WO2013014324A1 - Método para evaluar la integridad de la pared celular bacteriana - Google Patents

Método para evaluar la integridad de la pared celular bacteriana Download PDF

Info

Publication number
WO2013014324A1
WO2013014324A1 PCT/ES2012/070575 ES2012070575W WO2013014324A1 WO 2013014324 A1 WO2013014324 A1 WO 2013014324A1 ES 2012070575 W ES2012070575 W ES 2012070575W WO 2013014324 A1 WO2013014324 A1 WO 2013014324A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell wall
antibiotic
culture
lysis solution
bacterial
Prior art date
Application number
PCT/ES2012/070575
Other languages
English (en)
French (fr)
Inventor
José Luis FERNÁNDEZ GARCÍA
Jaime GONSÁLVEZ BERENGUER
Germán BOU ARÉVALO
María TAMAYO NOVAS
Rebeca SANTISO BRANDARIZ
Original Assignee
Universidad Autónoma de Madrid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Autónoma de Madrid filed Critical Universidad Autónoma de Madrid
Priority to CN201280046327.1A priority Critical patent/CN103946389A/zh
Priority to MX2014000920A priority patent/MX357457B/es
Priority to ES12817952T priority patent/ES2908261T3/es
Priority to US14/234,875 priority patent/US9976170B2/en
Priority to EP12817952.0A priority patent/EP2738262B1/en
Priority to CA2842865A priority patent/CA2842865C/en
Priority to BR112014001871-5A priority patent/BR112014001871B1/pt
Priority to EP22152446.5A priority patent/EP4050108A1/en
Publication of WO2013014324A1 publication Critical patent/WO2013014324A1/es
Priority to HK14110731A priority patent/HK1197271A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/18Testing for antimicrobial activity of a material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/06Lysis of microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria

Definitions

  • the present invention falls within the field of the biotechnology industry, and mainly that related to microbiology, whose scope is within the health sector (human, veterinary, environmental and basic).
  • the present invention relates to a method for assessing the integrity of the cell wall of the bacteria present in a culture in the presence of an antibiotic that acts at the level of the bacterial cell wall, which from a practical point of view, allows to determine quickly if a bacterium is sensitive or resistant to an antibiotic that acts at the level of the cell wall.
  • the study of the sensitivity of microorganisms to antimicrobials is one of the most important functions of clinical microbiology laboratories. Its performance is developed through sensitivity tests or antibiogram, whose main objective is to evaluate in the laboratory the response of a microorganism to one or several antimicrobials.
  • Some of the most commonly used methods in daily clinical practice include (i) diffusion methods, such as the disk-plate antibiogram based on the work of Bauer, Kirby et al. ⁇ Bauer A W, et.al. Am. J. Clin. Pathol 1966, 45: 493-496) or the epsilon test or E-test method (AB Biodisk, Sweden), or (ii) dilution methods, such as the agar dilution method or the broth microdilution method. Comparing diffusion methods with dilution methods, these are technically more complex and almost always more expensive, particularly when commercial micro-dilution panels are used. In the routine practice of the clinical microbiology laboratory, microdilution methods in liquid medium are the most used.
  • the use of commercial panels is based on the use of semi-automatic incubation-reading-interpretation systems; this facilitates its use, but It has the disadvantage of increased spending.
  • Some companies have introduced panels on the market in which the culture medium includes a fluorescent indicator that allows rapid results (less than 8 hours) to be obtained.
  • a fluorogenic metabolizable compound is added to the culture medium (patent application WO / 1992/019763). If the body grows with the antibiotic, the metabolism of the bacteria results in the release of the fluorophore. If the organism does not grow, the fluorescence of the sample is increased.
  • antibiotics that act at the level of the bacterial wall such as ⁇ -lactams
  • the BACcelr8r TM is a platform under development by Accelr8, for the automatic identification of microorganisms and to study their resistance to antibiotics. It does not use culture or make it necessary to isolate bacteria. It works by cassettes, where each corresponds to a sample. Use an automated system, with a microscope controlled by a computer, a digital camera and analysis software. A pump maintains a medium flow with bacteria, in different conditions, through the cassette. The analysis of antibiotic resistance could be completed in 8 hours.
  • Patent application US2004 / 0014066 describes a method to detect in a sample the activity of an antibiotic that affects cellular integrity comprising (a) providing a transformed microorganism comprising a nucleic acid encoding a promoter operably linked to a heterologous reporter gene capable of emitting a detectable signal, and (b) contacting the sample with the transformed microorganism, (c) observing said microorganism for said detectable signal, in which the promoter is regulated by a two component signal transduction system, where The components are (i) a receptor sensitive to changes in the envelope or cell membrane of the microorganism and (ii) a trans-acting factor that is activated in response to stimulation by the receptor and regulates the promoter.
  • the skeleton of the bacterial cell wall is made up of a heteropolymer, peptidoglycan murein.
  • This macromolecule is formed by an alternating sequence of N-acetyl-glucosamine (NAG) and N-acetylmuramic acid (NAM) linked by B-1,4 bonds.
  • the chain is straight and unbranched, constituting the basic structure of the cell wall.
  • N-acetylmuramic acid has a group of lactic acid that bonds with a small peptide chain (tetrapeptide).
  • Typical amino acids in this chain include L-alanine, D-glutamic acid, m-diaminopimelic acid or L-Usine or D-alanine.
  • Antibiotics that inhibit bacterial wall synthesis are different families of drugs that act on different steps of bacterial wall synthesis:
  • Cycloserine is an analogue of D-alanine and competitively inhibits the binding of this amino acid to the enzymes D-alanine-D-alanine synthetase and alanine racemase, preventing its binding to the precursors of peptidoglycan.
  • Bacitracin inhibits the recycling of undecaprenil, the lipid transporter of peptidoglycan to the outside of the cell.
  • glycopeptides or glycopeptides are a class of peptides that contain bound sugars, as in the bacterial cell wall, having a great affinity to the precursors of this structure.
  • the best known are vancomycin and teicoplanin. Vancomycin exerts its bactericidal action by inhibiting the synthesis of the bacterial cell wall, joining the fragment D alanine-D alanine (D-Ala-D-Ala) of the pentapeptide from the wall of Gram + bacteria, blocking the incorporation of peptides into the wall mobile.
  • vancomycin would act by other mechanisms such as the affectation of the permeability of the cytoplasmic membrane and inhibition of RNA synthesis, which is exerted after the drug is bound to peptidoglycan.
  • - ⁇ -Lactam antibiotics exert bactericidal function by interfering with the transverse junction or interpeptide bridge, necessary for crosslinking. They inhibit the activity of PBPs, serine proteases or transpeptidases, with which they bind irreversibly.
  • antibiotics that interfere with wall synthesis are isoniazid, ethionamide and ethambutol. They are used in the treatment of mycobacterial infections, as well as cycloserine, cited above. Isoniazid has bactericidal activity in active replication phase. It affects synthesis of mycolic acid, interrupting the elongation of fatty acids. Ethionamide also inhibits mycolic acid synthesis. Ethambutol interferes with the synthesis of cell wall arabinogalactan. The resistance to these antibiotics is due to the lack of penetration into the bacteria and / or modification of their cell targets. Antibiotic resistance causes tens of thousands of deaths every year. Many of these deaths could be avoided with an antibiotic treatment well selected for their effectiveness. Given the resistance levels, it is necessary to perform the bacterial culture, followed by antibiogram. To complete all this, bacteria should grow 2-3 days, usually. The antibiogram itself usually requires one day of incubation, at least, in the usual fast-growing bacteria.
  • the inventors also observed that, when the bacterial culture is mixed or contaminated, that is, there is a mixture of sensitive or resistant cells, said method would not be very suitable as a strict criterion of discrimination since despite releasing extracellular DNA fragments , the morphology of the bacteria is not altered by the action of the antibiotic, that is, both the sensitive and antibiotic resistant bacteria apparently show the intact cell wall.
  • the inventors have designed a lysis solution that only affects bacteria whose cell wall has been previously damaged by the action of an antibiotic that acts at the level of the cell wall, and that when added to the bacterial culture, which has previously been exposed to the action of said antibiotic, the release of the bacterial nucleoid occurs then observing a bacterium with the damaged cell wall (Examples 1 to 5).
  • the presence of the bacterial nucleoid after applying the lysis solution is indicative of the presence of antibiotic sensitive bacteria.
  • the invention relates to a method for assessing the integrity of the bacterial cell wall in a pure culture in the presence of an antibiotic that acts at the level of the bacterial cell wall comprising:
  • the invention in another aspect, relates to a method for assessing the integrity of the cell wall of the bacteria present in a culture in the presence of an antibiotic that acts at the level of the bacterial cell wall comprising: i) add to said culture an antibiotic that acts at the level of the bacterial cell wall,
  • lysis solution is a specific lysis solution for those bacteria whose cell wall has been damaged by the antibiotic that acts at the level of the bacterial cell wall, and it comprises a buffer with a pH between 3 and 11.5, and
  • the invention in another aspect, relates to a method for determining the sensitivity of a bacterium to an antibiotic that acts at the level of the bacterial cell wall, which comprises measuring the integrity of the cell wall of said bacterium by a method according to the present invention. , in which if the integrity of the bacterial cell wall has been damaged, then the bacterium is sensitive to the antibiotic.
  • the invention relates to a method for designing a personalized antibiotic therapy to an individual suffering from a bacterial disease comprising
  • the invention relates to a method for identifying a compound that acts at the level of the bacterial cell wall comprising:
  • the candidate compound is a compound that acts at the level of the bacterial cell wall.
  • the invention relates to a method for identifying a persistent or antibiotic tolerant bacterium that acts at the level of the bacterial cell wall in a culture of sensitive bacteria, which comprises assessing the integrity of the cell wall of the bacteria present. in said culture by a method according to the present invention, in which the bacterium whose cell wall integrity has not been damaged is identified as persister or tolerant.
  • the invention relates to a lysis solution characterized in that it only affects the bacteria that have the bacterial wall damaged by the action of an antibiotic, which comprises a buffer and a pH between 3 and 11.5.
  • the invention relates to the use of the lysis solution of the present invention to evaluate the integrity of the bacterial cell wall.
  • the invention in another aspect, relates to a kit comprising the lysis solution of the invention.
  • FIG. 1 Three different strains of Escherichia coli, Gram- bacteria, exposed to the antibiotic ⁇ -lactam amoxicillin, together with the inhibitor of beta-lactamases clavulanic acid, processed by the technique for evaluation of cell wall integrity. The incubation was in Mueller-Hinton liquid medium, during the exponential growth phase, at 37 ° C, with stirring, for 40 minutes. The antibiotic doses were chosen according to the cut-off points indicated by the Clinical and Laboratory Standards Institute (CLSI). Thus, the strain is considered sensitive when its minimum inhibitory concentration (MIC) is ⁇ 8/4 (amoxicillin 8 ⁇ / ⁇ .
  • MIC minimum inhibitory concentration
  • the first strain (top row: a, a ', a ") is sensitive, the second is intermediate (middle row: b, b', b") and the third is resistant (row from below: c, c ', c ").
  • a, b, c control, without antibiotic, a', b ', c': 8/4; amoxicillin 8 ⁇ g / mL and clavulanic acid 4 ⁇ g / mL; a ", b", c ": 32/16; amoxicillin 32 ⁇ g / mL and clavulanic acid 16 ⁇ g / mL.
  • Controls without antibiotics show bacteria without lysing. After the 8/4 dose, only the bacteria of the first strain, sensitive, appear Used, showing the nucleoids (a ').
  • e 32 ⁇ g / mL.
  • the MIC dose is already sufficient to observe the involvement of the wall by the antibiotic and the background of extracellular DNA fragments.
  • Figure 3 Enterococcus faecium, Gram + bacteria, resistant to the antibiotic ⁇ -lactam ampicillin (MIC> 32), incubated with different doses of this antibiotic for 60 min.
  • a control, without antibiotic
  • b 32 ⁇ g / mL
  • c 320 ⁇ g / mL. After 320 ⁇ g / mL, wall involvement is seen in some isolated cells, with a discrete background of extracellular DNA fragments.
  • FIG. 4 E. coli sensitive to the antibiotic ⁇ -lactam ceftazidime, of the cephalosporin type. The strain was exposed to different doses for 60 minutes, to: control, without antibiotic; b: 1 ⁇ g / mL (MIC); c: 8 ⁇ g / mL. The MIC gives rise to a filamentous appearance of the cells, with wall involvement. After 8 ⁇ g / mL a large wall involvement, clearly showing the background of extracellular fragments of DNA.
  • E. coli cells from a culture in liquid medium, growing in exponential phase, sensitive to amoxicillin / clavulanic acid, and exposed to the high dose of 32/16 for 90 minutes. After processing by the technique of the invention, in addition to the cells affected in the wall, which release the nucleoid, and from the background of extracellular DNA fragments, a cell that keeps its morphology intact (asterisk), which has not been clearly observed been affected by the antibiotic. This cell behaves like a "persister.”
  • Figure 6 Graphs representing the percentages of cells in culture, cells without halo and cells with wall damage, of E. coli, from a culture in liquid medium, growing in exponential phase, sensitive to amoxicillin / acid clavulanic, and exposed to the high dose of 32/16 during different times. Above it is observed that the proportion of non-lysed cells is increasing in the culture over time, as the cells affected by the antibiotic disappear (HG: large halo + HP: small halo + F: Used with fragmented DNA) . Below, the same figure but whose data have been normalized according to the percentage of cells that remain in the culture.
  • Figure 8 The same strains of E. coli, presented in Figure 1, were cultured for 24 hours in plaque and then for 40 min in liquid medium with doses 0 (a, b, c), 8/4 (low dose ; a ', b', c ') and 32/16 (high dose; a ", b", c ") of amoxicillin / clavulanic acid. The strains were processed without the lysis step of exposure to the lysis solution. The sensitive strain is presented in the top row (a, a ', a "); the intermediate in the middle row (b, b ⁇ b ”) and the resistant one in the bottom row (c, c ', c").
  • the sensitive strain shows the homogeneous micro-granular-fibrillar homogeneous background of extracellular DNA fragments, detached by the cells. This background is evident after the low dose (8/4) and increases markedly after the high dose (32/16). In this way, the sensitive strain can be clearly differentiated from the others.
  • Figure 9 A strain of ampicillin-sensitive E. coli was incubated with a dose of 8 ⁇ g / mL of said antibiotic, for 60 minutes, a and b: Fresh observation, a: control culture, without antibiotic; b: culture treated with ampicillin. The latter shows, among bacteria, a diffuse microgranular or fibrillar background, of extracellular fragments of bacterial DNA, c and d: methanol-fixed culture: acetic acid, c: control culture, without antibiotic; d: culture treated with ampicillin, in which the DNA background material between the bacteria is visualized, constituting aggregates of different shape and size.
