WO2013015157A1 - Device and method for producing substrate - Google Patents

Device and method for producing substrate Download PDF

Info

Publication number
WO2013015157A1
WO2013015157A1 PCT/JP2012/068118 JP2012068118W WO2013015157A1 WO 2013015157 A1 WO2013015157 A1 WO 2013015157A1 JP 2012068118 W JP2012068118 W JP 2012068118W WO 2013015157 A1 WO2013015157 A1 WO 2013015157A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
station
thin film
base substrate
coating station
Prior art date
Application number
PCT/JP2012/068118
Other languages
French (fr)
Japanese (ja)
Inventor
靖仁 中森
礒 圭二
裕司 岡本
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to KR1020187008021A priority Critical patent/KR102061315B1/en
Priority to KR1020147000800A priority patent/KR20140024953A/en
Priority to JP2013525675A priority patent/JP5714110B2/en
Priority to CN201280037448.XA priority patent/CN103718661A/en
Priority to KR1020167009136A priority patent/KR20160044587A/en
Publication of WO2013015157A1 publication Critical patent/WO2013015157A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/15Position of the PCB during processing
    • H05K2203/1563Reversing the PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0091Apparatus for coating printed circuits using liquid non-metallic coating compositions

Definitions

  • the present invention relates to a substrate manufacturing apparatus that forms a thin film on a base substrate by discharging droplets of a thin film material.
  • a technique for forming a thin film pattern on a base substrate by discharging droplets of a thin film pattern forming material (thin film material) from a nozzle hole onto the surface of the base substrate such as a printed wiring board is known.
  • the thin film pattern is, for example, a solder resist pattern.
  • a liquid resin ejecting apparatus that sprays liquid resin directly on a substrate and forms a pattern based on image information of computer graphics is disclosed (for example, see Patent Document 1).
  • a liquid resin injection device described in Patent Literature 1 a thin film pattern can be easily formed.
  • the process can be shortened and the production cost can be reduced as compared with the case where pattern formation is performed by photolithography.
  • a technique that can more easily form a thin film pattern on both sides of a base substrate is desired.
  • the objective of this invention is providing the board
  • a first coating station that applies a liquid thin film material to one surface of the base substrate, and irradiates the thin film material applied to the base substrate with light to cure a surface layer portion of the thin film material;
  • a base substrate coated with a thin film material is carried in at the first coating station, and the thin film material applied to the base substrate is irradiated with light to be cured to the inside of the thin film material, and the front and back sides of the base substrate are reversed.
  • Reversing station A transfer device for transferring a base substrate between the first coating station and the reversing station; A controller for controlling the first coating station, the reversing station, and the transfer device; The control device is provided with a substrate manufacturing apparatus that controls the transfer device to transfer the base substrate processed at the first coating station to the reversal station.
  • a base substrate is carried into a first coating station, and a liquid thin film material is applied to the first surface of the base substrate at the first coating station, and a surface layer of the thin film material applied to the base substrate Curing the part, Removing the base substrate from the first application station and carrying it into a main curing unit, where the main curing unit cures the thin film material applied to the first surface of the base substrate to the inside thereof; , Transporting the base substrate from the main curing unit to a reversing unit, and reversing the front and back of the base substrate in the reversing unit; The base substrate is taken out from the reversing unit, and the base substrate is transported to the first coating station in a state where the base substrate is turned upside down.
  • the first base substrate Applying a liquid thin film material to a second surface opposite to the surface, and curing a surface layer portion of the thin film material applied to the second surface of the base substrate; Transporting the base substrate from the first coating station to the main curing unit, and in the main curing unit, curing the thin film material applied to the second surface of the base substrate to the inside thereof; A substrate manufacturing method is provided.
  • the thin film pattern can be easily formed on the other side.
  • FIG. 1 is a schematic diagram illustrating a substrate manufacturing apparatus according to a first embodiment.
  • FIG. 2A is a schematic view of an alignment apparatus provided in the alignment station
  • FIGS. 2B and 2C are plan views showing a base substrate in the alignment station.
  • 3A and 3B are schematic views of a droplet discharge device provided in a coating station.
  • 4A is a schematic view showing a nozzle unit
  • FIG. 4B is a bottom view showing a droplet discharge surface of the nozzle unit
  • FIG. 4C is a schematic plan view showing an arrangement of nozzle units.
  • 5A to 5D are schematic views of the substrate reversing device and the ultraviolet irradiation device provided in the reversing station.
  • FIGS. 6A, 6C, and 6E are schematic plan views of the substrate holder, and FIGS. 6B, 6D, and 6F are schematic side views of the substrate holder.
  • FIG. 7 is a schematic view of a substrate manufacturing apparatus according to the second embodiment.
  • FIG. 8 is a schematic view of a substrate manufacturing apparatus according to the third embodiment.
  • FIG. 9 is a schematic view of a substrate manufacturing apparatus according to the fourth embodiment.
  • FIG. 10 is a schematic view of a substrate manufacturing apparatus according to the fifth embodiment.
  • FIG. 11 is a schematic diagram of a substrate manufacturing apparatus according to the sixth embodiment.
  • 12A to 12E are schematic views of a reversing station of the substrate manufacturing apparatus according to the seventh embodiment.
  • FIG. 13A to 13D are schematic views of a reversing station of the substrate manufacturing apparatus according to the eighth embodiment.
  • FIG. 14 is a schematic plan view of a coating station of the substrate manufacturing apparatus according to the ninth embodiment.
  • 15A to 15D are schematic plan views in the coating station for explaining a procedure for forming a thin film pattern in the coating station according to the ninth embodiment.
  • 15E to 15H are schematic plan views in the coating station for explaining a procedure for forming a thin film pattern in the coating station according to the ninth embodiment.
  • 16A to 16C are schematic views of a reversing station of the substrate manufacturing apparatus according to the tenth embodiment.
  • 16D to 16F are schematic views of a reversing station of the substrate manufacturing apparatus according to the tenth embodiment.
  • FIG. 17 is a schematic view of a substrate manufacturing apparatus according to the eleventh embodiment.
  • FIG. 18A to FIG. 18C are schematic diagrams for explaining a processing procedure when processing a substrate with the substrate manufacturing apparatus according to the eleventh embodiment.
  • 18D to 18E are schematic diagrams for explaining a processing procedure when a substrate is processed by the substrate manufacturing apparatus according to the eleventh embodiment.
  • 18F to 18G are schematic diagrams for explaining a processing procedure when a substrate is processed by the substrate manufacturing apparatus according to the eleventh embodiment.
  • FIG. 19A is a schematic view of a substrate manufacturing apparatus according to Embodiment 12, and
  • FIG. 19B is a schematic side view of a temporary storage apparatus.
  • 20A to 20C are schematic diagrams for explaining a processing procedure when a substrate is processed by the substrate manufacturing apparatus according to the twelfth embodiment.
  • 20D to 20E are schematic views for explaining a processing procedure when a substrate is processed by the substrate manufacturing apparatus according to the twelfth embodiment.
  • FIG. 21 is a schematic view of a substrate manufacturing apparatus according to the thirteenth embodiment.
  • FIG. 22A, FIG. 22B, and FIG. 22C are schematic views showing first, second, and third examples of the path of the substrate when the second-stage coating station fails, respectively.
  • FIG. 23A, FIG. 23B, and FIG. 23C are schematic views showing first, second, and third examples of substrate paths when the first-stage coating station fails, respectively.
  • FIG. 24A to 24B are schematic diagrams for explaining a processing procedure when processing a substrate by the substrate manufacturing apparatus according to the fourteenth embodiment.
  • FIG. 24C to FIG. 24D are schematic diagrams for explaining a processing procedure when processing a substrate with the substrate manufacturing apparatus according to the fourteenth embodiment.
  • FIG. 25 is a schematic view of a substrate manufacturing apparatus according to the fifteenth embodiment.
  • FIG. 26 is a schematic view of a substrate manufacturing apparatus according to a modification of the fifteenth embodiment.
  • FIG. 1 shows a schematic diagram of a substrate manufacturing apparatus according to the first embodiment.
  • the substrate manufacturing apparatus according to the first embodiment includes an alignment station 2, a coating station 3, a reversing station 4, an alignment station 5, a coating station 6, ultraviolet irradiation apparatuses 8, 9 and a lifter 11 ⁇ disposed inside a housing 18. 14 is included.
  • Substrate carry-in / out ports 1 and 7 are provided in a housing 18 of the substrate manufacturing apparatus.
  • the substrate manufacturing apparatus according to the first embodiment is used for forming a thin film pattern of a solder resist on both surfaces (first surface and second surface) of the base substrates 21 to 27 which are, for example, rectangular printed wiring boards. .
  • a base substrate on which a thin film pattern is not formed may be simply referred to as a “substrate”.
  • the substrate manufacturing apparatus includes conveyors 15 and 16 and a control device 20.
  • the conveyor 15 carries the substrates 21 to 27 from the outside of the housing 18 into the inside.
  • the lifters 11 to 14 transfer the substrates 21 to 27 between the stations in the housing 18.
  • the conveyor 16 carries the substrates 21 to 27 from the inside of the housing 18 to the outside.
  • the substrate is carried in from the substrate carry-in / out port 1 and the substrate is carried out from the substrate carry-in / out port 7.
  • the operation of each device in the housing 18 and the operations of the conveyors 15 and 16 are controlled by the control device 20.
  • the control device 20 includes a storage device 20a.
  • the substrates 21 to 27 are placed on the conveyor 15 and carried into the casing 18 through the carry-in / out entrance 1. At this time, the first surfaces of the substrates 21 to 27 face upward (the positive direction of the Z axis) in the figure.
  • X Define an XYZ Cartesian coordinate system with the vertical direction in the positive direction of the Z axis.
  • five stations from the alignment station 2 to the coating station 6 are sequentially arranged toward the positive direction of the X axis.
  • the substrates 21 to 27 carried into the housing 18 from the carry-in / out entrance 1 are transported in the positive direction of the X axis as a whole via the stations 2 to 6, and from the carry-in / out entrance 7 to the outside of the housing 18. It is carried out to.
  • the substrates 21 to 27 introduced into the housing 18 are transported to the alignment station 2 by the lifter 11.
  • the alignment station 2 alignment marks formed on the surfaces of the substrates 21 to 27 are detected, and alignment (positioning) of the substrates 21 to 27 is performed based on the detection result.
  • Aligned substrates 21 to 27 are transported to the coating station 3 by the lifter 11.
  • a thin film pattern of solder resist is formed on the first surfaces of the substrates 21 to 27.
  • the thin film pattern formed at the coating station 3 is in a state where only the surface layer portion is cured, and the inside of the thin film pattern remains in a liquid state.
  • the phenomenon that only the surface layer is cured is referred to as “temporary curing”, and the phenomenon that cures to the inside is referred to as “main curing”.
  • the substrates 21 to 27 having the thin film pattern formed on the first surface are transferred from the coating station 3 to the reversing station 4 by the lifter 12.
  • the front and back of the substrates 21 to 27 are reversed.
  • the second surfaces of the substrates 21 to 27 face the positive direction of the Z axis.
  • main curing of the thin film pattern formed on the first surfaces of the substrates 21 to 27 is performed.
  • the substrates 21 to 27 whose front and back sides are reversed and the thin film pattern of the first surface is finally cured are transported from the reversing station 4 to the second alignment station 5 by the lifter 13.
  • the second alignment station 5 alignment marks formed on the second surfaces of the substrates 21 to 27 are detected, and the substrates 21 to 27 are aligned based on the detection result.
  • the substrates 21 to 27 are transported from the alignment station 5 to the second coating station 6 by the lifter 13.
  • a solder resist thin film pattern is formed on the second surfaces of the substrates 21 to 27.
  • the substrates 21 to 27 on which the thin film pattern is formed on the second surface are conveyed from the coating station 6 to the conveyor 16 by the lifter 14.
  • the conveyor 16 carries the substrates 21 to 27 out of the housing 18 from the carry-in / out entrance 7.
  • the ultraviolet irradiation device 9 irradiates the entire second surfaces of the substrates 21 to 27 with ultraviolet rays.
  • the thin film pattern formed on the second surfaces of the substrates 21 to 27 is fully cured by the ultraviolet irradiation.
  • the ultraviolet irradiation device 9 moves in the housing 18 so as to pass above the substrates 21 to 27 placed on the conveyor 16.
  • the ultraviolet irradiation device 9 passes above the substrates 21 to 27, the second surfaces of the substrates 21 to 27 are irradiated with ultraviolet rays.
  • the ultraviolet irradiation device 9 applies ultraviolet rays to the substrates 21 to 27. May be configured to be irradiated. Irradiation of ultraviolet rays onto the substrates 21 to 27 is controlled by the control device 20.
  • processing is performed in parallel at each of the alignment station 2, the coating station 3, the reversing station 4, the alignment station 5, and the coating station 6.
  • the first surface of the other substrate 23 is applied in the coating station 3.
  • a thin film pattern is formed.
  • the main curing of the thin film pattern formed on the first surface of the other substrate 24 and the reversal of the front and back of the substrate 24 are performed. Detection of alignment marks formed on the surface and alignment of the substrate 25 are performed.
  • a thin film pattern is formed on the second surface of the other substrate 26.
  • the conveyor 15 carries the other substrate 21 in which the thin film pattern is not formed into the housing 18, and the conveyor 16 carries out the substrate 27 having the thin film pattern formed on both sides from the housing 18.
  • FIG. 2A shows a schematic view of an alignment apparatus provided in the alignment station 2.
  • the alignment apparatus includes a Y stage 32, a ⁇ stage 33, and a chuck plate 34 that are arranged in this order from the base 31 side on a base (base) 31.
  • the chuck plate 34 sucks and holds the substrate 22 transported to the alignment station 2 by the lifter 11 (FIG. 1).
  • the Y stage 32 moves the substrate 22 in the Y axis direction together with the ⁇ stage 33 and the chuck plate 34.
  • the ⁇ stage 33 rotates the substrate 22 together with the chuck plate 34 around an axis parallel to the Z axis.
  • the Y stage 32, the ⁇ stage 33, and the chuck plate 34 are collectively referred to as a “moving stage”. Adsorption of the substrate 22 by the chuck plate 34 and movement of the substrate 22 by the Y stage 32 and the ⁇ stage 33 are controlled by the control device 20.
  • Alignment device includes CCD cameras 35-38.
  • the CCD cameras 35 to 38 image the alignment marks formed on the surface of the substrate 22 held on the chuck plate 34. Imaging by the CCD cameras 35 to 38 is controlled by the control device 20. Further, the image data (detection result) obtained by the CCD cameras 35 to 38 is transmitted to the control device 20.
  • FIG. 2B is a plan view of the moving stage provided in the alignment station 2 and the substrate 22 sucked and held by the chuck plate 34.
  • Alignment marks 22 a to 22 d are formed on the first surface of the substrate 22.
  • the alignment marks 22a to 22d are arranged in the vicinity of the four corners.
  • the substrate 22 transported to the top of the chuck plate 34 by the lifter 11 is sucked and held by the chuck plate 34.
  • the substrate 22 held on the chuck plate 34 is moved in the negative direction of the Y axis in the alignment station 2 by the Y stage 32.
  • FIG. 2B the chuck plate 34 and the substrate 22 after being moved are shown in parentheses.
  • the CCD cameras 35 to 38 are arranged on the negative side of the Y axis with respect to the position of the chuck plate 34 when the substrate 22 is received from the lifter 11.
  • the CCD cameras 35 to 38 have a relative positional relationship so that the alignment marks 22a to 22d can be simultaneously imaged.
  • the substrate 22 is moved below the CCD cameras 35 to 38 by the Y stage 32, and the CCD cameras 35 to 38 image the alignment marks 22a to 22d formed on the first surface of the substrate 22, respectively.
  • the captured image data is transmitted to the control device 20.
  • the control device 20 analyzes the image data acquired by the CCD cameras 35 to 38, and calculates the position of the substrate 22 and the position (posture) in the rotation direction with the axis parallel to the Z axis as the rotation center. Thereafter, the position of the substrate 22 in the rotational direction is corrected.
  • the correction of the position in the rotation direction is called “ ⁇ correction”.
  • FIG. 2B shows, as an example, a case where the substrate 22 is displaced by an angle ⁇ counterclockwise from the target position with respect to the rotation direction of the XY plane.
  • the side connecting the vertex corresponding to the alignment mark 22a and the vertex corresponding to the alignment mark 22d is inclined by an angle ⁇ counterclockwise from the positive direction of the X axis with respect to the latter vertex.
  • the positional deviation is calculated by the control device 20 based on the image data acquired by the CCD cameras 35 to 38.
  • the control device 20 performs ⁇ correction by rotating the ⁇ stage 33 clockwise by an angle ⁇ .
  • FIG. 2C shows a plan view of the chuck plate 34 and the substrate 22 after ⁇ correction.
  • each side of the rectangular substrate 22 is parallel to the X axis or the Y axis.
  • the control device 20 drives the Y stage 32 to move the substrate 22 in the positive direction of the Y axis.
  • the moving distance of the Y stage 32 is equal to the distance of moving the Y stage 32 in the negative direction of the Y axis in the process shown in FIG. 2B.
  • the chuck plate 34 and the substrate 22 after moving in the positive direction of the Y axis are shown in parentheses in FIG. 2C.
  • the substrate 22 subjected to ⁇ correction is transferred from the alignment station 2 to the coating station 3 (FIG. 1) by the lifter 11 (FIG. 1).
  • the lifter 11 maintains the position (posture) in the rotation direction of the substrate 22 after the ⁇ correction by the rotation of the ⁇ stage 33 and conveys it to the coating station 3.
  • the coating station 3 Since the ⁇ correction is completed in the alignment station 2 shown in FIG. 1, the coating station 3 starts forming a thin film pattern on the first surface of the substrate 22 without performing ⁇ correction of the substrate 22. be able to. Compared with the case where ⁇ correction is performed at the coating station 3 and then a thin film pattern is formed, the processing time at the coating station 3 can be shortened. As a result, the tact time can be shortened and the production efficiency can be improved.
  • the substrate 22 may have an elongation strain.
  • the elongation strain is generated, the dimension of the substrate at the time of forming the thin film pattern is different from the design value.
  • the control device 20 calculates the dimensions of the substrate 22 based on the image data acquired by the alignment station 2. Based on the calculated substrate dimensions, ejection control image data used when forming a thin film pattern at the coating station 3 is generated. The generated ejection control image data is stored in the storage device 20a of the control device 20.
  • FIG. 3A and 3B are schematic views of the droplet discharge device 70 provided in the coating station 3 (FIG. 1).
  • the droplet discharge device 70 includes a base (base) 41 installed in a posture parallel to the XY plane, and an X stage 43 sequentially disposed on the base 41 from the base 41 side.
  • a Y stage 44 and a chuck plate 45 are included. The chuck plate 45 sucks and holds the substrate 23 transported to the coating station 3 by the lifter 11 (FIG. 1).
  • the X stage 43 moves the substrate 23 along with the Y stage 44 and the chuck plate 45 in the X-axis direction.
  • the Y stage 44 moves the substrate 23 in the Y axis direction together with the chuck plate 44.
  • the X stage 43, the Y stage 44, and the chuck plate 45 are collectively referred to as a “moving stage”. Adsorption of the substrate 23 by the chuck plate 45 and movement of the substrate 23 by the X stage 43 and the Y stage 44 are controlled by the control device 20.
  • a high-function stage having the functions of the X stage 43, the Y stage 44, and the chuck plate 45 may be used as the moving stage.
  • the frame 42 is fixed to the base 41.
  • the frame 42 includes two struts 42a and 42b and a beam 42c.
  • the support columns 42a and 42b are attached to the center of the base 41 in the Y-axis direction.
  • the beam 42c is supported by the columns 42a and 42b so as to be along the X-axis direction.
  • Nozzle units 47 a to 47 f are supported above the chuck plate 44 by the frame 42.
  • the nozzle units 47a to 47f are supported by the beam 42c of the frame 42 via the connecting member 46.
  • Each of the nozzle units 47a to 47f includes a plurality of nozzle heads and an ultraviolet light source.
  • the nozzle head discharges, for example, droplets of an ultraviolet curable thin film material toward the first surface of the substrate 23 held by the chuck plate 44.
  • the thin film material is discharged while moving the substrate 23 in the Y-axis direction.
  • a thin film pattern having a predetermined planar shape is formed on the first surface of the substrate 23 by the discharged thin film material.
  • the thin film pattern is temporarily cured by the ultraviolet rays emitted from the ultraviolet light source.
  • Image data that defines the planar shape of the thin film pattern to be formed on the first surface of the substrate 23 is stored in the storage device 20a of the control device 20.
  • the pattern definition data is given in, for example, a Gerber format.
  • data indicating the relationship (ejection timing) between the amount of movement of the substrate 23 by the moving stage and the timing of ink ejection from the nozzle head is stored in the storage device 20a.
  • These data are design data given on the assumption that the substrate 23 is not distorted. If the substrate 23 is distorted, this design data cannot be used as it is.
  • the control device 20 generates discharge control image data from these design data based on the image data of the substrate 23 imaged by the alignment station 2 (FIG. 1).
  • the ejection control image data is given, for example, in a raster format.
  • the control device 20 calculates the amount of expansion / contraction of the substrate 23 in the X direction and Y direction from the image data acquired by the alignment station 2.
  • the pattern definition data is corrected according to the amount of expansion and contraction of the substrate 23 in the X direction and the Y direction. Based on the corrected pattern definition data, raster format ejection control image data is generated.
  • the control device 20 Based on the ejection control image data stored in the storage device 20a, the control device 20 applies the thin film material from the nozzle units 47a to 47f so that the thin film material is applied to a predetermined region of the first surface of the substrate 23. And the movement of the substrate 23 by the moving stage is controlled. The thin film material is applied to the first surface of the substrate 23 when the substrate 23 moves along the Y-axis direction and passes vertically below the nozzle units 47a to 47f (the negative direction of the Z-axis).
  • FIG. 3B shows a schematic view of the vicinity of the nozzle units 47a to 47f of the droplet discharge device 70.
  • the nozzle units 47a to 47f have the same configuration, and are fixed to the connecting member 46 at equal intervals along the X-axis direction.
  • the connecting member 46 is attached to the beam 42c of the frame so as to be movable in the Z-axis direction. By moving the connecting member 46 in the Z-axis direction, the distance between the nozzle units 47a to 47f and the substrate 23 can be changed.
  • the movement of the nozzle units 47a to 47f in the Z-axis direction by the connecting member 46 is controlled by the control device 20.
  • the nozzle units 47a to 47f may be directly fixed to the beam 42c of the frame without using the connecting member 46.
  • FIG. 4A shows a perspective view of the nozzle unit 47a.
  • the nozzle unit 47a includes nozzle heads 47a1 to 47a4 and ultraviolet light sources 47a5 to 47a9 that are alternately assembled along the Y-axis direction in the nozzle holder 47ac.
  • Each nozzle head 47a1 to 47a4 includes two nozzle rows arranged along the Y-axis direction.
  • Each nozzle row is constituted by a plurality of, for example, 192 nozzle holes arranged along the X-axis direction.
  • the length along the X-axis direction of each nozzle row is, for example, about 30 mm. For this reason, the length along the X-axis direction of the nozzle unit 47a is also about 30 mm.
  • An ultraviolet curable thin film material is discharged from each nozzle hole.
  • the ultraviolet light sources 47a5 to 47a9 are configured to include, for example, a light emitting diode (LED), and emit light having a wavelength in the ultraviolet region.
  • the ultraviolet curable thin film material discharged from the nozzle holes of the nozzle heads 47a1 to 47a4 to the substrate 23 is temporarily cured by light emitted from the ultraviolet light sources 47a5 to 47a9.
  • the emission of ultraviolet light from the ultraviolet light sources 47a5 to 47a9 is controlled by the control measure 20.
  • FIG. 4B shows a bottom view of the nozzle unit 47a (nozzle heads 47a1 to 47a4).
  • the description of the ultraviolet light sources 47a5 to 47a9 is omitted.
  • each of the nozzle heads 47a1 to 47a4 includes 384 nozzle holes arranged in a zigzag pattern at intervals of 80 ⁇ m in the X-axis direction, and has a resolution corresponding to about 300 dpi.
  • a piezoelectric element is disposed in each nozzle hole, and a thin film material is discharged from the nozzle hole by applying a voltage to the piezoelectric element.
  • Application of voltage to the piezoelectric element is controlled by the control device 20. That is, the discharge of the thin film material is controlled by the control device 20.
  • two nozzle rows are arranged in each of the nozzle heads 47a1 to 47a4. However, the number of nozzle rows may be one or three or more.
  • the nozzle heads 47a1 to 47a4 are arranged along the Y-axis direction as a whole while their relative positions are sequentially shifted in the positive direction of the X-axis. That is, the nozzle head 47a2 is arranged so as to be shifted in the positive direction of the X axis by 20 ⁇ m with respect to the nozzle head 47a1. Similarly, the nozzle heads 47a3 and a4 are arranged so as to be shifted in the positive direction of the X axis by 20 ⁇ m with respect to the nozzle heads 47a2 and a3, respectively.
  • the nozzle unit 47a includes a plurality of nozzle holes arranged at intervals of 20 ⁇ m (resolution corresponding to about 1200 dpi) in the X-axis direction.
  • FIG. 4C shows a schematic plan view of the nozzle units 47a to 47f.
  • each of the nozzle units 47a to 47f has a droplet discharge capability in a range of about 30 mm along the X-axis direction.
  • the plurality of nozzle units 47a to 47f are arranged at equal intervals along the X-axis direction.
  • the distance between adjacent nozzle units 47a to 47f is, for example, about 60 mm.
  • the process in the coating station 3 (FIG. 1) will be described.
  • the lifter 11 transports the substrate 23 and places it on the chuck plate 45 (FIG. 3A). While moving the substrate 23 held by the chuck plate 45 in the negative direction of the Y axis, the odd-numbered row regions (regions marked with circles in FIG. 4C) along the Y axis direction below the nozzle units 47a to 47f.
  • the thin film material is discharged from the nozzle units 47a to 47f toward the landing target position (position where the thin film material is to be applied).
  • the substrate 23 is moved in the positive direction of the X axis by, for example, 10 ⁇ m by the X stage 43 (FIG. 3A).
  • a thin film pattern can be formed with high resolution corresponding to about 2400 dpi.
  • the X stage 43 is driven, and the substrate 23 is moved about 30 mm in the positive direction of the X axis.
  • the substrate 23 is reciprocated in the Y-axis direction by the Y stage 44, and the odd-numbered row region and the even-numbered row region are drawn in the forward path and the backward path, respectively.
  • the same processing is performed once more, and the substrate 23 is reciprocated a total of three times along the Y-axis direction, thereby completing the formation of the thin film pattern on the first surface of the substrate 23.
  • the droplet discharge device 70 shown in FIGS. 3A to 4C includes six nozzle units 47a to 47f.
  • the number of nozzle units is not limited to six.
  • the number of nozzle units may be one.
  • the substrate reversing device 50 includes a substrate holder 51 that holds the substrates 21 to 27 transported to the reversing station 4, and a rod-like support member 52 that supports the substrate holder 51.
  • the substrate holder 51 is composed of a bar-shaped member along the remaining three sides from which one short side is removed from the four sides of the rectangle. A portion along two long sides parallel to each other is referred to as an “arm”, and a portion along one short side is referred to as a “connecting portion”.
  • the support member 52 is connected to the midpoint of the connecting portion and extends in the opposite direction to the two arms.
  • the substrate holder 51 is rotatable about the support member 52 as a rotation axis. The rotation of the substrate holder 51 by the support member 52 is controlled by the control device 20.
  • the ultraviolet irradiation device 60 includes a support member 61 and an ultraviolet light source 62.
  • the support member 61 extends in a direction parallel to the extending direction of the support member 52 of the substrate reversing device 50.
  • the ultraviolet light source 62 includes a lamp or an LED and emits light having a wavelength in the ultraviolet region.
  • the ultraviolet light source 62 has a higher output than the ultraviolet light sources 47a5 to 47a9 (FIG. 4A) included in the nozzle unit.
  • the wavelength of the ultraviolet light emitted from the ultraviolet light source 2 may be the same as or different from the wavelength of the ultraviolet light emitted from the ultraviolet light source of the nozzle unit.
  • the ultraviolet light source 62 is supported by the support member 61 so as to be movable in the extending direction.
  • the control device 20 controls the emission of the ultraviolet light from the ultraviolet light source 62 and the movement of the ultraviolet light source 62 along the support member 61.
  • the substrates 21 to 27 on which the thin film pattern is formed on the first surface at the coating station 3 (FIG. 1), for example, the substrate 24, are transferred to the reversing station 4 by the lifter 12 (FIG. 1).
  • the substrate 24 is placed on the substrate holder 51 by the lifter 12 so that the first surface (the surface on which the thin film pattern is formed) of the substrate 24 faces upward (to face the positive direction of the Z axis).
  • the substrate holder 51 holds the substrate 24 in a fixed manner by suction, pressing, clamping, or the like. That is, the substrate 24 is held so as not to move relative to the substrate holder 51.
  • the control device 20 controls the fixed holding and release of the substrate 24 by the substrate holder 51.
  • the ultraviolet light source 62 is moved along the support member 61 while emitting ultraviolet light from the ultraviolet light source 62.
  • the ultraviolet light source 62 passes over the substrate 24 held by the substrate holder 51, and the ultraviolet light emitted from the ultraviolet light source 62 is at least on the substrate 24.
  • the region where the thin film pattern is spastic, for example, the entire first surface of the substrate 24 is irradiated.
  • the ultraviolet light emitted from the ultraviolet light source 62 is irradiated on the entire first surface of the substrate 24 at an energy density of, for example, 1000 mJ / cm 2 .
  • the main curing of the thin film pattern formed on the first surface of the substrate 24 is performed by irradiation with ultraviolet light.
  • the substrate 24 is irradiated with ultraviolet light at a higher energy density than when the temporary curing is performed.
  • the substrate holder 51 is rotated by 180 ° with the support member 52 as the rotation axis. As a result, the front and back of the substrate 24 held by the substrate holder 51 are reversed.
  • the substrate 24 whose front and back are reversed is conveyed to the alignment station 5 by the lifter 13 (FIG. 1).
  • the substrate 24 is transferred to the coating station 6. Before the transfer by the lifter 13 is performed, the holding of the substrate 24 by the substrate holder 51 is released.
  • FIGS. 6A to 6F show schematic plan views of the substrate holder 51
  • FIGS. 6B, 6D, and 6F show schematic side views of the substrate holder 51.
  • FIG. 6A, 6C, and 6E show schematic plan views of the substrate holder 51
  • FIGS. 6B, 6D, and 6F show schematic side views of the substrate holder 51.
  • FIG. 6A, 6C, and 6E show schematic plan views of the substrate holder 51
  • FIGS. 6B, 6D, and 6F show schematic side views of the substrate holder 51.
  • the substrate holder 51 includes a vacuum suction pad 53 on the surface of the arm.
  • 6A and 6B show an example in which a plurality of vacuum suction pads 53 are formed on the upper surfaces of two arms.
  • the substrate 24 is placed on the vacuum suction pad 53 by the lifter 12 (FIG. 1), and is sucked and held by the substrate holder 51 by the suction force from the vacuum suction pad 53.
  • the substrate holder 51 is provided with a pressing roller 54 extending in parallel with the arms on the two arms.
  • the presser roller 54 moves on the edge of the substrate 24 placed on the upper surface of the substrate holder 51 by the lifter 12 (FIG. 1).
  • the substrate 24 is fixedly held by the substrate holder 51 by being pressed by the pressing roller 54.
  • the substrate holder 51 includes a clamp mechanism 55.
  • the clamp mechanism 55 has a rising portion extending in a direction parallel to the two arms, and bends, for example, 90 ° so that a part (clamp destination) of the clamp mechanism 55 falls inward.
  • the edge of the substrate 24 placed on the substrate holder 51 is sandwiched between the clamp mechanisms 55, the substrate 24 is held by the substrate holder 51.
  • the substrate holder 51 contacts the substrate 24 at a portion where the thin film pattern is not formed.
  • the substrate holder 51 was rotated to reverse the front and back of the substrate 24.
  • the main curing may be performed by irradiating the first surface of the substrate 24 with ultraviolet light from the negative side of the Z-axis. Further, the main curing by the irradiation of ultraviolet light and the inversion of the substrate 24 by the rotation of the substrate holder 51 may be performed in parallel.
  • the ultraviolet light source 62 is rotated in synchronization with the rotation of the substrate 24 so that the first surface of the rotating substrate 24 is irradiated with ultraviolet light having a predetermined intensity.
  • the substrate 24 on which the thin film pattern on the first surface is fully cured and the front and back are reversed is transferred to the alignment station 5 (FIG. 1) by the lifter 13 (FIG. 1).
  • Alignment station 5 has the same configuration and functions as alignment station 2. An alignment mark formed on the second surface opposite to the first surface of the substrate 24 is detected by the CCD camera, and ⁇ correction is performed. Further, from the captured image data, the dimensions of the substrate 24 on which the thin film pattern formation on the first surface is completed are calculated, and the discharge control image data used when forming the thin film pattern on the second surface of the substrate 24 is obtained. Generate a new one. Further, ⁇ correction of the substrate 24 is performed in the alignment station 5.
  • the lifter 13 transports the substrate 24 after the ⁇ correction to the stage of the coating station 6 (FIG. 1) while maintaining the direction of the rotation direction.
  • the coating station 6 has the same configuration and function as the coating station 3. In the coating station 6, a thin film pattern is formed on the second surface of the substrate 24 based on the ejection control image data on the second surface.
  • the image data for ejection control of the second surface can also be created based on the image data acquired by the first alignment station 2.
  • the image data obtained by the alignment station 5 is used only for ⁇ correction, for example.
  • the substrate 24 on which the formation of the thin film pattern on the second surface has been completed is conveyed to the conveyor 16 by the lifter 14 (FIG. 1).
  • the lifter 14 By irradiating the second surface of the substrate 24 placed on the conveyor 16 with the ultraviolet rays emitted from the ultraviolet irradiation device 9, the thin film pattern is fully cured. Thereafter, the substrate 24 is carried out of the housing 18 from the carry-in / out entrance 7 by the conveyor 16.
  • the substrate manufacturing apparatus from the end of the formation of the thin film pattern on the first surface of the substrate 24 at the coating station 3 (FIG. 1) until the substrate 24 is placed on the stage of the coating station 6 (FIG. 1).
  • the thin film pattern formed on the first surface of the substrate 24 is fully cured.
  • the thin film pattern formed on the first surface of the substrate 24 at the coating station 3 is finally cured at the reversing station 4 without coming into contact with anything.
  • tackiness occurs in the thin film pattern.
  • the thin film pattern on the second surface of the substrate 24 is formed without performing the main curing of the thin film pattern on the first surface of the substrate 24, for example, when the substrate 24 is handled by the lifter 13 (FIG. 1)
  • a trace such as a scratch may be formed on the thin film pattern on the first surface.
  • problems may occur in various processes due to tack.
  • the thin film pattern on the second surface of the substrate 24 is fully cured by the ultraviolet light emitted from the ultraviolet irradiation device 9, the thin film on the second surface of the substrate 24 is transported to the outside of the housing 18. It is possible to prevent the pattern from being scratched or imprinted.
  • the non-normal operation time means, for example, a state in which one of the droplet discharge devices disposed in the coating stations 3 and 6 is in failure or maintenance, and only the other coating station can be used.
  • the operation of the substrate manufacturing apparatus during a period in which a problem occurs in the droplet discharge device of the second-stage coating station 6 and a period during which the droplet discharge device is maintained will be described. This operation is realized by control from the control device 20.
  • the processing in the alignment station 2, the coating station 3, and the reversing station 4 for the substrate introduced into the housing 18 is the same as in normal operation. That is, the alignment station 2 detects an alignment mark formed on the first surface of the substrate, and performs ⁇ correction of the substrate based on the detection result. Further, the size of the substrate is calculated based on the image data acquired in the alignment station 2, and the image data for ejection control is generated according to the grasped size.
  • the lifter 11 conveys the substrate to the stage of the coating station 3 while maintaining the position (posture) in the rotation direction of the substrate. In the coating station 3, a thin film pattern is formed on the first surface of the substrate based on the ejection control image data.
  • the lifter 12 transports the substrate from the coating station 3 to the reversing station 4. In the inversion station 4, main curing of the thin film pattern formed on the first surface of the substrate and inversion of the front and back are performed.
  • the substrate on which the thin film pattern on the first surface is fully cured and the front and back are reversed is transferred to the first alignment station 2 by the lifter 12 or 11.
  • the alignment marks formed on the second surface of the substrate are detected by the CCD cameras 35 to 38 (FIG. 2A). Based on the detection result, ⁇ correction of the substrate is performed. Further, the size of the substrate is calculated based on the image data acquired by the CCD cameras 35 to 38, and the image data for controlling discharge of the thin film pattern formed on the second surface of the substrate is generated according to the calculated size. To do.
  • the discharge control image data of the thin film pattern formed on the second surface can be generated based on the image data obtained by imaging the alignment mark on the first surface.
  • the image data obtained by the alignment station 2 after the substrate inversion is used only for ⁇ correction.
  • the substrate subjected to ⁇ correction is transferred to the coating station 3 by the lifter 11.
  • a thin film pattern is formed on the second surface of the substrate by the droplet discharge device based on the discharge control image data of the thin film pattern formed on the second surface.
  • the substrate on which the thin film pattern is formed on the second surface is conveyed to the conveyor 15 by the lifter 11.
  • the conveyor 15 carries the substrate out of the housing 18 from the carry-in / out entrance 1.
  • the substrate carry-in / out port 1 is used for carrying in and carrying out the substrate.
  • the ultraviolet irradiation device 8 irradiates the entire area of the second surface of the substrate with ultraviolet rays, and the thin film pattern formed on the second surface is fully cured.
  • the ultraviolet irradiation device 8 is movable in the housing 18 so as to pass over the substrate placed on the conveyor 15, and irradiates the second surface of the substrate with ultraviolet light while passing over the substrate. .
  • the ultraviolet irradiating device 8 may be fixedly disposed in the housing 18 and the substrate may pass under the ultraviolet irradiating device 8 during the period in which the substrate is conveyed by the conveyor 15. Irradiation of ultraviolet rays onto the substrate is controlled by the control device 20.
  • the first surface and the second surface of the substrate are used by using the droplet discharge device of the first-stage coating station 3 at the time of failure or maintenance of the droplet discharge device of the coating station 6.
  • a thin film pattern is formed on both of the surfaces.
  • the substrates are processed simultaneously in parallel at each of the stations 2 to 4, but the substrate is not parallel at the time of failure or maintenance of the droplet discharge device of the second-stage coating station 6. Processed one by one. For example, after the processing for one substrate is completed and the substrate is unloaded from the housing 18, another substrate is loaded into the housing 18. For this reason, production efficiency is lower during non-normal operation than during normal operation.
  • the substrate can be transported to the conveyor 15 using the lifter 11 after the formation of the thin film pattern at the coating station 3 is completed without forming the thin film pattern on the second surface.
  • the substrate After the formation of the thin film pattern on the first surface, it is possible to perform the main curing of the thin film pattern on the first surface at the reversing station 4 and then transport the substrate to the conveyor 15 using the lifter 12 or 11. .
  • the reversing station 4 may perform not only the main curing of the thin film pattern but also the reversal of the front and back of the substrate.
  • the thin film material is applied using the droplet discharge device of the first-stage coating station 3 when the droplet discharge device of the second-stage coating station 6 fails or when maintenance is performed. At the time of failure or maintenance of the droplet discharge device at the first-stage coating station 3, the thin-film material is applied using the droplet discharge device at the second-stage coating station 6.
  • the conveyor 16 carries the substrate into the housing 18 from the carry-in / out entrance 7.
  • the substrate carry-in / out port 7 is used not only for carrying out the substrate but also for carrying in the substrate.
  • the first surface of the substrate faces the positive direction of the Z axis.
  • the substrate introduced into the housing 18 is transported to the alignment station 5 by the lifter 14 or 13.
  • alignment station 5 an alignment mark formed on the first surface of the substrate is detected.
  • ⁇ correction of the substrate is performed.
  • the size of the substrate is calculated based on the image data acquired in the alignment station 5, and image data for ejection control is generated according to the calculated size.
  • the substrate subjected to ⁇ correction is transported to the stage of the coating station 6 by the lifter 13.
  • a thin film pattern is formed on the first surface of the substrate based on the generated ejection control image data.
  • the substrate is transferred to the reversing station 4 by the lifter 13, and the main curing of the thin film pattern formed on the first surface and the reversing of the front and back are performed.
  • the substrate with the second surface facing the positive direction of the Z-axis is transferred again to the alignment station 5 by the lifter 13.
  • alignment station 5 an alignment mark formed on the second surface of the substrate is detected, and ⁇ correction of the substrate is performed based on the detection result. Further, the size of the substrate is calculated based on the image data acquired by the alignment station 5, and image data for ejection control of the thin film pattern formed on the second surface is generated according to the calculated size.
  • the image data for ejection control of the thin film pattern formed on the second surface can also be created based on the detection result of the alignment mark on the first surface.
  • the substrate subjected to ⁇ correction is transferred to the stage of the coating station 6 by the lifter 13.
  • the thin film pattern is formed on the second surface by the droplet discharge device based on the discharge control image data of the thin film pattern formed on the second surface.
  • the substrate on which the thin film pattern is formed on the second surface is conveyed to the conveyor 16 by the lifter 14.
  • the conveyor 16 carries the substrate out of the housing 18 from the carry-in / out entrance 7.
  • the ultraviolet irradiation device 9 irradiates the entire area of the second surface of the substrate with ultraviolet rays, so that the thin film pattern is fully cured.
  • the substrate to be processed next is loaded into the housing 18.
  • the substrate can be transported to the conveyor 16 using the lifter 14 after the formation of the thin film pattern on the first surface at the coating station 6 without forming the thin film pattern on the second surface.
  • the substrate After the formation of the thin film pattern on the first surface, it is possible to perform the main curing of the thin film pattern on the first surface at the reversing station 4 and then transport the substrate to the conveyor 16 with the lifter 13 or 14. Further, the reversing station 4 may perform not only the main curing of the thin film pattern but also the reversal of the front and back of the substrate.
  • the thin film material is applied using the droplet discharge device of the first-stage coating station 3 when the droplet discharge device of the second-stage coating station 6 fails or when maintenance is performed.
  • the thin film material is coated using the droplet ejection device at the second stage coating station 6. For this reason, the board
  • FIG. 7 shows a schematic diagram of a substrate manufacturing apparatus according to the second embodiment.
  • the alignment stations 2 and 5 do not include an alignment device for performing ⁇ correction.
  • the droplet discharge device of the coating stations 3 and 6 includes a ⁇ stage 49 and CCD cameras 63 to 66.
  • a temporary stage 48 which is an alignment device that performs simple alignment without ⁇ correction is arranged.
  • the substrates 21 to 27 are placed on the temporary stage 48 of the alignment stations 2 and 5 by the lifters 11 and 13.
  • the substrates 21 to 27 are transported to the coating stations 3 and 6 after simple alignment such as pressing against fixing pins.
  • the droplet discharge device of the coating stations 3 and 6 includes a ⁇ stage 49 between the Y stage 44 and the chuck plate 45.
  • the ⁇ stage 49 can rotate the substrates 21 to 27 held by the chuck plate 45 around a straight line parallel to the Z axis.
  • the droplet discharge device includes CCD cameras 63 to 66 that detect alignment marks formed on the surfaces facing upward of the substrates 21 to 27.
  • the substrates 21 to 27 transported to the coating stations 3 and 6 are sucked and held by the chuck plate 45, and the alignment marks on the surface facing upward are detected by the CCD cameras 63 to 66.
  • the detection result, that is, the captured image data is transmitted to the control device 20.
  • the control device 20 analyzes the detection result and calculates the positions of the substrates 21 to 27 in the X and Y directions and the position (posture) in the rotation direction. Based on the calculated result, the ⁇ stage 49 is driven to perform ⁇ correction on the substrates 21 to 27. Further, the control device 20 calculates the sizes of the substrates 21 to 27 based on the detection results of the CCD cameras 63 to 66, and generates ejection control image data according to the calculated sizes.
  • ⁇ correction of the substrates 21 to 27 is not performed at the alignment stations 2 and 5, and ⁇ correction of the substrates 21 to 27 is performed at the coating stations 3 and 6. Further, a thin film pattern is formed on the substrates 21 to 27 based on the generated ejection control image data.
  • the operation of the substrate manufacturing apparatus according to the second embodiment is controlled by the control device 20 as follows.
  • the substrate introduced into the housing 18 from the carry-in / out entrance 1 is placed on the temporary placement stage 48 of the alignment station 2 and subjected to simple alignment. Thereafter, the wafer is conveyed from the alignment station 2 to the chuck plate 45 of the coating station 3.
  • the substrate is held by suction on the chuck plate 45, and the alignment marks on the first surface are detected by the CCD cameras 63-66.
  • the detection result is transmitted to the control device 20.
  • the control device 20 analyzes the detection result and detects the position of the substrate and the posture in the rotation direction. Based on the detection result, ⁇ correction of the substrate is performed. Further, the control device 20 calculates the size of the substrate based on the detection results of the CCD cameras 63 to 66, and generates ejection control image data according to the calculated size. Thereafter, a thin film pattern is formed on the first surface of the substrate based on the generated ejection control image data.
