳すると共にX方向励磁電流に対して位相が90°ずれたY方向励磁電流が供給される。
 そして、第2回転磁化手段2’によって生成される回転交流磁界の位相が、第1回転磁化手段1’によって生成される回転バイアス磁界の位相と90°ずれるように、X方向励磁電流及びY方向励磁電流の位相が調整されている。
 以上のようにして、第2回転磁化手段2’は、管Pに対して前記回転バイアス磁界と位相が90°ずれた回転交流磁界を作用させる。
 検出手段3は、第1実施形態と同様に、第2回転磁化手段(タンジェンシャルコイル)2’の中心を通りX方向及びY方向に直交するZ方向(図5参照)の漏洩磁束を検出する平面コイルとされている。検出手段3は、第2回転磁化手段2’が具備するコア21の下面に取り付けられている。検出手段3は、Z方向の漏洩磁束を検出し、探傷信号として演算制御手段4’に出力する。なお、検出手段3は、第2回転磁化手段(タンジェンシャルコイル)2’と一体化されて、探傷プローブ20’を形成している。
 演算制御手段4’は、第1回転磁化手段1’が具備する第1電磁石11及び第2電磁石12に、互いに位相が90°ずれた交流電流をそれぞれ供給する。また、演算制御手段4’は、第1回転磁化手段1’に供給する交流電流と同一周波数の第1交流電流と、該第1交流電流よりも高周波の第2交流電流とを重畳した重畳交流電流であって、互いに位相が90°ずれた重畳交流電流(X方向励磁電流及びY方向励磁電流)を、第2回転磁化手段2’が具備する導線22a、22bにそれぞれ供給する。演算制御手段4’は、第1回転磁化手段1’によって生成される回転バイアス磁界の位相と、第2回転磁化手段2’によって生成される回転交流磁界の位相とが90°ずれるように、第2回転磁化手段2’に供給するX方向励磁電流及びY方向励磁電流の位相を調整する。
 また、演算制御手段4’は、検出手段3から出力された探傷信号に対して、第2交流電流を参照信号とする同期検波や、第1交流電流を参照信号とする同期検波等の信号処理を順次施し、軸方向きずFを検出する。 
 図6は、以上の構成を有する磁気探傷装置100’によって生成される磁界の関係を模式的に示す図である。
 本実施形態に係る磁気探傷装置100’によれば、管Pに対して、交流電流を励磁電流として用いることで励磁される回転バイアス磁界が作用する。回転バイアス磁界を励磁する励磁電流としては交流電流を用いるものの、その周波数を低周波とすれば、あたかも前述した第1実施形態に係る磁気探傷装置100で生成される直流のバイアス磁界がその方向だけを時々刻々変化させるのと同様の挙動となる。このため、本実施形態に係る磁気探傷装置100’で生成される回転バイアス磁界によっても、管P中の磁束密度が比較的大きくなりやすい範囲までは、きず(回転バイアス磁界のある瞬間の方向と略平行に延びるきず)Fによって磁束の進路が大きく妨げられることなく、略均一に管Pを磁化することが可能である。
 そして、本実施形態に係る磁気探傷装置100’によれば、上記回転バイアス磁界に加えて該回転バイアス磁界と位相が90°ずれた回転交流磁界(すなわち、ある瞬間の回転バイアス磁界の方向と回転交流磁界の方向とが直交する)が作用する。この回転交流磁界は、第1実施形態で述べた交流磁界がその方向だけを時々刻々変化させるのと同様の挙動を示すことになる。
 本実施形態に係る磁気探傷装置100’では、回転バイアス磁界に加えて該回転バイアス磁界と位相が90°ずれた回転交流磁界が作用するため、管Pを比較的容易に磁気飽和状態にさせることができると共に、作用させる回転交流磁界の方向が上記のきず(回転バイアス磁界のある瞬間の方向と略平行に延びるきず)Fの延びる方向に略垂直となるため、上記のきずFからの漏洩磁束を効率良く生じさせることができ、その結果、精度良く上記のきずFを検出可能である。本実施形態に係る磁気探傷装置100’では、バイアス磁界を回転させると共に、交流磁界もバイアス磁界と位相を90°ずらして回転させるため、管Pに存在する種々の方向に延びるきずを検出可能である。
