WO2013021724A1 - 四輪駆動車両の駆動力制御装置 - Google Patents

四輪駆動車両の駆動力制御装置 Download PDF

Info

Publication number
WO2013021724A1
WO2013021724A1 PCT/JP2012/065020 JP2012065020W WO2013021724A1 WO 2013021724 A1 WO2013021724 A1 WO 2013021724A1 JP 2012065020 W JP2012065020 W JP 2012065020W WO 2013021724 A1 WO2013021724 A1 WO 2013021724A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
drive
torque
vehicle
wheels
Prior art date
Application number
PCT/JP2012/065020
Other languages
English (en)
French (fr)
Inventor
竜一 村上
次郎 原
ハイルディン ノール
雄亮 阪口
直治 高谷
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to US14/237,602 priority Critical patent/US9389616B2/en
Priority to EP12822685.9A priority patent/EP2743115A4/en
Priority to CA2844803A priority patent/CA2844803C/en
Priority to CN201280038533.8A priority patent/CN103717431B/zh
Priority to JP2013527921A priority patent/JP5816286B2/ja
Publication of WO2013021724A1 publication Critical patent/WO2013021724A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D17/00Control of torque; Control of mechanical power
    • G05D17/02Control of torque; Control of mechanical power characterised by the use of electric means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • B60K23/08Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
    • B60K23/0808Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K28/00Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions
    • B60K28/10Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the vehicle 
    • B60K28/16Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the vehicle  responsive to, or preventing, skidding of wheels
    • B60K28/165Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the vehicle  responsive to, or preventing, skidding of wheels acting on elements of the vehicle drive train other than the propulsion unit and brakes, e.g. transmission, clutch, differential
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/348Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed
    • B60K17/35Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed including arrangements for suppressing or influencing the power transfer, e.g. viscous clutches
    • B60K17/3505Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed including arrangements for suppressing or influencing the power transfer, e.g. viscous clutches with self-actuated means, e.g. by difference of speed
    • B60K17/351Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed including arrangements for suppressing or influencing the power transfer, e.g. viscous clutches with self-actuated means, e.g. by difference of speed comprising a viscous clutch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/20Steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/20Steering systems
    • B60W2510/207Oversteer or understeer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle

Definitions

  • the present invention controls the driving force distributed to either the front wheel or the rear wheel, thereby controlling the driving force of a four-wheel drive vehicle in which one of the front wheel and the rear wheel is a main driving wheel and the other is a sub driving wheel. Relates to the device.
  • Some conventional four-wheel drive vehicles include, for example, an electronically controlled driving force control device as shown in Patent Documents 1 and 2.
  • the four-wheel drive vehicle shown in Patent Documents 1 and 2 controls the driving force distributed to the rear wheels by a drive distribution device arranged between the front wheels and the rear wheels, so that the front wheels are the main drive wheels and the rear wheels are the auxiliary wheels. It is a driving wheel.
  • This driving force control device includes control means (FI / AT • ECU) for controlling the engine and the automatic transmission, and the engine speed, intake pipe internal pressure, intake air input to the FI / AT • ECU.
  • the total driving force of the vehicle is calculated based on the FI information such as the amount, and the AT information such as the gear stage and the torque converter ratio, and the setting is made so that the driving torque of the rear wheel appropriate for the driving mode at that time is output. ing. Furthermore, by detecting the idling state of the front wheels (main drive wheels) with wheel speed sensors, etc., and performing control (differential rotation control) to increase the output torque of the four-wheel drive, the running performance on snow and on rough roads is secured. In addition, the clutch is protected by reducing the slip of the clutch.
  • the drive force distribution ratio of the front and rear wheels is determined based on information such as the estimated drive force of the engine and the steering angle (steering angle) of the vehicle.
  • the driving force (4WD control amount) determined and distributed to the rear wheels (sub driving wheels) is set.
  • the driving force distribution control based on the determination of the driving force distribution ratio of the front and rear wheels as described above is not performed.
  • the driving force control device that does not set the control amount to the rear wheel (sub driving wheel) based on the front / rear distribution ratio as described above, the driving force distribution to the rear wheel according to the traveling state of the vehicle is appropriately There is a possibility that it cannot be performed.
  • the frictional force of the tire acts not only in the direction of travel of the vehicle (front-rear direction) but also in the direction intersecting the direction of travel (lateral direction).
  • the grip limit value in the (driving / braking) direction decreases. As a result, the wheel is likely to slip.
  • the present invention has been made in view of the above points, and its purpose is to appropriately control the driving force distributed to the auxiliary driving wheels, so that excessive understeer or oversteer occurs in a situation not intended by the driver.
  • An object of the present invention is to provide a driving force control device for a four-wheel drive vehicle that can avoid this.
  • the present invention for solving the above problems includes a driving force transmission path (20) for transmitting the driving force from the driving source (3) to the front wheels (Wf, Wf) and the rear wheels (Wr, Wr), and the driving force transmission.
  • a four-wheel drive vehicle (1) comprising: a drive distribution device (10) disposed between a front wheel (Wf, Wf) or a rear wheel (Wr, Wr) and a drive source (3) in the route (20). , By controlling the driving force distributed to either the front wheels (Wf, Wf) or the rear wheels (Wr, Wr) by the drive distribution device (10), the front wheels (Wf, Wf) and the rear wheels (Wr, Wr) are controlled.
  • the drive distribution device (10) uses the sub drive wheel (Wr, Wr).
  • Four-wheel drive torque calculation means (50) for calculating four-wheel drive torque for distribution to The four-wheel drive torque calculating means (50) is an upper limit of the four-wheel drive torque to be distributed to the auxiliary drive wheels (Wr, Wr) based on the estimated drive force (61) of the vehicle and the steering angle (83) of the vehicle. Control is performed to limit the value.
  • the upper limit value of the four-wheel drive torque distributed to the auxiliary drive wheels (Wr, Wr) is determined in advance based on the estimated drive force (61) value of the vehicle and the steering angle (83) value of the vehicle.
  • This is a search value obtained by searching the prepared upper limit value restriction map, and the search value becomes larger as the estimated driving force (61) of the vehicle is larger, and the absolute value of the steering angle (83) of the vehicle is larger. It is good to have the tendency to become small value, so that it becomes large.
  • the drive force control device for a four-wheel drive vehicle when the four-wheel drive torque to be distributed to the sub drive wheels is calculated by the drive distribution device, it is based on the estimated drive force and the steering angle of the vehicle. Control for limiting the upper limit value of the four-wheel drive torque is performed. As a result, the upper limit value of the four-wheel drive torque can be appropriately limited based on the estimated drive force of the vehicle and the steering angle of the vehicle. Therefore, for example, even in a road surface situation where it is difficult to properly estimate the friction coefficient of the road surface based on the four-wheel wheel speed, excessive oversteer or excessive control amount due to excessive control amount to the sub drive wheels. It is possible to effectively prevent excessive understeering due to the occurrence of a situation unintended by the driver.
  • the vehicle when it is recognized that the wheels are slipping with the estimated driving force of the vehicle being relatively small, the vehicle is traveling on a road surface (low ⁇ road surface) having a relatively low friction coefficient. Assuming that the four-wheel drive torque to be distributed to the auxiliary drive wheels is low, it is possible to perform control that keeps the four-wheel drive torque low. Further, even in a situation where the steering angle at which oversteering is likely to occur is relatively large, it is possible to perform control such that the four-wheel drive torque distributed to the sub drive wheels is kept low. As a result, it is possible to effectively prevent the distribution amount of the four-wheel drive torque to the auxiliary drive wheels from becoming excessive in a situation where the vehicle turns when traveling on a low ⁇ road surface. . Accordingly, it is possible to avoid the occurrence of excessive oversteer unintended by the driver.
  • symbol in said parenthesis shows the code
  • the driving force control apparatus for a four-wheel drive vehicle it is possible to avoid the occurrence of excessive understeer and oversteer unintended by the driver by appropriately controlling the driving force distributed to the sub drive wheels. become.
  • FIG. 1 It is a figure showing the schematic structure of the four-wheel drive vehicle provided with the driving force control device concerning the embodiment of the present invention. It is a block diagram which shows the main logic of four-wheel drive torque calculation. It is a graph which shows an example of the map for an upper limit search used for torque limit control of four-wheel drive torque. 4 is a graph showing changes in four-wheel wheel speed, estimated driving force, four-wheel driving torque (indicated value), steering rudder angle, and yaw rate when torque limit control of four-wheel driving torque is not performed and when it is performed.
  • FIG. 1 is a diagram showing a schematic configuration of a four-wheel drive vehicle including a driving force control device according to an embodiment of the present invention.
  • a four-wheel drive vehicle 1 shown in the figure has an engine (drive source) 3 mounted horizontally in the front portion of the vehicle, an automatic transmission 4 installed integrally with the engine 3, and a driving force from the engine 3.
  • a driving force transmission path 20 for transmitting the front wheels Wf, Wf and the rear wheels Wr, Wr is provided.
  • the output shaft (not shown) of the engine 3 includes an automatic transmission 4, a front differential (hereinafter referred to as “front differential”) 5, and left and right front wheels Wf that are main drive wheels via left and right front drive shafts 6 and 6. , Wf. Further, the output shaft of the engine 3 is an auxiliary drive wheel via an automatic transmission 4, a front differential 5, a propeller shaft 7, a rear differential unit (hereinafter referred to as “rear differential unit”) 8, and left and right rear drive shafts 9, 9. It is connected to certain left and right rear wheels Wr, Wr.
  • the rear differential unit 8 is connected with a rear differential (hereinafter referred to as “rear differential”) 11 for distributing driving force to the left and right rear drive shafts 9, and a driving force transmission path from the propeller shaft 7 to the rear differential 11.
  • a front-rear torque distribution clutch 10 for cutting is provided.
  • the front-rear torque distribution clutch 10 is a hydraulic clutch and is a drive distribution device for controlling the drive force distributed to the rear wheels Wr and Wr in the drive force transmission path 20.
  • the 4WD • ECU 50 to be described later controls the driving force distributed to the rear wheels Wr, Wr by the front / rear torque distribution clutch 10 so that the front wheels Wf, Wf are the main driving wheels and the rear wheels Wr, Wr are the auxiliary driving wheels. Drive control is performed.
  • the four-wheel drive vehicle 1 is provided with FI / AT • ECU 30, VSA • ECU 40, 4WD • ECU 50 which are control means for controlling the drive of the vehicle.
  • a left front wheel speed sensor S1 that detects the wheel speed of the left front wheel Wf based on the rotation speed of the left front drive shaft 6 and a wheel speed of the right front wheel Wf based on the rotation speed of the right front drive shaft 6 are detected.
  • the right front wheel speed sensor S2, the left rear wheel speed sensor S3 that detects the wheel speed of the left rear wheel Wr based on the rotation speed of the left rear drive shaft 9, and the rotation speed of the right rear drive shaft 9.
  • a right rear wheel speed sensor S4 that detects the wheel speed of the right rear wheel Wr is provided.
  • These four wheel speed sensors S1 to S4 detect the wheel speeds VW1 to VW4 of the four wheels, respectively.
  • the detection signals of the wheel speeds VW1 to VW4 are sent to the VSA • ECU 40.
  • the four-wheel drive vehicle 1 includes a steering angle sensor S5 that detects the steering angle of the steering wheel 15, a yaw rate sensor S6 that detects the yaw rate of the vehicle body, a lateral acceleration sensor S7 that detects the lateral acceleration of the vehicle body, A vehicle speed sensor S8 for detecting the vehicle body speed (vehicle speed) of the vehicle is provided. Detection signals from the steering angle sensor S5, yaw rate sensor S6, lateral acceleration sensor S7, and vehicle speed sensor S8 are sent to the 4WD ECU 50.
  • the FI / AT • ECU 30 is a control means for controlling the engine 3 and the automatic transmission 4 and includes a microcomputer (not shown) including a RAM, a ROM, a CPU, an I / O interface, and the like. Yes.
  • the FI / AT • ECU 30 includes a detection signal of the throttle opening (or accelerator opening) Th detected by the throttle opening sensor (or accelerator opening sensor) S9, and the engine rotation detected by the engine speed sensor S10.
  • Several Ne detection signals, a shift position detection signal detected by the shift position sensor S11, and the like are sent.
  • the FI / AT • ECU 30 stores an engine torque map that describes the relationship between the engine speed Ne, the intake air amount, and the engine torque estimated value Te, and the intake inflow amount detected by the air flow meter, An estimated value Te of the engine torque is calculated based on the engine speed Ne detected by the engine speed sensor S10.
  • the VSA / ECU 40 functions as an ABS (Antilock Braking System) to prevent wheel lock during braking by performing anti-lock control of the left and right wheels Wf, Wf and Wr, Wr, Control means with functions as TCS (Traction Control System) to prevent wheel slipping and functions as a side-slip suppression system during turning, and control of vehicle behavior by controlling the above three functions Is to do.
  • the VSA • ECU 40 is configured by a microcomputer, similar to the FI / AT • ECU 30 described above.