  • the substrate is conveyed to the reversing station 4 by the lifter 12, and the main curing of the thin film pattern formed on the first surface of the substrate and the reversing of the front and back are performed. Then, simple alignment is performed by mounting on the temporary stage 48 of the alignment station 2. After simple alignment, the liquid is again returned onto the chuck plate 45 of the droplet discharge device of the coating station 3.
  • the alignment marks formed on the second surface of the substrate are detected by the CCD cameras 63 to 66, and ⁇ correction of the substrate is performed based on the detection result. Further, the size of the substrate is calculated based on the image data acquired by the CCD cameras 63 to 66, and the image data for controlling the discharge of the thin film pattern formed on the second surface of the substrate is generated according to the calculated size. Is done. A thin film pattern is formed on the second surface of the substrate based on the discharge control image data of the thin film pattern formed on the second surface.
  • the substrate on which the thin film pattern is formed on the second surface is conveyed to the conveyor 15, and the thin film pattern on the second surface is fully cured by the ultraviolet irradiation device 8. Thereafter, the conveyor 5 carries the substrate out of the housing 18 from the carry-in / out entrance 1.
  • the substrate manufacturing apparatus is controlled by the control device 20 as follows.
  • the substrate is introduced into the housing 18 from the carry-in / out entrance 7.
  • the substrate introduced into the housing 18 is transported to the temporary placement stage 48 of the alignment station 5 by the lifters 14 and 13, and simple alignment is performed. Thereafter, the ink is conveyed from the alignment station 5 to the chuck plate 45 of the droplet discharge device of the coating station 6.
  • the alignment mark on the first surface of the substrate held by suction on the chuck plate 45 is detected by the CCD cameras 63 to 66, and the detection result is transmitted to the control device 20.
  • the control device 20 analyzes the detection result, detects the position of the substrate and the orientation in the rotation direction, and performs ⁇ correction.
  • the control device 20 calculates the size of the substrate based on the detection results of the CCD cameras 63 to 66, and generates ejection control image data according to the calculated size. Thereafter, a thin film pattern is formed on the first surface of the substrate based on the generated ejection control image data.
  • the substrate on which the thin film pattern is formed on the first surface is transported to the reversing station 4 by the lifter 13, and the main curing of the thin film pattern formed on the first surface and the reverse of the front and back are performed. Thereafter, simple alignment is performed on the temporary stage 48 of the alignment station 5, and it is returned again onto the chuck plate 45 of the droplet discharge device of the coating station 6.
  • the alignment marks formed on the second surface of the substrate are detected by the CCD cameras 63 to 66, and ⁇ correction of the substrate is performed based on the detection result. Further, the size of the substrate is calculated based on the image data acquired by the CCD cameras 63 to 66, and the image data for controlling the discharge of the thin film pattern formed on the second surface of the substrate is generated according to the calculated size. Is done. A thin film pattern is formed on the second surface based on the discharge control image data of the thin film pattern formed on the second surface.
  • the substrate on which the thin film pattern is formed on the second surface is conveyed to the conveyor 16, and the thin film pattern on the second surface is fully cured by the ultraviolet irradiation device 9.
  • the substrate after the main curing is carried out from the carry-in / out entrance 7 to the outside of the housing 18.
  • the substrate manufacturing apparatus according to the second embodiment can also form a thin film pattern by using the other coating station when one of the droplet ejection apparatuses at the coating stations 3 and 6 cannot be used. Thereby, continuity of work can be secured.
  • FIG. 8 shows a schematic diagram of a substrate manufacturing apparatus according to the third embodiment.
  • the third embodiment is different from the first embodiment in that the ultraviolet irradiation device 8 (FIG. 1) is not included and the inversion station 4 includes a substrate carry-out port 17.
  • the operation during normal operation of the substrate manufacturing apparatus according to the third embodiment is equal to that of the first embodiment.
  • the substrate manufacturing apparatus according to the third embodiment forms a thin film pattern on one surface of the substrate, for example, the first surface.
  • the substrate manufacturing apparatus according to the third embodiment is controlled by the control device 20 as follows when the droplet discharge device of the second-stage coating station 6 fails or during maintenance.
  • the processing in the alignment station 2, the coating station 3, and the reversing station 4 for the substrates 21 to 24 introduced into the housing 18 is the same as that in normal operation.
  • the substrates 21 to 24 on which the main curing of the thin film pattern formed on the first surface and the front and back have been reversed are carried out of the housing 18 from the substrate carry-out port 17. Carrying out may be performed using a conveyor or may be performed manually.
  • the substrates 21 to 24 conveyed to the reversing station 4 may be carried out from the substrate carry-out port 17 without performing one or both of the main curing of the thin film pattern formed on the surface and the reversing of the substrate. it can.
  • the processing of the substrate can be performed in parallel at each of the stations 2 to 4. For this reason, even when the droplet discharge device of the coating station 6 cannot be used, high production efficiency can be maintained.
  • a thin film pattern is similarly formed on one side of the substrate, for example, the first surface of the substrate, under the control of the control device 20 using the droplet discharge device at the coating station 6. To do.
  • the substrate is conveyed by the conveyor 16 and introduced into the housing 18 from the carry-in / out entrance 7.
  • the substrate introduced into the housing 18 is transported to the alignment station 5 by the lifters 14 and 13.
  • ⁇ correction of the substrate is performed.
  • the size of the substrate is calculated based on the image data acquired in the alignment station 5, and image data for ejection control of the thin film pattern formed on the first surface is generated according to the calculated size.
  • the lifter 13 conveys the substrate after ⁇ correction from the alignment station 5 to the stage of the coating station 6.
  • a thin film pattern is formed on the first surface based on the generated ejection control image data.
  • the substrate is transferred to the reversing station 4 by the lifter 13, and the main curing of the thin film pattern formed on the first surface and the reversal of the front and back are performed. After that, the substrate is carried out of the housing 18 from the carry-out port 17 by, for example, a conveyor or a manpower.
  • the carrying out from the carry-out port 17 may be performed without performing one or both of the main curing of the thin film pattern and the reversing of the substrate.
  • Example 3 even when the droplet discharge device at the coating station 3 cannot be used, the alignment or coating at the alignment station 5 is performed during the period in which the main curing of the solder resist and the substrate are reversed at the reversing station 4.
  • the thin film material can be applied at the station 6. For this reason, in Example 1, it is possible to raise production efficiency compared with the case where the droplet discharge apparatus of the application
  • the substrate manufacturing apparatus when one of the droplet discharge devices of the coating stations 3 and 6 cannot be used, a thin film pattern is formed on one surface of the substrate using the other coating station, and the processing on one surface is performed.
  • the completed substrate is carried out from the carry-out port 17 to the outside of the housing 18.
  • the carry-out port 17 can take out the substrate to the outside of the substrate manufacturing apparatus (outside of the casing 18) from the substrate transport path connecting the coating station 3 and the coating station 6.
  • FIG. 9 shows a schematic diagram of a substrate manufacturing apparatus according to the fourth embodiment.
  • the fourth embodiment is different from the second embodiment in that the ultraviolet irradiation device 8 (FIG. 7) is not included and the inversion station 4 includes the substrate carry-out port 17.
  • the operation during normal operation of the substrate manufacturing apparatus according to the fourth embodiment is equal to that of the second embodiment.
  • the substrate manufacturing apparatus according to the fourth embodiment forms a thin film pattern on only one surface of the substrate, for example, the first surface, as in the third embodiment.
  • the substrate manufacturing apparatus At the time of failure or maintenance of the droplet discharge device of the coating station 6, the substrate manufacturing apparatus according to the fourth embodiment is controlled by the control device 20 as follows.
  • the processing in the alignment station 2, the coating station 3, and the reversing station 4 for the substrates 21 to 24 introduced into the housing 18 is the same as in normal operation.
  • the substrates 21 to 24 on which the main curing of the thin film pattern formed on the first surface and the front and back have been reversed are carried out of the housing 18 from the carry-out port 17. Carrying out may be performed using a conveyor or may be performed manually.
  • the main curing of the thin film pattern formed on the first surface of the substrates 21 to 24 transferred to the reversing station 4 and the reversal of the substrate may be carried out from the carry-out port 17 without performing one or both of them. it can.
  • Example 2 when the droplet discharge device of the coating station 6 cannot be used, the processing for one substrate is completed, and after the substrate is unloaded from the housing 18, another substrate is loaded into the housing 18. did.
  • substrate processing can be performed in parallel at each of the stations 2 to 4. For this reason, even when the droplet discharge device of the coating station 6 cannot be used, high production efficiency can be maintained.
  • the droplet discharge device of the coating station 6 is used, and under the control of the control device 20, a thin film is similarly formed on one side of the substrate, for example, the first surface. Form a pattern.
  • the substrate is conveyed by the conveyor 16 and introduced into the housing 18 from the carry-in / out entrance 7.
  • the substrate introduced into the housing 18 is transported to the alignment station 5 by the lifters 14 and 13, and simple alignment is performed. Thereafter, the substrate is transported to the chuck plate 45 of the droplet discharge device of the coating station 6.
  • the CCD camera 63 to 66 detects the alignment mark on the first surface of the substrate.
  • the control device 20 detects the positions of the substrates 21 to 24 and the posture in the rotation direction based on the detection result, and performs ⁇ correction of the substrate.
  • the control device 20 calculates the size of the substrate, and generates ejection control image data according to the calculated size.
  • a thin film pattern is formed on the first surface of the substrate based on the generated ejection control image data.
  • the substrate on which the thin film pattern is spastic is conveyed to the reversal station 4 by the lifter 13, and the main curing of the thin film pattern formed on the first surface and the reverse of the front and back are performed. After that, the substrate is carried out of the housing 18 from the carry-out port 17 by, for example, a conveyor or a manpower.
  • the reversing station 4 carries out the substrate from the carry-out port 17 without performing one or both of the main curing of the thin film pattern and the inversion of the substrate. May be.
  • the alignment at the alignment station 5 is performed during the period when the thin film pattern is fully cured and the substrate is reversed at the reversing station 4.
  • the thin film material can be applied at the application station 6. For this reason, in Example 2, it is possible to raise production efficiency compared with the case where the droplet discharge apparatus of the coating station 3 cannot be used.
  • the substrate manufacturing apparatus according to the fourth embodiment forms a thin film pattern on one surface of the substrate using the other coating station when one of the droplet discharge devices at the coating stations 3 and 6 cannot be used.
  • a substrate having a spastic thin film pattern on one side is carried out from the carry-out port 17 to the outside of the substrate manufacturing apparatus (outside the housing 18).
  • the substrate manufacturing apparatus according to the fourth embodiment can also continue work when the coating station fails.
  • FIG. 10 shows a schematic diagram of a substrate manufacturing apparatus according to the fifth embodiment.
  • the fifth embodiment is different from the first embodiment in that the alignment station 5, the coating station 6, the ultraviolet irradiation device 9, the lifters 13 and 14, and the conveyor 16 shown in FIG. 1 are not included.
  • the housing 18 does not include the substrate carry-in / out port 7 (FIG. 1). Furthermore, the contents of control by the control device 20 are different from those in the first embodiment.
  • the substrate manufacturing apparatus when the droplet discharge device of the coating station 6 of the substrate manufacturing apparatus according to the first embodiment is not usable, the substrate is processed in the same procedure as that for forming a thin film pattern on both surfaces of the substrate. A thin film pattern is formed on both sides.
  • the substrate 21 is conveyed by the conveyor 15 and introduced into the housing 18 from the carry-in / out entrance 1.
  • the first surface of the substrate 21 faces upward (the positive direction of the Z axis).
  • the substrate 21 is transferred from the conveyor 15 to the alignment station 2 by the lifter 11.
  • the alignment mark formed on the first surface of the substrate 21 is detected. Based on the detection result, ⁇ correction of the substrate 21 is performed. Further, the size of the substrate 21 is calculated based on the image data acquired in the alignment station 2, and ejection control image data is generated according to the calculated size.
  • the substrate 21 subjected to the ⁇ correction is transferred to the coating station 3 by the lifter 11.
  • ⁇ correction is not performed, and a thin film pattern is formed on the first surface of the substrate 21 based on the ejection control image data.
  • the substrate 21 on which the thin film pattern is formed is transferred to the reversing station 4 by the lifter 12.
  • the inversion station 4 the main curing of the thin film pattern formed on the first surface of the substrate 21 and the inversion of the substrate 21 are performed.
  • the inverted substrate 21 is transferred to the alignment station 2 by the lifters 12 and 11.
  • alignment station 2 an alignment mark formed on the second surface of substrate 21 is detected, and ⁇ correction of substrate 21 is performed based on the detection result.
  • the size of the substrate 21 is calculated based on the image data acquired by the CCD cameras 35 to 38, and the ejection control image data of the thin film pattern to be formed on the second surface of the substrate is calculated according to the calculated size. Generated.
  • the detection result of the alignment mark on the first surface of the substrate 21 may be used to generate the image data for ejection control of the thin film pattern formed on the second surface.
  • the imaging result of the alignment mark on the second surface of the substrate 21 is used only for ⁇ correction.
  • the substrate 21 subjected to ⁇ correction is transported to the coating station 3 by the lifter 11.
  • the thin film pattern is applied to the second surface of the substrate 21 based on the discharge control image data of the thin film pattern formed on the second surface of the substrate 21 by the droplet discharge device without performing ⁇ correction.
  • the substrate 21 on which the thin film pattern is formed on the second surface is transported to the conveyor 15 by the lifter 11, and the thin film pattern on the second surface is fully cured by irradiation with ultraviolet rays from the ultraviolet irradiation device 8.
  • the conveyor 15 carries the substrate 21 out of the housing 18 from the carry-in / out entrance 1.
  • the configuration of the substrate manufacturing apparatus according to the fifth embodiment is simpler than that of the substrate manufacturing apparatus according to the first embodiment, and the cost of the apparatus can be reduced.
  • FIG. 11 shows a schematic diagram of a substrate manufacturing apparatus according to the sixth embodiment.
  • the sixth embodiment is different from the second embodiment in that the alignment station 5, the coating station 6, the ultraviolet irradiation device 9, the lifters 13 and 14, and the conveyor 16 shown in FIG. 7 are not included.
  • the housing 18 does not include the substrate carry-in / out port 7. Furthermore, the contents of control by the control device 20 are different from those in the second embodiment.
  • the droplet discharge device of the coating station 6 of the substrate manufacturing apparatus according to the second embodiment when the droplet discharge device of the coating station 6 of the substrate manufacturing apparatus according to the second embodiment is not usable, the same procedure as that for forming a thin film pattern on both surfaces of the substrate is used. Thin film patterns are formed on both sides of the substrate.
  • the substrate 21 is conveyed by the conveyor 15 and introduced into the housing 18 from the carry-in / out entrance 1.
  • the first surface of the substrate 21 faces upward (the positive direction of the Z axis).
  • the substrate 21 introduced into the housing 18 is transported to the alignment station 2 by the lifter 11.
  • Alignment station 2 performs simple alignment of substrate 21. After the alignment, the substrate 21 is transferred to the coating station 3.
  • a thin film pattern is formed on the first surface of the substrate 21.
  • the substrate 21 on which the thin film pattern is formed on the first surface is transported to the inversion station 4 by the lifter 12.
  • the inversion station 4 the main curing of the thin film pattern formed on the first surface of the substrate and the inversion of the substrate are performed.
  • the substrate 21 is transferred to the alignment station 2. After simple alignment is performed at the alignment station 2, the substrate 21 is transported to the coating station 3 again.
  • a thin film pattern is formed on the second surface of the substrate 21.
  • substrate 21 with which the thin film pattern was formed in the 2nd surface is conveyed by the conveyor 15 by the lifter 11, and the main curing of the thin film pattern of the 2nd surface is performed. Thereafter, the substrate 21 is unloaded from the loading / unloading port 1 to the outside of the housing 18.
  • the configuration of the substrate manufacturing apparatus according to the sixth embodiment is simpler than the configuration of the substrate manufacturing apparatus according to the second embodiment, and the cost of the apparatus can be reduced.
  • Example 7 12A to 12E are schematic views of a reversing station of the substrate manufacturing apparatus according to the seventh embodiment.
  • This inversion station can be applied to the inversion station 4 (FIG. 1, FIG. 7 to FIG. 11) of the substrate manufacturing apparatus according to the first to sixth embodiments.
  • a pair of semicircular guides 56 are installed on both sides of the ultraviolet light source 62 that is long in the Y-axis direction.
  • the ultraviolet light source 62 is movable by being guided by guides 56 on both sides.
  • the movement of the ultraviolet light source 62 is controlled by the control device 20.
  • the surface on which the thin film pattern is formed faces the positive direction of the Z axis.
  • the ultraviolet light emitted from the ultraviolet light source 62 is applied to the surface of the substrate 24 on which the thin film pattern is formed.
  • the ultraviolet light source 62 emits diverging ultraviolet light.
  • the control device 20 rotates the substrate 24 at a constant angular velocity with the support member 52 as a rotation axis.
  • the ultraviolet light source 62 is moved along the guide 56 at a constant speed so that the thin film pattern forming surface of the rotating substrate 24 is irradiated with ultraviolet light having a predetermined intensity or more. Irradiation with ultraviolet light ends when the thin film pattern forming surface of the substrate 24 faces the negative direction of the Z-axis, as shown in FIG. 7E.
  • Example 7 the inversion of the substrate and the ultraviolet irradiation can be performed in parallel. For this reason, the processing time in the inversion station 4 can be shortened.
  • Example 8 13A to 13D are schematic views of a reversing station of the substrate manufacturing apparatus according to the eighth embodiment.
  • This inversion station can be applied to the inversion station 4 (FIG. 1, FIG. 7 to FIG. 11) of the substrate manufacturing apparatus according to the first to sixth embodiments.
  • FIG. 1, FIG. 7 to FIG. 11 the inversion station 4 of the substrate manufacturing apparatus according to the first to sixth embodiments.
  • Example 8 shown in FIGS. 13A to 13D the ultraviolet light source 62 emits focused ultraviolet light.
  • a pair of guides 56 are installed at both ends of a support member 61 that is long in the Y-axis direction.
  • An ultraviolet light source 62 that is long in the X-axis direction is supported on one end of the support member 61.
  • the support member 61 is movable by being guided by guides 56 at both ends. The movement of the support member 61 is controlled by the control device 20.
  • the control device 20 rotates the substrate 24 at a constant angular velocity with the support member 52 as a rotation axis.
  • the support member 61 is moved along the guide 56 at a constant speed.
  • the ultraviolet light source 62 is moved along the support member 61 at a constant speed in the Y-axis direction.
  • FIG. 13A shows a state in which the thin film pattern forming surface of the substrate 24 faces in the positive direction of the Z axis.
  • FIG. 13D shows a state where the substrate 24 is gradually rotated and the thin film pattern forming surface of the substrate 24 faces the negative direction of the Z axis. In the state shown in FIG.
  • the ultraviolet light source 62 irradiates ultraviolet light to the positive end of the Y axis of the substrate 24.
  • the ultraviolet light source 62 moves to a position where the ultraviolet light is applied to the negative end of the Y axis of the substrate 24. Irradiation with ultraviolet light starts when the thin film pattern forming surface of the substrate 24 faces the positive direction of the Z axis, and ends when the thin film pattern forming surface of the substrate 24 faces the negative direction of the Z axis. .
  • the processing time in the reversing station 4 can be shortened.
  • the substrate is moved relative to the nozzle unit (moving in the XY plane) only by the stage.
  • the frame 42 (FIG. 3A) is movable in the Y-axis direction
  • the nozzle unit 47a to 47f may be movable on the frame 42 in the X-axis direction and the Z-axis direction. What is necessary is just to move a nozzle unit and a board
  • the configuration in which only the substrate is moved in the XY plane can improve the positional accuracy of the thin film pattern compared to the configuration in which the nozzle unit is also moved in the XY plane direction.
  • the substrate manufacturing apparatus formed the solder resist thin film pattern on the printed wiring board.
  • the substrate manufacturing apparatus in Examples 1 to 8 has other thin film patterns. It can also be applied to formation.
  • the substrate manufacturing apparatus according to the first to eighth embodiments can be used for manufacturing a touch panel that forms an insulating film on a glass substrate.
  • the temporary stage 48 (FIG. 7 and the like) it is not essential to pass the temporary stage before the substrate is transferred to the droplet discharge device.
  • the droplet discharge device of the coating station 6 (FIG. 8) of the second embodiment is out of order or under maintenance, the substrate is transferred from the reversing station 4 to the coating station 3 without going through the alignment station 2. Also good. By omitting the processing by the alignment station 2, an increase in tact time can be suppressed. This also applies to the normal operation of the substrate manufacturing apparatus according to the sixth embodiment.
  • the alignment function may be applied to a lifter or a substrate reversing device.
  • an alignment station may be provided between the coating station 3 (FIGS. 10 and 11) and the reversing station 4 (FIGS. 10 and 11).
  • the substrate is transported to the coating station 3 via an alignment station provided between the coating station 3 and the reversing station 4. By doing so, the tact time can be shortened.
  • each station is arranged linearly, but each station may be installed at a position corresponding to the vertex of a polygon.
  • FIG. 14 is a schematic plan view of the coating station 3 of the substrate manufacturing apparatus according to the ninth embodiment.
  • the coating station 3 includes a first-stage coating station 3 (FIGS. 1, 7 to 11) and a second-stage coating station 6 (FIGS. 1, 7 to 11) of the substrate manufacturing apparatus according to the first to eighth embodiments. It can be applied to FIG. Since the coating station 3 according to the ninth embodiment has a substrate alignment function, when the coating station 3 according to the ninth embodiment is applied to the first to eighth embodiments, the alignment stations 2, 5 ( 1 and 7 to 11) are omitted.
  • the coating station 3 includes a first coating stage 85A and a second coating stage 85B.
  • the first application stage 85A is movable between the first transfer area 80A, the first alignment area 81A, and the application area 82 in the application station 3.
  • the second application stage 85B is movable between the second transfer area 80B, the second alignment area 81B, and the application area 82 in the application station 3.
  • the application region 82 is shared by the first application stage 85A and the second application stage 85B.
  • the lifter 11 can pass above the first and second delivery areas 80A and 80B.
  • the substrate can be delivered from the lifter 11 to the first application stage 85A or vice versa in a state where the first application stage 85A is disposed in the first delivery region 80A.
  • the substrate can be delivered from the lifter 11 to the second coating stage 85B or vice versa with the second coating stage 85B being disposed in the second delivery region 80B.
  • a plurality of imaging devices 83 are arranged in each of the first alignment region 81A and the second alignment region 81B.
  • the alignment mark of the substrate held on the first application stage 85A is imaged by the imaging device 83.
  • ⁇ correction of the substrate held on the second coating stage 85B is performed, and the expansion and contraction amounts in the X direction and the Y direction are set. Can be calculated.
  • nozzle units 47a to 47f are provided in the application region 82.
  • the first coating stage 85A is arranged in the coating region 82, and the substrate is scanned with respect to the nozzle units 47a to 47f, thereby forming a thin film pattern on the upper surface of the substrate held by the first coating stage 85A. be able to.
  • the second coating stage 85B in the coating region 82, a thin film pattern can be formed on the upper surface of the substrate held by the second coating stage 85B.
  • the first application stage 85A and the second application stage 85B are disposed in the first transfer area 80A and the second transfer area 80B, respectively.
  • the lifter 11 (FIG. 14) places the unprocessed substrate 21 on the first coating stage 85A.
  • the first coating stage 85A is moved to the first alignment region 81A.
  • the alignment mark formed on the upper surface of the substrate 21 is imaged by the imaging device 83 (FIG. 14). Based on the imaging result, ⁇ correction of the substrate 21 is performed, and ejection control image data for forming a thin film pattern is generated.
  • the first coating stage 85A is moved to the coating region 82, and the thin film material is coated on the substrate 21.
  • the lifter 11 places the substrate 22 to be processed next on the second coating stage 85B.
  • the second coating stage 85B is moved to the second alignment region 81B.
  • the imaging device 83 (FIG. 14) images the alignment mark formed on the upper surface of the substrate 22 held on the second coating stage 85B. Based on the imaging result, ⁇ correction of the substrate 22 is performed, and ejection control image data is generated.
  • the thin film material coating process is continuously performed on the substrate 21 held on the first coating stage 85A.
  • the first application stage 85A is moved from the application area 82 to the first delivery area 80A.
  • the second coating stage 85B is moved from the second alignment region 81B to the coating region 82.
  • a thin film material is applied to the upper surface of the substrate 22 held by the second application stage 85B.
  • the lifter 12 (FIG. 1) unloads the substrate 21 held by the first coating stage 85A from the coating station 3.
  • the lifter 11 places the substrate 23 to be processed next on the first coating stage 85A.
  • the coating process of the thin film material on the upper surface of the substrate 22 held by the second coating stage 85B is continued.
  • the first coating stage 85A is moved to the first alignment region 81A.
  • the alignment mark formed on the upper surface of the substrate 23 is imaged.
  • ⁇ correction of the substrate 23 is performed and ejection control image data is generated.
  • the coating process of the thin film material on the upper surface of the substrate 22 held by the second coating stage 85B is continued.
  • the second application stage 85B is moved to the second delivery area 80B, and the substrate 22 is unloaded from the application station 3.
  • the first application stage 85A is moved to the application region 82, and the substrate to be processed next is placed on the second application stage 85B. Thereafter, the processing is repeatedly executed from FIG. 15D to FIG.
  • ⁇ correction and ejection control image data for the substrate to be processed next. are generated in parallel. For this reason, processing time can be shortened.
  • FIGS. 1 and 7 to 11 are schematic views of the reversing station 4 of the substrate manufacturing apparatus according to the tenth embodiment.
  • the reversing station 4 of the tenth embodiment is applied to the reversing station 4 (FIGS. 1 and 7 to 11) of the substrate manufacturing apparatus of the first to ninth embodiments.
  • a roller conveyor 90 is provided in the reversing station 4. From the upstream end to the downstream end of the roller conveyor 90, a carry-in part 4A, a main curing part 4B, a reversing part 4C, and a carry-out part 4D are defined.
  • the substrate 21 coated with the thin film material at the coating station 2 (FIGS. 1, 7 to 11) is placed on the carry-in portion 4A of the roller conveyor 90 by the lifter 12 (FIGS. 1, 7 to 11). .
  • the first surface 21A coated with the thin film material faces upward, and the opposite second surface 21B contacts the roller conveyor 90.
  • a main curing light source 91 is disposed above the roller conveyor 90 of the main curing unit 4B.
  • the main curing light source 91 irradiates the upper surface of the substrate 21 passing through the roller conveyor 90 with ultraviolet rays.
  • the roller conveyor 90 includes a first roller 90A that supports the substrate 21 from below and a second roller 90B that contacts the upper surface of the substrate 21.
  • first roller 90A that supports the substrate 21 from below
  • second roller 90B that contacts the upper surface of the substrate 21.
  • the substrate 21 transported to the unloading section 4D of the roller conveyor 90 is unloaded from the reversing station 4 by the lifter 13 (FIGS. 1, 7 to 9), and the second-stage coating station 6 (FIGS. 1, 7 to 9). 9) and the like.
  • the substrate 21 placed on the roller conveyor 90 of the carry-in unit 4A passes through the main curing unit 4B and is conveyed toward the reversing unit 4B.
  • the control device 20 includes a storage device 20 b that stores the feed rate of the substrate 21.
  • the feed rate stored in the storage device 20b is set so that the light energy density applied to the first surface 21A of the substrate 21 is large enough to fully cure the thin film material.
  • the light irradiation time may be stored in the storage device 20b. In this case, the control device 20 calculates the feeding speed of the substrate 21 from the irradiation time stored in the storage device 20b.
  • the substrate 21 is conveyed to the roller conveyor 90 of the reversing unit 4C.
  • the first roller 90A, the second roller 90B, and the substrate 21 are rotated about a straight line parallel to the transport direction. Rotate 180 °.
  • FIG. 16D shows a side view of the first roller 90A, the second roller 90B, and the substrate 21 rotated by 90 °.
  • the first surface 21A of the substrate 21 is facing forward.
  • FIG. 16E shows a side view of the first roller 90A, the second roller 90B, and the substrate 21 rotated by 90 °.
  • the vertical relationship between the first roller 90A and the second roller 90B is reversed, and the second surface 21B of the substrate 21 faces upward.
  • the substrate 21 with the front and back sides reversed is transported to the unloading unit 4 ⁇ / b> D of the roller conveyor 90.
  • Example 10 it is also possible to perform main curing and substrate inversion using a roller conveyor 90.
  • FIG. 17 is a schematic view of a substrate manufacturing apparatus according to the eleventh embodiment.
  • a plurality of substrates are accumulated in the substrate stocker 93.
  • the coating station 3 a thin film pattern having a predetermined planar shape is formed on the substrate.
  • the thin film pattern formed at the coating station 3 is in a temporarily cured state, and is not actually cured.
  • the inversion station 4 includes a main curing unit 4B and an inversion unit 4C.
  • the main curing part 4B the thin film material applied to the substrate is finally cured.
  • the front and back sides of the substrate are inverted.
  • a main curing station 94 is arranged in addition to the main curing unit 4B.
  • the main curing station 94 also performs the main curing of the thin film material applied to the substrate.
  • the transport apparatus 100 transports the substrate between the main curing unit 4B and the reversing unit 4C of the substrate stocker 93, the main curing station 94, the coating station 3, and the reversing station 4.
  • a roller conveyor, a lifter that sucks and holds the upper surface of the substrate, a robot arm that supports the substrate from below, and the like are used.
  • the transport device 100 and the devices in each station are controlled by the control device 20.
  • the movement path of the substrate when the substrate is processed is indicated by a curve with an arrow.
  • the unprocessed substrate accumulated in the substrate stocker 93 is transported to the coating station 3 by the transport device 100.
  • a thin film pattern is formed on the first surface, which is one surface of the substrate, at the coating station 3.
  • the substrate on which the thin film pattern is formed is transported to the main curing unit 4B of the reversing station 4 by the transport device 100. In the main curing part 4B, the thin film pattern is finally cured. Thereafter, the substrate is inverted at the inversion station 4C.
  • the inverted substrate is transported to the coating station 3 by the transport device 100.
  • a thin film pattern is formed on the second surface opposite to the first surface of the substrate.
  • the substrate on which the thin film pattern is formed on the second surface is transported to the main curing station 94 by the transport device 100.
  • the main curing station 94 performs main curing on the thin film pattern formed on the second surface of the substrate. After the thin film pattern on the second surface is fully cured, the substrate is transported to the substrate stocker 93 by the transport device 100. Next, a method for forming a thin film pattern on a substrate will be described in more detail with reference to FIGS. 18A to 18G.
  • the configuration of the carry-in unit 4A, the main curing unit 4B, and the reversing unit 4C of the reversing station 4 illustrated in FIG. 18A has the same configuration as that of the substrate manufacturing apparatus according to the tenth embodiment illustrated in FIG.
  • the substrate 21 is transported to the coating station 3 from the substrate stocker 93 (FIG. 17).
  • a thin film pattern is formed on the first surface 21 ⁇ / b> A of the substrate 21 at the coating station 3.
  • substrate 21 in which the thin film pattern was formed is carried in to the carrying-in part 4A of the inversion station 4 by the conveying apparatus 100 (FIG. 17).
  • the first surface 21A on which the thin film pattern is formed faces upward.
  • the substrate 21 is conveyed to the reversing unit 4C via the main curing unit 4B.
  • the roller conveyor 90 functions as a transport device 100 (FIG. 17) that transports the substrate 21 from the coating station 3 to the main curing unit 4B and from the main curing unit 4B to the reversing unit 4C.
  • the thin film pattern formed on the first surface 21A of the substrate 21 is cured by irradiation with ultraviolet light when passing under the main curing light source 91 in the main curing unit 4B.
  • the substrate 21 is sandwiched between the first roller 90A and the second roller 90B of the reversing station 4C.
  • the first roller 90A and the second roller 90B are turned upside down.
  • the second surface 21B of the substrate 21 faces upward.
  • the roller conveyor 90 is driven to transport the substrate 21 to the carry-in section 4A. At this time, no processing is performed in the main curing unit 4B, and the substrate 21 simply passes through the main curing unit 4B.
  • the transport apparatus 100 transports the substrate 21 from the reversing station 4 to the coating station 3.
  • a thin film pattern is formed on the second surface 21 ⁇ / b> B of the substrate 21 at the coating station 3.
  • the transport apparatus 100 transports the substrate 21 from the coating station 3 to the main curing station 94.
  • the thin film pattern formed on the second surface 21B of the substrate 21 is irradiated with ultraviolet rays from the main curing light source 92. Thereby, the thin film pattern formed on the second surface 21B is fully cured.
  • substrate 21 by which the thin film pattern of the 2nd surface was fully hardened is conveyed to the board
  • Example 11 after the thin film pattern is formed on the second surface 21B of the substrate 21 in the step shown in FIG. 18F, the main curing of the thin film pattern is performed at the main curing station 94 without returning the substrate 21 to the inversion station 4. It can be performed.
  • the coating station 3 is used when the substrate is transported leftward in FIG. 17, that is, when a thin film pattern is formed on the first surface, and when the substrate is transported rightward, It is used both when a thin film pattern is formed on the second surface.
  • a path in which the substrate is conveyed leftward is referred to as “outward path”, and a path in which the substrate is conveyed rightward is referred to as “return path”.
  • the coating station 3 is preferably the coating station 3 according to Example 9 shown in FIG.
  • the coating station 3 according to the ninth embodiment includes a first coating stage 85A (FIG. 14) and a second coating stage 85B (FIG. 14).
  • the first application stage 85A can be used on the forward path
  • the second application stage 85B can be applied on the return path.
  • the substrate transported in the forward path and the substrate transported in the backward path can pass each other in the coating station 3. Thereby, before the substrate carried out from the substrate stocker 93 returns to the substrate stocker 93 via the forward path and the backward path, the substrate to be processed next can be sent to the forward path.
  • FIG. 19A shows a schematic view of a substrate manufacturing apparatus according to the twelfth embodiment.
  • the substrate manufacturing apparatus according to the twelfth embodiment includes a substrate stocker 93, a coating station 3, an inversion station 4, and a temporary storage device 95.
  • the reversing station 4 has the same configuration as the reversing station 4 (FIG. 18A) of the eleventh embodiment, and includes a main curing unit 4B and a reversing unit 4C.
  • the transport device 100 transports the substrate among the substrate stocker 93, the coating station 3, the main curing unit 4B of the reversing station 4, the reversing unit 4C of the reversing station 4, and the temporary storage device 95.
  • the transport device 100 and the devices in each station are controlled by the control device 20.
  • FIG. 19B shows a schematic side view of the temporary storage device 95.
  • the temporary storage device 95 has a table on which a substrate is placed. A plurality of substrates 21 are stacked on this table. The substrate carried into the temporary storage device 95 by the transport device 100 is placed on the top of the substrate already stored. Further, the transport device 100 holds the uppermost substrate among the substrates 21 stacked on the temporary storage device 95 and carries it out of the temporary storage device 95.
  • FIGS. 20A to 20E a substrate processing method by the substrate manufacturing apparatus according to the twelfth embodiment will be described.
  • the substrates 21 to be processed are accumulated in the substrate stocker 93, and no substrates are accumulated in the temporary accumulation device 95.
  • the substrates 21 accumulated in the substrate stocker 93 are stacked with the first surface facing upward.
  • the transport apparatus 100 takes out the substrates accumulated in the substrate stocker 93 one by one, and sets the coating station 3, the main curing unit 4B of the reversing station 4, and the reversing unit 4C of the reversing station 4. And then transported to the temporary storage device 95.
  • a path for transporting from the substrate stocker 93 to the temporary storage device 95 is referred to as an “outward path”.
  • a thin film pattern is formed on the first surface of the substrate 21 at the coating station 3.
  • the main curing part 4B the thin film pattern formed on the first surface of the substrate 21 is fully cured.
  • the front and back of the substrate are reversed so that the second surface of the substrate 21 faces upward.
  • the substrates 21 are stacked such that the second surface faces upward.
  • FIG. 20C shows a state in which all the substrates 21 stored in the substrate stocker 93 are carried out and temporarily stored in the temporary storage device 95.
  • the transport apparatus 100 unloads the substrates 21 stored in the temporary storage device 95 one by one, and passes through the main curing unit 4B of the coating station 3 and the reversing station 4 so as to transfer the substrate stocker 93.
  • a path for transporting from the temporary storage device 95 to the substrate stocker 93 is referred to as a “return path”.
  • a thin film pattern is formed on the second surface of the substrate 21 at the coating station 3. In the main curing part 4B, the thin film pattern formed on the second surface is fully cured.
  • all the substrates 21 temporarily stored in the temporary storage device 95 are transferred to the substrate stocker 93.
  • a thin film pattern is formed on both sides of the substrate 21 accumulated in the substrate stocker 93.
  • Example 12 there is no difference between the substrate transported in the forward path shown in FIG. 20B and the substrate transported in the return path shown in FIG. 20D. For this reason, the substrate to be processed next can be sent out from the substrate stocker 93 to the outward path during a period in which one substrate is transported in the outward path.
  • FIG. 21 shows a schematic view of a substrate manufacturing apparatus according to the thirteenth embodiment. Unprocessed substrates are accumulated in the substrate stocker 93 on the carry-in side.
  • the transport apparatus 100 includes a first-stage coating station 3, a main curing unit 4B of the reversing station 4, a reversing unit 4C of the reversing station 4, an intermediate stocker 98, a second-stage coating station 6, a main curing station 96, and a delivery side.
  • the substrate is transported between the substrate stockers 97.
  • the coating stations 3 and 6 for example, the coating station according to the ninth embodiment shown in FIG. 14 is employed.
  • the reversing station 4 employs a reversing station according to the tenth embodiment shown in FIG. 16A.
  • the main curing station 96 includes, for example, the roller conveyor 16 and the ultraviolet irradiation device 8 of the substrate manufacturing apparatus according to the first embodiment.
  • the transport device 100 and the devices in each station are controlled by the control device 20.
  • the transport device 100 and the devices in each station are controlled by the control device 20.
  • the control device 20 includes a storage device 20c.
  • the storage device 20c stores the presence / absence of a failure in the first-stage coating station 3 and the second-stage coating station 6. If the coating stations 3 and 6 have not failed, the substrate accumulated in the substrate stocker 93 is transferred to the main curing unit 4B of the first-stage coating station 3, the reversing station 4 and the reversing station 4 by the transport device 100. It is conveyed to the substrate stocker 97 on the carry-out side via the reversing unit 4C, the second stage coating station 6, and the main curing station 96. Thereby, a thin film pattern is formed on both surfaces of the substrate. The intermediate stocker 98 is not used.
  • the intermediate stocker 98 is disposed between the reversing station 4 and the second-stage coating station 6.
  • the intermediate stocker 98 can store a plurality of substrates. Further, the substrate stored in the intermediate stocker 98 can be carried out of the substrate manufacturing apparatus. Conversely, it is also possible to carry a substrate into the intermediate stocker 98 from the outside of the substrate manufacturing apparatus.
  • FIG. 22A, 22B, and 22C show first, second, and third examples of substrate paths when the second-stage coating station 6 is broken, respectively.
  • the substrate is carried into the second-stage coating station 6 and the main curing station 96, but is carried out without any processing.
  • the substrate unloaded from the reversing station 4 is directly transferred to the unloading substrate stocker 97 without passing through the second coating station 6 and the main curing station 96.
  • the substrate that has been subjected to the reversal process in the reversing station 4 is transported to the intermediate stocker 98 by the transport device 100. The processed substrate is taken out from the intermediate stocker 98.
  • FIG. 23A, FIG. 23B, and FIG. 23C show first, second, and third examples of substrate paths when the first-stage coating station 3 is broken, respectively.
  • the substrate is carried into the first-stage coating station 3 and reversing station 4, but is carried out without any processing.
  • the substrate unloaded from the loading-side substrate stocker 93 directly passes through the second-stage coating station 6 without passing through the first-stage coating station 3 and the reversing station 4. It is conveyed to.
  • the substrate stocker 93 on the carry-in side is not used, and an unprocessed substrate is prepared in the intermediate stocker 98. The unprocessed substrate is transported from the intermediate stocker 98 to the second stage coating station 6.
  • a thin film pattern can be formed on one side of the substrate even when one of the coating stations 3 and 6 is out of order.
  • Example 14 A substrate manufacturing apparatus according to Embodiment 14 will be described with reference to FIGS. 24A to 24D. Hereinafter, differences from the thirteenth embodiment will be described, and description of the same configuration will be omitted.
  • moving stockers 99A and 99B are arranged in place of the carry-in substrate stocker 93 and the intermediate stocker 98 (FIG. 21) of the thirteenth embodiment.
  • the movement stockers 99A and 99B can be removed from the conveyance path of the conveyance apparatus 100 and moved.
  • FIG. 24A to FIG. 24D show the flow of substrate processing when the second stage coating station 6 is out of order.
  • a plurality of unprocessed substrates are accumulated in the loading stocker 99A.
  • the substrate is not accumulated in the other moving stocker 99B.
  • the moving stockers 99A and 99B are arranged at the positions of the carry-in substrate stocker 93 and the intermediate stocker 98 in FIG.
  • the transport apparatus 100 transports the substrate from the moving stocker 99A to the other moving stocker 99B via the first-stage coating station 3 and reversing station 4. Thereby, a thin film pattern is formed on the first surface of the substrate.
  • the moving stockers 99A and 99B are removed from the transfer path of the transfer apparatus 100 as shown in FIG.
  • the empty stocker 99A is disposed at the position of the intermediate stocker 98 (FIG. 21), and the mobile stocker 99B storing the substrate with the thin film pattern formed on one side is loaded.
  • the substrate stocker 93 (FIG. 21) is disposed. Movement of the movement stockers 99A and 99B may be performed manually, or the movement stockers 99A and 99B may have an automatic operation function.
  • the substrate is transported from the moving stocker 99B to the other moving stocker 99A via the coating station 3 and the main curing unit 4B of the reversing station 4. Thereby, a thin film pattern is formed on the second surface of the substrate.
  • the reversing station 4 according to the tenth embodiment shown in FIG. 16A is adopted as the reversing station 4, the substrate passes through the reversing unit 4C, but the reversing operation is not performed.
  • Example 14 a thin film pattern can be formed on both sides only by transporting the substrate in one direction by the transport device 100.
  • the intermediate stocker 98 and the unloading substrate stocker 97 shown in FIG. 21 may be replaced with moving stockers 99A and 99B, respectively.
  • FIG. 25 shows a schematic diagram of a substrate manufacturing apparatus according to the fifteenth embodiment.
  • the intermediate stocker 98 and the main curing station 96 shown in FIG. 21 are not arranged. That is, one main curing unit 4B is arranged for the two coating stations 3 and 6.
  • the substrate flow from the carry-in substrate stocker 93 to the second-stage coating station 6 is the same as that in Example 13 shown in FIG.
  • the substrate on which the thin film pattern is formed on the second surface at the second-stage coating station 6 is returned to the main curing unit 4B of the reversing station 4 by the transport device 100.
  • the main curing unit 4B the thin film pattern on the second surface of the substrate is finally cured. Thereafter, the substrate is transported from the main curing unit 4B to the substrate stocker 97 for unloading.
  • one main curing unit 4B uses the first surface and You may make it perform main hardening of the thin film pattern of a 2nd surface.
  • FIG. 26 shows an example of a planar layout of each station of the substrate manufacturing apparatus according to a modification of the fifteenth embodiment.
  • a substrate stocker 93 for carrying in, a first-stage coating station 3, a main curing unit 4B, a reversing unit 4C, a second-stage coating station 6, and a carrying-out substrate stocker 97 are arranged in a circle.
  • a transport device 100 is disposed at the center of this circumference.
  • a rotary extendable arm can be used for the transport device 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coating Apparatus (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