 また、本実施形態に係る磁気探傷装置100’によれば、管Pを磁気飽和させるための磁化手段が大型化しないという利点や、管Pを磁気飽和させても管Pが過度に発熱しないという利点が得られることは、第1実施形態に係る磁気探傷装置100と同様である。 
 以下、本実施形態に係る磁気探傷装置100’を用いた探傷試験の一実施例について説明する。
 <実施例2>
 本実施例においても、前述した実施例1と同様に、被探傷材である管Pとして、0.25質量%の炭素を含有する炭素鋼管を用いた。この管Pの表面に、人工の軸方向きず、15°方向人工きず(管軸方向に対して15°傾斜した方向に延びる人工きず)、45°方向人工きず(管軸方向に対して45°傾斜した方向に延びる人工きず)、75°方向人工きず(管軸方向に対して75°傾斜した方向に延びる人工きず)を設けた。各人工きずは、いずれも深さ0.5mmで長さ25mmとした。
 また、本実施例において、第1回転磁化手段1’を構成する第1電磁石11が具備する各励磁コイル112としては、ターン数80のものを用い、各励磁コイル112に供給する交流電流は、周波数100Hzで、電流値10Aとした。同様に、第1回転磁化手段1’を構成する第2電磁石12が具備する各励磁コイル122としては、ターン数80のものを用い、各励磁コイル122に供給する交流電流は、周波数100Hzで、電流値10Aとした。また、第2回転磁化手段2’(タンジェンシャルコイル)としては、一辺が6mmの非磁性の立方体からなるコア21の周りに管Pの軸方向(X方向)に導線22bを60ターン巻回し、管Pの軸方向に略垂直な方向(Y方向)に導線22aを60ターン巻回したものを用いた。導線22a、22bに供給する第1交流電流は、周波数100Hzで、電流値200mAとした。さらに、導線22a、22bに供給する第2交流電流は、周波数20kHzで、電流値200mAとした。
 さらに、本実施例において、検出手段3としては、直径5mmでターン数100の平面コイルを用いた。
 以上の条件で探傷試験を行った。
 図7は、実施例2の試験結果を示す図である。図7(a)は軸方向きずを探傷した結果を、図7(b)は15°方向きずを探傷した結果を、図7(c)は45°方向きずを探傷した結果を、図7(d)は75°方向きずを探傷した結果を示す。図7に示す波形は、検出手段3から出力された探傷信号に基づき、演算制御手段4’で作成・表示されるリサージュ波形である。演算制御手段4’は、第2回転磁化手段(タンジェンシャルコイル)2’に供給される第2交流電流(高周波)を参照信号として探傷信号を同期検波した後、第2回転磁化手段(タンジェンシャルコイル)に供給される第1交流電流を参照信号として同期検波する(この同期検波したものをX信号とする)と共に、前記参照信号(第1交流電流)の位相を90°遅らせて探傷信号を同期検波する(この同期検波したものをY信号とする)。そして、演算制御手段4’は、X信号をX軸成分とし、Y信号をY軸成分として、XY座標系の2次元平面上に信号をベクトル表示する。このベクトル表示された信号波形がリサージュ波形である。
 図7に示すように、実施例2の磁気探傷装置100’によれば、管Pに存在する種々の方向に延びるきずを精度良く検出可能であることが分かる。
1・・・第1磁化手段
1’・・・第1回転磁化手段
2・・・第2磁化手段
2’・・・第2回転磁化手段
3・・・検出手段
4,4’・・・演算制御手段
20,20’・・・探傷プローブ
100,100’・・・磁気探傷装置
F・・・きず
P・・・管(被探傷材)

