WO2012114518A1 - 粒子状物質検出センサの異常判定装置 - Google Patents

粒子状物質検出センサの異常判定装置 Download PDF

Info

Publication number
WO2012114518A1
WO2012114518A1 PCT/JP2011/054359 JP2011054359W WO2012114518A1 WO 2012114518 A1 WO2012114518 A1 WO 2012114518A1 JP 2011054359 W JP2011054359 W JP 2011054359W WO 2012114518 A1 WO2012114518 A1 WO 2012114518A1
Authority
WO
WIPO (PCT)
Prior art keywords
particulate matter
sensor
temperature
matter detection
sensor element
Prior art date
Application number
PCT/JP2011/054359
Other languages
English (en)
French (fr)
Inventor
達弘 橋田
西嶋 大貴
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/509,894 priority Critical patent/US9151204B2/en
Priority to PCT/JP2011/054359 priority patent/WO2012114518A1/ja
Priority to DE112011100156.8T priority patent/DE112011100156B8/de
Priority to JP2012519267A priority patent/JP5316710B2/ja
Publication of WO2012114518A1 publication Critical patent/WO2012114518A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1466Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a soot concentration or content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00613Quality control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/04Filtering activity of particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/05Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a particulate sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1494Control of sensor heater
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0656Investigating concentration of particle suspensions using electric, e.g. electrostatic methods or magnetic methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00712Automatic status testing, e.g. at start-up or periodic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • This invention relates to an abnormality determination device for a particulate matter detection sensor (PM sensor) for detecting particulate matter (Perticulate® Matter) in exhaust gas.
  • PM sensor particulate matter detection sensor
  • Perticulate® Matter particulate matter
  • a failure determination device that performs failure determination of a PM sensor is known in an exhaust gas purification system including a PM sensor that is a sensor that performs the same.
  • a failure of the PM sensor is determined based on a change in the PM sensor output after the regeneration of the DPF. is doing.
  • the DPF can collect PM in the exhaust gas. That is, as long as the PM collection performance of the DPF is normal, the amount of PM flowing out downstream of the DPF is very small. If the amount of PM flowing out downstream of the DPF is very small, even if it is attempted to confirm that the PM sensor exhibits a normal output in response to the arrival of the PM at the PM sensor, such confirmation is actually performed. Have difficulty.
  • the PM sensor malfunctions by examining the output of the PM sensor during this PM collection performance reduction period. It is determined whether or not. That is, since there is a certain limit to the amount of PM collected by the DPF, it is necessary to recover the PM collecting performance of the DPF by performing a regeneration process as necessary.
  • the PM collection performance of the DPF immediately after such DPF regeneration processing is performed, the PM collection performance of the DPF temporarily decreases. If it is a period when PM collection performance is falling, compared with the period when normal PM collection performance is exhibited, the outflow of PM to the DPF downstream will become relatively large. By examining the output of the PM sensor during this PM collection performance degradation period, it can be determined whether or not the PM sensor is out of order.
  • PM sensors When detecting the presence of PM in the exhaust gas, various types of particulate matter detection sensors (PM sensors) are used. For example, there is a so-called capacitance type PM sensor that is also used in the apparatus according to the above Japanese Patent Application Laid-Open No. 2010-275977, and a so-called electric resistance type PM sensor based on a change in electric resistance. These various PM sensors can detect the presence and amount of PM in the exhaust gas based on a change in electrical physical quantity according to the adhesion of PM to the sensor element unit.
  • capacitance type PM sensor that is also used in the apparatus according to the above Japanese Patent Application Laid-Open No. 2010-275977
  • electric resistance type PM sensor based on a change in electric resistance.
  • the output of the PM sensor detects whether an unintended PM concentration increase downstream of the DPF occurs, or the PM collection performance of the DPF. It can be used to detect whether a failure has occurred. Further, the output of the PM sensor can be used to accurately detect the PM amount in the exhaust gas and reflect the detection result in the operation control of the internal combustion engine in the configuration in which the PM sensor is provided upstream of the DPF. it can.
  • the detection result based on the output change can be used without any problem.
  • the inventor of the present application has found that the output change of the PM sensor is caused by various factors other than PM.
  • Such an output change caused by factors other than PM is an abnormal output change, and this abnormal output change cannot be used as a basis for detecting the presence or amount of PM.
  • a detection result based on such an abnormal output change cannot be used as a detection result of the PM amount or the like. If such an abnormal PM sensor output change and a normal PM sensor output change cannot be accurately discriminated, there is a possibility that the PM detection accuracy of the PM sensor is lowered and erroneous PM detection occurs.
  • the present invention was made to solve the above problems, and by distinguishing between an output change caused by factors other than PM in a particulate matter detection sensor and a normal output change according to PM, It is an object of the present invention to provide an abnormality determination device for a particulate matter detection sensor that can determine the presence or absence of abnormality in the detection of particulate matter in the particulate matter detection sensor.
  • a first invention is an abnormality determination device for a particulate matter detection sensor,
  • the particulate matter detection sensor is attached to the sensor element part, a sensor element part provided in an exhaust passage of an internal combustion engine, an output means for changing an output in accordance with the amount of PM attached to the sensor element part, and the sensor element part
  • a heater capable of heating the sensor element part to a PM removal temperature, which is a temperature at which PM is removed from the sensor element part
  • the abnormality determination device is Heater control means for controlling the heater so that the sensor element section is heated; Determination means for determining whether or not the particulate matter detection sensor has an abnormality based on an output change of the particulate matter detection sensor according to the control of the heater by the heater control means; It is characterized by providing.
  • the heater control means includes Means for controlling the heater so that the sensor element unit is heated after an output change corresponding to an increase in the amount of PM attached to the sensor element unit in the particulate matter detection sensor;
  • the determination means includes When the sensor element unit is heated according to the control of the heater, when the sensor element unit is below the PM removal temperature, an output corresponding to a decrease in the amount of PM attached to the sensor element unit in the particulate matter detection sensor Means for determining whether there is an abnormality in the particulate matter detection sensor based on whether or not there has been a change; It is characterized by including.
  • the heater control means includes A specific temperature heater control means for controlling the heater so that the temperature of the sensor element unit is maintained at at least one predetermined temperature set lower than the PM removal temperature for a predetermined time; Specific temperature range heater control means for controlling the heater so that the temperature of the sensor element unit is maintained within a predetermined temperature range where the upper limit temperature is lower than the PM removal temperature for a predetermined time; It is characterized by including at least one.
  • the specific temperature heater control means includes stepwise heater control means for controlling the heater so that the sensor element portion reaches the PM removal temperature through at least two stepwise temperature changes.
  • a fifth invention is the fourth invention,
  • the stepwise heater control means includes: The sensor element unit is held for a predetermined time at a first temperature that is equal to or higher than a temperature at which water adhering to the sensor element unit is removed and less than a temperature at which fuel adhering to the sensor element unit is removed.
  • a first control for controlling the heater The heater is controlled so that the sensor element unit is held for a predetermined time at a second temperature that is equal to or higher than a temperature at which the fuel or organic substances adhering to the sensor element unit is removed and lower than the PM removal temperature.
  • Two controls It is characterized in that at least one of the controls is executed.
  • the heater control means includes A first output change which is an output change of the particulate matter detection sensor before the sensor element unit reaches the PM removal temperature, and the sensor element unit when the sensor element unit reaches the PM removal temperature.
  • Control of the heater so that the sensor element unit is heated at a temperature increase rate that can be distinguished from a second output change that is an output change according to the particulate matter detection sensor according to PM removal of Means to do It is characterized by including.
  • a seventh invention is the invention according to any one of the first to sixth inventions,
  • the determination means includes Based on the change in output indicated by the particulate matter detection sensor in a temperature range where the water adhering to the sensor element portion is removed according to the control of the heater by the heater control means, the particulate matter detection sensor A means for determining whether there is an abnormality, It is characterized by including.
  • the determination means includes The particulate matter detection sensor in a temperature range where the attached fuel on the sensor element portion is removed or a temperature range where attached organic matter on the sensor element portion is removed according to the heater control by the heater control means.
  • Means for determining whether or not the particulate matter detection sensor is abnormal based on the output change indicated by It is characterized by including.
  • the particulate matter detection sensor is: A fixing part connected to the exhaust pipe of the internal combustion engine, and fixing the sensor element part in the exhaust pipe; A wiring portion provided in the fixed portion and including a wiring for transmitting a signal of the sensor element portion to the outside;
  • the determination means includes The particulate matter detection sensor is abnormal based on an output change indicated by the particulate matter detection sensor in a temperature range in which condensed water in the wiring portion is removed according to the heater control by the heater control means.
  • Condensation determination means for determining whether or not there is, It is characterized by including.
  • a tenth invention is the ninth invention,
  • the heater control means includes The temperature of the sensor element unit is maintained for a predetermined time at a predetermined temperature at which the water condensed on the wiring part is removed or at a lower limit temperature that is equal to or higher than a temperature at which the water condensed on the wiring part is removed.
  • the condensation determination means includes And a means for determining whether or not the particulate matter detection sensor has an abnormality based on an output change indicated by the particulate matter detection sensor within the predetermined time.
  • An eleventh aspect of the invention is the invention according to any one of the first to tenth aspects of the invention,
  • the heater control means includes Means for controlling the heater to heat the sensor element portion to the PM removal temperature;
  • the determination means includes Means for determining whether or not the particulate matter detection sensor is abnormal based on an output change of the particulate matter detection sensor when the sensor element unit is heated to the PM removal temperature; It is characterized by including.
  • the abnormality determination device is Including a determination start means for causing the heater control means to perform control of the heater and causing the determination means to execute an abnormality determination when the output of the particulate matter detection sensor shows a sudden change of a predetermined change rate or more.
  • a thirteenth invention is a failure determination device for a particulate matter collection system
  • the particulate matter collection system comprises: A particulate filter provided in an exhaust passage of the internal combustion engine; A sensor element portion provided downstream of the particulate filter in the exhaust passage, an output portion that changes an output according to the amount of PM attached to the sensor element portion, and the PM attached to the sensor element portion
  • a particulate matter detection sensor having a heater capable of heating the sensor element part to a PM removal temperature that is a temperature removed from the sensor element part;
  • the failure determination device is Any of the first to twelfth inventions for detecting an abnormality in the particulate matter detection sensor after an output change indicating an increase in PM amount corresponding to a failure of the particulate filter occurs in the output of the particulate matter detection sensor.
  • An abnormality determination device for a particulate matter detection sensor according to any one of the inventions;
  • a fourteenth aspect of the invention is an exhaust gas particulate matter detection device, A sensor element portion provided in a path through which exhaust gas for detecting the PM content is circulated, an output means for generating an output that changes in accordance with the amount of PM attached to the sensor element portion, and an attachment to the sensor element portion
  • a particulate matter detection sensor comprising a heater capable of heating the sensor element part to a PM removal temperature, which is a temperature at which the PM is removed from the sensor element part,
  • the particulate matter detection sensor according to any one of the first to twelfth inventions, wherein abnormality detection is performed on the particulate matter detection sensor after an output change indicating an increase in PM amount occurs in the particulate matter detection sensor.
  • An abnormality determination device of Whether or not to use the output change indicating the PM amount increase in the particulate matter detection sensor for detecting the PM amount of the exhaust gas based on the result of the abnormality judgment on the particulate matter detection sensor by the abnormality judgment device.
  • Output determining means for determining; PM amount detection means for detecting the PM amount of the exhaust gas based on the output change of the particulate matter detection sensor determined to be used for PM amount detection of the exhaust gas by the output determination means; It is characterized by providing.
  • the particulate matter detection sensor shows some output change
  • the output change is based on the PM adhesion to the sensor element part
  • the PM attached to the sensor element part in response to the heater heating is the PM removal temperature.
  • the particulate matter detection sensor should show an output change according to the PM removal.
  • an output change is recognized in a temperature range other than the PM removal temperature in response to the heater heating, or an output change due to the removal of adhered PM at such a PM removal temperature does not occur as expected. It can be considered that the output change at the particulate matter detection sensor is not caused by PM adhesion to the sensor element portion.
  • the first invention it is possible to determine whether or not there is an abnormality in the particulate matter detection sensor based on the output change according to the heater heating.
  • the output change according to the heater heating it is possible to discriminate between the output change caused by factors other than PM in the particulate matter detection sensor and the normal output change according to PM, thereby detecting the particulate matter. Whether or not there is an abnormality can be determined.
  • the output change corresponding to the increase in the PM adhesion amount in the particulate matter detection sensor when there is an output change corresponding to the decrease in the PM adhesion amount in spite of the temperature lower than the PM removal temperature according to the heater heating, It can be considered that the output change corresponding to the increase in the PM adhesion amount is caused by factors other than the PM adhesion. According to the second invention, by considering this point, it is possible to accurately determine the output change caused by factors other than PM in the particulate matter detection sensor and the normal output change according to the PM.
  • the third aspect of the invention it is possible to surely check whether there is a change in the output of the particulate matter detection sensor at a temperature lower than the PM removal temperature when performing the heating control of the heater. Thereby, the output change caused by factors other than PM in the particulate matter detection sensor and the normal output change according to PM can be discriminated with high accuracy.
  • the fourth aspect of the invention it is possible to surely check whether there is a change in the output of the particulate matter detection sensor at a temperature lower than the PM removal temperature when performing the heating control of the heater. Thereby, the output change caused by factors other than PM in the particulate matter detection sensor and the normal output change according to PM can be discriminated with high accuracy.
  • the heating control of the heater when the heating control of the heater is performed, whether the output of the particulate matter detection sensor is a target for the water adhering to the sensor element unit and / or the fuel adhering to the sensor element unit. It can be determined whether or not. Thereby, it is possible to accurately determine the output change caused by factors other than PM in the particulate matter detection sensor and the normal output change according to PM while specifying the cause of the output change.
  • the sixth aspect of the invention it is possible to surely check whether there is any change in the output of the particulate matter detection sensor at a temperature lower than the PM removal temperature when performing the heating control of the heater. Thereby, the output change caused by factors other than PM in the particulate matter detection sensor and the normal output change according to PM can be discriminated with high accuracy.
  • the heating control of the heater when the heating control of the heater is performed, it is possible to determine whether or not the water adhering to the sensor element portion is a factor of the output change of the particulate matter detection sensor. Thereby, it is possible to accurately determine the output change caused by factors other than PM in the particulate matter detection sensor and the normal output change according to PM while specifying the cause of the output change.
  • the heating control of the heater when the heating control of the heater is performed, it can be determined whether or not the attached fuel or attached organic matter of the sensor element portion is a factor of the output change of the particulate matter detection sensor. Thereby, it is possible to accurately determine the output change caused by factors other than PM in the particulate matter detection sensor and the normal output change according to PM while specifying the cause of the output change.
  • the ninth aspect when performing heating control of the heater, it is possible to determine whether or not the water condensed in the wiring part is a factor of the output change of the particulate matter detection sensor. Thereby, it is possible to accurately determine the output change caused by factors other than PM in the particulate matter detection sensor and the normal output change according to PM while specifying the cause of the output change.