  • the 4WD • ECU 50 is composed of a microcomputer, like the FI / AT • ECU 30 and the VSA • ECU 40.
  • the 4WD • ECU 50, the FI / AT • ECU 30 and the VSA • ECU 40 are connected to each other. Accordingly, the 4WD • ECU 50 is connected to the FI / AT • ECU 30 and the VSA • ECU 40 through serial communication with detection signals from the wheel speed sensors S1 to S4, the shift position sensor S10, etc., information on the estimated engine torque Te, etc. Is entered.
  • the 4WD • ECU 50 distributes to the rear wheels Wr and Wr, as will be described later, based on the control program stored in the ROM and the flag values and the calculated values stored in the RAM in accordance with the input information.
  • the driving force hereinafter referred to as “four-wheel driving torque”
  • the corresponding hydraulic pressure supply amount to the front-rear torque distribution clutch 10 are calculated, and the drive signal based on the calculation result is calculated as the front-rear torque distribution clutch. 10 is output.
  • FIG. 2 is a block diagram for explaining the calculation procedure (main logic) of the four-wheel drive torque by the 4WD • ECU 50.
  • the basic distribution calculation block 71 calculates the basic distribution (basic distribution torque) of the four-wheel drive torque distributed to the rear wheels Wr and Wr.
  • the basic distribution of the four-wheel drive torque is calculated based on the vehicle estimated drive force 61 calculated in advance and the wheel speeds of the left and right front and rear wheels (four-wheel wheel speeds) VW1 to VW4 detected by the wheel speed sensors S1 to S4. Is done.
  • the basic distribution of the four-wheel drive torque can be set so as to increase as the estimated driving force of the vehicle increases, and is set to increase gradually in accordance with the estimated driving force of the vehicle. It is possible.
  • the estimated driving force (estimated driving torque) 61 of the vehicle is calculated based on the estimated value Te of the engine torque calculated by the FI / AT • ECU 30 and the gear ratio determined from the shift position of the transmission.
  • the LSD torque calculation block 72 calculates the differential limiting torque (LSD torque) to be distributed to the rear wheels Wr and Wr.
  • the differential limiting torque is a comparison between the wheel speeds of the front wheels Wf and Wf and the wheel speeds of the rear wheels Wr and Wr, and the friction coefficient of the road surface on which the front wheels Wf and Wf step when the vehicle starts is the rear wheel Wr,
  • the main driving force of the front wheels Wf and Wf is the rear wheel Wr
  • This is the driving torque that is distributed to the rear wheels Wr and Wr according to the wheel speed difference (differential rotation) between the front and rear wheels when the front wheels Wf and Wf slip because they are larger than the auxiliary driving force of Wr.
  • the differential limiting torque is distributed to the rear wheels Wr, Wr via
  • the calculation of the differential limit torque in the LSD torque calculation block 72 is performed by calculating the wheel speed difference (difference) between the front and rear wheels obtained from the estimated driving force 61 and accelerator opening 64 of the vehicle, the shift stage 62 of the transmission, and the four-wheel wheel speed 63. This is performed by searching for a differential limiting torque (indicated value) on a differential limiting torque map (not shown) prepared in advance based on the rotation and the vehicle speed (vehicle speed coefficient). As a result, the differential limiting torque to be distributed to the rear wheels Wr and Wr to eliminate the slip state of the front wheels Wf and Wf is calculated.
  • the extremely low speed LSD torque calculation block 73 calculates the extremely low speed differential limiting torque (very low speed LSD torque).
  • the extremely low speed differential limiting torque can accurately detect the differential rotation of the front and rear wheels, for example, when the wheel is idling near the detection limit of the wheel speed sensor immediately after the start of the vehicle on a low ⁇ road surface. In other words, the differential limiting torque is used in a situation where the normal differential limiting torque cannot be calculated.
  • This extremely low speed differential limiting torque is the difference in wheel speed (difference rotation) between the average value of the wheel speeds VW1, VW2 of the left and right front wheels Wf, Wf and the wheel speed VW3, VW4 of the left and right rear wheels Wr, Wr, whichever is higher. ), The vehicle speed (vehicle speed coefficient) determined from the four-wheel wheel speed 63, and the accelerator opening 64.
  • the climbing control torque is calculated by the climbing control torque calculation block 74. That is, the uphill control torque calculation block 74 is configured to increase the uphill running force on the uphill road based on the vehicle speed (vehicle speed coefficient) determined from the four-wheel wheel speed 63 and the estimated gradient angle 65 calculated from the vehicle acceleration. The uphill control torque distributed to Wr and Wr is calculated.
  • the differential limit torque calculated in the LSD torque calculation block 72 is compared with the extremely low speed differential limit torque calculated in the extremely low speed LSD torque calculation block 73, and the higher one of them is compared. Select a value (high select process).
  • the torque addition block 76 in the previous stage whichever is higher among the basic distribution of the four-wheel drive torque calculated in the basic distribution calculation block 71, the differential limiting torque selected in the high selection block 75, and the extremely low speed differential limiting torque.
  • the driving torques of the two are added together to calculate the total value.
  • the first torque limiting block 77 controls the upper limit value of the four-wheel drive torque based on the estimated driving force of the vehicle and the vehicle steering angle (steering angle) detected by the steering angle sensor S5 (hereinafter referred to as this). (Referred to as “torque limit control”).
  • torque limit control controls the upper limit value of the four-wheel drive torque based on the estimated driving force of the vehicle and the vehicle steering angle (steering angle) detected by the steering angle sensor S5 (hereinafter referred to as “torque limit control”).
  • torque limit control is a graph showing an example of an upper limit search map used for the torque limit control.
  • an upper limit value search map for searching for the upper limit value Tmax of the four-wheel drive torque as shown in FIG. 3 is prepared in advance.
  • This upper limit value search map is a three-dimensional map showing the distribution of the upper limit value Tmax of the four-wheel drive torque corresponding to the value ⁇ of the steering angle 83 and the value Tr of the estimated driving force 61.
  • the upper limit value Tmax of the four-wheel drive torque in the upper limit value search map becomes larger as the value Tr of the estimated driving force 61 becomes larger, and becomes smaller as the absolute value of the steering angle ⁇ becomes larger. Has a trend.
  • the four wheels on the upper limit value search map shown in FIG. 3 based on the value Tr of the estimated driving force 61 of the vehicle and the value ⁇ of the steering angle 83.
  • the upper limit value Tmax of the driving torque is searched.
  • This search value Tmax is input to the first torque limit block 77.
  • control is performed to limit the four-wheel drive torque T1 input from the torque addition block 76 with the search value Tmax.
  • the value T1 of the four-wheel drive torque calculated by the torque addition block 76 is compared with the search value Tmax of the upper limit value search map, and the lower value is selected (low select process). .
  • the drive torque (low select value) limited by the first torque limit block 77 and the uphill control torque calculated by the uphill control torque calculation block 74 are added, and the total value is calculated. To do.
  • the torque limit necessary for protection of each mechanism on the path through which the four-wheel drive torque is transmitted such as the rear differential 11, with respect to the total value of the four-wheel drive torque calculated by the torque addition block 78 ( (Protective torque control).
  • the total value of the four-wheel drive torque calculated by the torque addition block 78 is compared with a predetermined upper limit value of the four-wheel drive torque necessary for protecting the rear differential 11 and the like, and the four-wheel drive torque is calculated.
  • a process (high cut process) for cutting an amount exceeding the upper limit value is performed.
  • the target value (target four-wheel drive torque) 80 of the four-wheel drive torque is calculated.
  • the 4WD • ECU 50 calculates the hydraulic pressure supply amount to the front / rear torque distribution clutch 10 corresponding to the target four-wheel drive torque 80 calculated in the above procedure, and sends a drive signal based on the calculation result to the front / rear torque distribution clutch 10. Output.
  • the fastening force of the front / rear torque distribution clutch 10 is controlled, and the drive torque distributed to the rear wheels Wr and Wr is controlled.
  • the four-wheel drive torque to be distributed to the rear wheels (sub drive wheels) Wr and Wr by the front and rear torque distribution clutch (drive distribution device) 10 is calculated.
  • control is performed to limit the upper limit value of the four-wheel drive torque based on the estimated drive force and steering angle of the vehicle.
  • the upper limit value of the four-wheel drive torque can be appropriately limited based on the estimated drive force and the steering angle of the vehicle. Therefore, for example, even in a road surface situation where it is difficult to properly estimate the friction coefficient of the road surface based on the four-wheel wheel speed, excessive oversteer or excessive control amount due to excessive control amount to the sub drive wheels. It is possible to effectively prevent excessive understeering due to the occurrence of a situation unintended by the driver.
  • FIG. 4 shows (i) four wheels (right front wheel, left front wheel, right rear wheel, left) when the above torque limit control is not performed ((a) in the same figure) and when (torque (b) in the same figure) is performed. It is a graph which shows the change of each of a rear-wheel) wheel speed, (ii) Estimated driving force of a vehicle, (iii) Four-wheel drive torque (instruction value), (iv) Steering angle and yaw rate. As shown in the figure, when the torque limit control of (b) is performed, the four-wheel drive torque exceeding the upper limit is cut as compared to the case of not performing the torque limit control of (a). It is in a state.
  • the yaw rate follows the steering angle by causing excessive torque to act on the rear wheels Wr and Wr due to an increase in the four-wheel drive torque. Without oversteering.
  • the torque limit control (b) when the torque limit control (b) is performed, it is possible to prevent an excessive torque from acting on the rear wheels Wr and Wr by suppressing an increase in the four-wheel drive torque.
  • the yaw rate follows and is close to neutral steer.
  • a tendency that variations in the wheel speeds of four wheels are suppressed is smaller than when torque limit control is not performed.
  • the upper limit value of the four-wheel drive torque is limited by the search value of the upper limit value search map shown in FIG. 3, so that the wheels slip while the estimated driving force of the vehicle is relatively small. If it is recognized that the vehicle is traveling on a road surface with a relatively low friction coefficient (low ⁇ road surface), control is performed to keep the four-wheel drive torque distributed to the rear wheels Wr and Wr low. Is possible. Further, even in a situation where the steering angle where steering is likely to occur is relatively large, it is possible to perform control so as to keep the four-wheel drive torque distributed to the rear wheels Wr and Wr low.
  • the upper limit value of the four-wheel drive torque is limited based on the estimated drive force and the steering angle of the vehicle, so that the control amount to the rear wheels Wr and Wr is excessive. Therefore, it is possible to avoid the occurrence of excessive oversteering due to or excessive understeering due to insufficient control amount in situations not intended by the driver.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)
  • Arrangement And Mounting Of Devices That Control Transmission Of Motive Force (AREA)

