WO2013014739A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2013014739A1
WO2013014739A1 PCT/JP2011/066859 JP2011066859W WO2013014739A1 WO 2013014739 A1 WO2013014739 A1 WO 2013014739A1 JP 2011066859 W JP2011066859 W JP 2011066859W WO 2013014739 A1 WO2013014739 A1 WO 2013014739A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
sensor
output
control device
Prior art date
Application number
PCT/JP2011/066859
Other languages
English (en)
French (fr)
Inventor
圭一郎 青木
西嶋 大貴
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/066859 priority Critical patent/WO2013014739A1/ja
Priority to CN2011800078320A priority patent/CN103026017A/zh
Priority to DE112011102087T priority patent/DE112011102087T5/de
Priority to JP2012520405A priority patent/JP5240408B1/ja
Priority to US13/511,745 priority patent/US20130030678A1/en
Publication of WO2013014739A1 publication Critical patent/WO2013014739A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1466Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a soot concentration or content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/04Filtering activity of particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/05Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a particulate sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/20Sensor having heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/08Parameters used for exhaust control or diagnosing said parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1494Control of sensor heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • This invention relates to a control device for an internal combustion engine. More specifically, the present invention relates to a control device for an internal combustion engine that is installed in an exhaust path of the internal combustion engine and has a particulate sensor for detecting the amount of particulates in the exhaust gas.
  • Patent Document 1 discloses a sensor that detects the amount of particulate matter (hereinafter also referred to as “PM”) in the exhaust gas of an internal combustion engine.
  • the sensor of Patent Document 1 includes an insulating layer to which PM is attached and a pair of electrodes arranged on the insulating layer at a distance from each other.
  • the conductivity between the electrodes changes in accordance with the amount of PM deposited, so the resistance between the electrodes changes. Therefore, the PM deposition amount between the electrodes is detected by detecting the resistance between the electrodes of the sensor. Based on this PM accumulation amount, the PM amount in the exhaust gas is estimated, and determination of the presence or absence of failure of the PM collection filter is performed.
  • the exhaust gas tends to contain a large amount of PM having a large particle size.
  • PM having a large particle diameter is deposited between the electrodes of the sensor, the conductivity between the electrodes becomes high even with a small amount of PM, and the sensor easily outputs an output higher than the value corresponding to the actual amount of PM.
  • the temperature of the element portion of the sensor affects the resistance value between the electrodes. Due to these reasons, it is considered that the output of the sensor varies after the start.
  • control based on the output of the PM sensor such as detection of the PM amount and determination of the presence or absence of a filter failure, can be executed at an early stage after the internal combustion engine is started.
  • the present invention aims to solve the above-described problems, and provides an internal combustion engine control apparatus improved so that the PM amount can be measured earlier when the internal combustion engine is started.
  • a control device for an internal combustion engine is a control device that controls an internal combustion engine including a particulate sensor that is installed in an exhaust path of the internal combustion engine and emits an output corresponding to the amount of particulates in the gas.
  • control device for the internal combustion engine may further include means for raising the temperature of the element portion of the fine particle sensor to a reference temperature after warming up the internal combustion engine and removing the fine particles accumulated on the element portion. Good.
  • the means for detecting the information on the operating state is the means for continuously detecting the information on the operating state until the particulate sensor is warmed up after the internal combustion engine is started, and the means for correcting the output is the internal combustion engine. After the start-up, the output correction may be continued until the particulate sensor is warmed up.
  • the means for detecting the information on the operating state detects the information on the operating state during a period from when the internal combustion engine is cold started to when it is warmed up. Subsequently, the means for correcting the output may continue correcting the output until the internal combustion engine is warmed up after being cold started.
  • the present invention relates to information on the operating state as a group consisting of a coolant temperature of the internal combustion engine, an integrated intake air amount from the start of the internal combustion engine, and an integrated fuel injection amount from the start of the internal combustion engine. , At least one may be detected.
  • control device for the internal combustion engine includes means for determining whether or not there is a failure of the filter for collecting the particulates based on the corrected output corrected by the means for correcting the output, After the presence / absence determination, the element part of the fine particle sensor is heated to the reference temperature to remove the fine particles accumulated on the element part, and the fine particle sensor element after the removal of the fine particles and until the internal combustion engine stops And a means for maintaining the part at a temperature higher than the reference temperature.
  • the present invention it is possible to correct the output of the fine particle sensor at a predetermined time from when the internal combustion engine is started to when it is warmed up according to information related to the operating state of the internal combustion engine.
  • the output of the particulate sensor resulting from the operating state of the internal combustion engine can be corrected according to the operating state of the internal combustion engine from the start of the internal combustion engine to the warm air. Variations can be suppressed.
  • the process of heating the element part is generally executed after warming up the internal combustion engine. Therefore, the particle sensor is normally not used until the particles in the particle sensor element portion are removed after the internal combustion engine is warmed up.
  • the output of the particulate sensor is corrected and used during the period from the start of the internal combustion engine to the warm-up, and the particulate deposited on the element portion is removed after the warm-up of the internal combustion engine. Accordingly, the period during which the particulate sensor cannot be used can be shortened and the particulate sensor can be used immediately after the internal combustion engine is started.
  • the sensor output is likely to vary.
  • the sensor output continues to be corrected according to the period until the particulate sensor is warmed up, the period from the cold start of the internal combustion engine to the warm up, or information on the operating state
  • the output variation can be reliably corrected during a period in which the output variation is particularly likely to occur.
  • the temperature of the exhaust gas, the integrated intake air amount, and the integrated fuel injection amount are parameters that have a relationship with the sensor output and are likely to affect the particle diameter in the exhaust gas and the element temperature of the particle sensor. is there. Therefore, for those that correct the output of the particulate sensor in accordance with these parameters, the output variation of the particulate sensor that occurs when the internal combustion engine is started can be corrected more appropriately.
  • the fine particle sensor element portion is maintained at a high temperature so that the fine particle is not deposited on the fine particle sensor element at the next start of the internal combustion engine. State. Thereby, after the next start-up of the internal combustion engine, the use of the particle sensor can be started without removing the particles in the element portion.
  • the output is corrected according to the operating state, so that the influence of the operating state at the start can be suppressed and the fine particle sensor output can be used effectively. Can do.
  • FIG. 1 is a diagram for explaining the overall configuration of a system according to an embodiment of the present invention.
  • a DPF Diesel Particulate Filter
  • the DPF 6 is a filter that collects particulate matter (PM) contained in the exhaust gas.
  • a PM sensor 8 is installed downstream of the DPF 6 in the exhaust path 4. In this system, the PM sensor 8 is used to detect the amount of PM contained in the exhaust gas that has passed through the DPF 6.
  • This system includes a control device 10.
  • various sensors are connected to the input side of the control device 10.
  • Various actuators of the internal combustion engine 2 are connected to the output side of the control device 10.
  • the control device 10 executes various programs related to the operation of the internal combustion engine 2 by executing predetermined programs based on input information from various sensors and operating various actuators.
  • FIG. 2 is a schematic diagram showing an enlarged element portion of the PM sensor 8 of the present embodiment.
  • the element portion of the PM sensor 8 has a pair of electrodes 12 and 14 on the surface thereof.
  • the pair of electrodes 12 and 14 are arranged at a predetermined interval without contacting each other.
  • each of the electrodes 12 and 14 has a portion formed in a comb-teeth shape, and is arranged so as to mesh with each other in this portion.
  • the electrodes 12 and 14 are in contact with an insulating layer 16 formed therebelow.
  • a heater (not shown) is embedded under the electrodes 12 and 14 in the insulating layer 16.