In a first coating station, one surface of a substrate is coated with a liquid thin-film material, the thin-film material coated on the substrate is irradiated with light, and the surface-layer section of the thin-film material hardens. The substrate coated with the thin-film material in the first coating station is conveyed into a reversal station. In the reversal station, the thin-film material coated on the substrate is irradiated with light and hardens through to the interior of the thin-film material, and the front/rear orientation of the substrate is reversed. A conveying device conveys the substrate between the first coating station and the reversal station. A control device controls the first coating station, the reversal station and the conveying device. The control device controls the conveying device, and conveys the substrate treated in the first coating station to the reversal station.

Description

基板製造装置及び基板製造方法Substrate manufacturing apparatus and substrate manufacturing method
 本発明は、薄膜材料の液滴を吐出して下地基板上に薄膜を形成する基板製造装置に関する。 The present invention relates to a substrate manufacturing apparatus that forms a thin film on a base substrate by discharging droplets of a thin film material.
 プリント配線板等の下地基板の表面に、薄膜パターン形成用の材料(薄膜材料)の液滴をノズル孔から吐出して、下地基板上に薄膜パターンを形成する技術が知られている。薄膜パターンは、例えば、ソルダーレジストのパターンである。 A technique for forming a thin film pattern on a base substrate by discharging droplets of a thin film pattern forming material (thin film material) from a nozzle hole onto the surface of the base substrate such as a printed wiring board is known. The thin film pattern is, for example, a solder resist pattern.
 コンピュータグラフィックスの画像情報をもとに、基板上に直接、液状樹脂を吹き付け、パターン形成を行う液状樹脂噴射装置が開示されている(例えば、特許文献1参照)。特許文献1に記載の液状樹脂噴射装置により、薄膜パターンを容易に形成することができる。また、フォトリソグラフィーでパターン形成を行う場合に比べ、プロセスの短時間化及び生産コストの削減を実現することができる。 A liquid resin ejecting apparatus that sprays liquid resin directly on a substrate and forms a pattern based on image information of computer graphics is disclosed (for example, see Patent Document 1). With the liquid resin injection device described in Patent Literature 1, a thin film pattern can be easily formed. In addition, the process can be shortened and the production cost can be reduced as compared with the case where pattern formation is performed by photolithography.
特許第3544543号公報Japanese Patent No. 3544543
 下地基板の両面に、より簡便に薄膜パターンを形成することが可能な技術が望まれる。本発明の目的は、簡易な構成で下地基板の両面に薄膜パターンを形成することが可能な基板製造装置を提供することである。 A technique that can more easily form a thin film pattern on both sides of a base substrate is desired. The objective of this invention is providing the board | substrate manufacturing apparatus which can form a thin film pattern on both surfaces of a base substrate by simple structure.
 本発明の一観点によると、
 下地基板の片面に、液状の薄膜材料を塗布し、前記下地基板に塗布された薄膜材料に光を照射して薄膜材料の表層部を硬化させる第1の塗布ステーションと、
 前記第1の塗布ステーションで薄膜材料が塗布された下地基板が搬入され、下地基板に塗布された薄膜材料に光を照射して薄膜材料の内部まで硬化させるとともに、前記下地基板の裏表を反転させる反転ステーションと、
 前記第1の塗布ステーションと前記反転ステーションとの間で下地基板を搬送する搬送装置と、
 前記第1の塗布ステーション、前記反転ステーション、及び前記搬送装置を制御する制御装置と
を有し、
 前記制御装置は、前記搬送装置を制御して、前記第1の塗布ステーションで処理された下地基板を前記反転ステーションに搬送する基板製造装置が提供される。
According to one aspect of the invention,
A first coating station that applies a liquid thin film material to one surface of the base substrate, and irradiates the thin film material applied to the base substrate with light to cure a surface layer portion of the thin film material;
A base substrate coated with a thin film material is carried in at the first coating station, and the thin film material applied to the base substrate is irradiated with light to be cured to the inside of the thin film material, and the front and back sides of the base substrate are reversed. Reversing station,
A transfer device for transferring a base substrate between the first coating station and the reversing station;
A controller for controlling the first coating station, the reversing station, and the transfer device;
The control device is provided with a substrate manufacturing apparatus that controls the transfer device to transfer the base substrate processed at the first coating station to the reversal station.
 本発明の他の観点によると、
 下地基板を第1の塗布ステーションに搬入し、前記第1の塗布ステーションにおいて、前記下地基板の第1の面に、液状の薄膜材料を塗布して、前記下地基板に塗布された薄膜材料の表層部を硬化させる工程と、
 前記第1の塗布ステーションから前記下地基板を取り出して本硬化部に搬入し、前記本硬化部において、前記下地基板の前記第1の面に塗布された薄膜材料を、その内部まで硬化させる工程と、
 前記下地基板を、前記本硬化部から反転部まで搬送し、前記反転部において、前記下地基板の裏表を反転させる工程と、
 前記反転部から前記下地基板を取り出し、前記下地基板の上下が反転した状態で、前記下地基板を前記第1の塗布ステーションまで搬送し、前記第1の塗布ステーションにおいて、前記下地基板の第1の面とは反対側の第2の面に、液状の薄膜材料を塗布して、前記下地基板の前記第2の面に塗布された薄膜材料の表層部を硬化させる工程と、
 前記下地基板を、前記第1の塗布ステーションから前記本硬化部まで搬送し、前記本硬化部において、前記下地基板の前記第2の面に塗布された薄膜材料を、その内部まで硬化させる工程と
を有する基板製造方法が提供される。
According to another aspect of the invention,
A base substrate is carried into a first coating station, and a liquid thin film material is applied to the first surface of the base substrate at the first coating station, and a surface layer of the thin film material applied to the base substrate Curing the part,
Removing the base substrate from the first application station and carrying it into a main curing unit, where the main curing unit cures the thin film material applied to the first surface of the base substrate to the inside thereof; ,
Transporting the base substrate from the main curing unit to a reversing unit, and reversing the front and back of the base substrate in the reversing unit;
The base substrate is taken out from the reversing unit, and the base substrate is transported to the first coating station in a state where the base substrate is turned upside down. In the first coating station, the first base substrate Applying a liquid thin film material to a second surface opposite to the surface, and curing a surface layer portion of the thin film material applied to the second surface of the base substrate;
Transporting the base substrate from the first coating station to the main curing unit, and in the main curing unit, curing the thin film material applied to the second surface of the base substrate to the inside thereof; A substrate manufacturing method is provided.
 反転ステーションで、片面に薄膜パターンが形成された下地基板の裏表を反転させることにより、もう一方の面に、容易に薄膜パターンを形成することが可能になる。 By reversing the front and back of the base substrate with the thin film pattern formed on one side at the reversing station, the thin film pattern can be easily formed on the other side.
図1は、実施例1による基板製造装置を示す概略図である。FIG. 1 is a schematic diagram illustrating a substrate manufacturing apparatus according to a first embodiment. 図2Aは、アライメントステーションに備えられたアライメント装置の概略図であり、図2B及び図2Cは、アライメントステーション内の下地基板を示す平面図である。FIG. 2A is a schematic view of an alignment apparatus provided in the alignment station, and FIGS. 2B and 2C are plan views showing a base substrate in the alignment station. 図3A及び図3Bは、塗布ステーションに備えられた液滴吐出装置の概略図である。3A and 3B are schematic views of a droplet discharge device provided in a coating station. 図4Aは、ノズルユニットを示す概略図であり、図4Bは、ノズルユニットの液滴吐出面を示す底面図であり、図4Cは、ノズルユニットの配置を示す概略的な平面図である。4A is a schematic view showing a nozzle unit, FIG. 4B is a bottom view showing a droplet discharge surface of the nozzle unit, and FIG. 4C is a schematic plan view showing an arrangement of nozzle units. 図5A~図5Dは、反転ステーションに備えられた基板反転装置及び紫外線照射装置の概略図である。5A to 5D are schematic views of the substrate reversing device and the ultraviolet irradiation device provided in the reversing station. 図6A、図6C、及び図6Eは、基板保持器の概略的な平面図であり、図6B、図6D、及び図6Fは、基板保持器の概略的な側面図である。6A, 6C, and 6E are schematic plan views of the substrate holder, and FIGS. 6B, 6D, and 6F are schematic side views of the substrate holder. 図7は、実施例2による基板製造装置の概略図である。FIG. 7 is a schematic view of a substrate manufacturing apparatus according to the second embodiment. 図8は、実施例3による基板製造装置の概略図である。FIG. 8 is a schematic view of a substrate manufacturing apparatus according to the third embodiment. 図9は、実施例4による基板製造装置の概略図である。FIG. 9 is a schematic view of a substrate manufacturing apparatus according to the fourth embodiment. 図10は、実施例5による基板製造装置の概略図である。FIG. 10 is a schematic view of a substrate manufacturing apparatus according to the fifth embodiment. 図11は、実施例6による基板製造装置の概略図である。FIG. 11 is a schematic diagram of a substrate manufacturing apparatus according to the sixth embodiment. 図12A~図12Eは、実施例7による基板製造装置の反転ステーションの概略図である。12A to 12E are schematic views of a reversing station of the substrate manufacturing apparatus according to the seventh embodiment. 図13A~図13Dは、実施例8による基板製造装置の反転ステーションの概略図である。13A to 13D are schematic views of a reversing station of the substrate manufacturing apparatus according to the eighth embodiment. 図14は、実施例9による基板製造装置の塗布ステーションの概略平面図である。FIG. 14 is a schematic plan view of a coating station of the substrate manufacturing apparatus according to the ninth embodiment. 図15A~図15Dは、実施例9による塗布ステーションで薄膜パターンを形成する手順を説明するための塗布ステーション内の概略平面図である。15A to 15D are schematic plan views in the coating station for explaining a procedure for forming a thin film pattern in the coating station according to the ninth embodiment. 図15E~図15Hは、実施例9による塗布ステーションで薄膜パターンを形成する手順を説明するための塗布ステーション内の概略平面図である。15E to 15H are schematic plan views in the coating station for explaining a procedure for forming a thin film pattern in the coating station according to the ninth embodiment. 図16A~図16Cは、実施例10による基板製造装置の反転ステーションの概略図である。16A to 16C are schematic views of a reversing station of the substrate manufacturing apparatus according to the tenth embodiment. 図16D~図16Fは、実施例10による基板製造装置の反転ステーションの概略図である。16D to 16F are schematic views of a reversing station of the substrate manufacturing apparatus according to the tenth embodiment. 図17は、実施例11による基板製造装置の概略図である。FIG. 17 is a schematic view of a substrate manufacturing apparatus according to the eleventh embodiment. 図18A~図18Cは、実施例11による基板製造装置で基板の処理を行うときの処理手順を説明するための概略図である。FIG. 18A to FIG. 18C are schematic diagrams for explaining a processing procedure when processing a substrate with the substrate manufacturing apparatus according to the eleventh embodiment. 図18D~図18Eは、実施例11による基板製造装置で基板の処理を行うときの処理手順を説明するための概略図である。18D to 18E are schematic diagrams for explaining a processing procedure when a substrate is processed by the substrate manufacturing apparatus according to the eleventh embodiment. 図18F~図18Gは、実施例11による基板製造装置で基板の処理を行うときの処理手順を説明するための概略図である。18F to 18G are schematic diagrams for explaining a processing procedure when a substrate is processed by the substrate manufacturing apparatus according to the eleventh embodiment. 図19Aは、実施例12による基板製造装置の概略図であり、図19Bは、一時蓄積装置の概略側面図である。FIG. 19A is a schematic view of a substrate manufacturing apparatus according to Embodiment 12, and FIG. 19B is a schematic side view of a temporary storage apparatus. 図20A~図20Cは、実施例12による基板製造装置で基板の処理を行うときの処理手順を説明するための概略図である。20A to 20C are schematic diagrams for explaining a processing procedure when a substrate is processed by the substrate manufacturing apparatus according to the twelfth embodiment. 図20D~図20Eは、実施例12による基板製造装置で基板の処理を行うときの処理手順を説明するための概略図である。20D to 20E are schematic views for explaining a processing procedure when a substrate is processed by the substrate manufacturing apparatus according to the twelfth embodiment. 図21は、実施例13による基板製造装置の概略図である。FIG. 21 is a schematic view of a substrate manufacturing apparatus according to the thirteenth embodiment. 図22A、図22B、及び図22Cは、それぞれ2段目の塗布ステーションが故障している場合の基板の経路の第1、第2、及び第3の例を示す概略図である。FIG. 22A, FIG. 22B, and FIG. 22C are schematic views showing first, second, and third examples of the path of the substrate when the second-stage coating station fails, respectively. 図23A、図23B、及び図23Cは、それぞれ1段目の塗布ステーションが故障している場合の基板の経路の第1、第2、及び第3の例を示す概略図である。FIG. 23A, FIG. 23B, and FIG. 23C are schematic views showing first, second, and third examples of substrate paths when the first-stage coating station fails, respectively. 図24A~図24Bは、実施例14による基板製造装置で基板の処理を行うときの処理手順を説明するための概略図である。24A to 24B are schematic diagrams for explaining a processing procedure when processing a substrate by the substrate manufacturing apparatus according to the fourteenth embodiment. 図24C~図24Dは、実施例14による基板製造装置で基板の処理を行うときの処理手順を説明するための概略図である。FIG. 24C to FIG. 24D are schematic diagrams for explaining a processing procedure when processing a substrate with the substrate manufacturing apparatus according to the fourteenth embodiment. 図25は、実施例15による基板製造装置の概略図である。FIG. 25 is a schematic view of a substrate manufacturing apparatus according to the fifteenth embodiment. 図26は、実施例15の変形例による基板製造装置の概略図である。FIG. 26 is a schematic view of a substrate manufacturing apparatus according to a modification of the fifteenth embodiment.
 [実施例1]
 図1に、実施例1による基板製造装置の概略図を示す。実施例1による基板製造装置は、筐体18の内部に配置されたアライメントステーション2、塗布ステーション3、反転ステーション4、アライメントステーション5、塗布ステーション6、紫外線照射装置8、9、及び、リフタ11~14を含む。基板製造装置の筐体18に、基板の搬出入口1及び7が設けられている。実施例1による基板製造装置は、例えば矩形状のプリント配線板である下地基板21~27の両面(第1の面と第2の面)に、ソルダーレジストの薄膜パターンを形成するために用いられる。本明細書において、薄膜パターンが形成されていない下地基板を単に「基板」という場合がある。
[Example 1]
FIG. 1 shows a schematic diagram of a substrate manufacturing apparatus according to the first embodiment. The substrate manufacturing apparatus according to the first embodiment includes an alignment station 2, a coating station 3, a reversing station 4, an alignment station 5, a coating station 6, ultraviolet irradiation apparatuses 8, 9 and a lifter 11˜ disposed inside a housing 18. 14 is included. Substrate carry-in / out ports 1 and 7 are provided in a housing 18 of the substrate manufacturing apparatus. The substrate manufacturing apparatus according to the first embodiment is used for forming a thin film pattern of a solder resist on both surfaces (first surface and second surface) of the base substrates 21 to 27 which are, for example, rectangular printed wiring boards. . In this specification, a base substrate on which a thin film pattern is not formed may be simply referred to as a “substrate”.
 基板製造装置は、コンベア15、16、及び制御装置20を含む。コンベア15は、基板21~27を、筐体18の外部から内部に搬入する。リフタ11~14が、筐体18内のステーションの間で、基板21~27を搬送する。コンベア16は、筐体18の内部から外部に基板21~27を搬出する。実施例1による基板製造装置の通常運転時においては、基板搬出入口1から基板が搬入され、基板搬出入口7から、基板が搬出される。筐体18内の各装置の動作及びコンベア15、16の動作は、制御装置20によって制御される。制御装置20は記憶装置20aを含む。 The substrate manufacturing apparatus includes conveyors 15 and 16 and a control device 20. The conveyor 15 carries the substrates 21 to 27 from the outside of the housing 18 into the inside. The lifters 11 to 14 transfer the substrates 21 to 27 between the stations in the housing 18. The conveyor 16 carries the substrates 21 to 27 from the inside of the housing 18 to the outside. In the normal operation of the substrate manufacturing apparatus according to the first embodiment, the substrate is carried in from the substrate carry-in / out port 1 and the substrate is carried out from the substrate carry-in / out port 7. The operation of each device in the housing 18 and the operations of the conveyors 15 and 16 are controlled by the control device 20. The control device 20 includes a storage device 20a.
 基板21~27は、コンベア15に載せられて、搬出入口1を通って筐体18内に搬入される。このとき、基板21~27の第1の面が、図の上方(Z軸の正方向)を向いている。 The substrates 21 to 27 are placed on the conveyor 15 and carried into the casing 18 through the carry-in / out entrance 1. At this time, the first surfaces of the substrates 21 to 27 face upward (the positive direction of the Z axis) in the figure.
 鉛直上方をZ軸の正方向とするXYZ直交座標系を定義する。以下の説明において、アライメントステーション2から塗布ステーション6までの5つのステーションは、順にX軸の正方向に向かって配置されている。搬出入口1から筐体18内に搬入された基板21~27は、各ステーション2~6を経由して、全体としてX軸の正方向に向かって搬送され、搬出入口7から筐体18の外部へ搬出される。 X Define an XYZ Cartesian coordinate system with the vertical direction in the positive direction of the Z axis. In the following description, five stations from the alignment station 2 to the coating station 6 are sequentially arranged toward the positive direction of the X axis. The substrates 21 to 27 carried into the housing 18 from the carry-in / out entrance 1 are transported in the positive direction of the X axis as a whole via the stations 2 to 6, and from the carry-in / out entrance 7 to the outside of the housing 18. It is carried out to.
 まず、実施例1による基板製造装置の通常運転時の動作について説明する。筐体18の内部に導入された基板21~27は、リフタ11によって、アライメントステーション2に搬送される。アライメントステーション2においては、基板21~27の表面に形成されたアライメントマークが検出され、検出結果に基づいて、基板21~27のアライメント(位置合わせ)が行われる。 First, the operation during normal operation of the substrate manufacturing apparatus according to the first embodiment will be described. The substrates 21 to 27 introduced into the housing 18 are transported to the alignment station 2 by the lifter 11. In the alignment station 2, alignment marks formed on the surfaces of the substrates 21 to 27 are detected, and alignment (positioning) of the substrates 21 to 27 is performed based on the detection result.
 アライメントが行われた基板21~27は、リフタ11によって、塗布ステーション3に搬送される。塗布ステーション3において、基板21~27の第1の面にソルダーレジストの薄膜パターンが形成される。塗布ステーション3で形成された薄膜パターンは、その表層部のみが硬化した状態であり、薄膜パターンの内部は液状のままである。表層部のみが硬化する現象を「仮硬化」といい、内部まで硬化する現象を「本硬化」ということとする。 Aligned substrates 21 to 27 are transported to the coating station 3 by the lifter 11. In the coating station 3, a thin film pattern of solder resist is formed on the first surfaces of the substrates 21 to 27. The thin film pattern formed at the coating station 3 is in a state where only the surface layer portion is cured, and the inside of the thin film pattern remains in a liquid state. The phenomenon that only the surface layer is cured is referred to as “temporary curing”, and the phenomenon that cures to the inside is referred to as “main curing”.
 第1の面に薄膜パターンが形成された基板21~27は、リフタ12により、塗布ステーション3から反転ステーション4に搬送される。反転ステーション4において、基板21~27の表裏が反転される。この結果、基板21~27の第2の面が、Z軸の正方向を向くことになる。また、反転ステーション4において、基板21~27の第1の面に形成された薄膜パターンの本硬化が行われる。 The substrates 21 to 27 having the thin film pattern formed on the first surface are transferred from the coating station 3 to the reversing station 4 by the lifter 12. In the reversing station 4, the front and back of the substrates 21 to 27 are reversed. As a result, the second surfaces of the substrates 21 to 27 face the positive direction of the Z axis. Further, in the reversing station 4, main curing of the thin film pattern formed on the first surfaces of the substrates 21 to 27 is performed.
 表裏が反転され、かつ第1の面の薄膜パターンが本硬化された基板21~27は、リフタ13で、反転ステーション4から2番目のアライメントステーション5に搬送される。2番目のアライメントステーション5においては、基板21~27の第2の面に形成されたアライメントマークが検出され、検出結果に基づいて、基板21~27のアライメントが行われる。 The substrates 21 to 27 whose front and back sides are reversed and the thin film pattern of the first surface is finally cured are transported from the reversing station 4 to the second alignment station 5 by the lifter 13. In the second alignment station 5, alignment marks formed on the second surfaces of the substrates 21 to 27 are detected, and the substrates 21 to 27 are aligned based on the detection result.
 基板21~27は、リフタ13によって、アライメントステーション5から2番目の塗布ステーション6に搬送される。2番目の塗布ステーション6において、基板21~27の第2の面にソルダーレジストの薄膜パターンが形成される。 The substrates 21 to 27 are transported from the alignment station 5 to the second coating station 6 by the lifter 13. In the second coating station 6, a solder resist thin film pattern is formed on the second surfaces of the substrates 21 to 27.
 第2の面に薄膜パターンが形成された基板21~27は、リフタ14によって、塗布ステーション6からコンベア16に搬送される。コンベア16は、基板21~27を、搬出入口7から筐体18の外部へ搬出する。基板21~27がコンベア16の上に載せられた状態で、紫外線照射装置9により、基板21~27の第2の面の全体に紫外線が照射される。紫外線照射により、基板21~27の第2の面に形成された薄膜パターンが本硬化する。紫外線照射装置9は、コンベア16の上に載せられた基板21~27の上方を通過するように、筐体18内を移動する。紫外線照射装置9が基板21~27の上方を通過するときに、基板21~27の第2の面に紫外線を照射する。または、紫外線照射装置9を筐体18内に固定し、基板21~27がコンベア16に載せられて、紫外線照射装置9の下方を通過するときに、紫外線照射装置9から基板21~27に紫外線が照射される構成としてもよい。基板21~27への紫外線の照射は、制御装置20によって制御される。 The substrates 21 to 27 on which the thin film pattern is formed on the second surface are conveyed from the coating station 6 to the conveyor 16 by the lifter 14. The conveyor 16 carries the substrates 21 to 27 out of the housing 18 from the carry-in / out entrance 7. With the substrates 21 to 27 placed on the conveyor 16, the ultraviolet irradiation device 9 irradiates the entire second surfaces of the substrates 21 to 27 with ultraviolet rays. The thin film pattern formed on the second surfaces of the substrates 21 to 27 is fully cured by the ultraviolet irradiation. The ultraviolet irradiation device 9 moves in the housing 18 so as to pass above the substrates 21 to 27 placed on the conveyor 16. When the ultraviolet irradiation device 9 passes above the substrates 21 to 27, the second surfaces of the substrates 21 to 27 are irradiated with ultraviolet rays. Alternatively, when the ultraviolet irradiation device 9 is fixed in the housing 18 and the substrates 21 to 27 are placed on the conveyor 16 and pass below the ultraviolet irradiation device 9, the ultraviolet irradiation device 9 applies ultraviolet rays to the substrates 21 to 27. May be configured to be irradiated. Irradiation of ultraviolet rays onto the substrates 21 to 27 is controlled by the control device 20.
 実施例1による基板製造装置においては、アライメントステーション2、塗布ステーション3、反転ステーション4、アライメントステーション5、塗布ステーション6の各ステーションで、処理が並行して行われる。例えば、アライメントステーション2で、基板22の第1の面に形成されたアライメントマークの検出、及び基板22のアライメントが行われている期間に、塗布ステーション3において、他の基板23の第1の面に薄膜パターンが形成される。この間、反転ステーション4では、他の基板24の第1の面に形成された薄膜パターンの本硬化と、基板24の表裏の反転が行われ、アライメントステーション5では、他の基板25の第2の面に形成されたアライメントマークの検出、及び基板25のアライメントが行われる。塗布ステーション6においては、他の基板26の第2の面に薄膜パターンが形成される。なお、この間に、コンベア15は、薄膜パターン未形成の他の基板21を筐体18内に搬入し、コンベア16は、薄膜パターンが両面に形成された基板27を、筐体18から搬出する。このように、処理が並行して行われるため、生産効率の向上を実現することができる。 In the substrate manufacturing apparatus according to the first embodiment, processing is performed in parallel at each of the alignment station 2, the coating station 3, the reversing station 4, the alignment station 5, and the coating station 6. For example, during the period in which the alignment mark formed on the first surface of the substrate 22 is detected and the alignment of the substrate 22 is performed in the alignment station 2, the first surface of the other substrate 23 is applied in the coating station 3. A thin film pattern is formed. During this time, in the reversing station 4, the main curing of the thin film pattern formed on the first surface of the other substrate 24 and the reversal of the front and back of the substrate 24 are performed. Detection of alignment marks formed on the surface and alignment of the substrate 25 are performed. In the coating station 6, a thin film pattern is formed on the second surface of the other substrate 26. During this time, the conveyor 15 carries the other substrate 21 in which the thin film pattern is not formed into the housing 18, and the conveyor 16 carries out the substrate 27 having the thin film pattern formed on both sides from the housing 18. Thus, since processing is performed in parallel, an improvement in production efficiency can be realized.
 図2A~図2Cを参照して、アライメントステーション2について説明する。図2Aは、アライメントステーション2に備えられたアライメント装置の概略図を示す。アライメント装置は、ベース(基台)31の上に、ベース31側から順に配置されるYステージ32、θステージ33、チャックプレート34を含む。チャックプレート34は、リフタ11(図1)によって、アライメントステーション2に搬送された基板22を吸着保持する。 The alignment station 2 will be described with reference to FIGS. 2A to 2C. FIG. 2A shows a schematic view of an alignment apparatus provided in the alignment station 2. The alignment apparatus includes a Y stage 32, a θ stage 33, and a chuck plate 34 that are arranged in this order from the base 31 side on a base (base) 31. The chuck plate 34 sucks and holds the substrate 22 transported to the alignment station 2 by the lifter 11 (FIG. 1).
 Yステージ32は、θステージ33及びチャックプレート34と共に、基板22をY軸方向に移動させる。θステージ33は、Z軸に平行な軸を回転中心として、チャックプレート34と共に基板22を回転させる。本明細書において、Yステージ32、θステージ33、及びチャックプレート34をまとめて「移動ステージ」という。チャックプレート34による基板22の吸着、Yステージ32及びθステージ33による基板22の移動は、制御装置20によって制御される。 The Y stage 32 moves the substrate 22 in the Y axis direction together with the θ stage 33 and the chuck plate 34. The θ stage 33 rotates the substrate 22 together with the chuck plate 34 around an axis parallel to the Z axis. In this specification, the Y stage 32, the θ stage 33, and the chuck plate 34 are collectively referred to as a “moving stage”. Adsorption of the substrate 22 by the chuck plate 34 and movement of the substrate 22 by the Y stage 32 and the θ stage 33 are controlled by the control device 20.
 アライメント装置は、CCDカメラ35~38を含む。CCDカメラ35~38は、チャックプレート34に保持された基板22の表面に形成されているアライメントマークを撮像する。CCDカメラ35~38による撮像は、制御装置20によって制御される。また、CCDカメラ35~38によって得られた画像データ(検出結果)は、制御装置20に送信される。 Alignment device includes CCD cameras 35-38. The CCD cameras 35 to 38 image the alignment marks formed on the surface of the substrate 22 held on the chuck plate 34. Imaging by the CCD cameras 35 to 38 is controlled by the control device 20. Further, the image data (detection result) obtained by the CCD cameras 35 to 38 is transmitted to the control device 20.
 図2Bは、アライメントステーション2に備えられた移動ステージ、及びチャックプレート34に吸着保持された基板22の平面図を示す。基板22の第1の面に、アライメントマーク22a~22dが形成されている。アライメントマーク22a~22dは、例えばそれぞれ四隅の近傍に配置されている。 FIG. 2B is a plan view of the moving stage provided in the alignment station 2 and the substrate 22 sucked and held by the chuck plate 34. Alignment marks 22 a to 22 d are formed on the first surface of the substrate 22. For example, the alignment marks 22a to 22d are arranged in the vicinity of the four corners.
 リフタ11によってチャックプレート34の上まで搬送された基板22は、チャックプレート34に吸着保持される。チャックプレート34に保持された基板22は、Yステージ32により、アライメントステーション2内をY軸の負の方向に移動される。図2Bにおいては、移動された後のチャックプレート34及び基板22を括弧内に示した。 The substrate 22 transported to the top of the chuck plate 34 by the lifter 11 is sucked and held by the chuck plate 34. The substrate 22 held on the chuck plate 34 is moved in the negative direction of the Y axis in the alignment station 2 by the Y stage 32. In FIG. 2B, the chuck plate 34 and the substrate 22 after being moved are shown in parentheses.
 CCDカメラ35~38は、リフタ11から基板22を受け取るときのチャックプレート34の位置よりも、Y軸の負の側に配置されている。また、CCDカメラ35~38は、それぞれアライメントマーク22a~22dを同時に撮像可能なように相対位置関係を有する。基板22は、Yステージ32によってCCDカメラ35~38の下方に移動され、CCDカメラ35~38が、それぞれ基板22の第1の面に形成されたアライメントマーク22a~22dを撮像する。撮像された画像データが、制御装置20に送信される。 The CCD cameras 35 to 38 are arranged on the negative side of the Y axis with respect to the position of the chuck plate 34 when the substrate 22 is received from the lifter 11. The CCD cameras 35 to 38 have a relative positional relationship so that the alignment marks 22a to 22d can be simultaneously imaged. The substrate 22 is moved below the CCD cameras 35 to 38 by the Y stage 32, and the CCD cameras 35 to 38 image the alignment marks 22a to 22d formed on the first surface of the substrate 22, respectively. The captured image data is transmitted to the control device 20.
 制御装置20は、CCDカメラ35~38によって取得された画像データを解析し、基板22の位置、及び、Z軸に平行な軸を回転中心とした回転方向の位置(姿勢)を算出する。その後、基板22の回転方向の位置を補正する。回転方向の位置の補正を「θ補正」という。 The control device 20 analyzes the image data acquired by the CCD cameras 35 to 38, and calculates the position of the substrate 22 and the position (posture) in the rotation direction with the axis parallel to the Z axis as the rotation center. Thereafter, the position of the substrate 22 in the rotational direction is corrected. The correction of the position in the rotation direction is called “θ correction”.
 図2Bには、一例として、基板22に、XY平面の回転方向に関して、目標位置から反時計回りに角度αだけ位置ずれが生じている場合を示した。この場合、アライメントマーク22aに対応する頂点と、アライメントマーク22dに対応する頂点とを結ぶ辺は、後者の頂点を基準として、X軸の正方向から反時計回りに角度αだけ傾いていることになる。この位置ずれは、CCDカメラ35~38によって取得された画像データに基づいて、制御装置20が算出する。制御装置20は、θステージ33を時計回りに角度αだけ回転させることによって、θ補正を行う。 FIG. 2B shows, as an example, a case where the substrate 22 is displaced by an angle α counterclockwise from the target position with respect to the rotation direction of the XY plane. In this case, the side connecting the vertex corresponding to the alignment mark 22a and the vertex corresponding to the alignment mark 22d is inclined by an angle α counterclockwise from the positive direction of the X axis with respect to the latter vertex. Become. The positional deviation is calculated by the control device 20 based on the image data acquired by the CCD cameras 35 to 38. The control device 20 performs θ correction by rotating the θ stage 33 clockwise by an angle α.
 図2Cに、θ補正後のチャックプレート34及び基板22の平面図を示す。θ補正の結果、矩形状の基板22の各辺は、X軸またはY軸に平行となる。基板22のθ補正を行った後、制御装置20は、Yステージ32を駆動して、基板22をY軸の正の方向に移動させる。Yステージ32の移動距離は、図2Bに示した工程において、Yステージ32をY軸の負の方向に移動させた距離と等しい。 FIG. 2C shows a plan view of the chuck plate 34 and the substrate 22 after θ correction. As a result of the θ correction, each side of the rectangular substrate 22 is parallel to the X axis or the Y axis. After performing the θ correction of the substrate 22, the control device 20 drives the Y stage 32 to move the substrate 22 in the positive direction of the Y axis. The moving distance of the Y stage 32 is equal to the distance of moving the Y stage 32 in the negative direction of the Y axis in the process shown in FIG. 2B.
 図2Cの括弧内に、Y軸の正の方向に移動した後のチャックプレート34及び基板22を示す。θ補正が施された基板22は、リフタ11(図1)により、アライメントステーション2から塗布ステーション3(図1)に搬送される。リフタ11は、θステージ33の回転によって、θ補正後の基板22の回転方向の位置(姿勢)を維持して、塗布ステーション3まで搬送する。 The chuck plate 34 and the substrate 22 after moving in the positive direction of the Y axis are shown in parentheses in FIG. 2C. The substrate 22 subjected to θ correction is transferred from the alignment station 2 to the coating station 3 (FIG. 1) by the lifter 11 (FIG. 1). The lifter 11 maintains the position (posture) in the rotation direction of the substrate 22 after the θ correction by the rotation of the θ stage 33 and conveys it to the coating station 3.
 図1に示したアライメントステーション2でθ補正が完了しているため、塗布ステーション3では、基板22のθ補正を行うことなく、基板22の第1の面への、薄膜パターンの形成を開始することができる。塗布ステーション3でθ補正を行い、その後に薄膜パターンを形成する場合と比べると、塗布ステーション3での処理時間を短くすることができる。その結果、タクトタイムの短縮、及び生産効率の向上を実現することが可能である。 Since the θ correction is completed in the alignment station 2 shown in FIG. 1, the coating station 3 starts forming a thin film pattern on the first surface of the substrate 22 without performing θ correction of the substrate 22. be able to. Compared with the case where θ correction is performed at the coating station 3 and then a thin film pattern is formed, the processing time at the coating station 3 can be shortened. As a result, the tact time can be shortened and the production efficiency can be improved.
 基板22に、伸び歪が発生している場合がある。伸び歪が発生していると、薄膜パターン形成時点における基板の寸法が設計値とは異なる。制御装置20は、アライメントステーション2で取得された画像データに基づき、基板22の寸法を算出する。算出された基板の寸法に基づいて、塗布ステーション3で薄膜パターンを形成するときに使用される吐出制御用画像データを生成する。生成された吐出制御用画像データは、制御装置20の記憶装置20aに格納される。 The substrate 22 may have an elongation strain. When the elongation strain is generated, the dimension of the substrate at the time of forming the thin film pattern is different from the design value. The control device 20 calculates the dimensions of the substrate 22 based on the image data acquired by the alignment station 2. Based on the calculated substrate dimensions, ejection control image data used when forming a thin film pattern at the coating station 3 is generated. The generated ejection control image data is stored in the storage device 20a of the control device 20.
 図3A及び図3Bに、塗布ステーション3(図1)に備えられた液滴吐出装置70の概略図を示す。図3Aに示すように、液滴吐出装置70は、XY平面に平行な姿勢で設置されたベース(基台)41、及び、ベース41上に、ベース41側から順に配置されたXステージ43、Yステージ44、チャックプレート45を含む。チャックプレート45は、リフタ11(図1)によって、塗布ステーション3に搬送された基板23を吸着保持する。 3A and 3B are schematic views of the droplet discharge device 70 provided in the coating station 3 (FIG. 1). As illustrated in FIG. 3A, the droplet discharge device 70 includes a base (base) 41 installed in a posture parallel to the XY plane, and an X stage 43 sequentially disposed on the base 41 from the base 41 side. A Y stage 44 and a chuck plate 45 are included. The chuck plate 45 sucks and holds the substrate 23 transported to the coating station 3 by the lifter 11 (FIG. 1).
 Xステージ43は、Yステージ44及びチャックプレート45と共に、基板23をX軸方向に移動させる。Yステージ44は、チャックプレート44と共に、基板23をY軸方向に移動させる。Xステージ43、Yステージ44、及びチャックプレート45をまとめて、「移動ステージ」という。チャックプレート45による基板23の吸着、Xステージ43及びYステージ44による基板23の移動は、制御装置20によって制御される。 The X stage 43 moves the substrate 23 along with the Y stage 44 and the chuck plate 45 in the X-axis direction. The Y stage 44 moves the substrate 23 in the Y axis direction together with the chuck plate 44. The X stage 43, the Y stage 44, and the chuck plate 45 are collectively referred to as a “moving stage”. Adsorption of the substrate 23 by the chuck plate 45 and movement of the substrate 23 by the X stage 43 and the Y stage 44 are controlled by the control device 20.
 なお、移動ステージとして、Xステージ43、Yステージ44、及びチャックプレート45の機能を有する高機能ステージを用いてもよい。 Note that a high-function stage having the functions of the X stage 43, the Y stage 44, and the chuck plate 45 may be used as the moving stage.
 ベース41にフレーム42が固定されている。フレーム42は、2本の支柱42a、42b、及び梁42cを含む。支柱42a、42bは、ベース41のY軸方向の略中央に取り付けられている。梁42cは、X軸方向に沿うように、支柱42a、42bに支持される。ノズルユニット47a~47fが、フレーム42により、チャックプレート44の上方に支持されている。 The frame 42 is fixed to the base 41. The frame 42 includes two struts 42a and 42b and a beam 42c. The support columns 42a and 42b are attached to the center of the base 41 in the Y-axis direction. The beam 42c is supported by the columns 42a and 42b so as to be along the X-axis direction. Nozzle units 47 a to 47 f are supported above the chuck plate 44 by the frame 42.
 ノズルユニット47a~47fは、連結部材46を介して、フレーム42の梁42cに支持されている。ノズルユニット47a~47fは、それぞれ複数のノズルヘッド及び紫外光源を含む。ノズルヘッドは、例えば紫外線硬化型の薄膜材料の液滴を、チャックプレート44に保持された基板23の第1の面に向けて吐出する。薄膜材料の吐出は、基板23をY軸方向に移動させながら行われる。吐出された薄膜材料により、基板23の第1の面に所定の平面形状を有する薄膜パターンが形成される。紫外光源から出射される紫外線により、薄膜パターンが仮硬化する。 The nozzle units 47a to 47f are supported by the beam 42c of the frame 42 via the connecting member 46. Each of the nozzle units 47a to 47f includes a plurality of nozzle heads and an ultraviolet light source. The nozzle head discharges, for example, droplets of an ultraviolet curable thin film material toward the first surface of the substrate 23 held by the chuck plate 44. The thin film material is discharged while moving the substrate 23 in the Y-axis direction. A thin film pattern having a predetermined planar shape is formed on the first surface of the substrate 23 by the discharged thin film material. The thin film pattern is temporarily cured by the ultraviolet rays emitted from the ultraviolet light source.
 制御装置20の記憶装置20aに、基板23の第1の面に形成すべき薄膜パターンの平面形状を定義する画像データ(パターン定義データ)が記憶されている。パターン定義データは、例えばガーバフォーマットで与えられる。さらに、記憶装置20aに、移動ステージによる基板23の移動量とノズルヘッドからのインクの吐出時期との関係(吐出タイミング)を示すデータが記憶されている。これらのデータは、基板23が歪を生じていないという前提で与えられた設計データである。基板23に歪が生じている場合には、この設計データをそのまま使用することはできない。 Image data (pattern definition data) that defines the planar shape of the thin film pattern to be formed on the first surface of the substrate 23 is stored in the storage device 20a of the control device 20. The pattern definition data is given in, for example, a Gerber format. Further, data indicating the relationship (ejection timing) between the amount of movement of the substrate 23 by the moving stage and the timing of ink ejection from the nozzle head is stored in the storage device 20a. These data are design data given on the assumption that the substrate 23 is not distorted. If the substrate 23 is distorted, this design data cannot be used as it is.
 制御装置20は、これらの設計データから、アライメントステーション2(図1)で撮像された基板23の画像データに基づき、吐出制御用画像データを生成する。吐出制御用画像データは、例えばラスタフォーマットで与えられる。以下、吐出制御用画像データの生成手順について説明する。制御装置20が、アライメントステーション2で取得された画像データから、基板23のX方向、Y方向の伸縮量を算出する。X方向及びY方向について、基板23のX方向及びY方向の伸縮量に応じて、パターン定義データを補正する。補正後のパターン定義データに基づいて、ラスタフォーマットの吐出制御用画像データを生成する。 The control device 20 generates discharge control image data from these design data based on the image data of the substrate 23 imaged by the alignment station 2 (FIG. 1). The ejection control image data is given, for example, in a raster format. Hereinafter, a procedure for generating image data for ejection control will be described. The control device 20 calculates the amount of expansion / contraction of the substrate 23 in the X direction and Y direction from the image data acquired by the alignment station 2. For the X direction and the Y direction, the pattern definition data is corrected according to the amount of expansion and contraction of the substrate 23 in the X direction and the Y direction. Based on the corrected pattern definition data, raster format ejection control image data is generated.
 制御装置20は、記憶装置20aに保存された吐出制御用画像データに基づいて、基板23の第1の面の所定領域に薄膜材料が塗布されるように、ノズルユニット47a~47fからの薄膜材料の吐出、及び移動ステージによる基板23の移動を制御する。基板23が、Y軸方向に沿って移動し、ノズルユニット47a~47fの鉛直下方(Z軸の負の方向)を通過する時に、基板23の第1の面に薄膜材料が塗布される。 Based on the ejection control image data stored in the storage device 20a, the control device 20 applies the thin film material from the nozzle units 47a to 47f so that the thin film material is applied to a predetermined region of the first surface of the substrate 23. And the movement of the substrate 23 by the moving stage is controlled. The thin film material is applied to the first surface of the substrate 23 when the substrate 23 moves along the Y-axis direction and passes vertically below the nozzle units 47a to 47f (the negative direction of the Z-axis).
 図3Bに、液滴吐出装置70のノズルユニット47a~47fの近傍の概略図を示す。ノズルユニット47a~47fは、同一の構成を有し、X軸方向に沿って等間隔に連結部材46に固定されている。連結部材46は、フレームの梁42cに、Z軸方向に移動可能に取り付けられている。連結部材46をZ軸方向に移動させることにより、ノズルユニット47a~47fと、基板23との間の距離を変化させることができる。連結部材46によるノズルユニット47a~47fのZ軸方向への移動は、制御装置20によって制御される。なお、ノズルユニット47a~47fは、連結部材46を介さず、直接フレームの梁42cに固定されていてもよい。 FIG. 3B shows a schematic view of the vicinity of the nozzle units 47a to 47f of the droplet discharge device 70. FIG. The nozzle units 47a to 47f have the same configuration, and are fixed to the connecting member 46 at equal intervals along the X-axis direction. The connecting member 46 is attached to the beam 42c of the frame so as to be movable in the Z-axis direction. By moving the connecting member 46 in the Z-axis direction, the distance between the nozzle units 47a to 47f and the substrate 23 can be changed. The movement of the nozzle units 47a to 47f in the Z-axis direction by the connecting member 46 is controlled by the control device 20. The nozzle units 47a to 47f may be directly fixed to the beam 42c of the frame without using the connecting member 46.
 図4Aに、ノズルユニット47aの斜視図を示す。ノズルユニット47aは、ノズルホルダ47acに、Y軸方向に沿って交互に組み付けられたノズルヘッド47a1~47a4、及び紫外光源47a5~47a9を含む。各ノズルヘッド47a1~47a4は、Y軸方向に沿って配置される2列のノズル列を備える。各ノズル列は、X軸方向に沿って配列する複数、例えば192個のノズル孔によって構成される。各ノズル列のX軸方向に沿う長さは、たとえば約30mmである。このためノズルユニット47aのX軸方向に沿う長さも約30mmである。各ノズル孔から紫外線硬化型の薄膜材料が吐出される。 FIG. 4A shows a perspective view of the nozzle unit 47a. The nozzle unit 47a includes nozzle heads 47a1 to 47a4 and ultraviolet light sources 47a5 to 47a9 that are alternately assembled along the Y-axis direction in the nozzle holder 47ac. Each nozzle head 47a1 to 47a4 includes two nozzle rows arranged along the Y-axis direction. Each nozzle row is constituted by a plurality of, for example, 192 nozzle holes arranged along the X-axis direction. The length along the X-axis direction of each nozzle row is, for example, about 30 mm. For this reason, the length along the X-axis direction of the nozzle unit 47a is also about 30 mm. An ultraviolet curable thin film material is discharged from each nozzle hole.
 紫外光源47a5~47a9は、例えば発光ダイオード(LED)を含んで構成され、紫外域の波長の光を発光する。ノズルヘッド47a1~47a4の各ノズル孔から基板23に吐出された紫外線硬化型の薄膜材料は、紫外光源47a5~47a9から発せられる光によって仮硬化される。紫外光源47a5~47a9からの紫外光の出射は、制御措置20によって制御される。 The ultraviolet light sources 47a5 to 47a9 are configured to include, for example, a light emitting diode (LED), and emit light having a wavelength in the ultraviolet region. The ultraviolet curable thin film material discharged from the nozzle holes of the nozzle heads 47a1 to 47a4 to the substrate 23 is temporarily cured by light emitted from the ultraviolet light sources 47a5 to 47a9. The emission of ultraviolet light from the ultraviolet light sources 47a5 to 47a9 is controlled by the control measure 20.
 図4Bに、ノズルユニット47a(ノズルヘッド47a1~47a4)の底面図を示す。図4Bでは、紫外光源47a5~47a9の記載は省略した。 FIG. 4B shows a bottom view of the nozzle unit 47a (nozzle heads 47a1 to 47a4). In FIG. 4B, the description of the ultraviolet light sources 47a5 to 47a9 is omitted.
 ノズルヘッド47a1~47a4の1つのノズル列に着目すると、ノズル孔はX軸方向に沿って160μm間隔で配置される。各ノズルヘッド47a1~47a4において、Y軸の正側のノズル列のノズル孔は、Y軸の負側のノズル列のノズル孔に対し、X軸の正方向に80μmずれている。このため各ノズルヘッド47a1~47a4は、X軸方向に80μm間隔で千鳥状(ジグザク)に配列される384個のノズル孔を含み、約300dpiに相当する解像度を有する。各ノズル孔に圧電素子が配置されており、圧電素子に電圧を印加することにより薄膜材料がノズル孔から吐出される。圧電素子への電圧の印加は制御装置20によって制御される。すなわち、制御装置20によって薄膜材料の吐出が制御される。なお、実施例1においては、ノズルヘッド47a1~47a4の各々に2列のノズル列を配置したが、ノズル列の本数は、1列でもよいし、3列以上でもよい。 Focusing on one nozzle row of the nozzle heads 47a1 to 47a4, the nozzle holes are arranged at intervals of 160 μm along the X-axis direction. In each of the nozzle heads 47a1 to 47a4, the nozzle hole of the Y-axis positive nozzle row is displaced by 80 μm in the X-axis positive direction with respect to the nozzle hole of the Y-axis negative nozzle row. Therefore, each of the nozzle heads 47a1 to 47a4 includes 384 nozzle holes arranged in a zigzag pattern at intervals of 80 μm in the X-axis direction, and has a resolution corresponding to about 300 dpi. A piezoelectric element is disposed in each nozzle hole, and a thin film material is discharged from the nozzle hole by applying a voltage to the piezoelectric element. Application of voltage to the piezoelectric element is controlled by the control device 20. That is, the discharge of the thin film material is controlled by the control device 20. In the first embodiment, two nozzle rows are arranged in each of the nozzle heads 47a1 to 47a4. However, the number of nozzle rows may be one or three or more.
 ノズルヘッド47a1~47a4は、順に相対位置をX軸の正の方向にずらされながら、全体としてY軸方向に沿って配置される。すなわち、ノズルヘッド47a2はノズルヘッド47a1に対し、20μmだけX軸の正の方向にずれて配置される。同様にノズルヘッド47a3、a4は、それぞれノズルヘッド47a2、a3に対し、20μmだけX軸の正の方向にずれて配置される。ノズルユニット47aは、X軸方向に20μm間隔(約1200dpiに相当する解像度)で配置される複数のノズル孔を備える。 The nozzle heads 47a1 to 47a4 are arranged along the Y-axis direction as a whole while their relative positions are sequentially shifted in the positive direction of the X-axis. That is, the nozzle head 47a2 is arranged so as to be shifted in the positive direction of the X axis by 20 μm with respect to the nozzle head 47a1. Similarly, the nozzle heads 47a3 and a4 are arranged so as to be shifted in the positive direction of the X axis by 20 μm with respect to the nozzle heads 47a2 and a3, respectively. The nozzle unit 47a includes a plurality of nozzle holes arranged at intervals of 20 μm (resolution corresponding to about 1200 dpi) in the X-axis direction.