  • the heater temperature by holding the heater temperature for a predetermined time, it is possible to more reliably determine whether or not condensed water is a factor in the output change of the particulate matter detection sensor.
  • the particulate matter detection sensor When the particulate matter detection sensor has an output change corresponding to an increase in the amount of adhered PM, and is heated to the PM removal temperature in response to heater heating, the PM in the sensor element portion is removed and the amount of adhered PM decreases. A corresponding output change should be observed. Contrary to this expectation, when the output change does not occur in the particulate matter detection sensor, it can be considered that the output change corresponding to the increase in the PM adhesion amount is caused by factors other than the PM adhesion. According to the eleventh aspect, by considering this point, it is possible to accurately discriminate between an output change caused by a factor other than PM in the particulate matter detection sensor and a normal output change according to the PM.
  • the determination for distinguishing whether there is a sudden change in the PM amount can be started immediately. As a result, a sudden change in the PM amount to be dealt with can be quickly identified.
  • the thirteenth aspect of the present invention it is possible to accurately detect a failure in the particulate matter collection system by discriminating between an output change caused by factors other than PM in the particulate matter detection sensor and a normal output change according to the PM. Can be determined.
  • erroneous PM amount detection can be suppressed by determining whether or not the output change of the particulate matter detection sensor is in accordance with the amount of PM.
  • FIG. 1 is a diagram illustrating a configuration of an abnormality determination device for a particulate matter detection sensor according to a first embodiment of the present invention, together with an internal combustion engine 2 to which the abnormality determination device is applied.
  • the abnormality determination device for a particulate matter detection sensor according to this embodiment can be suitably used for determining whether or not there is an abnormality in a PM sensor provided in an internal combustion engine for a moving body such as a vehicle.
  • the specific configuration of the internal combustion engine 2 in FIG. 1 is not particularly limited.
  • the internal combustion engine 2 is a multi-cylinder engine that is a diesel engine and is generally used as an internal combustion engine for a vehicle.
  • the internal combustion engine 2 includes an intake valve and an exhaust valve in each cylinder, and also includes a valve operating device that drives the intake valve and the exhaust valve.
  • each cylinder is also provided with a fuel injection valve.
  • An intake passage 5 communicates with the intake port of the internal combustion engine 2.
  • the intake passage 5 is appropriately provided with, for example, an unillustrated intake pipe, intake manifold and other various pipes, and various intake system sensors (for example, an intake pressure sensor, an intake temperature sensor, and an air flow meter).
  • the exhaust port of the internal combustion engine 2 communicates with a DPF (Diesel Particulate Filter) 4 via an exhaust manifold.
  • the DPF 4 can collect particulate matter (hereinafter referred to as “PM”) in the exhaust gas (burned gas) discharged from the internal combustion engine 2.
  • the exhaust pipe 6 communicates with the downstream of the DPF 4. Exhaust gas after passing through the DPF 4 flows into the exhaust pipe 6.
  • a PM sensor 10 is disposed in the exhaust pipe 6.
  • the PM sensor 10 can detect the amount of PM in the exhaust gas downstream of the DPF 4 by being positioned downstream of the DPF 4.
  • the PM sensor 10 is connected to the control circuit unit 19.
  • the control circuit unit 19 has a role of a controller of the PM sensor 10, is connected to the output terminal of the PM sensor 10, and transmits an electric signal from the PM sensor 10 to an ECU (Electronic Control Unit) 50. it can.
  • the ECU 50 shown in FIG. the intake system and the exhaust system of the internal combustion engine 2 are provided with various sensors related to the control of the internal combustion engine. For example, a crank angle sensor that outputs a signal according to the rotation angle of the crankshaft is provided. From the crank angle sensor signal CA, the engine speed (number of revolutions per unit time) and the in-cylinder volume determined by the piston position are calculated. can do. Note that the amount of PM in the exhaust gas varies depending on the operating conditions of the internal combustion engine. Utilizing this, in the first embodiment, the ECU 50 executes an estimation process for estimating the PM amount of the exhaust gas based on the operating conditions of the internal combustion engine 2 (including outputs from various sensors).
  • the ECU 50 processes the signal from each sensor and reflects the processing result on the operation of each actuator (actuator for controlling the internal combustion engine 2).
  • each actuator actuator for controlling the internal combustion engine 2.
  • the exhaust system of the internal combustion engine 2 is also provided with a catalyst for purifying the exhaust gas.
  • various exhaust gas sensors for example, a sensor for detecting NOx concentration of exhaust gas may be attached as necessary.
  • FIG. 2 is an enlarged view schematically showing the PM sensor 10 according to Embodiment 1 of the present invention, and is a diagram for explaining the configuration of the sensor element unit 12 of the PM sensor 10.
  • the PM sensor 10 according to the present embodiment is an electrical resistance PM sensor.
  • the PM sensor 10 includes a sensor element unit 12.
  • the sensor element part 12 is formed by forming platinum-like electrodes 16a and 16b facing each other as shown in FIG. 2, for example, on a body part made of alumina or the like and having a certain thickness.
  • the portions where the electrodes 16a and 16b are formed in the sensor element unit 12 are provided in a path through which exhaust gas is detected in which the PM content is detected, and contact the PM in the exhaust gas.
  • the PM sensor 10 includes a cover mounting portion 13 and a fixing portion 14.
  • a cover member (not shown) surrounding the sensor element portion 12 and its surroundings is attached to the cover attachment portion 13. With the cover member attached, the sensor element portion 12 is exposed to the exhaust gas path, that is, the exhaust pipe 6.
  • the PM sensor 10 has output characteristics in which the output voltage V increases as the amount of PM attached to the sensor element unit 12 increases.
  • the PM sensor 10 includes a heater (not shown) on the back surface (the back surface side in FIG. 2) opposite to the surface on which the electrodes 16a and 16b of the sensor element unit 12 are provided. That is, the sensor element portion 12 has a certain thickness, and the electrodes 16a and 16b are provided on one surface of the two faces facing the sensor element portion 12, and the heater is provided on the other surface. .
  • the heater is connected to the control circuit unit 19.
  • the ECU 50 can control the heater (specifically, control of the heater heating temperature by adjusting the energization amount) via the control circuit unit 19.
  • This heater has a heat generation performance that can heat the sensor element unit 12 to a temperature at which PM adhering to the sensor element unit 12 is removed (hereinafter also referred to as “PM removal temperature”). By heating the heater to the PM removal temperature, the adhered PM of the sensor element unit 12 can be removed, and the PM detection capability in the sensor element unit 12 can be recovered (initialized).
  • the fixed portion 14 is a portion for attaching the PM sensor 10 to the inner wall of the exhaust pipe 6.
  • the fixing portion 14 has, for example, a screw portion on the surface thereof, and can be fixed into an attachment portion provided on the inner wall of the exhaust pipe 6 by this screw portion.
  • a wiring portion including terminals 18 a and 18 b extends inside the fixed portion 14.
  • the terminal 18a is connected to the electrode 16a, and the terminal 18b is connected to the electrode 16b.
  • the control circuit unit 19 is connected to the terminals 18 a and 18 b, and changes the voltage according to the PM adhesion amount (PM deposition amount on the surface of the sensor element unit 12) in the sensor element unit 12. Can be received.
  • the ECU 50 can perform PM adhesion amount detection based on a change in electrical resistance between the electrodes 16 a and 16 b via the control circuit unit 19.
  • a voltage is applied to the electrode portion (between the electrodes 16a and 16b) while the PM sensor 10 is being used while the internal combustion engine 2 is in operation. By applying this voltage, an electrostatic force that promotes the adhesion of PM to the sensor element unit 12 can be generated.
  • Embodiment 1 Basic operation of the abnormality determination method according to the first embodiment
  • the output change of the PM sensor 10 may be caused by various factors other than PM, unlike such normal output change.
  • Such an output change caused by factors other than PM is an abnormal output change, and this abnormal output change cannot be used as a basis for detecting the presence or amount of PM.
  • a detection result based on such an abnormal output change cannot be used as a detection result of the PM amount or the like. If the change in output of the PM sensor 10 caused by factors other than PM cannot be accurately determined from the change in output of the normal PM sensor 10, the PM detection accuracy of the PM sensor 10 may be reduced or erroneous PM detection may occur. There is a risk of inviting.
  • the output change caused by factors other than PM in the PM sensor 10 and the normal state according to the PM by the following method.
  • the output change at the PM sensor 10 is not caused by the PM adhesion to the sensor element unit 12. Can be considered.
  • the output change in the PM sensor 10 causes the PM adhesion to the sensor element unit 12. It can be considered that it is not caused.
  • the sensor element 12 is heated by controlling the heater, and the PM sensor 10 has an abnormality based on the output change of the PM sensor 10 according to the control of the heater. It was decided to determine whether there was.
  • abnormal output change caused by factors other than PM in the PM sensor 10 and normality according to the PM It is possible to determine whether there is an abnormality in the detection of PM by discriminating from an output change.
  • FIG. 3 is a diagram showing the relationship between the output voltage V of the PM sensor 10 and the passing PM amount.
  • the passing PM amount (mg) in FIG. 3 has a correlation with the integrated amount of the PM amount that has passed through the attachment position of the PM sensor 10.
  • This passing PM amount can be obtained, for example, by integrating the estimated PM amount based on the operating conditions of the internal combustion engine 2.
  • the PM amount estimated value can be obtained, for example, by estimating the PM emission amount based on the operating conditions.
  • a line indicated by reference numeral 20 indicates a relationship between the output voltage V and the passing PM amount assuming that the PM sensor 10 and the DPF 4 are normal.
  • the DPF 4 is normal (that is, when there is no failure)
  • a very small amount of PM flows downstream from the DPF 4 and this PM adheres (deposits) little by little to the sensor element unit 12.
  • this amount of PM increases after a certain long period of time, the electric resistance between the electrodes 16a and 16b changes, and the output voltage of the PM sensor 10 changes as shown by the characteristic 20 in FIG. Therefore, even if the DPF 4 normally collects PM, after a sufficiently long period has elapsed, an output change corresponding to an increase in the amount of adhered PM occurs in the PM sensor 10 as in the characteristic 20.
  • a line indicated by reference numeral 22 indicates a characteristic when an exhaust gas having a high PM concentration flows out to the PM sensor 10 due to a failure in the DPF 4. This is shown schematically. Compared with the characteristic 20 that is assumed to be normal, the characteristic 22 shows a sharp rise. When this change in output is normally caused by PM, it is said that a failure has occurred in DPF 4 because PM is detected downstream of DPF 4 that greatly exceeds the amount of PM passing through DPF 4 estimated from the operating conditions. Judgment can be made. However, the output change such as the characteristic 22 may be caused by various factors other than the PM output change of the PM sensor 10.
  • the PM sensor 10 in the PM sensor 10 according to the present embodiment, at least the following four factors can be considered as the cause of the output change such as the characteristic 22 shown in FIG.
  • A Abrupt increase in PM emission due to failure of DPF 4
  • B Electrical short circuit of electrodes (electrodes 16a, 16b) of PM sensor 10
  • C On electrodes (electrodes 16a, 16b) in sensor element 12
  • D Condensation of moisture in the wiring part (inside the fixed part 14) of the PM sensor 10 Among these generation factors (A) to (D)
  • the output change of the characteristic 22 occurs due to the generation factor (A)
  • the PM detection performance of the PM sensor 10 does not work normally, and the output change of the PM sensor 10 corresponds to the PM. It is not a normal output change. Therefore, in the first embodiment of the present invention, based on the output change of the PM sensor 10 accompanying the heater temperature control determined as follows, using the analysis result of the output change occurrence factor by the inventor described above, PM It is determined whether or not the sensor 10 has an abnormality.
  • FIG. 4 is a diagram for explaining the operation of the abnormality determination device for the particulate matter detection sensor according to the first embodiment of the present invention.
  • the upper graph of FIG. 4 shows the temperature in the heater (not shown) of the sensor element unit 12, the vertical axis is the heater temperature, the horizontal axis is time (however, the right direction in FIG. 4 is the direction of time progression). Yes).
  • the lower graph of FIG. 4 shows the output voltage of the PM sensor 10, with the vertical axis representing the output voltage value and the horizontal axis representing time.
  • the upper graph and the lower graph in FIG. 4 are illustrated with the horizontal axis (time axis) on the same scale.
  • the heater temperature characteristic “normal PM reset” indicated by a broken line indicates the state of the heater temperature control when PM removal in the PM sensor 10 is performed without using the abnormality determination method according to the first embodiment. Show.
  • the heater temperature quickly rises to T3 when the heater is turned on, and the temperature of the sensor element unit 12 reaches the PM removal temperature.
  • PM can be removed quickly and the PM detection function of the PM sensor 10 can be restored to the initial state.
  • the heater temperature characteristic indicated by the solid line indicates the state of the heater temperature control when the abnormality determination method according to the first embodiment according to the first embodiment is used.
  • stepwise (stepwise) heater temperature control as shown by a solid line in FIG. 4 is performed.
  • FIG. 4 shows the output of the PM sensor 10 and the heater temperature after the start of the heater temperature control according to the first embodiment.
  • the PM sensor 10 is not heated by the heater before the heater temperature control shown in FIG. 4 is started (that is, the ECU 50 turns off the heater).
  • the heater temperature in FIG. 4 is assumed to be a temperature T0 lower than the temperature T1.
  • the temperature of the sensor element unit 12 during the period when the heater is not heated is a temperature that is left to the right according to the exhaust gas temperature or the like.
  • the heater temperature control and PM sensor 10 abnormality determination operations according to the first embodiment are as follows.
  • the abnormality determination of the PM sensor 10 can be performed by implementing the following abnormality determination method.
  • (Temperature T1) First, the heater is turned on, and the heater temperature is controlled to the temperature T1.
  • the temperature T1 is a heater temperature sufficient to evaporate “water adhering to the sensor element unit 12”. Specifically, for example, the temperature T1 can be set appropriately within a temperature range of about 150 ° C. to 200 ° C.
  • the electrode portion is changed according to the heater temperature becoming the temperature T1. Moisture adhering to is removed. In accordance with this removal, the output of the PM sensor 10 changes from high to low. As a result, the output of the PM sensor 10 changes as shown by an output change S1 in FIG. 4 in response to the heater temperature becoming the temperature T1. By examining whether or not the output change S1 corresponding to the temperature T1 has been detected, it is possible to inspect “moisture adhesion to the electrode portion” among the generation factors (C) described above.
  • the heater is held at the temperature T1 for a certain time (“T1 holding time” in FIG. 4). Thereby, the presence or absence of the output change S1 can be detected more accurately.
  • T1 holding time in FIG. 4
  • the output change S1 is not recognized at the temperature T1
  • it can be determined that the characteristic 22 in FIG. 3 is not an output change caused by "water adhesion to the electrode portion of the sensor element portion 12". .
  • the temperature T2 is a heater temperature sufficient to evaporate the fuel attached to the sensor element unit 12.
  • the temperature T2 is higher than the temperature T1 (T1 ⁇ T2), and specifically can be set to a temperature of about 300 ° C., for example.
  • the evaporation temperature of the fuel adhering to the sensor element unit 12 differs to some extent depending on the fuel used in the internal combustion engine 2, it is possible to appropriately set it within the evaporation temperature range of the fuel adhering to that fact. it can.
  • the heater temperature becomes the temperature T2.
  • the fuel or organic matter in the electrode part is removed.
  • the output of the PM sensor 10 changes from high to low.
  • the output of the PM sensor 10 changes as an output change S2 in FIG. 4 as the heater temperature rises from the temperature T1 to T2.
  • the characteristic 22 in FIG. 3 is caused by “attachment of fuel or organic substance to the electrode portion of the sensor element portion 12”. It can be determined that the output is not changed.
  • T2 retention time In the first embodiment, when the output change S2 corresponding to the temperature T2 is not recognized, the heater is kept at the temperature T2 for a certain time after the heater temperature control to the temperature T2 ("T2 holding time” in FIG. 4). Hold.
  • the generation factor (D) described above is that an output change such as the characteristic 22 occurs in the PM sensor 10 due to “moisture dew condensation in the wiring portion (inside the fixed portion 14) of the PM sensor 10”. After the heater temperature reaches the temperature T2, the condensed moisture does not always evaporate all at once. In some cases, the moisture gradually evaporates, and after a certain amount of time has passed, the condensed moisture evaporates and the output of the PM sensor 10 returns to normal (in the first embodiment, the output increases from low to high).
  • the output change S3 in FIG. 4 shows an example of such a case.
  • the “T2 holding time” is set based on the assumption that the output change S3 may not occur until a certain time has elapsed after the heater temperature reaches the temperature T2. It is defined as “sufficient length for evaporating water condensed on the wiring portion (inside the fixed portion 14) of the PM sensor 10”. Thereby, the inspection about the above-mentioned generation factor (D) can be performed with high accuracy.
  • the characteristic 22 in FIG. 3 indicates that the output change caused by “moisture condensed in the wiring part (inside the fixed part 14) of the PM sensor 10”. It can be judged that it is not.
  • the heater temperature is increased from the temperature T2 to the temperature T3.
  • the temperature T3 is a heater temperature that causes the temperature of the sensor element section 12 to reach the PM removal temperature as described above, and is the same temperature as the target temperature in the control of “normal PM reset”.
  • the characteristic 22 is an output change caused by “PM adhesion of the sensor element unit 12”