  • the electrode 12 and the electrode 14 are each connected to a power source (not shown) via a power circuit or the like. Thereby, a predetermined voltage for PM collection (hereinafter also referred to as “collection voltage”) can be applied between the electrode 12 and the electrode 14.
  • the heater is connected to a power source (not shown) via a power circuit or the like, and the element unit is heated by supplying predetermined power to the heater.
  • These power supply circuits and the like are connected to the control device 10 and controlled.
  • control performed by the control device 10 includes PM discharge amount detection based on the following PM sensor 8 output, DPF 6 regeneration, DPF 6 failure determination, and PM sensor 8 reset control. .
  • the control device 10 applies a collecting voltage between the electrodes 12 and 14.
  • PM in the exhaust gas is deposited between the electrodes 12 and 14.
  • the output value (current value) of the PM sensor 8 increases as the amount of PM deposited between the electrodes 12 and 14 increases.
  • the control device 10 detects the output value (current value) of the PM sensor 8 when the collection voltage is applied, and thereby the amount of PM in the exhaust gas, that is, the amount of PM discharged downstream of the DPF 6. PM emissions are required.
  • the state in which the collection voltage is applied and the PM discharge amount is detected is also referred to as “PM detection mode”. In the PM detection mode, the element unit is maintained at a temperature lower than 300 ° C.
  • the control device 10 performs control to increase the exhaust temperature in accordance with a predetermined control program, such as control for injecting fuel again after fuel injection, control for delaying injection timing, and the like.
  • a predetermined control program such as control for injecting fuel again after fuel injection, control for delaying injection timing, and the like.
  • the PM deposited on the DPF 6 is removed by combustion.
  • most of the PM deposited on the DPF 6 is removed, and the regeneration of the DPF 6 is completed.
  • the control device 10 estimates the amount of PM accumulated in the DPF 6 by estimating the PM amount of the exhaust gas discharged from the internal combustion engine 2 using a model or the like. Then, when the estimated amount (hereinafter also referred to as “estimated PM accumulation amount”) reaches a predetermined determination amount, the regeneration process is performed with the regeneration time of the DPF 6 as a regeneration timing.
  • the control device 10 periodically performs control for determining whether or not the DPF 6 has failed. Specifically, the control device 10 estimates the amount of PM contained in the exhaust gas behind (downstream) the DPF 6 according to the model. The control device 10 compares the estimated amount (hereinafter also referred to as “estimated PM discharge amount”) with the PM discharge amount according to the output of the PM sensor 8 to determine whether or not the DPF 6 has failed. That is, when the PM discharge amount detected based on the output of the PM sensor 8 is larger than the estimated PM discharge amount, it is determined that the DPF 6 has failed.
  • the estimated PM emission amount used here is a value obtained by adding an allowable margin to the estimated value of PM emission amount contained in the exhaust gas behind the DPF 6 calculated from the model.
  • the sensor output of the PM sensor 8 is used.
  • the sensor output is an output that changes according to the amount of PM accumulated in the element section. Therefore, when the failure determination of the DPF 6 is performed, it is necessary to remove the PM attached to the PM sensor 8 so far. This process of removing PM is also referred to as “PM reset”.
  • the control device 10 supplies predetermined power to the heater of the PM sensor 8 to overheat the element portion of the PM sensor 8. Thereby, PM adhering to the element part of PM sensor 8 is burned and removed.
  • the temperature at PM reset is higher than 500 ° C.
  • the PM reset can be executed at various timings. Generally, it is executed immediately after the internal combustion engine 2 is started. Then, after the PM reset is completed, the PM detection mode is set and the failure determination of the DPF 6 is executed.
  • the PM sensor 8 is controlled so that no PM is deposited on the PM sensor 8 in order to immediately enter the PM detection mode. Specifically, in this control, the failure determination of the DPF 6 is executed only once in one operation from the start to the start of the internal combustion engine 2. Then, during the operation of the internal combustion engine 2 once, PM reset is immediately performed after the failure determination of the DPF 6 is completed. After the PM reset is completed, the element temperature of the PM sensor 8 is maintained at a high temperature (above 500 ° C.) at the PM reset until the internal combustion engine 2 is stopped. By maintaining the element temperature at a high temperature in this manner, PM deposition on the element unit is suppressed thereafter.
  • a high temperature above 500 ° C.
  • the PM detection mode is executed at a temperature lower than 300 ° C., and is lower than the temperature at the time of PM reset.
  • the element cracking due to the flooding of the element part of the PM sensor 8 occurs in order to rapidly increase the temperature of the element part in a state where the element part is flooded. If the temperature is about 300 ° C. in the PM detection mode, the element cracking occurs. Is unlikely to occur.
  • the PM detection mode is immediately set without waiting for drainage / drying of condensed water in the exhaust path, and the failure determination of the DPF 6 is performed. It can be carried out.
  • the output of the PM sensor 8 is particularly likely to vary. Therefore, in order to immediately perform control using the output of the PM sensor 8 without detecting the PM reset at the start of the internal combustion engine 2 as described above (detection of PM emission amount, failure determination of the DPF 6, etc.), the PM sensor It is desirable to suppress the influence of the output variation of 8. Therefore, in the present embodiment, the control device 10 executes control for correcting the output of the PM sensor 8 in accordance with the temperature (water temperature) of the cooling water when starting the internal combustion engine 2 in addition to the above control.
  • FIG. 3 is a diagram for explaining the relationship between the temperature and the output sensitivity and output correction value of the PM sensor 8 in the present embodiment.
  • the horizontal axis represents the water temperature
  • the vertical axis represents the output sensitivity and the output correction value.
  • the curve (a) represents the output sensitivity
  • the curve (b) represents the output correction value of the PM sensor 8.
  • the water temperature and the output sensitivity of the PM sensor 8 have a correlation.
  • the sensitivity tends to increase as the water temperature decreases. Therefore, in this embodiment, as shown in (b), the correction value is set so that the sensor output becomes smaller as the water temperature is lower.
  • Such a relationship between the water temperature and the correction value is obtained in advance by experiments or the like and stored in the control device 10 as a map.
  • the control device 10 detects the PM emission amount during the operation, the operation condition parameters for various output corrections, the output correction value calculated during the operation, Based on the PM discharge amount, the estimated PM discharge amount, the estimated PM accumulation amount on the DPF 6 or the like is stored in the backup RAM. Thereafter, after the internal combustion engine 2 is started again, the processing from the previous time is continued without resetting the PM using the information stored in the previous backup RAM.
  • the water temperature at the previous start and the water temperature at the current start may be different. Therefore, by detecting the difference between the value corrected according to the current water temperature and the previous sensor output correction value, and adding the accumulated amount corresponding to this difference to the previous PM emission amount, PM emission Detect the amount.
  • FIG. 4 is a flowchart for illustrating a control routine executed by the control device in the embodiment of the present invention.
  • the routine of FIG. 4 is a routine that is repeatedly executed during operation of the internal combustion engine 2.
  • the output correction value of the PM sensor and the integrated value of the estimated PM discharge amount stored in the backup ram are read (S102).
  • the output correction value and the estimated PM discharge amount are values that are calculated and stored by a process that will be described later in this routine.
  • the regeneration condition of the DPF 6 is stored in the control device 10 in advance.
  • the regeneration conditions of the DPF 6 include, for example, that the PM sensor 8 has reached the activation temperature, and whether or not the estimated amount of accumulated PM on the DPF 6 has become larger than the determination amount.
  • step S104 If it is confirmed in step S104 that the DPF regeneration condition is satisfied, the PM sensor 8 is then masked for monitoring (S106). That is, here, the collection voltage application to the PM sensor 8 is stopped, and the sensor output is not detected.
  • regeneration of the DPF 6 is executed (S108).
  • the regeneration process of the DPF 6 is executed according to a program separately stored in the control device 10. Specifically, for example, the exhaust gas temperature is controlled to be high by, for example, retarding control of the fuel injection timing, and PM deposited on the DPF 6 is burned and removed.
  • step S110 if the completion of PM reset is not recognized, next, PM reset is executed (S112).
  • necessary electric power is supplied to the heater provided in the element portion of the PM sensor 8.
  • the temperature of the element portion is increased by overheating at a temperature higher than 500 ° C., and the deposited PM is burned and removed.
  • step S112 it is determined again in S110 whether PM reset is completed.