  • Figure 10 A strain of ampicillin-sensitive E. coli was incubated with a dose of 32 ⁇ g / mL of said antibiotic, for 60 minutes. Aliquots of a control culture without antibiotic and aliquots of the culture with the ampicillin treatment were included in microgels and stained with SYBR Gold. The control culture without antibiotic does not show micro granular-fibrillar background in the preparation (a), while the ampicillin treated does show such background (b). Incubation of the microgels with the DNAase I (c) or proteinase K (e) enzyme buffers does not affect said background.
  • the Carnoy causes the micro-granular-fibrillar material of the fund to be added, encompassing bacteria.
  • Consinction with DAPI evidences aggregates of the background material, with bacteria whose nucleoids stain intensely with DAPI.
  • the added background material is also dyed with said dye, although in a more tenuous way.
  • the hybrid total genomic DNA probe in both the cell nucleoids and the background material demonstrating that the latter corresponds to fragmented bacterial DNA.
  • Figure 12 A strain of Acinetobacter baumannü, sensitive to imipenem, was incubated with this antibiotic 0.76 ⁇ g / mL, 1 hour. An aliquot of the culture was diluted and included in an agrose microgel, dehydrated in growing alcohols, dried and stained with SYBR Gold. A microgranular-fibrillar fund is seen that corresponds to DNA fragments in different degrees of stretching.
  • the invention relates to a method for assessing the integrity of the bacterial cell wall in a pure culture in the presence of an antibiotic that acts at the level of the bacterial cell wall (hereinafter, "first method of the invention "), which includes: i) adding to said pure culture of said bacterium an antibiotic that acts at the level of the bacterial cell wall, and
  • the term “cell wall” refers to the cell wall that surrounds a bacterial cell and is constituted by the peptidoglycan murein, which is formed by an alternating sequence of N-acetyl-glucosamine ( NAG) and N-acetylmuramic acid (NAM) linked by B-1,4 bonds.
  • NAG N-acetyl-glucosamine
  • NAM N-acetylmuramic acid
  • cell wall and “bacterial cell wall” are equivalent and can be used interchangeably throughout the present description.
  • the external agent is an antibiotic that acts at the level of the bacterial cell wall, that is, an antibiotic that blocks the synthesis of peptidoglycan so that the cell wall of the bacterium is damaged.
  • pure culture is understood as that culture that contains only one type of microorganism.
  • the different culture media, techniques and procedures for obtaining pure cultures are widely known in the state of the art and are routine practice for those skilled in the art (Rotger, R. (editor), 1997, Health and Clinical Microbiology, Editorial Synthesis, Madrid).
  • the first stage of the first method of the invention comprises adding to said pure culture of said bacterium an antibiotic that acts at the level of the bacterial cell wall.
  • antibiotic includes any chemical compound that eliminates or inhibits the growth of infectious organisms; said term, as used herein, includes any chemical compound produced by a living being, or synthetic derivative thereof, which at low concentrations eliminates or inhibits the growth of infectious organisms.
  • a common property of all antibiotics is selective toxicity: the toxicity is higher for invading organisms than for animals or humans that host them.
  • Antibiotics can be classified according to their structure, the microorganism they attack, their mechanism of action, their therapeutic target, etc.
  • antibiotic that acts at the level of the bacterial cell wall is understood as the antibiotic that interferes with any of the stages of bacterial wall synthesis.
  • An assay to determine if an antibiotic acts at the level of the cell wall is, for example, any of the assays described in the examples of the present patent application.
  • the antibiotic that acts at the level of the bacterial cell wall is selected from the group consisting of a ⁇ -lactam antibiotic, an isoniazid, an ethionamide, an ethambutol, a cycloserine and a glycopeptide antibiotic.
  • the ⁇ -lactam antibiotic is selected from the group consisting of penicillins, cephalosporins, cephamycins, carbacefem, carbapenems, monobactams and beta-lactamase inhibitors.
  • beta-lactamase inhibitors are selected from the group consisting of clavulanic acid, sulbactam and tazobactam.
  • the glycopeptide antibiotic is vancomycin or teicoplanin.
  • the incubation time of the culture together with the antibiotic can vary over a wide range depending on whether the culture is in a stationary or exponential growth phase, whether the culture is carried out in plaque or in liquid medium, of the dose of antibiotic that is added to the culture, etc.
  • the incubation time with the antibiotic can range from 5 minutes to 90 minutes, preferably, from 20 to 60 minutes.
  • the incubation time is 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75 or 80 minutes.
  • the amount of antibiotic to be added to the culture medium can also vary within a wide range; however, in a particular embodiment, the amount of antibiotic to be added to the culture medium is between 5 and 2,570 ⁇ / ⁇ ., although preferably, the amount of antibiotic to be added will be the minimum inhibitory concentration (MIC) for a given bacterium. As the person skilled in the art knows, in the state of the art there are widely accepted and standardized tables in which the MIC necessary to inhibit a specific microorganism is collected. In a particular embodiment, the amount of antibiotic that can be added to the culture medium is 0.06, 0.038, 0.38, 4, 8, 16, 20, 32, 160, 256, or 2,560 ⁇ g / mL.
  • the incubation temperature of the culture with the antibiotic may range from 36 ° C to 38 ° C, preferably 37 ° C.
  • the second stage of the first method of the invention [step ii)] comprises observing the presence of extracellular DNA fragments in the culture medium.
  • the determination of the presence of DNA fragments in the medium can be carried out by microscopy or by any other alternative method to detect DNA released by the microorganisms to the culture medium, whether physical or chemical, between those that are included, without limitation to electrophoresis, antibodies, spectrophotometry, polymerase chain reaction, hybridization techniques, microarrays, microfluidics, nanoparticles, quantum dots, etc. These procedures are widely known in the state of the art and the implementation thereof is routine practice for the person skilled in the art.
  • the first method of The invention comprises carrying out, between stages i) and ii), the step of immobilizing a sample of the culture of stage i) on a support.
  • Said support can be a slide.
  • said slide is a glass slide totally or partially coated with a standard agarose film.
  • a standard agarose solution between 0.2% and 2% in distilled water is prepared in a Coplin jar or the like; it is covered with a perforated plastic sheet and placed in a microwave oven; the microwave oven is regulated to a power comprised between 300 W and 1,000 W, preferably at 500 W, occasionally stirring the container for a better dissolution of the agarose, leaving it until it boils.
  • This procedure can also be performed using a thermostatic bath.
  • the agarose solution becomes completely transparent, it will be ready to be deposited in vertical containers with a content between 10 and 250 mL.
  • slides covered with an agarose film are deposited horizontally on a smooth, cold surface between 1 ° C and 15 ° C, preferably at 4 ° C, for example, glass or metal.
  • This plate, with the slides is introduced into the refrigerator at 4 ° C for a minimum of 30 minutes, until it is verified that the agarose solution has gelled on the surface of the slide.
  • the trays are removed from the refrigerator and the surface of the slides that was in contact with the plate with a blotting paper is cleaned.
  • the slides are placed horizontally in an oven at a temperature between 37 ° C and 100 ° C, until the agarose dries completely and forms a thin film adhered to the glass. Slides so treated can be used immediately or store in a tightly closed box at room temperature for several months.
  • concentration of microorganisms in a liquid sample is obtained and checked.
  • the appropriate concentration for the analysis ranges between 0.1 and 20 million microorganisms per milliliter. If the sample is excessively concentrated, it is adjusted to the appropriate concentration by diluting it with culture medium or with buffered saline / phosphate solution (PBS) or similar, suitable according to the microorganism and according to the stability of the antibiotic to be tested.
  • PBS buffered saline / phosphate solution
  • a medium with characteristics similar to those of a suspension such as, for example, an agarose microgel.
  • a low melting gelling solution of agarose is prepared at a concentration between 0.5 and 3% in distilled water or phosphate buffered saline (PBS).
  • PBS phosphate buffered saline
  • the fusion of this agarose is carried out using a microwave oven or a thermostatted bath, and is subsequently maintained between 30 ° C and 37 ° C in a tube introduced in a thermostated bath or stove.
  • the culture sample and agarose solution are carefully mixed, so that the latter is at a concentration between 0.3% and 2%.
  • the slides coated with agarose are placed on a smooth and cold glass or metal surface, with a temperature between 1 ° C and 15 ° C, avoiding air bubbles. It is recommended to deposit with a micropipette a drop (between 2 and 200 microliters ( ⁇ ⁇ )) of the mixture (prepared culture sample + agarose), placing a coverslip on top of the drop. Multiple drops can be pipetted, i.e. bacterial culture samples from stage i), on each slide. As a precaution, it is recommended to process each sample in duplicate and use a control sample each time the technique is applied.
  • the plate with the slides is placed in a refrigerator at 4 ° C, for a period of time between 2 and 30 minutes until adequate gelation of the agarose occurs. Once the gelation has occurred, the coverslips are removed very gently, inside the same refrigerator and preventing damage to the microgel.
  • the dried slides are incubated in a microwave oven at a power between 300 W and 1,000 W, preferably at 500 W, for a period of time between 1 and 10 minutes.
  • An alternative, although less recommended for its duration, is to incubate the slides in an oven or stove at high temperature for a period of time between 1 and several hours.
  • the slides already processed containing the sample can be stored in filing boxes at room temperature, in the dark, for months. This facilitates the separation of the sample treatment process and the subsequent stage of assessing the integrity of the cell wall of the microorganisms. Archiving allows repeated evaluation at different intervals of several samples of the same microorganism.
  • the samples are treated, and after stabilizing and firmly adhering the DNA fragments to the slide, they can be stained and the integrity of the cell wall of the microorganisms can be evaluated.
  • the observation of the presence of extracellular DNA fragments in the culture medium is carried out by staining.
  • Staining or staining is an auxiliary technique in microscopy to improve the contrast in the image seen under a microscope. In biochemistry, this involves adding a dye specific for the molecule to be stained (DNA in the context of the present invention) to a substrate to qualify or quantify the presence of a certain compound. Stains can be used, among other things, to define and examine organelles within individual cells, or to label nucleic acids in gel electrophoresis.
  • dyes or dyes are organic compounds that have some specific affinity for cellular materials. Many frequently used dyes are positively charged molecules (cations) and are intensively combined with negatively charged cell constituents, such as nucleic acids and acidic polysaccharides.
  • Illustrative, non-limiting examples of cationic dyes include methylene blue, violet crystal and safranine. Methylene blue is a good simple dye that acts on all bacterial cells quickly and does not produce a color so intense that it obscures cellular details, which is especially useful. Sometimes, some dyes dye better only after the cell has been treated with another chemical, called mordant, which is not a dye by itself.
  • a common mordant is tannic acid, which is combined with a cellular constituent and alters it so that it can now attack the dye.
  • tannic acid which is combined with a cellular constituent and alters it so that it can now attack the dye.
  • specific techniques for staining the DNA such as, for example, Feulgen staining, which consists in subjecting the material to hydrolysis with 1N hydrochloric acid at 60 ° C or with 5N hydrochloric acid at room temperature and then add the Schiff reagent By this technique it is possible to stain the nuclei of the bacterial cells.
  • fluorescence microscopy is the technique of choice to visualize the DNA fragments given their greater sensitivity, for this it is necessary to perform the staining of bacteria with certain chemical compounds called fluorophores or fluorochromes. These compounds are capable of emitting fluorescence when excited with light at a suitable wavelength. At present there is a whole range of fluorochromes that provide not only information on cell viability, but also show certain physiological characteristics and in some structural cases of bacteria.
  • fluorophores that detect respiratory activity eg, tetrazolium derivatives, etc.
  • esterase activity eg, calcein-AM, carboxyfluorescein, etc.
  • membrane potential eg, rhodamine 123, oxonol VI, carbocyanins, etc.
  • membrane integrity eg, SYTO-9, SYTO-13, Sitox green, propidium iodide, etc.
  • staining is carried out by using one or more fluorochromes.
  • the samples can be stained with specific fluorochromes for DAPI type DNA (4 ', 6-diamidino-2-phenylindole), Hoechst 33258, Hoechst 33342, ethidium bromide, propidium iodide , etc.
  • fluorochromes of greater sensitivity such as GelRed, EvaGreen, and other cyanine derivatives, such as the SYBR®, PicoGreen® (Invitrogen-Molecular Probes TM) families, the TOTO, YO YO variants, are preferred.
  • fluorochromes include, but are not limited to, SYTOX Blue, chromomycin A3, mitramycin, acridine orange, SYTOX Green, thiazoyl orange, LDS 751, 7-AAD, SYTOX orange, DRAQ5.
  • the fluorochromes are selected from the group consisting of Hoechst 33342, Hoechst 33258, DAPI, chromomycin A3, mitramycin, ethidium bromide, acridine orange, thiazoyl orange, 7-AAD, cyanine derivatives, and variants of fluorochromes TOTO, YOYO, BOBO, POPO, JOJO, LOLO, SYTOX, PO-PRO, BO-PRO, YO-PRO, TO-PRO, JO-PRO, PO-PRO and LO-PRO
  • an "antifading" medium can be included (for example, Vectashi the d-Vector H-1000, DABCO; etc.).
  • these media usually produce diffuse fluorescence and a clear background that makes contrasting the image difficult. Therefore, in general, it is preferable to use a high sensitivity and relative photostability fluorochrome, mounted in a buffered aqueous solution, and evaluate the sample with Relatively fast, before drying. If necessary, the slide can be washed and stained again.
  • the images obtained can be studied by direct visual analysis or, preferably, by applying a digitalized image analysis software, obtained by analog or digital cameras, coupled to microscopy platforms.
  • the integrity of the microorganism wall is evaluated by determining the presence of extracellular DNA fragments in the culture medium, where the presence of extracellular DNA fragments in the culture medium is indicative that the integrity of the bacterial cell wall has been damaged.
  • the first The method of the invention would not be very suitable as a strict criterion of discrimination since both the antibiotic-sensitive bacteria apparently show the intact cell wall.
  • the inventors have designed a lysis solution that only affects bacteria whose cell wall has been previously damaged by the action of the antibiotic that acts at the level of the cell wall.
  • the invention relates to a method for assessing the integrity of the cell wall of bacteria present in a culture in the presence of a antibiotic that acts at the level of the bacterial cell wall (hereinafter, "second method of the invention"), comprising:
  • lysis solution is a specific lysis solution for those bacteria whose cell wall has been damaged by the antibiotic that acts at the level of the bacterial cell wall, and it comprises a buffer with a pH between 3 and 11.5, and
  • mixed culture is understood as a bacterial culture that contains two or more different species of bacteria.