Abstract

副駆動輪へ配分する駆動力を適切に制御することで、運転者が意図しない状況で過度のアンダーステアやオーバーステアが発生することを回避できる四輪駆動車両の駆動力制御装置を提供する。 前後トルク配分用クラッチ10によって後輪Wr,Wrに配分する駆動力を制御することで、前輪Wf,Wfを主駆動輪とし後輪Wr,Wrを副駆動輪とする制御を行う四輪駆動車両の駆動力制御装置において、駆動配分装置10で後輪Wr,Wrに配分するための四輪駆動トルクを算出する際、車両の推定駆動力と車両の操舵角とに基づいて当該四輪駆動トルクの上限値を制限する制御を行うようにした。これにより、後輪Wr,Wrの制御量過大による過度のオーバーステアや制御量過小による過度のアンダーステアが運転者の意図しない状況で発生することを回避できるようになる。

Description

四輪駆動車両の駆動力制御装置
 本発明は、前輪と後輪のいずれかに配分する駆動力を制御することで、前輪と後輪のいずれか一方を主駆動輪とし他方を副駆動輪とする四輪駆動車両の駆動力制御装置に関する。
 従来の四輪駆動車両では、例えば、特許文献1,2に示すように、電子制御式の駆動力制御装置を搭載したものがある。特許文献1,2に示す四輪駆動車両は、前輪と後輪との間に配置した駆動配分装置によって後輪に配分する駆動力を制御することで、前輪を主駆動輪とし後輪を副駆動輪とするものである。この駆動力制御装置は、エンジン及び自動変速機を制御するための制御手段(FI/AT・ECU)を備えており、FI/AT・ECUに入力されるエンジン回転数、吸気管内圧、吸入空気量などのFI情報や、ギヤ段、トルコン比などのAT情報に基づいて車両の総駆動力を算出し、そのときの走行モードに適切な後輪の駆動トルクを出力するような設定が行われている。さらに、車輪速センサーなどで前輪(主駆動輪)の空転状態を検出して、四輪駆動の出力トルクを増加させる制御(差回転制御)を行うことで、雪上や悪路における走破性能を確保すると共に、クラッチのスリップを減少させてクラッチの保護を行っている。
特許第4082548号公報 特許第4082549号公報
 上記のような副駆動輪へ任意のトルクを配分する四輪駆動車両では、エンジンの推定駆動力や車両の操舵角(ステアリング舵角)などの情報に基づいて、前後輪の駆動力配分比を決定し、後輪(副駆動輪)に配分する駆動力(4WD制御量)を設定するようになっている。これに対して、より簡易な構造の四輪駆動車両の制御装置などにおいては、上記のような前後輪の駆動力配分比の決定に基づいた駆動力配分制御を行わず、通常の走行状態では前輪(主駆動輪)のみに駆動力を伝達して走行し、必要な場合にのみ後輪に駆動力を配分するような駆動力制御を行うものがある。
 しかしながら、上記のような前後配分比に基づいた後輪(副駆動輪)への制御量設定を行わない駆動力制御装置においては、車両の走行状態に応じた後輪への駆動力配分を適切に行うことができないおそれがある。例えば、車両の旋回中は、タイヤの摩擦力が車両の進行方向(前後方向)だけでなく進行方向に対して交差する方向(横方向)にも作用するため、直進中と比較して、前後(駆動・制動)方向のグリップ限界値が低下する。そのため、車輪にスリップが生じ易くなる。また、乾いたアスファルト路面から凍結路面など様々な状況の路面の摩擦係数(路面μ)に対して適切な後輪への制御量の設定を行うためには、現在走行している路面の摩擦係数を適切に把握することが必要となる。しかしながら、乾いたアスファルト路面など摩擦係数の高い路面を走行している状態(グリップ走行状態)では、4輪車輪速に応じて路面の摩擦係数の推定を適正に行うことは困難である。そのため、4輪車輪速から推定した路面の摩擦係数に基づいて後輪の制御量(後輪への駆動力伝達量)を定めると、後輪の制御量が過大になったり過小になったりするおそれがある。これにより、後輪の制御量過大による過度のオーバーステアや制御量過小による過度のアンダーステアが運転者の意図しない状況で発生する可能性があるという問題がある。
 本発明は上述の点に鑑みてなされたものであり、その目的は、副駆動輪へ配分する駆動力を適切に制御することで、過度のアンダーステアやオーバーステアが運転者の意図しない状況で発生することを回避できる四輪駆動車両の駆動力制御装置を提供することにある。
 上記課題を解決するための本発明は、駆動源(3)からの駆動力を前輪(Wf,Wf)及び後輪(Wr,Wr)に伝達する駆動力伝達経路(20)と、駆動力伝達経路(20)における前輪(Wf,Wf)又は後輪(Wr,Wr)と駆動源(3)との間に配置された駆動配分装置(10)と、を備えた四輪駆動車両(1)において、駆動配分装置(10)により前輪(Wf,Wf)と後輪(Wr,Wr)のいずれかに配分する駆動力を制御することで、前輪(Wf,Wf)と後輪(Wr,Wr)のいずれか一方を主駆動輪(Wf,Wf)とし他方を副駆動輪(Wr,Wr)とする駆動力制御装置であって、駆動配分装置(10)により副駆動輪(Wr,Wr)に配分するための四輪駆動トルクを算出する四輪駆動トルク算出手段(50)を備え、四輪駆動トルク算出手段(50)は、車両の推定駆動力(61)と車両の操舵角(83)とに基づいて副駆動輪(Wr,Wr)に配分する四輪駆動トルクの上限値を制限する制御を行うことを特徴とする。
 またこの場合、副駆動輪(Wr,Wr)に配分する四輪駆動トルクの上限値は、車両の推定駆動力(61)の値と車両の操舵角(83)の値とに基づいて、予め用意した上限値制限用マップを検索した検索値であり、当該検索値は、車両の推定駆動力(61)の値が大きい程大きな値となり、かつ、車両の操舵角(83)の絶対値が大きくなる程小さな値となる傾向を有しているとよい。
 本発明にかかる四輪駆動車両の駆動力制御装置によれば、駆動配分装置により副駆動輪に配分するための四輪駆動トルクを算出する際、車両の推定駆動力と操舵角とに基づいて当該四輪駆動トルクの上限値を制限する制御を行うようにした。これにより、車両の推定駆動力と車両の操舵角とに基づいて四輪駆動トルクの上限値を適切に制限することが可能となる。したがって、例えば、4輪車輪速に基づいて路面の摩擦係数の推定を適正に行うことが困難な路面状況などであっても、副駆動輪への制御量過大による過度のオーバーステアや制御量過小による過度のアンダーステアが運転者の意図しない状況で発生することを効果的に防止できるようになる。
 具体的には、例えば、車両の推定駆動力が比較的に小さな状態で車輪にスリップが生じていると認められる場合には、摩擦係数の比較的に低い路面(低μ路面)を走行しているものと想定して、副駆動輪に配分する四輪駆動トルクを低く抑えるような制御が可能となる。また、オーバーステアが発生し易い操舵角が比較的に大きな状況においても、副駆動輪に配分する四輪駆動トルクを低く抑えるような制御が可能となる。これらによって、低μ路面を走行している場合に車両が旋回するような状況において、副駆動輪への四輪駆動トルクの配分量が過剰になることを効果的に防止することが可能となる。したがって、運転者の意図しない過度のオーバーステアの発生を回避できるようになる。
 なお、上記の括弧内の符号は、後述する実施形態における構成要素の符号を本発明の一例として示したものである。
 本発明にかかる四輪駆動車両の駆動力制御装置によれば、副駆動輪へ配分する駆動力を適切に制御することで、運転者の意図しない過度のアンダーステアやオーバーステアの発生を回避できるようになる。
本発明の実施形態にかかる駆動力制御装置を備えた四輪駆動車両の概略構成を示す図である。 四輪駆動トルク算出のメインロジックを示すブロック図である。 四輪駆動トルクのトルクリミット制御に用いる上限値検索用マップの一例を示すグラフである。 四輪駆動トルクのトルクリミット制御を行わない場合と行う場合の4輪車輪速、推定駆動力、四輪駆動トルク(指示値)、ステアリング舵角及びヨーレートの変化を示すグラフである。