  • a condition for determining the completion of PM stored in the control device 10 is satisfied, such as whether or not a sufficient time for burning and removing the PM deposited on the element portion has elapsed after the start of the PM reset in step S110.
  • a determination is made based on whether or not.
  • step S110 if the completion of PM reset is recognized in step S110, the output monitor mask of the PM sensor 8 is then released (S114). That is, the collection voltage is applied to the PM sensor 8, and the output of the PM sensor 8 can be detected.
  • step S116 When the processing including regeneration of DPF 6 and PM reset in steps S106 to S114 is executed, or if establishment of regeneration conditions for DPF 6 is not recognized in step S104, then in the current operation, It is determined whether or not the failure determination of the DPF 6 is completed (S116).
  • the failure determination of the DPF 6 is executed by a process described later.
  • the control device 10 records the completion of the failure determination when the failure determination is performed once for each operation of the internal combustion engine 2.
  • the process of step S116 is determined based on whether or not this failure determination completion is recorded.
  • step S118 the current water temperature is then detected (S118).
  • the water temperature is detected according to the output of a water temperature sensor (not shown) for detecting the cooling water temperature of the internal combustion engine 2.
  • a PM output correction value at the time of cold start is calculated (S120).
  • the correction coefficient K is calculated according to the current water temperature according to a map stored in the control device 10 in advance.
  • the output correction value is calculated by multiplying the current sensor output by the obtained correction coefficient K.
  • the correction coefficient K is 1 or a value close to 1, and the output correction value is substantially the same as the sensor output. Become.
  • the correction coefficient K is a value significantly smaller than 1, and the output correction value is a small value relative to the sensor output. It becomes.
  • the sensor output increase amount in this routine and the PM emission amount based on the sensor output increase amount are calculated (S122). Specifically, first, as the output increase amount, the difference between the output correction value calculated in step S120 of the current process and the output correction value in the previous process read from the backup RAM in step S102 (current output). Correction value-previous output correction value) is obtained. Then, the current PM emission amount is calculated according to the output increase amount. The calculated current PM emission amount is added to the previous PM emission amount read in step S102, and the PM emission amount up to this time is obtained.
  • the failure determination condition is an operation condition or the like that can properly execute the failure determination, and is stored in the control device 10 in advance.
  • the establishment of the failure determination condition for the DPF 6 is recognized, it is next determined whether or not the estimated PM emission amount behind (downstream) the DPF 6 has reached the reference amount (S128).
  • step S124 if the establishment of the failure determination condition for the DPF 6 is not recognized in step S124, or if the estimated PM emission amount is not recognized to be larger than the reference amount in step S126, the process proceeds to S128.
  • the output correction value calculated in S122 and the PM discharge amount are stored in the backup RAM, and the current process ends.
  • step S126 if it is determined in step S126 that the estimated PM emission amount is larger than the reference amount, it is determined whether or not the calculated PM emission amount is smaller than the estimated PM emission amount (S130). That is, it is determined whether or not the PM emission amount downstream of the DPF 6 calculated in step S122 is smaller than the estimated PM emission amount downstream of the DPF 6 calculated based on the model (including a predetermined margin of the allowable emission range). Is done.
  • step S130 when it is recognized that the PM emission amount is smaller than the estimated PM emission amount, the PM amount discharged downstream of the DPF 6 is an actual detection value (rather than a value estimated including the discharge allowable range). It is recognized that it is smaller than (PM emissions). Therefore, it is determined that PM is collected by the DPF 6, and it is determined that the DPF 6 is normal (S132). On the other hand, if PM emission amount ⁇ estimated PM emission amount is not recognized, it can be seen that the detected value of the PM emission amount downstream of the DPF 6 is larger than the allowable range. In this case, it is determined that the DPF 6 has failed (S134), and predetermined processing such as lighting of a warning lamp is executed.
  • step S132 or S134 after determining the normality / failure of the filter, a PM reset is then executed (S136).
  • predetermined electric power is supplied to the heater installed in the element portion of the PM sensor 8, and the element portion is heated up. Thereby, PM deposited on the element portion is burned and removed.
  • the output correction value and the PM discharge amount stored in the backup RAM are cleared and returned to zero (S138).
  • step S138 After each value stored in the backup RAM is cleared in step S138, or after it is determined in step S116 that the DPF 6 failure determination is completed during the current operation, the PM sensor 8 The heater is maintained at a high temperature and the collection voltage is turned off (S140). Thereafter, the current process ends. This state is stored in the control device 10, and while this routine is repeated in the future, in this operation, it is determined that the DPF 6 failure determination and PM reset have been completed.
  • step S140 after the PM sensor 8 is maintained at a high temperature, PM is not deposited on the PM sensor 8, and the PM sensor 8 is maintained as it is until this operation is stopped. . Therefore, PM is not accumulated at the next start, and the PM sensor can be immediately put into the PM detection mode without performing PM reset after the start.
  • the output of the PM sensor 8 is corrected by the correction value corresponding to the water temperature. Therefore, for example, even in a state where the sensor output at the time of cold start tends to be large, control such as determination of failure of the DPF 6 can be executed with high accuracy.
  • the output correction value is calculated every time, the difference from the previous output correction value is obtained, and this amount of PM emission is changed to the previous PM emission.
  • the case where the PM emission amount is obtained by integration has been described.
  • the present invention is not limited to this. For example, only the water temperature at the time of starting may be stored, and the correction value may be obtained according to only the information at the time of starting.
  • the output correction value is not limited to being calculated every time, for example, during a predetermined period from start to warm-up, once or several times, depending on the operation information at that time, Output correction may be performed. Even in this case, it is possible to effectively correct the output variation, particularly in response to a state in which the output variation at the start is likely to occur.
  • the present invention is not limited to this, for example, only during the period from the start of the internal combustion engine to the completion of warming up of the particulate sensor, or only during the period from the cold start of the internal combustion engine 2 to warming up, You may perform the process which correct
  • the present invention is not limited to this.
  • the sensor output may be corrected not only according to the coolant temperature but also according to the temperature of the internal combustion engine 2 or the temperature of another part having a correlation with the temperature of the PM sensor 8.
  • the correction is not limited to the correction according to the temperature, and for example, the correction according to the integrated value of the intake air amount or the integrated value of the fuel injection amount can be performed.
  • the sensor sensitivity has the same correlation as the water temperature with the integrated value of the intake air amount and the fuel injection amount.
  • the intake air Sensor output correction can be executed using the quantity and fuel injection quantity as parameters.
  • the failure determination of the DPF 6 and the subsequent PM reset are performed only once during one operation.
  • the failure determination and PM reset of the DPF 6 may be executed at other timing, for example, may be set to be executed a plurality of times during one operation. For example, when the output of the PM sensor 8 is required at the time of starting, the sensor output can be corrected and used as in the present embodiment at the time of starting, and the PM reset can be performed after the PM sensor 8 is warmed up.
  • the regeneration timing of the DPF 6 does not limit the present invention, and the DPF 6 may be regenerated under other conditions, for example, once every fixed travel distance.
  • the present embodiment is particularly effective when the PM sensor 8 in which the PM is not accumulated due to the overheating temperature rise until the previous stop of the internal combustion engine 2 is cold-started next time. It is. However, the present invention is not limited to such a case. In the present invention, the correction according to the water temperature can be effectively applied when it is desired to use the PM sensor 8 immediately after starting.
  • the present invention is not limited to this. For example, what is necessary is just to maintain the state where PM does not accumulate, such as turning off the application of the collection voltage.
  • the present invention is not limited to this, and other electrical characteristics may be detected as the output of the PM sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 内燃機関(2)の排気経路(4)には、ガス中の微粒子量に応じた出力を発する微粒子センサ(8)が設置される。この制御装置(10)は、微粒子センサ(8)の出力を検出する手段と、内燃機関(2)の運転状態に関する情報を検出する手段と、情報に応じて、内燃機関が始動されてから暖気されるまでの間の所定の時期に、出力を補正する手段とを備える。このような内燃機関の始動時の出力補正により、微粒子径やセンサ温度の違いに起因して生じる微粒子センサ(8)の出力のばらつきが抑制される。