 図4Cに、ノズルユニット47a~47fの概略的な平面図を示す。上述のように、各ノズルユニット47a~47fは、X軸方向に沿う約30mmの範囲に、液滴吐出能力を有する。また、複数のノズルユニット47a~47fは、X軸方向に沿って等間隔に配置される。隣り合うノズルユニット47a~47f間の距離は、たとえば約60mmである。 FIG. 4C shows a schematic plan view of the nozzle units 47a to 47f. As described above, each of the nozzle units 47a to 47f has a droplet discharge capability in a range of about 30 mm along the X-axis direction. Further, the plurality of nozzle units 47a to 47f are arranged at equal intervals along the X-axis direction. The distance between adjacent nozzle units 47a to 47f is, for example, about 60 mm.
 塗布ステーション3(図1)における処理について説明する。リフタ11が基板23を搬送し、チャックプレート45(図3A)の上に載せる。チャックプレート45に保持された基板23をY軸の負の方向に移動させながら、各ノズルユニット47a~47fの下方のY軸方向に沿う奇数列領域(図4Cにおいて丸印を付した領域)の着弾目標位置(薄膜材料を塗布すべき位置)に向けて、ノズルユニット47a~47fから薄膜材料を吐出する。奇数列領域の着弾目標位置への塗布が終了したら、Xステージ43(図3A)で基板23をX軸の正の方向に、たとえば10μmだけ移動させる。その後、基板23をY軸の正の方向に移動させながら、各ノズルユニット47a~47fの下方のY軸方向に沿う偶数列領域(図4Cにおいてバツ印を付した領域)の着弾目標位置に向けて、ノズルユニット47a~47fから薄膜材料を吐出する。基板23の移動の往路と復路とで、それぞれ奇数列領域と偶数列領域の目標位置に薄膜材料を着弾させることができる。これにより、約2400dpiに相当する高解像度で薄膜パターンを形成することができる。 The process in the coating station 3 (FIG. 1) will be described. The lifter 11 transports the substrate 23 and places it on the chuck plate 45 (FIG. 3A). While moving the substrate 23 held by the chuck plate 45 in the negative direction of the Y axis, the odd-numbered row regions (regions marked with circles in FIG. 4C) along the Y axis direction below the nozzle units 47a to 47f. The thin film material is discharged from the nozzle units 47a to 47f toward the landing target position (position where the thin film material is to be applied). When the application to the landing target position in the odd-numbered region is completed, the substrate 23 is moved in the positive direction of the X axis by, for example, 10 μm by the X stage 43 (FIG. 3A). After that, while moving the substrate 23 in the positive direction of the Y-axis, toward the landing target position of the even-numbered row region (the region marked with a cross in FIG. 4C) along the Y-axis direction below each of the nozzle units 47a to 47f. The thin film material is discharged from the nozzle units 47a to 47f. The thin film material can be landed on the target positions of the odd-numbered row region and the even-numbered row region, respectively, on the forward path and the return path of the movement of the substrate 23. Thereby, a thin film pattern can be formed with high resolution corresponding to about 2400 dpi.
 偶数列領域への薄膜材料の塗布が終了すると、Xステージ43を駆動し、基板23を、X軸の正の方向に約30mm移動させる。Yステージ44により、基板23をY軸方向に往復させ、往路と復路とで、それぞれ奇数列領域と偶数列領域の描画を行う。 When the application of the thin film material to the even row region is completed, the X stage 43 is driven, and the substrate 23 is moved about 30 mm in the positive direction of the X axis. The substrate 23 is reciprocated in the Y-axis direction by the Y stage 44, and the odd-numbered row region and the even-numbered row region are drawn in the forward path and the backward path, respectively.
 更にもう一度同様の処理を行い、Y軸方向に沿って基板23を合計3往復させることにより、基板23の第1の面への薄膜パターンの形成を完了する。 Further, the same processing is performed once more, and the substrate 23 is reciprocated a total of three times along the Y-axis direction, thereby completing the formation of the thin film pattern on the first surface of the substrate 23.
 図3A~図4Cに示した液滴吐出装置70は、6つのノズルユニット47a~47fを備える。ノズルユニットの数は6つに限られない。例えば、ノズルユニットの個数を1つとしてもよい。 The droplet discharge device 70 shown in FIGS. 3A to 4C includes six nozzle units 47a to 47f. The number of nozzle units is not limited to six. For example, the number of nozzle units may be one.
 図5A~図5Dに、反転ステーション4(図1)に備えられた基板反転装置50及び紫外線照射装置(薄膜材料固化装置)60の概略図を示す。図5Aに示すように、基板反転装置50は、反転ステーション4に搬送された基板21~27を保持する基板保持器51、及び基板保持器51を支持する棒状の支持部材52を含む。基板保持器51は、長方形の4つの辺のうち1つの短辺を除去した残りの3つの辺に沿う棒状の部材で構成される。相互に平行な2本の長辺に沿う部分を「腕」といい、1本の短辺に沿う部分を「連結部分」ということとする。支持部材52は、連結部分の中点に接続されており、2本の腕とは反対向きに伸びる。基板保持器51は、支持部材52を回転軸として回転可能である。支持部材52による基板保持器51の回転は、制御装置20によって制御される。 5A to 5D are schematic views of the substrate reversing device 50 and the ultraviolet irradiation device (thin film material solidifying device) 60 provided in the reversing station 4 (FIG. 1). As shown in FIG. 5A, the substrate reversing device 50 includes a substrate holder 51 that holds the substrates 21 to 27 transported to the reversing station 4, and a rod-like support member 52 that supports the substrate holder 51. The substrate holder 51 is composed of a bar-shaped member along the remaining three sides from which one short side is removed from the four sides of the rectangle. A portion along two long sides parallel to each other is referred to as an “arm”, and a portion along one short side is referred to as a “connecting portion”. The support member 52 is connected to the midpoint of the connecting portion and extends in the opposite direction to the two arms. The substrate holder 51 is rotatable about the support member 52 as a rotation axis. The rotation of the substrate holder 51 by the support member 52 is controlled by the control device 20.
 紫外線照射装置60は、支持部材61及び紫外光源62を含む。支持部材61は、基板反転装置50の支持部材52の延在方向と平行な方向に延在している。紫外光源62は、ランプまたはLEDを含み、紫外線領域の波長の光を発光する。紫外光源62は、ノズルユニットに含まれる紫外光源47a5~47a9(図4A)よりも高出力である。紫外光源2から放射される紫外光の波長は、ノズルユニットの紫外光源から出射される紫外光の波長と等しくてもよいし、異なっていてもよい。 The ultraviolet irradiation device 60 includes a support member 61 and an ultraviolet light source 62. The support member 61 extends in a direction parallel to the extending direction of the support member 52 of the substrate reversing device 50. The ultraviolet light source 62 includes a lamp or an LED and emits light having a wavelength in the ultraviolet region. The ultraviolet light source 62 has a higher output than the ultraviolet light sources 47a5 to 47a9 (FIG. 4A) included in the nozzle unit. The wavelength of the ultraviolet light emitted from the ultraviolet light source 2 may be the same as or different from the wavelength of the ultraviolet light emitted from the ultraviolet light source of the nozzle unit.
 紫外光源62は、支持部材61に、その延在方向に移動可能に支持されている。紫外光源62からの紫外光の出射、及び紫外光源62の支持部材61に沿う移動は、制御装置20によって制御される。 The ultraviolet light source 62 is supported by the support member 61 so as to be movable in the extending direction. The control device 20 controls the emission of the ultraviolet light from the ultraviolet light source 62 and the movement of the ultraviolet light source 62 along the support member 61.
 図5Bに示すように、塗布ステーション3(図1)で第1の面に薄膜パターンが形成された基板21~27、一例として基板24は、リフタ12(図1)によって反転ステーション4に搬送される。基板24は、リフタ12によって、基板保持器51に、基板24の第1の面(薄膜パターンが形成された面)が上向きとなるように(Z軸の正の方向を向くように)載せられる。基板保持器51は基板24を、吸着、押圧、クランプ等することによって固定的に保持する。すなわち基板24は、基板保持器51に対して相対的に移動しないように保持される。基板保持器51による基板24の固定的な保持及びその解除は、制御装置20によって制御される。 As shown in FIG. 5B, the substrates 21 to 27 on which the thin film pattern is formed on the first surface at the coating station 3 (FIG. 1), for example, the substrate 24, are transferred to the reversing station 4 by the lifter 12 (FIG. 1). The The substrate 24 is placed on the substrate holder 51 by the lifter 12 so that the first surface (the surface on which the thin film pattern is formed) of the substrate 24 faces upward (to face the positive direction of the Z axis). . The substrate holder 51 holds the substrate 24 in a fixed manner by suction, pressing, clamping, or the like. That is, the substrate 24 is held so as not to move relative to the substrate holder 51. The control device 20 controls the fixed holding and release of the substrate 24 by the substrate holder 51.
 図5Cに示すように、紫外光源62から紫外光を出射させながら、紫外光源62を支持部材61に沿って移動させる。紫外光源62を支持部材61に沿って移動させるとき、紫外光源62が、基板保持器51に保持された基板24の上方を通過し、紫外光源62から出射された紫外光が、少なくとも基板24の薄膜パターンが痙性された領域、例えば基板24の第1の面の全域に照射される。紫外光源62から出射された紫外光は、例えば1000mJ/cmのエネルギ密度で、基板24の第1の面全体に照射される。紫外光の照射により、基板24の第1の面に形成された薄膜パターンの本硬化が行われる。薄膜パターンの本硬化を行うときは、仮硬化を行うときに比べて、強いエネルギ密度で基板24に紫外光が照射される。 As shown in FIG. 5C, the ultraviolet light source 62 is moved along the support member 61 while emitting ultraviolet light from the ultraviolet light source 62. When the ultraviolet light source 62 is moved along the support member 61, the ultraviolet light source 62 passes over the substrate 24 held by the substrate holder 51, and the ultraviolet light emitted from the ultraviolet light source 62 is at least on the substrate 24. The region where the thin film pattern is spastic, for example, the entire first surface of the substrate 24 is irradiated. The ultraviolet light emitted from the ultraviolet light source 62 is irradiated on the entire first surface of the substrate 24 at an energy density of, for example, 1000 mJ / cm 2 . The main curing of the thin film pattern formed on the first surface of the substrate 24 is performed by irradiation with ultraviolet light. When the main curing of the thin film pattern is performed, the substrate 24 is irradiated with ultraviolet light at a higher energy density than when the temporary curing is performed.
 図5Dに示すように、基板24の第1の面の薄膜パターンを本硬化させた後、支持部材52を回転軸として、基板保持器51を180°回転させる。これによって、基板保持器51に保持された基板24の表裏が反転される。表裏が反転された基板24は、リフタ13(図1)によってアライメントステーション5に搬送される。アライメントステーション5での処理が終了すると、基板24は、塗布ステーション6に搬送される。リフタ13による搬送が行われる前には、基板保持器51による基板24の保持は解除される。 As shown in FIG. 5D, after the thin film pattern on the first surface of the substrate 24 is fully cured, the substrate holder 51 is rotated by 180 ° with the support member 52 as the rotation axis. As a result, the front and back of the substrate 24 held by the substrate holder 51 are reversed. The substrate 24 whose front and back are reversed is conveyed to the alignment station 5 by the lifter 13 (FIG. 1). When the processing in the alignment station 5 is completed, the substrate 24 is transferred to the coating station 6. Before the transfer by the lifter 13 is performed, the holding of the substrate 24 by the substrate holder 51 is released.
 図6A~図6Fを参照して、基板保持器51の基板保持構造について説明する。図6A、図6C、及び図6Eは、基板保持器51の概略的な平面図を示し、図6B、図6D、及び図6Fは、基板保持器51の概略的な側面図を示す。 The substrate holding structure of the substrate holder 51 will be described with reference to FIGS. 6A to 6F. 6A, 6C, and 6E show schematic plan views of the substrate holder 51, and FIGS. 6B, 6D, and 6F show schematic side views of the substrate holder 51. FIG.
 図6A及び図6Bに示す例では、基板保持器51は、腕の表面に、真空吸着パッド53を備える。図6A及び図6Bには、2本の腕の上面に複数の真空吸着パッド53が形成されている例を示した。基板24はリフタ12(図1)によって、真空吸着パッド53の上に載せられ、真空吸着パッド53からの吸引力により、基板保持器51に吸着保持される。 6A and 6B, the substrate holder 51 includes a vacuum suction pad 53 on the surface of the arm. 6A and 6B show an example in which a plurality of vacuum suction pads 53 are formed on the upper surfaces of two arms. The substrate 24 is placed on the vacuum suction pad 53 by the lifter 12 (FIG. 1), and is sucked and held by the substrate holder 51 by the suction force from the vacuum suction pad 53.
 図6C及び図6Dに示す例では、基板保持器51は、2本の腕の上に、腕と平行に延在する押さえローラ54が備えられている。リフタ12(図1)によって、基板保持器51の上面に載せられた基板24の縁の上に、押さえローラ54が移動する。基板24は押さえローラ54に押圧されることによって、基板保持器51に固定的に保持される。 In the example shown in FIGS. 6C and 6D, the substrate holder 51 is provided with a pressing roller 54 extending in parallel with the arms on the two arms. The presser roller 54 moves on the edge of the substrate 24 placed on the upper surface of the substrate holder 51 by the lifter 12 (FIG. 1). The substrate 24 is fixedly held by the substrate holder 51 by being pressed by the pressing roller 54.
 図6E及び図6Fに示す例では、基板保持器51がクランプ機構55を備える。クランプ機構55は、2本の腕に平行な方向に伸びる立ち上がり部分を有し、その一部(クランプ先)が内側に倒れるように、例えば90°屈曲する。基板保持器51の上に載せられた基板24の縁がクランプ機構55に挟まれることにより、基板24が基板保持器51に保持される。 6E and 6F, the substrate holder 51 includes a clamp mechanism 55. The clamp mechanism 55 has a rising portion extending in a direction parallel to the two arms, and bends, for example, 90 ° so that a part (clamp destination) of the clamp mechanism 55 falls inward. When the edge of the substrate 24 placed on the substrate holder 51 is sandwiched between the clamp mechanisms 55, the substrate 24 is held by the substrate holder 51.
 図6A~図6Fのいずれの構成例においても基板保持器51は、薄膜パターンの形成されていない部分において基板24に接触する。 6A to 6F, the substrate holder 51 contacts the substrate 24 at a portion where the thin film pattern is not formed.
 上述の例においては、紫外光を照射し、基板24の第1の面の薄膜パターンを本硬化させた後、基板保持器51を回転させて、基板24の表裏を反転させた。基板24の表裏を反転させた後、Z軸の負の側から基板24の第1の面に紫外光を照射して本硬化を行ってもよい。また、紫外光の照射による本硬化と、基板保持器51の回転による基板24の反転とを同時平行的に行ってもよい。この場合、たとえば回転中の基板24の第1の面に所定強度の紫外光が照射されるように、紫外光源62を、基板24の回転と同期させて回転移動させる等の構成を採用する。基板24を反転させる期間に本硬化を行うことにより、反転ステーション4での処理時間を短くすることができる。 In the above example, after irradiating with ultraviolet light to fully cure the thin film pattern on the first surface of the substrate 24, the substrate holder 51 was rotated to reverse the front and back of the substrate 24. After inverting the front and back of the substrate 24, the main curing may be performed by irradiating the first surface of the substrate 24 with ultraviolet light from the negative side of the Z-axis. Further, the main curing by the irradiation of ultraviolet light and the inversion of the substrate 24 by the rotation of the substrate holder 51 may be performed in parallel. In this case, for example, a configuration is adopted in which the ultraviolet light source 62 is rotated in synchronization with the rotation of the substrate 24 so that the first surface of the rotating substrate 24 is irradiated with ultraviolet light having a predetermined intensity. By performing the main curing during the period in which the substrate 24 is inverted, the processing time in the inversion station 4 can be shortened.
 第1の面の薄膜パターンの本硬化、及び、表裏の反転が行われた基板24は、リフタ13(図1)により、アライメントステーション5(図1)に搬送される。 The substrate 24 on which the thin film pattern on the first surface is fully cured and the front and back are reversed is transferred to the alignment station 5 (FIG. 1) by the lifter 13 (FIG. 1).
 アライメントステーション5は、アライメントステーション2と同様の構成と機能を備える。基板24の第1の面とは反対側の第2の面に形成されたアライメントマークがCCDカメラで検出され、θ補正が行われる。また、撮像された画像データから、第1の面の薄膜パターン形成が完了した基板24の寸法を算出し、基板24の第2の面に薄膜パターンを形成する際に用いる吐出制御用画像データを、新たに生成する。さらに、アライメントステーション5内で基板24のθ補正を行う。 Alignment station 5 has the same configuration and functions as alignment station 2. An alignment mark formed on the second surface opposite to the first surface of the substrate 24 is detected by the CCD camera, and θ correction is performed. Further, from the captured image data, the dimensions of the substrate 24 on which the thin film pattern formation on the first surface is completed are calculated, and the discharge control image data used when forming the thin film pattern on the second surface of the substrate 24 is obtained. Generate a new one. Further, θ correction of the substrate 24 is performed in the alignment station 5.
 リフタ13(図1)が、θ補正後の基板24を、その回転方向の向きを維持して、塗布ステーション6(図1)のステージまで搬送する。 The lifter 13 (FIG. 1) transports the substrate 24 after the θ correction to the stage of the coating station 6 (FIG. 1) while maintaining the direction of the rotation direction.
 塗布ステーション6は、塗布ステーション3と同様の構成と機能を備える。塗布ステーション6においては、第2の面の吐出制御用画像データに基づいて、基板24の第2の面に薄膜パターンが形成される。 The coating station 6 has the same configuration and function as the coating station 3. In the coating station 6, a thin film pattern is formed on the second surface of the substrate 24 based on the ejection control image data on the second surface.
 なお、第2の面の吐出制御用画像データは、1段目のアライメントステーション2で取得された画像データに基づいて作成することもできる。この場合、アライメントステーション5で得られる画像データは、たとえばθ補正にのみ使用される。 It should be noted that the image data for ejection control of the second surface can also be created based on the image data acquired by the first alignment station 2. In this case, the image data obtained by the alignment station 5 is used only for θ correction, for example.
 基板24のθ補正を、アライメントステーション5で行うため、塗布ステーション6ではθ補正の必要がない。このため、塗布ステーション6に搬送された基板24に対して、回転方向の位置合わせを行うことなく、第2の面への薄膜パターンの形成を開始することができる。これにより、塗布ステーション6での処理時間を短くすることができ、タクトタイムの短縮、生産効率の向上を図ることが可能である。 Since θ correction of the substrate 24 is performed by the alignment station 5, there is no need for θ correction at the coating station 6. For this reason, formation of a thin film pattern on the second surface can be started without performing alignment in the rotational direction on the substrate 24 transported to the coating station 6. Thereby, the processing time in the coating station 6 can be shortened, and the tact time can be shortened and the production efficiency can be improved.
 第2の面への薄膜パターンの形成が終了した基板24は、リフタ14(図1)によって、コンベア16に搬送される。コンベア16上に載せられた基板24の第2の面に、紫外線照射装置9を出射した紫外線が照射されることにより、薄膜パターンの本硬化が行われる。その後、基板24は、コンベア16によって、搬出入口7から筐体18の外部へ搬出される。 The substrate 24 on which the formation of the thin film pattern on the second surface has been completed is conveyed to the conveyor 16 by the lifter 14 (FIG. 1). By irradiating the second surface of the substrate 24 placed on the conveyor 16 with the ultraviolet rays emitted from the ultraviolet irradiation device 9, the thin film pattern is fully cured. Thereafter, the substrate 24 is carried out of the housing 18 from the carry-in / out entrance 7 by the conveyor 16.
 実施例1による基板製造装置では、塗布ステーション3(図1)における基板24の第1の面への薄膜パターンの形成終了から、塗布ステーション6(図1)のステージに基板24を載せるまでの間に、反転ステーション4において、基板24の第1の面に形成された薄膜パターンを本硬化させる。塗布ステーション3で基板24の第1の面に形成された薄膜パターンは、どこにも接触することなく、反転ステーション4で本硬化される。 In the substrate manufacturing apparatus according to the first embodiment, from the end of the formation of the thin film pattern on the first surface of the substrate 24 at the coating station 3 (FIG. 1) until the substrate 24 is placed on the stage of the coating station 6 (FIG. 1). In the reversing station 4, the thin film pattern formed on the first surface of the substrate 24 is fully cured. The thin film pattern formed on the first surface of the substrate 24 at the coating station 3 is finally cured at the reversing station 4 without coming into contact with anything.
 薄膜パターンが本硬化のなされていない状態では、薄膜パターンにタック(べたつき)が発生する。基板24の第1の面の薄膜パターンの本硬化を実施しないまま、基板24の第2の面の薄膜パターンの形成を行うと、例えばリフタ13(図1)による基板24のハンドリングの際や、塗布ステーション6で基板24の第2の面に薄膜パターンを形成する時に、第1の面の薄膜パターンに傷等の痕跡がつく場合がある。また、タックに起因して、種々の処理に不具合が生じる場合もある。 When the thin film pattern is not fully cured, tackiness (stickiness) occurs in the thin film pattern. When the thin film pattern on the second surface of the substrate 24 is formed without performing the main curing of the thin film pattern on the first surface of the substrate 24, for example, when the substrate 24 is handled by the lifter 13 (FIG. 1), When a thin film pattern is formed on the second surface of the substrate 24 at the coating station 6, a trace such as a scratch may be formed on the thin film pattern on the first surface. In addition, problems may occur in various processes due to tack.
 基板24の第1の面の薄膜パターン形成終了時から、塗布ステーション6のステージに基板24を載せるまでの間に、基板24の第1の面に形成された薄膜パターンを本硬化させることで、基板24の第1の面の薄膜パターンに傷や痕跡がつくことを防止することができる。このため高品質の薄膜パターンを形成することが可能である。 By completely curing the thin film pattern formed on the first surface of the substrate 24 from the end of the formation of the thin film pattern on the first surface of the substrate 24 until the substrate 24 is placed on the stage of the coating station 6, It is possible to prevent the thin film pattern on the first surface of the substrate 24 from being scratched or imprinted. For this reason, it is possible to form a high-quality thin film pattern.
 また、紫外線照射装置9を出射した紫外線によって、基板24の第2の面の薄膜パターンの本硬化が行われるため、筐体18の外部に搬出された後に、基板24の第2の面の薄膜パターンに傷や痕跡がつくことを防止することができる。 Further, since the thin film pattern on the second surface of the substrate 24 is fully cured by the ultraviolet light emitted from the ultraviolet irradiation device 9, the thin film on the second surface of the substrate 24 is transported to the outside of the housing 18. It is possible to prevent the pattern from being scratched or imprinted.
 図1を参照して、実施例1による基板製造装置の非通常運転時の動作について説明する。非通常運転時とは、たとえば、塗布ステーション3、6に配置される液滴吐出装置の一方が故障中、またはメンテナンス中であって、他方の塗布ステーションしか使用できない状態をいう。 Referring to FIG. 1, the operation during non-normal operation of the substrate manufacturing apparatus according to the first embodiment will be described. The non-normal operation time means, for example, a state in which one of the droplet discharge devices disposed in the coating stations 3 and 6 is in failure or maintenance, and only the other coating station can be used.
 2段目の塗布ステーション6の液滴吐出装置に不具合が生じている期間や、液滴吐出装置のメンテナンスを行う期間における基板製造装置の動作について説明する。この動作は、制御装置20からの制御によって実現される。 The operation of the substrate manufacturing apparatus during a period in which a problem occurs in the droplet discharge device of the second-stage coating station 6 and a period during which the droplet discharge device is maintained will be described. This operation is realized by control from the control device 20.
 筐体18の内部に導入された基板に対するアライメントステーション2、塗布ステーション3、及び反転ステーション4における処理は通常運転時と同じである。すなわち、アライメントステーション2において、基板の第1の面に形成されたアライメントマークを検出し、検出結果に基づいて、基板のθ補正を行う。また、アライメントステーション2において取得された画像データに基づき、基板のサイズを算出し、把握されたサイズに応じて、吐出制御用画像データを生成する。リフタ11が、基板の回転方向の位置(姿勢)を維持した状態で塗布ステーション3のステージに搬送する。塗布ステーション3において、吐出制御用画像データに基づいて、基板の第1の面に、薄膜パターンが形成される。リフタ12が、基板を塗布ステーション3から反転ステーション4に搬送する。反転ステーション4において、基板の第1の面に形成された薄膜パターンの本硬化と、表裏の反転とが行われる。 The processing in the alignment station 2, the coating station 3, and the reversing station 4 for the substrate introduced into the housing 18 is the same as in normal operation. That is, the alignment station 2 detects an alignment mark formed on the first surface of the substrate, and performs θ correction of the substrate based on the detection result. Further, the size of the substrate is calculated based on the image data acquired in the alignment station 2, and the image data for ejection control is generated according to the grasped size. The lifter 11 conveys the substrate to the stage of the coating station 3 while maintaining the position (posture) in the rotation direction of the substrate. In the coating station 3, a thin film pattern is formed on the first surface of the substrate based on the ejection control image data. The lifter 12 transports the substrate from the coating station 3 to the reversing station 4. In the inversion station 4, main curing of the thin film pattern formed on the first surface of the substrate and inversion of the front and back are performed.
 第1の面の薄膜パターンの本硬化、及び表裏の反転が行われた基板は、リフタ12または11により、1段目のアライメントステーション2に搬送される。アライメントステーション2においては、CCDカメラ35~38(図2A)によって、基板の第2の面に形成されたアライメントマークが検出される。検出結果に基いて、基板のθ補正が行われる。また、CCDカメラ35~38によって取得された画像データに基づき、基板のサイズを算出し、算出されたサイズに応じて、基板の第2の面に形成する薄膜パターンの吐出制御用画像データを生成する。 The substrate on which the thin film pattern on the first surface is fully cured and the front and back are reversed is transferred to the first alignment station 2 by the lifter 12 or 11. In the alignment station 2, the alignment marks formed on the second surface of the substrate are detected by the CCD cameras 35 to 38 (FIG. 2A). Based on the detection result, θ correction of the substrate is performed. Further, the size of the substrate is calculated based on the image data acquired by the CCD cameras 35 to 38, and the image data for controlling discharge of the thin film pattern formed on the second surface of the substrate is generated according to the calculated size. To do.
 なお、第2の面に形成する薄膜パターンの吐出制御用画像データは、第1の面のアライメントマークを撮像した画像データに基づいて生成することもできる。この場合、基板反転後に、アライメントステーション2で得られる画像データは、θ補正にのみ使用される。 Note that the discharge control image data of the thin film pattern formed on the second surface can be generated based on the image data obtained by imaging the alignment mark on the first surface. In this case, the image data obtained by the alignment station 2 after the substrate inversion is used only for θ correction.
 θ補正が施された基板は、リフタ11により、塗布ステーション3に搬送される。 The substrate subjected to θ correction is transferred to the coating station 3 by the lifter 11.
 塗布ステーション3において、液滴吐出装置により、第2の面に形成する薄膜パターンの吐出制御用画像データに基づいて、基板の第2の面に薄膜パターンを形成する。 In the coating station 3, a thin film pattern is formed on the second surface of the substrate by the droplet discharge device based on the discharge control image data of the thin film pattern formed on the second surface.
 第2の面に薄膜パターンが形成された基板は、リフタ11によって、コンベア15に搬送される。コンベア15は、搬出入口1から筐体18の外部へ基板を搬出する。塗布ステーション6の液滴吐出装置の故障時またはメンテナンス時においては、基板搬出入口1は、基板の搬入及び搬出に使用される。コンベア15上に載置された状態で、紫外線照射装置8により、基板の第2の面の全域に紫外線が照射され、第2の面に形成された薄膜パターンの本硬化が行われる。紫外線照射装置8は、コンベア15に載せられた基板の上方を通過するように、筐体18内を移動可能であり、基板の上方を通過しながら、基板の第2の面に紫外線を照射する。なお、紫外線照射装置8を筐体18内に固定的に配置し、基板をコンベア15で搬送する期間に、基板が紫外線照射装置8の下方を通過するようにしてもよい。基板への紫外線の照射は、制御装置20によって制御される。 The substrate on which the thin film pattern is formed on the second surface is conveyed to the conveyor 15 by the lifter 11. The conveyor 15 carries the substrate out of the housing 18 from the carry-in / out entrance 1. At the time of failure or maintenance of the droplet discharge device of the coating station 6, the substrate carry-in / out port 1 is used for carrying in and carrying out the substrate. While placed on the conveyor 15, the ultraviolet irradiation device 8 irradiates the entire area of the second surface of the substrate with ultraviolet rays, and the thin film pattern formed on the second surface is fully cured. The ultraviolet irradiation device 8 is movable in the housing 18 so as to pass over the substrate placed on the conveyor 15, and irradiates the second surface of the substrate with ultraviolet light while passing over the substrate. . The ultraviolet irradiating device 8 may be fixedly disposed in the housing 18 and the substrate may pass under the ultraviolet irradiating device 8 during the period in which the substrate is conveyed by the conveyor 15. Irradiation of ultraviolet rays onto the substrate is controlled by the control device 20.
 実施例1による基板製造装置においては、塗布ステーション6の液滴吐出装置の故障時またはメンテナンス時には、1段目の塗布ステーション3の液滴吐出装置を用いて、基板の第1の面及び第2の面の両方に薄膜パターンを形成する。このように、2段目の塗布ステーション6が使用できない状態でも、1段目の塗布ステーション3を使用して薄膜パターンの形成作業を継続することができる。 In the substrate manufacturing apparatus according to the first embodiment, the first surface and the second surface of the substrate are used by using the droplet discharge device of the first-stage coating station 3 at the time of failure or maintenance of the droplet discharge device of the coating station 6. A thin film pattern is formed on both of the surfaces. Thus, even when the second stage coating station 6 cannot be used, the thin film pattern forming operation can be continued using the first stage coating station 3.
 通常運転時は、各ステーション2~4で同時平行的に基板を処理するが、2段目の塗布ステーション6の液滴吐出装置の故障時またはメンテナンス時には、基板は同時平行的ではなく、1枚ずつ処理される。例えば1枚の基板に対する処理が終了し、基板が筐体18から搬出された後に、他の基板が筐体18内に搬入される。このため、非通常運転時には、通常運転時に比べて、生産効率は低くなる。 During normal operation, the substrates are processed simultaneously in parallel at each of the stations 2 to 4, but the substrate is not parallel at the time of failure or maintenance of the droplet discharge device of the second-stage coating station 6. Processed one by one. For example, after the processing for one substrate is completed and the substrate is unloaded from the housing 18, another substrate is loaded into the housing 18. For this reason, production efficiency is lower during non-normal operation than during normal operation.
 事情に応じ、第2の面への薄膜パターンの形成を行わず、塗布ステーション3での薄膜パターン形成終了後に、リフタ11を用いて基板をコンベア15に搬送することもできる。第1の面への薄膜パターン形成終了後、反転ステーション4で第1の面の薄膜パターンの本硬化を行い、その後、リフタ12または11を用いて基板をコンベア15に搬送することも可能である。さらに、反転ステーション4では、薄膜パターンの本硬化だけでなく、基板の表裏の反転を行ってもよい。 Depending on circumstances, the substrate can be transported to the conveyor 15 using the lifter 11 after the formation of the thin film pattern at the coating station 3 is completed without forming the thin film pattern on the second surface. After the formation of the thin film pattern on the first surface, it is possible to perform the main curing of the thin film pattern on the first surface at the reversing station 4 and then transport the substrate to the conveyor 15 using the lifter 12 or 11. . Further, the reversing station 4 may perform not only the main curing of the thin film pattern but also the reversal of the front and back of the substrate.
 上述のように、2段目の塗布ステーション6の液滴吐出装置の故障時またはメンテナンス時には、1段目の塗布ステーション3の液滴吐出装置を用いて薄膜材料の塗布を行う。1段目の塗布ステーション3の液滴吐出装置の故障時またはメンテナンス時には、2段目の塗布ステーション6の液滴吐出装置を用いて、薄膜材料の塗布を行う。 As described above, the thin film material is applied using the droplet discharge device of the first-stage coating station 3 when the droplet discharge device of the second-stage coating station 6 fails or when maintenance is performed. At the time of failure or maintenance of the droplet discharge device at the first-stage coating station 3, the thin-film material is applied using the droplet discharge device at the second-stage coating station 6.
 次に、1段目の塗布ステーション3の液滴吐出装置に不具合が生じている期間や、液滴吐出装置のメンテナンスを行う期間の基板製造装置の動作について説明する。 Next, the operation of the substrate manufacturing apparatus during a period in which a defect occurs in the droplet discharge device of the first-stage coating station 3 and a period during which the droplet discharge device is maintained will be described.
 コンベア16が、搬出入口7から筐体18内に基板を搬入する。基板搬出入口7は、基板の搬出用のみならず、基板搬入用としても使用される。なお、搬入時、基板の第1の面がZ軸の正方向を向いている。 The conveyor 16 carries the substrate into the housing 18 from the carry-in / out entrance 7. The substrate carry-in / out port 7 is used not only for carrying out the substrate but also for carrying in the substrate. At the time of loading, the first surface of the substrate faces the positive direction of the Z axis.
 筐体18の内部に導入された基板は、リフタ14または13によって、アライメントステーション5に搬送される。アライメントステーション5において、基板の第1の面に形成されたアライメントマークが検出される。検出結果に基いて基板のθ補正が行われる。また、アライメントステーション5において取得された画像データに基づき、基板のサイズが算出され、算出されたサイズに応じて、吐出制御用画像データが生成される。 The substrate introduced into the housing 18 is transported to the alignment station 5 by the lifter 14 or 13. In alignment station 5, an alignment mark formed on the first surface of the substrate is detected. Based on the detection result, θ correction of the substrate is performed. Further, the size of the substrate is calculated based on the image data acquired in the alignment station 5, and image data for ejection control is generated according to the calculated size.
 θ補正が行われた基板が、リフタ13によって、塗布ステーション6のステージまで搬送される。生成された吐出制御用画像データに基づいて、基板の第1の面に薄膜パターンが形成される。その後、基板は、リフタ13によって反転ステーション4に搬送され、第1の面に形成された薄膜パターンの本硬化と、表裏の反転とが行われる。 The substrate subjected to θ correction is transported to the stage of the coating station 6 by the lifter 13. A thin film pattern is formed on the first surface of the substrate based on the generated ejection control image data. Thereafter, the substrate is transferred to the reversing station 4 by the lifter 13, and the main curing of the thin film pattern formed on the first surface and the reversing of the front and back are performed.
 第2の面がZ軸の正方向を向いた状態の基板が、リフタ13により、再びアライメントステーション5に搬送される。アライメントステーション5において、基板の第2の面面に形成されたアライメントマークが検出され、検出結果に基いて、基板のθ補正が行われる。また、アライメントステーション5で取得された画像データに基づき、基板のサイズが算出され、算出されたサイズに応じて、第2の面に形成する薄膜パターンの吐出制御用画像データが生成される。 The substrate with the second surface facing the positive direction of the Z-axis is transferred again to the alignment station 5 by the lifter 13. In alignment station 5, an alignment mark formed on the second surface of the substrate is detected, and θ correction of the substrate is performed based on the detection result. Further, the size of the substrate is calculated based on the image data acquired by the alignment station 5, and image data for ejection control of the thin film pattern formed on the second surface is generated according to the calculated size.
 なお、第2の面に形成する薄膜パターンの吐出制御用画像データは、第1の面のアライメントマークの検出結果に基づいて作成することもできる。 Note that the image data for ejection control of the thin film pattern formed on the second surface can also be created based on the detection result of the alignment mark on the first surface.
 θ補正が施された基板は、リフタ13により、塗布ステーション6のステージまで搬送される。 The substrate subjected to θ correction is transferred to the stage of the coating station 6 by the lifter 13.
 塗布ステーション6において、液滴吐出装置により、第2の面に形成する薄膜パターンの吐出制御用画像データに基づいて、第2の面に薄膜パターンが形成される。 In the coating station 6, the thin film pattern is formed on the second surface by the droplet discharge device based on the discharge control image data of the thin film pattern formed on the second surface.
 第2の面に薄膜パターンが形成された基板は、リフタ14によって、コンベア16に搬送される。コンベア16は、搬出入口7から筐体18の外部へ基板を搬出する。コンベア16の上に載せられた状態で、紫外線照射装置9により、基板の第2の面の全域に紫外線が照射され、薄膜パターンの本硬化が行われる。 The substrate on which the thin film pattern is formed on the second surface is conveyed to the conveyor 16 by the lifter 14. The conveyor 16 carries the substrate out of the housing 18 from the carry-in / out entrance 7. While placed on the conveyor 16, the ultraviolet irradiation device 9 irradiates the entire area of the second surface of the substrate with ultraviolet rays, so that the thin film pattern is fully cured.
 1枚の基板に対する処理が終了し、基板が筐体18から搬出された後に、次に処理すべき基板が筐体18内に搬入される。 After the processing for one substrate is completed and the substrate is unloaded from the housing 18, the substrate to be processed next is loaded into the housing 18.
 事情に応じ、第2の面に薄膜パターンを形成せず、塗布ステーション6での第1の面の薄膜パターンの形成終了後に、リフタ14を用いて基板をコンベア16に搬送することもできる。第1の面の薄膜パターンの形成終了後、反転ステーション4で第1の面の薄膜パターンの本硬化を行い、その後、リフタ13または14で基板をコンベア16に搬送することも可能である。さらに、反転ステーション4では、薄膜パターンの本硬化だけでなく、基板の表裏の反転を行ってもよい。 Depending on the circumstances, the substrate can be transported to the conveyor 16 using the lifter 14 after the formation of the thin film pattern on the first surface at the coating station 6 without forming the thin film pattern on the second surface. After the formation of the thin film pattern on the first surface, it is possible to perform the main curing of the thin film pattern on the first surface at the reversing station 4 and then transport the substrate to the conveyor 16 with the lifter 13 or 14. Further, the reversing station 4 may perform not only the main curing of the thin film pattern but also the reversal of the front and back of the substrate.
 なお、塗布ステーション3、6の液滴吐出装置の一方が使用不可能な場合に、第1の面、第2の面の順に薄膜パターンを形成する例を説明したが、第2の面、第1の面の順に薄膜パターンを形成することもできる。また、第1の面だけに薄膜パターンを形成する例について示したが、第2の面だけに薄膜パターンを形成してもよい。 In addition, although the example which forms a thin film pattern in order of a 1st surface and a 2nd surface when one of the droplet discharge apparatuses of the coating station 3 and 6 cannot be used was demonstrated, the 2nd surface, A thin film pattern can also be formed in the order of one surface. Moreover, although the example which forms a thin film pattern only in the 1st surface was shown, you may form a thin film pattern only in a 2nd surface.
 実施例1による基板製造装置においては、2段目の塗布ステーション6の液滴吐出装置の故障時またはメンテナンス時には、1段目の塗布ステーション3の液滴吐出装置を用いて、薄膜材料の塗布を行い、1段目の塗布ステーション3の液滴吐出装置の故障時またはメンテナンス時には、2段目の塗布ステーション6の液滴吐出装置を用いて、薄膜材料の塗布を行う。このため、実施例1による基板製造装置は、作業の継続性にすぐれている。 In the substrate manufacturing apparatus according to the first embodiment, the thin film material is applied using the droplet discharge device of the first-stage coating station 3 when the droplet discharge device of the second-stage coating station 6 fails or when maintenance is performed. At the time of failure or maintenance of the droplet ejection device at the first stage coating station 3, the thin film material is coated using the droplet ejection device at the second stage coating station 6. For this reason, the board | substrate manufacturing apparatus by Example 1 is excellent in work continuity.
 [実施例2]
 図7に、実施例2による基板製造装置の概略図を示す。以下、実施例1との相違点について説明し、同一の構成については説明を省略する。実施例2においては、アライメントステーション2、5が、θ補正を行うためのアライメント装置を含まない。その代わりに、塗布ステーション3、6の液滴吐出装置がθステージ49及びCCDカメラ63~66を含む。
[Example 2]
FIG. 7 shows a schematic diagram of a substrate manufacturing apparatus according to the second embodiment. Hereinafter, differences from the first embodiment will be described, and description of the same configuration will be omitted. In the second embodiment, the alignment stations 2 and 5 do not include an alignment device for performing θ correction. Instead, the droplet discharge device of the coating stations 3 and 6 includes a θ stage 49 and CCD cameras 63 to 66.
 実施例2による基板製造装置の通常運転時の動作について説明する。 The operation during normal operation of the substrate manufacturing apparatus according to the second embodiment will be described.
 実施例2のアライメントステーション2、5には、θ補正を伴わない簡易的なアライメントを行うアライメント装置である仮置ステージ48が配置される。基板21~27は、リフタ11、13によって、アライメントステーション2、5の仮置ステージ48の上に載せられる。基板21~27は、固定ピンへの押し当て等の簡易的なアライメントを施された後、塗布ステーション3、6に搬送される。 In the alignment stations 2 and 5 of the second embodiment, a temporary stage 48 which is an alignment device that performs simple alignment without θ correction is arranged. The substrates 21 to 27 are placed on the temporary stage 48 of the alignment stations 2 and 5 by the lifters 11 and 13. The substrates 21 to 27 are transported to the coating stations 3 and 6 after simple alignment such as pressing against fixing pins.
 塗布ステーション3、6の液滴吐出装置は、Yステージ44とチャックプレート45との間にθステージ49を含む。θステージ49は、チャックプレート45に保持された基板21~27を、Z軸に平行な直線を回転中心として回転させることが可能である。液滴吐出装置は、基板21~27の上方を向く面に形成されたアライメントマークを検出するCCDカメラ63~66を含む。 The droplet discharge device of the coating stations 3 and 6 includes a θ stage 49 between the Y stage 44 and the chuck plate 45. The θ stage 49 can rotate the substrates 21 to 27 held by the chuck plate 45 around a straight line parallel to the Z axis. The droplet discharge device includes CCD cameras 63 to 66 that detect alignment marks formed on the surfaces facing upward of the substrates 21 to 27.
 塗布ステーション3、6に搬送された基板21~27は、チャックプレート45に吸着保持され、CCDカメラ63~66によって、上方を向く面のアライメントマークが検出される。検出結果、すなわち撮影された画像データが、制御装置20に送信される。 The substrates 21 to 27 transported to the coating stations 3 and 6 are sucked and held by the chuck plate 45, and the alignment marks on the surface facing upward are detected by the CCD cameras 63 to 66. The detection result, that is, the captured image data is transmitted to the control device 20.
 制御装置20は検出結果を解析し、基板21~27のX及びY方向の位置、及び、回転方向の位置(姿勢)を算出する。算出された結果に基づき、θステージ49を駆動することで、基板21~27のθ補正を行う。また、制御装置20は、CCDカメラ63~66の検出結果に基いて、基板21~27のサイズを算出し、算出されたサイズに応じて、吐出制御用画像データを生成する。 The control device 20 analyzes the detection result and calculates the positions of the substrates 21 to 27 in the X and Y directions and the position (posture) in the rotation direction. Based on the calculated result, the θ stage 49 is driven to perform θ correction on the substrates 21 to 27. Further, the control device 20 calculates the sizes of the substrates 21 to 27 based on the detection results of the CCD cameras 63 to 66, and generates ejection control image data according to the calculated sizes.
 実施例2による基板製造装置においては、アライメントステーション2、5で基板21~27のθ補正を行わず、塗布ステーション3、6で、基板21~27のθ補正を行う。さらに、生成した吐出制御用画像データに基づいて、基板21~27に薄膜パターンを形成する。 In the substrate manufacturing apparatus according to the second embodiment, θ correction of the substrates 21 to 27 is not performed at the alignment stations 2 and 5, and θ correction of the substrates 21 to 27 is performed at the coating stations 3 and 6. Further, a thin film pattern is formed on the substrates 21 to 27 based on the generated ejection control image data.
 実施例2による基板製造装置の非通常運転時の動作について、実施例1と異なる点を中心に説明する。 The operation during the non-normal operation of the substrate manufacturing apparatus according to the second embodiment will be described with a focus on differences from the first embodiment.
 2段目の塗布ステーション6の液滴吐出装置が故障やメンテナンスで使用できないときには、実施例2による基板製造装置の動作は、制御装置20によって、以下のように制御される。 When the droplet discharge device at the second stage coating station 6 cannot be used due to failure or maintenance, the operation of the substrate manufacturing apparatus according to the second embodiment is controlled by the control device 20 as follows.
 搬出入口1から筐体18の内部に導入された基板は、アライメントステーション2の仮置ステージ48の上に載せられ、簡易的なアライメントが施される。その後、アライメントステーション2から塗布ステーション3のチャックプレート45まで搬送される。 The substrate introduced into the housing 18 from the carry-in / out entrance 1 is placed on the temporary placement stage 48 of the alignment station 2 and subjected to simple alignment. Thereafter, the wafer is conveyed from the alignment station 2 to the chuck plate 45 of the coating station 3.
 基板はチャックプレート45に吸着保持され、CCDカメラ63~66によって第1の面のアライメントマークが検出される。検出結果は制御装置20に送信される。制御装置20は検出結果を解析し、基板の位置、及び、回転方向の姿勢を検出する。検出結果に基づいて、基板のθ補正を行う。また制御装置20は、CCDカメラ63~66の検出結果に基いて、基板のサイズを算出し、算出されたサイズに応じて、吐出制御用画像データを生成する。その後、生成された吐出制御用画像データに基づいて、基板の第1の面に薄膜パターンを形成する。 The substrate is held by suction on the chuck plate 45, and the alignment marks on the first surface are detected by the CCD cameras 63-66. The detection result is transmitted to the control device 20. The control device 20 analyzes the detection result and detects the position of the substrate and the posture in the rotation direction. Based on the detection result, θ correction of the substrate is performed. Further, the control device 20 calculates the size of the substrate based on the detection results of the CCD cameras 63 to 66, and generates ejection control image data according to the calculated size. Thereafter, a thin film pattern is formed on the first surface of the substrate based on the generated ejection control image data.
 基板はリフタ12によって反転ステーション4に搬送され、基板の第1の面に形成された薄膜パターンの本硬化と、表裏の反転とが行われる。その後、アライメントステーション2の仮置ステージ48に載せることにより、簡易的なアライメントを行なう。簡易的なアライメントを行なった後、再び、塗布ステーション3の液滴吐出装置のチャックプレート45の上に戻される。 The substrate is conveyed to the reversing station 4 by the lifter 12, and the main curing of the thin film pattern formed on the first surface of the substrate and the reversing of the front and back are performed. Then, simple alignment is performed by mounting on the temporary stage 48 of the alignment station 2. After simple alignment, the liquid is again returned onto the chuck plate 45 of the droplet discharge device of the coating station 3.