 以下、添付図面を参照して本発明の実施形態を詳細に説明する。図1は、本発明の実施形態にかかる駆動力制御装置を備えた四輪駆動車両の概略構成を示す図である。同図に示す四輪駆動車両1は、車両の前部に横置きに搭載したエンジン(駆動源)3と、エンジン3と一体に設置された自動変速機4と、エンジン3からの駆動力を前輪Wf,Wf及び後輪Wr,Wrに伝達するための駆動力伝達経路20とを備えている。
 エンジン3の出力軸(図示せず)は、自動変速機4、フロントディファレンシャル(以下「フロントデフ」という)5、左右のフロントドライブシャフト6,6を介して、主駆動輪である左右の前輪Wf,Wfに連結されている。さらに、エンジン3の出力軸は、自動変速機4、フロントデフ5、プロペラシャフト7、リアデファレンシャルユニット(以下「リアデフユニット」という)8、左右のリアドライブシャフト9,9を介して副駆動輪である左右の後輪Wr,Wrに連結されている。
 リアデフユニット8には、左右のリアドライブシャフト9,9に駆動力を配分するためのリアデファレンシャル(以下、「リアデフ」という。)11と、プロペラシャフト7からリアデフ11への駆動力伝達経路を接続・切断するための前後トルク配分用クラッチ10とが設けられている。前後トルク配分用クラッチ10は、油圧式のクラッチであり、駆動力伝達経路20において後輪Wr,Wrに配分する駆動力を制御するための駆動配分装置である。後述する4WD・ECU50は、この前後トルク配分用クラッチ10で後輪Wr,Wrに配分する駆動力を制御することで、前輪Wf,Wfを主駆動輪とし、後輪Wr,Wrを副駆動輪とする駆動制御を行うようになっている。
 すなわち、前後トルク配分用クラッチ10が解除(切断)されているときには、プロペラシャフト7の回転がリアデフ11側に伝達されず、エンジン3のトルクがすべて前輪Wf,Wfに伝達されることで、前輪駆動(2WD)状態となる。一方、前後トルク配分用クラッチ10が接続されているときには、プロペラシャフト7の回転がリアデフ11側に伝達されることで、エンジン3のトルクが前輪Wf,Wfと後輪Wr,Wrの両方に配分されて四輪駆動(4WD)状態となる。
 また、四輪駆動車両1には、車両の駆動を制御するための制御手段であるFI/AT・ECU30、VSA・ECU40、4WD・ECU50が設けられている。また、左のフロントドライブシャフト6の回転数に基づいて左前輪Wfの車輪速を検出する左前輪速度センサS1と、右のフロントドライブシャフト6の回転数に基づいて右前輪Wfの車輪速を検出する右前輪速度センサS2と、左のリアドライブシャフト9の回転数に基づいて左後輪Wrの車輪速を検出する左後輪速度センサS3と、右のリアドライブシャフト9の回転数に基づいて右後輪Wrの車輪速を検出する右後輪速度センサS4とが設けられている。これら4つの車輪速度センサS1~S4は、4輪の車輪速度VW1~VW4それぞれを検出する。車輪速度VW1~VW4の検出信号は、VSA・ECU40に送られるようになっている。
 また、この四輪駆動車両1には、ステアリングホイール15の操舵角を検出する操舵角センサS5と、車体のヨーレートを検出するヨーレートセンサS6と、車体の横加速度を検出する横加速度センサS7と、車両の車体速度(車速)を検出するための車速センサS8などが設けられている。これら操舵角センサS5、ヨーレートセンサS6、横加速度センサS7、車速センサS8による検出信号は、4WD・ECU50に送られるようになっている。
 FI/AT・ECU30は、エンジン3及び自動変速機4を制御する制御手段であり、RAM、ROM、CPUおよびI/Oインターフェースなどからなるマイクロコンピュータ(いずれも図示せず)を備えて構成されている。このFI/AT・ECU30には、スロットル開度センサ(又はアクセル開度センサ)S9で検出されたスロットル開度(又はアクセル開度)Thの検出信号、エンジン回転数センサS10で検出されたエンジン回転数Neの検出信号、及びシフトポジションセンサS11で検出されたシフトポジションの検出信号などが送られるようになっている。また、FI/AT・ECU30には、エンジン回転数Neと吸入空気量とエンジントルク推定値Teとの関係を記したエンジントルクマップが格納されており、エアフロメータで検出された吸気流入量と、エンジン回転数センサS10で検出されたエンジン回転数Neなどに基づいて、エンジントルクの推定値Teを算出するようになっている。
 VSA・ECU40は、左右前後の車輪Wf,Wf及びWr,Wrのアンチロック制御を行うことでブレーキ時の車輪ロックを防ぐためのABS(Antilock Braking System)としての機能と、車両の加速時などの車輪空転を防ぐためのTCS(Traction Control System)としての機能と、旋回時の横すべり抑制システムとしての機能とを備えた制御手段であって、上記3つの機能をコントロールすることで車両挙動安定化制御を行うものである。このVSA・ECU40は、上記のFI/AT・ECU30と同様に、マイクロコンピュータで構成されている。
 4WD・ECU50は、FI/AT・ECU30及びVSA・ECU40と同様に、マイクロコンピュータで構成されている。4WD・ECU50とFI/AT・ECU30及びVSA・ECU40とは相互に接続されている。したがって、4WD・ECU50には、FI/AT・ECU30及びVSA・ECU40とのシリアル通信により、上記の車輪速度センサS1~S4,シフトポジションセンサS10などの検出信号や、エンジントルク推定値Teの情報などが入力されるようになっている。4WD・ECU50は、これらの入力情報に応じて、ROMに記憶された制御プログラムおよびRAMに記憶された各フラグ値および演算値などに基づいて、後述するように、後輪Wr,Wrに配分する駆動力(以下、これを「四輪駆動トルク」という。)、及びそれに対応する前後トルク配分用クラッチ10への油圧供給量を演算すると共に、当該演算結果に基づく駆動信号を前後トルク配分用クラッチ10に出力する。
 図2は、4WD・ECU50による四輪駆動トルクの算出手順(メインロジック)を説明するためのブロック図である。同図に示すように、四輪駆動トルクの算出では、まず、基本配分算出ブロック71で後輪Wr,Wrに配分する四輪駆動トルクの基本配分(基本配分トルク)を算出する。この四輪駆動トルクの基本配分は、予め算出した車両の推定駆動力61と、車輪速度センサS1~S4で検出した左右前後輪の車輪速(4輪車輪速)VW1~VW4とに基づいて算出される。この四輪駆動トルクの基本配分は、車両の推定駆動力が大きくなる程大きな値となるように設定でき、かつ、車両の推定駆動力に応じて段階的に増加する値となるように設定することが可能である。なお、車両の推定駆動力(推定駆動トルク)61は、上記FI/AT・ECU30で算出したエンジントルクの推定値Teと、トランスミッションのシフトポジションから定まるギヤ比とに基づいて算出される。
 また、この四輪駆動トルクの算出では、LSDトルク算出ブロック72で後輪Wr,Wrに配分すべき差動制限トルク(LSDトルク)を算出する。ここでの差動制限トルクとは、前輪Wf,Wfの車輪速と後輪Wr,Wrの車輪速とを比較し、車両の発進時に前輪Wf,Wfが踏む路面の摩擦係数が後輪Wr,Wrが踏む路面の摩擦係数よりも小さいために前輪Wf,Wfがスリップするような場合、もしくは、四輪が踏む路面の摩擦係数が同等でも、前輪Wf,Wfの主駆動力が後輪Wr,Wrの副駆動力より大きくて前輪Wf,Wfがスリップするような場合に、前後輪の車輪速差(差回転)に応じて後輪Wr,Wrに配分する駆動トルクである。この差動制限トルクが前後トルク配分用クラッチ10及びリアデフ11を介して後輪Wr,Wrに配分されることで、前輪Wf,Wfのスリップ状態が解消される。