  • the PM of the electrode unit is removed according to the heater temperature becoming the temperature T2.
  • the output of the PM sensor 10 changes from high to low.
  • the output of the PM sensor 10 changes as an output change S4 in FIG. 4 as the heater temperature rises from the temperature T2 to T3.
  • the characteristic 22 is a characteristic caused by the generation factor (A), that is, “a sudden increase in PM emission due to a failure of the DPF 4”. It can also be judged.
  • the output voltage of the PM sensor 10 is still high even after the heater temperature control to the temperature T3 as shown by the broken line S5 in FIG. 4, the PM is removed even though the PM is removed. There is a situation in which there is no change in the output of the sensor 10.
  • the generation factor (B) described above is “electrical short circuit of the electrodes (electrodes 16a and 16b) of the PM sensor 10”.
  • the temperature T1, T2, and T3 may be determined in accordance with the above-described guidelines while conducting experiments or considering specific specifications of the PM sensor product. And what is necessary is just to perform step-shaped heater temperature control as shown in the upper stage of FIG. 4 on ECU50, or when there exists a control circuit for heater control.
  • FIG. 5 is a flowchart of a routine executed by ECU 50 in the first embodiment of the present invention. This routine is executed during operation of the internal combustion engine 2. This routine is repeatedly executed every predetermined time.
  • the ECU 50 executes a process of determining whether or not a predetermined PM sensor output has occurred (step S100).
  • the ECU 50 executes a predetermined determination process for determining whether or not a sudden output change like the characteristic 22 in FIG. 3 described above has occurred.
  • this determination process it is determined whether or not the rate of change of the output voltage of the PM sensor 10 is greater than or equal to a predetermined value, that is, whether or not the output of the PM sensor 10 exhibits a sudden change greater than or equal to the predetermined rate of change.
  • a value of “output voltage change amount per unit PM passage amount” can be used.
  • the PM amount estimated value is estimated based on the operating condition of the internal combustion engine 2, and further, the PM amount estimated value is used to estimate the downstream of the DPF 4.
  • the PM passage amount is calculated, and the numerical value obtained by this calculation can be used.
  • the estimation process for estimating the PM amount may be executed on the ECU 50 separately from the routine of FIG.
  • the rate of change of the output voltage of the PM sensor 10 based on the amount of change in the output voltage per unit PM passing amount, an abnormality determination is made according to various scenes where the amount of PM generation differs (that is, the operating conditions differ). Therefore, it is possible to appropriately determine whether or not the output change of the PM sensor 10 is steep enough.
  • the output voltage change amount per unit time may be examined instead of the output voltage change amount per unit PM passage amount. If the predetermined PM sensor output is not expressed in step S100, then the current routine is terminated and the process returns.
  • step S100 determines whether the determination result in step S100 is affirmative (Yes). If the determination result in step S100 is affirmative (Yes), then the ECU 50 executes a process of turning off the voltage applied to the PM sensor 10 (step S102). By this processing, the promotion of PM adhesion to the sensor element unit 12 is stopped. At the time of step S102, the output of the PM sensor 10 is “high”, indicating an increase in the amount of adhered PM, or a significant amount of PM detection.
  • the ECU 50 executes a process for controlling the heater temperature to T1 (step S104).
  • the ECU 50 executes a process of turning on the heater that has been turned off and adjusting the energization amount to the heater so that the heater temperature becomes T1.
  • the ECU 50 executes a process of determining whether or not the PM sensor 10 has a predetermined sensor output change (S1) (step S106).
  • the ECU 50 executes a process of determining whether or not there has been a decrease in output voltage such as the output change S1 in FIG. 4 described above in response to the heater temperature increase to the temperature T1. Specifically, for example, it may be determined whether or not the output voltage of the PM sensor 10 that has become high in step S100 remains high.
  • the presence or absence of the output change S1 is reliably inspected by holding the temperature T1 for a predetermined T1 holding time.
  • step S106 If the sensor output change is not recognized in step S106 (when the determination result is No), the ECU 50 next executes a process of controlling the heater temperature to T2 (step S108). In this step, the ECU 50 executes a process of adjusting the energization amount to the heater so as to realize the heater temperature increase control from the temperature T1 to the temperature T2 in the stepped temperature characteristic shown in FIG.
  • the ECU 50 executes a process for determining whether or not the PM sensor 10 has a predetermined sensor output change (S2) (step S110).
  • the ECU 50 executes a process for determining whether or not there has been a decrease in output voltage such as the output change S2 in FIG. 4 described above in response to the heater temperature increase to the temperature T2. Specifically, for example, it may be determined whether or not the output voltage of the PM sensor 10 remains high.
  • step S112 If no change in the sensor output is recognized in step S110 (when the determination result is No), the ECU 50 executes a process for holding the temperature T2 for a certain time (step S112).
  • the process of step S112 is a process for “refraining from a change in heater temperature (heater temperature increase) until the time after the control to the temperature T2 exceeds a predetermined threshold with the heater temperature set to T2”.
  • the process in step S112 is a part of the process for performing the abnormality determination related to the “T2 holding time” described above.
  • the ECU 50 again executes a process of determining whether or not the PM sensor 10 has a predetermined sensor output change (S3) (step S114).
  • the ECU 50 executes a process of determining whether or not there has been a decrease in output voltage as in the output change S3 of FIG. 4 described above during the temperature T2 holding period. Specifically, for example, it may be determined whether or not the output voltage of the PM sensor 10 remains high.
  • step S116 the ECU 50 executes a process of adjusting the energization amount to the heater so as to realize the heater temperature increase control from the temperature T2 to T3 in the stepped temperature characteristic shown in FIG.
  • the ECU 50 executes a process for determining whether or not the PM sensor 10 has a predetermined sensor output change (S4) (step S118).
  • the ECU 50 executes a process for determining whether or not there has been a decrease in output voltage such as the output change S4 in FIG. 4 described above in response to the heater temperature increase to the temperature T3. Specifically, for example, it may be determined whether or not the output voltage of the PM sensor 10 remains high.
  • Step S122 When the sensor output change is not recognized in step S118 (when the determination result is No), the ECU 50 executes a process of outputting an abnormality determination result indicating that a sensor failure (electrode part short-circuit) has occurred.
  • Step S122 When the sensor element unit 12 is heated to the PM removal temperature in response to the heater heating after the output change corresponding to the increase in the PM adhesion amount in the PM sensor 10 (output generation in step S100), the sensor element unit 12 Thus, the output change S4 corresponding to the decrease in the amount of adhered PM should be recognized.
  • step S118 when a sensor output change is recognized in step S118 (when the determination result is Yes), the ECU 50 executes a process of outputting a determination result that the sensor output is OK (step S120). ). Thereby, the determination result that the PM sensor 10 is normal is obtained. If the PM adhering to the PM sensor 10 needs to be removed after the determination result, the “normal PM reset” described above may be performed.
  • the ECU 50 further executes a process of outputting a determination result indicating that a failure has occurred in the DPF 4 (step S121).
  • the ECU 50 executes a predetermined determination process for determining whether or not an abrupt output change such as the characteristic 22 of FIG. 3 described above has occurred. If the PM sensor 10 is normal, it can be determined that the sudden output change generated in step S100 is an output change caused by “a sudden increase in PM emission amount due to a failure of the DPF 4”.
  • the current routine ends and the process returns.
  • step S124 a determination result that the output of the PM sensor 10 expressed in step S100 is abnormal can be output.
  • step S126 the ECU 50 sets the heater temperature to T3, and the sensor element unit 12 is quickly heated along the heater temperature characteristic “normal PM reset” indicated by the broken line shown in FIG. Thereby, the adhesion substance of PM sensor 10 including PM is removed, and the PM detection capability of PM sensor 10 can be recovered.
  • step S126 the ECU 50 executes processing for turning on the applied voltage turned off in step S102 (step S128). Thereafter, the current routine ends and the process returns.
  • the sensor element unit 12 After the ECU 50 has an output change (step S100) corresponding to an increase in the PM adhesion amount of the sensor element unit 12 (or electrode unit) in the PM sensor 10, the sensor element The process which controls a heater so that the part 12 may be heated can be performed. Further, when the ECU 50 heats the sensor element unit 12 according to the control of the heater, the sensor element unit 12 is in the temperature range of T0 or more and less than T3 while the sensor element unit 12 is less than the PM removal temperature T3. Based on whether or not there is an output change (S1, S2, S3) corresponding to a decrease in the PM adhesion amount of the part 12, it is possible to execute a process for determining whether or not there is an abnormality in the PM sensor 10.
  • the output change corresponding to the increase in the PM adhesion amount in the PM sensor 10 when there is an output change corresponding to the decrease in the PM adhesion amount even though the temperature is lower than the PM removal temperature in accordance with the heater heating, It can be considered that the output change corresponding to the increase in the PM adhesion amount is caused by factors other than the PM adhesion. By considering this point, it is possible to accurately determine the output change caused by factors other than PM in the PM sensor 10 and the normal output change corresponding to the PM.
  • the PM sensor 10 is the “particulate matter detection sensor” in the first invention
  • the sensor element unit 12 is the “sensor element unit” in the first invention
  • the wiring section (including the terminals 18a and 18b) and the control circuit section 19 are the “output means” in the first invention
  • the heater (not shown) on the back surface of the sensor element section 12 is the “output means” in the first invention. It corresponds to “heater”.
  • the “heater control means” according to the first aspect of the present invention is realized when the ECU 50 executes the processes of steps S104, S108, S112 and S116 of the routine of FIG.
  • the ECU 50 executes the processes of steps S106, S110, S114, S118, S120 and step S124, thereby realizing the “determination means” in the first invention.
  • the ECU 50 executes the heater temperature control in steps S104 and S106 of the routine of FIG. 5 or the ECU 50 executes the heater temperature control in steps S108, S110 and S112.
  • the “specific temperature heater control means” in the third invention is realized.
  • the ECU 50 executes the processes of steps S104, S108, S112, and S116, so that the three-stage temperature from T0 ⁇ T1 ⁇ T2 ⁇ T3 as shown in FIG. Control is taking place.
  • the “stepped heater control means” in the fourth invention is realized.
  • the ECU 50 executes the heater temperature control in steps S104 and S106 of the routine of FIG. 5, thereby realizing the “first control” in the fifth aspect of the invention.
  • the “second control” in the fifth aspect of the invention is realized.
  • the output changes S1, S2 and S3 in the PM sensor 10 are the “first output change” in the sixth invention, and the output change S4 in the PM sensor 10 is the sixth output change. This corresponds to the “second output change” in the invention.
  • the PM sensor 10 is the “PM sensor” in the ninth invention
  • the sensor element unit 12 is the “sensor element unit” in the ninth invention
  • the fixing unit 14 is The wiring portion including the terminals 18a and 18b corresponds to the “fixing portion” in the ninth invention, and corresponds to the “wiring portion” in the ninth invention.
  • the “determination start means” in the twelfth aspect of the present invention is realized by the ECU 50 executing the process of step S100.
  • the DPF 4 corresponds to the “particulate filter” in the thirteenth invention
  • the PM sensor 10 corresponds to the “PM sensor” in the thirteenth invention.
  • step S121 of the routine of FIG. 5 the “failure determination means” of the “failure determination device for particulate matter collection system” according to the thirteenth aspect of the present invention is realized.
  • an electrical resistance PM sensor 10 is used as the particulate matter detection sensor.
  • the PM sensor 10 can indicate the amount of PM adhesion or the occurrence of a significant amount of PM adhesion depending on the magnitude of the output voltage.
  • the present invention is not limited to this.
  • Various PM sensors that can change the output (output voltage, output current, and other output signals) according to the PM adhesion and can remove the adhered PM with a heater can be used.
  • a capacitance type PM sensor other than the electric resistance type may be used.
  • the PM sensor changes the output voltage from “low to high” in accordance with the increase in the PM adhesion amount, but the present invention is not limited to this.
  • a PM sensor in which the output voltage changes from “high ⁇ low” in accordance with an increase in the amount of PM adhesion may be used because of differences in circuit configuration of individual sensors. Even for such a PM sensor, it is only necessary to determine the presence or absence of an output change according to the heater temperature control, and the present invention can be applied.
  • Embodiment 1 three-stage heater temperature control of temperature T0 ⁇ T1 ⁇ T2 ⁇ T3 was performed.
  • the number of stages may be two, or conversely, the number of stages may be more than three (four or more).
  • the heater temperature control may be performed only to the temperature T1, and it may be determined only whether there is an output change S1.
  • the heater temperature control may be performed only for the temperature T2, and it may be determined only whether there is an output change S2.
  • the T2 holding time may be omitted.
  • the heater temperature control for only the temperature T3 may be performed to determine whether or not a normal output change S4 due to PM removal has occurred.
  • the present invention is not limited to the embodiment in which the temperature rise and the temperature holding are alternately performed as shown in FIG.
  • the present invention is not limited to the case where the control value (energization amount) is fixed after the heater temperature (heater energization amount) has reached the target value.
  • the temperature (target temperature) may be controlled to increase or decrease linearly or in a curve at a moderate temperature change rate.
  • the temperature change rate in each section may be the same or different.
  • the heater energization amount is adjusted to the respective temperatures of T1, T2, and T3 as target temperatures.
  • the present invention is not a thing. For example, “a temperature range above the temperature at which the output change S1 occurs and less than the temperature at which the output change S2 occurs” or “a temperature range above the temperature at which the output change S2 occurs and below the temperature at which the output change S4 occurs” It may be a control form in which the energization amount of the heater is adjusted so that the heater temperature stays inside.
  • the heater temperature control in the present invention is not limited to the step-like temperature increase control as shown in FIG. 4 of the first embodiment.
  • output changes S1 and S2 corresponding to the removal of “adhering substances other than PM to the sensor element unit 12” and “condensation water in the wiring unit in the fixed unit 14” are removed. It is only necessary to distinguish the output change S3 according to the output change S4 according to PM removal. Therefore, the output changes S1, S2, S3 of the PM sensor 10 before the sensor element unit 12 reaches the temperature T3 can be distinguished from the output changes of the PM sensor according to the PM removal when the sensor element unit 12 reaches the temperature T3.
  • the energization amount of the heater may be increased and adjusted so that the temperature of the heater is increased at a temperature increase rate (temperature increase rate). In this case, the heater temperature characteristics do not necessarily have a clear step shape as shown in FIG.
  • the ECU 50 executes a process of outputting a determination result that the sensor output is abnormal in step S124.
  • this step S124 not only the determination result that the sensor output is abnormal, but also the process of outputting the information “what abnormality has occurred in the PM sensor 10” as the determination result may be used. That is, the process of step S124 outputs “information indicating the type of abnormality in the PM sensor 10” as a determination result, depending on which determination process in steps S106, S108, and S114 is recognized as an output change. It may be. If the determination result in step S106 is Yes, an output change S1 occurs. If the determination result in step S110 is Yes, an output change S2 occurs.
  • step S114 If the determination result in step S114 is Yes, an output change S3 occurs. .
  • the abnormality that occurs in the PM sensor 10 can be distinguished from the generation factor (C) or (D) according to the output changes S1, S2, and S3. Therefore, in step S124, if the determination result in step S106 is Yes (detection of output change S1), the ECU 50 indicates that there is an abnormality in “water adhesion to the electrode portion of the sensor element portion 12”.
  • the present invention is applied to a particulate matter collection system in which the PM sensor 10 is provided downstream of the DPF 4 to detect PM downstream of the DPF 4.
  • the system of the first embodiment uses the PM sensor 10 for detecting a failure of the DPF 4 and uses an estimated value based on the operating conditions of the internal combustion engine 2 for detecting the PM amount of the exhaust gas.
  • the present invention is not limited to such an application form.
  • a system in which a PM sensor is provided in a section from the exhaust port of the internal combustion engine 2 to the DPF 4 that is, an upstream section of the DPF 4
  • the PM amount of the exhaust gas is detected based on the detection value of the PM sensor. .
  • the abnormality determination device for the particulate matter detection sensor according to the present invention can be applied to such a system.
  • a PM sensor provided between the internal combustion engine 2 and the DPF 4 (the output may be changed according to the amount of PM adhesion
  • the routine shown in FIG. 5 is executed in order to determine whether or not the output change of the electric resistance type of the same type as that of the PM sensor 10 is normal.
  • the exhaust pipe 6 is the “path through which exhaust gas is detected in which the PM content is detected” in the fourteenth aspect
  • the PM sensor 10 is the “PM sensor” in the fourteenth aspect.
  • step S120 when the sensor output OK determination is made (step S120), the PM amount is detected (execution of calculation processing, etc.) based on the output value of the PM sensor, while the sensor output abnormality (step S120) If the determination at S124) is made, use of the output value of the PM sensor is prohibited.
  • step S121 is deleted from the routine of FIG. Thereby, the “output determination means” and the “PM amount detection means” in the fourteenth aspect of the present invention are realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Quality & Reliability (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