Claims (4)

  1.  被探傷材に対して、検出対象きずの延びる方向に略平行に直流のバイアス磁界を作用させると共に、検出対象きずの延びる方向に略垂直に交流磁界を作用させ、これによって生ずる漏洩磁束に基づいて検出対象きずを検出することを特徴とする磁気探傷方法。
  2.  被探傷材に対して、交流電流を励磁電流として用いることで励磁される回転バイアス磁界を作用させると共に、前記交流電流と同一周波数の第1交流電流と該第1交流電流よりも高周波の第2交流電流とを重畳した重畳交流電流を励磁電流として用いることで励磁され、前記回転バイアス磁界と位相が90°ずれた回転交流磁界を作用させ、これによって生ずる漏洩磁束に基づいてきずを検出することを特徴とする磁気探傷方法。
  3.  被探傷材に対して検出対象きずの延びる方向に略平行に直流のバイアス磁界を作用させる第1磁化手段と、
     被探傷材に対して検出対象きずの延びる方向に略垂直に交流磁界を作用させる第2磁化手段と、
     前記第1磁化手段及び前記第2磁化手段で被探傷材を磁化することによって生ずる漏洩磁束を検出する検出手段と、
    を備えることを特徴とする磁気探傷装置。
  4.  被探傷材に対して、交流電流を励磁電流として用いることで励磁される回転バイアス磁界を作用させる第1回転磁化手段と、
     被探傷材に対して、前記交流電流と同一周波数の第1交流電流と該第1交流電流よりも高周波の第2交流電流とを重畳した重畳交流電流を励磁電流として用いることで励磁され、前記回転バイアス磁界と位相が90°ずれた回転交流磁界を作用させる第2回転磁化手段と、
     前記第1回転磁化手段及び前記第2回転磁化手段で被探傷材を磁化することによって生ずる漏洩磁束を検出する検出手段と、
    を備えることを特徴とする磁気探傷装置。
PCT/JP2012/070723 2011-08-18 2012-08-15 磁気探傷方法及び磁気探傷装置 WO2013024858A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012537618A JP5201495B2 (ja) 2011-08-18 2012-08-15 磁気探傷方法及び磁気探傷装置
US14/238,958 US9291599B2 (en) 2011-08-18 2012-08-15 Magnetic testing method and apparatus
BR112013031968-2A BR112013031968B1 (pt) 2011-08-18 2012-08-15 método e aparelho para testes magnéticos
EP12823776.5A EP2746761B8 (en) 2011-08-18 2012-08-15 Method for magnetic flaw detection and magnetic flaw detector
CN201280040270.4A CN103733060B (zh) 2011-08-18 2012-08-15 磁探伤方法以及磁探伤装置
CA2837283A CA2837283C (en) 2011-08-18 2012-08-15 Magnetic testing method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011178915 2011-08-18
JP2011-178915 2011-08-18

Publications (1)

Publication Number Publication Date
WO2013024858A1 true WO2013024858A1 (ja) 2013-02-21

Family

ID=47715175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070723 WO2013024858A1 (ja) 2011-08-18 2012-08-15 磁気探傷方法及び磁気探傷装置

Country Status (8)