 塗布ステーション3では、CCDカメラ63~66によって基板の第2の面に形成されたアライメントマークが検出され、検出結果に基いて、基板のθ補正が行われる。また、CCDカメラ63~66によって取得された画像データに基づき、基板のサイズが算出され、算出されたサイズに応じて、基板の第2の面に形成する薄膜パターンの吐出制御用画像データが生成される。第2の面に形成する薄膜パターンの吐出制御用画像データに基づいて、基板の第2の面に薄膜パターンを形成する。 In the coating station 3, the alignment marks formed on the second surface of the substrate are detected by the CCD cameras 63 to 66, and θ correction of the substrate is performed based on the detection result. Further, the size of the substrate is calculated based on the image data acquired by the CCD cameras 63 to 66, and the image data for controlling the discharge of the thin film pattern formed on the second surface of the substrate is generated according to the calculated size. Is done. A thin film pattern is formed on the second surface of the substrate based on the discharge control image data of the thin film pattern formed on the second surface.
 第2の面に薄膜パターンが形成された基板は、コンベア15に搬送され、紫外線照射装置8により、第2の面の薄膜パターンの本硬化が行われる。その後、コンベア5が、搬出入口1から筐体18の外部へ基板を搬出する。 The substrate on which the thin film pattern is formed on the second surface is conveyed to the conveyor 15, and the thin film pattern on the second surface is fully cured by the ultraviolet irradiation device 8. Thereafter, the conveyor 5 carries the substrate out of the housing 18 from the carry-in / out entrance 1.
 1段目の塗布ステーション3の液滴吐出装置が使用できないときには、基板製造装置は制御装置20によって、以下のように制御される。 When the droplet discharge device at the first-stage coating station 3 cannot be used, the substrate manufacturing apparatus is controlled by the control device 20 as follows.
 基板は搬出入口7から筐体18の内部に導入される。筺体18内に導入された基板は、リフタ14、13により、アライメントステーション5の仮置ステージ48まで搬送され、簡易的なアライメントが行われる。その後、アライメントステーション5から塗布ステーション6の液滴吐出装置のチャックプレート45まで搬送される。 The substrate is introduced into the housing 18 from the carry-in / out entrance 7. The substrate introduced into the housing 18 is transported to the temporary placement stage 48 of the alignment station 5 by the lifters 14 and 13, and simple alignment is performed. Thereafter, the ink is conveyed from the alignment station 5 to the chuck plate 45 of the droplet discharge device of the coating station 6.
 チャックプレート45に吸着保持された基板の第1の面のアライメントマークが、CCDカメラ63~66によって検出され、検出結果が制御装置20に送信される。制御装置20は検出結果を解析し、基板の位置、及び回転方向の姿勢を検出し、θ補正を行う。また制御装置20は、CCDカメラ63~66の検出結果に基づいて、基板のサイズを算出し、算出されたサイズに応じて、吐出制御用画像データを生成する。その後、生成された吐出制御用画像データに基づいて、基板の第1の面に薄膜パターンを形成する。 The alignment mark on the first surface of the substrate held by suction on the chuck plate 45 is detected by the CCD cameras 63 to 66, and the detection result is transmitted to the control device 20. The control device 20 analyzes the detection result, detects the position of the substrate and the orientation in the rotation direction, and performs θ correction. The control device 20 calculates the size of the substrate based on the detection results of the CCD cameras 63 to 66, and generates ejection control image data according to the calculated size. Thereafter, a thin film pattern is formed on the first surface of the substrate based on the generated ejection control image data.
 第1の面に薄膜パターンが形成された基板は、リフタ13によって反転ステーション4に搬送され、第1の面に形成された薄膜パターンの本硬化と、表裏の反転とが行われる。その後、アライメントステーション5の仮置ステージ48で簡易的なアライメントを行い、再び塗布ステーション6の液滴吐出装置のチャックプレート45の上に戻される。 The substrate on which the thin film pattern is formed on the first surface is transported to the reversing station 4 by the lifter 13, and the main curing of the thin film pattern formed on the first surface and the reverse of the front and back are performed. Thereafter, simple alignment is performed on the temporary stage 48 of the alignment station 5, and it is returned again onto the chuck plate 45 of the droplet discharge device of the coating station 6.
 塗布ステーション6では、CCDカメラ63~66によって、基板の第2の面に形成されたアライメントマークが検出され、検出結果に基いて、基板のθ補正が行われる。また、CCDカメラ63~66によって取得された画像データに基づき、基板のサイズが算出され、算出されたサイズに応じて、基板の第2の面に形成する薄膜パターンの吐出制御用画像データが生成される。第2の面に形成する薄膜パターンの吐出制御用画像データに基づいて、第2の面に薄膜パターンを形成する。 In the coating station 6, the alignment marks formed on the second surface of the substrate are detected by the CCD cameras 63 to 66, and θ correction of the substrate is performed based on the detection result. Further, the size of the substrate is calculated based on the image data acquired by the CCD cameras 63 to 66, and the image data for controlling the discharge of the thin film pattern formed on the second surface of the substrate is generated according to the calculated size. Is done. A thin film pattern is formed on the second surface based on the discharge control image data of the thin film pattern formed on the second surface.
 第2の面に薄膜パターンが形成された基板は、コンベア16に搬送され、紫外線照射装置9により、第2の面の薄膜パターンの本硬化が行われる。本硬化後の基板は、搬出入口7から筐体18の外部へ搬出される。 The substrate on which the thin film pattern is formed on the second surface is conveyed to the conveyor 16, and the thin film pattern on the second surface is fully cured by the ultraviolet irradiation device 9. The substrate after the main curing is carried out from the carry-in / out entrance 7 to the outside of the housing 18.
 実施例2による基板製造装置も、塗布ステーション3、6の液滴吐出装置の一方が使用不可能なときには、他方の塗布ステーションを用いて薄膜パターンを形成することができる。これにより、作業の継続性を確保することができる。 The substrate manufacturing apparatus according to the second embodiment can also form a thin film pattern by using the other coating station when one of the droplet ejection apparatuses at the coating stations 3 and 6 cannot be used. Thereby, continuity of work can be secured.
 [実施例3]
 図8に、実施例3による基板製造装置の概略図を示す。以下、実施例1との相違点について説明し、同一の構成については説明を省略する。実施例3は、紫外線照射装置8(図1)を含まない点、及び、反転ステーション4が、基板搬出口17を備える点で実施例1と相違する。実施例3による基板製造装置の通常運転時の動作は、実施例1のそれに等しい。非通常運転時においては、実施例3による基板製造装置は、基板の片面、例えば第1の面に薄膜パターンを形成する。
[Example 3]
FIG. 8 shows a schematic diagram of a substrate manufacturing apparatus according to the third embodiment. Hereinafter, differences from the first embodiment will be described, and description of the same configuration will be omitted. The third embodiment is different from the first embodiment in that the ultraviolet irradiation device 8 (FIG. 1) is not included and the inversion station 4 includes a substrate carry-out port 17. The operation during normal operation of the substrate manufacturing apparatus according to the third embodiment is equal to that of the first embodiment. During the non-normal operation, the substrate manufacturing apparatus according to the third embodiment forms a thin film pattern on one surface of the substrate, for example, the first surface.
 2段目の塗布ステーション6の液滴吐出装置の故障時、またはメンテナンス時に、実施例3による基板製造装置は、制御装置20によって以下のように制御される。 The substrate manufacturing apparatus according to the third embodiment is controlled by the control device 20 as follows when the droplet discharge device of the second-stage coating station 6 fails or during maintenance.
 筐体18の内部に導入された基板21~24に対するアライメントステーション2、塗布ステーション3、及び反転ステーション4における処理は、通常運転時の処理と同一である。 The processing in the alignment station 2, the coating station 3, and the reversing station 4 for the substrates 21 to 24 introduced into the housing 18 is the same as that in normal operation.
 第1の面に形成された薄膜パターンの本硬化と、表裏の反転とが行われた基板21~24は、基板搬出口17から筐体18の外部へ搬出される。搬出はコンベアを用いて行ってもよいし、人手で行ってもよい。 The substrates 21 to 24 on which the main curing of the thin film pattern formed on the first surface and the front and back have been reversed are carried out of the housing 18 from the substrate carry-out port 17. Carrying out may be performed using a conveyor or may be performed manually.
 なお、反転ステーション4に搬送した基板21~24について、表面に形成された薄膜パターンの本硬化及び基板の反転の一方または双方を行わず、基板搬出口17から基板21~24を搬出することもできる。 The substrates 21 to 24 conveyed to the reversing station 4 may be carried out from the substrate carry-out port 17 without performing one or both of the main curing of the thin film pattern formed on the surface and the reversing of the substrate. it can.
 実施例1では、塗布ステーション6の液滴吐出装置が使用できない場合には、1枚の基板に対する処理が終了し、基板が筐体18から搬出された後に、他の基板を筐体18内に搬入した。実施例3においては、各ステーション2~4で基板の処理を同時並行的に行うことができる。このため、塗布ステーション6の液滴吐出装置が使用できない場合でも、高い生産効率を維持することが可能である。 In the first embodiment, when the droplet discharge device of the coating station 6 cannot be used, after the processing for one substrate is completed and the substrate is unloaded from the housing 18, another substrate is placed in the housing 18. Carried in. In the third embodiment, the processing of the substrate can be performed in parallel at each of the stations 2 to 4. For this reason, even when the droplet discharge device of the coating station 6 cannot be used, high production efficiency can be maintained.
 塗布ステーション3の液滴吐出装置の故障時またはメンテナンス時には、塗布ステーション6の液滴吐出装置を用い、制御装置20の制御によって、同様に、基板片面、例えば基板第1の面に薄膜パターンを形成する。 At the time of failure or maintenance of the droplet discharge device at the coating station 3, a thin film pattern is similarly formed on one side of the substrate, for example, the first surface of the substrate, under the control of the control device 20 using the droplet discharge device at the coating station 6. To do.
 基板は、コンベア16で搬送され、搬出入口7から筐体18内に導入される。筐体18の内部に導入された基板は、リフタ14、13によって、アライメントステーション5に搬送される。アライメントステーション5において、基板のθ補正が行われる。また、アライメントステーション5において取得された画像データに基づき、基板のサイズが算出され、算出されたサイズに応じて、第1の面に形成する薄膜パターンの吐出制御用画像データが生成される。 The substrate is conveyed by the conveyor 16 and introduced into the housing 18 from the carry-in / out entrance 7. The substrate introduced into the housing 18 is transported to the alignment station 5 by the lifters 14 and 13. In the alignment station 5, θ correction of the substrate is performed. Further, the size of the substrate is calculated based on the image data acquired in the alignment station 5, and image data for ejection control of the thin film pattern formed on the first surface is generated according to the calculated size.
 リフタ13が、θ補正後の基板を、アライメントステーション5から塗布ステーション6のステージの上まで搬送する。生成された吐出制御用画像データに基づいて、第1の面に薄膜パターンを形成する。基板は、リフタ13によって反転ステーション4に搬送され、第1の面に形成された薄膜パターンの本硬化と、表裏の反転とが行われる。その後、基板は搬出口17から、例えばコンベアまたは人手によって、筐体18の外部へ搬出される。 The lifter 13 conveys the substrate after θ correction from the alignment station 5 to the stage of the coating station 6. A thin film pattern is formed on the first surface based on the generated ejection control image data. The substrate is transferred to the reversing station 4 by the lifter 13, and the main curing of the thin film pattern formed on the first surface and the reversal of the front and back are performed. After that, the substrate is carried out of the housing 18 from the carry-out port 17 by, for example, a conveyor or a manpower.
 基板を反転ステーション4に搬送した後、薄膜パターンの本硬化及び基板の反転の一方または双方を行わず、搬出口17からの搬出を行ってもよい。 After carrying the substrate to the reversing station 4, the carrying out from the carry-out port 17 may be performed without performing one or both of the main curing of the thin film pattern and the reversing of the substrate.
 実施例3においては、塗布ステーション3の液滴吐出装置が使用できない場合にも、反転ステーション4でソルダーレジストの本硬化と基板の反転を行っている期間に、アライメントステーション5におけるアライメント、または、塗布ステーション6における薄膜材料の塗布を行うことができる。このため、実施例1において、塗布ステーション3の液滴吐出装置が使用できない場合よりも、生産効率を高くすることが可能である。 In Example 3, even when the droplet discharge device at the coating station 3 cannot be used, the alignment or coating at the alignment station 5 is performed during the period in which the main curing of the solder resist and the substrate are reversed at the reversing station 4. The thin film material can be applied at the station 6. For this reason, in Example 1, it is possible to raise production efficiency compared with the case where the droplet discharge apparatus of the application | coating station 3 cannot be used.
 実施例3による基板製造装置は、塗布ステーション3、6の液滴吐出装置の一方が使用できない際には、他方の塗布ステーションを用いて基板片面への薄膜パターンの形成を行い、片面の処理が完了した基板を搬出口17から筐体18の外部へ搬出する。このため、実施例3による基板製造装置も、塗布ステーションの故障時に継続して作業を行うことが可能である。なお、搬出口17は、塗布ステーション3と塗布ステーション6とを結ぶ基板搬送経路から、基板を、基板製造装置の外部(筐体18の外部)に取り出すことができる。 In the substrate manufacturing apparatus according to the third embodiment, when one of the droplet discharge devices of the coating stations 3 and 6 cannot be used, a thin film pattern is formed on one surface of the substrate using the other coating station, and the processing on one surface is performed. The completed substrate is carried out from the carry-out port 17 to the outside of the housing 18. For this reason, the substrate manufacturing apparatus according to the third embodiment can also continue working when the coating station fails. The carry-out port 17 can take out the substrate to the outside of the substrate manufacturing apparatus (outside of the casing 18) from the substrate transport path connecting the coating station 3 and the coating station 6.
 [実施例4]
 図9に、実施例4による基板製造装置の概略図を示す。以下、実施例2との相違点について説明し、同一の構成については説明を省略する。実施例4は、紫外線照射装置8(図7)を含まない点、及び、反転ステーション4が、基板搬出口17を備える点で実施例2と相違する。実施例4による基板製造装置の通常運転時の動作は、実施例2のそれに等しい。非通常運転時においては、実施例4による基板製造装置は、実施例3と同様に、基板の片面のみ、例えば第1の面に薄膜パターンを形成する。
[Example 4]
FIG. 9 shows a schematic diagram of a substrate manufacturing apparatus according to the fourth embodiment. Hereinafter, differences from the second embodiment will be described, and description of the same configuration will be omitted. The fourth embodiment is different from the second embodiment in that the ultraviolet irradiation device 8 (FIG. 7) is not included and the inversion station 4 includes the substrate carry-out port 17. The operation during normal operation of the substrate manufacturing apparatus according to the fourth embodiment is equal to that of the second embodiment. At the time of non-normal operation, the substrate manufacturing apparatus according to the fourth embodiment forms a thin film pattern on only one surface of the substrate, for example, the first surface, as in the third embodiment.
 塗布ステーション6の液滴吐出装置の故障時、またはメンテナンス時には、実施例4による基板製造装置は、制御装置20によって、以下のように制御される。 At the time of failure or maintenance of the droplet discharge device of the coating station 6, the substrate manufacturing apparatus according to the fourth embodiment is controlled by the control device 20 as follows.
 筐体18の内部に導入された基板21~24に対するアライメントステーション2、塗布ステーション3、及び反転ステーション4における処理は通常運転時と等しい。 The processing in the alignment station 2, the coating station 3, and the reversing station 4 for the substrates 21 to 24 introduced into the housing 18 is the same as in normal operation.
 第1の面に形成された薄膜パターンの本硬化と、表裏の反転とが行われた基板21~24が、搬出口17から筐体18の外部へ搬出される。搬出はコンベアを用いて行ってもよいし、人手で行ってもよい。 The substrates 21 to 24 on which the main curing of the thin film pattern formed on the first surface and the front and back have been reversed are carried out of the housing 18 from the carry-out port 17. Carrying out may be performed using a conveyor or may be performed manually.
 なお、反転ステーション4に搬送された基板21~24の第1の面に形成された薄膜パターンの本硬化、及び基板の反転の一方または双方を行わず、搬出口17からの搬出を行うこともできる。 In addition, the main curing of the thin film pattern formed on the first surface of the substrates 21 to 24 transferred to the reversing station 4 and the reversal of the substrate may be carried out from the carry-out port 17 without performing one or both of them. it can.
 実施例2では、塗布ステーション6の液滴吐出装置が使用できない場合には、1枚の基板に対する処理が終了し、基板が筐体18から搬出された後に、他の基板を筐体18に搬入した。実施例4においては、各ステーション2~4で基板の処理を同時並行的に行うことができる。このため、塗布ステーション6の液滴吐出装置が使用できない場合でも、高い生産効率を維持することが可能である。 In Example 2, when the droplet discharge device of the coating station 6 cannot be used, the processing for one substrate is completed, and after the substrate is unloaded from the housing 18, another substrate is loaded into the housing 18. did. In the fourth embodiment, substrate processing can be performed in parallel at each of the stations 2 to 4. For this reason, even when the droplet discharge device of the coating station 6 cannot be used, high production efficiency can be maintained.
 1段目の塗布ステーション3の液滴吐出装置の故障時またはメンテナンス時には、塗布ステーション6の液滴吐出装置を用い、制御装置20の制御によって、同様に、基板片面、例えば第1の面に薄膜パターンを形成する。 At the time of failure or maintenance of the droplet discharge device of the first coating station 3, the droplet discharge device of the coating station 6 is used, and under the control of the control device 20, a thin film is similarly formed on one side of the substrate, for example, the first surface. Form a pattern.
 基板は、コンベア16で搬送され、搬出入口7から筐体18内に導入される。筐体18の内部に導入された基板は、リフタ14、13によって、アライメントステーション5に搬送され、簡易的なアライメントが行われる。その後、基板は、塗布ステーション6の液滴吐出装置のチャックプレート45まで搬送される。塗布ステーション6において、CCDカメラ63~66によって、基板の第1の面のアライメントマークが検出される。制御装置20は、検出結果に基づき、基板21~24の位置、及び回転方向の姿勢を検出し、基板のθ補正を行う。また、制御装置20は、基板のサイズを算出し、算出されたサイズに応じて、吐出制御用画像データを生成する。その後、生成された吐出制御用画像データに基づいて、基板の第1の面に薄膜パターンを形成する。薄膜パターンが痙性された基板は、リフタ13によって反転ステーション4に搬送され、第1の面に形成された薄膜パターンの本硬化と、表裏の反転とが行われる。その後、基板は搬出口17から、例えばコンベアまたは人手によって、筐体18の外部へ搬出される。 The substrate is conveyed by the conveyor 16 and introduced into the housing 18 from the carry-in / out entrance 7. The substrate introduced into the housing 18 is transported to the alignment station 5 by the lifters 14 and 13, and simple alignment is performed. Thereafter, the substrate is transported to the chuck plate 45 of the droplet discharge device of the coating station 6. In the coating station 6, the CCD camera 63 to 66 detects the alignment mark on the first surface of the substrate. The control device 20 detects the positions of the substrates 21 to 24 and the posture in the rotation direction based on the detection result, and performs θ correction of the substrate. In addition, the control device 20 calculates the size of the substrate, and generates ejection control image data according to the calculated size. Thereafter, a thin film pattern is formed on the first surface of the substrate based on the generated ejection control image data. The substrate on which the thin film pattern is spastic is conveyed to the reversal station 4 by the lifter 13, and the main curing of the thin film pattern formed on the first surface and the reverse of the front and back are performed. After that, the substrate is carried out of the housing 18 from the carry-out port 17 by, for example, a conveyor or a manpower.
 2段目の塗布ステーション6の液滴吐出装置が使用できない場合と同様に、反転ステーション4において、薄膜パターンの本硬化、及び基板の反転の一方または双方を行わず、搬出口17から基板を搬出してもよい。 As in the case where the droplet discharge device at the second-stage coating station 6 cannot be used, the reversing station 4 carries out the substrate from the carry-out port 17 without performing one or both of the main curing of the thin film pattern and the inversion of the substrate. May be.
 実施例4においては、1段目の塗布ステーション3の液滴吐出装置が使用できない場合にも、反転ステーション4で薄膜パターンの本硬化と基板の反転を行っている期間に、アライメントステーション5におけるアライメント、または、塗布ステーション6における薄膜材料の塗布を行うことができる。このため、実施例2において、塗布ステーション3の液滴吐出装置が使用できない場合よりも、生産効率を高くすることが可能である。 In the fourth embodiment, even when the droplet discharge device at the first-stage coating station 3 cannot be used, the alignment at the alignment station 5 is performed during the period when the thin film pattern is fully cured and the substrate is reversed at the reversing station 4. Alternatively, the thin film material can be applied at the application station 6. For this reason, in Example 2, it is possible to raise production efficiency compared with the case where the droplet discharge apparatus of the coating station 3 cannot be used.
 実施例4による基板製造装置も、実施例3と同様に、塗布ステーション3、6の液滴吐出装置の一方が使用できない際には、他方の塗布ステーションを用いて基板片面に薄膜パターンを形成する。片面に薄膜パターンが痙性された基板を搬出口17から基板製造装置の外部(筐体18の外部)へ搬出する。実施例4による基板製造装置も、塗布ステーションの故障時に継続して作業を行うことが可能である。 Similarly to the third embodiment, the substrate manufacturing apparatus according to the fourth embodiment forms a thin film pattern on one surface of the substrate using the other coating station when one of the droplet discharge devices at the coating stations 3 and 6 cannot be used. . A substrate having a spastic thin film pattern on one side is carried out from the carry-out port 17 to the outside of the substrate manufacturing apparatus (outside the housing 18). The substrate manufacturing apparatus according to the fourth embodiment can also continue work when the coating station fails.
 [実施例5]
 図10に、実施例5による基板製造装置の概略図を示す。以下、実施例1との相違点について説明し、同一の構成については説明を省略する。実施例5は、図1に示したアライメントステーション5、塗布ステーション6、紫外線照射装置9、リフタ13、14、及びコンベア16を含まない点で実施例1と相違する。また、実施例5による基板製造装置は、筐体18が基板搬出入口7(図1)を備えない。さらに、制御装置20による制御の内容が、実施例1と異なる。実施例5による基板製造装置においては、実施例1による基板製造装置の塗布ステーション6の液滴吐出装置が使用不可能な場合に、基板の両面に薄膜パターンを形成する手順と同一の手順で基板の両面に薄膜パターンが形成される。
[Example 5]
FIG. 10 shows a schematic diagram of a substrate manufacturing apparatus according to the fifth embodiment. Hereinafter, differences from the first embodiment will be described, and description of the same configuration will be omitted. The fifth embodiment is different from the first embodiment in that the alignment station 5, the coating station 6, the ultraviolet irradiation device 9, the lifters 13 and 14, and the conveyor 16 shown in FIG. 1 are not included. In the substrate manufacturing apparatus according to the fifth embodiment, the housing 18 does not include the substrate carry-in / out port 7 (FIG. 1). Furthermore, the contents of control by the control device 20 are different from those in the first embodiment. In the substrate manufacturing apparatus according to the fifth embodiment, when the droplet discharge device of the coating station 6 of the substrate manufacturing apparatus according to the first embodiment is not usable, the substrate is processed in the same procedure as that for forming a thin film pattern on both surfaces of the substrate. A thin film pattern is formed on both sides.
 基板21が、コンベア15で搬送され、搬出入口1から筐体18内に導入される。基板21の第1の面は、上方(Z軸の正の方向)を向いている。基板21は、リフタ11でコンベア15からアライメントステーション2に搬送される。 The substrate 21 is conveyed by the conveyor 15 and introduced into the housing 18 from the carry-in / out entrance 1. The first surface of the substrate 21 faces upward (the positive direction of the Z axis). The substrate 21 is transferred from the conveyor 15 to the alignment station 2 by the lifter 11.
 アライメントステーション2において、基板21の第1の面に形成されたアライメントマークが検出される。検出結果に基づいて、基板21のθ補正が行われる。また、アライメントステーション2において取得された画像データに基づき、基板21のサイズが算出され、算出されたサイズに応じて、吐出制御用画像データが生成される。 In the alignment station 2, the alignment mark formed on the first surface of the substrate 21 is detected. Based on the detection result, θ correction of the substrate 21 is performed. Further, the size of the substrate 21 is calculated based on the image data acquired in the alignment station 2, and ejection control image data is generated according to the calculated size.
 θ補正が行われた基板21が、リフタ11によって、塗布ステーション3に搬送される。塗布ステーション3においてはθ補正を行わず、基板21の第1の面に、吐出制御用画像データに基づいて薄膜パターンを形成する。 The substrate 21 subjected to the θ correction is transferred to the coating station 3 by the lifter 11. In the coating station 3, θ correction is not performed, and a thin film pattern is formed on the first surface of the substrate 21 based on the ejection control image data.
 薄膜パターンが形成された基板21は、リフタ12によって反転ステーション4に搬送される。反転ステーション4において、基板21の第1の面に形成された薄膜パターンの本硬化と、基板21の反転とが行われる。 The substrate 21 on which the thin film pattern is formed is transferred to the reversing station 4 by the lifter 12. In the inversion station 4, the main curing of the thin film pattern formed on the first surface of the substrate 21 and the inversion of the substrate 21 are performed.
 反転された基板21は、リフタ12、11により、アライメントステーション2に搬送される。アライメントステーション2において、基板21の第2の面に形成されたアライメントマークが検出され、検出結果に基づいて、基板21のθ補正が行われる。また、CCDカメラ35~38によって取得された画像データに基づき、基板21のサイズが算出され、算出されたサイズに応じて、基板の第2の面に形成する薄膜パターンの吐出制御用画像データが生成される。 The inverted substrate 21 is transferred to the alignment station 2 by the lifters 12 and 11. In alignment station 2, an alignment mark formed on the second surface of substrate 21 is detected, and θ correction of substrate 21 is performed based on the detection result. Further, the size of the substrate 21 is calculated based on the image data acquired by the CCD cameras 35 to 38, and the ejection control image data of the thin film pattern to be formed on the second surface of the substrate is calculated according to the calculated size. Generated.
 なお、第2の面に形成する薄膜パターンの吐出制御用画像データの生成に、基板21の第1の面のアライメントマークの検出結果を利用してもよい。この場合、基板21の第2の面のアライメントマークの撮像結果は、θ補正にのみ使用される。 Note that the detection result of the alignment mark on the first surface of the substrate 21 may be used to generate the image data for ejection control of the thin film pattern formed on the second surface. In this case, the imaging result of the alignment mark on the second surface of the substrate 21 is used only for θ correction.
 θ補正が施された基板21は、リフタ11により、塗布ステーション3に搬送される。 The substrate 21 subjected to θ correction is transported to the coating station 3 by the lifter 11.
 塗布ステーション3において、θ補正を行わず、液滴吐出装置により、基板21の第2の面に形成する薄膜パターンの吐出制御用画像データに基づいて、基板21の第2の面に薄膜パターンを形成する。 In the coating station 3, the thin film pattern is applied to the second surface of the substrate 21 based on the discharge control image data of the thin film pattern formed on the second surface of the substrate 21 by the droplet discharge device without performing θ correction. Form.
 第2の面に薄膜パターンが形成された基板21は、リフタ11によってコンベア15に搬送され、紫外線照射装置8からの紫外線の照射によって、第2の面の薄膜パターンの本硬化が行われる。コンベア15は、基板21を搬出入口1から筐体18の外部へ搬出する。 The substrate 21 on which the thin film pattern is formed on the second surface is transported to the conveyor 15 by the lifter 11, and the thin film pattern on the second surface is fully cured by irradiation with ultraviolet rays from the ultraviolet irradiation device 8. The conveyor 15 carries the substrate 21 out of the housing 18 from the carry-in / out entrance 1.
 実施例5による基板製造装置の構成は、実施例1による基板製造装置と比べて簡易であり、装置の低コスト化を図ることが可能である。 The configuration of the substrate manufacturing apparatus according to the fifth embodiment is simpler than that of the substrate manufacturing apparatus according to the first embodiment, and the cost of the apparatus can be reduced.
 [実施例6]
 図11に、実施例6による基板製造装置の概略図を示す。以下、実施例2との相違点について説明し、同一の構成については説明を省略する。実施例6は、図7に示したアライメントステーション5、塗布ステーション6、紫外線照射装置9、リフタ13、14、及びコンベア16を含まない点で実施例2と相違する。また、実施例6による基板製造装置は、筐体18が基板搬出入口7を備えない。さらに、制御装置20による制御の内容が、実施例2と異なる。実施例6による基板製造装置においては、実施例2による基板製造装置の塗布ステーション6の液滴吐出装置が使用不可能な場合に、基板の両面に薄膜パターンを形成する手順と同一の手順で、基板の両面に薄膜パターンが形成される。
[Example 6]
FIG. 11 shows a schematic diagram of a substrate manufacturing apparatus according to the sixth embodiment. Hereinafter, differences from the second embodiment will be described, and description of the same configuration will be omitted. The sixth embodiment is different from the second embodiment in that the alignment station 5, the coating station 6, the ultraviolet irradiation device 9, the lifters 13 and 14, and the conveyor 16 shown in FIG. 7 are not included. In the substrate manufacturing apparatus according to the sixth embodiment, the housing 18 does not include the substrate carry-in / out port 7. Furthermore, the contents of control by the control device 20 are different from those in the second embodiment. In the substrate manufacturing apparatus according to the sixth embodiment, when the droplet discharge device of the coating station 6 of the substrate manufacturing apparatus according to the second embodiment is not usable, the same procedure as that for forming a thin film pattern on both surfaces of the substrate is used. Thin film patterns are formed on both sides of the substrate.
 基板21がコンベア15で搬送され、搬出入口1から筐体18内に導入される。基板21の第1の面は、上方(Z軸の正の方向)を向いている。筺体18内に導入された基板21は、リフタ11でアライメントステーション2に搬送される。 The substrate 21 is conveyed by the conveyor 15 and introduced into the housing 18 from the carry-in / out entrance 1. The first surface of the substrate 21 faces upward (the positive direction of the Z axis). The substrate 21 introduced into the housing 18 is transported to the alignment station 2 by the lifter 11.
 アライメントステーション2において、基板21の簡易的なアライメントを行う。アライメント終了後、基板21は、塗布ステーション3に搬送される。 Alignment station 2 performs simple alignment of substrate 21. After the alignment, the substrate 21 is transferred to the coating station 3.
 塗布ステーション3において、基板21の第1の面に薄膜パターンを形成する。第1の面に薄膜パターンが形成された基板21は、リフタ12によって反転ステーション4に搬送される。反転ステーション4において、基板の第1の面に形成された薄膜パターンの本硬化と、基板の反転とが行われる。 In the coating station 3, a thin film pattern is formed on the first surface of the substrate 21. The substrate 21 on which the thin film pattern is formed on the first surface is transported to the inversion station 4 by the lifter 12. In the inversion station 4, the main curing of the thin film pattern formed on the first surface of the substrate and the inversion of the substrate are performed.
 その後、基板21はアライメントステーション2に搬送される。アライメントステーション2で簡易的なアライメントが行われた後、基板21は、再び、塗布ステーション3に搬送される。 Thereafter, the substrate 21 is transferred to the alignment station 2. After simple alignment is performed at the alignment station 2, the substrate 21 is transported to the coating station 3 again.
 塗布ステーション3では、基板21の第2の面に薄膜パターンを形成する。第2の面に薄膜パターンが形成された基板21は、リフタ11により、コンベア15に搬送され、第2の面の薄膜パターンの本硬化が行われる。その後、基板21は、搬出入口1から筐体18の外部へ搬出される。 In the coating station 3, a thin film pattern is formed on the second surface of the substrate 21. The board | substrate 21 with which the thin film pattern was formed in the 2nd surface is conveyed by the conveyor 15 by the lifter 11, and the main curing of the thin film pattern of the 2nd surface is performed. Thereafter, the substrate 21 is unloaded from the loading / unloading port 1 to the outside of the housing 18.
 実施例6による基板製造装置の構成は、実施例2による基板製造装置の構成と比べて、簡易であり、装置の低コスト化を図ることが可能である。 The configuration of the substrate manufacturing apparatus according to the sixth embodiment is simpler than the configuration of the substrate manufacturing apparatus according to the second embodiment, and the cost of the apparatus can be reduced.
 [実施例7]
 図12A~図12Eに、実施例7による基板製造装置の反転ステーションの概略図を示す。この反転ステーションは、上記実施例1~実施例6による基板製造装置の反転ステーション4(図1、図7~図11)に適用することができる。
[Example 7]
12A to 12E are schematic views of a reversing station of the substrate manufacturing apparatus according to the seventh embodiment. This inversion station can be applied to the inversion station 4 (FIG. 1, FIG. 7 to FIG. 11) of the substrate manufacturing apparatus according to the first to sixth embodiments.
 図12Aに示すように、Y軸方向に長い紫外光源62の両側に、一対の半円周状のガイド56が設置されている。紫外光源62は両側のガイド56に案内されて移動可能である。紫外光源62の移動は制御装置20によって制御される。基板24の回転前の状態では、薄膜パターンが形成された面がZ軸の正の方向を向いている。紫外光源62を出射した紫外光は、基板24の薄膜パターンが形成された面に照射される。なお、図12A~図12Eに示す例においては、紫外光源62は、発散する紫外光を出射する。 As shown in FIG. 12A, a pair of semicircular guides 56 are installed on both sides of the ultraviolet light source 62 that is long in the Y-axis direction. The ultraviolet light source 62 is movable by being guided by guides 56 on both sides. The movement of the ultraviolet light source 62 is controlled by the control device 20. In a state before the substrate 24 is rotated, the surface on which the thin film pattern is formed faces the positive direction of the Z axis. The ultraviolet light emitted from the ultraviolet light source 62 is applied to the surface of the substrate 24 on which the thin film pattern is formed. In the example shown in FIGS. 12A to 12E, the ultraviolet light source 62 emits diverging ultraviolet light.
 図12B~図12Eに示すように、制御装置20は、支持部材52を回転軸として基板24を、一定の角速度で回転させる。基板24の回転に同期させて、回転中の基板24の薄膜パターン形成面に所定強度以上の紫外光が照射されるように、紫外光源62をガイド56に沿って一定速度で移動させる。紫外光の照射は、図7Eに示すように、基板24の薄膜パターン形成面がZ軸の負の方向を向いたときに終了する。 As shown in FIGS. 12B to 12E, the control device 20 rotates the substrate 24 at a constant angular velocity with the support member 52 as a rotation axis. In synchronization with the rotation of the substrate 24, the ultraviolet light source 62 is moved along the guide 56 at a constant speed so that the thin film pattern forming surface of the rotating substrate 24 is irradiated with ultraviolet light having a predetermined intensity or more. Irradiation with ultraviolet light ends when the thin film pattern forming surface of the substrate 24 faces the negative direction of the Z-axis, as shown in FIG. 7E.
 実施例7においては、基板の反転と、紫外線照射とを並行して行うことができる。このため、反転ステーション4での処理時間を短縮することができる。 In Example 7, the inversion of the substrate and the ultraviolet irradiation can be performed in parallel. For this reason, the processing time in the inversion station 4 can be shortened.
 [実施例8]
 図13A~図13Dに、実施例8による基板製造装置の反転ステーションの概略図を示す。この反転ステーションは、上記実施例1~実施例6による基板製造装置の反転ステーション4(図1、図7~図11)に適用することができる。以下、実施例7との相違点について説明し、同一の構成については説明を省略する。
[Example 8]
13A to 13D are schematic views of a reversing station of the substrate manufacturing apparatus according to the eighth embodiment. This inversion station can be applied to the inversion station 4 (FIG. 1, FIG. 7 to FIG. 11) of the substrate manufacturing apparatus according to the first to sixth embodiments. Hereinafter, differences from the seventh embodiment will be described, and description of the same configuration will be omitted.
 図13A~図13Dに示す実施例8においては、紫外光源62は、集束する紫外光を出射する。図13Aに示すように、Y軸方向に長い支持部材61の両端に一対のガイド56が設置されている。支持部材61に、X軸方向に長い紫外光源62が、その一端において支持されている。支持部材61は両端のガイド56に案内されて移動可能である。支持部材61の移動は制御装置20によって制御される。 In Example 8 shown in FIGS. 13A to 13D, the ultraviolet light source 62 emits focused ultraviolet light. As shown in FIG. 13A, a pair of guides 56 are installed at both ends of a support member 61 that is long in the Y-axis direction. An ultraviolet light source 62 that is long in the X-axis direction is supported on one end of the support member 61. The support member 61 is movable by being guided by guides 56 at both ends. The movement of the support member 61 is controlled by the control device 20.
 図13A~図13Dに示すように、制御装置20は、支持部材52を回転軸として基板24を一定の角速度で回転させる。基板24の回転に同期させて、支持部材61をガイド56に沿って一定速度で移動させる。さらに、紫外光源62を支持部材61に沿ってY軸方向に一定速度で移動させる。基板24の薄膜パターン形成面がZ軸の正の方向に向いている状態を図13Aに示す。基板24が徐々に回転して、基板24の薄膜パターン形成面がZ軸の負の方向を向く状態を図13Dに示した。図13Aに示す状態では、紫外光源62は、紫外光を基板24のY軸の正側の端部に照射する。図13Dに示す状態に至るまでに、紫外光源62は、紫外光を基板24のY軸の負側の端部に照射する位置まで移動する。紫外光の照射は、基板24の薄膜パターン形成面がZ軸の正の方向を向いているときに開始され、基板24の薄膜パターン形成面がZ軸の負の方向を向いたときに終了する。 As shown in FIGS. 13A to 13D, the control device 20 rotates the substrate 24 at a constant angular velocity with the support member 52 as a rotation axis. In synchronization with the rotation of the substrate 24, the support member 61 is moved along the guide 56 at a constant speed. Further, the ultraviolet light source 62 is moved along the support member 61 at a constant speed in the Y-axis direction. FIG. 13A shows a state in which the thin film pattern forming surface of the substrate 24 faces in the positive direction of the Z axis. FIG. 13D shows a state where the substrate 24 is gradually rotated and the thin film pattern forming surface of the substrate 24 faces the negative direction of the Z axis. In the state shown in FIG. 13A, the ultraviolet light source 62 irradiates ultraviolet light to the positive end of the Y axis of the substrate 24. By the time the state shown in FIG. 13D is reached, the ultraviolet light source 62 moves to a position where the ultraviolet light is applied to the negative end of the Y axis of the substrate 24. Irradiation with ultraviolet light starts when the thin film pattern forming surface of the substrate 24 faces the positive direction of the Z axis, and ends when the thin film pattern forming surface of the substrate 24 faces the negative direction of the Z axis. .
 実施例8においても、実施例7と同様に、反転ステーション4での処理時間を短縮することができる。 In the eighth embodiment, as in the seventh embodiment, the processing time in the reversing station 4 can be shortened.
 上記実施例1~実施例8においては、ノズルユニットに対する基板の移動(XY平面内での移動)をステージのみによって行ったが、フレーム42(図3A)をY軸方向に移動可能とし、ノズルユニット47a~47f(図3A)を、フレーム42にX軸方向及びZ軸方向に移動可能としてもよい。ノズルユニットと基板とは、相対的に移動させればよい。ただし、基板のみをXY平面内で移動させる構成の方が、ノズルユニットをもXY平面方向に移動させる構成に比べて、薄膜パターンの位置精度を高めることができる。 In the first to eighth embodiments, the substrate is moved relative to the nozzle unit (moving in the XY plane) only by the stage. However, the frame 42 (FIG. 3A) is movable in the Y-axis direction, and the nozzle unit 47a to 47f (FIG. 3A) may be movable on the frame 42 in the X-axis direction and the Z-axis direction. What is necessary is just to move a nozzle unit and a board | substrate relatively. However, the configuration in which only the substrate is moved in the XY plane can improve the positional accuracy of the thin film pattern compared to the configuration in which the nozzle unit is also moved in the XY plane direction.
 また、実施例1~実施例8においては、基板製造装置によって、プリント配線板上にソルダーレジストの薄膜パターンを形成したが、実施例1~実施例8による基板製造装置は、その他の薄膜パターンの形成にも適用することができる。例えば、実施例1~実施例8による基板製造装置は、ガラス基板上に絶縁膜を形成するタッチパネルの製造に利用することができる。 In Examples 1 to 8, the substrate manufacturing apparatus formed the solder resist thin film pattern on the printed wiring board. However, the substrate manufacturing apparatus in Examples 1 to 8 has other thin film patterns. It can also be applied to formation. For example, the substrate manufacturing apparatus according to the first to eighth embodiments can be used for manufacturing a touch panel that forms an insulating film on a glass substrate.
 さらに、仮置ステージ48(図7等)を備える実施例において、基板を液滴吐出装置に搬送する前に、仮置ステージを経由させることは必須ではない。例えば、実施例2の塗布ステーション6(図8)の液滴吐出装置が故障中またはメンテナンス中の時に、反転ステーション4から、アライメントステーション2を経由することなく、塗布ステーション3に基板を搬送してもよい。アライメントステーション2による処理を省略することにより、タクトタイムの増加を抑制することができる。この点は、実施例6による基板製造装置の通常動作等においても同様である。 Further, in the embodiment including the temporary stage 48 (FIG. 7 and the like), it is not essential to pass the temporary stage before the substrate is transferred to the droplet discharge device. For example, when the droplet discharge device of the coating station 6 (FIG. 8) of the second embodiment is out of order or under maintenance, the substrate is transferred from the reversing station 4 to the coating station 3 without going through the alignment station 2. Also good. By omitting the processing by the alignment station 2, an increase in tact time can be suppressed. This also applies to the normal operation of the substrate manufacturing apparatus according to the sixth embodiment.
 また、実施例1~実施例8において、アライメント機能をリフタや基板反転装置にもたせてもよい。さらに、実施例5や実施例6において、塗布ステーション3(図10、図11)と反転ステーション4(図10、図11)との間に、アライメントステーションを設けてもよい。反転ステーション4で処理された基板を、アライメントステーション2を経由して塗布ステーション3に搬送する代わりに、塗布ステーション3と反転ステーション4との間に設けたアライメントステーションを経由して塗布ステーション3に搬送することにより、タクトタイムの短縮を図ることができる。 Further, in the first to eighth embodiments, the alignment function may be applied to a lifter or a substrate reversing device. Furthermore, in Example 5 or Example 6, an alignment station may be provided between the coating station 3 (FIGS. 10 and 11) and the reversing station 4 (FIGS. 10 and 11). Instead of transporting the substrate processed at the reversing station 4 to the coating station 3 via the alignment station 2, the substrate is transported to the coating station 3 via an alignment station provided between the coating station 3 and the reversing station 4. By doing so, the tact time can be shortened.
 また、実施例1~実施例8においては、各ステーションを直線的に配置したが、たとえば各ステーションを多角形の頂点に当たる位置に設置してもよい。このような構成とすることにより、例えばアライメントに伴って生じるタクトタイムの増大を抑制することが可能である。 In the first to eighth embodiments, each station is arranged linearly, but each station may be installed at a position corresponding to the vertex of a polygon. By adopting such a configuration, it is possible to suppress an increase in tact time caused by alignment, for example.
 [実施例9]
 図14に、実施例9による基板製造装置の塗布ステーション3の概略平面図を示す。この塗布ステーション3は、実施例1~実施例8による基板製造装置の1段目の塗布ステーション3(図1、図7~図11)及び2段目の塗布ステーション6(図1、図7~図9)に適用することができる。なお、実施例9による塗布ステーション3は、基板のアライメント機能を備えているため、実施例1~実施例8に、実施例9による塗布ステーション3を適用した場合には、アライメントステーション2、5(図1、図7~図11)が省略される。
[Example 9]
FIG. 14 is a schematic plan view of the coating station 3 of the substrate manufacturing apparatus according to the ninth embodiment. The coating station 3 includes a first-stage coating station 3 (FIGS. 1, 7 to 11) and a second-stage coating station 6 (FIGS. 1, 7 to 11) of the substrate manufacturing apparatus according to the first to eighth embodiments. It can be applied to FIG. Since the coating station 3 according to the ninth embodiment has a substrate alignment function, when the coating station 3 according to the ninth embodiment is applied to the first to eighth embodiments, the alignment stations 2, 5 ( 1 and 7 to 11) are omitted.
 図14に示すように、塗布ステーション3に、第1の塗布ステージ85A及び第2の塗布ステージ85Bが備えられている。第1の塗布ステージ85Aは、塗布ステーション3内の第1の受け渡し領域80A、第1のアライメント領域81A、及び塗布領域82の間で移動可能である。第2の塗布ステージ85Bは、塗布ステーション3内の第2の受け渡し領域80B、第2のアライメント領域81B、及び塗布領域82の間で移動可能である。塗布領域82は、第1の塗布ステージ85Aと第2の塗布ステージ85Bとで共用される。 As shown in FIG. 14, the coating station 3 includes a first coating stage 85A and a second coating stage 85B. The first application stage 85A is movable between the first transfer area 80A, the first alignment area 81A, and the application area 82 in the application station 3. The second application stage 85B is movable between the second transfer area 80B, the second alignment area 81B, and the application area 82 in the application station 3. The application region 82 is shared by the first application stage 85A and the second application stage 85B.
 第1及び第2の受け渡し領域80A、80Bの上方をリフタ11が通過可能である。第1の塗布ステージ85Aが第1の受け渡し領域80Aに配置されている状態で、リフタ11から第1の塗布ステージ85Aに、またはその逆に、基板を受け渡すことができる。同様に、第2の塗布ステージ85Bが第2の受け渡し領域80Bに配置されている状態で、リフタ11から第2の塗布ステージ85Bに、またはその逆に、基板を受け渡すことができる。 The lifter 11 can pass above the first and second delivery areas 80A and 80B. The substrate can be delivered from the lifter 11 to the first application stage 85A or vice versa in a state where the first application stage 85A is disposed in the first delivery region 80A. Similarly, the substrate can be delivered from the lifter 11 to the second coating stage 85B or vice versa with the second coating stage 85B being disposed in the second delivery region 80B.
 第1のアライメント領域81A及び第2のアライメント領域81Bに、それぞれ複数台の撮像装置83が配置されている。第1の塗布ステージ85Aが第1のアライメント領域81Aに配置された状態で、第1の塗布ステージ85Aに保持された基板のアライメントマークが撮像装置83によって撮像される。撮像結果を解析することにより、基板のθ補正を行うとともに、X方向及びY方向の伸縮量を算出することができる。同様に、第2の塗布ステージ85Bが第2のアライメント領域81Bに配置された状態で、第2の塗布ステージ85Bに保持された基板のθ補正を行うとともに、X方向及びY方向の伸縮量を算出することができる。 A plurality of imaging devices 83 are arranged in each of the first alignment region 81A and the second alignment region 81B. In a state where the first application stage 85A is arranged in the first alignment region 81A, the alignment mark of the substrate held on the first application stage 85A is imaged by the imaging device 83. By analyzing the imaging result, it is possible to perform θ correction of the substrate and calculate the expansion and contraction amounts in the X direction and the Y direction. Similarly, in the state where the second coating stage 85B is disposed in the second alignment region 81B, θ correction of the substrate held on the second coating stage 85B is performed, and the expansion and contraction amounts in the X direction and the Y direction are set. Can be calculated.