 LSDトルク算出ブロック72での差動制限トルクの算出は、車両の推定駆動力61及びアクセル開度64と、トランスミッションのシフト段62と、4輪車輪速63から求まる前後輪の車輪速差(差回転)及び車速(車速係数)とに基づいて、予め用意された差動制限トルクマップ(図示せず)上の差動制限トルク(指示値)を検索することで行われる。これにより、前輪Wf,Wfのスリップ状態解消のために後輪Wr,Wrに配分すべき差動制限トルクが算出される。
 また、四輪駆動トルクの算出では、極低速LSDトルク算出ブロック73で極低速差動制限トルク(極低速LSDトルク)を算出する。極低速差動制限トルクは、例えば、低μ路面での車両の発進直後において車輪速センサの検出限界付近で車輪が空転している場合など、前後輪の差回転を正確に検出することができず、通常の差動制限トルクの算出が行えない状況で用いられる差動制限トルクである。この極低速差動制限トルクは、左右前輪Wf,Wfの車輪速VW1,VW2の平均値と、左右後輪Wr,Wrの車輪速VW3,VW4のいずれか高い方との車輪速差(差回転)と、4輪車輪速63から定まる車速(車速係数)と、アクセル開度64とに基づいて算出される。
 また、四輪駆動トルクの算出では、登坂制御トルク算出ブロック74で登坂制御トルクを算出する。すなわち、登坂制御トルク算出ブロック74は、4輪車輪速63から定まる車速(車速係数)と、車両の加速度から算出した推定勾配角65とに基づいて、登坂路における登坂走行力を高めるべく後輪Wr,Wrに配分する登坂制御トルクを算出する。
 ハイセレクトブロック75では、LSDトルク算出ブロック72で算出した差動制限トルクと、極低速LSDトルク算出ブロック73で算出した極低速差動制限トルクとを比較して、それらのうちいずれか高い方の値を選択(ハイセレクト処理)する。
 また、前段のトルク加算ブロック76では、基本配分算出ブロック71で算出した四輪駆動トルクの基本配分と、ハイセレクトブロック75で選択した差動制限トルクと極低速差動制限トルクのうちいずれか高い方の駆動トルクとを加算してその合計値を算出する。
 第1トルク制限ブロック77では、車両の推定駆動力と操舵角センサS5で検出した車両の操舵角(ステアリング舵角)とに基づいて、四輪駆動トルクの上限値を制限する制御(以下、これを「トルクリミット制御」という。)を行う。以下、このトルクリミット制御について説明する。図3は、当該トルクリミット制御に用いる上限値検索用マップの一例を示すグラフである。上記のトルクリミット制御では、予め図3に示すような四輪駆動トルクの上限値Tmaxを検索するための上限値検索用マップを用意する。この上限値検索用マップは、ステアリング舵角83の値θと推定駆動力61の値Trに対応する四輪駆動トルクの上限値Tmaxの分布を示す三次元マップである。この上限値検索用マップにおける四輪駆動トルクの上限値Tmaxは、推定駆動力61の値Trが大きい程大きな値となり、かつ、ステアリング舵角θの絶対値が大きくなる程小さな値となるような傾向を有している。
 そして、図2に示す制御量上限値検索ブロック85において、車両の推定駆動力61の値Trとステアリング舵角83の値θとに基づいて、図3に示す上限値検索用マップ上の四輪駆動トルクの上限値Tmaxを検索する。この検索値Tmaxが第1トルク制限ブロック77に入力される。第1トルク制限ブロック77では、当該検索値Tmaxでトルク加算ブロック76から入力された四輪駆動トルクT1を制限する制御を行う。具体的には、トルク加算ブロック76で算出した四輪駆動トルクの値T1と、上限値検索用マップの検索値Tmaxとを比較して、いずれか低い方の値を選択(ローセレクト処理)する。
 後段のトルク加算ブロック78では、第1トルク制限ブロック77で制限された駆動トルク(ローセレクト値)と、登坂制御トルク算出ブロック74で算出した登坂制御トルクとを加算して、その合計値を算出する。
 第2トルク制限ブロック79では、トルク加算ブロック78で算出した四輪駆動トルクの合計値に対して、リアデフ11など四輪駆動トルクが伝達される経路上の各機構の保護に必要なトルク制限(保護トルク制御)を行う。具体的には、トルク加算ブロック78で算出した四輪駆動トルクの合計値と、予め定めたリアデフ11などの保護に必要な四輪駆動トルクの上限値とを比較して、四輪駆動トルクの合計値が当該上限値よりも大きい場合、当該上限値を超える分をカットする処理(ハイカット処理)を行う。以上により、四輪駆動トルクの目標値(目標四輪駆動トルク)80が算出される。
 4WD・ECU50は、上記の手順で算出した目標四輪駆動トルク80に対応する前後トルク配分用クラッチ10への油圧供給量を演算し、当該演算結果に基づく駆動信号を前後トルク配分用クラッチ10に出力する。これによって前後トルク配分用クラッチ10の締結力を制御し、後輪Wr,Wrに配分する駆動トルクを制御する。
 以上説明したように、本実施形態の四輪駆動車両1では、前後トルク配分用クラッチ(駆動配分装置)10により後輪(副駆動輪)Wr,Wrに配分するための四輪駆動トルクを算出する際、車両の推定駆動力と操舵角とに基づいて当該四輪駆動トルクの上限値を制限する制御を行うようにした。これにより、車両の推定駆動力と操舵角とに基づいて四輪駆動トルクの上限値を適切に制限することが可能となる。したがって、例えば、4輪車輪速に基づいて路面の摩擦係数の推定を適正に行うことが困難な路面状況などであっても、副駆動輪への制御量過大による過度のオーバーステアや制御量過小による過度のアンダーステアが運転者の意図しない状況で発生することを効果的に防止できるようになる。
 図4は、上記のトルクリミット制御を行わない場合(同図(a))と、行う場合(同図(b))における、(i)4輪(右前輪、左前輪、右後輪、左後輪)車輪速、(ii)車両の推定駆動力、(iii)四輪駆動トルク(指示値)、(iv)ステアリング舵角及びヨーレートそれぞれの変化を示すグラフである。同図に示すように、(b)のトルクリミット制御を行う場合には、(a)のトルクリミット制御を行わない場合と比較して、上限値を越える分の四輪駆動トルクがカットされた状態になっている。そして、(a)のトルクリミット制御を行わない場合には、四輪駆動トルクの増加によって後輪Wr,Wrに過大なトルクが作用した状態となることで、ステアリング舵角に対してヨーレートが追従せず、オーバーステアの状態が生じている。これに対して、(b)のトルクリミット制御を行う場合には、四輪駆動トルクの増加を抑制することで後輪Wr,Wrに過大なトルクが作用せずに済むので、ステアリング舵角に対してヨーレートが追従して、ニュートラルステアに近い状態になっている。また、同図のグラフでは、トルクリミット制御を行う場合には、トルクリミット制御を行わない場合と比較して、4輪車輪速のバラつきも少なく抑えられている傾向が見受けられる。
 すなわち、図3に示した上限値検索用マップの検索値で四輪駆動トルクの上限値を制限するようにしたことで、車両の推定駆動力が比較的に小さな状態で車輪にスリップが生じていると認められる場合には、摩擦係数の比較的に低い路面(低μ路面)を走行しているものと想定して、後輪Wr,Wrに配分する四輪駆動トルクを低く抑えるような制御が可能となる。また、オーバーステアが発生し易いステアリング舵角が比較的に大きな状況においても、後輪Wr,Wrに配分する四輪駆動トルクを低く抑えるような制御が可能となる。これらによって、低μ路面を走行している場合に車両が旋回するような状況において、後輪Wr,Wrへの四輪駆動トルクの配分量が過剰になることを効果的に防止することが可能となる。したがって、運転者の意図しない過度のオーバーステアの発生を回避できるようになる。
 このように、本実施形態の四輪駆動車両1では、車両の推定駆動力と操舵角とに基づいて四輪駆動トルクの上限値を制限することで、後輪Wr,Wrへの制御量過大による過度のオーバーステアや制御量過小による過度のアンダーステアが運転者の意図しない状況で発生することを回避できるようになる。
 以上、本発明の実施形態を説明したが、本発明は、上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。