 粒子状物質検出センサにおける粒子状物質の検出についての異常の有無を判定することができる粒子状物質検出センサの異常判定装置を提供する。 PMセンサ10は、内燃機関2の排気管6内の排気ガス中のPMに接触するセンサ素子部12を備え、センサ素子部12へのPMの付着量に応じて出力を変化させる。PMセンサ10のヒータは、センサ素子部12に付着したPMがセンサ素子部12から除去される温度であるPM除去温度(T3)までセンサ素子部12を加熱できる。ECU50は、ヒータの制御に応じたPMセンサ10の出力変化(S1乃至S4)に基づいて、PMセンサ10に異常があるか否かを判定する処理を実行する。

Description

粒子状物質検出センサの異常判定装置
 この発明は、排気ガス中の粒子状物質(Perticulate Matter)を検出する粒子状物質検出センサ(PMセンサ)の異常判定装置に関する。
 従来、例えば、日本特開2010-275977号公報に開示されているように、DPF(Diesel Particulate Filter)と、排気ガス中の粒子状物質(Perticulate Matter、以下「PM」とも称す)の量を検出するセンサであるPMセンサと、を備えた排気浄化システムにおいて、当該PMセンサの故障判定を行う故障判定装置が知られている。上記従来の技術では、具体的には、排気管内におけるDPF下流にPMセンサが取り付けられた構成において、DPFの再生を行った後のPMセンサ出力の変化に基づいて、当該PMセンサの故障を判定している。
 DPFのPM捕集性能が正常であれば、DPFが排気ガス中のPMを捕集することができる。すなわち、DPFのPM捕集性能が正常である限り、DPFの下流に流出するPMの量は非常に少ない。DPFの下流に流出するPMの量が非常に少なければ、PMセンサへのPMの到達に応じてPMセンサが正常な出力を示すことを確認しようとしても、そのような確認を行うことは実際上困難である。
 そこで、上記従来技術では、DPF再生処理後にPM捕集性能が一時的に低下する期間があることに着目し、このPM捕集性能低下期間におけるPMセンサの出力を調べることにより、PMセンサが故障しているか否かを判定している。すなわち、DPFのPM捕集量に一定の限度があるため、必要に応じて再生処理を行うことによりDPFのPM捕集性能を回復させる必要がある。上記公報によれば、このようなDPF再生処理を行った直後にはDPFにおけるPM捕集性能が一時的に低下する。PM捕集性能が低下している期間であれば、通常のPM捕集性能を発揮している期間と比べて、DPF下流へのPMの流出が相対的に多くなる。このPM捕集性能低下期間におけるPMセンサの出力を調べることにより、PMセンサが故障しているか否かを判定することができる。
日本特開2010-275977号公報 日本特開2009-144512号公報
 排気ガス中のPMの存在を検出する際には、各種の方式の粒子状物質検出センサ(PMセンサ)が用いられている。例えば、上記の日本特開2010-275977号公報にかかる装置でも用いられているいわゆる静電容量式のPMセンサや、電気抵抗変化に基づくいわゆる電気抵抗式のPMセンサがある。これら各種のPMセンサは、センサ素子部へのPMの付着に応じた電気的物理量の変化に基づいて、排気ガス中のPMの存在や量を検出することができる。
 PMセンサの出力は、例えば上記従来技術のようにDPF下流にPMセンサを設けた構成においては、DPF下流への意図しないPM濃度増大が生じていないかを検出したり、DPFのPM捕集性能に故障が生じていないかを検出したりするために用いることができる。また、PMセンサの出力は、DPF上流にPMセンサを設けた構成においては、排気ガス中におけるPM量を精度良く検知して、その検知結果を内燃機関の運転制御に反映させるために用いることもできる。
 PMセンサが出力変化を示した場合、この出力変化がPMにより正常に生じたものであるときは、その出力変化に基づく検出結果を問題なく利用することができる。しかしながら、本願発明者は、鋭意研究の結果、PMセンサの出力変化が、PM以外の種々の要因によっても引き起こされてしまうことを見出した。このようなPM以外の要因で生ずる出力変化はいわば異常な出力変化であり、この異常な出力変化はPMの存在や量の検出の根拠として用いることができない。そのような異常な出力変化に基づく検出結果を、PM量等の検出結果として用いることもできない。そのような異常なPMセンサ出力変化と正常なPMセンサ出力変化とを正確に判別することができないと、PMセンサのPM検出の精度低下や誤ったPM検出の発生を招くおそれがある。
 この発明は、上記のような課題を解決するためになされたもので、粒子状物質検出センサにおけるPM以外の要因によって引き起こされる出力変化とPMに応じた正常な出力変化とを判別することにより、粒子状物質検出センサにおける粒子状物質の検出についての異常の有無を判定することができる粒子状物質検出センサの異常判定装置を提供することを目的とする。
 第1の発明は、上記の目的を達成するため、粒子状物質検出センサの異常判定装置であって、
 前記粒子状物質検出センサは、内燃機関の排気通路に備えられたセンサ素子部と、前記センサ素子部へのPMの付着量に応じて出力を変化させる出力手段と、前記センサ素子部に付着したPMが前記センサ素子部から除去される温度であるPM除去温度まで前記センサ素子部を加熱可能なヒータと、を備えており、
 前記異常判定装置が、
 前記センサ素子部が加熱されるように前記ヒータを制御するヒータ制御手段と、
 前記ヒータ制御手段による前記ヒータの制御に応じた前記粒子状物質検出センサの出力変化に基づいて、前記粒子状物質検出センサに異常があるか否かを判定する判定手段と、
 を備えることを特徴とする。
 第2の発明は、第1の発明において、
 前記ヒータ制御手段は、
 前記粒子状物質検出センサにおいて前記センサ素子部のPM付着量増大に相当する出力変化があった後に、前記センサ素子部が加熱されるように前記ヒータを制御する手段を含み、
 前記判定手段は、
 前記ヒータの制御に応じた前記センサ素子部の加熱の際、前記センサ素子部が前記PM除去温度未満にあるときに前記粒子状物質検出センサにおいて前記センサ素子部のPM付着量減少に相当する出力変化があったか否かに基づいて、前記粒子状物質検出センサに異常があるか否かを判定する手段を、
含むことを特徴とする。
 第3の発明は、第1または第2の発明において、
 前記ヒータ制御手段は、
 前記センサ素子部の温度を、前記PM除去温度よりも低く定めた少なくとも1つの所定温度に所定時間保持するように、前記ヒータを制御する特定温度ヒータ制御手段と、
 前記センサ素子部の温度を、所定時間、上限の温度が前記PM除去温度よりも低い所定温度域内に保持するように、前記ヒータを制御する特定温度範囲ヒータ制御手段と、
のうち少なくとも一方を含むことを特徴とする。
 第4の発明は、第1乃至第3の発明のいずれか1つにおいて、
 前記特定温度ヒータ制御手段は、少なくとも2段の階段状の温度変化を経て前記センサ素子部が前記PM除去温度に到達するように前記ヒータの制御を行う段階的ヒータ制御手段を、含むことを特徴とする。
 第5の発明は、第4の発明において、
 前記段階的ヒータ制御手段は、
 前記センサ素子部へ付着した水が除去される温度以上かつ前記センサ素子部へ付着した燃料が除去される温度未満の温度である第1温度に前記センサ素子部が所定時間保持されるように、前記ヒータを制御する第1制御と、
 前記センサ素子部への付着燃料または付着有機物が除去される温度以上かつ前記PM除去温度未満の温度である第2温度に前記センサ素子部が所定時間保持されるように、前記ヒータを制御する第2制御と、
 のうち少なくとも一方の制御を実行するものであることを特徴とする。
 第6の発明は、第1乃至5の発明のいずれか1つの発明において、
 前記ヒータ制御手段は、
 前記センサ素子部が前記PM除去温度に達する前における前記粒子状物質検出センサの出力変化である第1の出力変化と、前記センサ素子部が前記PM除去温度に到達した際における前記センサ素子部でのPM除去に応じた前記粒子状物質検出センサに応じた出力変化である第2の出力変化と、を区別できる程度の温度上昇速度で前記センサ素子部の加熱を行うように、前記ヒータの制御を行う手段を、
 含むことを特徴とする。
 第7の発明は、第1乃至6の発明のいずれか1つの発明において、
 前記判定手段は、
 前記ヒータ制御手段による前記ヒータの制御に応じて前記センサ素子部の付着水が除去される程度の温度域において前記粒子状物質検出センサが示した出力変化に基づいて、前記粒子状物質検出センサに異常があるか否かを判定する手段を、
 含むことを特徴とする。
 第8の発明は、第1乃至7の発明のいずれか1つの発明において、
 前記判定手段は、
 前記ヒータ制御手段による前記ヒータの制御に応じて前記センサ素子部の付着燃料が除去される程度の温度域または前記センサ素子部の付着有機物が除去される程度の温度域において前記粒子状物質検出センサが示した出力変化に基づいて、前記粒子状物質検出センサに異常があるか否かを判定する手段を、
 含むことを特徴とする。
 第9の発明は、第1乃至8の発明のいずれか1つの発明において、
 前記粒子状物質検出センサは、
 前記内燃機関の排気管に接続し、前記センサ素子部を前記排気管内に固定する固定部と、
 前記固定部内に設けられ、前記センサ素子部の信号を外部へ伝達する配線を含む配線部と、
 を有し、
 前記判定手段は、
 前記ヒータ制御手段による前記ヒータの制御に応じて前記配線部の結露水が除去される程度の温度域において前記粒子状物質検出センサが示した出力変化に基づいて、前記粒子状物質検出センサに異常があるか否かを判定する結露判定手段を、
 含むことを特徴とする。
 第10の発明は、第9の発明において、
 前記ヒータ制御手段は、
 前記配線部に結露した水が除去される所定温度に又は下限の温度が前記配線部に結露した水が除去される温度以上の所定温度域内に前記センサ素子部の温度が所定時間保持されるように、前記ヒータの温度を制御する手段を含み、
 前記結露判定手段は、
 前記所定時間内における前記粒子状物質検出センサが示した出力変化に基づいて、前記粒子状物質検出センサに異常があるか否かを判定する手段を含むことを特徴とする。
 第11の発明は、第1乃至10の発明のいずれか1つの発明において、
 前記ヒータ制御手段は、
 前記センサ素子部を前記PM除去温度まで加熱するように、前記ヒータを制御する手段を含み、
 前記判定手段は、
 前記センサ素子部が前記PM除去温度まで加熱された際の前記粒子状物質検出センサの出力変化に基づいて、前記粒子状物質検出センサに異常があるか否かを判定する手段を、
含むことを特徴とする。
 第12の発明は、第1乃至11の発明のいずれか1つの発明において、
 前記異常判定装置は、
 前記粒子状物質検出センサの出力が所定変化率以上の急な変化を示したら、前記ヒータ制御手段に前記ヒータの制御を実行させ且つ前記判定手段に異常判定を実行させる判定開始手段を含むことを特徴とする。
 第13の発明は、粒子状物質捕集システムの故障判定装置であって、
 前記粒子状物質捕集システムが、
 内燃機関の排気通路に設けられたパティキュレートフィルタと、
 前記排気通路における前記パティキュレートフィルタの下流に備えられたセンサ素子部と、前記センサ素子部へのPMの付着量に応じて出力を変化させる出力部と、前記センサ素子部に付着した前記PMが前記センサ素子部から除去される温度であるPM除去温度まで前記センサ素子部を加熱可能なヒータとを有する粒子状物質検出センサと、
 を備え、
 前記故障判定装置が、
 前記粒子状物質検出センサの出力に前記パティキュレートフィルタの故障時に相当するPM量増大を示す出力変化があった後に、前記粒子状物質検出センサについての異常検出を行う第1乃至12の発明のいずれか1つの発明にかかる粒子状物質検出センサの異常判定装置と、
 前記異常判定装置により前記粒子状物質検出センサが異常ではないと判定された場合に、前記パティキュレートフィルタに故障が発生していると判定する故障判定手段と、
 を備えることを特徴とする。
 第14の発明は、排気ガスの粒子状物質検出装置であって、
 PM含有量の検出が行われる排気ガスが流通する経路に備えられたセンサ素子部、前記センサ素子部へのPMの付着量に応じて変化する出力を発する出力手段、および前記センサ素子部に付着した前記PMが前記センサ素子部から除去される温度であるPM除去温度まで前記センサ素子部を加熱可能なヒータを備えた粒子状物質検出センサと、
 前記粒子状物質検出センサにおいてPM量増大を示す出力変化があった後に、前記粒子状物質検出センサについての異常検出を行う第1乃至12の発明のいずれか1つの発明にかかる粒子状物質検出センサの異常判定装置と、
 前記異常判定装置による前記粒子状物質検出センサについての異常判定の結果に基づいて、前記粒子状物質検出センサにおけるPM量増大を示す前記出力変化を前記排気ガスのPM量検知に用いるか否かを決定する出力判定手段と、
 前記出力判定手段で前記排気ガスのPM量検知に用いるとの決定がされた前記粒子状物質検出センサの前記出力変化に基づいて、前記排気ガスのPM量を検知するPM量検知手段と、
を備えることを特徴とする。
 粒子状物質検出センサが何らかの出力変化を示した場合にその出力変化がセンサ素子部へのPM付着に基づくものであるならば、ヒータ加熱に応じてセンサ素子部に付着したPMがPM除去温度で除去されることにより、粒子状物質検出センサがそのPM除去に応じた出力変化を示すはずである。これに反して、ヒータ加熱に応じて出力変化がPM除去温度以外の温度域において認められたり、或いはそのようなPM除去温度での付着PM除去による出力変化が予想どおりに生じなかったりした場合には、粒子状物質検出センサでの出力変化がセンサ素子部へのPM付着に起因するものではないと考えることができる。
 第1の発明によれば、ヒータ加熱に応じた出力変化に基づいて、粒子状物質検出センサに異常があるか否かを判定することができる。ヒータ加熱に応じた出力変化に着目することで、粒子状物質検出センサにおけるPM以外の要因によって引き起こされる出力変化とPMに応じた正常な出力変化とを判別することができ、粒子状物質の検出についての異常の有無を判定することができる。
 粒子状物質検出センサでPM付着量増大に相当する出力変化があった後に、ヒータ加熱に応じて、PM除去温度未満にもかかわらずPM付着量減少に相当する出力変化があった場合には、そのPM付着量増大に相当する出力変化はPM付着以外の要因で引き起こされたと考えることができる。
 第2の発明によれば、この点を考慮することにより、粒子状物質検出センサにおけるPM以外の要因によって引き起こされる出力変化とPMに応じた正常な出力変化とを精度良く判別することができる。
 第3の発明によれば、ヒータの加熱制御を行う際に、PM除去温度未満の温度において粒子状物質検出センサの出力変化が無いかどうかを、確実に調べることができる。これにより、粒子状物質検出センサにおけるPM以外の要因によって引き起こされる出力変化とPMに応じた正常な出力変化とを、精度良く判別することができる。
 第4の発明によれば、ヒータの加熱制御を行う際に、PM除去温度未満の温度において粒子状物質検出センサの出力変化が無いかどうかを、確実に調べることができる。これにより、粒子状物質検出センサにおけるPM以外の要因によって引き起こされる出力変化とPMに応じた正常な出力変化とを、精度良く判別することができる。
 第5の発明によれば、ヒータの加熱制御を行う際に、センサ素子部の付着水または/およびセンサ素子部の付着燃料を対象にして、粒子状物質検出センサの出力変化の要因であるか否かを判定することができる。これにより、粒子状物質検出センサにおけるPM以外の要因によって引き起こされる出力変化とPMに応じた正常な出力変化とを、その出力変化の原因を特定しつつ正確に判別することができる。
 第6の発明によれば、ヒータの加熱制御を行う際に、PM除去温度未満の温度において粒子状物質検出センサの出力変化が無いかどうかを、確実に調べることができる。これにより、粒子状物質検出センサにおけるPM以外の要因によって引き起こされる出力変化とPMに応じた正常な出力変化とを、精度良く判別することができる。
 第7の発明によれば、ヒータの加熱制御を行う際に、センサ素子部の付着水が粒子状物質検出センサの出力変化の要因であるか否かを判定することができる。これにより、粒子状物質検出センサにおけるPM以外の要因によって引き起こされる出力変化とPMに応じた正常な出力変化とを、その出力変化の原因を特定しつつ正確に判別することができる。
 第8の発明によれば、ヒータの加熱制御を行う際に、センサ素子部の付着燃料または付着有機物が粒子状物質検出センサの出力変化の要因であるか否かを判定することができる。これにより、粒子状物質検出センサにおけるPM以外の要因によって引き起こされる出力変化とPMに応じた正常な出力変化とを、その出力変化の原因を特定しつつ正確に判別することができる。
 第9の発明によれば、ヒータの加熱制御を行う際に、配線部で結露した水が粒子状物質検出センサの出力変化の要因であるか否かを判定することができる。これにより、粒子状物質検出センサにおけるPM以外の要因によって引き起こされる出力変化とPMに応じた正常な出力変化とを、その出力変化の原因を特定しつつ正確に判別することができる。
 第10の発明によれば、所定時間はヒータの温度を保持することで、結露水が粒子状物質検出センサの出力変化の要因となっていないかを、より確実に判定することができる。
 粒子状物質検出センサでPM付着量増大に相当する出力変化があった後に、ヒータ加熱に応じてPM除去温度まで加熱された場合には、センサ素子部のPMは除去されてPM付着量減少に相当する出力変化が認められるはずである。この予想に反して粒子状物質検出センサで出力変化が生じない場合には、そのPM付着量増大に相当する出力変化はPM付着以外の要因で引き起こされたと考えることができる。
 第11の発明によれば、この点を考慮することにより、粒子状物質検出センサにおけるPM以外の要因によって引き起こされる出力変化とPMに応じた正常な出力変化とを精度良く判別することができる。
 第12の発明によれば、粒子状物質検出センサにおいて急な出力変化が認められた場合に、その出力変化が粒子状物質検出センサの異常によるものなのか、それとも粒子状物質検出センサに異常はなくPM量の急激な変化が生じたものなのかを区別するための判定を、速やかに開始することができる。その結果、対処すべきPM量の急激な変化を、速やかに特定することができる。
 第13の発明によれば、粒子状物質検出センサにおけるPM以外の要因によって引き起こされる出力変化とPMに応じた正常な出力変化とを判別することにより、粒子状物質捕集システムの故障を精度良く判定することができる。
 第14の発明によれば、粒子状物質検出センサの出力変化がPMの量に応じたものであるか否かを判別することにより、誤ったPM量検出を抑制することができる。
本発明の実施の形態1にかかる粒子状物質検出センサの異常判定装置の構成を、これが適用される内燃機関とともに示す図である。 本発明の実施の形態1におけるPMセンサを模式的に示す拡大図であり、PMセンサのセンサ素子部の構成を説明するための図である。 PMセンサの出力電圧Vと通過PM量との間の関係を示す図である。 本発明の実施の形態1にかかる粒子状物質検出センサの異常判定装置の動作を説明するための図である。 本発明の実施の形態1においてECU(Electronic Control Unit)が実行するルーチンのフローチャートである。
実施の形態1.
[実施の形態1の構成]
 図1は、本発明の実施の形態1にかかる粒子状物質検出センサの異常判定装置の構成を、これが適用される内燃機関2とともに示す図である。本実施形態にかかる粒子状物質検出センサの異常判定装置は、車両等の移動体用の内燃機関が備えるPMセンサに異常があるか否かを判定するために好適に用いることができる。
 図1の内燃機関2の具体的構成については特に限定は無いが、例えば、複数気筒(4気筒、6気筒その他の2以上の気筒)を備えた各種の気筒配列方式(直列、V型を含む各種の方式)が採用可能であり、例えば、4ストロークレシプロエンジンとしてもよい。本実施形態では、内燃機関2は、ディーゼルエンジンであって車両用内燃機関として一般的である複数気筒エンジンである。内燃機関2は、個々の気筒にそれぞれ吸気弁、排気弁を備え、それらの吸気弁、排気弁を駆動する動弁装置も備えている。また、個々の気筒についてそれぞれ燃料噴射弁も備えられているものとする。