 塗布領域82に、ノズルユニット47a~47fが備えられている。第1の塗布ステージ85Aを塗布領域82に配置して、ノズルユニット47a~47fに対して基板を走査することにより、第1の塗布ステージ85Aに保持されている基板の上面に薄膜パターンを形成することができる。同様に、第2の塗布ステージ85Bを塗布領域82に配置することにより、第2の塗布ステージ85Bに保持されている基板の上面に薄膜パターンを形成することができる。 In the application region 82, nozzle units 47a to 47f are provided. The first coating stage 85A is arranged in the coating region 82, and the substrate is scanned with respect to the nozzle units 47a to 47f, thereby forming a thin film pattern on the upper surface of the substrate held by the first coating stage 85A. be able to. Similarly, by disposing the second coating stage 85B in the coating region 82, a thin film pattern can be formed on the upper surface of the substrate held by the second coating stage 85B.
 次に、塗布ステーション3で基板に薄膜パターンを形成する手順について説明する。図15Aに示すように、第1の塗布ステージ85A及び第2の塗布ステージ85Bが、それぞれ第1の受け渡し領域80A及び第2の受け渡し領域80Bに配置されている。この状態で、リフタ11(図14)が、未処理の基板21を第1の塗布ステージ85Aに載せる。 Next, a procedure for forming a thin film pattern on the substrate at the coating station 3 will be described. As shown in FIG. 15A, the first application stage 85A and the second application stage 85B are disposed in the first transfer area 80A and the second transfer area 80B, respectively. In this state, the lifter 11 (FIG. 14) places the unprocessed substrate 21 on the first coating stage 85A.
 図15Bに示すように、第1の塗布ステージ85Aを第1のアライメント領域81Aまで移動させる。この状態で、基板21の上面に形成されたアライメントマークを撮像装置83(図14)で撮像する。撮像結果に基づいて、基板21のθ補正を行うとともに、薄膜パターンを形成するための吐出制御用画像データを生成する。 As shown in FIG. 15B, the first coating stage 85A is moved to the first alignment region 81A. In this state, the alignment mark formed on the upper surface of the substrate 21 is imaged by the imaging device 83 (FIG. 14). Based on the imaging result, θ correction of the substrate 21 is performed, and ejection control image data for forming a thin film pattern is generated.
 図15Cに示すように、第1の塗布ステージ85Aを塗布領域82まで移動させ、基板21に対する薄膜材料の塗布処理を行う。並行して、リフタ11が、次に処理すべき基板22を第2の塗布ステージ85Bに載せる。 As shown in FIG. 15C, the first coating stage 85A is moved to the coating region 82, and the thin film material is coated on the substrate 21. In parallel, the lifter 11 places the substrate 22 to be processed next on the second coating stage 85B.
 図15Dに示すように、第2の塗布ステージ85Bを第2のアライメント領域81Bに移動させる。この状態で、第2の塗布ステージ85Bに保持されている基板22の上面に形成されたアライメントマークを撮像装置83(図14)で撮像する。撮像結果に基づいて、基板22のθ補正を行うとともに、吐出制御用画像データを生成する。第1の塗布ステージ85Aに保持されている基板21に対しては、薄膜材料の塗布処理が継続して行われている。 As shown in FIG. 15D, the second coating stage 85B is moved to the second alignment region 81B. In this state, the imaging device 83 (FIG. 14) images the alignment mark formed on the upper surface of the substrate 22 held on the second coating stage 85B. Based on the imaging result, θ correction of the substrate 22 is performed, and ejection control image data is generated. The thin film material coating process is continuously performed on the substrate 21 held on the first coating stage 85A.
 図15Eに示すように、基板21への薄膜材料の塗布が完了した後、第1の塗布ステージ85Aを塗布領域82から第1の受け渡し領域80Aまで移動させる。並行して、第2の塗布ステージ85Bを第2のアライメント領域81Bから塗布領域82まで移動させる。 As shown in FIG. 15E, after the application of the thin film material to the substrate 21 is completed, the first application stage 85A is moved from the application area 82 to the first delivery area 80A. In parallel, the second coating stage 85B is moved from the second alignment region 81B to the coating region 82.
 図15Fに示すように、第2の塗布ステージ85Bに保持された基板22の上面に薄膜材料を塗布する。並行して、リフタ12(図1)が、第1の塗布ステージ85Aに保持されている基板21を、塗布ステーション3から搬出する。 As shown in FIG. 15F, a thin film material is applied to the upper surface of the substrate 22 held by the second application stage 85B. In parallel, the lifter 12 (FIG. 1) unloads the substrate 21 held by the first coating stage 85A from the coating station 3.
 図15Gに示すように、リフタ11(図14)が、次に処理すべき基板23を、第1の塗布ステージ85Aに載せる。このとき、塗布領域82では、第2の塗布ステージ85Bに保持されている基板22の上面への薄膜材料の塗布処理が継続している。 As shown in FIG. 15G, the lifter 11 (FIG. 14) places the substrate 23 to be processed next on the first coating stage 85A. At this time, in the coating region 82, the coating process of the thin film material on the upper surface of the substrate 22 held by the second coating stage 85B is continued.
 図15Hに示すように、第1の塗布ステージ85Aを第1のアライメント領域81Aまで移動させる。この状態で、基板23の上面に形成されているアライメントマークを撮像する。撮像結果に基づいて、基板23のθ補正を行うとともに、吐出制御用画像データを生成する。このとき、塗布領域82では、第2の塗布ステージ85Bに保持されている基板22の上面への薄膜材料の塗布処理が継続している。 As shown in FIG. 15H, the first coating stage 85A is moved to the first alignment region 81A. In this state, the alignment mark formed on the upper surface of the substrate 23 is imaged. Based on the imaging result, θ correction of the substrate 23 is performed and ejection control image data is generated. At this time, in the coating region 82, the coating process of the thin film material on the upper surface of the substrate 22 held by the second coating stage 85B is continued.
 第2の塗布ステージ85Bに保持されている基板22への薄膜材料の塗布が完了すると、第2の塗布ステージ85Bを第2の受け渡し領域80Bまで移動させ、基板22を塗布ステーション3から搬出する。並行して、図15Cに示した工程と同様に、第1の塗布ステージ85Aを、塗布領域82まで移動させるとともに、第2の塗布ステージ85Bに、次に処理すべき基板を載せる。その後、図15Dから図15まで処理を繰返し実行する。 When the application of the thin film material to the substrate 22 held by the second application stage 85B is completed, the second application stage 85B is moved to the second delivery area 80B, and the substrate 22 is unloaded from the application station 3. In parallel, as in the step shown in FIG. 15C, the first application stage 85A is moved to the application region 82, and the substrate to be processed next is placed on the second application stage 85B. Thereafter, the processing is repeatedly executed from FIG. 15D to FIG.
 上述のように、実施例9においては、塗布ステーション3内において、1枚の基板に対する薄膜材料の塗布が行われている期間に、次に処理すべき基板のθ補正、及び吐出制御用画像データの生成が並行して行われる。このため、処理時間を短縮することができる。 As described above, in the ninth embodiment, in the coating station 3, during the period in which the thin film material is applied to one substrate, θ correction and ejection control image data for the substrate to be processed next. Are generated in parallel. For this reason, processing time can be shortened.
 [実施例10]
 図16A~図16Fに、実施例10による基板製造装置の反転ステーション4の概略図を示す。以下、実施例1との相違点について説明し、同一の構成については説明を省略する。実施例10の反転ステーション4は、実施例1~実施例9の基板製造装置の反転ステーション4(図1、図7~図11)に適用される。
[Example 10]
16A to 16F are schematic views of the reversing station 4 of the substrate manufacturing apparatus according to the tenth embodiment. Hereinafter, differences from the first embodiment will be described, and description of the same configuration will be omitted. The reversing station 4 of the tenth embodiment is applied to the reversing station 4 (FIGS. 1 and 7 to 11) of the substrate manufacturing apparatus of the first to ninth embodiments.
 図16Aに示すように、反転ステーション4内にローラコンベア90が備えられている。ローラコンベア90の上流端から下流端に向かって、搬入部4A、本硬化部4B、反転部4C、及び搬出部4Dが画定されている。塗布ステーション2(図1、図7~図11)で薄膜材料が塗布された基板21が、リフタ12(図1、図7~図11)により、ローラコンベア90の搬入部4Aの上に載せられる。薄膜材料が塗布された第1の面21Aが上方を向き、反対側の第2の面21Bがローラコンベア90に接触する。 As shown in FIG. 16A, a roller conveyor 90 is provided in the reversing station 4. From the upstream end to the downstream end of the roller conveyor 90, a carry-in part 4A, a main curing part 4B, a reversing part 4C, and a carry-out part 4D are defined. The substrate 21 coated with the thin film material at the coating station 2 (FIGS. 1, 7 to 11) is placed on the carry-in portion 4A of the roller conveyor 90 by the lifter 12 (FIGS. 1, 7 to 11). . The first surface 21A coated with the thin film material faces upward, and the opposite second surface 21B contacts the roller conveyor 90.
 本硬化部4Bのローラコンベア90の上方に、本硬化用光源91が配置されている。本硬化用光源91は、ローラコンベア90により、その下方を通過する基板21の上面に紫外線を照射する。 A main curing light source 91 is disposed above the roller conveyor 90 of the main curing unit 4B. The main curing light source 91 irradiates the upper surface of the substrate 21 passing through the roller conveyor 90 with ultraviolet rays.
 反転部4Cでは、ローラコンベア90が、基板21を下から支持する第1のローラ90Aと、基板21の上面に接する第2のローラ90Bとを含む。第1のローラ90Aと第2のローラ90Bとの上下関係を逆転させることにより、基板21の裏表を反転させることができる。基板21を反転させると、薄膜材料が塗布された第1の面21Aが下方を向き、薄膜材料が塗布されていない第2の面が上方を向く。 In the reversing unit 4C, the roller conveyor 90 includes a first roller 90A that supports the substrate 21 from below and a second roller 90B that contacts the upper surface of the substrate 21. By reversing the vertical relationship between the first roller 90A and the second roller 90B, the front and back of the substrate 21 can be reversed. When the substrate 21 is reversed, the first surface 21A coated with the thin film material faces downward, and the second surface not coated with the thin film material faces upward.
 ローラコンベア90の搬出部4Dまで搬送された基板21が、リフタ13(図1、図7~図9)により、反転ステーション4から搬出され、2段目の塗布ステーション6(図1、図7~図9)等に搬入される。 The substrate 21 transported to the unloading section 4D of the roller conveyor 90 is unloaded from the reversing station 4 by the lifter 13 (FIGS. 1, 7 to 9), and the second-stage coating station 6 (FIGS. 1, 7 to 9). 9) and the like.
 図16Bに示すように、搬入部4Aのローラコンベア90に載せられた基板21が、本硬化部4Bを通過して反転部4Bに向けて搬送される。本硬化部4Bを通過するときに、本硬化用光源91からの紫外線に照射され、基板21の第1の面21Aに塗布されている薄膜材料が本校化する。制御装置20が、基板21の送り速度を記憶した記憶装置20bを含む。記憶装置20bに記憶されている送り速度は、基板21の第1の面21Aに投入される光エネルギ密度が、薄膜材料を本硬化させるのに十分な大きさになるように設定されている。なお、記憶装置20bに、光照射時間を記憶させておいてもよい。この場合には、制御装置20は、記憶装置20bに記憶されている照射時間から、基板21の送り速度を算出する。 As shown in FIG. 16B, the substrate 21 placed on the roller conveyor 90 of the carry-in unit 4A passes through the main curing unit 4B and is conveyed toward the reversing unit 4B. When passing through the main curing portion 4B, the thin film material applied to the first surface 21A of the substrate 21 by being irradiated with the ultraviolet rays from the main curing light source 91 becomes the main school. The control device 20 includes a storage device 20 b that stores the feed rate of the substrate 21. The feed rate stored in the storage device 20b is set so that the light energy density applied to the first surface 21A of the substrate 21 is large enough to fully cure the thin film material. Note that the light irradiation time may be stored in the storage device 20b. In this case, the control device 20 calculates the feeding speed of the substrate 21 from the irradiation time stored in the storage device 20b.
 図16Cに示すように、基板21が反転部4Cのローラコンベア90まで搬送される。第1のローラ90Aと第2のローラ90Bとの間に基板21が挟まれた状態で、第1のローラ90A、第2のローラ90B、及び基板21を、搬送方向と平行な直線を回転中心として180°回転させる。図16Dに、第1のローラ90A、第2のローラ90B、及び基板21を90°回転させた状態の側面図を示す。基板21の第1の面21Aが手前を向いている。 As shown in FIG. 16C, the substrate 21 is conveyed to the roller conveyor 90 of the reversing unit 4C. With the substrate 21 sandwiched between the first roller 90A and the second roller 90B, the first roller 90A, the second roller 90B, and the substrate 21 are rotated about a straight line parallel to the transport direction. Rotate 180 °. FIG. 16D shows a side view of the first roller 90A, the second roller 90B, and the substrate 21 rotated by 90 °. The first surface 21A of the substrate 21 is facing forward.
 図16Eに、第1のローラ90A、第2のローラ90B、及び基板21を90°回転させた状態の側面図を示す。第1のローラ90Aと第2のローラ90Bとの上下関係が逆転し、基板21の第2の面21Bが上方を向く。図16Fに示すように、裏表が反転された基板21を、ローラコンベア90の搬出部4Dまで搬送する。 FIG. 16E shows a side view of the first roller 90A, the second roller 90B, and the substrate 21 rotated by 90 °. The vertical relationship between the first roller 90A and the second roller 90B is reversed, and the second surface 21B of the substrate 21 faces upward. As illustrated in FIG. 16F, the substrate 21 with the front and back sides reversed is transported to the unloading unit 4 </ b> D of the roller conveyor 90.
 実施例10のように、ローラコンベア90を用いて、本硬化と基板の反転を行うことも可能である。 As in Example 10, it is also possible to perform main curing and substrate inversion using a roller conveyor 90.
 [実施例11]
 図17に、実施例11による基板製造装置の概略図を示す。基板ストッカ93に、複数の基板が蓄積される。塗布ステーション3で、基板に所定の平面形状を有する薄膜パターンが形成される。塗布ステーション3で形成された薄膜パターンは、仮硬化の状態であり、本硬化は行われていない。反転ステーション4が、本硬化部4B及び反転部4Cを含む。本硬化部4Bで、基板に塗布された薄膜材料が本硬化される。反転ステーション4Cで、基板の裏表が反転される。実施例11による基板製造装置には、本硬化部4Bの他に、本硬化ステーション94が配置されている。本硬化ステーション94でも、基板に塗布された薄膜材料の本硬化が行われる。
[Example 11]
FIG. 17 is a schematic view of a substrate manufacturing apparatus according to the eleventh embodiment. A plurality of substrates are accumulated in the substrate stocker 93. In the coating station 3, a thin film pattern having a predetermined planar shape is formed on the substrate. The thin film pattern formed at the coating station 3 is in a temporarily cured state, and is not actually cured. The inversion station 4 includes a main curing unit 4B and an inversion unit 4C. In the main curing part 4B, the thin film material applied to the substrate is finally cured. At the inversion station 4C, the front and back sides of the substrate are inverted. In the substrate manufacturing apparatus according to the eleventh embodiment, a main curing station 94 is arranged in addition to the main curing unit 4B. The main curing station 94 also performs the main curing of the thin film material applied to the substrate.
 搬送装置100が、基板ストッカ93、本硬化ステーション94、塗布ステーション3、反転ステーション4の本硬化部4Bと反転部4Cとの間で、基板を搬送する。搬送装置100には、ローラコンベア、基板の上面を吸着して保持するリフタ、基板を下から支えるロボットアーム等が用いられる。搬送装置100、及び各ステーション内の装置は、制御装置20により制御される。図17において、基板が処理される時の基板の移動経路を、矢印を付した曲線で示す。 The transport apparatus 100 transports the substrate between the main curing unit 4B and the reversing unit 4C of the substrate stocker 93, the main curing station 94, the coating station 3, and the reversing station 4. For the transfer device 100, a roller conveyor, a lifter that sucks and holds the upper surface of the substrate, a robot arm that supports the substrate from below, and the like are used. The transport device 100 and the devices in each station are controlled by the control device 20. In FIG. 17, the movement path of the substrate when the substrate is processed is indicated by a curve with an arrow.
 基板ストッカ93に蓄積されている未処理基板が、搬送装置100によって塗布ステーション3に搬送される。塗布ステーション3で基板の一方の表面である第1の面に薄膜パターンが形成される。薄膜パターンが形成された基板が、搬送装置100によって反転ステーション4の本硬化部4Bに搬送される。本硬化部4Bで、薄膜パターンが本硬化される。その後、反転ステーション4Cで、基板が反転される。反転された基板が、搬送装置100で塗布ステーション3に搬送される。塗布ステーション3で、基板の第1の面とは反対側の第2の面に、薄膜パターンが形成される。第2の面に薄膜パターンが形成された基板が、搬送装置100で本硬化ステーション94に搬送される。本硬化ステーション94は、基板の第2の面に形成された薄膜パターンを本硬化させる。第2の面の薄膜パターンが本硬化された後、基板は、搬送装置100によって基板ストッカ93まで搬送される。次に、図18A~図18Gを参照して、基板に薄膜パターンを形成する方法について、より詳細に説明する。 The unprocessed substrate accumulated in the substrate stocker 93 is transported to the coating station 3 by the transport device 100. A thin film pattern is formed on the first surface, which is one surface of the substrate, at the coating station 3. The substrate on which the thin film pattern is formed is transported to the main curing unit 4B of the reversing station 4 by the transport device 100. In the main curing part 4B, the thin film pattern is finally cured. Thereafter, the substrate is inverted at the inversion station 4C. The inverted substrate is transported to the coating station 3 by the transport device 100. At the coating station 3, a thin film pattern is formed on the second surface opposite to the first surface of the substrate. The substrate on which the thin film pattern is formed on the second surface is transported to the main curing station 94 by the transport device 100. The main curing station 94 performs main curing on the thin film pattern formed on the second surface of the substrate. After the thin film pattern on the second surface is fully cured, the substrate is transported to the substrate stocker 93 by the transport device 100. Next, a method for forming a thin film pattern on a substrate will be described in more detail with reference to FIGS. 18A to 18G.
 図18Aに示した反転ステーション4の搬入部4A、本硬化部4B、及び反転部4Cの構成は、図16Aに示した実施例10による基板製造装置のものと同一の構成を有する。基板ストッカ93(図17)から基板21が塗布ステーション3に搬送される。塗布ステーション3で、基板21の第1の面21Aに薄膜パターンが形成される。薄膜パターンが形成された基板21が、搬送装置100(図17)により、反転ステーション4の搬入部4Aに搬入される。薄膜パターンが形成された第1の面21Aが上方を向いている。 The configuration of the carry-in unit 4A, the main curing unit 4B, and the reversing unit 4C of the reversing station 4 illustrated in FIG. 18A has the same configuration as that of the substrate manufacturing apparatus according to the tenth embodiment illustrated in FIG. The substrate 21 is transported to the coating station 3 from the substrate stocker 93 (FIG. 17). A thin film pattern is formed on the first surface 21 </ b> A of the substrate 21 at the coating station 3. The board | substrate 21 in which the thin film pattern was formed is carried in to the carrying-in part 4A of the inversion station 4 by the conveying apparatus 100 (FIG. 17). The first surface 21A on which the thin film pattern is formed faces upward.
 図18Bに示すように、ローラコンベア90を駆動することにより、基板21が、本硬化部4Bを経由して反転部4Cまで搬送する。ローラコンベア90は、塗布ステーション3から本硬化部4Bまで、及び本硬化部4Bから反転部4Cまで、基板21を搬送する搬送装置100(図17)として機能する。基板21の第1の面21Aに形成された薄膜パターンは、本硬化部4Bで本硬化用光源91の下を通過する時に、紫外光の照射によって硬化される。 As shown in FIG. 18B, by driving the roller conveyor 90, the substrate 21 is conveyed to the reversing unit 4C via the main curing unit 4B. The roller conveyor 90 functions as a transport device 100 (FIG. 17) that transports the substrate 21 from the coating station 3 to the main curing unit 4B and from the main curing unit 4B to the reversing unit 4C. The thin film pattern formed on the first surface 21A of the substrate 21 is cured by irradiation with ultraviolet light when passing under the main curing light source 91 in the main curing unit 4B.
 図18Cに示すように、基板21が反転ステーション4Cの第1のローラ90Aと第2のローラ90Bとの間に挟まれる。図18Dに示すように、第1のローラ90Aと第2のローラ90Bとの上下を逆転させる。これにより、基板21の第2の面21Bが上方を向く。 As shown in FIG. 18C, the substrate 21 is sandwiched between the first roller 90A and the second roller 90B of the reversing station 4C. As shown in FIG. 18D, the first roller 90A and the second roller 90B are turned upside down. As a result, the second surface 21B of the substrate 21 faces upward.
 図18Eに示すように、ローラコンベア90を駆動して、基板21を搬入部4Aまで搬送する。このとき、本硬化部4Bでは何ら処理は行われず、基板21は本硬化部4Bを単に通過するのみである。 As shown in FIG. 18E, the roller conveyor 90 is driven to transport the substrate 21 to the carry-in section 4A. At this time, no processing is performed in the main curing unit 4B, and the substrate 21 simply passes through the main curing unit 4B.
 図18Fに示すように、搬送装置100(図17)が、基板21を反転ステーション4から塗布ステーション3に搬送する。塗布ステーション3で、基板21の第2の面21Bに薄膜パターンを形成する。 As shown in FIG. 18F, the transport apparatus 100 (FIG. 17) transports the substrate 21 from the reversing station 4 to the coating station 3. A thin film pattern is formed on the second surface 21 </ b> B of the substrate 21 at the coating station 3.
 図18Gに示すように、搬送装置100(図17)が、基板21を、塗布ステーション3から本硬化ステーション94まで搬送する。本硬化ステーション94では、基板21の第2の面21Bに形成されている薄膜パターンに、本硬化用光源92から紫外線が照射される。これにより、第2の面21Bに形成されている薄膜パターンが本硬化される。第2の面の薄膜パターンが本硬化された基板21は、搬送装置100(図17)によって基板ストッカ93まで搬送される。 As shown in FIG. 18G, the transport apparatus 100 (FIG. 17) transports the substrate 21 from the coating station 3 to the main curing station 94. In the main curing station 94, the thin film pattern formed on the second surface 21B of the substrate 21 is irradiated with ultraviolet rays from the main curing light source 92. Thereby, the thin film pattern formed on the second surface 21B is fully cured. The board | substrate 21 by which the thin film pattern of the 2nd surface was fully hardened is conveyed to the board | substrate stocker 93 by the conveying apparatus 100 (FIG. 17).
 実施例11では、図18Fに示した工程で、基板21の第2の面21Bに薄膜パターンを形成した後、基板21を反転ステーション4に戻すことなく、本硬化ステーション94で薄膜パターンの本硬化を行うことができる。 In Example 11, after the thin film pattern is formed on the second surface 21B of the substrate 21 in the step shown in FIG. 18F, the main curing of the thin film pattern is performed at the main curing station 94 without returning the substrate 21 to the inversion station 4. It can be performed.
 図17に示したように、塗布ステーション3は、基板が図17において左向きに搬送されるとき、すなわち第1の面に薄膜パターンを形成するとき、及び基板が右向きに搬送されるとき、すなわち第2の面に薄膜パターンが形成されるときの両方で使用される。図17において基板が左向きに搬送される経路を「往路」といい、右向きに搬送される経路を「復路」ということとする。 As shown in FIG. 17, the coating station 3 is used when the substrate is transported leftward in FIG. 17, that is, when a thin film pattern is formed on the first surface, and when the substrate is transported rightward, It is used both when a thin film pattern is formed on the second surface. In FIG. 17, a path in which the substrate is conveyed leftward is referred to as “outward path”, and a path in which the substrate is conveyed rightward is referred to as “return path”.
 塗布ステーション3に、図14に示した実施例9による塗布ステーション3を採用することが好ましい。実施例9による塗布ステーション3は、第1の塗布ステージ85A(図14)と第2の塗布ステージ85B(図14)とを備えている。例えば、往路で第1の塗布ステージ85Aを使用し、復路で第2の塗布ステージ85Bを施用することができる。このため、往路を搬送される基板と、復路を搬送される基板とが、塗布ステーション3内ですれ違うことができる。これにより、基板ストッカ93から搬出された基板が往路及び復路を経由して基板ストッカ93に戻ってくる前に、次に処理すべき基板を、往路に送り出すことができる。 The coating station 3 is preferably the coating station 3 according to Example 9 shown in FIG. The coating station 3 according to the ninth embodiment includes a first coating stage 85A (FIG. 14) and a second coating stage 85B (FIG. 14). For example, the first application stage 85A can be used on the forward path, and the second application stage 85B can be applied on the return path. For this reason, the substrate transported in the forward path and the substrate transported in the backward path can pass each other in the coating station 3. Thereby, before the substrate carried out from the substrate stocker 93 returns to the substrate stocker 93 via the forward path and the backward path, the substrate to be processed next can be sent to the forward path.
 [実施例12]
 図19Aに、実施例12による基板製造装置の概略図を示す。実施例12による基板製造装置は、基板ストッカ93、塗布ステーション3、反転ステーション4、及び一時蓄積装置95を含む。反転ステーション4は、実施例11の反転ステーション4(図18A)と同様の構成を有し、本硬化部4Bと反転部4Cとを含む。搬送装置100が、基板ストッカ93、塗布ステーション3、反転ステーション4の本硬化部4B、反転ステーション4の反転部4C、及び一時蓄積装置95との間で基板を搬送する。搬送装置100、及び各ステーション内の装置は、制御装置20により制御される。
[Example 12]
FIG. 19A shows a schematic view of a substrate manufacturing apparatus according to the twelfth embodiment. The substrate manufacturing apparatus according to the twelfth embodiment includes a substrate stocker 93, a coating station 3, an inversion station 4, and a temporary storage device 95. The reversing station 4 has the same configuration as the reversing station 4 (FIG. 18A) of the eleventh embodiment, and includes a main curing unit 4B and a reversing unit 4C. The transport device 100 transports the substrate among the substrate stocker 93, the coating station 3, the main curing unit 4B of the reversing station 4, the reversing unit 4C of the reversing station 4, and the temporary storage device 95. The transport device 100 and the devices in each station are controlled by the control device 20.
 図19Bに、一時蓄積装置95の概略側面図を示す。一時蓄積装置95は、基板を載せるテーブルを有する。このテーブルの上に、複数の基板21が積み重ねられる。搬送装置100によって一時蓄積装置95に搬入された基板は、既に蓄積されている基板の最も上に載せされる。また、搬送装置100は、一時蓄積装置95に積み重ねられている基板21のうち最も上の基板を保持して、一時蓄積装置95から搬出する。 FIG. 19B shows a schematic side view of the temporary storage device 95. The temporary storage device 95 has a table on which a substrate is placed. A plurality of substrates 21 are stacked on this table. The substrate carried into the temporary storage device 95 by the transport device 100 is placed on the top of the substrate already stored. Further, the transport device 100 holds the uppermost substrate among the substrates 21 stacked on the temporary storage device 95 and carries it out of the temporary storage device 95.
 図20A~図20Eを参照して、実施例12による基板製造装置による基板の処理方法について説明する。 Referring to FIGS. 20A to 20E, a substrate processing method by the substrate manufacturing apparatus according to the twelfth embodiment will be described.
 図20Aに示すように、基板製造装置の動作開始時点では、処理すべきすべての基板21が基板ストッカ93に蓄積されており、一時蓄積装置95には、基板が蓄積されていない。基板ストッカ93に蓄積されている基板21は、第1の面が上方を向く姿勢で積み重ねられている。 As shown in FIG. 20A, at the start of the operation of the substrate manufacturing apparatus, all the substrates 21 to be processed are accumulated in the substrate stocker 93, and no substrates are accumulated in the temporary accumulation device 95. The substrates 21 accumulated in the substrate stocker 93 are stacked with the first surface facing upward.
 図20Bに示すように、搬送装置100が、基板ストッカ93に蓄積されている基板を1枚ずつ取り出して、塗布ステーション3、反転ステーション4の本硬化部4B、及び反転ステーション4の反転部4Cを経由し、一時蓄積装置95まで搬送する。基板ストッカ93から一時蓄積装置95まで搬送する経路を「往路」ということとする。塗布ステーション3で、基板21の第1の面に薄膜パターンが形成される。本硬化部4Bで、基板21の第1の面に形成された薄膜パターンが本硬化される。反転部4Cで、基板21の第2の面が上方を向くように、基板の裏表が反転される。一時蓄積装置95において、基板21は、第2の面が上方を向く姿勢で積み重ねられる。 As shown in FIG. 20B, the transport apparatus 100 takes out the substrates accumulated in the substrate stocker 93 one by one, and sets the coating station 3, the main curing unit 4B of the reversing station 4, and the reversing unit 4C of the reversing station 4. And then transported to the temporary storage device 95. A path for transporting from the substrate stocker 93 to the temporary storage device 95 is referred to as an “outward path”. A thin film pattern is formed on the first surface of the substrate 21 at the coating station 3. In the main curing part 4B, the thin film pattern formed on the first surface of the substrate 21 is fully cured. At the reversing unit 4C, the front and back of the substrate are reversed so that the second surface of the substrate 21 faces upward. In the temporary storage device 95, the substrates 21 are stacked such that the second surface faces upward.
 図20Cに、基板ストッカ93に蓄積されていたすべての基板21が搬出され、一時蓄積装置95に一時的に蓄積された状態を示す。 FIG. 20C shows a state in which all the substrates 21 stored in the substrate stocker 93 are carried out and temporarily stored in the temporary storage device 95.
 図20Dに示すように、搬送装置100は、一時蓄積装置95に蓄積されている基板21を1枚ずつ搬出し、塗布ステーション3、反転ステーション4の本硬化部4Bを経由して、基板ストッカ93まで搬送する。一時蓄積装置95から基板ストッカ93まで搬送する経路を「復路」ということとする。塗布ステーション3で、基板21の第2の面に薄膜パターンが形成される。本硬化部4Bで、第2の面に形成されている薄膜パターンが本硬化される。 As shown in FIG. 20D, the transport apparatus 100 unloads the substrates 21 stored in the temporary storage device 95 one by one, and passes through the main curing unit 4B of the coating station 3 and the reversing station 4 so as to transfer the substrate stocker 93. Transport to. A path for transporting from the temporary storage device 95 to the substrate stocker 93 is referred to as a “return path”. A thin film pattern is formed on the second surface of the substrate 21 at the coating station 3. In the main curing part 4B, the thin film pattern formed on the second surface is fully cured.
 図20Eに示すように、一時蓄積装置95に一時的に蓄積されていた基板21が、すべて基板ストッカ93に搬送される。基板ストッカ93に蓄積された基板21は、両面に薄膜パターンが形成されている。 As shown in FIG. 20E, all the substrates 21 temporarily stored in the temporary storage device 95 are transferred to the substrate stocker 93. A thin film pattern is formed on both sides of the substrate 21 accumulated in the substrate stocker 93.
 実施例12では、図20Bに示した往路を搬送される基板と、図20Dに示した復路を搬送される基板とのすれ違いが生じない。このため、1枚の基板が往路を搬送されている期間に、次に処理すべき基板を基板ストッカ93から往路に送り出すことができる。 In Example 12, there is no difference between the substrate transported in the forward path shown in FIG. 20B and the substrate transported in the return path shown in FIG. 20D. For this reason, the substrate to be processed next can be sent out from the substrate stocker 93 to the outward path during a period in which one substrate is transported in the outward path.
 [実施例13]
 図21に、実施例13による基板製造装置の概略図を示す。未処理の基板が、搬入側の基板ストッカ93に蓄積されている。搬送装置100が、1段目の塗布ステーション3、反転ステーション4の本硬化部4B、反転ステーション4の反転部4C、中間ストッカ98、2段目の塗布ステーション6、本硬化ステーション96、及び搬出側の基板ストッカ97の間で、基板を搬送する。塗布ステーション3、6には、例えば図14に示した実施例9による塗布ステーションが採用される。反転ステーション4には、図16Aに示した実施例10による反転ステーションが採用される。本硬化ステーション96は、例えば実施例1による基板製造装置のローラコンベア16及び紫外線照射装置8を含む。搬送装置100、及び各ステーション内の装置は、制御装置20により制御される。
[Example 13]
FIG. 21 shows a schematic view of a substrate manufacturing apparatus according to the thirteenth embodiment. Unprocessed substrates are accumulated in the substrate stocker 93 on the carry-in side. The transport apparatus 100 includes a first-stage coating station 3, a main curing unit 4B of the reversing station 4, a reversing unit 4C of the reversing station 4, an intermediate stocker 98, a second-stage coating station 6, a main curing station 96, and a delivery side. The substrate is transported between the substrate stockers 97. As the coating stations 3 and 6, for example, the coating station according to the ninth embodiment shown in FIG. 14 is employed. The reversing station 4 employs a reversing station according to the tenth embodiment shown in FIG. 16A. The main curing station 96 includes, for example, the roller conveyor 16 and the ultraviolet irradiation device 8 of the substrate manufacturing apparatus according to the first embodiment. The transport device 100 and the devices in each station are controlled by the control device 20.
 搬送装置100、及び各ステーション内の装置は、制御装置20に制御される。制御装置20は、記憶装置20cを含む。記憶装置20cは、1段目の塗布ステーション3、及び2段目の塗布ステーション6の故障の有無を記憶する。塗布ステーション3、6が故障していない場合には、基板ストッカ93に蓄積された基板が、搬送装置100により、1段目の塗布ステーション3、反転ステーション4の本硬化部4B、反転ステーション4の反転部4C、2段目の塗布ステーション6、本硬化ステーション96、を経由して、搬出側の基板ストッカ97まで搬送される。これにより、基板の両面に薄膜パターンが形成される。中間ストッカ98は使用されない。 The transport device 100 and the devices in each station are controlled by the control device 20. The control device 20 includes a storage device 20c. The storage device 20c stores the presence / absence of a failure in the first-stage coating station 3 and the second-stage coating station 6. If the coating stations 3 and 6 have not failed, the substrate accumulated in the substrate stocker 93 is transferred to the main curing unit 4B of the first-stage coating station 3, the reversing station 4 and the reversing station 4 by the transport device 100. It is conveyed to the substrate stocker 97 on the carry-out side via the reversing unit 4C, the second stage coating station 6, and the main curing station 96. Thereby, a thin film pattern is formed on both surfaces of the substrate. The intermediate stocker 98 is not used.
 中間ストッカ98は、反転ステーション4と2段目の塗布ステーション6との間に配置されている。中間ストッカ98は、複数の基板を蓄積することができる。また、中間ストッカ98に蓄積された基板は、基板製造装置の外部に搬出することができる。逆に、基板製造装置の外部から中間ストッカ98に基板を搬入することも可能である。 The intermediate stocker 98 is disposed between the reversing station 4 and the second-stage coating station 6. The intermediate stocker 98 can store a plurality of substrates. Further, the substrate stored in the intermediate stocker 98 can be carried out of the substrate manufacturing apparatus. Conversely, it is also possible to carry a substrate into the intermediate stocker 98 from the outside of the substrate manufacturing apparatus.
 図22A、図22B、及び図22Cに、それぞれ2段目の塗布ステーション6が故障している場合の基板の経路の第1、第2、及び第3の例を示す。図22Aに示した第1の例では、2段目の塗布ステーション6及び本硬化ステーション96に基板が搬入されるが、何も処理することなく搬出される。図22Bに示した第2の例では、反転ステーション4から搬出された基板が、2段目の塗布ステーション6及び本硬化ステーション96を経由することなく、直接、搬出用の基板ストッカ97まで搬送される。図22Cに示した第3の例では、反転ステーション4で反転処理された基板が、搬送装置100により、中間ストッカ98に搬送される。処理済の基板は、中間ストッカ98から外部に取り出される。 22A, 22B, and 22C show first, second, and third examples of substrate paths when the second-stage coating station 6 is broken, respectively. In the first example shown in FIG. 22A, the substrate is carried into the second-stage coating station 6 and the main curing station 96, but is carried out without any processing. In the second example shown in FIG. 22B, the substrate unloaded from the reversing station 4 is directly transferred to the unloading substrate stocker 97 without passing through the second coating station 6 and the main curing station 96. The In the third example illustrated in FIG. 22C, the substrate that has been subjected to the reversal process in the reversing station 4 is transported to the intermediate stocker 98 by the transport device 100. The processed substrate is taken out from the intermediate stocker 98.
 図23A、図23B、及び図23Cに、それぞれ1段目の塗布ステーション3が故障している場合の基板の経路の第1、第2、及び第3の例を示す。図23Aに示した第1の例では、1段目の塗布ステーション3及び反転ステーション4に基板が搬入されるが、何も処理することなく搬出される。図23Bに示した第2の例では、搬入側の基板ストッカ93から搬出された基板が、1段目の塗布ステーション3及び反転ステーション4を経由することなく、直接、2段目の塗布ステーション6まで搬送される。図23Cに示した第3の例では、搬入側の基板ストッカ93を使用せず、未処理の基板が中間ストッカ98に準備されている。未処理の基板は、中間ストッカ98から2段目の塗布ステーション6に搬送される。 FIG. 23A, FIG. 23B, and FIG. 23C show first, second, and third examples of substrate paths when the first-stage coating station 3 is broken, respectively. In the first example shown in FIG. 23A, the substrate is carried into the first-stage coating station 3 and reversing station 4, but is carried out without any processing. In the second example shown in FIG. 23B, the substrate unloaded from the loading-side substrate stocker 93 directly passes through the second-stage coating station 6 without passing through the first-stage coating station 3 and the reversing station 4. It is conveyed to. In the third example shown in FIG. 23C, the substrate stocker 93 on the carry-in side is not used, and an unprocessed substrate is prepared in the intermediate stocker 98. The unprocessed substrate is transported from the intermediate stocker 98 to the second stage coating station 6.
 図22A~図23Cに示したように、塗布ステーション3、6のうち一方が故障している場合でも、基板の片面に薄膜パターンを形成することができる。 As shown in FIGS. 22A to 23C, a thin film pattern can be formed on one side of the substrate even when one of the coating stations 3 and 6 is out of order.
 [実施例14]
 図24A~図24Dを参照して、実施例14による基板製造装置について説明する。以下、実施例13との相違点について説明し、同一の構成については説明を省略する。実施例14では、実施例13の搬入用の基板ストッカ93及び中間ストッカ98(図21)に代えて、移動ストッカ99A、99Bが配置される。移動ストッカ99A、99Bは、搬送装置100の搬送経路から取り外して移動することができる。図24A~図24Dには、2段目の塗布ステーション6が故障しているときの基板の処理の流れを示す。
[Example 14]
A substrate manufacturing apparatus according to Embodiment 14 will be described with reference to FIGS. 24A to 24D. Hereinafter, differences from the thirteenth embodiment will be described, and description of the same configuration will be omitted. In the fourteenth embodiment, moving stockers 99A and 99B are arranged in place of the carry-in substrate stocker 93 and the intermediate stocker 98 (FIG. 21) of the thirteenth embodiment. The movement stockers 99A and 99B can be removed from the conveyance path of the conveyance apparatus 100 and moved. FIG. 24A to FIG. 24D show the flow of substrate processing when the second stage coating station 6 is out of order.
 図24Aに示すように、搬入用の移動ストッカ99Aに、複数の未処理の基板が蓄積されている。他方の移動ストッカ99Bには、基板が蓄積されていない。移動ストッカ99A及び99Bが、それぞれ図21の搬入用の基板ストッカ93及び中間ストッカ98の位置に配置されている。搬送装置100は、移動ストッカ99Aから、1段目の塗布ステーション3、反転ステーション4を経由して、もう一方の移動ストッカ99Bまで基板を搬送する。これにより、基板の第1の面に薄膜パターンが形成される。移動ストッカ99Aに蓄積されていたすべての基板が、もう一方の移動ストッカ99Bに搬送された後、図24Bに示すように、移動ストッカ99A、99Bを搬送装置100の搬送経路から取り外す。 As shown in FIG. 24A, a plurality of unprocessed substrates are accumulated in the loading stocker 99A. The substrate is not accumulated in the other moving stocker 99B. The moving stockers 99A and 99B are arranged at the positions of the carry-in substrate stocker 93 and the intermediate stocker 98 in FIG. The transport apparatus 100 transports the substrate from the moving stocker 99A to the other moving stocker 99B via the first-stage coating station 3 and reversing station 4. Thereby, a thin film pattern is formed on the first surface of the substrate. After all the substrates stored in the moving stocker 99A have been transferred to the other moving stocker 99B, the moving stockers 99A and 99B are removed from the transfer path of the transfer apparatus 100 as shown in FIG.
 図24Cに示すように、空になった移動ストッカ99Aを、中間ストッカ98(図21)の位置に配置し、片面に薄膜パターンが形成された基板を蓄積している移動ストッカ99Bを、搬入用の基板ストッカ93(図21)の位置に配置する。移動ストッカ99A、99Bの移動は、人手で行なってもよいし、移動ストッカ99A、99Bに自動運転機能を持たせてもよい。 As shown in FIG. 24C, the empty stocker 99A is disposed at the position of the intermediate stocker 98 (FIG. 21), and the mobile stocker 99B storing the substrate with the thin film pattern formed on one side is loaded. The substrate stocker 93 (FIG. 21) is disposed. Movement of the movement stockers 99A and 99B may be performed manually, or the movement stockers 99A and 99B may have an automatic operation function.
 図24Dに示すように、移動ストッカ99Bから、塗布ステーション3、及び反転ステーション4の本硬化部4Bを経由して、もう一方の移動ストッカ99Aまで基板を搬送する。これにより、基板の第2の面に、薄膜パターンが形成される。反転ステーション4に、図16Aに示した実施例10による反転ステーション4が採用されている場合には、反転部4Cを基板が通過するが、反転動作は行われない。 As shown in FIG. 24D, the substrate is transported from the moving stocker 99B to the other moving stocker 99A via the coating station 3 and the main curing unit 4B of the reversing station 4. Thereby, a thin film pattern is formed on the second surface of the substrate. When the reversing station 4 according to the tenth embodiment shown in FIG. 16A is adopted as the reversing station 4, the substrate passes through the reversing unit 4C, but the reversing operation is not performed.
 実施例14では、搬送装置100により基板を一方向に搬送するのみで、両面に薄膜パターンを形成することができる。1段目の塗布ステーション3が故障している場合には、図21に示した中間ストッカ98及び搬出用の基板ストッカ97を、それぞれ移動ストッカ99A、99Bに置き換えればよい。 In Example 14, a thin film pattern can be formed on both sides only by transporting the substrate in one direction by the transport device 100. When the first-stage coating station 3 is out of order, the intermediate stocker 98 and the unloading substrate stocker 97 shown in FIG. 21 may be replaced with moving stockers 99A and 99B, respectively.
 [実施例15]
 図25に、実施例15による基板製造装置の概略図を示す。以下、図21に示した実施例13との相違点について説明し、同一の構成については説明を省略する。実施例15では、図21に示した中間ストッカ98及び本硬化ステーション96が配置されない。すなわち、2つの塗布ステーション3、6に対して、1つの本硬化部4Bが配置される。
[Example 15]
FIG. 25 shows a schematic diagram of a substrate manufacturing apparatus according to the fifteenth embodiment. Hereinafter, differences from the thirteenth embodiment shown in FIG. 21 will be described, and description of the same configuration will be omitted. In Example 15, the intermediate stocker 98 and the main curing station 96 shown in FIG. 21 are not arranged. That is, one main curing unit 4B is arranged for the two coating stations 3 and 6.
 搬入用の基板ストッカ93から2段目の塗布ステーション6までの基板の流れは、図21に示した実施例13と同一である。実施例15では、2段目の塗布ステーション6で第2の面に薄膜パターンが形成された基板が、搬送装置100によって反転ステーション4の本硬化部4Bに戻される。本硬化部4Bで、基板の第2の面の薄膜パターンが本硬化される。その後、基板は、本硬化部4Bから搬出用の基板ストッカ97に搬送される。 The substrate flow from the carry-in substrate stocker 93 to the second-stage coating station 6 is the same as that in Example 13 shown in FIG. In Example 15, the substrate on which the thin film pattern is formed on the second surface at the second-stage coating station 6 is returned to the main curing unit 4B of the reversing station 4 by the transport device 100. In the main curing unit 4B, the thin film pattern on the second surface of the substrate is finally cured. Thereafter, the substrate is transported from the main curing unit 4B to the substrate stocker 97 for unloading.
 塗布ステーション3、6における薄膜材料の塗布処理時間に比べて、本硬化部4Bにおける本硬化処理が短い場合には、実施例15のように、1つの本硬化部4Bで、第1の面及び第2の面の薄膜パターンの本硬化を行うようにしてもよい。 When the main curing process in the main curing unit 4B is shorter than the coating process time of the thin film material in the coating stations 3 and 6, as in the fifteenth embodiment, one main curing unit 4B uses the first surface and You may make it perform main hardening of the thin film pattern of a 2nd surface.
 図26に、実施例15の変形例による基板製造装置の各ステーションの平面レイアウトの一例を示す。図26に示すように、搬入用の基板ストッカ93、1段目の塗布ステーション3、本硬化部4B、反転部4C、2段目の塗布ステーション6、及び搬出用の基板ストッカ97が、円周に沿って配置されている。この円周の中心部に、搬送装置100が配置されている。搬送装置100には、例えば回転伸縮アームを用いることができる。 FIG. 26 shows an example of a planar layout of each station of the substrate manufacturing apparatus according to a modification of the fifteenth embodiment. As shown in FIG. 26, a substrate stocker 93 for carrying in, a first-stage coating station 3, a main curing unit 4B, a reversing unit 4C, a second-stage coating station 6, and a carrying-out substrate stocker 97 are arranged in a circle. Are arranged along. A transport device 100 is disposed at the center of this circumference. For example, a rotary extendable arm can be used for the transport device 100.
 以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。 Although the present invention has been described with reference to the embodiments, the present invention is not limited thereto. It will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.
1 搬出入口
2 アライメントステーション
3 塗布ステーション
4 反転ステーション
4A 搬入部
4B 本硬化部
4C 反転部
4D 搬出部
5 アライメントステーション
6 塗布ステーション
7 搬出入口
8、9 紫外線照射装置
11~14 リフタ
15、16 コンベア
17 搬出口
18 筐体
20 制御装置
20a、20b、20c 記憶装置
21~27 基板
22a~22d アライメントマーク
31 ベース
32 Yステージ
33 θステージ
34 チャックプレート
35~38 CCDカメラ
41 ベース
42 フレーム
42a、42b 支柱
42c 梁
43 Xステージ
44 Yステージ
45 チャックプレート
46 連結部材
47a~47f ノズルユニット
47a1~47a4 ノズルヘッド
47a5~47a9 紫外光源
47ac ノズルホルダ
48 仮置ステージ
49 θステージ
50 基板反転装置
51 基板保持器
52 支持部材
53 真空吸着パッド
54 押さえローラ
55 クランプ機構
56 ガイド
60 紫外線照射装置
61 支持部材
62 紫外光源
63~66 CCDカメラ
70 液滴吐出装置
80A 第1の受け渡し領域
80B 第2の受け渡し領域
81A 第1のアライメント領域
81B 第2のアライメント領域
82 塗布領域
83 撮像装置
85A 第1の塗布ステージ
85B 第2の塗布ステージ
90 ローラコンベア
90A 第1のローラ
90B 第2のローラ
91、92 本硬化用光源
93 基板ストッカ
94 本硬化ステーション
95 一時蓄積装置
96 本硬化ステーション
97 基板ストッカ
98 中間ストッカ
99A、99B 移動ストッカ
100 搬送装置
DESCRIPTION OF SYMBOLS 1 Carrying in / out port 2 Alignment station 3 Application | coating station 4 Inversion station 4A Carry-in part 4B Main hardening part 4C Inversion part 4D Carry-out part 5 Alignment station 6 Application | coating station 7 Carry-in / out port 8, 9 Exit 18 Housing 20 Control devices 20a, 20b, 20c Storage devices 21-27 Substrate 22a-22d Alignment mark 31 Base 32 Y stage 33 θ stage 34 Chuck plate 35-38 CCD camera 41 Base 42 Frame 42a, 42b Post 42c Beam 43 X stage 44 Y stage 45 Chuck plate 46 Connecting members 47a to 47f Nozzle units 47a1 to 47a4 Nozzle heads 47a5 to 47a9 Ultraviolet light source 47ac Nozzle holder 48 Temporary stage 49 θ Stage 50 Substrate reversing device 51 Substrate holder 52 Support member 53 Vacuum suction pad 54 Press roller 55 Clamp mechanism 56 Guide 60 Ultraviolet irradiation device 61 Support member 62 Ultraviolet light source 63 to 66 CCD camera 70 Droplet ejection device 80A First delivery area 80B Second delivery area 81A First alignment area 81B Second alignment area 82 Application area 83 Imaging device 85A First application stage 85B Second application stage 90 Roller conveyor 90A First roller 90B Second roller 91 , 92 Main curing light source 93 Substrate stocker 94 Main curing station 95 Temporary storage device 96 Main curing station 97 Substrate stocker 98 Intermediate stocker 99A, 99B Moving stocker 100 Conveying device

