WO2013018484A1 - ガラス成形体の製造方法 - Google Patents
ガラス成形体の製造方法 Download PDFInfo
- Publication number
- WO2013018484A1 WO2013018484A1 PCT/JP2012/066953 JP2012066953W WO2013018484A1 WO 2013018484 A1 WO2013018484 A1 WO 2013018484A1 JP 2012066953 W JP2012066953 W JP 2012066953W WO 2013018484 A1 WO2013018484 A1 WO 2013018484A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass
- holding member
- ring
- drip
- glass gob
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B7/00—Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
- C03B7/14—Transferring molten glass or gobs to glass blowing or pressing machines
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B11/00—Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
- C03B11/06—Construction of plunger or mould
- C03B11/08—Construction of plunger or mould for making solid articles, e.g. lenses
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B7/00—Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
- C03B7/10—Cutting-off or severing the glass flow with the aid of knives or scissors or non-contacting cutting means, e.g. a gas jet; Construction of the blades used
- C03B7/12—Cutting-off or severing a free-hanging glass stream, e.g. by the combination of gravity and surface tension forces
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2215/00—Press-moulding glass
- C03B2215/02—Press-mould materials
- C03B2215/05—Press-mould die materials
- C03B2215/07—Ceramic or cermets
Definitions
- the present invention relates to a method for producing a glass molded body.
- optical glass elements are digital camera lenses, optical pickup lenses such as DVDs, mobile phone camera lenses, optical communication coupling lenses, illumination lenses, or various types. Widely used as a mirror.
- Such an optical glass element can be manufactured from a glass molded body.
- JP 2010-105881 A Patent Document 1
- a glass gob molten glass lump
- a glass gob is press-molded with an upper mold and a lower mold to produce a glass molded body.
- An object of the present invention is to provide a method for producing a glass molded body capable of producing a highly accurate glass molded body by forming a glass gob with higher quality.
- a method for producing a glass molded body according to one aspect of the present invention is a method for producing a glass molded body using a molding apparatus, the molding apparatus including an outflow nozzle that allows molten glass to flow out, and an open / close state.
- the glass molded body manufacturing method includes the drip-receiving ring from the outflow nozzle in a state where the opening / closing portion is closed.
- the glass gob is dropped from the upper surface of the holding member onto the lower mold by opening the opening / closing part, and the lower mold with respect to the glass gob dropped on the lower mold At least part of the step of supplying the molten glass from the outflow nozzle to the upper surface of the holding member through the inside of the drip ring.
- the vibration generator vibrates the drip ring at a predetermined frequency.
- FIG. 1 is a cross-sectional view showing a molding apparatus 100 used in the method for manufacturing a glass molded body in the embodiment.
- the molding apparatus 100 includes an outflow nozzle 12, a holding member 20, a drip ring 30, a vibration generator 40, a guide ring 50, a lower mold 60, and an upper mold 70.
- the molding apparatus 100 can be used for manufacturing a lens having a diameter of about 40 mm ⁇ to 60 mm ⁇ , for example.
- the inner diameter of the outflow nozzle 12 is, for example, 3 mm.
- the outflow nozzle 12 is suspended from the melting crucible 10.
- a molten glass 80 is stored in the melting crucible 10.
- the temperature of the molten glass 80 is 1300 degreeC, for example.
- a heating device (not shown) is provided around the outflow nozzle 12.
- the outflow nozzle 12 can flow out the molten glass 80 as the molten glass 82 by being heated by the heating device.
- FIG. 2 is a perspective view showing the holding member 20 and the drip pan ring 30.
- the holding member 20 includes a first blade 21 and a second blade 22.
- the material of the first blade 21 and the material of the second blade 22 are, for example, alloys having high heat resistance.
- the opening / closing part 25 is formed by the end face 21E (see FIG. 2) of the first blade 21 and the end face 22E (see FIG. 2) of the second blade 22.
- the first blade 21 is configured to be capable of reciprocating in the direction of the arrow DR1.
- the second blade 22 is configured to reciprocate in the direction of the arrow DR2.
- the holding member 20 is disposed such that the opening / closing part 25 is located below (below) the outflow nozzle 12 (see FIG. 1).
- the drip pan ring 30 is disposed on the upper surface of the holding member 20 (the upper surface 21S of the first blade 21 and the upper surface 22S of the second blade 22).
- the drip ring 30 is arranged so as to straddle the opening / closing part 25.
- the material of the drip ring 30 is, for example, a heat-resistant ceramic.
- the drip ring 30 includes a flange portion 31 and a cylindrical portion 33, and is configured in an annular shape as a whole.