 内燃機関2の吸気ポートには、吸気通路5が連通している。吸気通路5は、例えば、図示しない吸気管、吸気マニホールドその他の各種配管や、各種吸気系センサ(例えば、吸気圧センサ、吸気温センサ、エアフローメータ)が適宜に設けられている。一方、内燃機関2の排気ポートは、排気マニホールドを介して、DPF(Diesel Particulate Filter)4に連通している。DPF4は、内燃機関2から排出される排気ガス(既燃ガス)中の粒子状物質(Perticulate Matter、以下、単に「PM」とも称す)を捕集することができる。
 DPF4の下流には、排気管6が連通している。排気管6には、DPF4を通過した後の排気ガスが流れ込む。排気管6には、PMセンサ10が配置されている。PMセンサ10は、DPF4の下流に位置することにより、DPF4の下流の排気ガス中のPM量を検知することができる。PMセンサ10は、制御回路部19に接続している。制御回路部19は、いわばPMセンサ10のコントローラの役割を有し、PMセンサ10の出力端子と接続するとともに、PMセンサ10からの電気信号をECU(Electronic Control Unit)50へと伝達することができる。
 図1に示すECU50は、内燃機関2の制御するための制御装置として機能する。図示しないが、内燃機関2の吸気系および排気系には、内燃機関の制御に係る各種センサが備えられている。例えばクランク軸の回転角に応じて信号を出力するクランク角度センサが備えられ、クランク角度センサの信号CAからはエンジン回転数(単位時間当たり回転数)や、ピストンの位置によって決まる筒内容積を計算することができる。なお、排気ガス中のPM量は、内燃機関の運転条件に応じて変化する。これを利用して、実施の形態1においては、ECU50が、排気ガスのPM量を、内燃機関2の運転条件(各種センサからの出力も含む)に基づいて推定する推定処理を実行する。ECU50は各センサからの信号を処理し、その処理結果を各アクチュエータ(内燃機関2の制御にかかるアクチュエータ)の操作に反映させている。なお、図示しないが、内燃機関2の排気系には、排気ガスを浄化するための触媒も備えられている。また、必要に応じて、各種排気ガスセンサ(例えば排気のNOx濃度を検出するセンサなど)が取り付けられていても良い。
 図2は、本発明の実施の形態1におけるPMセンサ10を模式的に示す拡大図であり、PMセンサ10のセンサ素子部12の構成を説明するための図である。本実施形態にかかるPMセンサ10は、電気抵抗式のPMセンサである。PMセンサ10は、センサ素子部12を備えている。センサ素子部12は、アルミナ等で形成され一定の厚みを有する本体部に、例えば図2のごとき向かい合う櫛状パターンの電極16a、16bを白金で形成したものである。センサ素子部12における電極16a、16bを形成した部分は、PM含有量の検出が行われる排気ガスが流通する経路に備えられ、排気ガス中のPMと接触する。
 PMセンサ10は、カバー取付部13と、固定部14とを備えている。カバー取付部13には、センサ素子部12周囲と取り囲むカバー部材(図示せず)が取り付けられる。このカバー部材を取り付けた状態でセンサ素子部12が排気ガス経路つまり排気管6へと曝される。排気ガス中のPMがカバー部材内部に侵入して、センサ素子部12における電極16上に付着することにより、櫛場上の電極16a、16bの間の電気抵抗が変化する。このようなPM付着に応じた電気抵抗の変化をPMセンサ10の出力信号(出力電圧)から読み取ることにより、排気ガス中のPM量を検出することができる。なお、実施の形態1では、PMセンサ10が、センサ素子部12へのPM付着量が多いほど出力電圧Vが高くなる出力特性を有している。
 PMセンサ10は、センサ素子部12における電極16a、16bを設けた面の反対の裏面(図2における紙面裏面側)に、ヒータ(図示せず)を備えている。つまり、センサ素子部12は一定の厚みを有しており、センサ素子部12の向かい合う2つの面のうち、一方の面に電極16a、16bが設けられ、他方の面にヒータが設けられている。ヒータは、制御回路部19と接続している。ECU50は、制御回路部19を介して、ヒータの制御(具体的には、通電量の調節によるヒータ加熱温度の制御)を行うことができる。このヒータは、センサ素子部12に付着したPMが除去される温度(以下、「PM除去温度」とも称す)までセンサ素子部12を加熱できる程度の発熱性能を有している。PM除去温度へのヒータ加熱によって、センサ素子部12の付着PMを除去し、センサ素子部12におけるPM検出能力を回復(初期化)することができる。
 固定部14は、排気管6の内壁にPMセンサ10を取り付けるための部分である。固定部14は、具体的には、例えばその表面にネジ部を有し、このネジ部により排気管6の内壁に設けた取付部内へと固定されることができる。固定部14の内部には、端子18a、18bを含む配線部が延びている。端子18aは電極16aと、端子18bは電極16bと、それぞれ接続している。図2では簡略に示しているが、制御回路部19は端子18aおよび18bと接続しており、センサ素子部12におけるPM付着量(センサ素子部12表面のPM堆積量)に応じた電圧変化を受信することができる。ECU50は、制御回路部19を介して、電極16a、16b間の電気抵抗の変化に基づくPM付着量検知を行うことができる。
 なお、実施の形態1においては、内燃機関2の運転中におけるPMセンサ10使用中は、電極部(電極16a、16bの間)に対して電圧が印加される。この電圧印加により、センサ素子部12へのPM付着を促進する静電気力を発生させることができる。
[実施の形態1の動作]
(実施の形態1にかかる異常判定手法の基本動作)
 PMセンサ10が出力変化を示した場合、この出力変化がPMにより正常に生じたものであるときは、その出力変化に基づく検出結果を問題なく利用することができる。しかしながら、本願発明者が鋭意研究により得た知見によると、そのような正常な出力変化とは異なり、PMセンサ10の出力変化がPM以外の種々の要因によっても引き起こされている場合がある。このようなPM以外の要因で生ずる出力変化はいわば異常な出力変化であり、この異常な出力変化はPMの存在や量の検出の根拠として用いることができない。そのような異常な出力変化に基づく検出結果を、PM量等の検出結果として用いることもできない。PM以外の要因によって引き起こされるPMセンサ10の出力変化を、正常なPMセンサ10の出力変化から正確に判別することができないと、PMセンサ10のPM検出の精度低下や誤ったPM検出の発生を招くおそれがある。
 そこで、本発明の実施の形態1にかかる粒子状物質検出センサの異常判定装置においては、次のような手法によって、PMセンサ10におけるPM以外の要因によって引き起こされる出力変化とPMに応じた正常な出力変化とを判別することにした。
 すなわち、PMセンサ10が何らかの出力変化を示した場合にその出力変化がセンサ素子部12へのPM付着に基づくものであるならば、ヒータ加熱に応じてPM除去温度でセンサ素子部12に付着したPMが除去されることにより、PMセンサ10がそのPM除去に応じた出力変化を示すはずである。これに反して、ヒータ加熱に応じてPM除去温度以外の温度域において出力変化が認められた場合には、PMセンサ10での出力変化がセンサ素子部12へのPM付着に起因するものではないと考えることができる。或いは、ヒータ加熱に応じてそのようなPM除去温度での付着PM除去による出力変化が予想どおりに生じなかった場合にも、PMセンサ10での出力変化が、センサ素子部12へのPM付着に起因するものではないと考えることができる。
 このような点を考慮して、実施の形態1では、ヒータを制御してセンサ素子部12を加熱し、このヒータの制御に応じたPMセンサ10の出力変化に基づいてPMセンサ10に異常があるか否かを判定することにした。このような実施の形態1にかかる手法によれば、PMセンサ10の異常判定が必要となったときに、PMセンサ10におけるPM以外の要因によって引き起こされる異常な出力変化と、PMに応じた正常な出力変化とを判別して、PMの検出についての異常の有無を判定することができる。
(実施の形態1にかかる異常判定手法の具体的形態)
 以下、本発明の実施の形態1にかかる粒子状物質検出センサの異常判定装置の、より具体的な形態について説明する。以下の説明では、先ず、実施の形態1において、PMセンサ10について実施の形態1にかかる異常判定を利用する場面の、具体的な例について説明する。続いて、そのような異常判定実行場面において異常判定を効果的に行うことのできる、本発明の好ましい具体的実施形態について説明する。
 図3は、PMセンサ10の出力電圧Vと通過PM量との間の関係を示す図である。図3における通過PM量(mg)は、PMセンサ10取り付け位置を通過したPM量の積算量と相関を有する。この通過PM量は、例えば、内燃機関2の運転条件に基づくPM量推定値を積算することにより求めることができる。PM量推定値は、例えば運転条件に基づくPM排出量の推定を行うことにより求めることができる。
 図3において、符号20が示す線(以下、便宜上、「特性20」とも称す)は、PMセンサ10およびDPF4が正常である場合を想定した出力電圧Vと通過PM量との関係を示している。DPF4が正常である場合(つまり故障していない場合)でも、DPF4の下流には極微量のPMが流出し、このPMがセンサ素子部12に僅かずつ付着(堆積)していく。そうすると、ある程度の長期間を経てこのPMの付着量が増大し、電極16a、16b間の電気抵抗が変化し、図3の特性20のようにPMセンサ10の出力電圧が変化していく。従って、DPF4が正常にPM捕集を行っていても、十分に長い期間が経過した後は、特性20のように、PMセンサ10において付着PM量増大に相当する出力変化が生ずる。
 一方、図3において、符号22が示す線(以下、便宜上、「特性22」とも称す)は、DPF4に故障が発生してPMセンサ10側にPM濃度の高い排気ガスが流出した場合における特性を模式的に示している。正常時を想定した特性20と比べて、特性22は急な立ち上がりを示している。この出力変化がPMにより正常に生じたものであるときは、運転条件から推定したDPF4の通過PM量を大幅に超える量のPMがDPF4下流で検出されているので、DPF4に故障が発生したという判断をすることができる。しかしながら、特性22のような出力変化は、PMセンサ10の出力変化がPM以外の種々の要因によっても引き起こされている可能性がある。つまり、PMセンサ10に特性22のような急な出力変化が認められた場合には、正常時(特性20)とは異なる状態つまり異常状態が発生している可能性がある。このため、特性22の急な出力変化が、PMに応じた正常な出力変化であるか否かを判別することが好ましい。
 本願発明者が鋭意研究の結果として得た知見によれば、本実施形態にかかるPMセンサ10において、図3に示す特性22のような出力変化の発生要因として、少なくとも次の4つが考えられる。
 (A)DPF4の故障による急なPM排出量増加
 (B)PMセンサ10の電極部(電極16a、16b)の電気的なショート
 (C)センサ素子部12における電極部(電極16a、16b)上への、PM以外のもの(例えば、水分、燃料又は有機物)の付着
 (D)PMセンサ10の配線部(固定部14内部)における水分の結露
これらの発生要因(A)~(D)のうち、発生要因(A)により特性22の出力変化が生じた場合には、PMセンサ10自体のPM検出性能は正常であると判断することができる。一方、発生要因(B)~(D)により特性22の出力変化が生じた場合には、PMセンサ10のPM検出性能が正常に働いておらず、PMセンサ10の出力変化はPMに応じた正常な出力変化ではない。
 そこで、発明実施の形態1においては、上記の本願発明者による出力変化発生要因の分析結果を利用して、下記のように定めたヒータ温度制御に伴うPMセンサ10の出力変化に基づいて、PMセンサ10に異常があるか否かを判別する。
 図4は、本発明の実施の形態1にかかる粒子状物質検出センサの異常判定装置の動作を説明するための図である。図4の上段のグラフは、センサ素子部12のヒータ(図示せず)における温度を示しており、縦軸をヒータ温度とし横軸を時間(但し、図4の右方向が時間の進行方向である)としている。図4の下段のグラフは、PMセンサ10の出力電圧を示しており、縦軸を出力電圧値とし横軸を時間としている。図4の上段のグラフと下段のグラフは横軸(時間軸)のスケールを一致させて図示している。前述したように、実施の形態1では、PMセンサ10においてセンサ素子部12へのPM付着量が多いほど出力電圧Vが高くなるものとし、出力電圧Vが立ち上がった状態(高)から図4のヒータ温度制御が開始されているものとする。
 図4において、破線で示したヒータ温度特性「通常PMリセット」は、実施の形態1にかかる異常判定手法を利用せずにPMセンサ10におけるPM除去を行う場合の、ヒータの温度制御の様子を示している。「通常PMリセット」の場合、ヒータONにより速やかにヒータ温度がT3まで上昇し、センサ素子部12の温度がPM除去温度へと到達する。「通常PMリセット」によれば、速やかにPM除去を行い、PMセンサ10のPM検出機能を初期状態に回復させることができる。
 図4において、実線で示したヒータ温度特性は、実施の形態1にかかる実施の形態1にかかる異常判定手法を利用する場合におけるヒータ温度制御の様子を示している。本実施形態では、「通常PMリセット」とは異なり、図4に実線で示すような階段状(段階的)のヒータ温度制御が行われる。
 なお、図4には、実施の形態1にかかるヒータ温度制御の開始以後の、PMセンサ10の出力やヒータ温度が示されている。実施の形態1においては、図4に示すヒータ温度制御の開始前は、PMセンサ10はヒータによる加熱がされていない(つまりECU50はヒータをOFFとしている)。これに応じて、図4のヒータ温度は、温度T1よりも低い温度T0であるものとする。なお、実施の形態1では、ヒータによる加熱がされていない期間におけるセンサ素子部12の温度は、排気ガス温度等に応じたなりゆきに任せた温度である。
 実施の形態1にかかるヒータ温度制御およびPMセンサ10の異常判定の動作は、次に述べるとおりである。図3に例示したようなPMセンサ10の異常判定が必要な状況が発生した場合には、下記の異常判定手法を実施することにより、PMセンサ10の異常判定を行うことができる。
(温度T1)
 先ず、ヒータがONとされて、ヒータ温度は温度T1へと制御される。温度T1は、「センサ素子部12に付着した水分」を蒸発させるために十分なヒータ温度である。温度T1は、具体的には、例えば、150℃から200℃程度の温度範囲内において適宜に設定した温度とすることができる。
 このように温度T1を定めた場合には、特性22が「センサ素子部12の電極部への水分付着」により生じた出力変化であるときには、ヒータ温度が温度T1となるのに応じて電極部に付着した水分が除去される。この除去に応じて、PMセンサ10の出力が高から低へと変化する。その結果、PMセンサ10の出力は、ヒータ温度が温度T1となるのに応じて図4の出力変化S1のように変化する。温度T1に応じた出力変化S1が検出されたか否かを調べることにより、上述した発生要因(C)のうち「電極部への水分の付着」を検査することができる。
 なお、実施の形態1では、一定時間(図4の「T1保持時間」)はヒータを温度T1に保持することにしている。これにより、出力変化S1の有無をより正確に検出することができる。
 一方、温度T1において出力変化S1が認められなかった場合には、図3の特性22は「センサ素子部12の電極部への水分付着」により生じた出力変化ではないという判断をすることができる。
(温度T2)
 温度T1に応じた出力変化S1が認められない場合は、温度T1から温度T2へとヒータ温度を上昇させる。温度T2は、センサ素子部12に付着した燃料を蒸発させるのに十分なヒータ温度である。温度T2は、温度T1よりも高い温度であり(T1<T2)、具体的には、例えば、300℃程度の温度に設定することができる。或いは、内燃機関2に使用する燃料に応じてセンサ素子部12の付着燃料の蒸発温度がある程度相違する場合には、それを考慮して、付着燃料の蒸発温度範囲内において適宜に設定することができる。
 このように温度T2を定めた場合には、特性22が「センサ素子部12の電極部への燃料又は有機物の付着」により生じた出力変化であるときには、ヒータ温度が温度T2となるのに応じて電極部の燃料又は有機物が除去される。この除去に応じて、PMセンサ10の出力が高から低へと変化する。その結果、PMセンサ10の出力は、ヒータ温度が温度T1からT2へと上昇するのに応じて、図4の出力変化S2のように変化する。温度T2に応じた出力変化S2が検出されたか否かを調べることにより、上述した発生要因(C)のうち「電極部への燃料又は有機物の付着」を検査することができる。
 一方、温度T1からT2への温度上昇の際に出力変化S2が認められなかった場合には、図3の特性22は「センサ素子部12の電極部への燃料又は有機物の付着」により生じた出力変化ではないという判断をすることができる。
(T2保持時間)
 実施の形態1では、温度T2に応じた出力変化S2が認められない場合には、温度T2へのヒータ温度制御の後の一定時間(図4の「T2保持時間」)はヒータを温度T2に保持する。前述した発生要因(D)は、「PMセンサ10の配線部(固定部14内部)で結露した水分」によってPMセンサ10に特性22のような出力変化が生ずるというものである。ヒータ温度が温度T2に到達した後、この結露した水分は一気に蒸発するとは限らない。徐々に水分が蒸発していき、ある程度の時間が経過してから結露した水分が蒸発して、PMセンサ10の出力が正常に戻る(実施の形態1では低から高へと増大する)場合がある。図4における出力変化S3は、その様な場合の一例を示している。このように、ヒータ温度が温度T2に至った後ある程度の時間が経過してからでないと出力変化S3が生じない場合があることを想定して、実施の形態1では、「T2保持時間」が「PMセンサ10の配線部(固定部14内部)に結露した水を蒸発させるための十分な長さ」に定められている。これにより、上述した発生要因(D)についての検査を精度良く行うことができる。
 一方、T2保持時間の時間内において出力変化S3が認められなかった場合には、図3の特性22は「PMセンサ10の配線部(固定部14内部)で結露した水分」により生じた出力変化ではないという判断をすることができる。
(温度T3)
 実施の形態1では、T2保持時間中に出力変化S3が認められなかった場合には、温度T2から温度T3へとヒータ温度を上昇させる。実施の形態1においては、温度T3は、前述したようにセンサ素子部12の温度をPM除去温度へと到達させるヒータ温度であり、「通常PMリセット」の制御における目標温度と同じ温度である。特性22が「センサ素子部12のPM付着」により生じた出力変化であるときには、ヒータ温度が温度T2となるのに応じて電極部のPMが除去される。この除去に応じて、PMセンサ10の出力が高から低へと変化する。その結果、PMセンサ10の出力は、ヒータ温度が温度T2からT3へと上昇するのに応じて、図4の出力変化S4のように変化する。温度T2からT3へのヒータ温度制御に応じた出力変化S4が検出されたか否かを調べることにより、PMセンサ10がPM付着に応じた出力変化を正常に示したかどうかを検査することができる。
 また、PMセンサ10の出力変化が正常なものであったという結果が得られたため、特性22が、発生要因(A)つまり「DPF4の故障による急なPM排出量増加」により生じた特性であると判断することもできる。
 一方、図4に破線で示す出力S5のように、温度T3へのヒータ温度制御をしても未だPMセンサ10の出力電圧が高である場合には、PMが除去されたにもかかわらずPMセンサ10の出力に変化が無いという事態が発生している。このような事態は、PMセンサ10におけるハードウェア的な故障が生じている可能性が考えられる。実施の形態1では、この場合には、上述した発生要因(B)「PMセンサ10の電極部(電極16a、16b)の電気的なショート」であると判断する。
 温度T1,T2,T3を上記の各温度に定めるに当たっては、上述した指針に従って、実験を行ったりPMセンサ製品の個々具体的な仕様を考慮したりしつつ定めればよい。そして、ECU50上において、或いは、ヒータ制御用の制御回路がある場合はその制御回路上で、図4の上段において示すような階段状のヒータ温度制御を実行させればよい。
[実施の形態1の具体的処理]
 以下、図5を用いて、本発明の実施の形態1にかかる粒子状物質検出センサの異常判定装置において実行される具体的処理の内容を説明する。図5は、本発明の実施の形態1においてECU50が実行するルーチンのフローチャートである。このルーチンは、内燃機関2の運転中に実行される。なお、本ルーチンは、所定時間毎に繰り返し実行されるものとする。