  • the presence of two or more different species of bacteria in a crop is due to contamination of the crop due to improper handling of the sample, so that in the context of the present invention, the terms “ mixed culture “and” contaminated culture “are equivalent and can be used interchangeably throughout the description.
  • the bacteria present in the culture belong to the same species or to different species.
  • steps i) and iii) of the second method of the invention are common to the first method of the invention [stages i) and ii), respectively]. Accordingly, all the particular explanations and embodiments mentioned above in relation to said steps are also applicable to the second method of the invention.
  • the second method of the invention comprises, in addition to steps i) and iii) [common to steps i) and ii) of the first method of the invention], a step ii) not present in the first method of the invention comprising adding a lysis solution to the culture resulting from step i), wherein said lysis solution is a specific lysis solution for those bacteria whose cell wall has been damaged by the antibiotic that acts at the level of the bacterial cell wall, and comprises a buffer with a pH between 3 and 11.5.
  • the lysis solution that specifically affects the bacteria that have the cell wall affected by the antibiotic that acts at the level of the bacterial cell wall basically comprises a buffer solution that has a pH between 3 and 11.5 but that Additionally, it may comprise other components, including, but not limited to, ionic detergents, non-ionic detergents, salts, etc. in different proportions.
  • the buffer that is part of the lysis solution is tris (hydroxymethyl) aminomethane (Tris) of formula (HOCH 2 ) 3 CH 2 , which can also be used to prepare other buffer solutions, among which They include, but are not limited to, Tris-HCl, Tris-Gly, TAE (Tris-acetate-EDTA) and TBE (Tris-Borate-EDTA) buffers.
  • Tris has a pKa of 8.06, which gives it effective buffering capacity in a pH range between 7.0 and 9.2.
  • Tris base it is the basic, non-ionized form of the amine
  • Tris-HCl is also used.
  • buffer solutions include, but are not limited to, Hepes, Mops, Pipes, etc.
  • sodium phosphate also called disodium
  • hydrogen phosphate Na 2 HP0 4
  • boric acid-borate triethylamine
  • CABS 4- [cyclohexylamino] -l-butanesulfonic acid
  • the lysis solution comprises, in addition to the buffer solution, up to 3% of an ionic detergent or a non-ionic detergent.
  • ionic detergent refers to that compound that has a hydrophobic part and a hydrophilic part, which in solution forms positively charged ions (cationic detergent) or negatively (anionic detergent) and which allows to achieve emulsion.
  • cationic detergent cationic detergent
  • anionic detergent anionic detergent
  • the terms "detergent”, “surfactant” and “surfactant” are synonymous, so they can be used interchangeably throughout the present description.
  • cationic detergents include, but are not limited to, primary, secondary, tertiary and quaternary ammonium salts, whether linear or cyclic in structure, mixtures thereof, such as, for example, pyridine, piperizine salts, and derivatives thereof.
  • Ammonium The term “derivatives of ammonium salts” includes those salts that incorporate at least two amino groups in the same structure, whether primary, secondary, tertiary and / or quaternary, such as, for example, guanine dyne, piperazine and imidazole salts. In this definition, amino acid salts would also be included, such as, for example, Usine, arginine, ornithine or tryptophan salts.
  • ammonium salts in which the positive charge is on a phosphorus atom such as ditetradecyl iodide (trimethylethylphosphonium) methylphosphonate, ditetradecyl iodide (butyldimethylphosphonium) methylphosphonate, ditetradecyl iodide (iodide of dimethylisopropylphosphonium) methylphosphonate or arsenic (ditetradecyl iodide (trimethylarsonium) methylphosphonate, dioleyl iodide (trimethylphosphonium) methylphosphonate, instead of over the nitrogen atom.
  • ditetradecyl iodide trimethylethylphosphonium
  • ditetradecyl iodide butyldimethylphosphonium
  • ditetradecyl iodide iodide of dimethylisopropylphosphonium
  • arsenic ditetradecyl
  • ammonium salts include, but are not limited to, tetraalkylammonium salts alkylbenzyl dimethyl ammonium or heterocyclic ammonium salts, such as cetyltrimethylammonium bromide (CTAB).
  • CTAB cetyltrimethylammonium bromide
  • ionic detergents include acyl amino acids, such as acyl glutamic, acyl peptides, sarcosinates, taurates, etc., carboxylic acids, such as saturated chain acids, carboxylic acid esters, carboxylic acid ethers.
  • phosphoric acid esters such as acyl isothiates, alkyl aryl sulfonates, alkyl sulfonates, sulfosuccinates, etc.
  • sulfuric acid esters such as alkyl ether sulfates and alkyl sulfates.
  • the ionic detergent is a detergent selected from the group consisting of sodium dodecyl sulfate (SDS), alkylbenzene sulphonate, laurylsarcosine, hydrated salt of glycolic acid, and its salts.
  • SDS sodium dodecyl sulfate
  • alkylbenzene sulphonate alkylbenzene sulphonate
  • laurylsarcosine hydrated salt of glycolic acid
  • nonionic detergents include, but are not limited to, polysorbates, polyethylene glycol copolymers and polypropylene glycol copolymers, such as Tween, Span, Poloxamer.
  • the nonionic detergent is selected from the group consisting of toctylphenoxypolyethoxyethanol, N, N-Bis (3-D-gluconamidopropyl) colamide, Brij (r) 35 P, N-decanoyl-N-methylglutamine, digitonin, dodecanoyl-N-methylglucamide, heptanoyl-N-methylglutamide, octylphenoxy poly (ethyleneoxy) branched ethanol, N-Nonanoyl- N-methylglucamine, Nonidet P 40, N-octanoyl-N-methylglutamine, Span 20 solution and polysorbate 20.
  • the lysis solution further comprises up to a 3M concentration of a salt.
  • salts that may be part of the lysis solution of the invention include, but are not limited to, carbonates, chlorides, phosphates, nitrates, nitrites, sulfates, citrates, carboxylates (acetates, formates, salicylates, etc.).
  • the lysis solution comprises sodium chloride (NaCl).
  • the lysis solution provided by this invention comprises Tris between 0.001 M and 2 M, SDS up to 3%, and NaCl up to a concentration of 3 M, at a pH between 3 and 11.5.
  • the expert in the field understand that these compounds may be substituted for other equivalent compounds; for example, the SDS can be replaced by Triton X-100 up to 10%.
  • the lysis solution provided by this invention comprises (approximately 0.2 M hydroxymethyl) -l, 3-propanediol (Tris), approximately 0.025% SDS, approximately 0.5 M or 0.05 M sodium chloride , and a pH of 10; In this case, the SDS can be replaced by Triton X-100 at approximately 5%.
  • the lysis solution provided by this invention comprises (approximately 0.2M hydroxymethyl) -l, approximately 0.2M 3-propanediol, approximately 5% Triton X-100, approximately 1M sodium chloride, and a pH of 10.
  • the lysis solution provided by this invention comprises approximately 0.3 M sodium phosphate, approximately 2% SDS, approximately 0.05 M ethylenediamine tetraacetic acid (EDTA), and a pH of 11.45.
  • the preparations are incubated in the lysis solution for 0.5 to 120 minutes, preferably 1 to 35 minutes, more preferably for about 5 minutes; and at a temperature between 1 ° C and 45 ° C, preferably between 15 ° C and 40 ° C, more preferably between 22 ° C and 37 ° C.
  • the incubation is carried out at a temperature of 22 ° C.
  • the incubation is carried out at a temperature of 37 ° C.
  • the evaluation of the presence of the bacterial nucleoid in the medium can be performed by microscopy or by any other alternative method to detect DNA released by the microorganisms at culture medium, whether physical or chemical, which includes, but is not limited to electrophoresis, antibodies, spectrophotometry, polymerase chain reaction, hybridization techniques, microarrays (microarrays), microfluidics, nanoparticles, quantum dots, etc. These procedures are widely known in the state of the art and the implementation thereof is routine practice for the person skilled in the art.
  • the detection of the bacterial nucleoid is carried out by microscopy, for which it is necessary to immobilize a sample of the culture resulting from step i) [ie, after exposure of the bacterial culture to the action of the antibiotic] on a support, such as, for example, a slide.
  • step ii) of the second method of the invention that is, the addition of the lysis solution that only affects bacteria whose cell wall has been affected by the antibiotic, can be carried out before or after immobilization. the bacteria on said support.
  • the second method of the invention further comprises, before or after step (ii), immobilizing a sample of the culture on a support.
  • the lysis solution is treated after immobilizing a sample of the culture resulting from stage i) on a support, such as a slide, it is immersed horizontally in a container containing the lysis solution .
  • the preparations can be washed to remove the remains of this solution.
  • the supports are introduced in a washing solution as smooth as possible, avoiding chelating agents or detergents; by way of illustration, the supports can be submerged horizontally in a container containing abundant distilled water or a buffer solution or physiological serum for a time between 1 and 60 minutes. Then, the sample is dehydrated. For this, solutions of increasing alcohol concentration can be used.
  • the slides are lifted and immersed in containers with a series of increasing concentration of ethanol, between 5% and 100%, for 30 seconds to 60 minutes each and then the preparations are allowed to air dry.
  • the temperature of the alcohols can range from -20 ° C to room temperature. It may be preferable to use alcohols at a temperature of -20 ° C to improve the precipitation of DNA, for 5 minutes each.
  • the preparations can be dehydrated by incubating in solutions of different alcohols such as methanol, or by letting it air dry or in an oven.
  • step iii) of the second method of the invention the presence of the bacterial nucleoid is determined either in the culture medium or in the support if the sample has been immobilized.
  • bacterial nucleoid means the region that contains DNA in the cytoplasm of bacterial cells. Experimental evidence suggests that the nucleoid is primarily composed of DNA (60%), with small proportions of RNA and proteins. These last two components act as messenger RNA and as genome regulatory proteins. In the state of the art, the bacterial nucleoid is also known as "nuclear region” or “nuclear body.” The techniques previously explained to observe the presence of extracellular DNA fragments in the culture medium can also be used to observe the bacterial nucleoid as required by the second method of the invention.
  • the technique of choice for determining the presence of the bacterial nucleoid is microscopy, then, as previously explained for the first method of the invention, it is convenient to stabilize and firmly adhere the DNA fragments to the slide since they can be detached. Once the samples are treated, and after stabilizing and firmly adhering the DNA fragments to the slide, they can be stained and the integrity of the cell wall of the microorganisms can be evaluated.
  • the observation of the presence of the bacterial nucleoid in the culture medium is carried out by staining. By choosing the staining conditions conveniently, high image quality and high consistency of the evaluation results can be obtained.
  • the different staining techniques as well as the dyes that can be used to visualize DNA by microscopy have been previously explained in the present description in relation to the first method of the invention and are applicable to the second method of the invention.
  • the observation of the presence of the bacterial nucleoid in the culture medium is carried out by staining which, in a more particular embodiment, is carried out by the use of fiuorochromes which, in yet another embodiment
  • fiuorochromes which, in yet another embodiment
  • they are selected from the group consisting of fiuorochromes, they are selected from the group consisting of Hoechst 33342, Hoechst 33258, DAPI, chromomycin A3, mitramycin, ethidium bromide, acridine orange, thiazoyl orange, 7-AAD (7-aminoactinomycin D ), cyanine derivatives, variants of the TOTO, YOYO, BOBO, POPO, JOJO, LOLO, SYTOX, PO-PRO, BO-PRO, YO-PRO, TO-PRO, JO-PRO, PO-PRO and LO- PRO, etc.
  • the implementation of the second method of the invention requires in an initial stage to add to an bacterial culture an antibiotic that acts at the level of the bacterial cell wall.
  • an antibiotic that acts at the level of the bacterial cell wall is selected from the group consisting of a beta-lactam antibiotic (among which they include, but are not limited to penicillins, cephalosporins, cephamycins, carbacefem, carbapenemics, monobactamics and beta-lactamase inhibitors such as clavulanic acid, sulbactam, tazobactam, etc.), an isoniazid, an ethionamide, an ethambutol, a cycloserine and a glycopeptide antibiotic (including, but not limited to, vancomycin or teicoplanin).
  • the practical application of the first and second method of the invention is to quickly and reliably find out if a bacterium is sensitive or resistant to an antibiotic that acts at the level of the bacterial cell wall. For this, it is sufficient to evaluate the integrity of the bacterial wall by any of the methods of the invention described above in the present description.
  • the present invention relates to a method for determining the sensitivity of a bacterium to an antibiotic that acts at the level of the bacterial cell wall comprising assessing the integrity of the cell wall of said bacterium by any of the methods of the invention, in which if the integrity of the bacterial cell wall has been damaged, then the bacterium is sensitive to the antibiotic.
  • the bacteria is not sensitive to the antibiotic, it can be a resistant bacterium or a bacterium called "persister" or tolerant.
  • Both types of bacteria are not affected by the antibiotic that acts at the level of the bacterial cell wall, but they differ in that resistant bacteria have mutations in the DNA so that antibiotic resistance is permanent, while bacteria persist. they do not have resistance mutations in the DNA, being a reversible functional state. Therefore, other applications of the methods of the invention consist in the detection in a sample of resistant bacteria or "persister" bacteria.
  • the invention relates to a method for identifying a persistent or antibiotic tolerant bacterium that acts at the level of the bacterial cell wall in a culture of sensitive bacteria, which comprises assessing the integrity of the cell wall of Bacteria present in said culture by the second method of the invention, in which the bacterium whose cell wall integrity has not been damaged is identified as persister or tolerant.
  • Another of the practical applications presented by the methods of the invention relates to the design of a personalized antibiotic therapy for a person suffering from a bacterial disease, since by means of the methods of the invention it is possible to find out if the bacterium causing the bacterial disease It is sensitive or resistant to a certain antibiotic.
  • the doctor may decide to administer to the individual suffering from said bacterial disease a therapy based on said antibiotic. If, on the contrary, the bacterium causing the bacterial disease is resistant to the antibiotic tested, then the doctor will choose a treatment that is not based on said antibiotic.
  • the present invention relates to a method for designing a personalized antibiotic therapy to an individual suffering from a bacterial disease comprising
  • "individual” means a member of any animal species, including, but not limited to, mammals, in particular, cattle (cows, bulls, oxen, yaks, etc.), cattle sheep (sheep, etc.), pigs (pigs, wild boars, etc.), goats (goats, etc.), horses or horses (horses, mares, zebras, etc.), camelids (camels, llamas, alpacas , etc.), rabbits, hares, bison, buffalo, deer, reindeer, deer, caribou, dogs, cats, mice, nonhuman primates (chimpanzees, gorillas, orangutans, macaques, gibbons, etc.).
  • the mammal is preferably a human being of any sex, age or race.
  • the "individual" or “subject” terms are synonyms and can be used interchangeably throughout this description.