Claims (10)

  1.  下地基板の片面に、液状の薄膜材料を塗布し、前記下地基板に塗布された薄膜材料に光を照射して薄膜材料の表層部を硬化させる第1の塗布ステーションと、
     前記第1の塗布ステーションで薄膜材料が塗布された下地基板が搬入され、下地基板に塗布された薄膜材料に光を照射して薄膜材料の内部まで硬化させるとともに、前記下地基板の裏表を反転させる反転ステーションと、
     前記第1の塗布ステーションと前記反転ステーションとの間で下地基板を搬送する搬送装置と、
     前記第1の塗布ステーション、前記反転ステーション、及び前記搬送装置を制御する制御装置と
    を有し、
     前記制御装置は、前記搬送装置を制御して、前記第1の塗布ステーションで処理された下地基板を前記反転ステーションに搬送する基板製造装置。
    A first coating station that applies a liquid thin film material to one surface of the base substrate, and irradiates the thin film material applied to the base substrate with light to cure a surface layer portion of the thin film material;
    A base substrate coated with a thin film material is carried in at the first coating station, and the thin film material applied to the base substrate is irradiated with light to be cured to the inside of the thin film material, and the front and back sides of the base substrate are reversed. Reversing station,
    A transfer device for transferring a base substrate between the first coating station and the reversing station;
    A controller for controlling the first coating station, the reversing station, and the transfer device;
    The control device is a substrate manufacturing apparatus that controls the transfer device to transfer a base substrate processed at the first coating station to the inversion station.
  2.  前記反転ステーションは、前記下地基板に塗布された薄膜材料の内部まで硬化させた後、前記下地基板の裏表を反転させる請求項1に記載の基板製造装置。 2. The substrate manufacturing apparatus according to claim 1, wherein the reversing station reverses the front and back of the base substrate after curing the thin film material applied to the base substrate.
  3.  前記反転ステーションで、前記下地基板に塗布されている薄膜材料に照射される光のエネルギ密度が、前記第1の塗布ステーションで、前記下地基板に塗布された薄膜材料に照射される光のエネルギ密度よりも高い請求項1または2に記載の基板製造装置。 The energy density of light applied to the thin film material applied to the base substrate at the inversion station is equal to the energy density of light applied to the thin film material applied to the base substrate at the first application station. The board | substrate manufacturing apparatus of Claim 1 or 2 higher than this.
  4.  前記制御装置は、前記搬送装置を制御して、前記反転ステーションで反転された下地基板を、前記第1の塗布ステーションに再搬入する請求項1に記載の基板製造装置。 2. The substrate manufacturing apparatus according to claim 1, wherein the control device controls the transfer device to re-load the base substrate inverted at the inversion station into the first coating station.
  5.  さらに、
     複数枚の下地基板を蓄積する一時蓄積装置を有し、
     前記搬送装置は、前記反転ステーションと前記一時蓄積装置との間で下地基板を搬送し、
     前記制御装置は、前記搬送装置を制御して、前記反転ステーションから前記一時蓄積装置まで下地基板を搬送して、前記一時蓄積装置に複数枚の下地基板を順番に蓄積し、前記一時蓄積装置に蓄積された複数枚の下地基板を順番に取り出して、前記第1の塗布ステーションまで搬送する請求項4に記載の基板製造装置。
    further,
    A temporary storage device for storing a plurality of base substrates;
    The transport device transports a base substrate between the reversing station and the temporary storage device,
    The control device controls the transport device, transports a base substrate from the reversing station to the temporary storage device, sequentially stores a plurality of base substrates in the temporary storage device, and stores the base substrate in the temporary storage device. The substrate manufacturing apparatus according to claim 4, wherein the plurality of accumulated base substrates are sequentially taken out and conveyed to the first coating station.
  6.  さらに、下地基板の片面に、液状の薄膜材料を塗布して、前記下地基板に塗布された薄膜材料の表層部を硬化させる第2の塗布ステーションを有し、
     前記搬送装置は、前記反転ステーションで反転された下地基板を、前記第2の塗布ステーションまで搬送する請求項1乃至3のいずれか1項に記載の基板製造装置。
    Furthermore, it has a second coating station for applying a liquid thin film material on one surface of the base substrate and curing the surface layer portion of the thin film material applied to the base substrate,
    4. The substrate manufacturing apparatus according to claim 1, wherein the transport device transports the base substrate inverted at the inversion station to the second coating station. 5.
  7.  さらに、
     前記制御装置は、前記第1の塗布ステーション及び前記第2の塗布ステーションに故障が発生しているか否かを記憶する記憶装置を有し、前記第1の塗布ステーション及び前記第2の塗布ステーションの一方に故障が発生しているとき、前記制御装置は、前記搬送装置を制御して、故障が発生している塗布ステーションに搬入された下地基板に薄膜材料を塗布することなく、当該下地基板を、故障が発生している塗布ステーションから搬出する請求項6に記載の基板製造装置。
    further,
    The control device includes a storage device that stores whether or not a failure has occurred in the first coating station and the second coating station, and the control device includes: When a failure occurs on one side, the control device controls the transfer device to apply the underlying substrate without applying a thin film material to the underlying substrate carried into the coating station where the failure has occurred. The substrate manufacturing apparatus according to claim 6, wherein the substrate is unloaded from a coating station where a failure has occurred.
  8.  さらに、前記反転ステーションから搬出された下地基板を蓄積する中間ストッカを有し、
     前記第2の塗布ステーションが故障しているとき、前記制御装置は、前記搬送装置を制御して、前記反転ステーションから搬出された下地基板を前記中間ストッカに蓄積する請求項7に記載の基板製造装置。
    Furthermore, it has an intermediate stocker for storing the base substrate unloaded from the reversing station,
    The substrate manufacture according to claim 7, wherein when the second coating station is out of order, the control device controls the transport device to accumulate the base substrate unloaded from the reversing station in the intermediate stocker. apparatus.
  9.  さらに、前記第2の塗布ステーションに搬送する下地基板を蓄積する中間ストッカを有し、
     前記第1の塗布ステーションが故障しているとき、前記制御装置は、前記搬送装置を制御して、前記中間ストッカに蓄積されている下地基板を前記第2の塗布ステーションまで搬送する請求項5に記載の基板製造装置。
    And an intermediate stocker for storing a base substrate to be transported to the second coating station,
    The said control apparatus controls the said conveying apparatus when the said 1st coating station is out of order, The base substrate accumulate | stored in the said intermediate stocker is conveyed to the said 2nd coating station. The board | substrate manufacturing apparatus of description.
  10.  下地基板を第1の塗布ステーションに搬入し、前記第1の塗布ステーションにおいて、前記下地基板の第1の面に、液状の薄膜材料を塗布して、前記下地基板に塗布された薄膜材料の表層部を硬化させる工程と、
     前記第1の塗布ステーションから前記下地基板を取り出して本硬化部に搬入し、前記本硬化部において、前記下地基板の前記第1の面に塗布された薄膜材料を、その内部まで硬化させる工程と、
     前記下地基板を、前記本硬化部から反転部まで搬送し、前記反転部において、前記下地基板の裏表を反転させる工程と、
     前記反転部から前記下地基板を取り出し、前記下地基板の上下が反転した状態で、前記下地基板を前記第1の塗布ステーションまで搬送し、前記第1の塗布ステーションにおいて、前記下地基板の第1の面とは反対側の第2の面に、液状の薄膜材料を塗布して、前記下地基板の前記第2の面に塗布された薄膜材料の表層部を硬化させる工程と、
     前記下地基板を、前記第1の塗布ステーションから前記本硬化部まで搬送し、前記本硬化部において、前記下地基板の前記第2の面に塗布された薄膜材料を、その内部まで硬化させる工程と
    を有する基板製造方法。
    A base substrate is carried into a first coating station, and a liquid thin film material is applied to the first surface of the base substrate at the first coating station, and a surface layer of the thin film material applied to the base substrate Curing the part,
    Removing the base substrate from the first application station and carrying it into a main curing unit, where the main curing unit cures the thin film material applied to the first surface of the base substrate to the inside thereof; ,
    Transporting the base substrate from the main curing unit to a reversing unit, and reversing the front and back of the base substrate in the reversing unit;
    The base substrate is taken out from the reversing unit, and the base substrate is transported to the first coating station in a state where the base substrate is turned upside down. In the first coating station, the first base substrate Applying a liquid thin film material to a second surface opposite to the surface, and curing a surface layer portion of the thin film material applied to the second surface of the base substrate;
    Transporting the base substrate from the first coating station to the main curing unit, and in the main curing unit, curing the thin film material applied to the second surface of the base substrate to the inside thereof; A substrate manufacturing method comprising:
PCT/JP2012/068118 2011-07-27 2012-07-17 Device and method for producing substrate WO2013015157A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187008021A KR102061315B1 (en) 2011-07-27 2012-07-17 Device and method for producing substrate
KR1020147000800A KR20140024953A (en) 2011-07-27 2012-07-17 Device and method for producing substrate
JP2013525675A JP5714110B2 (en) 2011-07-27 2012-07-17 Substrate manufacturing apparatus and substrate manufacturing method
CN201280037448.XA CN103718661A (en) 2011-07-27 2012-07-17 Device and method for producing substrate
KR1020167009136A KR20160044587A (en) 2011-07-27 2012-07-17 Device and method for producing substrate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-164874 2011-07-27
JP2011164874 2011-07-27
JP2011-175170 2011-08-10
JP2011175170 2011-08-10