- the cylindrical portion 33 is suspended from the lower surface of the flange portion 31 formed in an annular shape.
- the drip ring 30 is fitted into an opening 44 (see FIG. 1) provided in the plate 42 (see FIG. 1).
- the plate 42 is actually disposed above the holding member 20 so as to face the holding member 20 with a space therebetween as shown in FIG. 1.
- interval (refer the space
- the interval (interval L) is, for example, 0.5 mm to 1.0 mm.
- the vibration generator 40 is provided on the upper surface of the plate 42.
- the vibration generator 40 includes an eccentric weight (not shown) inside.
- the vibration generator 40 generates vibration (for example, ultrasonic vibration) when the eccentric weight is rotationally driven by supply of air or the like.
- the vibration generating device 40 may be composed of a piezoelectric element or a vibrator used for a buzzer.
- the vibration generated by the vibration generating device 40 is transmitted to the drip pan ring 30 through the plate 42.
- the vibration generator 40 vibrates the drip ring 30 at a vibration frequency of 282 Hz to 757 Hz, for example.
- the guide ring 50 is configured in an annular shape as a whole.
- the guide ring 50 is disposed on the lower surface of the holding member 20 (the lower surface 21T of the first blade 21 and the lower surface 22T of the second blade 22).
- the guide ring 50 may be used as necessary. Although details will be described later, the molten glass 82 (see FIG. 1) flowing out from the outflow nozzle 12 (see FIG. 1) is stored inside the guide ring 50 (on the inner peripheral surface 52 side).
- the lower mold 60 is also disposed on the lower surface of the holding member 20 (the lower surface 21T of the first blade 21 and the lower surface 22T of the second blade 22).
- the molding surface 62 of the lower mold 60 is located on the opposite side of the holding member 20 with the guide ring 50 interposed therebetween.
- the material of the lower mold 60 is, for example, a super hard material mainly composed of tungsten carbide.
- Lower mold 60 is heated to a predetermined temperature (for example, about 400 ° C.) by a heating device (not shown).
- the upper mold 70 is disposed at a position away from the melting crucible 10 and the holding member 20. Although details will be described later, press molding is performed by the molding surface 72 of the upper mold 70 and the molding surface 62 of the lower mold 60.
- the material of the upper mold 70 is also a super hard material mainly composed of tungsten carbide, for example.
- the upper mold 70 is also heated to a predetermined temperature (for example, about 400 ° C.) by a heating device (not shown). The temperatures of the lower mold 60 and the upper mold 70 may be the same or different from each other.
- the molding surface 62 and the molding surface 72 may be formed in an aspherical shape, or may be formed in a spherical shape.
- the molding apparatus 100 (see FIG. 1) used in the method for manufacturing a glass molded body in the embodiment is configured as described above.
- FIGS. 3 to 14 each step in the method for manufacturing a glass molded body in the embodiment will be described in order.
- First step ST1 With reference to FIG. 3, first, the opening / closing portion 25 of the holding member 20 is closed. A guide ring 50 and a lower mold 60 are respectively disposed below the opening / closing part 25. In this state, the outflow nozzle 12 is heated. The molten glass 82 flows out in a liquid line shape from the lower end of the outflow nozzle 12 (see arrow AR1). At this time, the vibration generator 40 may vibrate the drip ring 30.
- the molten glass 82 passes from the lower end of the outflow nozzle 12 through the inside of the drip ring 30 to the upper surface of the holding member 20 (the upper surface 21S of the first blade 21 and the upper surface 22S of the second blade 22). To be supplied.
- the molten glass 82 is cooled by contact with the holding member 20.
- the molten glass 82 forms a small glass gob 84 (here, the glass gob 84 is close to the state of the molten glass 82 and is almost melted).
- the vibration generator 40 may vibrate the drip ring 30.
- FIG. 5 is a plan view of the holding member 20 and the drip pan ring 30 as viewed from the outflow nozzle 12 (see FIG. 4 etc.) side.
- the molten glass 82 (see FIG. 4 and the like) continues to be further supplied to the small glass gob 84 formed on the upper surface of the holding member 20.
- the glass gob 84 increases in size by increasing the amount of molten glass inside the drip ring 30. That is, the glass gob grows.
- the glass gob 84 spreads almost radially on the upper surface of the holding member 20 (see arrow AR2).
- the diameter of the outer edge 84 ⁇ / b> E of the glass gob 84 increases substantially concentrically and gradually approaches the inner peripheral surface 32 of the drip pan ring 30.