  • bacterial disease is understood as that disease that results from the infection of an individual by a bacterium.
  • bacterial diseases include, but are not limited to, diseases caused by infection of bacteria of the genus Escherichia, Enterobacter, Salmonella, Staphylococcus, Shigella, Listeria, Aerobacter, Helicobacter, Klebsiella, Proteus, Pseudomonas, Streptococcus, Chlamydia, Mycoplasma, Pneumococcus , Clostridium, Bacillus, Corynebacterium, Mycobacterium, Campylobacter, Vibrio, Serratia, Providencia, Chromobacterium, Brucella, Yersinia, Heamophilus and Bordetella.
  • the first stage of the method for designing a personalized antibiotic therapy for an individual suffering from a bacterial disease comprises isolating the bacterium causing said bacterial disease from a sample from said individual.
  • the sample must be representative of the infectious process and must be taken from the correct anatomical site, must be collected in sufficient quantity to ensure an adequate examination, sterile devices, etc. must be used in the collection. More information on the procedures and materials used to collect samples can be found in Rotger, R. (editor), 1997 (cited ad supra).
  • the invention relates to a method for identify a compound that acts at the level of the bacterial cell wall that comprises:
  • the candidate compound is a compound that acts at the level of the bacterial cell wall.
  • the first stage of the method for identifying compounds that act at the level of the cell wall comprises contacting a culture of a bacterium sensitive to antibiotics that act at the level of the cell wall in the presence of the candidate compound.
  • antibiotic-sensitive bacteria include, but are not limited to, amoxicillin-sensitive E. coli strains, amplicillin-sensitive Enterococcus faecaelis strain, iminepen-sensitive Acinetobacter baumannii strain, strain of E. coli sensitive to ceftazidime, etc. More information on the sensitivity of bacteria to ⁇ -lactam antibiotics can be found in the state of the art (June 2010 CLSI Guidelines). Lysis solution of the invention
  • the present invention is based on the fact that a consequence of the activity of antibiotics acting at the level of the cell wall on bacteria is the release of extracellular fragments of DNA to the culture medium. Additionally, when the bacterial culture is mixed or contaminated, that is, there is a mixture of sensitive or resistant cells, the observation of extracellular DNA fragments would not be very suitable as a strict criterion of discrimination since despite releasing Extracellular DNA fragments, the morphology of the bacteria is not altered by the action of the antibiotic, that is, both the sensitive and antibiotic resistant bacteria apparently show the intact cell wall. To solve this problem, the inventors designed a lysis solution that only affects bacteria whose cell wall has been previously damaged by the action of the antibiotic that acts at the level of the cell wall.
  • lysis solution hereinafter lysis solution of the invention, characterized in that it affects only the bacteria that have the bacterial wall damaged by the action of an antibiotic, which comprises a buffer and a pH between 3 and 11.5.
  • the lysis solution that specifically affects the bacteria that have the cell wall damaged by the antibiotic that acts at the level of the bacterial cell wall basically comprises a buffer solution that has a pH between 3 and 11.5 but additionally , as explained in previous inventive aspects, may comprise other components, including, but not limited to, ionic detergents, non-ionic detergents, salts, etc. in different proportions.
  • the lysis solution of the invention further comprises up to 3% of an ionic detergent or a non-ionic detergent.
  • said ionic detergent is a detergent selected from the group consisting of sodium dodecyl sulfate, alkylbenzene sulphonate, lauryl sarcosine, hydrated salt of glycolic acid, and mixtures thereof.
  • said non-ionic detergent is selected from the group consisting of toctylphenoxypolyethoxyethanol, N, N-Bis (3-D-gluconamidopropyl) colamide, Brij (r) 35 P, N-decanoyl-N-methylglutamine, digitonin, dodecanoyl -N-methylglutamide, heptanoyl-N-methylglutamide, octylphenoxy poly (ethyleneoxy) branched ethanol, N-Nonanoyl-N-methylglutamine, Nonidet P 40, N-octanoyl-N-methylglutamine, Span 20 solution and polysorbate 20.
  • the lysis solution further comprises up to a 3M concentration of a salt, for example, carbonates, chlorides, phosphates, nitrates, nitrites, sulfates, citrates, carboxylates (acetates, formates, salicylates, etc.);
  • a salt for example, carbonates, chlorides, phosphates, nitrates, nitrites, sulfates, citrates, carboxylates (acetates, formates, salicylates, etc.);
  • the lysis solution comprises sodium chloride (NaCl).
  • the lysis solution provided by this invention comprises Tris between 0.001 M and 2 M, SDS up to 3%, and NaCl up to a concentration of 3 M, at a pH between 3 and 11.5.
  • the person skilled in the art will understand that these compounds can be substituted by other equivalent compounds; for example, the SDS can be replaced by Triton X-100 up to 10%.
  • the lysis solution provided by this invention comprises (approximately 0.2 M hydroxymethyl) -l, 3-propanediol (Tris), approximately 0.025% SDS, approximately 0.5 M or 0.05 M sodium chloride , and a pH of 10; In this case, the SDS can be replaced by Triton X-100 at approximately 5%.
  • the lysis solution provided by this invention comprises (approximately 0.2M hydroxymethyl) -l, approximately 0.2M 3-propanediol, approximately 5% Triton X-100, approximately 1M sodium chloride, and a pH of 10.
  • the lysis solution provided by this invention comprises approximately 0.3 M sodium phosphate, approximately 2% SDS, approximately 0.05 M ethylenediamine tetraacetic acid (EDTA), and a pH of 11.45. More details and explanations on the various particular embodiments of the lysis solution of the invention can be found in the description of the second method of the invention.
  • the invention relates to the use of the lysis solution of the invention to evaluate the bacterial cell wall.
  • Information on how the lysis solution of the invention can be used to evaluate the bacterial cell wall can be found in the description of the first and second methods of the invention.
  • kit of the invention The implementation of the methods of the invention requires a series of components that can be arranged together in the form of a pack or kit, hereinafter, kit of the invention.
  • Components useful for the implementation of the methods of the invention include, but are not limited to, buffer solution, lysis solution, dyes, sterile material for sample collection (swabs, swabs, tweezers, etc.), covers and slides, distilled water alcohols (ethanol), etc.
  • the kit of the invention may contain instructions or indications that guide the person skilled in the art in implementing the methods of the invention.
  • the invention relates to a kit comprising the lysis solution of the invention.
  • the samples can be stained with specific fiuorochromes for EvaGreen or (green) or GelRed (red) type DNA.
  • sample-agarose mixture was pipetted onto a previously coated slide (eg, with an agarose film) and the sample was covered with a 22x22 mm coverslip.
  • the slide is placed on a cold plate of a refrigerator (4 ° C) for 5 minutes to allow the agarose to form a microgel with intact cells trapped inside.
  • the coverslip was carefully removed and the slide was immediately immersed horizontally in a lysis solution for 5 minutes at 37 ° C for Gram + (gram positive) bacteria and at 22 ° C for Gram- (gram negative) bacteria.
  • the slide was washed horizontally on a tray with plenty of distilled water for 3 minutes, dehydrated by incubating it horizontally in cold ethanol (-20 ° C) at increasing concentration (70%, 90% and 100%) for 3 minutes at each concentration and Air dried in an oven.
  • the dried slide was incubated in a microwave oven at 750 W for 4 minutes and the DNA was stained with 25 ⁇ L of SYBR Gold (Molecular Probes, Eugene, OR, USA) diluted 1: 400 in TBE buffer (Tris-borate 0, 09 M, EDTA 0.002 M, pH 7.5) for 2 minutes in the dark, with a glass coverslip. After a brief wash in phosphate buffer pH 6.88 (Merck, Darmstadt, Germany) a 24x60 mm coverslip was added and the slides were visualized by fluorescence microscopy.
  • the images were visualized in an epifluorescence microscope (Nikon E800), with a lOOx objective and fluorescence filters appropriate for FITC-SYBR Gold (465 nm excitation, 515-555 nm emission), PI-Cy3 (540/25 nm excitation , emission 605/55 nm) and DAPI (excitation 340-380 nm, emission 435-485 nm).
  • FITC-SYBR Gold 465 nm excitation, 515-555 nm emission
  • PI-Cy3 540/25 nm excitation , emission 605/55 nm
  • DAPI excitation 340-380 nm, emission 435-485 nm.
  • the images were captured with a high sensitivity CCD camera (KX32ME, Apogee Instruments, Roseville, CA, USA). Groups of 16-bit digital images were obtained and archived as .tiff files.
  • Image analysis used a macro in the Visilog 5.1 program (Noesis, Gif sur Yvette, France). This allowed to determine the threshold, subtract the background and measure the size of the average width of the halo of the nucleoids in ⁇ , delimited between the peripheral end of the nucleoid and the outer limit of the cell body. In the case of unrecognized cell bodies, the nucleoid centroid was considered as an internal reference point to measure the width of the halo of the disseminated nucleoid.
  • EXAMPLE 1 Confirmation of the operation of the technique: release of the bacterial nucleoid and diffuse remains of the wall and / or bacterial products, in bacteria sensitive to an antibiotic that acts at the level of the bacterial wall
  • Three different strains of Escherichia coli were exposed to the ⁇ -lactam antibiotic amoxicillin, together with the clavulanic acid ⁇ -lactamase inhibitor, and processed by the technique for evaluating the integrity of the cell wall of the present invention.
  • Bacteria that were growing in Mueller-Hinton liquid medium were incubated with the antibiotic in Mueller-Hinton liquid medium during the exponential growth phase, at 37 ° C, with shaking, for 40 minutes.
  • the antibiotic doses were chosen according to the cut-off points indicated by the Clinical and Laboratory Standards Institute (CLSI).
  • a strain is considered sensitive when its minimum inhibitory concentration (MIC) is ⁇ 8/4 (amoxicillin: 8 ⁇ g / mL and clavulanic acid: 4 ⁇ g / mL) and resistant when its MIC is> 32/16 (amoxicillin : 32 ⁇ g / mL and clavulanic acid: 16 ⁇ g / mL).
  • MIC minimum inhibitory concentration
  • E. coli isolated from hospital After the results of the previous experiment (Example 1), 11 different strains of E. coli were studied, isolated in a Microbiology Service. After growing in plaque with Mueller-Hinton medium, for 24 hours, they were exposed to amoxicillin, together with Clavulanic acid, in Mueller-Hinton liquid medium for 1 hour, after which they were processed by the technique for assessing the integrity of the cell wall according to the present invention. As in Example 1, the doses were 0, 8/4 and 32/16 (amoxicillin / clavulanic acid).
  • beta-lactam antibiotics penicillins, cephalosporin and carbapenem
  • Different bacterial strains grew on plaque with Mueller-Hinton medium, for 24 hours, then were exposed to the ⁇ -lactam antibiotic for 60 minutes in Mueller-Hinton liquid medium, a 37 ° C, under stirring, and finally processed by the technique for assessing the integrity of the cell wall according to the present invention.
  • the strains and antibiotics used were:
  • the antibiotic doses applied were 0, the MIC, determined in the Microbiology Laboratory using the microdilution and / or e-test technique, and those of the sensitivity and resistance cut-off points indicated by the Clinical and Laboratory Standards Institute (CLSI) for each strain. A dose 10 times higher than the MIC was also used.
  • the antibiotic cut-off points vary for each strain:
  • Escherichia coli Ampicillin-resistant strain (MIC> 256) and ceftazidime (MIC2).
  • Figure 5 shows cells of a sensitive strain of E. coli, from a culture in liquid medium, growing in exponential phase, sensitive to amoxicillin / acid clavulanic, and exposed to a high dose (32/16) for 90 minutes.
  • a high dose 32/16
  • the "persister" cells when not growing, should progressively increase their relative proportion on the slide, as the incubation time with the antibiotic increases and the sensitive cells disappear from the culture. This phenomenon could also take place when the strain is incubated with progressively increasing doses of the antibiotic, for a fixed time. In fact, if the results were adjusted for the amount of cells present after incubation with the antibiotic, it would be obtained that the cells without halo (“persisters") would remain constant regardless of the dose of antibiotic or the incubation time with it , because they do not grow, while the rest of the sensitive cells, with halo, would decrease progressively, when disappearing from the culture. With these two types of experiments, among others, it can be determined if the non-lysed cells correspond to "persisters".
  • the nucleoid frequency with fragmented DNA was determined according to the protocol described in Tamayo et al. ⁇ Tamayo M, Santiso R, Gosálvez J Bou Q Fernández JL.
  • bacteria When bacteria are processed bypassing the incubation step in the lysis solution, they appear intact in their entirety, whether or not they are affected by the antibiotic. However, if after pertinent incubation with the dose of antibiotic for sensitive cutting, the homogeneous microdiffuse, granular-fibrillar background of DNA fragments detached by the cells can be clearly seen in the preparation, it can be clearly decided whether the strain is sensitive or not, respectively.
  • This background assessment without using lysis to see the effect on the cell wall, can be done by staining with the fluorochrome the material included in microgel, or the material not including in microgel, either fixed or fresh.
  • the liquid with the cells is included in an agarose microgel, which is dehydrated in alcohols and / or air dried or in an oven and stained with fluorochrome. It is the same process described in detail above, but without incubation with the lysis solution. The evaluation of the fund can be done quickly, after the 15-20 minutes it takes to perform the technique. The preparations are permanent. The result is shown in Figure 8, which shows the same strains presented in Figure 1, grown for 24 hours in plaque and then incubated for 40 minutes with doses 0, 8/4 (low) and 32/16 (high) amoxicillin / clavulanic acid. This more abbreviated system does not detect the "persisters" of the bacterial strain itself, nor discriminate sensitive cells from resistant, in case of mixed or contaminated culture.
  • the background intensity of extracellular DNA fragments depends on the concentration of sensitive bacteria. If this is reduced, the fund may be very dim or almost unobservable.
  • a strain of E. coli sensitive to amoxicillin / clavulanic acid incubated with a high concentration (32/16), from an OD600 of 0.07, shows very evident background at 15 minutes of incubation (OD600: 0.071 ; 42.5 million cells per mL, measured by Neubauer chamber; 5.62% viable cells) and remains intense until 2 hours of incubation (OD600: 0.033; 14.5 million cells per mL; 3.77 % of viable cells).
  • the fund becomes scarce at 3 and 4 hours (OD600: 0.037 and 0.033 respectively; 14 million cells per mL at both times; 0.38% of viable cells at both times) and is no longer visible at 6 hours (OD600: 0.035; 13.5 million cells per mL; 0.13% viable cells). Although the total cells remain between 40-30% of the initial ones from 60 minutes to 6 hours, the intensity of the background of DNA fragments is reduced in that time until it is not detectable, possibly by degradation thereof.
  • An aliquot of the culture without antibiotic and others with antibiotic doses can be mixed with a fixative.