Country Link
US (1) US9291599B2 (ja)
EP (1) EP2746761B8 (ja)
JP (1) JP5201495B2 (ja)
CN (1) CN103733060B (ja)
AR (1) AR087581A1 (ja)
BR (1) BR112013031968B1 (ja)
CA (1) CA2837283C (ja)
WO (1) WO2013024858A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006589A1 (ja) * 2015-07-09 2017-01-12 株式会社日立ハイテクノロジーズ レール検査装置、および、レール検査システム
JP2017125709A (ja) * 2016-01-12 2017-07-20 新日鐵住金株式会社 漏洩磁束探傷装置
JP2017198572A (ja) * 2016-04-28 2017-11-02 株式会社東芝 磁気特性測定用プローブ、磁気特性測定システム、磁気特性測定方法及び劣化評価方法
JP2019211292A (ja) * 2018-06-01 2019-12-12 富士電機株式会社 磁性体の表面応力及び/または硬度評価装置
WO2022185998A1 (ja) * 2021-03-04 2022-09-09 Tdk株式会社 検出装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101552922B1 (ko) * 2013-08-08 2015-09-15 매그나칩 반도체 유한회사 자기 센서 테스트 장치 및 방법
WO2016143088A1 (ja) * 2015-03-11 2016-09-15 三菱電機株式会社 ロープ損傷診断検査装置およびロープ損傷診断検査方法
US11092570B2 (en) * 2017-01-26 2021-08-17 Shimadzu Corporation Magnetic body inspection apparatus and magnetic body inspection method
CN107024534A (zh) * 2017-04-11 2017-08-08 北京工业大学 碳纤维增强复合材料波纹缺陷的全向型涡流自适应扫查系统
MX2021012697A (es) * 2019-04-24 2021-11-12 Jfe Steel Corp Dispositivo de deteccion de defectos de flujo de fugas.
FR3098915B1 (fr) * 2019-07-19 2022-07-29 Framatome Sa Dispositif de contrôle par fuite de flux magnétique et procédé associé
CN111157577A (zh) * 2020-02-13 2020-05-15 四川大学 一种钢管磁化涡流热成像缺陷检测装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250676U (ja) * 1988-10-03 1990-04-09
JPH07253412A (ja) * 1994-03-14 1995-10-03 Nkk Corp 磁粉探傷装置
JPH08152424A (ja) 1994-11-29 1996-06-11 Mitsubishi Heavy Ind Ltd 漏洩磁束探傷装置の磁化ヘッド
JPH08304346A (ja) * 1995-05-10 1996-11-22 Sumitomo Metal Ind Ltd 断面円形材料の漏洩磁束探傷用磁化器
JP2001041932A (ja) 1999-07-27 2001-02-16 Daido Steel Co Ltd 漏洩磁束探傷装置および疵判定方法
JP2008128733A (ja) 2006-11-17 2008-06-05 Sumitomo Metal Ind Ltd 磁気探傷方法及び磁気探傷装置
JP2011002409A (ja) * 2009-06-22 2011-01-06 Hara Denshi Sokki Kk 漏洩磁束探傷装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4602212A (en) * 1982-06-14 1986-07-22 Sumitomo Metal Industries, Ltd. Method and apparatus including a flux leakage and eddy current sensor for detecting surface flaws in metal products
EP0228473B1 (en) * 1985-07-03 1992-01-22 Nippon Steel Corporation Apparatus for non-destructively inspecting flaw of metal materials utilizing magnetic field
JPH0250676A (ja) 1988-08-12 1990-02-20 Toshiba Corp A/d化クランプ回路
US5512821A (en) * 1991-06-04 1996-04-30 Nkk Corporation Method and apparatus for magnetically detecting defects in an object with compensation for magnetic field shift by means of a compensating coil
US5491409A (en) * 1992-11-09 1996-02-13 The Babcock & Wilcox Company Multiple yoke eddy current technique for detection of surface defects on metal components covered with marine growth
US6249119B1 (en) * 1998-10-07 2001-06-19 Ico, Inc. Rotating electromagnetic field defect detection system for tubular goods
US7821258B2 (en) * 2008-01-07 2010-10-26 Ihi Southwest Technologies, Inc. Method and system for generating and receiving torsional guided waves in a structure
DE102008020194A1 (de) * 2008-04-16 2009-10-22 Institut Dr. Foerster Gmbh & Co. Kg Verfahren und Vorrichtung zum Detektieren von oberflächennahen Defekten mittels Streuflussmessung
JP4863127B2 (ja) * 2008-05-15 2012-01-25 住友金属工業株式会社 磁気探傷方法及び磁気探傷装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250676U (ja) * 1988-10-03 1990-04-09
JPH07253412A (ja) * 1994-03-14 1995-10-03 Nkk Corp 磁粉探傷装置
JPH08152424A (ja) 1994-11-29 1996-06-11 Mitsubishi Heavy Ind Ltd 漏洩磁束探傷装置の磁化ヘッド
JPH08304346A (ja) * 1995-05-10 1996-11-22 Sumitomo Metal Ind Ltd 断面円形材料の漏洩磁束探傷用磁化器
JP2001041932A (ja) 1999-07-27 2001-02-16 Daido Steel Co Ltd 漏洩磁束探傷装置および疵判定方法
JP2008128733A (ja) 2006-11-17 2008-06-05 Sumitomo Metal Ind Ltd 磁気探傷方法及び磁気探傷装置
JP2011002409A (ja) * 2009-06-22 2011-01-06 Hara Denshi Sokki Kk 漏洩磁束探傷装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006589A1 (ja) * 2015-07-09 2017-01-12 株式会社日立ハイテクノロジーズ レール検査装置、および、レール検査システム
JP2017020862A (ja) * 2015-07-09 2017-01-26 株式会社日立ハイテクノロジーズ レール検査装置、および、レール検査システム
US10591442B2 (en) 2015-07-09 2020-03-17 Hitachi High-Technologies Corporation Rail check device and rail check system
JP2017125709A (ja) * 2016-01-12 2017-07-20 新日鐵住金株式会社 漏洩磁束探傷装置
JP2017198572A (ja) * 2016-04-28 2017-11-02 株式会社東芝 磁気特性測定用プローブ、磁気特性測定システム、磁気特性測定方法及び劣化評価方法
JP2019211292A (ja) * 2018-06-01 2019-12-12 富士電機株式会社 磁性体の表面応力及び/または硬度評価装置
WO2022185998A1 (ja) * 2021-03-04 2022-09-09 Tdk株式会社 検出装置