- the vibration generating device 40 may vibrate the drip pan ring 30.
- FIG. 6 is also a plan view of the holding member 20, the drip pan ring 30 and the like viewed from the outflow nozzle 12 (see FIG. 4 and the like) side.
- the molten glass 82 (see FIG. 4 and the like) continues to be further supplied to the small glass gob 84 formed on the upper surface of the holding member 20.
- the glass gob 84 continues to be increased inside the drip ring 30.
- the vibration generator 40 does not vibrate the drip ring 30 in the previous process, and at least a part 84E1 (arbitrary place) of the outer edge 84E of the glass gob 84 contacts the inner peripheral surface 32 of the drip ring 30. Later, vibration to the drip pan ring 30 may be started.
- the vibration generating device 40 does not vibrate the drip ring 30 in the previous process, and after all the outer edges 84E of the glass gob 84 have contacted the inner peripheral surface 32 of the drip ring 30, the drip ring 30 May begin to vibrate.
- molten glass 82 continues to be further supplied to glass gob 84 formed on the upper surface of holding member 20.
- the glass gob 84 no longer wets and spreads radially (in the direction of the arrow AR2).
- the glass gob 84 As the glass gob 84 is increased, the liquid level of the glass gob 84 gradually increases.
- the outer edge of the glass gob 84 rises along the inner peripheral surface 32 of the drip ring 30 (see arrow AR3).
- the liquid level height H of the glass gob 84 formed on the inner peripheral surface 32 side of the drop receiving ring 30 is 1 mm to 2 mm, for example, without vibrating the drop receiving ring 30 in the previous process. After that, vibration to the drip ring 30 may be started.
- the liquid level height H here is the height from the upper surface of the holding member 20 (the upper surface 21S of the first blade 21 and the upper surface 22S of the second blade 22) to the liquid surface of the glass gob 84.
- molten glass 82 continues to be further supplied to glass gob 84 formed on the upper surface of holding member 20 (see arrow AR1).
- the glass gob 84 is further increased inside the drip ring 30.
- the vibration generator 40 continues to vibrate the drip pan ring 30.
- the vibration generating device 40 vibrates the drip pan ring 30.
- the glass gob 84 repeatedly tries to contact or separate from the inner peripheral surface 32 of the drip pan ring 30 (see arrow AR4).
- the contact between the glass gob 84 and the inner peripheral surface 32 of the drip ring 30 is reduced as compared with the case where the drip ring 30 is not vibrating.
- the vibration generator 40 may continue to vibrate the drip ring 30. Even before and after the glass gob 84 falls, the molten glass 82 is continuously supplied to the glass gob 84. The glass gob 84 continues to be increased.
- molten glass 82 continues to be further supplied to glass gob 84 that has been dropped onto molding surface 62 of lower mold 60 (see arrow AR1).
- the glass gob 84 continues to be increased on the inner side (the inner peripheral surface 52 side) of the guide ring 50.
- the glass gob 84 further increases in size and grows.
- the guide ring 50 may be appropriately provided according to the shape of the molding surface 62 of the lower mold 60 and the like.
- the amount of pressure applied to the glass gob 84 may change over time or may be constant.
- the amount of pressurization is determined according to the size of the glass gob 84 and the like, and it is preferable that the pressurization amount is set so that the glass gob 84 and the entire surface of the molding surface 72 of the upper mold 70 are sufficiently in close contact with each other.
- the glass gob 84 is cooled and solidified until the shape of the molding surface 86 (transfer surface) of the glass gob 84 is maintained even when the pressure applied by the upper mold 70 and the lower mold 60 is released.
- the glass gob 84 is cooled over, for example, several tens of minutes to the vicinity of the glass transition point (Tg). The Thereafter, the pressure on the glass gob 84 is released.
- a glass molded body is obtained from the glass gob 84.
- a molding surface 86 having high molding accuracy is formed on the upper mold 70 side.
- the obtained glass molded body is separated from the upper mold 70 and the lower mold 60 by a predetermined suction means (not shown).
- the molding surface 88 (lower mold 60 side) of the obtained glass molded body is appropriately processed according to the shape of the device to which the glass molded body is attached.
- the manufacturing method of the glass forming body in embodiment is used (implemented) several times.
- the drip pan ring 30 in the molding apparatus 100 is also used a plurality of times.
- the molten glass 82 is supplied to the inside of the drip pan ring 30, and the glass gob 84 (molten glass 82) is separated from the drip pan ring 30 due to the drop of the glass gob 84. Repeated times.