  • alcoholic, aldehyde or ketone fixatives such as methanol, ethanol, acetone, formaldehyde, glutaraldehyde, also acetic acid, picric acid, mercury chloride, dichromate ion, osmium tetroxide, etc, and mixtures such as methanol can be used: acetic, for example in a 3: 1 ratio, such as Carnoy liquid.
  • formaldehyde the solution may be 0.1 to 50% aqueous, preferably 10%.
  • the other fixatives they can be used in different proportions, from 0.1 to 100%.
  • a proportion of 5-10% aqueous solution of microorganisms and 95-90%> of fixative is recommended.
  • fixative over fresh observation is that the material can be stored for a long time and observed when convenient.
  • a drop (a few microliters) is spread on the slide and allowed to dry.
  • SYBR Gold fluorochrome (1: 400) is added, mounted with a coverslip and examined.
  • Formaldehyde retains the background only briefly, so it is not recommended.
  • the other fixers are more durable and give a clear background image.
  • Methanol acetic acid is preferable. With methanol: acetic acid, the material spreads more easily on the slide and the background material and the bacteria are better adhered to the glass, while with the other fixatives they are more likely to detach when stained, unless it Incubate previously with dry heat. The background of extracellular DNA fragments is seen as a dispersed aggregate ( Figure 9). The extension of the material fixed on the slide takes about 8-10 minutes to dry, although when the slide is placed on a plate or stove at 37 ° C it dries in 5 minutes. If the methanol: acid: acetic acid (3: 1) is 95%, drying after the drop is rapid, in less than 1 minute.
  • the fixings do not provide great advantage in terms of preparation and observation time, with respect to the preparation of the microgel, which is also permanent.
  • the operability of the fixation or use of the microgel is practically similar.
  • Fluorochrome is added to an aliquot of the culture, a coverslip is placed and examined directly with the fluorescence microscope. For example, about 10 ⁇ of the liquid culture with bacteria, 2 ⁇ of SYBR Gold fluorochrome (1: 400) are added. This is done in cultures with an antibiotic that acts on the cell wall, including a control culture, without an antibiotic. In the culture with the antibiotic, in addition to the floating bacteria, diffuse micro filamentous or granular intercellular material is seen, in continuous Brownian motion, which corresponds to the background emitted by the sensitive bacteria ( Figure 9). This determination of the sensitivity or resistance to the antibiotic that acts on the cell wall is the fastest and simplest, in 1 minute.
  • the experiment was performed with an ampicillin sensitive E. coli strain and an imipenem sensitive A. baumanii strain. The first was incubated with 32 ⁇ g / mL ampicillin and the second with imipenem 0.76 ⁇ g / mL, for 60 minutes, in Mueller-Hinton liquid medium, at 37 ° C, while stirring. After incubation, each culture with the cells was included in microgels on the slide. A microgel of the control culture without antibiotic was placed on each slide, and 2 microgels of the antibiotic treated culture were placed. The size of each microgel is the one that corresponds to an 18xl8mm coverslip.
  • microgels on slides were washed in proteinase K buffer (1% SDS, 2 mM EDTA) and on other slides, in DNAase I buffer (20 mM Tris-HCl, pH 8.3, 2 mM MgCl 2 ).
  • proteinase K buffer 1% SDS, 2 mM EDTA
  • DNAase I buffer 20 mM Tris-HCl, pH 8.3, 2 mM MgCl 2 .
  • one of the microgels of the culture treated with ampicillin was incubated only with proteinase K buffer and the other microgel of the culture treated with ampicillin was incubated with 5 ⁇ of the proteinase K itself, 2 mg / mL, in its buffer.
  • FISH Fluorescent in situ hybridization
  • the DNA present on the slides was denatured, incubating them in 75% formamide / 2XSSC, pH7, at 67 ° C, 90 seconds. Subsequently they were passed through alcohols of 70%, 90% and 100%, at -20 ° C, 5 minutes each and allowed to dry. In each of them, at the level of the extension area, micro quantities of biotin-labeled total genomic DNA probe (4.3 ng / ⁇ in 50% formamide, 2XSSC, 10%) sulfate were pipetted dextran, 100 mM sodium phosphate, pH 7), putting an 18xl8mm coverslip. The probe was incubated overnight in a humid chamber.
  • the non-hybridized probe was washed in 50% formamide / 2XSSC, pH 7, two 5-minute washes and then in 2XSSC, pH 7, two 3-minute washes each, at 37 ° C.
  • the slides were incubated in antibody blocking solution (5% BSA, 4XSSC, 0.1% Triton X-100) for 5 minutes at 37 ° C and then in streptavidin-Cy3 (1: 200, in 1% BSA, 4XSSC, 0.1% Triton X-100), 30 minutes.
  • the slides were counterstained with DAPI (1 ⁇ g / mL in Vectashield) and examined with a fluorescence microscope.
  • microgranular-fibrillar background observed in the middle of the cultures of microorganisms where the antibiotic against the cell wall has been effective corresponds to extracellular DNA fragments, released by the microorganism.
  • Examples 1 to 8 show the efficacy of the methods provided by the present invention for the rapid determination in situ of the bacterial sensitivity or resistance to antibiotics that act at the level of the cell wall, by example, inhibiting the biosynthesis of peptidoglycan.
  • the technique for assessing the integrity of the cell wall is a quick and simple procedure that allows discriminating between resistant and antibiotic-sensitive strains that act at the level of the cell wall, for example, interfering with the biosynthesis of peptidoglycan. This methodology can be useful not only at the clinical level but also to perform basic studies on the mechanism of action of antibiotics that act at the level of the cell wall.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Toxicology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Biomedical Technology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

La presente invención se relaciona con un método para evaluar la integridad de la pared celular de las bacterias presentes en un cultivo en presencia de un antibiótico que actúa a nivel de la pared celular bacteriana, que desde un punto vista práctico, permite determinar de forma rápida si una bacteria es sensible o resistente a un antibiótico que actúa a nivel de la pared celular bacteriana. Asimismo, la presente invención también se relaciona con una solución de lisis de aplicación en el método anterior, que afecta de forma específica a las bacterias que presentan la pared celular dañada por la acción de un antibiótico que actúa a nivel de la pared celular bacteriana, permitiendo distinguir las bacterias sensibles de las resistentes a dicho antibiótico.

Description

MÉTODO PARA EVALUAR LA INTEGRIDAD DE LA PARED CELULAR
BACTERIANA
CAMPO TÉCNICO DE LA INVENCIÓN
La presente invención se encuadra dentro del campo de la industria biotecnológica, y principalmente aquel relacionado con la microbiología, cuyo ámbito de aplicación se encuentra dentro del sector sanitario (humano, veterinario, medioambiental y básico). La presente invención se relaciona con un método para evaluar la integridad de la pared celular de las bacterias presentes en un cultivo en presencia de un antibiótico que actúa a nivel de la pared celular bacteriana, que desde un punto vista práctico, permite determinar de forma rápida si una bacteria es sensible o resistente a un antibiótico que actúa a nivel de la pared celular.
ANTECEDENTES DE LA INVENCIÓN
El estudio de la sensibilidad de los microorganismos a los antimicrobianos es una de las funciones más importantes de los laboratorios de microbiología clínica. Su realización se desarrolla mediante las pruebas de sensibilidad o antibiograma, cuyo principal objetivo es evaluar en el laboratorio la respuesta de un microorganismo a uno o varios antimicrobianos.
Algunos de los métodos más usados en la práctica clínica diaria incluyen (i) métodos de difusión, como el antibiograma disco-placa basado en el trabajo de Bauer, Kirby y colaboradores {Bauer A W, et.al. Am. J. Clin. Pathol. 1966, 45:493-496) o el método épsilon test o E-test (AB Biodisk, Suecia), o (ii) métodos de dilución, como el método de dilución en agar o el método de microdilución con caldo. Comparando los métodos de difusión con los métodos de dilución, éstos son técnicamente más complejos y casi siempre más caros, en particular cuando se utilizan paneles comerciales de microdilución. En la práctica rutinaria del laboratorio de microbiología clínica, los métodos de microdilución en medio líquido son los más utilizados.
En muchos laboratorios el empleo de paneles comerciales se basa en la utilización de sistemas semiautomáticos de incubación-lectura-interpretación; esto facilita su uso, pero tiene el inconveniente del incremento del gasto. Algunas compañías han introducido en el mercado paneles en los que el medio de cultivo incluye un indicador fluorescente que permite la obtención rápida (menos de 8 horas) de los resultados. En relación con determinación rápida de resistencia a antibióticos que actúan a nivel de la pared bacteriana, como los β-lactámicos, se añade un compuesto metabolizable fluorogénico al medio de cultivo (solicitud de patente WO/1992/019763). Si el organismo crece con el antibiótico, el metabolismo de la bacteria da lugar a la suelta del fluoróforo. Si el organismo no crece, se incrementa la fluorescencia de la muestra. Otra posibilidad es usar un compuesto indicador de color, como el tetrazolium, que en caso de sensibilidad al antibiótico produce un cambio de color tras añadir un transportador electrónico como la phenazine methosulfate. Sin embargo, no existen aún datos suficientes que permitan aconsejar el uso rutinario de este tipo de paneles. Varias compañías comerciales están evaluando, también, sistemas expertos (programas informáticos) que facilitan la interpretación clínica de los resultados obtenidos; es presumible que su uso se generalizará en un futuro. Varios sistemas se encuentran a fecha de hoy en el mercado, MicroScan WalkAway, Vitek, Wider entre los más destacados. A falta de más experiencia clínica con el empleo de indicadores fluorescentes el tiempo medio de respuesta para obtener la susceptibilidad a antimicrobianos de un microorganismo específico oscila, como en los métodos de difusión previamente mencionados, entre 18 a 24 horas.
Recientemente se ha apuntado la posibilidad de emplear un sistema de dielectroforesis que detecta cambios en la electrofisiología de la célula tras administrar el antibiótico (Hoettges KF, Dale JW, Hughes MR Rapid determination of antibiotic resistance in E. coli using dielectrophoresis. Phys Med Biol 2007;52:6001-6009).
Otro desarrollo para antibióticos que actúan a nivel de la pared bacteriana, como los β- lactámicos, consiste en la detección, mediante un sustrato específico, de la actividad de enzimas citoplásmicas que son liberadas por la célula al medio, si el antibiótico ha sido efectivo (European Patent EP0135023). El BACcelr8r™ es una plataforma en desarrollo por Accelr8, para la identificación automática de microorganismos y estudiar su resistencia a antibióticos. No emplea cultivo ni hace necesario el aislamiento de las bacterias. Funciona mediante cassettes, en donde cada una corresponde a una muestra. Usa un sistema automatizado, con un microscopio controlado mediante un computador, una cámara digital y un software de análisis. Una bomba mantiene un flujo de medio con bacterias, en diferentes condiciones, a través de la cassette. El análisis de la resistencia a antibióticos podría completarse en 8 horas.
La solicitud de patente US2004/0014066 describe un método para detectar en una muestra la actividad de un antibiótico que afecta la integridad celular que comprende (a) proporcionar un microorganismo transformado que comprende una ácido nucleico que codifica un promotor operativametne unido a un gen reportero heterólogo capaz de emitir una señal detectable, y (b) contactar la muestra con el microorganismo trasformado, (c) observar dicho microorganismo para dicha señal detectable, en el que el promotor está regulado por un sistema de transducción de señales de dos componentes, en donde los componentes son (i) un receptor sensible a cambios en la envuelta o membrana celular del microorganismo y (ii) un factor que actúa en trans que es activado en repuesta a una estimulación por el receptor y que regula el promotor.
Antibióticos que actúan a nivel de la pared bacteriana
El esqueleto de la pared celular bacteriana está constituido por un heteropolímero, el peptidoglicano mureína. Esta macromolécula está formada por una secuencia alternante de N-acetil-glucosamina (NAG) y el ácido N-acetilmurámico (NAM) unidos mediante enlaces B-1,4. La cadena es recta y no ramificada, constituyendo la estructura básica de la pared celular. El ácido N-acetilmurámico posee un grupo de ácido láctico que enlaza con una pequeña cadena peptídica (tetrapéptido). Entre los aminoácidos típicos de esta cadena se encuentran la L-alanina, ácido D-glutámico, ácido m-diaminopimélico o la L- Usina o D-alanina. Los antibióticos que inhiben la síntesis de la pared bacteriana son distintas familias de fármacos que actúan sobre distintos pasos de la síntesis de la pared bacteriana:
- La cicloserina es un análogo de la D-alanina e inhibe competitivamente la unión de este aminoácido a las enzimas D-alanino-D-alanina sintetasa y la alanino racemasa, impidiendo su unión a los precursores del peptidoglicano.
- La fosfomicina bloquea la síntesis de los precursores del péptidoglicano.
- La bacitracina inhibe el reciclado del undecaprenil, el transportador lipídico del peptidoglucano hacia el exterior de la célula.
- Los antibióticos glucopéptidos o glicopéptidos son una clase de péptidos que contienen azúcares ligados, como en la pared celular bacteriana, poseyendo una gran afinidad a los precursores de esta estructura. Los más conocidos son la vancomicina y la teicoplanina. La vancomicina ejerce su acción bactericida inhibiendo la síntesis de la pared celular bacteriana, uniéndose al fragmento D alanina-D alanina (D-Ala-D-Ala) del pentapéptido de la pared de las bacterias Gram+, bloqueando la incorporación de péptidos a la pared celular. Secundariamente, la vancomicina actuaría por otros mecanismos como es la afectación de la permeabilidad de la membrana citoplasmática e inhibición de la síntesis de ARN, que se ejerce después que el fármaco se unió al peptidoglicano.
- Los antibióticos β-lactámicos ejercen función bactericida al interferir la unión transversal o puente interpeptídico, necesario para la reticulación. Inhiben la actividad de las PBPs, serina proteasas o transpeptidasas, con las que se unen de forma irreversible.
- Otros antibióticos que interfieren con la síntesis de pared son isoniacida, etionamida y el etambutol. Se usan en el tratamiento de infecciones por micobacterias, al igual que la cicloserina, citada anteriormente. La isoniacida tiene actividad bactericida en fase de replicación activa. Afecta síntesis de ácido micólico, interrumpiendo la elongación de ácidos grasos. La etionamida también inhibe síntesis de ácido micólico. El etambutol interfiere la síntesis de arabinogalactano de la pared celular. La resistencia a estos antibióticos es por la falta de penetración en la bacteria y/o modificación de sus dianas celulares. La resistencia a los antibióticos ocasiona decenas de miles de muertes cada año. Muchas de estas muertes podrían evitarse con un tratamiento antibiótico bien seleccionado por su efectividad. Dados los niveles de resistencia, es necesario realizar el cultivo bacteriano, seguido de antibiograma. Para completar todo ello, las bacterias deben crecer 2-3 días, habitualmente. El antibiograma en sí, suele requerir un día de incubación, al menos, en las bacterias habituales de crecimiento rápido.