Claims (2)

  1.  駆動源からの駆動力を前輪及び後輪に伝達する駆動力伝達経路と、
     前記駆動力伝達経路における前記前輪又は前記後輪と前記駆動源との間に配置された駆動配分装置と、を備えた四輪駆動車両において、前記駆動配分装置により前記前輪と前記後輪のいずれかに配分する駆動力を制御することで、前記前輪と前記後輪のいずれか一方を主駆動輪とし他方を副駆動輪とする駆動力制御装置であって、
     前記駆動配分装置により前記副駆動輪に配分するための四輪駆動トルクを算出する四輪駆動トルク算出手段を備え、
     前記四輪駆動トルク算出手段は、車両の推定駆動力と車両の操舵角とに基づいて前記副駆動輪に配分する前記四輪駆動トルクの上限値を制限する制御を行う
    ことを特徴とする四輪駆動車両の駆動力制御装置。
  2.  前記副駆動輪に配分する四輪駆動トルクの上限値は、前記車両の推定駆動力の値と車両の操舵角の値とに基づいて、予め用意した上限値制限用マップを検索した検索値であって、
     前記検索値は、前記車両の推定駆動力の値が大きい程大きな値となり、かつ、前記車両の操舵角の絶対値が大きくなる程小さな値となる傾向を有している
    ことを特徴とする請求項1に記載の四輪駆動車両の駆動力制御装置。
PCT/JP2012/065020 2011-08-10 2012-06-12 四輪駆動車両の駆動力制御装置 WO2013021724A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/237,602 US9389616B2 (en) 2011-08-10 2012-06-12 Driving force control device for four-wheel-drive vehicle
EP12822685.9A EP2743115A4 (en) 2011-08-10 2012-06-12 DRIVE FORCE CONTROL DEVICE FOR A FOUR-WHEEL DRIVE VEHICLE
CA2844803A CA2844803C (en) 2011-08-10 2012-06-12 Driving force control device for four-wheel-drive vehicle
CN201280038533.8A CN103717431B (zh) 2011-08-10 2012-06-12 四轮驱动车辆的驱动力控制装置
JP2013527921A JP5816286B2 (ja) 2011-08-10 2012-06-12 四輪駆動車両の駆動力制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011175445 2011-08-10
JP2011-175445 2011-08-10