- the liquid level height of the glass gob 84 on the inner peripheral surface 32 side of the drip ring 30 is the same every time.
- the volatilization of the molten glass 82 (adhered matter due to volatilization) tends to adhere to the inner peripheral surface 32 of the drip pan ring 30.
- the glass gob 84 located inside the drip ring 30 is difficult to fall.
- the vibration generating device 40 vibrates the drip ring 30 when the glass gob 84 is increased inside the drip ring 30.
- the glass gob 84 When the drip pan ring 30 vibrates, the glass gob 84 repeatedly tries to contact or separate from the inner peripheral surface 32 of the drip pan ring 30 (see arrow AR4 in FIG. 9). The contact state between the glass gob 84 and the inner peripheral surface 32 of the drip ring 30 is smaller than when the drip ring 30 is not vibrating. As a result, volatilization of the molten glass 82 is difficult to adhere to the inner peripheral surface 32 of the drip pan ring 30.
- the glass gob 84 located inside the drip pan ring 30 is difficult to fall.
- the glass gob 84 is prevented from falling in a tilted state.
- the glass gob 84 comes into contact with the molding surface 62 of the lower mold 60, the glass gob 84 is also prevented from embedding bubbles (bubbles) with the molding surface 62 of the lower mold 60.
- the glass gob 84 can be uniformly (uniformly) cooled by the molding surface 62 of the lower mold 60.
- the occurrence of sink marks on the glass gob 84 on the molding surface 62 of the lower mold 60 is also suppressed. Therefore, according to the manufacturing method of the glass molded object in embodiment, a glass gob with higher quality can be formed and it becomes possible to obtain a highly accurate glass molded object.
- the contact state between the glass gob 84 and the inner peripheral surface 32 of the drip pan ring 30 is smaller than when the drip pan ring 30 is not vibrated.
- the temperature difference between the central portion and the outer peripheral portion in the glass gob 84 is also reduced.
- a glass gob with higher quality can be formed also in this respect, and as a result, a highly accurate glass molded body can be obtained.
- the volatilization of the molten glass 82 is less likely to adhere to the inner peripheral surface 32 of the drip pan ring 30.
- the volatilization of the molten glass 82 is also prevented from being mixed into the glass gob 84 during the next production of the glass molded body. According to the method for producing a glass molded body in the embodiment, a glass gob with higher quality can be formed also in this respect, and as a result, a highly accurate glass molded body can be obtained.
- the vibration to the drip pan ring 30 may be started after the entire outer edge 84E of the glass gob 84 has contacted the inner peripheral surface 32 of the drip pan ring 30. More preferably, after the liquid level height H of the glass gob 84 formed on the inner peripheral surface 32 side of the drip pan ring 30 becomes, for example, 1 mm to 2 mm, vibration to the drip pan ring 30 is started.
- the wetting and spreading of the glass gob 84 can be made uniform, and the contact state between the glass gob 84 and the inner peripheral surface 32 of the drip ring 30 can be made uniform. Not only can the temperature difference near the outer edge of the glass gob 84 be reduced, but the glass gob 84 has a uniform thickness. A glass gob with higher quality can be formed, and as a result, a highly accurate glass molded body can be obtained.
- the glass molded body manufacturing method described above is a glass molded body manufacturing method for manufacturing a glass molded body using a molding apparatus, and the molding apparatus includes an outflow nozzle for discharging molten glass, and a lower portion of the outflow nozzle.
- a holding member disposed on the upper surface of the holding member, an annular drip ring disposed on the upper surface side of the holding member, a vibration generator for vibrating the drip ring, a lower mold disposed on the lower surface side of the holding member, and an upper mold
- a glass gob is formed inside the drip ring by supplying molten glass from the outflow nozzle to the inside of the drip ring and on the upper surface of the holding member, A step of growing the glass gob by increasing the amount, a step of dropping the glass gob on the lower die from the upper surface of the holding member after the amount of the glass gob reaches a predetermined value, and a step for dropping the glass gob on the lower die.
- the vibration generator includes the drip ring. It vibrates at a predetermined frequency.
- the holding member has an opening / closing part that can be opened and closed below the outflow nozzle, receives molten glass in a state in which the opening / closing part is closed, and adopts a configuration in which the glass gob is dropped onto the lower mold by opening the opening / closing part. it can.
- molten glass is supplied from the outflow nozzle onto the upper surface of the holding member, and at least a part of the outer edge of the molten glass that spreads wet on the upper surface of the holding member contacts the inner peripheral surface of the drip ring. After that, the drip pan ring is vibrated.