En pacientes críticos de la UCI, es importante un tratamiento antibiótico rápido. Dada la demora del antibiograma, éste se realiza de modo empírico. Este tipo de tratamiento es inefectivo en el 20-40% de los casos, y el cambio de tratamiento tras los resultados del antibiograma puede ya no ser efectivo. En esta situación, es importante disponer de un sistema de antibiograma rápido. Los antibióticos que actúan a nivel de la pared bacteriana, concretamente los β-lactámicos, son un grupo muy numeroso y de los más utilizados en la terapia anti -infecciosa. Es de gran interés disponer de sistemas de antibiograma rápido para este tipo de antibióticos.
COMPENDIO DE LA INVENCIÓN
Los autores de la presente invención han descubierto que una consecuencia de la actividad de los antibióticos que actúan a nivel de la pared celular bacteriana sobre las bacterias es la liberación de fragmentos extracelulares de ADN al medio de cultivo. Para observar este efecto, los inventores incubaron una cepa de E.coli sensible a ampicilina (un antibiótico β-lactámico) en presencia de dicho antibiótico, tras lo cual el cultivo se incluyó en diferentes microgeles sobre unos portaobjetos, a los que se les administró proteinasa K o DNAasa I (Ejemplos 7 y 8). Los cultivos sin tratar con la ampicilina no mostraron fondo micro granular-fibrilar en la preparación (Figura 10 a), mientras que en los cultivos tratados con ampicilina apareció un fondo microgranular. Cuando los cultivos tratados con ampicilina se incubaron con proteinasa K, el fondo permaneció inalterado (Figura 10 f), mientras que cuando se incubaron con DNAasa I, el fondo desapareció (Figura 10 d), indicando que el fondo observado incluye principalmente fragmentos extracelulares de ADN procedentes de las células afectadas por el antibiótico. Dicho fondo no se apreció cuando se usaron otros tipos de antibióticos, como las quinolonas, que no actúan a nivel de la pared celular.
No obstante, los inventores también observaron que, cuando el cultivo bacteriano es mixto o contaminado, es decir, hay mezcla de células sensibles o resistentes, dicho método no sería muy adecuado como criterio estricto de discriminación puesto que a pesar de liberar fragmentos extracelulares de ADN, la morfología de las bacterias no se ve alterada por la acción del antibiótico, es decir, tanto las bacterias sensibles como resistentes al antibiótico muestran aparentemente la pared celular intacta. Para solucionar este problema, los inventores han diseñado una solución de lisis que afecta únicamente a las bacterias cuya pared celular ha sido previamente dañada por la acción de un antibiótico que actúa a nivel de la pared celular, y que cuando es añadida al cultivo bacteriano, que anteriormente ha sido expuesto a la acción de dicho antibiótico, se produce la liberación del nucleoide bacteriano observándose entonces una bacteria con la pared celular dañada (Ejemplos 1 a 5). Así, la presencia del nucleoide bacteriano tras aplicar la solución de lisis, es indicativo de la presencia de bacterias sensibles al antibiótico.
Por lo tanto, en un aspecto, la invención se relaciona con un método para evaluar la integridad de la pared celular de una bacteria en un cultivo puro en presencia de un antibiótico que actúa a nivel de la pared celular bacteriana que comprende:
i) añadir a dicho cultivo puro de dicha bacteria un antibiótico que actúa a nivel de la pared celular bacteriana, y
ii) determinar la presencia de fragmentos extracelulares de ADN en el medio de cultivo,
en el que la presencia de fragmentos extracelulares de ADN en el medio de cultivo es indicativo de que la integridad de la pared celular de la bacteria ha sido dañada.
En otro aspecto, la invención se relaciona con un método para evaluar la integridad de la pared celular de las bacterias presentes en un cultivo en presencia de un antibiótico que actúa a nivel de la pared celular bacteriana que comprende: i) añadir a dicho cultivo un antibiótico que actúa a nivel de la pared celular bacteriana,
ii) añadir solución de lisis al cultivo resultante de la etapa i), en donde dicha solución de lisis es una solución de lisis específica para aquellas bacterias cuya pared celular ha sido dañada por el antibiótico que actúa a nivel de la pared celular bacteriana, y comprende un tampón con un pH comprendido entre 3 y 11,5, y
iii) determinar la presencia del nucleoide bacteriano,
en el que la presencia del nucleoide bacteriano en el medio es indicativa de que la integridad de la pared celular de las bacterias ha sido dañada.
En otro aspecto, la invención se relaciona con un método para determinar la sensibilidad de una bacteria a un antibiótico que actúa a nivel de la pared celular bacteriana, que comprende medir la integridad de la pared celular de dicha bacteria mediante un método según la presente invención, en el que si la integridad de la pared celular de la bacteria ha sido dañada, entonces la bacteria es sensible al antibiótico.
En otro aspecto, la invención se relaciona con un método para diseñar una terapia antibiótica personalizada a un individuo que padece una enfermedad bacteriana que comprende
i) aislar la bacteria causante de la enfermedad bacteriana a partir de una muestra procedente de dicho individuo, y
ii) evaluar la integridad de la pared celular de dicha bacteria mediante un método según la presente invención,
en el que si la integridad de la pared celular de dicha bacteria ha sido dañada, entonces dicho individuo es susceptible de recibir una terapia basada en un antibiótico que actúa a nivel de la pared celular.
En otro aspecto, la invención se relaciona con un método para identificar un compuesto que actúa a nivel de la pared celular bacteriana que comprende:
i) poner en contacto un cultivo de una bacteria sensible a un antibiótico que actúa a nivel de la pared celular bacteriana en presencia del compuesto candidato, y ii) evaluar la integridad de la pared celular de dicha bacteria mediante un método según la presente invención,
en el que si la integridad de la pared celular de dicha bacteria ha sido dañada, entonces el compuesto candidato es un compuesto que actúa a nivel de la pared celular bacteriana.
En otro aspecto, la invención se relaciona con un método para identificar una bacteria persister o tolerante a un antibiótico que actúa a nivel de la pared celular bacteriana en un cultivo de bacterias sensibles, que comprende evaluar la integridad de la pared celular de las bacterias presentes en dicho cultivo mediante un método según la presente invención, en el que la bacteria cuya integridad de la pared celular no haya sido dañada es identificada como persister o tolerante.
En otro aspecto, la invención se relaciona con una solución de lisis caracterizada porque afecta solo a las bacterias que presentan la pared bacteriana dañada por acción de un antibiótico, que comprende un tampón y un pH de entre 3 y 11,5.
En otro aspecto, la invención se relaciona con el uso de la solución de lisis de la presente invención para evaluar la integridad de la pared celular bacteriana.
En otro aspecto, la invención se relaciona con un kit que comprende la solución de lisis de la invención.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura 1. Tres cepas diferentes de Escherichia coli, bacteria Gram-, expuestas al antibiótico β-lactámico amoxicilina, junto con el inhibidor de las beta-lactamasas ácido clavulánico, procesadas mediante la técnica para evaluación de la integridad de la pared celular. La incubación fue en medio líquido Mueller-Hinton, durante la fase de crecimiento exponencial, a 37°C, con agitación, durante 40 minutos. Las dosis de antibiótico fueron elegidas según los puntos de corte indicados por el Clinical and Laboratory Standards Institute (CLSI). Así, la cepa se considera sensible cuando su concentración mínima inhibitoria (CMI) es < 8/4 (amoxicilina 8 μ§/ιηΙ. y ácido clavulánico 4 μg/mL) y resistente cuando su CMI es > 32/16 (amoxicilina 32 μ§/ιηΙ. y ácido clavulánico 16 μg/mL). Según las técnicas estándar de microbiología, la primera cepa (fila de arriba: a, a', a") es sensible, la segunda es intermedia (fila del medio: b, b', b") y la tercera es resistente (fila de abajo: c, c', c"). a, b, c: control, sin antibiótico, a', b', c': 8/4; amoxicilina 8 μg/mL y ácido clavulánico 4 μg/mL; a", b", c": 32/16; amoxicilina 32 μg/mL y ácido clavulánico 16 μg/mL. Los controles sin antibiótico (a, b, c) muestran las bacterias sin lisar. Tras la dosis 8/4, solo las bacterias de la primera cepa, sensible, aparecen Usadas, mostrando los nucleoides (a'). Tras la dosis 32/16, la primera y segunda cepa, sensible e intermedia, aparecen Usadas (a" y b"), mientras que la tercera, resistente, permanece sin lisar (c"). Sin embargo, algún daño en pared celular es visible en algunas células aisladas. Cuando el antibiótico es efectivo, además de la liberación y expansión de los nucleoides, se aprecia un fondo homogéneo micro difuso, granular, de fragmentos de ADN desprendidos por las células.
Figura 2. Enterococcus faecalis, bacteria Gram +, sensible al antibiótico β-lactámico ampicilina (CMI = 4 μg/mL), tratada con diferentes dosis de ampicilina durante 60 min. a: control, sin antibiótico; b: 4 μg/mL (CMI); c: 8 μg/mL; d: 16 μg/mL; e: 32 μg/mL. La dosis CMI ya es suficiente para observar la afectación de la pared por el antibiótico y el fondo de fragmentos extracelulares de ADN.
Figura 3. Enterococcus faecium, bacteria Gram +, resistente al antibiótico β-lactámico ampicilina (CMI >32), incubada con diferentes dosis de este antibiótico durante 60 min. a: control, sin antibiótico; b: 32 μg/mL; c: 320 μg/mL. Tras 320 μg/mL se ve afectación de la pared en algunas células aisladas, con un fondo discreto de fragmentos extracelulares de ADN.
Figura 4. E. coli sensible al antibiótico β-lactámico ceftazidima, del tipo de las cefalosporinas. La cepa fue expuesta a diferentes dosis durante 60 minutos, a: control, sin antibiótico; b: 1 μg/mL (CMI); c: 8 μg/mL. La CMI da lugar a apariencia filamentosa de las células, con afectación de la pared. Tras 8 μg/mL se aprecia una gran afectación de la pared, visualizándose claramente el fondo de fragmentos extracelulares de ADN.
Figura 5. Células de E. coli, procedentes de un cultivo en medio líquido, creciendo en fase exponencial, sensible a la amoxicilina/ácido clavulánico, y expuesto a la dosis alta de 32/16 durante 90 minutos. Tras el procesado por la técnica de la invención, además de las células afectadas en la pared, que liberan el nucleoide, y del fondo de fragmentos extracelulares de ADN, se observa claramente una célula que mantiene su morfología intacta (asterisco), que no ha sido afectada por el antibiótico. Esta célula se comporta como un "persister".
Figura 6. Gráficas que representan los porcentajes de células en cultivo, de células sin halo y de células con daño en la pared, de E. coli, procedentes de un cultivo en medio líquido, creciendo en fase exponencial, sensible a la amoxicilina/ácido clavulánico, y expuesto a la dosis alta de 32/16 durante diferentes tiempos. Arriba se observa que la proporción de células sin lisar va aumentando en el cultivo a lo largo del tiempo, a medida que van despareciendo las células afectadas por el antibiótico (HG: halo grande + HP: halo pequeño + F: Usadas con ADN fragmentado). Abajo, la misma figura pero cuyos datos han sido normalizados según el porcentaje de células que van quedando en el cultivo. Se observa que el porcentaje de células sin halo tiende a mantenerse constante en el tiempo, mientras que el porcentaje de células con pared dañada va disminuyendo del mismo modo que el de las células del cultivo. Esto apoya que las células sin halo se comportan como "persisters". Figura 7. Células de E. coli, procedentes de un cultivo en medio líquido, creciendo en fase exponencial, sensible a la amoxicilina/ácido clavulánico, y expuesto a la dosis alta de 32/16 durante 60 minutos. Tras el procesado por la técnica de la invención, se observan tres células que liberan el nucleoide, además del fondo típico. Uno de los nucleoides no mantiene la morfología intacta, sino que se muestra fragmentado, mucho menos teñido y más difuso (asterisco), mostrando un halo amplio de pequeños fragmentos de ADN que difunden del residuo bacteriano central. Figura 8. Las mismas cepas de E. coli, presentadas en la Figura 1, fueron cultivadas durante 24 horas en placa y luego durante 40 min en medio líquido con las dosis 0 (a, b, c), 8/4 (dosis baja; a', b', c') y 32/16 (dosis alta; a", b", c") de amoxicilina/ácido clavulánico. Las cepas fueron procesadas sin el paso de lisis de exposición a la solución de lisis. La cepa sensible se presenta en la fila de arriba (a, a', a"); la intermedia en la fila central (b, b\ b") y la resistente en la fila de abajo (c, c', c"). En esas condiciones de crecimiento y tras este período de incubación con el antibiótico, sólo la cepa sensible muestra el fondo homogéneo micro difuso, granular-fibrilar, de fragmentos extracelulares de ADN, desprendidos por las células. Este fondo es evidente tras la dosis baja (8/4) y se incrementa notablemente tras la dosis alta (32/16). De este modo, se puede diferenciar claramente la cepa sensible de las demás.
Figura 9. Una cepa de E. coli sensible a la ampicilina fue incubada con una dosis de 8 μg/mL de dicho antibiótico, durante 60 minutos, a y b: Observación en fresco, a: cultivo control, sin antibiótico; b: cultivo tratado con ampicilina. En este último se aprecia, entre las bacterias, un fondo difuso microgranular o fibrilar, de fragmentos extracelulares de ADN bacteriano, c y d: cultivo fijado en metanol:ácido acético, c: cultivo control, sin antibiótico; d: cultivo tratado con ampicilina, en el que se visualiza el material de fondo de ADN entre las bacterias, constituyendo agregados de diversa forma y tamaño.