Also Published As

Publication number Publication date
AR087581A1 (es) 2014-04-03
JPWO2013024858A1 (ja) 2015-03-05
EP2746761B8 (en) 2019-08-21
CA2837283C (en) 2017-07-18
BR112013031968B1 (pt) 2020-11-03
CN103733060B (zh) 2016-08-31
EP2746761B1 (en) 2019-05-15
US9291599B2 (en) 2016-03-22
US20140191751A1 (en) 2014-07-10
CA2837283A1 (en) 2013-02-21
EP2746761A1 (en) 2014-06-25
JP5201495B2 (ja) 2013-06-05
EP2746761A4 (en) 2015-03-25
BR112013031968A2 (pt) 2016-12-20
CN103733060A (zh) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5201495B2 (ja) 磁気探傷方法及び磁気探傷装置
JP4905560B2 (ja) 渦流計測用センサ、及び、渦流計測用センサによる検査方法
JP6060278B2 (ja) 鋼板の内部欠陥検出装置及び方法
JP6289732B2 (ja) ロープ損傷診断検査装置およびロープ損傷診断検査方法
JP2013205024A (ja) 交番磁場を使用した非破壊検査用検出器
JP2012002705A (ja) 渦流計測用センサ及び渦流計測方法
JP2006177952A (ja) 渦電流プローブ、検査システム及び検査方法
JP2009204342A (ja) 渦電流式試料測定方法と渦電流センサ
JP2011047736A (ja) オーステナイト系ステンレス鋼溶接部の検査方法
JP2012093095A (ja) 非破壊検査装置及び非破壊検査方法
JP2009002681A (ja) 周期運動する永久磁石と振動コイルを備えた磁気測定装置
JP2013170910A (ja) 浸炭深さ測定方法及び装置
JP2014066688A (ja) 渦流探傷プローブ、渦流探傷装置
JP5721475B2 (ja) 強磁性鋼管の渦流探傷用内挿プローブ
Horai et al. Flux-focusing eddy current sensor with magnetic saturation for detection of water pipe defects
JP2016197085A (ja) 磁気探傷方法
JP4193181B2 (ja) 鋼管の磁気探傷用磁化装置
JP2017090185A (ja) 渦電流探傷プローブ及び渦電流探傷装置
JP2009287981A (ja) 渦電流探傷装置と渦電流探傷方法
JP5978661B2 (ja) 電磁気探傷用プローブ
JP2012184931A (ja) 鋼板における組織分率の測定方法
RU103926U1 (ru) Электромагнитный преобразователь к дефектоскопу
JP5668511B2 (ja) 渦流計測用センサ及び渦流計測方法
RU2672978C1 (ru) Способ обнаружения дефектов в длинномерном ферромагнитном объекте
JP5134997B2 (ja) 渦電流探傷プローブ及び渦電流探傷装置並びに渦電流探傷方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012537618

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12823776

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2837283

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2012823776

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14238958

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013031968

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013031968

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131212