- molten glass is supplied from the outflow nozzle onto the upper surface of the holding member, and the entire outer edge of the molten glass that spreads wet on the upper surface of the holding member contacts the inner peripheral surface of the drip ring. After that, the drip pan ring is vibrated.
- molten glass is supplied from the outflow nozzle onto the upper surface of the holding member, and the entire outer edge of the molten glass that spreads wet on the upper surface of the holding member contacts the inner peripheral surface of the drip pan ring.
- the drip pan ring is vibrated after the liquid surface height of the molten glass reaches a predetermined value.
- the vibration generating device vibrates the drip ring when the glass gob is dropped onto the lower mold from the upper surface of the holding member by opening the opening / closing part.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Glass Compositions (AREA)
Abstract
Description
図1は、実施の形態におけるガラス成形体の製造方法に用いられる成形装置100を示す断面図である。図1に示すように、成形装置100は、流出ノズル12、保持部材20、滴受リング30、振動発生装置40、ガイドリング50、下型60、および、上型70を備える。成形装置100は、たとえば40mmφ~60mmφ程度のレンズなどの製作に用いられることができる。
(第1工程ST1)
図3を参照して、まず、保持部材20の開閉部25は、閉じられている。開閉部25の下方に、ガイドリング50および下型60がそれぞれ配置されている。この状態で、流出ノズル12が加熱される。溶融ガラス82は、流出ノズル12の下端から液線状に流出する(矢印AR1参照)。この際、振動発生装置40は滴受リング30を振動させていてもよい。
図4を参照して、溶融ガラス82は、流出ノズル12の下端から、滴受リング30の内側を通して、保持部材20の上面(第1ブレード21の上面21Sおよび第2ブレード22の上面22S)上に供給される。溶融ガラス82は、保持部材20との接触によって冷却される。溶融ガラス82は、小さなガラスゴブ84(ここでいうガラスゴブ84は、溶融ガラス82の状態に近く、ほとんどが溶融している)を形成する。この際、振動発生装置40は滴受リング30を振動させていてもよい。
図5は、保持部材20および滴受リング30等を、流出ノズル12(図4等参照)側から見た平面図である。図5に示すように、溶融ガラス82(図4等参照)は、保持部材20の上面に形成された小さなガラスゴブ84に対してさらに供給され続ける。ガラスゴブ84は、滴受リング30の内側において溶融ガラスが増量されることにより、サイズを増す。すなわちガラスゴブが成長する。
図6も、保持部材20および滴受リング30等を、流出ノズル12(図4等参照)側から見た平面図である。図6に示すように、溶融ガラス82(図4等参照)は、保持部材20の上面に形成された小さなガラスゴブ84に対してさらに供給され続ける。ガラスゴブ84は、滴受リング30の内側において増量され続ける。
図7を参照して、溶融ガラス82は、保持部材20の上面に形成されたガラスゴブ84に対してさらに供給され続ける。ガラスゴブ84の外縁の全部が滴受リング30の内周面32に接触した後は、ガラスゴブ84はもはや放射状(矢印AR2方向)には濡れ広がらない。ガラスゴブ84が増量されるに伴って、ガラスゴブ84の液面は徐々に上昇する。ガラスゴブ84の外縁は、滴受リング30の内周面32に沿って上昇する(矢印AR3参照)。
図8を参照して、溶融ガラス82は、保持部材20の上面に形成されたガラスゴブ84に対してさらに供給され続ける(矢印AR1参照)。ガラスゴブ84は、滴受リング30の内側においてさらに増量される。この際、振動発生装置40は、滴受リング30を引続き振動させている。
図10を参照して、滴受リング30の内側においてガラスゴブ84の量が所定の値に達した後、第1ブレード21は矢印DR3方向に後退移動する。第2ブレード22は矢印DR4方向に後退移動する。開閉部25が開かれる。ガラスゴブ84は、保持部材20(第1ブレード21の上面21Sおよび第2ブレード22の上面22S)によって保持されなくなる。ガラスゴブ84は、開閉部25を通して下型60の成形面62上に落下する(矢印AR5参照)。
図11を参照して、溶融ガラス82は、下型60の成形面62上に落下されたガラスゴブ84に対してさらに供給され続ける(矢印AR1参照)。ガラスゴブ84は、ガイドリング50の内側(内周面52側)において増量され続ける。ガラスゴブ84は、さらにサイズを増し、成長する。上述のとおり、ガイドリング50は、下型60の成形面62の形状などに応じて適宜設けられていればよい。
図12を参照して、ガイドリング50の内側においてガラスゴブ84の量が所定の値に達した後、第1ブレード21は矢印DR5方向に前進移動する。第2ブレード22は矢印DR6方向に前進移動する。開閉部25は閉じられる。流出ノズル12からガラスゴブ84への溶融ガラス82の供給は遮断される。流出ノズル12からガラスゴブ84への溶融ガラス82の供給が遮断された後も、溶融ガラス82は流出ノズル12から流出され続けている。