Figura 10. Una cepa de E. coli sensible a la ampicilina fue incubada con una dosis de 32 μg/mL de dicho antibiótico, durante 60 minutos. Alícuotas de un cultivo control sin antibiótico y alícuotas del cultivo con el tratamiento de ampicilina, se incluyeron en microgeles y se tiñeron con SYBR Gold. El cultivo control sin antibiótico no muestra fondo micro granular-fibrilar en la preparación (a), mientras que el tratado con ampicilina sí evidencia dicho fondo (b). La incubación de los microgeles con los tampones de las enzimas DNAasa I (c) o proteinasa K (e) no afecta a dicho fondo. Cuando el microgel de los cultivos tratados con ampicilina se incuba con DNAasa I, 2.5 U, 30 minutos, el fondo desaparece de la preparación (d), mientras que cuando se incuba con proteinasa K, 2 mg/mL, durante 30 minutos, el fondo permanece inalterado (f). El tampón de la proteinasa K posee SDS y EDTA, que lisa las células. Subir la concentración de proteinasa K a 10 mg/mL en el mismo tampón o en agua, tampoco resulta en afectación del fondo. Este experimento demuestra que el fondo corresponde a fragmentos extracelulares de ADN. Figura 11. Hibridación In Situ Fluorescente (FISH) con sonda de ADN genómico total de E. coli, sobre extensiones de cultivo, fijados en Carnoy, de dicha bacteria tratada con ampicilina durante 60 minutos. El Carnoy provoca que material micro granular-fibrilar del fondo se agregue, englobando bacterias. Así, la contratinción con DAPI evidencia agregados del material de fondo, con bacterias cuyos nucleoides se tiñen intensamente con el DAPI. El material de fondo agregado también se tiñe con dicho colorante, aunque de modo más tenue (a). La sonda de ADN genómico total híbrida tanto en los nucleoides celulares como en el material de fondo, demostrando que este último corresponde a ADN bacteriano fragmentado. Figura 12. Una cepa de Acinetobacter baumannü, sensible al imipenem, fue incubada con este antibiótico 0,76 μg/mL, 1 hora. Una alícuota del cultivo se diluyó y se incluyó en microgel de agrosa, se deshidrató en alcoholes crecientes, se secó y se tiñó con SYBR Gold. Se aprecia un fondo microgranular-fibrilar que corresponde a fragmentos de ADN en diferentes grados de estiramiento.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
En base al descubrimiento mencionado en el apartado relativo al Compendio de la Invención, los inventores han desarrollado una serie de aspectos inventivos que serán explicados en detalle a continuación.
Métodos para evaluar la integridad de pared celular bacteriana de la invención
En un aspecto, la invención se relaciona con un método para evaluar la integridad de la pared celular de una bacteria en un cultivo puro en presencia de un antibiótico que actúa a nivel de la pared celular bacteriana (en adelante, "primer método de la invención"), que comprende: i) añadir a dicho cultivo puro de dicha bacteria un antibiótico que actúa a nivel de la pared celular bacteriana, y
ii) determinar la presencia de fragmentos extracelulares de ADN en el medio de cultivo,
en el que la presencia de fragmentos extracelulares de ADN en el medio de cultivo es indicativo de que la integridad de la pared celular de la bacteria ha sido dañada.
En el contexto de la presente invención, el término "pared celular" se refiere a la pared celular que envuelve a una célula bacteriana y que está constituida por el peptidoglicano mureína, el cual está formado por una secuencia alternante de N-acetil-glucosamina (NAG) y ácido N-acetilmurámico (NAM) unidos mediante enlaces B-1,4. Los términos "pared celular" y "pared celular bacteriana" son equivalentes y pueden ser empleados indistintamente a lo largo de la presente descripción. En la presente invención, se entiende por "evaluar la integridad de la pared celular de una bacteria", la acción de averiguar si los componentes o estructura originales de la pared celular bacteriana han sido dañados, o si por el contrario conservan sus componentes y estructura intactas tras la exposición a un agente externo. En el contexto de la presente invención, el agente externo es un antibiótico que actúa a nivel de la pared celular bacteriana, esto es, un antibiótico que bloquea la síntesis del peptidoglicano de manera que la pared celular de la bacteria resulta dañada.
En la presente invención, se entiende por "cultivo puro", aquel cultivo que contiene un solo tipo de microorganismo. Los diferentes medios de cultivo, técnicas y procedimientos para obtener cultivos puros son ampliamente conocidos en el estado de la técnica y son práctica de rutina para el experto en la materia (Rotger, R. (editor), 1997, Microbiología Sanitaria y clínica, Editorial Síntesis, Madrid).
La primera etapa del primer método de la invención [etapa i)] comprende añadir a dicho cultivo puro de dicha bacteria un antibiótico que actúa a nivel de la pared celular bacteriana. El término "antibiótico" incluye cualquier compuesto químico que elimina o inhibe el crecimiento de organismos infecciosos; dicho término, tal como aquí se utiliza, incluye cualquier compuesto químico producido por un ser vivo, o derivado sintético del mismo, que a bajas concentraciones elimina o inhibe el crecimiento de organismos infecciosos. Una propiedad común a todos los antibióticos es la toxicidad selectiva: la toxicidad es superior para los organismos invasores que para los animales o los seres humanos que los hospedan. Los antibióticos se pueden clasificar en función de su estructura, del microorganismo al que atacan, por su mecanismo de acción, por su diana terapéutica, etc. En la presente invención, se entiende por "antibiótico que actúa a nivel de la pared celular bacteriana" al antibiótico que interfiere en cualquiera de las etapas de la síntesis de la pared bacteriana. Un ensayo para determinar si un antibiótico actúa a nivel de la pared celular es, por ejemplo, cualquiera de los ensayos descritos en los ejemplos de la presente solicitud de patente. En una realización particular, el antibiótico que actúa a nivel de la pared celular bacteriana se selecciona del grupo que consiste en un antibiótico β-lactámico, una isoniacida, una etionamida, un etambutol, una cicloserina y un antibiótico glucopéptido.
En otra realización particular, el antibiótico β-lactámico se selecciona del grupo que consiste en penicilinas, cefalosporinas, cefamicinas, carbacefem, carbapenémicos, monobactámicos e inhibidores de las beta-lactamasas.
En otra realización particular, los inhibidores de las beta-lactamasas se seleccionan del grupo que consiste en ácido clavulánico, sulbactam y tazobactam.
En otra realización particular, el antibiótico glucopéptido es vancomicina o teicoplanina.
Como sabe el experto en la materia, el tiempo de incubación del cultivo junto con el antibiótico puede variar dentro de un amplio intervalo dependiendo de si el cultivo está en fase de crecimiento estacionario o exponencial, de si el cultivo se lleva a cabo en placa o en medio líquido, de la dosis de antibiótico que se añade al cultivo, etc. En general, el tiempo de incubación con el antibiótico puede ir desde los 5 minutos a los 90 minutos, preferiblemente, desde los 20 a los 60 minutos. En una realización particular, el tiempo de incubación es de 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75 u 80 minutos. Por otro lado, la cantidad de antibiótico a añadir al medio de cultivo también puede variar dentro de un amplio intervalo; no obstante, en una realización particular, la cantidad de antibiótico a añadir al medio de cultivo está comprendida entre 5 y 2.570 μ§/ιηΙ., aunque preferentemente, la cantidad de antibiótico a añadir será la concentración mínima inhibitoria (CMI) para una determinada bacteria. Como sabe el experto en la materia, en el estado de la técnica existen tablas ampliamente aceptadas y estandarizadas en las que se recogen la CMI necesaria para inhibir un microorganismo determinado. En una realización particular, la cantidad de antibiótico que se puede añadir al medio de cultivo es 0,06, 0,038, 0,38, 4, 8, 16, 20, 32, 160, 256, ó 2.560 μg/mL. Finalmente, la temperatura de incubación del cultivo con el antibiótico puede oscilar entre 36°C y 38°C, preferiblemente 37°C. La segunda etapa del primer método de la invención [etapa ii)] comprende observar la presencia de fragmentos extracelulares de ADN en el medio de cultivo.
Como entiende el experto en la materia, la determinación de la presencia de fragmentos de ADN en el medio puede ser efectuada por microscopía o por cualquier otro procedimiento alternativo para detectar ADN liberado por los microorganismos al medio de cultivo, ya sea físico o químico, entre los que se incluyen, sin limitar a electroforesis, anticuerpos, espectrofotometría, reacción en cadena de la polimerasa, técnicas de hibridación, micromatrices (microarrays), microfluídica, nanopartículas, quantum dots, etc. Estos procedimientos son ampliamente conocidos en el estado de la técnica y la puesta en práctica de los mismos es práctica de rutina para el experto en la materia.
No obstante, debido al tamaño relativamente pequeño de los fragmentos de ADN, en una realización particular, la microscopía es la técnica de elección para determinar la presencia de los fragmentos de ADN dada su mayor sensibilidad. Para ello, es conveniente inmovilizar una muestra del cultivo resultante de la primera etapa [etapa i)] sobre un portaobjetos. Por tanto, en una realización particular, el primer método de la invención comprende realizar, entre las etapas i) y ii), la etapa de inmovilizar una muestra del cultivo de la etapa i) sobre un soporte.
Dicho soporte puede ser un portaobjetos. En una realización particular, dicho portaobjetos es un portaobjetos de cristal total o parcialmente recubierto con una película de agarosa estándar. Para ello, se prepara una solución de agarosa estándar entre 0,2% y 2% en agua destilada en una jarra de Coplin o similar; se cubre con una lámina de plástico agujereada y se deposita en un horno microondas; se regula el horno microondas a una potencia comprendida entre 300 W y 1.000 W, preferentemente a 500 W, agitando el envase ocasionalmente para una mejor disolución de la agarosa, dejándola hasta que hierva. Este procedimiento también se puede realizar utilizando un baño termostático. Cuando la solución de agarosa se vuelva totalmente transparente, ya estará preparada para depositarla en recipientes verticales de un contenido entre 10 y 250 mL. Estos recipientes deberán estar previamente atemperados en un baño entre 60- 100°C, preferentemente a 70°C, para mantener la solución de agarosa en estado líquido. A continuación, los portaobjetos limpios se sumergen vertí cálmente, sujetándolos con unas pinzas por la zona esmerilada, entre 1 y 60 segundos, retirándolos y volviéndolos a sumergir entre 1 y 10 veces, hasta formar una película homogénea sobre el portaobjetos. Alternativamente, en lugar de sumergir el portaobjetos en la solución de agarosa, es posible usar un pulverizador, dispersando la agarosa sobre los portaobjetos. Se pueden recubrir así gran cantidad de portaobjetos en un corto espacio de tiempo. Independientemente del método empleado, los portaobjetos cubiertos con una película de agarosa se depositan horizontalmente sobre una superficie lisa y fría entre 1°C y 15°C, preferentemente a 4°C, por ejemplo, de cristal o de metal. Esta placa, con los portaobjetos, se introduce en la nevera a 4°C durante un mínimo de 30 minutos, hasta que se comprueba que la solución de agarosa ha gelificado sobre la superficie del portaobjetos. Se retiran las bandejas de la nevera y se limpia la superficie de los portaobjetos que estaba en contacto con la placa con un papel secante. Seguidamente, los portaobjetos se introducen horizontalmente en una estufa a una temperatura comprendida entre 37°C y 100°C, hasta que la agarosa seque por completo y forme una película fina adherida al cristal. Los portaobjetos así tratados se pueden utilizar inmediatamente o almacenar en una caja bien cerrada a temperatura ambiente durante varios meses.
La inmovilización de una muestra del cultivo de la etapa i) sobre un portaobjetos preparado de la manera antes explicada, requiere, previamente, la preparación de dicha muestra. Mediante los procedimientos habituales en este campo se obtiene y se comprueba la concentración de microorganismos en una muestra líquida. La concentración adecuada para el análisis oscila entre 0,1 y 20 millones de microorganismos por mililitro. Si la muestra estuviese excesivamente concentrada se ajusta a la concentración adecuada diluyéndola con medio de cultivo o con solución salina/fosfato tamponada (PBS) o similar, adecuado según el microorganismo y según la estabilidad del antibiótico a ensayar.
Para facilitar el procesamiento de la muestra que contiene los microorganismos, ésta se incluye en un medio con características similares a las de una suspensión, tal como, por ejemplo, un microgel de agarosa. En este caso se prepara una solución de agarosa de bajo punto de fusión (low meltingllow gelling) a una concentración comprendida entre el 0,5 y 3% en agua destilada o tampón fosfato salino (PBS). La fusión de esta agarosa se realiza utilizando un horno microondas o un baño termostatizado, y se mantiene posteriormente entre 30°C y 37°C en un tubo introducido en un baño termostatizado o estufa. En un tubo Eppendorf o similar, se mezcla cuidadosamente la muestra del cultivo y la solución de agarosa, de manera que esta última quede a una concentración comprendida entre 0,3% y 2%. Por ejemplo, 70 μΐ^ de la solución de agarosa + 30 ¿L de la muestra. Es importante que la temperatura de la agarosa no sea superior a 37°C, para no dañar a los microorganismos.
Finalmente, para obtener la muestra sobre el soporte, se colocan los portaobjetos recubiertos con agarosa sobre una superficie lisa y fría de cristal o de metal, con una temperatura comprendida entre 1°C y 15°C, evitando formar burbujas de aire. Se recomienda depositar con una micropipeta una gota (entre 2 y 200 microlitros (μΐ^)) de la mezcla (muestra del cultivo preparada + agarosa), colocando un cubreobjetos encima de la gota. Pueden pipetearse múltiples gotas, es decir, muestras de cultivo bacteriano de la etapa i), en cada portaobjetos. Como precaución, se recomienda procesar cada muestra por duplicado y utilizar una muestra control cada vez que se aplique la técnica. La placa con los portaobjetos se introduce en una nevera a 4°C, durante un periodo de tiempo comprendido entre 2 y 30 minutos hasta que se produzca una gelificación adecuada de la agarosa. Una vez que ha ocurrido la gelificación, se procede a retirar los cubreobjetos con mucha suavidad, dentro de la misma nevera y evitando que se dañe el microgel.
A continuación, para la visualización de los fragmentos de ADN por microoscopía, es conveniente estabilizar y adherir firmemente los fragmentos de ADN al portaobjetos ya que pueden desprenderse. Para ello, los portaobjetos secos se incuban en un horno microondas a una potencia comprendida entre 300 W y 1.000 W, preferentemente a 500 W, durante un periodo de tiempo comprendido entre 1 y 10 minutos. Una alternativa, aunque menos recomendable por su duración, es incubar los portaobjetos en un horno o estufa a alta temperatura durante un periodo de tiempo comprendido entre 1 y varias horas. Una vez bien secos, los portaobjetos ya procesados conteniendo la muestra, se pueden guardar en cajas archivadoras a temperatura ambiente, en oscuridad, durante meses. Esto facilita la separación del proceso de tratamiento de la muestra y la posterior etapa de evaluación de la integridad de la pared celular de los microorganismos. El archivado permite una evaluación repetida a diferentes intervalos de varias muestras de un mismo microorganismo.
Una vez tratadas las muestras, y después de estabilizar y adherir firmemente los fragmentos de ADN al portaobjetos, se puede proceder a la tinción de las mismas y a evaluar la integridad de la pared celular de los microorganismos. Así, en una realización particular del método de la invención, la observación de la presencia de fragmentos extracelulares de ADN en el medio de cultivo se lleva a cabo mediante tinción. Eligiendo convenientemente las condiciones de tinción se puede obtener una alta calidad de las imágenes y una alta consistencia de los resultados de evaluación.