Description

内燃機関の制御装置
 この発明は内燃機関の制御装置に関する。更に具体的には、内燃機関の排気経路中に設置され、排気ガス中の微粒子量を検知するための微粒子センサを有する内燃機関の制御装置に関するものである。
 例えば特許文献1には、内燃機関の排気ガス中の微粒子(particulate matter;以下「PM」とも称する)量を検出するセンサが開示されている。特許文献1のセンサは、PMを付着させる絶縁層と互いに間隔を開けて絶縁層に配置された一対の電極とを備えている。このセンサが排気ガスに接し、排気ガス中のPMが電極間に堆積すると、PM堆積量に応じて電極間の導電性が変化するため、電極間の抵抗が変化する。従って、センサの電極間の抵抗を検出することで、電極間のPM堆積量が検出される。このPM堆積量に基づき排気ガス中のPM量が推定され、PM捕集用フィルタの故障の有無の判定等が実行される。
日本特開2008-190502号公報
 ところで、内燃機関の始動時、排気ガス中には、粒子径の大きなPMが多く含まれる傾向にある。センサの電極間に粒子径の大きなPMが堆積すると、少ないPM量でも電極間の導電性は高くなり、センサは、実際のPM量に相当する値よりも高い出力を出しやすくなる。更に、センサの素子部の温度は電極間の抵抗値に影響を与える。これらに起因して、始動後は、センサの出力にばらつきが生じることが考えられる。
 従って、一般には、内燃機関の始動時、センサが暖気された後で、センサの出力検出が開始される。このため内燃機関の始動後、センサ暖気のための待ち時間が発生することが考えられる。しかし、PM量の検出や、フィルタの故障の有無の判定等、PMセンサの出力に基づく制御は、内燃機関の始動後早い段階で実行しうる状態となることが望ましい。
 この発明は上記課題を解決することを目的とし、内燃機関の始動時、より早くにPM量の測定ができる状態となるように改良された内燃機関の制御装置を提供するものである。
 この発明の内燃機関の制御装置は、上記目的を達成するため、内燃機関の排気経路に設置され、ガス中の微粒子量に応じた出力を発する微粒子センサを備える内燃機関を制御する制御装置であって、微粒子センサの出力を検出する手段と、内燃機関の運転状態に関する情報を検出する手段と、情報に応じて、内燃機関が始動されてから暖気されるまでの間の所定の時期に、前記出力を補正する手段と、を備えるものである。
 この発明において、内燃機関の制御装置は、内燃機関の暖気の後、微粒子センサの素子部を基準温度にまで昇温させて、素子部に堆積した微粒子を除去する手段を、更に備えるものとしてもよい。
 また、この発明において、運転状態に関する情報を検出する手段は、内燃機関の始動後、微粒子センサが暖気されるまでの間、運転状態に関する情報の検出を続け、出力を補正する手段は、内燃機関の始動後、微粒子センサが暖気されるまでの間、出力の補正を続けるものとしてもよい。
 また、この発明において、運転状態に関する情報を検出する手段は、内燃機関が冷間始動される場合に、内燃機関が冷間始動されてから暖気されるまでの間、運転状態に関する情報の検出を続け、出力を補正する手段は、内燃機関が冷間始動されてから暖気されるまでの間、出力の補正を続けるものとしてもよい。
 また、この発明は、運転状態に関する情報として、内燃機関の冷却水の水温、内燃機関の始動時からの積算吸入空気量、及び、内燃機関の始動時からの積算燃料噴射量からなる群のうち、少なくとも1つが検出されるものであってもよい。
 また、この発明において、内燃機関の制御装置は、出力を補正する手段により補正された補正出力に基づいて、微粒子を捕集するためのフィルタの故障の有無を判定する手段と、フィルタの故障の有無の判定後、微粒子センサの素子部を基準温度にまで昇温させて、素子部に堆積した微粒子を除去する手段と、微粒子の除去後、内燃機関が停止するまでの間、微粒子センサの素子部を、基準温度よりも高い温度に維持する手段と、を更に備えるものであってもよい。
 この発明によれば、内燃機関の運転状態に関する情報に応じて、内燃機関が始動されてから暖気されるまでの間の所定の時期に、微粒子センサの出力を補正することができる。内燃機関が始動されてから暖気されるまでの間、例えば、排気ガス中の微粒子の大きさや、排気ガスの温度等が大きく変化し、これにより微粒子センサの出力にばらつきが生じる場合がある。従って、この発明は、内燃機関の始動から暖気までの間、内燃機関の運転状態に応じて、微粒子センサの出力が補正できるようにすることで、内燃機関の運転状態に起因した微粒子センサの出力ばらつきを抑制することができる。
 微粒子センサの素子部に堆積した微粒子を除去させるため、素子部を加熱する処理は、一般には内燃機関の暖気後に実行される。従って、内燃機関の暖気後、微粒子センサ素子部の微粒子が除去されるまでの間は、通常、微粒子センサが使用されない状態となる。この点、本発明では、内燃機関の始動から暖気までの間は、微粒子センサの出力を補正して用い、内燃機関の暖気の後、素子部に堆積した微粒子を除去する。従って、微粒子センサが使用できない期間を短縮すると共に、内燃機関の始動後直ちに微粒子センサを利用できる状態とすることができる。
 また、内燃機関の始動後から微粒子センサの暖気までの期間、また、内燃機関の冷間始動の場合の冷間始動から暖気までの期間には、微粒子径の大きさや、微粒子センサの抵抗の変化により、センサ出力にばらつきが生じやすい。この点、内燃機関の始動後、微粒子センサが暖気されるまでの期間や、内燃機関の冷間始動から暖気までの期間、運転状態に関する情報に応じて、センサ出力の補正を続けるものであれば、出力ばらつきが特に生じやすい期間、確実に出力のばらつきを補正することができる。
 また、特に、排気ガスの温度や、積算吸入空気量や積算燃料噴射量は、排気ガス中の微粒子径や、微粒子センサの素子温に影響を与える要因となりやすく、センサ出力と関係を有するパラメータである。従って、これらのパラメータに応じて微粒子センサの出力を補正するものについては、内燃機関の始動時に生じる微粒子センサの出力ばらつきをより適正に補正することができる。
 また、センサ素子部の微粒子除去の後、内燃機関の停止前に、微粒子センサの素子部を高温に維持することで、次回内燃機関の始動時、微粒子センサの素子部に微粒子が堆積していない状態とすることができる。これにより、次回の内燃機関の始動後は、素子部の微粒子を除去することなく、微粒子センサの使用を開始することができる。また、このとき温度が低い状態であっても、本発明によれば、運転状態に応じて出力が補正されるため、始動時の運転状態の影響を抑えて効果的に微粒子センサ出力を用いることができる。
この発明の実施の形態におけるシステムの全体構成について説明するための模式図である。 この発明の実施の形態のPMセンサの素子部の構成について説明するための模式図である。 この発明の実施の形態におけるPMセンサの出力感度及び出力補正値の、水温との関係について説明するための図である。 この発明の実施の形態において制御装置が実行する他の制御のルーチンについて説明するためのフローチャートである。
 以下、図面を参照して本発明の実施の形態について説明する。なお、各図において、同一または相当する部分には同一符号を付してその説明を簡略化ないし省略する。
実施の形態.
[本実施の形態のシステムの構成について]
 図1は、この発明の実施の形態のシステムの全体構成について説明するための図である。図1に示すシステムにおいて、内燃機関2の排気経路4には、DPF(Diesel Particulate Filter)6が設置されている。DPF6は、排気ガスに含まれる微粒子状物質(PM;particulate matter)を捕集するフィルタである。排気経路4のDPF6の下流には、PMセンサ8(微粒子センサ)が設置されている。このシステムにおいてPMセンサ8は、DPF6を通過した排気ガスに含まれるPM量の検出に用いられる。
 このシステムは制御装置10を備えている。制御装置10の入力側には、PMセンサ8の他、各種センサが接続されている。また、制御装置10の出力側には、内燃機関2の各種アクチュエータが接続されている。制御装置10は、各種センサからの入力情報に基づいて所定のプログラムを実行し、各種アクチュエータを作動させることにより、内燃機関2の運転に関する種々の制御を実行する。
 図2は、本実施の形態のPMセンサ8の素子部を拡大して表した模式図である。図2に示されるように、PMセンサ8の素子部は、その表面に一対の電極12、14を有している。一対の電極12、14は互いに接触しない状態で、一定の間隔を開けて配置されている。更に、電極12、14それぞれは櫛歯形状に形成された部分を有し、この部分において互いに噛み合うように配置されている。電極12、14は、その下層に形成された絶縁層16に接している。絶縁層16内部の電極12、14の下層には、図示しないヒータが埋め込まれている。
 電極12と電極14とには、それぞれに電源回路等を介して電源(図示せず)に接続されている。これにより電極12と電極14との間にPM捕集用の所定の電圧(以下「捕集用電圧」とも称する)を印加することができる。ヒータは、電源回路等を介して電源(図示せず)に接続されており、ヒータに所定の電力が供給されることで素子部が加熱される。これら電源回路等は制御装置10に接続され、制御される。
[本実施の形態における制御の概要]
 本実施の形態において、制御装置10が行う制御には、以下のPMセンサ8出力に基づくPM排出量の検出、DPF6の再生、DPF6の故障判定、及び、PMセンサ8のリセットの制御が含まれる。
(1)PM排出量の検出
 PM排出量の検出に際し、制御装置10は、電極12、14間に捕集用電圧を印加する。電極12、14間に捕集用電圧が印加されると、電極12、14間に排気ガス中のPMが堆積する。電極12、14間に堆積するPMが増加するにつれて、電極12、14間の導通箇所が増加し、電極12、14間の抵抗値が小さくなる。従って、PMセンサ8の出力値(電流値)は、電極12、14間に堆積するPMの量が増加するに連れて大きくなる。制御装置10は捕集用電圧を印加したときのPMセンサ8の出力値(電流値)を検出することで、排気ガス中のPM量、即ち、DPF6の下流に排出されたPMの量であるPM排出量が求められる。なお、以下、捕集用電圧を印加し、PM排出量を検出する状態を「PM検出モード」とも称する。PM検出モードにおいて素子部は、300℃より低い温度に維持されるものとする。