 図5に示すルーチンでは、先ず、ECU50が、所定のPMセンサ出力が発現したか否かを判定する処理を実行する(ステップS100)。このステップでは、ECU50が、前述した図3の特性22のような急な出力変化が生じたか否かを判定する所定の判定処理を実行する。この判定処理では、PMセンサ10の出力電圧の変化率が所定値以上に大きい、つまりPMセンサ10の出力が所定変化率以上に急な変化を示しているか否かが判定される。ここでいう出力電圧の変化率は、「単位PM通過量あたりの出力電圧変化量」の値を用いることができる。単位PM通過量としては、先ず、図3の説明でも述べたように内燃機関2の運転条件に基づいてPM量推定値を推定して、さらに、このPM量推定値を用いてDPF4下流の推定PM通過量を計算して、この計算により得た数値を用いることができる。PM量を推定する推定処理は、図5のルーチンとは別にECU50上で実行すればよい。単位PM通過量あたりの出力電圧変化量に基づいてPMセンサ10の出力電圧の変化率を評価することにより、PM発生量が異なる様々な場面(つまり運転条件等の異なる)に応じて、異常判定を必要とするほどにPMセンサ10の出力変化が急峻であるか否かを適切に判定することができる。なお、変形例として、単位PM通過量あたりの出力電圧変化量に代えて、単位時間あたりの出力電圧変化量を調べてもよい。
 ステップS100において所定のPMセンサ出力が発現していない場合には、その後今回のルーチンが終了し、処理がリターンする。
 ステップS100の判定結果が肯定(Yes)であった場合には、続いて、ECU50が、PMセンサ10に対する印加電圧をOFFとする処理を実行する(ステップS102)。この処理により、センサ素子部12へのPM付着促進が停止される。ステップS102の時点で、PMセンサ10の出力は「高」となっており、PM付着量増大を示す或いは有意な量のPM検出を示している。
 次に、ECU50が、ヒータ温度をT1に制御する処理を実行する(ステップS104)。このステップでは、ECU50が、OFFとされていたヒータをONにするとともに、ヒータ温度がT1になるようにヒータへの通電量を調節する処理を実行する。
 次に、ECU50が、PMセンサ10に所定のセンサ出力変化(S1)があったか否かを判定する処理を実行する(ステップS106)。このステップでは、ECU50が、温度T1へのヒータ温度上昇に応じて、前述した図4の出力変化S1のような出力電圧低下があったか否かを判定する処理を実行する。具体的には、例えば、ステップS100で高となったPMセンサ10の出力電圧が、高のままであるか否かを判定すればよい。なお、実施の形態1においては、図4の説明でも述べたように、所定のT1保持時間だけ温度T1を保持することにより、出力変化S1の有無を確実に検査するものとする。
 ステップS106においてセンサ出力変化が認められなかった場合(判定結果がNoの場合)には、次に、ECU50が、ヒータ温度をT2に制御する処理を実行する(ステップS108)。このステップにおいて、ECU50が、図4に示す段状の温度特性のうち温度T1からT2へのヒータ温度上昇制御を実現するように、ヒータへの通電量を調節する処理を実行する。
 次に、ECU50が、PMセンサ10に所定のセンサ出力変化(S2)があったか否かを判定する処理を実行する(ステップS110)。このステップでは、ECU50が、温度T2へのヒータ温度上昇に応じて、前述した図4の出力変化S2のような出力電圧低下があったか否かを判定する処理を実行する。具体的には、例えば、PMセンサ10の出力電圧が高のままであるか否かを判定すればよい。
 ステップS110においてセンサ出力変化が認められなかった場合(判定結果がNoの場合)には、ECU50が、温度T2を一定時間保持するための処理を実行する(ステップS112)。ステップS112の処理は、「ヒータ温度をT2とした状態で、温度T2への制御後の時間が所定の閾値を越えるまではヒータ温度変化(ヒータ温度上昇)を控えるため」の処理である。ステップS112の処理は、前述した「T2保持時間」にかかる異常判定を実施するための処理の一部である。
 このステップの後、ECU50が、再び、PMセンサ10に所定のセンサ出力変化(S3)があったか否かを判定する処理を実行する(ステップS114)。このステップでは、ECU50が、温度T2の保持期間中に、前述した図4の出力変化S3のような出力電圧低下があったか否かを判定する処理を実行する。具体的には、例えば、PMセンサ10の出力電圧が高のままであるか否かを判定すればよい。
 ステップS114においてセンサ出力変化が認められなかった場合(判定結果がNoの場合)には、次に、ECU50が、ヒータ温度をT3に制御する処理を実行する(ステップS116)。このステップにおいて、ECU50が、図4に示す段状の温度特性のうち温度T2からT3へのヒータ温度上昇制御を実現するように、ヒータへの通電量を調節する処理を実行する。
 次に、ECU50が、PMセンサ10に所定のセンサ出力変化(S4)があったか否かを判定する処理を実行する(ステップS118)。このステップでは、ECU50が、温度T3へのヒータ温度上昇に応じて、前述した図4の出力変化S4のような出力電圧低下があったか否かを判定する処理を実行する。具体的には、例えば、PMセンサ10の出力電圧が高のままであるか否かを判定すればよい。
 ステップS118においてセンサ出力変化が認められなかった場合(判定結果がNoの場合)には、ECU50が、センサ故障(電極部ショート)が発生しているとの異常判定結果を出力する処理を実行する(ステップS122)。PMセンサ10におけるPM付着量増大に相当する出力変化(ステップS100における出力発現)があった後に、ヒータ加熱に応じてセンサ素子部12がPM除去温度まで加熱された場合には、センサ素子部12のPMは除去されてPM付着量減少に相当する出力変化S4が認められるはずである。この予想に反してPMセンサ10で出力変化S4が生じない場合には、そのPM付着量増大に相当する出力変化はPM付着以外の要因で引き起こされたと考えることができる。実施の形態1によれば、この点を考慮することにより、PMセンサ10におけるPM以外の要因(具体的には、実施の形態1では電極部ショートであるとする)によって引き起こされる出力変化とPMに応じた正常な出力変化とを精度良く判別することができる。その後今回のルーチンが終了し、処理がリターンする。
 これとは逆に、ステップS118においてセンサ出力変化が認められた場合(判定結果がYesの場合)には、ECU50が、センサ出力がOKであるという判定結果を出力する処理を実行する(ステップS120)。これにより、PMセンサ10は正常であるという判定結果が得られる。なお、この判定結果の後、PMセンサ10に付着したPMの除去が必要なときには、前述した「通常PMリセット」を実施してもよい。
 この後、更に、ECU50が、DPF4に故障が発生しているという判定結果を出力する処理を実行する(ステップS121)。図5のルーチンでは、始めのステップS100において、ECU50が、前述した図3の特性22のような急な出力変化が生じたか否かを判定する所定の判定処理を実行している。PMセンサ10が正常であるならば、ステップS100において発現した急な出力変化は、「DPF4の故障による急なPM排出量増加」により生じた出力変化であると判断できる。実施の形態1によれば、このステップS121でDPF4に故障が発生しているとの判定結果を出力することができるので、DPF4の故障に対して迅速な対処を取ることができる。その後今回のルーチンが終了し、処理がリターンする。
 一方、前述したステップS106、S110またはS114において、センサ出力変化が認められた場合(判定結果がYesの場合)には、ECU50が、センサ出力が異常であるという判定結果を出力する処理を実行する(ステップS124)。このステップS124において、ステップS100で発現したPMセンサ10の出力は異常なものであったという判定結果を出力することができる。
 続いて、ECU50が、「通常PMリセット」を実施するための処理を実行する(ステップS126)。このステップでは、ECU50がヒータ温度をT3に設定して、センサ素子部12が図4に示した破線で示したヒータ温度特性「通常PMリセット」に沿って速やかに加熱される。これにより、PMを含めたPMセンサ10の付着物質が除去され、PMセンサ10のPM検出能力を回復することができる。
 ステップS126の後、ECU50は、ステップS102でOFFにした印加電圧をONとする処理を実行する(ステップS128)。その後今回のルーチンが終了し、処理がリターンする。
 以上の処理によれば、ヒータの制御に応じたPMセンサ10の出力変化に基づいて、PMセンサ10に異常があるか否かを判定することができる。そして、図3の特性22のような急峻な出力変化の発現によりPMセンサ10の異常判定が必要となったときに、PMセンサ10におけるPM以外の要因によって引き起こされる異常な出力変化と、PMに応じた正常な出力変化とを判別して、PMの検出についての異常の有無を判定することができる。
 実施の形態1にかかる異常判定装置によれば、ECU50が、PMセンサ10においてセンサ素子部12(或いは電極部)のPM付着量増大に相当する出力変化(ステップS100)があった後に、センサ素子部12が加熱されるようにヒータを制御する処理を実行することができる。さらに、ECU50が、ヒータの制御に応じたセンサ素子部12の加熱の際、センサ素子部12がPM除去温度T3未満にある間(T0以上かつT3未満の温度域にある間)に、センサ素子部12のPM付着量減少に相当する出力変化(S1、S2、S3)があったか否かに基づいて、PMセンサ10に異常があるか否かを判定する処理を実行することができる。PMセンサ10でPM付着量増大に相当する出力変化があった後に、ヒータ加熱に応じてPM除去温度未満であるにもかかわらずPM付着量減少に相当する出力変化があった場合には、そのPM付着量増大に相当する出力変化はPM付着以外の要因で引き起こされたと考えることができる。この点を考慮することにより、PMセンサ10におけるPM以外の要因によって引き起こされる出力変化とPMに応じた正常な出力変化とを精度良く判別することができる。
 尚、上述した実施の形態1においては、PMセンサ10が、前記第1の発明における「粒子状物質検出センサ」に、センサ素子部12が、前記第1の発明における「センサ素子部」に、配線部(端子18a、18bを含む)および制御回路部19が、前記第1の発明における「出力手段」に、センサ素子部12裏面のヒータ(図示せず)が、前記第1の発明における「ヒータ」に、それぞれ相当している。
 また、上述した実施の形態1においては、ECU50が図5のルーチンの上記ステップS104、S108、S112およびS116の処理を実行することにより、前記第1の発明における「ヒータ制御手段」が実現され、ECU50が、上記ステップS106、S110、S114、S118、S120およびステップS124の処理を実行することにより、前記第1の発明における「判定手段」が実現されている。
 また、上述した実施の形態1においては、ECU50が図5のルーチンの上記ステップS104およびS106のヒータ温度制御を実行することにより、または、ECU50がS108、S110およびS112のヒータ温度制御を実行することにより、前記第3の発明における「特定温度ヒータ制御手段」が実現されている。
 また、上述した実施の形態1においては、ECU50が上記ステップS104、S108、S112およびS116の処理を実行することにより、図4に示したようにT0→T1→T2→T3への3段階の温度制御が行われている。この3段階の温度制御により、前記第4の発明における「段階的ヒータ制御手段」が実現されている。
 また、上述した実施の形態1では、ECU50が図5のルーチンの上記ステップS104およびS106のヒータ温度制御を実行することにより、前記第5の発明における「第1制御」が実現され、ECU50がステップS108、S110およびS112のヒータ温度制御を実行することにより、前記第5の発明における「第2制御」が実現されている。
 なお、実施の形態1においては、PMセンサ10における出力変化S1、S2およびS3が、前記第6の発明における「第1の出力変化」に、PMセンサ10における出力変化S4が、前記第6の発明における「第2の出力変化」に、それぞれ相当している。
 また、上述した実施の形態1では、PMセンサ10が、前記第9の発明における「PMセンサ」に、センサ素子部12が、前記第9の発明における「センサ素子部」に、固定部14が、前記第9の発明における「固定部」に、端子18a、18bを含む配線部が、前記第9の発明における「配線部」に、それぞれ相当している。
 また、上述した実施の形態1では、ECU50がステップS100の処理を実行することにより、前記第12の発明における「判定開始手段」が実現されている。
 また、上述した実施の形態1では、DPF4が、前記第13の発明における「パティキュレートフィルタ」に、PMセンサ10が、前記第13の発明における「PMセンサ」に、それぞれ相当しており、ECU50が図5のルーチンのステップS121を実行することにより、前記第13の発明における「粒子状物質捕集システムの故障判定装置」の「故障判定手段」が実現されている。
[実施の形態1の変形例]
 実施の形態1にかかるハードウェア構成では、粒子状物質検出センサとして、電気抵抗式のPMセンサ10が用いられている。PMセンサ10は出力電圧の大きさによって、PM付着量を表したり有意な量のPM付着発生を表したりすることができる。しかしながら、本発明はこれに限られるものではない。PM付着に応じてその出力(出力電圧、出力電流その他の出力信号)を変化させることができ、かつ、ヒータでその付着PM除去することのできる各種のPMセンサを用いることができる。例えば、電気抵抗式以外の、静電容量式のPMセンサを用いても良い。また、実施の形態1ではPM付着量増大に応じて出力電圧が「低→高」と変化するPMセンサであったが、本発明はこれに限られない。個々のセンサの回路構成上の違いなどから、これとは反対に、実施の形態1ではPM付着量増大に応じて出力電圧が「高→低」と変化するPMセンサであってもよい。このようなPMセンサに対しても、ヒータ温度制御に応じた出力変化の有無を判定すればよく、本発明を適用可能である。
 実施の形態1では、温度T0→T1→T2→T3という3段階のヒータ温度制御を行った。しかしながら、本発明はこのようなヒータ温度制御に限定されるものではない。2段階としてもよいし、逆に3段階よりも多い段数(4段階以上)としてもよい。例えば、実施の形態1において、3段階のヒータ温度制御を全て行うのではなく、そのうちの1つを省略しても良い。具体的には、例えば、ヒータ温度制御を温度T1への制御のみ行い、出力変化S1があるか否かの判定のみを行ってもよい。あるいは、ヒータ温度制御を温度T2への制御のみ行い、出力変化S2があるか否かを判定するのみとしてもよい。また、T2保持時間を省略してもよい。この省略により、PMセンサ10の異常判定に長い時間がかかってしまいDPF4の故障発見が遅れてしまうのを防ぐこともできる。また、温度T3のみについてのヒータ温度制御を行い、PM除去に伴う正常な出力変化S4が生じたか否かを判定してもよい。
 また、本発明は、図4に示すように温度上昇と温度保持を交互に行う実施形態に限られるものではない。ヒータ温度(ヒータ通電量)を目標値に到達させた後に制御値(通電量)を一定に固定する場合に限られない。T0~T3のそれぞれの間の区間において、緩やかな温度変化速度で、直線的または曲線的に温度(目標温度)を上昇させたり逆に低下させる制御を行っても良い。その場合には、各区間(例えばT1とT2の間、またはT2とT3の間)での温度変化速度は、同じでもよく、或いは異なってもよい。
 また、実施の形態1においては、ヒータ温度制御を行う際に、T1、T2、T3のそれぞれの温度を目標温度にヒータ通電量を調節する制御形態であったが、本発明はこれに限られるものではない。例えば、「出力変化S1が生じる温度以上であってかつ出力変化S2が生じる温度未満の温度範囲」や「出力変化S2が生じる温度以上であってかつ出力変化S4が生じる温度未満の温度範囲」の内側にヒータ温度が留まるように、ヒータの通電量を調節する制御形態であってもよい。
 また、本発明におけるヒータ温度制御は、実施の形態1の図4に示すような階段状の温度上昇制御に限定されるものではない。ヒータ温度を上昇させていく過程で、「センサ素子部12へのPM以外の付着物質」の除去に応じた出力変化S1、S2や、「固定部14内の配線部での結露水」の除去に応じた出力変化S3を、PM除去に応じた出力変化S4と区別できればよい。よって、センサ素子部12が温度T3に達する前におけるPMセンサ10の出力変化S1、S2、S3と、温度T3への到達した際におけるPM除去に応じたPMセンサの出力変化とを区別できる程度の温度上昇速度(温度上昇率)でヒータの温度を上昇させるように、ヒータの通電量を増加、調節してもよい。この場合、必ずしもヒータ温度特性が図4のように明確な階段状とならなくともよい。
 なお、図5のルーチンでは、ECU50が、ステップS124においてセンサ出力が異常であるという判定結果を出力する処理を実行した。このステップS124において、単にセンサ出力が異常であるという判定結果のみならず、「PMセンサ10においてどのような異常が発生したのか」という情報を判定結果として出力する処理であってもよい。すなわち、ステップS106、S108およびS114のいずれの判定処理で出力変化が認められたのかに応じて、ステップS124の処理が、「PMセンサ10における異常の種類を示す情報」を判定結果として出力する処理であってもよい。
 ステップS106の判定結果がYesであれば出力変化S1が、ステップS110の判定結果がYesであれば出力変化S2が、ステップS114の判定結果がYesであれば出力変化S3が、それぞれ発生している。既に図4を用いて説明したように、PMセンサ10に生じる異常は、各出力変化S1、S2、S3に応じて発生要因(C)または(D)に区別することができる。そこで、ステップS124において、ECU50が、ステップS106の判定結果がYesの場合(出力変化S1検出)には「センサ素子部12の電極部への水分付着」の異常があったことを、ステップS110の判定結果がYesの場合(出力変化S2検出)には「センサ素子部12の電極部への燃料又は有機物の付着」の異常があったことを、ステップS114の判定結果がYesの場合(出力変化S3検出)には「PMセンサ10の配線部(固定部14内部)で結露した水分」による異常があったことを、それぞれ判定結果として出力してもよい。これにより、異常なPMセンサ出力変化と正常なPMセンサ出力変化とを正確に判別し、かつその異常の種類を特定することができる。
 上述した実施の形態1では、DPF4の下流にPMセンサ10を設けてDPF4下流のPM検出を行う方式の粒子状物質捕集システムに対して、本発明を適用した。実施の形態1のシステムは、DPF4の故障検出にPMセンサ10を利用し、排気ガスのPM量の検出については内燃機関2の運転条件に基づく推定値を利用するものである。しかしながら、本発明はこのような適用形態に限られるものではない。
 従来、内燃機関2の排気ポートからDPF4までの区間(つまりDPF4の上流区間)にPMセンサを設けて、このPMセンサの検出値に基づいて排気ガスのPM量を検知するシステムも知られている。このようなシステムに対して、本発明にかかる粒子状物質検出センサの異常判定装置を適用することができる。
 具体的には、本変形例では、例えば、図1に示すハードウェア構成において、内燃機関2とDPF4の間に設けたPMセンサ(PM付着量に応じて出力を変化させるものであれば良く、PMセンサ10と同種類の電気抵抗式でもよい)の出力変化が正常かどうかを判断するために図5に示すルーチンを実行する。この変形例では、排気管6が、前記第14の発明における「PM含有量の検出が行われる排気ガスが流通する経路」に、PMセンサ10が、前記第14の発明における「PMセンサ」に、それぞれ相当している。この場合、センサ出力OK判定(ステップS120)がなされた場合には、そのPMセンサの出力値に基づいてPM量を検知(計算処理等の実行)を行い、その一方で、センサ出力異常(ステップS124)との判定がなされた場合には、そのPMセンサの出力値は使用を禁止する。なお、本変形例では、図5のルーチンのうちステップS121は削除する。これにより、前記第14の発明における「出力判定手段」および「PM量検知手段」が実現される。
2 内燃機関
4 DPF(Diesel Particulate Filter)
5 吸気通路
6 排気管
10 PMセンサ
12 センサ素子部
13 カバー取付部
14 固定部
16a、16b 電極
18a 端子
18a 配線
18b 端子
19 制御回路部