Publications (1)

Publication Number Publication Date
WO2013015157A1 true WO2013015157A1 (en) 2013-01-31

Family

ID=47601007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068118 WO2013015157A1 (en) 2011-07-27 2012-07-17 Device and method for producing substrate

Country Status (5)

Country Link
JP (1) JP5714110B2 (en)
KR (3) KR20140024953A (en)
CN (2) CN110099513B (en)
TW (1) TWI458408B (en)
WO (1) WO2013015157A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014160745A (en) * 2013-02-20 2014-09-04 Sumitomo Heavy Ind Ltd Substrate manufacturing apparatus
JP2015150469A (en) * 2014-02-12 2015-08-24 矢崎総業株式会社 Primer application method and primer application device
JP2017037989A (en) * 2015-08-11 2017-02-16 東京応化工業株式会社 Apparatus for forming resist pattern and method for forming resist pattern
CN108027689A (en) * 2015-09-30 2018-05-11 住友金属矿山株式会社 The manufacture method of organic coating, the manufacture method of conductive board, organic coating manufacture device
EP4088939A1 (en) * 2021-05-11 2022-11-16 Applied Materials, Inc. Inkjet platform for fabrication of optical films and structures

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105499069B (en) * 2014-10-10 2019-03-08 住友重机械工业株式会社 Membrane formation device and film forming method
CN105188277B (en) * 2015-09-21 2017-12-08 迅得机械(东莞)有限公司 A kind of plate automatic turning interpolation frame device
JP6652426B2 (en) * 2016-03-29 2020-02-26 東レエンジニアリング株式会社 Continuous coating device and continuous coating method
JP6723648B2 (en) * 2016-07-27 2020-07-15 住友重機械工業株式会社 Position detection device and position detection method
CN106067436A (en) * 2016-08-01 2016-11-02 江苏宇天港玻新材料有限公司 A kind of substrate material conveyer device transmitted based on Timing Belt
KR101954917B1 (en) * 2018-09-12 2019-03-06 (주)에이피텍 Double-side dispensing system of camera module using universal carrier
KR102205125B1 (en) * 2019-09-17 2021-01-19 연세대학교 산학협력단 Apparatus for Printing Wires of Bezel-Less Display, and Display

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271950A (en) * 1988-07-16 1990-03-12 Georg Spiess Gmbh Work conveyor
JP2001506804A (en) * 1996-12-16 2001-05-22 バンティコ アクチエンゲゼルシャフト Method and apparatus for application of a substrate
JP2001185833A (en) * 1999-12-27 2001-07-06 Ibiden Co Ltd Method and device for manufacturing multilayered printed wiring board
JP2009226622A (en) * 2008-03-19 2009-10-08 Mimaki Engineering Co Ltd Inkjet printer, printing unit and printing method therefor
JP2011507298A (en) * 2007-12-18 2011-03-03 ジーメンス エレクトロニクス アセンブリー システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Substrate transfer device for automatic mounting equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1240567A (en) * 1996-12-16 2000-01-05 希巴特殊化学控股公司 Process and apparatus for the coating of boards
JPH11340606A (en) * 1998-03-27 1999-12-10 Kansai Paint Co Ltd Method of forming resist layer and producing printed wiring board
JP4386430B2 (en) * 2004-04-07 2009-12-16 東京エレクトロン株式会社 Coating film forming device
JPWO2006011548A1 (en) * 2004-07-30 2008-05-01 日立化成工業株式会社 Photosensitive film, photosensitive film laminate, and photosensitive film roll
ITMI20061960A1 (en) * 2006-10-13 2008-04-14 Cedal Equipment Srl AUTOMATIC OPTICAL ALIGNMENT MACHINE AND INDUCTIVE FIXING OF LAYERS OF A MULTILAYER WITH CIRCUIT PRINTED IN THE FORM OF SEMI-FINISHED
KR100872565B1 (en) * 2006-10-25 2008-12-08 삼성전기주식회사 Manufacturing method of Printed Circuit Board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271950A (en) * 1988-07-16 1990-03-12 Georg Spiess Gmbh Work conveyor
JP2001506804A (en) * 1996-12-16 2001-05-22 バンティコ アクチエンゲゼルシャフト Method and apparatus for application of a substrate
JP2001185833A (en) * 1999-12-27 2001-07-06 Ibiden Co Ltd Method and device for manufacturing multilayered printed wiring board
JP2011507298A (en) * 2007-12-18 2011-03-03 ジーメンス エレクトロニクス アセンブリー システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Substrate transfer device for automatic mounting equipment
JP2009226622A (en) * 2008-03-19 2009-10-08 Mimaki Engineering Co Ltd Inkjet printer, printing unit and printing method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014160745A (en) * 2013-02-20 2014-09-04 Sumitomo Heavy Ind Ltd Substrate manufacturing apparatus
JP2015150469A (en) * 2014-02-12 2015-08-24 矢崎総業株式会社 Primer application method and primer application device
JP2017037989A (en) * 2015-08-11 2017-02-16 東京応化工業株式会社 Apparatus for forming resist pattern and method for forming resist pattern
CN108027689A (en) * 2015-09-30 2018-05-11 住友金属矿山株式会社 The manufacture method of organic coating, the manufacture method of conductive board, organic coating manufacture device
CN108027689B (en) * 2015-09-30 2021-03-23 住友金属矿山株式会社 Method for producing organic film, method for producing conductive substrate, and apparatus for producing organic film
EP4088939A1 (en) * 2021-05-11 2022-11-16 Applied Materials, Inc. Inkjet platform for fabrication of optical films and structures
US11878532B2 (en) 2021-05-11 2024-01-23 Applied Materials, Inc. Inkjet platform for fabrication of optical films and structures

Also Published As

Publication number Publication date
CN110099513A (en) 2019-08-06
KR102061315B1 (en) 2019-12-31
CN103718661A (en) 2014-04-09
JPWO2013015157A1 (en) 2015-02-23
KR20180033598A (en) 2018-04-03
JP5714110B2 (en) 2015-05-07
TW201322853A (en) 2013-06-01
KR20140024953A (en) 2014-03-03
CN110099513B (en) 2022-02-18
KR20160044587A (en) 2016-04-25
TWI458408B (en) 2014-10-21

Similar Documents

Publication Publication Date Title
JP5714110B2 (en) Substrate manufacturing apparatus and substrate manufacturing method
JP6576124B2 (en) Droplet ejection apparatus, droplet ejection method, program, and computer storage medium
TWI511794B (en) A film pattern forming apparatus, a film pattern forming method, and a device adjusting method
TWI627006B (en) Marking device and pattern generating device
JP4451385B2 (en) Coating processing apparatus and coating processing method
TWI353894B (en) A spreading device and a method for spreading liqu
WO2007020809A1 (en) Work transfer apparatus, image forming apparatus provided with such work transfer apparatus, and work transfer method
JP5608469B2 (en) Coating device
TWI471908B (en) Film forming method and thin film forming apparatus
JP2013030571A (en) Droplet discharge apparatus and droplet discharge method
TWI528470B (en) Film forming method and thin film forming apparatus
CN111913363A (en) Direct writing type exposure device
JP2009018917A (en) Application device, substrate delivery method and application method
JP5550882B2 (en) Coating device
JP2017176988A (en) Coating device and coating method
JP2010056442A (en) Component-mounting device
JP2013038177A (en) Droplet discharge device and inspection method
JP2014036171A (en) Substrate manufacturing method and thin film deposition device
JP6925005B2 (en) Coating device
JP6322527B2 (en) Printing apparatus, printing method, and carrier used in the printing apparatus
JP2009210598A (en) Glass substrate, and proximity scan exposure apparatus, and proximity scan exposure method
WO2013151146A1 (en) Exposure device and exposure method
JP2013233472A (en) Thin film formation method and thin film formation apparatus
JP2006058496A (en) Substrate measurement device, substrate carrying device, and image forming apparatus equipped with substrate measuring device, and substrate measuring method
JP2011033953A (en) Substrate conveying device and display panel module assembling device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817047

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013525675

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147000800

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12817047

Country of ref document: EP

Kind code of ref document: A1