図13を参照して、流出ノズル12からガラスゴブ84への溶融ガラス82の供給が遮断された後、下型60は下降移動する(矢印DR60参照)。下型60を移動させるための手段としては、エアシリンダ、油圧シリンダ、またはサーボモータを用いた電動シリンダ等が利用されるとよい。次述する上型70についても同様である。下型60の下降移動に伴って、ガラスゴブ84はガイドリング50の内周面52から離れる。下型60の成形面62上には、所定の量のガラスゴブ84が形成される。
図14を参照して、下型60の成形面62と上型70の成形面72とが互いに対向するように配置された後、下型60は上昇移動する(矢印DR62参照)。上型70が下降移動してもよく、下型60および上型70の双方が互いに接近するように移動してもよい。下型60の成形面62および上型70の成形面72によって、ガラスゴブ84がプレス成形される。
実施の形態におけるガラス成形体の製造方法が複数回使用(実施)されたとする。この場合、成形装置100における滴受リング30も複数回使用される。滴受リング30においては、滴受リング30の内側に溶融ガラス82が供給されること、および、ガラスゴブ84の落下によって滴受リング30からガラスゴブ84(溶融ガラス82)が離れたりすることが、複数回繰り返される。
Claims (7)
- 成形装置(100)を用いてガラス成形体を製造するガラス成形体の製造方法であって、
前記成形装置は、
溶融ガラス(82)を流出させる流出ノズル(12)と、
開閉可能な開閉部(25)を含み、前記開閉部が前記流出ノズルの下方に配置される保持部材(20)と、
前記保持部材の上面(21S,22S)側に配置される環状の滴受リング(30)と、
前記滴受リングを振動させる振動発生装置(40)と、
前記保持部材の下面(21T,22T)側に配置される下型(60)と、
上型(70)と、を備え、
当該ガラス成形体の製造方法は、
前記開閉部を閉じた状態で、前記流出ノズルから前記滴受リングの内側を通して前記保持部材の前記上面上に前記溶融ガラスを供給することにより、前記滴受リングの内側においてガラスゴブ(84)を形成し、増量して成長させる工程と、
前記ガラスゴブの量が所定の値に達した後、前記開閉部を開くことによって前記保持部材の前記上面上から前記下型上に前記ガラスゴブを落下させる工程と、
前記下型上に落下された前記ガラスゴブに対して前記下型と前記上型とを用いてプレス成形する工程と、を備え、
前記流出ノズルから前記滴受リングの内側を通して前記保持部材の前記上面上に前記溶融ガラスを供給する工程中の少なくとも一部においては、前記振動発生装置は、前記滴受リングを所定の振動数で振動させている、
ガラス成形体の製造方法。 - 前記振動発生装置(40)は、前記流出ノズルから前記保持部材の前記上面上に前記溶融ガラスが供給され、前記保持部材の前記上面上において濡れ広がる前記溶融ガラスの外縁の少なくとも一部が前記滴受リング(30)の内周面に接触した後に、前記滴受リング(30)を振動させる、
請求項1に記載のガラス成形体の製造方法。 - 前記振動発生装置(40)は、前記流出ノズルから前記保持部材の前記上面上に前記溶融ガラスが供給され、前記保持部材の前記上面上において濡れ広がる前記溶融ガラスの外縁の全部が前記滴受リング(30)の内周面に接触した後に、前記滴受リング(30)を振動させる、
請求項1に記載のガラス成形体の製造方法。 - 前記振動発生装置(40)は、前記流出ノズルから前記保持部材の前記上面上に前記溶融ガラスが供給され、前記保持部材の前記上面上において濡れ広がる前記溶融ガラスの外縁の全部が前記滴受リング(30)の内周面に接触し、前記溶融ガラスの液面高さが所定の値となった後に前記滴受リング(30)を振動させる、
請求項1に記載のガラス成形体の製造方法。 - 前記振動発生装置(40)は、前記開閉部が開かれることによって前記保持部材の前記上面上から前記下型上に前記ガラスゴブ(84)を落下させる際にも、前記滴受リング(30)を振動させている、
請求項1に記載のガラス成形体の製造方法。 - 前記下型上に前記ガラスゴブ(84)を落下させた後、前記開閉部を開いた状態で、前記流出ノズルからさらに前記溶融ガラスを前記下型上に供給して増量することにより前記ガラスゴブ(84)を成長させる、
請求項1に記載のガラス成形体の製造方法。 - 前記滴受リング(30)は、前記振動発生装置により超音波振動させられる、
請求項1に記載のガラス成形体の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/236,026 US20140165655A1 (en) | 2011-07-29 | 2012-07-03 | Method For Manufacturing Glass Molding |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011166845 | 2011-07-29 | ||
JP2011-166845 | 2011-07-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013018484A1 true WO2013018484A1 (ja) | 2013-02-07 |
Family
ID=47629016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/066953 WO2013018484A1 (ja) | 2011-07-29 | 2012-07-03 | ガラス成形体の製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20140165655A1 (ja) |
JP (1) | JPWO2013018484A1 (ja) |
WO (1) | WO2013018484A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015111183A1 (ja) * | 2014-01-24 | 2015-07-30 | コニカミノルタ株式会社 | ガラス成形品の製造方法、ガラス成形品、およびガラス成形品の製造装置 |
WO2015151178A1 (ja) * | 2014-03-31 | 2015-10-08 | コニカミノルタ株式会社 | ガラス成形品の製造方法および製造装置 |