Claims (14)

  1.  粒子状物質検出センサの異常判定装置であって、
     前記粒子状物質検出センサは、内燃機関の排気通路に備えられたセンサ素子部と、前記センサ素子部へのPMの付着量に応じて出力を変化させる出力手段と、前記センサ素子部に付着したPMが前記センサ素子部から除去される温度であるPM除去温度まで前記センサ素子部を加熱可能なヒータと、を備えており、
     前記異常判定装置が、
     前記センサ素子部が加熱されるように前記ヒータを制御するヒータ制御手段と、
     前記ヒータ制御手段による前記ヒータの制御に応じた前記粒子状物質検出センサの出力変化に基づいて、前記粒子状物質検出センサに異常があるか否かを判定する判定手段と、
     を備えることを特徴とする粒子状物質検出センサの異常判定装置。
  2.  前記ヒータ制御手段は、
     前記粒子状物質検出センサにおいて前記センサ素子部のPM付着量増大に相当する出力変化があった後に、前記センサ素子部が加熱されるように前記ヒータを制御する手段を含み、
     前記判定手段は、
     前記ヒータの制御に応じた前記センサ素子部の加熱の際、前記センサ素子部が前記PM除去温度未満にあるときに前記粒子状物質検出センサにおいて前記センサ素子部のPM付着量減少に相当する出力変化があったか否かに基づいて、前記粒子状物質検出センサに異常があるか否かを判定する手段を、
     含むことを特徴とする請求項1に記載の粒子状物質検出センサの異常判定装置。
  3.  前記ヒータ制御手段は、
     前記センサ素子部の温度を、前記PM除去温度よりも低く定めた少なくとも1つの所定温度に所定時間保持するように、前記ヒータを制御する特定温度ヒータ制御手段と、
     前記センサ素子部の温度を、所定時間、上限の温度が前記PM除去温度よりも低い所定温度域内に保持するように、前記ヒータを制御する特定温度範囲ヒータ制御手段と、
    のうち少なくとも一方を含むことを特徴とする請求項1または2に記載の粒子状物質検出センサの異常判定装置。
  4.  前記特定温度ヒータ制御手段は、少なくとも2段の階段状の温度変化を経て前記センサ素子部が前記PM除去温度に到達するように前記ヒータの制御を行う段階的ヒータ制御手段を、含むことを特徴とする請求項1乃至3のいずれか1項に記載の粒子状物質検出センサの異常判定装置。
  5.  前記段階的ヒータ制御手段は、
     前記センサ素子部へ付着した水が除去される温度以上かつ前記センサ素子部へ付着した燃料が除去される温度未満の温度である第1温度に前記センサ素子部が所定時間保持されるように、前記ヒータを制御する第1制御と、
     前記センサ素子部への付着燃料または付着有機物が除去される温度以上かつ前記PM除去温度未満の温度である第2温度に前記センサ素子部が所定時間保持されるように、前記ヒータを制御する第2制御と、
     のうち少なくとも一方の制御を実行するものであることを特徴とする請求項4に記載の粒子状物質検出センサの異常判定装置。
  6.  前記ヒータ制御手段は、
     前記センサ素子部が前記PM除去温度に達する前における前記粒子状物質検出センサの出力変化である第1の出力変化と、前記センサ素子部が前記PM除去温度に到達した際における前記センサ素子部でのPM除去に応じた前記粒子状物質検出センサに応じた出力変化である第2の出力変化と、を区別できる程度の温度上昇速度で前記センサ素子部の加熱を行うように、前記ヒータの制御を行う手段を、
     含むことを特徴とする請求項1乃至5のいずれか1項に記載の粒子状物質検出センサの異常判定装置。
  7.  前記判定手段は、
     前記ヒータ制御手段による前記ヒータの制御に応じて前記センサ素子部の付着水が除去される程度の温度域において前記粒子状物質検出センサが示した出力変化に基づいて、前記粒子状物質検出センサに異常があるか否かを判定する手段を、
     含むことを特徴とする請求項1乃至6のいずれか1項に記載の粒子状物質検出センサの異常判定装置。
  8.  前記判定手段は、
     前記ヒータ制御手段による前記ヒータの制御に応じて前記センサ素子部の付着燃料が除去される程度の温度域または前記センサ素子部の付着有機物が除去される程度の温度域において前記粒子状物質検出センサが示した出力変化に基づいて、前記粒子状物質検出センサに異常があるか否かを判定する手段を、
     含むことを特徴とする請求項1乃至7のいずれか1項に記載の粒子状物質検出センサの異常判定装置。
  9.  前記粒子状物質検出センサは、
     前記内燃機関の排気管に接続し、前記センサ素子部を前記排気管内に固定する固定部と、
     前記固定部内に設けられ、前記センサ素子部の信号を外部へ伝達する配線を含む配線部と、
     を有し、
     前記判定手段は、
     前記ヒータ制御手段による前記ヒータの制御に応じて前記配線部の結露水が除去される程度の温度域において前記粒子状物質検出センサが示した出力変化に基づいて、前記粒子状物質検出センサに異常があるか否かを判定する結露判定手段を、
     含むことを特徴とする請求項1乃至8のいずれか1項に記載の粒子状物質検出センサの異常判定装置。
  10.  前記ヒータ制御手段は、
     前記配線部に結露した水が除去される所定温度に又は下限の温度が前記配線部に結露した水が除去される温度以上の所定温度域内に前記センサ素子部の温度が所定時間保持されるように、前記ヒータの温度を制御する手段を含み、
     前記結露判定手段は、
     前記所定時間内における前記粒子状物質検出センサが示した出力変化に基づいて、前記粒子状物質検出センサに異常があるか否かを判定する手段を含むことを特徴とする請求項9に記載の粒子状物質検出センサの異常判定装置。
  11.  前記ヒータ制御手段は、
     前記センサ素子部を前記PM除去温度まで加熱するように、前記ヒータを制御する手段を含み、
     前記判定手段は、
     前記センサ素子部が前記PM除去温度まで加熱された際の前記粒子状物質検出センサの出力変化に基づいて、前記粒子状物質検出センサに異常があるか否かを判定する手段を、
    含むことを特徴とする請求項1乃至10のいずれか1項に記載の粒子状物質検出センサの異常判定装置。
  12.  前記異常判定装置は、
     前記粒子状物質検出センサの出力が所定変化率以上の急な変化を示したら、前記ヒータ制御手段に前記ヒータの制御を実行させ且つ前記判定手段に異常判定を実行させる判定開始手段を含むことを特徴とする請求項1乃至11のいずれか1項に記載の粒子状物質検出センサの異常判定装置。
  13.  粒子状物質捕集システムの故障判定装置であって、
     前記粒子状物質捕集システムが、
     内燃機関の排気通路に設けられたパティキュレートフィルタと、
     前記排気通路における前記パティキュレートフィルタの下流に備えられたセンサ素子部と、前記センサ素子部へのPMの付着量に応じて出力を変化させる出力部と、前記センサ素子部に付着した前記PMが前記センサ素子部から除去される温度であるPM除去温度まで前記センサ素子部を加熱可能なヒータとを有する粒子状物質検出センサと、
     を備え、
     前記故障判定装置が、
     前記粒子状物質検出センサの出力に前記パティキュレートフィルタの故障時に相当するPM量増大を示す出力変化があった後に、前記粒子状物質検出センサについての異常検出を行う請求項1乃至12のいずれか1項に記載の粒子状物質検出センサの異常判定装置と、
     前記異常判定装置により前記粒子状物質検出センサが異常ではないと判定された場合に、前記パティキュレートフィルタに故障が発生していると判定する故障判定手段と、
     を備えることを特徴とする粒子状物質捕集システムの故障判定装置。
  14.  排気ガスの粒子状物質検出装置であって、
     PM含有量の検出が行われる排気ガスが流通する経路に備えられたセンサ素子部、前記センサ素子部へのPMの付着量に応じて変化する出力を発する出力手段、および前記センサ素子部に付着した前記PMが前記センサ素子部から除去される温度であるPM除去温度まで前記センサ素子部を加熱可能なヒータを備えた粒子状物質検出センサと、
     前記粒子状物質検出センサにおいてPM量増大を示す出力変化があった後に、前記粒子状物質検出センサについての異常検出を行う請求項1乃至12のいずれか1項に記載の粒子状物質検出センサの異常判定装置と、
     前記異常判定装置による前記粒子状物質検出センサについての異常判定の結果に基づいて、前記粒子状物質検出センサにおけるPM量増大を示す前記出力変化を前記排気ガスのPM量検知に用いるか否かを決定する出力判定手段と、
     前記出力判定手段で前記排気ガスのPM量検知に用いるとの決定がされた前記粒子状物質検出センサの前記出力変化に基づいて、前記排気ガスのPM量を検知するPM量検知手段と、
     を備えることを特徴とする排気ガスの粒子状物質検出装置。
PCT/JP2011/054359 2011-02-25 2011-02-25 粒子状物質検出センサの異常判定装置 WO2012114518A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/509,894 US9151204B2 (en) 2011-02-25 2011-02-25 Device for detecting particulate matter in exhaust gas
PCT/JP2011/054359 WO2012114518A1 (ja) 2011-02-25 2011-02-25 粒子状物質検出センサの異常判定装置
DE112011100156.8T DE112011100156B8 (de) 2011-02-25 2011-02-25 Abnormitätsbestimmungsvorrichtung für einen partikelerfassungssensor
JP2012519267A JP5316710B2 (ja) 2011-02-25 2011-02-25 粒子状物質検出センサの異常判定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/054359 WO2012114518A1 (ja) 2011-02-25 2011-02-25 粒子状物質検出センサの異常判定装置