Publications (1)

Publication Number Publication Date
WO2013021724A1 true WO2013021724A1 (ja) 2013-02-14

Family

ID=47668245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065020 WO2013021724A1 (ja) 2011-08-10 2012-06-12 四輪駆動車両の駆動力制御装置

Country Status (6)

Country Link
US (1) US9389616B2 (ja)
EP (1) EP2743115A4 (ja)
JP (1) JP5816286B2 (ja)
CN (1) CN103717431B (ja)
CA (1) CA2844803C (ja)
WO (1) WO2013021724A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022528178A (ja) * 2019-04-08 2022-06-08 華為技術有限公司 車両トルク処理方法および装置、車両コントローラ、ならびに車両

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6412678B2 (ja) * 2012-12-06 2018-10-24 株式会社ジェイテクト 駆動力伝達制御装置
KR101655663B1 (ko) * 2015-04-07 2016-09-22 현대자동차주식회사 E-4wd 하이브리드 자동차의 전/후륜 토크 분배 제어 방법
JP6380468B2 (ja) * 2016-06-21 2018-08-29 マツダ株式会社 四輪駆動車の制御装置
JP6946630B2 (ja) * 2016-10-04 2021-10-06 株式会社ジェイテクト 駆動力伝達装置の制御装置及び路面状態判定装置
JP6787060B2 (ja) * 2016-11-11 2020-11-18 株式会社ジェイテクト 駆動力制御装置及び車両の制御方法
CN110023129B (zh) * 2016-12-13 2022-04-22 本田技研工业株式会社 扭矩分配装置的控制装置
CN106828116B (zh) * 2017-02-27 2023-11-24 北京东风电器有限公司 四轮驱动交流电传动铰接式卡车电控装置及差速控制方法
JP6601743B2 (ja) * 2017-04-06 2019-11-06 株式会社Subaru 車両の前後輪差動制限装置の制御装置
JP7259217B2 (ja) * 2018-06-07 2023-04-18 株式会社ジェイテクト 4輪駆動車の制御装置
JP2020048296A (ja) * 2018-09-18 2020-03-26 本田技研工業株式会社 4輪駆動車両の制御システム及び4輪駆動車両の制御方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04154437A (ja) * 1990-10-19 1992-05-27 Toyota Motor Corp 四輪駆動車の駆動力制御装置
JPH0794206B2 (ja) * 1985-08-30 1995-10-11 マツダ株式会社 4輪駆動車の伝達トルク制御装置
JP2011057154A (ja) * 2009-09-14 2011-03-24 Hitachi Automotive Systems Ltd 車両制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4082548B2 (ja) 2000-03-29 2008-04-30 本田技研工業株式会社 四輪駆動車両の駆動力制御装置
JP4082549B2 (ja) 2000-04-06 2008-04-30 本田技研工業株式会社 四輪駆動車両の駆動力制御装置
JP3863457B2 (ja) * 2002-04-26 2006-12-27 株式会社ジェイテクト 4輪駆動車の駆動力配分制御装置及び駆動力配分方法
JP4267495B2 (ja) * 2004-03-31 2009-05-27 本田技研工業株式会社 4輪駆動車両の駆動力制御方法
JP4554252B2 (ja) * 2004-03-31 2010-09-29 本田技研工業株式会社 4輪駆動車両の制御方法
US7434646B2 (en) * 2005-12-15 2008-10-14 Chrysler Llc On-demand four wheel drive system
JP4924002B2 (ja) * 2006-12-14 2012-04-25 株式会社ジェイテクト 駆動力分配装置
DE102008005342B4 (de) * 2007-01-26 2017-02-02 Fuji Jukogyo Kabushiki Kaisha Antriebskraftsteuerungsvorrichtung für ein Fahrzeug
DE102007021732A1 (de) 2007-05-09 2008-11-20 Agco Gmbh Antriebssystem für Fahrzeuge mit mindestens zwei antreibbaren Fahrzeugachsen
JP5146496B2 (ja) * 2010-07-09 2013-02-20 トヨタ自動車株式会社 四輪駆動車の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794206B2 (ja) * 1985-08-30 1995-10-11 マツダ株式会社 4輪駆動車の伝達トルク制御装置
JPH04154437A (ja) * 1990-10-19 1992-05-27 Toyota Motor Corp 四輪駆動車の駆動力制御装置
JP2011057154A (ja) * 2009-09-14 2011-03-24 Hitachi Automotive Systems Ltd 車両制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2743115A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022528178A (ja) * 2019-04-08 2022-06-08 華為技術有限公司 車両トルク処理方法および装置、車両コントローラ、ならびに車両
JP7361791B2 (ja) 2019-04-08 2023-10-16 華為技術有限公司 車両トルク処理方法および装置、車両コントローラ、ならびに車両

Also Published As

Publication number Publication date
EP2743115A1 (en) 2014-06-18
CA2844803A1 (en) 2013-02-14
JP5816286B2 (ja) 2015-11-18
EP2743115A4 (en) 2015-09-23
CA2844803C (en) 2016-09-20
CN103717431A (zh) 2014-04-09
JPWO2013021724A1 (ja) 2015-03-05
CN103717431B (zh) 2016-08-17
US9389616B2 (en) 2016-07-12
US20140297146A1 (en) 2014-10-02

Similar Documents

Publication Publication Date Title
JP5816286B2 (ja) 四輪駆動車両の駆動力制御装置
JP3617680B2 (ja) 4輪駆動車のトラクション制御装置
JP4386171B2 (ja) 4輪駆動車の動力伝達装置
JP5038837B2 (ja) 車両のタックイン防止制御装置
US8244432B2 (en) Road-surface friction-coefficient estimating device
JP5406385B2 (ja) 四輪駆動車両の駆動力制御装置
JP4082549B2 (ja) 四輪駆動車両の駆動力制御装置
BRPI0716679B1 (pt) "dispositivo de pilotagem para a melhoria de motricidade de um veículo"
EP3044058B1 (en) Vehicle control system and method
JP6653085B2 (ja) 車両の駆動力制御装置
US10744875B2 (en) Control device for torque distributor
US9014938B2 (en) Travel control apparatus for four-wheel drive vehicle and travel control method for four-wheel drive vehicle
JP5654424B2 (ja) 四輪駆動車両の駆動力制御装置
JP6520890B2 (ja) 四輪駆動車の挙動制御装置
US10434875B2 (en) Control apparatus for limited-slip differential for front and rear wheels of vehicle
JP4730543B2 (ja) 車両の駆動力分配制御装置
JP6141751B2 (ja) 駆動力配分制御装置
JP2518444B2 (ja) 駆動力配分切換式4輪駆動自動車
JP2005306273A (ja) 車両駆動システム
JP2007113723A (ja) 車輌の駆動力制御装置
JP6521450B2 (ja) 車両の駆動力制御装置
JPH0735130B2 (ja) 四輪駆動車
JPS6378822A (ja) 車両用駆動系クラツチ制御装置
JPH09226406A (ja) 差動制限装置の制御装置
JPH0784141B2 (ja) 四輪駆動車

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822685

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013527921

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2844803

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012822685

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14237602

Country of ref document: US