(2)DPF6の再生
 DPF6が排気ガス中のPMの捕集をし続けると、やがてDPF6への堆積量が限界に達し、それ以上PMを捕集できない状態となる。このような状態を避けるため、DPF6のPM堆積量がある程度となった段階で、PMを燃焼除去してDPF6の再生の処理を行う。
 具体的に、DPF6の再生処理では、制御装置10は、例えば、燃料噴射の後に再度燃料を噴射する制御、噴射タイミングを遅らせる制御等、所定の制御プログラムに従って排気温度を上昇させる制御を行う。これにより、DPF6に堆積したPMが燃焼除去される。このようなPMの燃焼除去を一定時間実行することで、DPF6に堆積したPMの多くが除去され、DPF6の再生が完了する。
 なお、制御装置10は、内燃機関2から排出される排気ガスのPM量をモデル等により推定することで、DPF6に堆積するPMの量を推定する。そして推定された量(以下「推定PM堆積量」とも称する)が、所定の判定量に達したときを、DPF6の再生時期として、上記の再生処理をおこなう。
(3)DPF故障判定
 DPF6が故障すると、PMがDPF6をすり抜け大気中に放出される事態を生じ得る。従って、制御装置10は、定期的にDPF6の故障の有無を判定する制御を実行する。具体的に、制御装置10は、DPF6の後ろ(下流)の排気ガスに含まれるPM量を、モデルに従って推定する。制御装置10は、推定された量(以下「推定PM排出量」とも称する)と、PMセンサ8の出力に応じたPM排出量とを比較することで、DPF6の故障の有無を判定する。つまり、PMセンサ8の出力に基づき検出されたPM排出量が、推定PM排出量より大きい場合、DPF6の故障と判定する。なお、ここで用いられる推定PM排出量は、モデルから算出されるDPF6後ろの排気ガスに含まれるPM排出量の推定値に、許容される余裕分が加算された値である。
(4)PMリセット
 また、上記DPF6の故障判定では、PMセンサ8のセンサ出力が用いられるが、センサ出力は素子部に堆積しているPM量に応じて変化する出力である。従って、DPF6の故障判定を行う際には、それまでにPMセンサ8に付着していたPMを、一度除去する必要がある。このPMを除去する処理を「PMリセット」とも称する。
 PMリセットに際し、制御装置10は、PMセンサ8のヒータに所定の電力を供給し、PMセンサ8の素子部を過熱昇温させる。これにより、PMセンサ8の素子部に付着したPMを燃焼除去させる。なお、ここでPMリセット時の温度は500℃より高いものとする。
 なお、PMリセットの実行は、種々のタイミングが考えられる。一般には、内燃機関2の始動直後に実行される。そして、PMリセット完了後に、PM検出モードとし、DPF6の故障判定が実行される。
 しかし、内燃機関2の始動時には排気経路4に凝縮水が滞留する場合があるが、凝縮水によりPMセンサ8が被水した状態でPMセンサ8を急激に昇温させると、PMセンサ8が素子割れを起こす場合がある。従って、内燃機関2の始動後PMリセットを実行する場合には、凝縮水の排出を待ってから実行する必要がある。このため、内燃機関2の始動時にPMリセットを実行する場合、PMセンサ8によるPM量の検出開始までにある程度の時間を要することとなる。
 従って、本実施の形態では、内燃機関2の始動後、直ちにPM検出モードとするべく、始動直後、PMセンサ8にPMが堆積されていない状態となるように制御する。具体的に、この制御では、内燃機関2の始動から開始までの1回の運転で、DPF6の故障判定を1度だけ実行することとする。そして、ある1回の内燃機関2の運転時、DPF6の故障判定が完了した後、直ちにPMリセットを行う。PMリセットが完了した後は、内燃機関2の停止までの間、PMセンサ8の素子温をPMリセット時の高温(500℃より高温)に維持する。このように素子温を高温に維持することで、これ以降、素子部へのPMの堆積が抑制される。
 従って、この回の内燃機関2の運転停止後、次回の内燃機関2の始動時には、PMセンサ8にPMが堆積していない状態となる。従って、次回の内燃機関2の始動時、PMリセットを行うことなく、直ちに、PMセンサ8の出力を検出し、PM検出モードに入ることができる。なお、PM検出モードは、300℃より低温で実行されものであり、PMリセット時の温度より低温である。PMセンサ8の素子部の被水による素子割れは、素子部が被水した状態で素子部を急激に昇温させるために発生するが、PM検出モードにおける300℃程度の温度であれば素子割れが発生しにくい。従って、内燃機関2の始動時、PMセンサ8にPMが堆積されていない状態であれば、排気経路の凝縮水の排水・乾燥を待つこともなく、直ちにPM検出モードとし、DPF6の故障判定を行うことができる。
[本実施の形態の特徴的な制御]
 ところで、内燃機関2が冷間始動されるような場合、排気ガスには粒子径の大きなPMが含まれやすい。PMの粒子径が大きいとき、PMセンサ8への実際のPM堆積量が少なくても電極間12、14間の導電率は高くなりやすく、その結果、PMセンサ8の出力は大きくなりやすい。また冷間始動時にはPMセンサ8の素子部の温度も低い状態であるため、電極12、14間の電気抵抗値は小さくなりやすい。
 従って、内燃機関2の冷間始動後すぐの段階では、PMセンサ8の出力に、特にばらつきが生じやすい。従って、上記のように内燃機関2の始動時PMリセットを行わずに、直ちにPMセンサ8の出力を用いる制御(PM排出量の検出や、DPF6の故障判定など)を行うためには、PMセンサ8の出力ばらつきによる影響を抑制することが望ましい。そこで、本実施の形態において、制御装置10は、上記の制御に加え、内燃機関2の始動時の冷却水の温度(水温)に応じて、PMセンサ8の出力を補正する制御を実行する。
 図3は、本実施の形態におけるPMセンサ8の出力感度及び出力補正値と、温度との関係について説明するための図である。図3において横軸は水温、縦軸は出力感度及び出力補正値を表している。また、図3において、曲線(a)は出力感度を表し、曲線(b)はPMセンサ8の出力補正値を表している。
 図3に示されるように、水温とPMセンサ8の出力感度とは相関を有し、特に、水温が低い領域において、水温が低くなるほど感度が高くなる傾向にある。従って、本実施の形態では(b)に示されるように、水温が低い場合ほどセンサ出力を小さくするように補正値を設定する。このような水温と補正値との関係は、あらかじめ実験等により求められ、制御装置10にマップとして記憶しておく。
 なお、上記の処理では、前回の運転で、DPF6の故障検出が実行され、PMリセットされ、その後PMセンサ8が高温に維持されて、内燃機関2が停止した場合を前提として説明した。しかし、例えば、前回の運転で、DPF6の故障判定や、PMリセットが完了せず、内燃機関2が停止している場合が考えられる。
 例えば、DPF6の故障判定が完了せずに内燃機関2が停止される場合、PMリセットも実行されず、PMセンサ8の素子部にはPMが堆積した状態となる。このような場合、制御装置10は、その回の運転でPM排出量を検出した検出時間や、各種出力補正のための運転条件パラメータ、その回の運転中に算出された出力補正値や、それに基づくPM排出量、あるいは推定PM排出量、DPF6への推定PM堆積量等がバックアップRAMに保存される。その後、再び、内燃機関2が始動された後は、前回バックアップRAMに記憶された情報を用いて、PMリセットすることなく、前回からの処理が続行される。
 このような場合、前回の始動時の水温と今回の始動時の水温が異なることが考えられる。従って、今回の水温に応じて補正した値と、前回のセンサ出力補正値との差を検出し、この差分に応じた堆積量を、前回までのPM排出量に加えていくことで、PM排出量を検出する。
[本実施の形態の具体的な制御のルーチン]
 図4は、この発明の実施の形態において制御装置が実行する制御のルーチンについて説明するためのフローチャートである。図4のルーチンは、内燃機関2の運転中に繰り返し実行されるルーチンである。図4のルーチンでは、内燃機関2が始動されると、まず、バックアップラムに記憶されたPMセンサの出力補正値及び、推定PM排出量の積算値が読み込まれる(S102)。出力補正値と、推定PM排出量とは、このルーチンの後述する処理により算出され、記憶される値である。
 次に、DPF6の再生条件が成立するか否かが判別される(S104)。ここで、DPF6の再生条件は、予め制御装置10に記憶されている。DPF6の再生条件としては、例えば、PMセンサ8が活性温度にまで達していること、現在までのDPF6への推定PM堆積量が、判定量より大きくなったか否かなどである。
 ステップS104において、DPF再生条件の成立が認められた場合、次に、PMセンサ8がモニタマスクされる(S106)。つまり、ここでは、PMセンサ8への捕集用電圧印加が停止され、センサ出力が検出されない状態とされる。次に、DPF6の再生が実行さる(S108)。DPF6の再生処理は、別途制御装置10に記憶されたプログラムに従って実行される。具体的には、例えば燃料噴射時期の遅角制御等により、排気温度が高くなるように制御され、DPF6に堆積したPMが燃焼除去される。
 次に、PMリセットが完了しているか否かが判別される(S110)。具体的には、前回のルーチンの後述する処理により、PMリセットが実行された後、PMセンサ8が高温に維持された状態となっているかなど、PMリセットの完了が認められる条件が成立するか否かが判別される。
 ステップS110において、PMリセットの完了が認められない場合、次に、PMリセットが実行される(S112)。ここでは、PMセンサ8の素子部に設けられたヒータに必要な電力が供給される。これにより素子部が500℃より高温で過熱昇温され、堆積したPMが燃焼除去される。
 ステップS112において、PMリセットが実行された場合、再びS110において、PMリセットの完了か否かの判別が行われる。ここでは、ステップS110のPMリセット開始後、素子部に堆積したPMが燃焼除去される十分な時間が経過したか否かなど、制御装置10に記憶されたPM完了を判断する条件が成立するか否かに基づく判別が行われる。
 以上の処理で、ステップS110においてPMリセットの完了が認められると、次に、PMセンサ8の出力モニタマスクが解除される(S114)。即ち、PMセンサ8には捕集用電圧が印加され、PMセンサ8の出力が検出可能な状態となる。