Publications (1)

Publication Number Publication Date
WO2012114518A1 true WO2012114518A1 (ja) 2012-08-30

Family

ID=46720334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054359 WO2012114518A1 (ja) 2011-02-25 2011-02-25 粒子状物質検出センサの異常判定装置

Country Status (4)

Country Link
US (1) US9151204B2 (ja)
JP (1) JP5316710B2 (ja)
DE (1) DE112011100156B8 (ja)
WO (1) WO2012114518A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014059218A (ja) * 2012-09-18 2014-04-03 Toyota Motor Corp Pmセンサの異常検出装置および方法
WO2015025450A1 (ja) * 2013-08-21 2015-02-26 日本特殊陶業株式会社 微粒子検知システム
WO2015025456A1 (ja) * 2013-08-21 2015-02-26 日本特殊陶業株式会社 微粒子検知システム
JP2015108619A (ja) * 2013-10-25 2015-06-11 日本特殊陶業株式会社 微粒子測定システム
JP2015222217A (ja) * 2014-05-23 2015-12-10 株式会社日本自動車部品総合研究所 粒子状物質検出装置
JP2016098795A (ja) * 2014-11-26 2016-05-30 いすゞ自動車株式会社 診断装置及びセンサ
JP2016196835A (ja) * 2015-04-02 2016-11-24 トヨタ自動車株式会社 パティキュレートフィルタの異常診断装置
JP2016196832A (ja) * 2015-04-02 2016-11-24 トヨタ自動車株式会社 パティキュレートフィルタの異常診断装置
WO2017002942A1 (ja) * 2015-07-01 2017-01-05 株式会社デンソー フィルタ装置に異常が発生したか否かを判定する装置
JP2017078371A (ja) * 2015-10-21 2017-04-27 株式会社デンソー 粒子状物質検出装置
JP2017078373A (ja) * 2015-10-21 2017-04-27 株式会社デンソー 粒子状物質検出装置
WO2018230570A1 (ja) * 2017-06-15 2018-12-20 株式会社デンソー パティキュレートフィルタの故障検出装置及び故障検出方法
JP2020008432A (ja) * 2018-07-09 2020-01-16 日本特殊陶業株式会社 微粒子検出装置

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103339363B (zh) * 2011-02-01 2016-01-20 丰田自动车株式会社 内燃机的控制装置
US20130030678A1 (en) * 2011-07-25 2013-01-31 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
WO2013018224A1 (ja) * 2011-08-04 2013-02-07 トヨタ自動車株式会社 内燃機関の制御装置
JP5545503B2 (ja) * 2012-05-11 2014-07-09 株式会社デンソー 検査方法
DE102012210525A1 (de) * 2012-06-21 2013-12-24 Robert Bosch Gmbh Verfahren zur Funktionskontrolle eines Sensors zur Detektion von Teilchen und Sensor zur Detektion von Teilchen
JP6201894B2 (ja) * 2014-05-28 2017-09-27 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE102014211533A1 (de) * 2014-06-17 2015-12-17 Robert Bosch Gmbh Verfahren zum Betrieb eines Partikelsensors
WO2016027894A1 (ja) * 2014-08-22 2016-02-25 日本特殊陶業株式会社 微粒子センサ
JP6070659B2 (ja) * 2014-09-05 2017-02-01 トヨタ自動車株式会社 パティキュレートフィルタの異常診断装置
JP6426072B2 (ja) 2014-10-02 2018-11-21 株式会社Soken フィルタの故障検出装置、粒子状物質検出装置
WO2016073487A1 (en) * 2014-11-04 2016-05-12 Cummins Emission Solutions, Inc. System and method of sensor reconditioning in an exhaust aftertreatment system
US9846110B2 (en) * 2015-06-02 2017-12-19 GM Global Technology Operations LLC Particulate matter sensor diagnostic system and method
US10295489B2 (en) * 2016-09-12 2019-05-21 Ecolab Usa Inc. Deposit monitor
US10816285B2 (en) 2017-02-24 2020-10-27 Ecolab Usa Inc. Thermoelectric deposit monitor
EP3682097B1 (en) * 2017-10-10 2023-12-06 Cummins Inc. System and method to mitigate sensor failures due to water condensation
JP7087530B2 (ja) * 2018-03-23 2022-06-21 コベルコ建機株式会社 排ガス異常検出装置
US11402253B2 (en) * 2018-06-26 2022-08-02 Minebea Mitsumi Inc. Fluid sensing apparatus and method for detecting failure of fluid sensor
EP3672040A1 (en) 2018-12-17 2020-06-24 Nexperia B.V. Device for enabling a rotating and translating movement by means of a single motor; apparatus and system comprising such a device
JP7088056B2 (ja) * 2019-02-04 2022-06-21 株式会社デンソー 粒子状物質検出センサ
US11953458B2 (en) 2019-03-14 2024-04-09 Ecolab Usa Inc. Systems and methods utilizing sensor surface functionalization
CN114562356B (zh) * 2021-02-24 2023-03-24 长城汽车股份有限公司 车辆颗粒物传感器的检测方法、诊断仪及车辆
KR20230014929A (ko) * 2021-07-21 2023-01-31 현대자동차주식회사 미세물질 감지 장치 및 그 구동 제어 방법
CN114658524B (zh) * 2022-03-07 2023-04-28 安徽华菱汽车有限公司 一种监控颗粒传感器的方法、装置及计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009144512A (ja) * 2007-12-11 2009-07-02 Nissan Motor Co Ltd 内燃機関の排気浄化フィルタ再生制御装置
JP2010275917A (ja) * 2009-05-28 2010-12-09 Honda Motor Co Ltd 粒子状物質検出手段の故障判定装置
JP2010275977A (ja) * 2009-05-29 2010-12-09 Honda Motor Co Ltd 粒子状物質検出手段の故障判定装置
JP2011017289A (ja) * 2009-07-09 2011-01-27 Honda Motor Co Ltd 排気センサの故障判定装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004036388A1 (de) 2004-07-27 2006-03-23 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine, bei dem die Beladung eines Abgasstroms mit Rußpartikeln erfasst wird
US7278304B2 (en) * 2005-12-06 2007-10-09 Ford Global Technologies Llc System and method for performing a particulate sensor diagnostic
US7810314B2 (en) * 2007-06-12 2010-10-12 Ford Global Technologies, Llc Approach for controlling particulate matter in an engine
WO2009032262A1 (en) * 2007-08-30 2009-03-12 Ceramatec, Inc. Ceramic particulate matter sensor with low electrical leakage
DE102007047081A1 (de) 2007-10-01 2009-04-02 Robert Bosch Gmbh Verfahren zur Detektion eines Vergiftungsgrads eines Partikelsensors und Partikelsensor
DE102009049669A1 (de) * 2009-10-16 2011-04-21 Continental Automotive Gmbh Verfahren zur Zustandsbewertung eines Rußsensors in einem Kraftfahrzeug
US8249827B2 (en) * 2009-11-09 2012-08-21 Delphi Technologies, Inc. Method and system for heater signature detection diagnostics of a particulate matter sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009144512A (ja) * 2007-12-11 2009-07-02 Nissan Motor Co Ltd 内燃機関の排気浄化フィルタ再生制御装置
JP2010275917A (ja) * 2009-05-28 2010-12-09 Honda Motor Co Ltd 粒子状物質検出手段の故障判定装置
JP2010275977A (ja) * 2009-05-29 2010-12-09 Honda Motor Co Ltd 粒子状物質検出手段の故障判定装置
JP2011017289A (ja) * 2009-07-09 2011-01-27 Honda Motor Co Ltd 排気センサの故障判定装置

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014059218A (ja) * 2012-09-18 2014-04-03 Toyota Motor Corp Pmセンサの異常検出装置および方法
DE112014003815B4 (de) 2013-08-21 2022-10-13 Ngk Spark Plug Co., Ltd. Partikeldetektionssystem
WO2015025450A1 (ja) * 2013-08-21 2015-02-26 日本特殊陶業株式会社 微粒子検知システム
WO2015025456A1 (ja) * 2013-08-21 2015-02-26 日本特殊陶業株式会社 微粒子検知システム
JP2015040739A (ja) * 2013-08-21 2015-03-02 日本特殊陶業株式会社 微粒子検知システム
JP2015040738A (ja) * 2013-08-21 2015-03-02 日本特殊陶業株式会社 微粒子検知システム
US9719907B2 (en) 2013-08-21 2017-08-01 Ngk Spark Plug Co., Ltd. Particulate detection system
US9897528B2 (en) 2013-08-21 2018-02-20 Ngk Spark Plug Co., Ltd. Particulate detection system
JP2015108619A (ja) * 2013-10-25 2015-06-11 日本特殊陶業株式会社 微粒子測定システム
JP2015222217A (ja) * 2014-05-23 2015-12-10 株式会社日本自動車部品総合研究所 粒子状物質検出装置
WO2016084660A1 (ja) * 2014-11-26 2016-06-02 いすゞ自動車株式会社 診断装置及びセンサ
US10612445B2 (en) 2014-11-26 2020-04-07 Isuzu Motors Limited Diagnostic device and sensor
JP2016098795A (ja) * 2014-11-26 2016-05-30 いすゞ自動車株式会社 診断装置及びセンサ
JP2016196832A (ja) * 2015-04-02 2016-11-24 トヨタ自動車株式会社 パティキュレートフィルタの異常診断装置
JP2016196835A (ja) * 2015-04-02 2016-11-24 トヨタ自動車株式会社 パティキュレートフィルタの異常診断装置
JP2017015010A (ja) * 2015-07-01 2017-01-19 株式会社デンソー フィルタ異常判定装置
CN108350778A (zh) * 2015-07-01 2018-07-31 株式会社电装 判定在过滤器装置中是否发生了异常的装置
WO2017002942A1 (ja) * 2015-07-01 2017-01-05 株式会社デンソー フィルタ装置に異常が発生したか否かを判定する装置
WO2017069215A1 (ja) * 2015-10-21 2017-04-27 株式会社デンソー 粒子状物質検出装置
JP2017078373A (ja) * 2015-10-21 2017-04-27 株式会社デンソー 粒子状物質検出装置
CN108138619A (zh) * 2015-10-21 2018-06-08 株式会社电装 粒子状物质检测装置
CN108138619B (zh) * 2015-10-21 2019-11-05 株式会社电装 粒子状物质检测装置
JP2017078371A (ja) * 2015-10-21 2017-04-27 株式会社デンソー 粒子状物質検出装置
WO2018230570A1 (ja) * 2017-06-15 2018-12-20 株式会社デンソー パティキュレートフィルタの故障検出装置及び故障検出方法
JP2020008432A (ja) * 2018-07-09 2020-01-16 日本特殊陶業株式会社 微粒子検出装置
JP7071237B2 (ja) 2018-07-09 2022-05-18 日本特殊陶業株式会社 微粒子検出装置

Also Published As

Publication number Publication date
US9151204B2 (en) 2015-10-06
DE112011100156B8 (de) 2014-09-18
US20120260636A1 (en) 2012-10-18
DE112011100156B4 (de) 2014-05-22
DE112011100156T5 (de) 2012-12-06
JP5316710B2 (ja) 2013-10-16
DE112011100156T8 (de) 2013-04-11
JPWO2012114518A1 (ja) 2014-07-07

Similar Documents

Publication Publication Date Title
JP5316710B2 (ja) 粒子状物質検出センサの異常判定装置
US10078043B2 (en) Method and system for exhaust particulate matter sensing
JP6137229B2 (ja) パティキュレートフィルタの異常診断装置
JP6070659B2 (ja) パティキュレートフィルタの異常診断装置
CN103380282B (zh) 烟灰传感器功能能力监测
EP2881567B1 (en) Particulate sensor and method of operation
CN106481416B (zh) 用于排气微粒物质感测的方法和系统
US20110320171A1 (en) Failure detection device for exhaust gas purification filter
US9964481B2 (en) Method and system for exhaust particulate matter sensing
JPWO2012063303A1 (ja) 内燃機関の粒子状物質検出装置
JP6090293B2 (ja) フィルタの機能診断装置
JP6252537B2 (ja) パティキュレートフィルタの異常診断装置
US9932878B2 (en) Particulate matter sensor
RU2718390C2 (ru) Датчик твердых частиц (варианты) и способ измерения количества твердых частиц в отработавших газах
US9551259B1 (en) Method and system for diesel particulate filter diagnostics
JP6481966B2 (ja) 制御装置
JP5924546B2 (ja) フィルタの故障検出装置
US10260399B2 (en) Method and system for exhaust particulate matter sensing
US10393640B2 (en) Method and system for exhaust particulate matter sensing
US9841357B2 (en) System for sensing particulate matter
RU2673645C2 (ru) Способ и система для обнаружения твердых частиц в отработавших газах
JP6367735B2 (ja) 粒子状物質数量推定システム
JP6481967B2 (ja) 制御装置
CN107165710B (zh) 用于排气微粒物质感测的方法和系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012519267

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13509894

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120111001568

Country of ref document: DE

Ref document number: 112011100156

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859228

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 11859228

Country of ref document: EP

Kind code of ref document: A1