JP2021100894A (ja) * | 2019-12-24 | 2021-07-08 | 日本電気硝子株式会社 | ガラス体の製造方法及びガラス体の製造装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105008292B (zh) * | 2013-02-25 | 2018-07-24 | Hoya株式会社 | 研磨用玻璃透镜坯料及其制造方法、光学透镜的制造方法 |
US11912608B2 (en) | 2019-10-01 | 2024-02-27 | Owens-Brockway Glass Container Inc. | Glass manufacturing |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009242186A (ja) * | 2008-03-31 | 2009-10-22 | Ohara Inc | ガラス成形装置、球状ガラス塊製造装置、及び球状ガラス塊製造方法 |
JP2010105871A (ja) * | 2008-10-31 | 2010-05-13 | Ohara Inc | 光学素子の製造方法及び製造装置 |
JP2010235423A (ja) * | 2009-03-31 | 2010-10-21 | Ohara Inc | ガラス成形体の製造方法及びガラス成形装置 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1788037A (en) * | 1928-09-14 | 1931-01-06 | Roy E Swain | Method of delivering glass |
US2382187A (en) * | 1942-08-25 | 1945-08-14 | Stevenson Jordan & Harrison In | Apparatus for treating glass |
US3352658A (en) * | 1964-04-13 | 1967-11-14 | Corning Glass Works | Method of forming charges of molten glass |
US3841859A (en) * | 1970-07-20 | 1974-10-15 | Heye Hermann | Apparatus for feeding gobs of molten vitreous or plastic material into molds of a machine for forming bottles or similar containers |
US4249927A (en) * | 1979-08-01 | 1981-02-10 | Kabushiki Kaisha Ohara Kogaku Garasu Seizosho | Method and apparatus for manufacturing glass products by controlling free flow of low viscosity molten glass |
US5738701A (en) * | 1995-04-05 | 1998-04-14 | Minolta Co., Ltd. | Glass gob production device and production method |
US6442975B1 (en) * | 1996-12-26 | 2002-09-03 | Hoya Corporation | Method of manufacturing thin-plate glass article, method of manufacturing glass substrate for information recording medium, and method of manufacturing magnetic recording medium |
JP2000007360A (ja) * | 1998-06-25 | 2000-01-11 | Canon Inc | ガラス素子の製造方法 |
JP3853622B2 (ja) * | 2001-09-20 | 2006-12-06 | Hoya株式会社 | ガラス成形体の製造方法、プレス成形品の製造方法、ガラス光学素子の製造方法及びガラス成形体の製造装置 |
US8091387B2 (en) * | 2003-03-19 | 2012-01-10 | Hoya Corporation | Method of manufacturing glass articles, method of manufacturing glass gobs, and method of manufacturing optical elements |
US7992412B2 (en) * | 2003-06-27 | 2011-08-09 | Hoya Corporation | Process for producing glass shaped material and process for producing optical element |
KR100839731B1 (ko) * | 2005-01-19 | 2008-06-19 | 호야 가부시키가이샤 | 몰드 프레스 성형 몰드 및 광학소자의 제조방법 |
JP4309859B2 (ja) * | 2005-02-28 | 2009-08-05 | Hoya株式会社 | プレス成形用プリフォームの製造方法および光学素子の製造方法 |
JP5198036B2 (ja) * | 2007-10-26 | 2013-05-15 | 株式会社オハラ | 精密プレス成形用プリフォーム製造装置及び精密プレス成形用プリフォームの製造方法並びに光学素子の製造方法 |
US8931308B2 (en) * | 2011-02-10 | 2015-01-13 | Hoya Corporation | Method of producing glass blank for substrate of information recording medium, substrate for information recording medium, and information recording medium; and manufacturing apparatus for glass blank for substrate of information recording medium |