 ステップS106~S114の、DPF6の再生とPMリセットを含む処理が実行された場合、又は、ステップS104において、DPF6の再生条件の成立が認められなかった場合、次に、今回の運転において、既に、DPF6の故障判定が完了したか否かが判別される(S116)。DPF6の故障判定は、後述する処理により実行される。制御装置10は、内燃機関2の1回の運転ごとに故障判定が一度行われた場合に、故障判定の完了を記録する。ステップS116の処理は、この故障判定完了が記録されているか否かに基づき判定される。
 ステップS116において、故障判定の完了が認められない場合、次に、現在の水温が検出される(S118)。水温は、内燃機関2の冷却水温を検出するための水温センサ(図示せず)の出力に応じて検出される。
 次に、冷間始動時のPM出力補正値が算出される(S120)。ここでは、まず、予め制御装置10に記憶されたマップに従って、現在の水温に応じて補正係数Kが算出される。出力補正値は、現在のセンサ出力に、求められた補正係数Kが乗じられることで算出される。ここで、例えば、ステップS106~S114の処理が実行され、PMセンサ8が既に暖気状態にある場合、補正係数Kは1又は1近傍の値となり、出力補正値はセンサ出力とほぼ同一の値となる。一方、例えば、始動後、1回目の処理のような場合であって、水温が低い場合などには補正係数Kは1よりも大幅に小さな値となり、出力補正値はセンサ出力に対して小さな値となる。
 次に、今回のルーチンでのセンサ出力増加量と、それに基づくPM排出量が算出される(S122)。具体的には、まず、出力増加量として、今回の処理のステップS120で算出された出力補正値と、ステップS102においてバックアップRAMから読み込みされた前回の処理時の出力補正値との差(今回出力補正値-前回出力補正値)が求められる。そして、この出力増加量に応じて、今回のPM排出量が算出される。算出された今回PM排出量は、ステップS102において読み込まれた前回までのPM排出量に加算され、今回までのPM排出量が求められる。
 次に、DPF6の故障判定条件が成立しているか否かが判別される(S124)。故障判定条件は、故障判定を適正に実行しうる運転条件等であり、予め、制御装置10に記憶されている。ここでDPF6の故障判定条件の成立が認められると、次に、DPF6の後ろ(下流)の推定PM排出量が基準量に到達しているか否かが判別される(S128)。
 ここで、ステップS124において、DPF6の故障判定条件の成立が認められない場合、あるいは、ステップS126において、推定PM排出量が基準量より大きくなっていることが認められない場合、S128に進み、ステップS122で算出された出力補正値とPM排出量とがバックアップRAMに記憶され、今回の処理が終了する。
 一方、ステップS126において、推定PM排出量が基準量より大きいことが認められると、次に算出されたPM排出量が、推定PM排出量より小さいか否かが判別される(S130)。つまり、ステップS122において算出されたDPF6下流のPM排出量が、モデルに基づいて算出されるDPF6下流の推定PM排出量(排出許容範囲の所定の余裕分を含む)よりも小さいか否かが判別される。
 ステップS130において、PM排出量が推定PM排出量より小さいことが認められると、DPF6の下流側に排出されるPM量は、排出許容範囲を含めて推定される値よりも、実際の検出値(PM排出量)より小さいことが認められる。従って、PMはDPF6によって捕集されていると判断され、DPF6は正常であると判定される(S132)。一方、PM排出量<推定PM排出量が認められない場合、DPF6下流のPM排出量の検出値が、許容範囲を超えて大きくなっていることが判る。この場合には、DPF6の故障と判定され(S134)、例えば、警告灯の点灯など、所定の処理が実行される。
 ステップS132又はS134において、フィルタの正常/故障が判定された後、次に、PMリセットが実行される(S136)。ここではPMセンサ8の素子部に設置されたヒータに所定の電力が供給され素子部が過熱昇温される。これにより素子部に堆積したPMが、燃焼除去される。次に、バックアップRAMに記憶されていた、出力補正値と、PM排出量がクリアされ、ゼロに戻される(S138)。
 ステップS138において、バックアップRAMに記憶された各値がクリアされた後、あるいは、ステップS116において、今回の運転中にDPF6の故障判定が完了していると判定された後は、PMセンサ8は、ヒータが高温に維持され、捕集用電圧がOFFとされた状態とされる(S140)。その後、今回の処理が終了する。なお、この状態は制御装置10に記憶され、今後このルーチンが繰り返される間、今回の運転では、DPF6の故障判定とPMリセットとが完了したものと判別される。
 また、ステップS140において、PMセンサ8が高温に維持された後は、PMセンサ8には、PMが堆積しない状態となり、この回の運転が停止するまでの間、PMセンサ8はこのまま維持される。従って、次回始動時にPMが堆積していない状態となり、始動後にPMリセットを行うことなく、直ちにPMセンサをPM検出モードとすることができる。
 以上説明したように、本実施の形態では、PMセンサ8の出力は、水温に応じた補正値により補正される。従って、例えば、冷間始動時のセンサ出力が大きくなりがちな状態においてもDPF6の故障判定等の制御を高い精度で実行することができる。
 なお、本実施の形態においては、このルーチンが繰り返されるたびに毎回出力補正値を算出し、前回の出力補正値との差を求めて、この分のPM排出量を前回までのPM排出量に積算してPM排出量を求める場合について説明した。しかし、この発明はこれに限るものではない。例えば、始動時の水温のみを記憶しておいて、この始動時の情報のみに応じて補正値を求めるものであっても良い。
 また、このルーチンが繰り返される間、毎回出力補正値を算出するものに限らず、例えば、始動時から暖気までの間の所定の期間に、その時の運転情報に応じて、1回又は数回、出力補正を行うようにしてもよい。このようにしても、特に始動時の出力ばらつきを生じやすい状態に対応し、効果的に出力ばらつきを補正することができる。
 また、本実施の形態では、内燃機関の始動後、このルーチンが繰り返されている間、常に、出力補正値が算出される場合について説明した。しかし、この発明はこれに限るものではなく、例えば、内燃機関の始動から微粒子センサの暖気が完了するまでの期間のみ、あるいは、内燃機関2の冷間始動から暖気までの期間のみに限って、センサ出力を補正する処理を行うものであってもよい。また、例えば、このように設定された期間、運転状態に応じたセンサ出力の補正を繰り返し続けるものであってもよいし、この期間のうち、最初の数回、あるいは、一部の期間や所定回数だけ、補正を行うようにしてもよい。このように始動時(あるいは冷間始動時)のある期間に絞って補正を行うようにすることで、センサ出力にばらつきが生じやすい領域を絞って、効果的にセンサ出力のばらつきを抑制することができる。
 また、本実施の形態では、センサ出力を内燃機関2の冷却水の水温に応じて補正する場合について説明した。しかし、この発明はこれに限るものではない。例えば、冷却水の水温に限らず、内燃機関2の温度又はPMセンサ8の温度と相関を有する他の部分の温度に応じて、センサ出力を補正するものであってもよい。また、温度に応じて補正するものに限られず、例えば、吸入空気量の積算値や、燃料噴射量の積算値に応じた補正を行うこともできる。センサ感度は、吸入空気量や燃料噴射量の積算値とも、水温と同様の相関を有している。従って、水温の場合と同様に、吸入空気量の積算値、あるいは燃料噴射量の積算値と、センサ出力感度との関係を実験等により求め、これをマップ等として記憶しておけば、吸入空気量や燃料噴射量をパラメータとした、センサの出力補正を実行することができる。
 また、本実施の形態においては、1回の運転の間に、DPF6の故障判定とその後のPMリセットを1度のみ行う場合について説明した。しかし、この発明はこれに限られるものではない。DPF6の故障判定やPMリセットは他のタイミングで実行されるものであってもよく、例えば、1回の運転中に複数回実行されるように設定したものであってもよい。また、例えば、始動時にはPMセンサ8の出力を要する場合、始動時にはセンサ出力を本実施の形態のように補正して利用し、PMセンサ8の暖気後にPMリセットを行うこともできる。
 また、本実施の形態では、DPF6の再生を、推定PM堆積量が判定量より多くなった場合など、所定の条件を満たした場合に行う場合について説明した。しかし、DPF6の再生タイミングは、この発明を限定するものでなく、例えば、一定の走行距離ごとに1回行うなど、他の条件でDPF6を再生するようにしてもよい。
 また、本実施の形態は、前回の内燃機関2の運転停止までの過熱昇温によりPMが堆積していない状態を維持されたPMセンサ8が、次回、冷間始動される場合に、特に有効である。しかし、この発明はこのような場合に限られるものではない。この発明において水温に応じた補正は、始動後すぐにPMセンサ8の使用が望まれるような場合に、有効に適用することができる。
 また、本実施の形態では、PMリセット後、素子部を高い温度に維持することでPMが堆積しない状態とする場合について説明した。しかし、この発明はこれに限られるものではない。例えば、捕集用電圧の印加をOFFとするなど、PMが堆積しない状態が維持されるものであればよい。
 また、本実施の形態において、PMセンサ8の出力として、電流を検出する場合について説明した。しかし、本発明はこれに限るものではなく、PMセンサの出力として、他の電気的特性を検出するものであってもよい。
 また、以上の実施の形態において各要素の個数、数量、量、範囲等の数に言及した場合、特に明示した場合や原理的に明らかにその数に特定される場合を除いて、その言及した数に、この発明が限定されるものではない。また、この実施の形態において説明する構造やステップ等は、特に明示した場合や明らかに原理的にそれに特定される場合を除いて、この発明に必ずしも必須のものではない。
  2 内燃機関
  4 排気経路
  6 DPF
  8 PMセンサ
  10 制御装置

Claims (6)

  1.  内燃機関の排気経路に設置され、ガス中の微粒子量に応じた出力を発する微粒子センサを備える内燃機関を制御する制御装置であって、
     前記微粒子センサの出力を検出する手段と、
     前記内燃機関の運転状態に関する情報を検出する手段と、
     前記情報に応じて、前記内燃機関が始動されてから暖気されるまでの間の所定の時期に、前記出力を補正する手段と、
     を備えることを特徴とする内燃機関の制御装置。
  2.  前記内燃機関の暖気の後、前記微粒子センサの素子部を基準温度にまで昇温させて、前記素子部に堆積した微粒子を除去する手段を、更に備えることを特徴とする請求項1に記載の内燃機関の制御装置。
  3.  前記運転状態に関する情報を検出する手段は、前記内燃機関の始動後、前記微粒子センサが暖気されるまでの間、前記運転状態に関する情報の検出を続け、
     前記出力を補正する手段は、前記内燃機関の始動後、前記微粒子センサが暖気されるまでの間、前記出力の補正を続けることを特徴とする請求項1又は2に記載の内燃機関の制御装置。
  4.  前記運転状態に関する情報を検出する手段は、前記内燃機関が冷間始動される場合に、前記内燃機関が冷間始動されてから暖気されるまでの間、前記運転状態に関する情報の検出を続け、
     前記出力を補正する手段は、前記内燃機関の冷間始動されてから暖気されるまでの間、前記出力の補正を続けることを特徴とする請求項1又は2に記載の内燃機関の制御装置。
  5.  前記運転状態に関する情報として、前記内燃機関の冷却水の水温、前記内燃機関の始動時からの積算吸入空気量、及び、前記内燃機関の始動時からの積算燃料噴射量からなる群のうち、少なくとも1つが検出されることを特徴とする請求項1から4のいずれか1項に記載の内燃機関の制御装置。
  6.  前記出力を補正する手段により補正された補正出力に基づいて、微粒子を捕集するためのフィルタの故障の有無を判定する手段と、
     前記フィルタの故障の有無の判定後、前記微粒子センサの素子部を基準温度にまで昇温させて、前記素子部に堆積した微粒子を除去する手段と、
     前記微粒子の除去後、前記内燃機関が停止するまでの間、前記微粒子センサの素子部を、前記基準温度よりも高い温度に維持する手段と、
     を、更に備えることを特徴とする請求項1から5のいずれか1項に記載の内燃機関の制御装置。
PCT/JP2011/066859 2011-07-25 2011-07-25 内燃機関の制御装置 WO2013014739A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2011/066859 WO2013014739A1 (ja) 2011-07-25 2011-07-25 内燃機関の制御装置
CN2011800078320A CN103026017A (zh) 2011-07-25 2011-07-25 内燃机的控制装置
DE112011102087T DE112011102087T5 (de) 2011-07-25 2011-07-25 Steuervorrichtung für Maschine mit interner Verbrennung
JP2012520405A JP5240408B1 (ja) 2011-07-25 2011-07-25 内燃機関の制御装置
US13/511,745 US20130030678A1 (en) 2011-07-25 2011-07-25 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/066859 WO2013014739A1 (ja) 2011-07-25 2011-07-25 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
WO2013014739A1 true WO2013014739A1 (ja) 2013-01-31