-
2012
- 2012-07-03 WO PCT/JP2012/066953 patent/WO2013018484A1/ja active Application Filing
- 2012-07-03 US US14/236,026 patent/US20140165655A1/en not_active Abandoned
- 2012-07-03 JP JP2013526787A patent/JPWO2013018484A1/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009242186A (ja) * | 2008-03-31 | 2009-10-22 | Ohara Inc | ガラス成形装置、球状ガラス塊製造装置、及び球状ガラス塊製造方法 |
JP2010105871A (ja) * | 2008-10-31 | 2010-05-13 | Ohara Inc | 光学素子の製造方法及び製造装置 |
JP2010235423A (ja) * | 2009-03-31 | 2010-10-21 | Ohara Inc | ガラス成形体の製造方法及びガラス成形装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015111183A1 (ja) * | 2014-01-24 | 2015-07-30 | コニカミノルタ株式会社 | ガラス成形品の製造方法、ガラス成形品、およびガラス成形品の製造装置 |
WO2015151178A1 (ja) * | 2014-03-31 | 2015-10-08 | コニカミノルタ株式会社 | ガラス成形品の製造方法および製造装置 |
JP2021100894A (ja) * | 2019-12-24 | 2021-07-08 | 日本電気硝子株式会社 | ガラス体の製造方法及びガラス体の製造装置 |
JP7327150B2 (ja) | 2019-12-24 | 2023-08-16 | 日本電気硝子株式会社 | ガラス体の製造方法及びガラス体の製造装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2013018484A1 (ja) | 2015-03-05 |
US20140165655A1 (en) | 2014-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013018484A1 (ja) | ガラス成形体の製造方法 | |
JPWO2013125367A1 (ja) | 鏡筒一体型レンズの製造方法 | |
JP4313753B2 (ja) | ガラス成形体、光学素子それぞれの製造方法、熔融ガラス流出装置およびガラス成形体の製造装置 | |
CN1880249A (zh) | 精密模压成型用预发泡体的制造方法及光学元件的制造方法 | |
JP2002154834A5 (ja) | ||
JP5333437B2 (ja) | ガラスゴブの製造装置及び方法、並びにガラス成形装置及び方法 | |
CN101333064B (zh) | 玻璃成形体的制造方法以及装置 | |
JPH0471853B2 (ja) | ||
JP2010083724A (ja) | レンズの製造方法及びレンズ | |
JP5326773B2 (ja) | ガラス成形体の製造方法 | |
TW200844058A (en) | A manufacturing apparatus of optical device and a method of manufacturing optical device | |
TW200829522A (en) | A group of glass preforms and processes for the production of a group of glass preforms and optical elements | |
CN1939850A (zh) | 玻璃块的制造方法、其制造装置以及光学元件的制造方法 | |
US20120096900A1 (en) | Method of manufacturing glass molding | |
JP2008297159A (ja) | 溶融ガラス滴下ノズル、ガラス成形体の製造方法及びガラス成形体の製造装置 | |
WO2009122949A1 (ja) | 光学素子の製造方法及び光学素子の製造装置 | |
JP2011057515A (ja) | ガラスゴブ及びガラス成形体の製造方法 | |
JP2000302461A (ja) | ガラス素子の成形方法 | |
JP6879181B2 (ja) | ガラス成形体の製造方法 | |
JP2010241614A (ja) | ガラス成形体の製造方法 | |
JP4167610B2 (ja) | ガラス物品の製造方法、及び光学素子の製造方法 | |
JPH0445454B2 (ja) | ||
JP2008297158A (ja) | 溶融ガラス滴下ノズル、ガラス成形体の製造方法及びガラス成形体の製造装置 | |
JP2012086996A (ja) | 成形用型およびガラス成形体の製造方法 | |
JPH01153538A (ja) | 光学素子の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12820800 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013526787 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14236026 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12820800 Country of ref document: EP Kind code of ref document: A1 |