Family

ID=47597913

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066859 WO2013014739A1 (ja) 2011-07-25 2011-07-25 内燃機関の制御装置

Country Status (5)

Country Link
US (1) US20130030678A1 (ja)
JP (1) JP5240408B1 (ja)
CN (1) CN103026017A (ja)
DE (1) DE112011102087T5 (ja)
WO (1) WO2013014739A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015175319A (ja) * 2014-03-17 2015-10-05 株式会社デンソー 内燃機関のpm検出装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5382210B2 (ja) * 2010-04-30 2014-01-08 トヨタ自動車株式会社 パティキュレートフィルタの故障検出装置及び故障検出方法
JP5553114B2 (ja) * 2011-02-01 2014-07-16 トヨタ自動車株式会社 内燃機関の制御装置
US9261037B2 (en) * 2011-09-16 2016-02-16 Cummins Emission Solutions, Inc. Particulate matter sensor and systems
JP6426072B2 (ja) * 2014-10-02 2018-11-21 株式会社Soken フィルタの故障検出装置、粒子状物質検出装置
JP6004028B2 (ja) 2015-03-20 2016-10-05 トヨタ自動車株式会社 排気浄化システムの故障診断装置
JP6365501B2 (ja) * 2015-10-21 2018-08-01 株式会社デンソー 粒子状物質検出装置
JP6492035B2 (ja) * 2016-03-22 2019-03-27 株式会社Soken 粒子状物質検出装置
US20180073973A1 (en) 2016-09-12 2018-03-15 Hyundai Motor Company Particulate matters sensor device and manufacturing method of sensor unit provided in this
JP7088056B2 (ja) * 2019-02-04 2022-06-21 株式会社デンソー 粒子状物質検出センサ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010275917A (ja) * 2009-05-28 2010-12-09 Honda Motor Co Ltd 粒子状物質検出手段の故障判定装置
JP2011017289A (ja) * 2009-07-09 2011-01-27 Honda Motor Co Ltd 排気センサの故障判定装置
JP2011080439A (ja) * 2009-10-09 2011-04-21 Nippon Soken Inc パティキュレートフィルタの異常検出装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258027A (ja) * 2005-03-18 2006-09-28 Toyota Motor Corp 内燃機関の制御装置
DE102005040790A1 (de) * 2005-08-29 2007-03-01 Robert Bosch Gmbh Verfahren zum Betreiben eines Sensors zum Erfassen von Partikeln in einem Gasstrom und Vorrichtung zur Durchführung des Verfahrens
JP2008190502A (ja) 2007-02-07 2008-08-21 Nissan Motor Co Ltd 内燃機関のpm排出量検出装置
DE102007014761B4 (de) * 2007-03-28 2022-05-12 Robert Bosch Gmbh Verfahren zum Betreiben eines sammelnden Partikelsensors und Vorrichtung zur Durchführung des Verfahrens
US8131495B2 (en) * 2008-08-19 2012-03-06 Honeywell International Inc. Particulate matter sensor calibration
US8136343B2 (en) * 2009-09-02 2012-03-20 Ford Global Technologies, Llc System for an engine having a particulate matter sensor
JP2012012960A (ja) * 2010-06-29 2012-01-19 Nippon Soken Inc 粒子状物質検出センサ
DE102010038153B3 (de) * 2010-10-13 2012-03-08 Ford Global Technologies, Llc. Partikelsensor, Abgassystem und Verfahren zum Schutz von Komponenten eines turbogeladenen Motors mit Abgasrückführung
WO2012114518A1 (ja) * 2011-02-25 2012-08-30 トヨタ自動車株式会社 粒子状物質検出センサの異常判定装置
US8943809B2 (en) * 2011-03-15 2015-02-03 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
JP5477326B2 (ja) * 2011-04-06 2014-04-23 トヨタ自動車株式会社 粒子状物質処理装置
US8823400B2 (en) * 2011-06-29 2014-09-02 Delphi Technologies, Inc. Method and system for contamination signature detection diagnostics of a particulate matter sensor
US20130000678A1 (en) * 2011-06-30 2013-01-03 Delphi Technologies, Inc. Method and system for contamination removal from a particulate matter sensor
US9217349B2 (en) * 2011-10-26 2015-12-22 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
US9617899B2 (en) * 2012-12-05 2017-04-11 Ford Global Technologies, Llc Methods and systems for a particulate matter sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010275917A (ja) * 2009-05-28 2010-12-09 Honda Motor Co Ltd 粒子状物質検出手段の故障判定装置
JP2011017289A (ja) * 2009-07-09 2011-01-27 Honda Motor Co Ltd 排気センサの故障判定装置
JP2011080439A (ja) * 2009-10-09 2011-04-21 Nippon Soken Inc パティキュレートフィルタの異常検出装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015175319A (ja) * 2014-03-17 2015-10-05 株式会社デンソー 内燃機関のpm検出装置

Also Published As

Publication number Publication date
CN103026017A (zh) 2013-04-03
DE112011102087T5 (de) 2013-08-08
JP5240408B1 (ja) 2013-07-17
JPWO2013014739A1 (ja) 2015-02-23
US20130030678A1 (en) 2013-01-31

Similar Documents

Publication Publication Date Title
JP5240408B1 (ja) 内燃機関の制御装置
JP5273293B2 (ja) 内燃機関の制御装置
JP6070659B2 (ja) パティキュレートフィルタの異常診断装置
JP6137229B2 (ja) パティキュレートフィルタの異常診断装置
JP5344084B2 (ja) パティキュレートフィルタの故障検出装置及び故障検出方法
JP5751330B2 (ja) 内燃機関の制御装置
JP5382210B2 (ja) パティキュレートフィルタの故障検出装置及び故障検出方法
JP5549780B2 (ja) 内燃機関の制御装置
JP6520898B2 (ja) 排気浄化システムの異常診断装置
JP6252537B2 (ja) パティキュレートフィルタの異常診断装置
US20120031168A1 (en) Sensor controller and exhaust gas treatment system using the same
JP6372789B2 (ja) フィルタの故障診断装置
JP5790777B2 (ja) 内燃機関の制御装置及び制御方法
JP5488451B2 (ja) 微粒子検出装置
JP5915476B2 (ja) Pmセンサの異常検出装置および方法
JP2011089430A (ja) 排気浄化装置
JP6066975B2 (ja) 故障検出装置
JP5527156B2 (ja) フィルタの異常検出装置及び方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180007832.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012520405

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13511745

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120111020872

Country of ref document: DE

Ref document number: 112011102087

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870012

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 11870012

Country of ref document: EP

Kind code of ref document: A1