La tinción o coloración es una técnica auxiliar en microscopía para mejorar el contraste en la imagen vista al microscopio. En bioquímica, esto implica agregar un colorante específico para la molécula que se quiere teñir (ADN en el contexto de la presente invención) a un sustrato para cualificar o cuantificar la presencia de un determinado compuesto. Las tinciones pueden ser usadas, entre otras cosas, para definir y examinar orgánulos dentro de células individuales, o para marcar los ácidos nucleicos en electroforesis en gel.
La mayoría de los colorantes o tintes son compuestos orgánicos que tienen alguna afinidad específica por los materiales celulares. Muchos colorantes utilizados con frecuencia son moléculas cargadas positivamente (cationes) y se combinan con intensidad con los constituyentes celulares cargados negativamente, tales como los ácidos nucleicos y los polisacáridos ácidos. Ejemplos ilustrativos, no limitativos, de colorantes catiónicos incluyen azul de metileno, cristal violeta y safranina. El azul de metileno es un buen colorante simple que actúa sobre todas las células bacterianas rápidamente y que no produce un color tan intenso que oscurezca los detalles celulares, lo que es especialmente útil. En ocasiones, algunos colorantes tiñen mejor sólo después de que la célula haya sido tratada con otra sustancia química, denominada mordiente, que no es un colorante por sí mismo. Un mordiente habitual es el ácido tánico, que se combina con un constituyente celular y lo altera de tal modo que ahora sí podrá atacar el colorante. Como sabe el experto en la materia, en el estado de la técnica existen técnicas específicas para teñir el ADN, tal como, por ejemplo, la tinción de Feulgen, que consiste en someter el material a una hidrólisis con ácido clorhídrico 1N a 60°C o con ácido clorhídrico 5N a temperatura ambiente y añadir después el reactivo de Schiff Mediante esta técnica es posible teñir los núcleos de las células bacterianas. Como se ha indicado previamente, debido al tamaño relativamente pequeño de los fragmentos de ADN, en una realización particular, la microscopía de fluorescencia es la técnica de elección para visualizar los fragmentos de ADN dada su mayor sensibilidad, para ello es necesario realizar la tinción de las bacterias con unos determinados compuestos químicos denominados fluoróforos o fluorocromos. Estos compuestos son capaces de emitir fluorescencia cuando son excitados con luz a una longitud de onda adecuada. En la actualidad existe toda una gama de fluorocromos que proporcionan no sólo información sobre la viabilidad celular, sino que también ponen de manifiesto ciertas características fisiológicas y en algunos casos estructurales de bacterias. A modo ilustrativo, hay fluoróforos que detectan actividad respiratoria (e.g., derivados de tetrazolio, etc.), actividad esterasa (e.g., calceína-AM, carboxifluoresceína, etc.), potencial de membrana (e.g., rodamina 123, oxonol VI, carbocianinas, etc.), integridad de la membrana (e.g., SYTO-9, SYTO-13, verde Sitox, yoduro de propidio, etc.), etc.
Por tanto, en una realización particular, la tinción se lleva a cabo mediante el empleo de uno o más fluorocromos. Así, dependiendo de la disponibilidad de filtros de fluorescencia, las muestras se pueden teñir con fluorocromos específicos para ADN del tipo DAPI (4',6-diamidino-2-fenilindol), Hoechst 33258, Hoechst 33342, bromuro de etidio, ioduro de propidio, etc. Sin embargo, se prefieren aquellos fluorocromos de mayor sensibilidad, tales como GelRed, EvaGreen, y otros derivados de la cianinas, tales como las familias SYBR®, PicoGreen® (Invitrogen - Molecular Sondas™), las variantes de los TOTO, YO YO, BOBO, POPO, JOJO, LOLO, SYTOX, PO-PRO, BO- PRO, YO-PRO, TO-PRO, JO-PRO, PO-PRO, LO-PRO, etc. Otros tipos de fluorocromos incluyen, pero no se limitan a, SYTOX Azul, cromomicina A3, mitramicina, naranja de acridina, SYTOX Verde, naranja de tiazoilo, LDS 751, 7-AAD, SYTOX naranja, DRAQ5. En una realización particular, los fluorocromos se seleccionan del grupo que consiste en Hoechst 33342, Hoechst 33258, DAPI, cromomicina A3, mitramicina, bromuro de etidio, naranja de acridina, naranja de tiazoilo, 7-AAD, derivados de cianinas, y las variantes de los fluorocromos TOTO, YOYO, BOBO, POPO, JOJO, LOLO, SYTOX, PO-PRO, BO-PRO, YO-PRO, TO-PRO, JO-PRO, PO-PRO y LO-PRO
La cantidad y calidad de fluorocromos se está incrementando actualmente. Para evitar la pérdida de fluorescencia, se puede incluir un medio "antifading" (por ejemplo, Vectashi el d- Vector H-1000, DABCO; etc.). Sin embargo, estos medios suelen producir fluorescencia difusa y un fondo claro que dificulta el contraste de la imagen. Por tanto, en general, es preferible usar un fluorocromo de alta sensibilidad y relativa fotoestabilidad, montado en una solución acuosa tamponada, y evaluar la muestra con relativa rapidez, antes de su secado. Si fuese necesario, el portaobjetos se puede lavar y volver a teñir.
Las imágenes obtenidas se pueden estudiar mediante análisis visual directo o bien, preferiblemente, aplicando un software de análisis de imágenes digitalizadas, obtenidas mediante cámaras analógicas o bien digitales, acopladas a las plataformas de microscopía.
Finalmente se procede a evaluar la integridad de la pared de los microorganismos mediante la determinación de la presencia de los fragmentos extracelulares de ADN en el medio de cultivo, en donde la presencia de fragmentos extracelulares de ADN en el medio de cultivo es indicativa de que la integridad de la pared celular de la bacteria ha sido dañada. No obstante, tal como se ha mencionado previamente (Compendio de la Invención), cuando el cultivo bacteriano es mixto o contaminado, es decir, hay mezcla de células sensibles o resistentes a los antibióticos que actúan a nivel de la pared celular bacteriana, el primer método de la invención no sería muy adecuado como criterio estricto de discriminación puesto que tanto las bacterias sensibles como resistentes al antibiótico muestran aparentemente la pared celular intacta. Para solucionar este problema, los inventores han diseñado una solución de lisis que afecta únicamente a las bacterias cuya pared celular ha sido previamente dañada por la acción del antibiótico que actúa a nivel de la pared celular. Esta solución de lisis puede añadirse al cultivo bacteriano que anteriormente ha sido expuesto a la acción de dicho antibiótico, produciéndose la liberación del nucleoide bacteriano y observándose entonces una bacteria con la pared celular dañada (Ejemplos 1 a 5). Así, la presencia del nucleoide bacteriano, tras aplicar la solución de lisis, es indicativa de la presencia de bacterias sensibles a dicho antibiótico que actúa a nivel de la pared celular. Por tanto, en otro aspecto, la invención se relaciona con un método para evaluar la integridad de la pared celular de las bacterias presentes en un cultivo en presencia de un antibiótico que actúa a nivel de la pared celular bacteriana (en adelante, "segundo método de la invención"), que comprende:
i) añadir a dicho cultivo un antibiótico que actúa a nivel de la pared celular bacteriana,
ii) añadir solución de lisis al cultivo resultante de la etapa i), en donde dicha solución de lisis es una solución de lisis específica para aquellas bacterias cuya pared celular ha sido dañada por el antibiótico que actúa a nivel de la pared celular bacteriana, y comprende un tampón con un pH comprendido entre 3 y 11,5, y
iii) determinar la presencia del nucleoide bacteriano,
en el que la presencia del nucleoide bacteriano en el medio es indicativa de que la integridad de la pared celular de las bacterias ha sido dañada.
Los términos y expresiones "evaluar la integridad de la pared celular de las bacterias", "pared celular" y "antibiótico que actúa a nivel de la pared celular" ya han sido definidos previamente para el primer método de la invención, y son aplicables al presente aspecto inventivo.
Por otro lado, aunque el segundo método de la invención ha sido diseñado para evaluar la integridad de la pared celular de las bacterias en un cultivo mixto o contaminado, el experto en la materia entiende que dicho segundo método de la invención también puede aplicarse a cultivos puros.
El término "cultivo puro" ha sido previamente definido en la presente descripción. En la presente invención, se entiende por "cultivo mixto", un cultivo bacteriano que contiene dos o más especies distintas de bacterias. En la mayoría de las ocasiones, la presencia de dos o más especies distintas de bacterias en un cultivo se debe a la contaminación del cultivo debido a una manipulación incorrecta de la muestra, por lo que en el contexto de la presente invención, los términos "cultivo mixto" y "cultivo contaminado" son equivalentes y pueden ser empleados indistintamente a lo largo de la descripción. Así, en una realización particular del segundo método de la invención, las bacterias presentes en el cultivo pertenecen a la misma especie o a especies distintas. Como puede apreciar el experto en la materia, las etapas i) y iii) del segundo método de la invención son comunes al primer método de la invención [etapas i) y ii), respectivamente]. En consecuencia, todas las explicaciones y realizaciones particulares anteriormente mencionadas en relación con dichas etapas también son aplicables al segundo método de la invención.
El segundo método de la invención comprende, además de las etapas i) y iii) [comunes a las etapas i) y ii) del primer método de la invención], una etapa ii) no presente en el primer método de la invención que comprende añadir una solución de lisis al cultivo resultante de la etapa i), en donde dicha solución de lisis es una solución de lisis específica para aquellas bacterias cuya pared celular ha sido dañada por el antibiótico que actúa a nivel de la pared celular bacteriana, y comprende un tampón con un pH comprendido entre 3 y 11,5.
La solución de lisis que afecta de forma específica a las bacterias que tienen la pared celular afectada por el antibiótico que actúa a nivel de la pared celular bacteriana comprende, básicamente, una solución tampón que presenta un pH de entre 3 y 11,5 pero que, adicionalmente, puede comprender otros componentes, entre los que se incluyen, pero no se limitan a, detergentes iónicos, detergentes no iónicos, sales, etc. en distintas proporciones.
Así, en una realización particular, el tampón que forma parte de la solución de lisis es tris(hidroximetil)aminometano (Tris) de fórmula (HOCH2)3C H2, que además puede ser empleado para preparar otras disoluciones tampón, entre las que se incluyen, pero no se limitan a, tampones Tris-HCl, Tris-Gly, TAE (Tris-acetato-EDTA) y TBE (Tris- borato-EDTA). El Tris tiene un pKa de 8,06, lo que le aporta capacidad tamponante efectiva en un intervalo de pH comprendido entre 7,0 y 9,2. La forma de uso más frecuente se llama Tris base (es la forma básica, no ionizada, de la amina); en ocasiones se utiliza también la forma ácida o hidrocloruro (Tris-HCl). Otras soluciones tampón incluyen, pero no se limitan a, Hepes, Mops, Pipes, etc. Para obtener un pH estable próximo a 11,5 se usa el fosfato sódico bibásico, también denominado disodio hidrogenofosfato (Na2HP04), el ácido bórico-borato, la trietilamina y el ácido 4- [ciclohexilamino]-l-butanosulfónico (CABS).
En otra realización particular, la solución de lisis comprende, además de la solución tampón, hasta un 3% de un detergente iónico o de un detergente no iónico.
El término "detergente iónico", tal como aquí se utiliza, se refiere a aquel compuesto que presenta una parte hidrófoba y una parte hidrófila, que en solución forma iones cargados positiva (detergente catiónico) o negativamente (detergente aniónico) y que permite conseguir una emulsión. Como entiende el experto en la materia, los términos "detergente", "surfactante" y "tensioactivo" son sinónimos, por lo que pueden ser usados indistintamente a lo largo de la presente descripción.
Ejemplos de detergentes catiónicos incluyen, pero no se limitan a, sales de amonio primario, secundario, terciario y cuaternario, ya sean de estructura lineal o cíclica, mezclas de las mismas, como por ejemplo sales de piridina, piperizina, y derivados de dichas sales de amonio. El término "derivados de sales de amonio" incluye aquellas sales que incorporan en la misma estructura al menos dos grupos amino ya sean primario, secundario, terciario y/o cuaternario, tales como por ejemplo las sales de guaní dina, piperazina e imidazol. En esta definición, estarían también comprendidas las sales de aminoácidos, tales como por ejemplo las sales de Usina, arginina, ornitina o triptófano. Asimismo, se encontrarían englobadas en esta definición aquellas sales de amonio en las cuales la carga positiva se encuentra sobre un átomo de fósforo, como por ejemplo ioduro de ditetradecil (trimetiletilfosfonio) metilfosfonato, ioduro de ditetradecil (butildimetilfosfonio) metilfosfonato, ioduro de ditetradecil (ioduro de dimetilisopropilfosfonio) metilfosfonato o arsénico (ioduro de ditetradecil (trimetilarsonio) metilfosfonato, ioduro de dioleil (trimetilfosfonio) metilfosfonato, en lugar de sobre el átomo de nitrógeno. Ejemplos de sales de amonio incluyen, pero no se limitan a sales de tetraalquilamonio, sales de alquilbencil dimetil amonio o sales de amonio heterocíclicas, tales como el bromuro de cetiltrimetilamonio (CTAB). Ejemplos ilustrativos, no limitativos, de detergentes iónicos incluyen acil-aminoácidos, tales como acil-glutámicos, acil-péptidos, sarcosinatos, tauratos, etc., ácidos carboxílicos, tales como ácidos de cadena saturada, ésteres de ácidos carboxílicos, éteres de ácidos carboxílicos, ésteres del ácido fosfórico, ácidos sulfónicos, tales como acil-isotianatos, alquil aril sulfonatos, alquil sulfonatos, sulfosuccinatos, etc., y ésteres del ácido sulfúrico, tales como alquiléter sulfatos y alquil sulfatos.
En una realización particular, el detergente iónico es un detergente seleccionado del grupo que consiste en dodecil sulfato sódico (SDS), sulfonato de alquilbenceno, laurilsarcosina, sal hidratada del ácido glicocólico, y sus sales.
Ejemplos de detergentes no iónicos incluyen, pero no se limitan a, polisorbatos, copolímeros de polietilenglicol y copolímeros de polipropilenglicol, como por ejemplo Tween, Span, Poloxamer.
En otra realización particular, el detergente no iónico se selecciona del grupo que consiste en el toctilfenoxipolietoxietanol, N,N-Bis(3-D-gluconamidopropil) colamida, Brij(r) 35 P, N-decanoil-N-metilglutamina, digitonina, dodecanoil-N-metilglucamida, heptanoil-N-metilglutamida, octilfenoxi poli(etileneoxi)etanol ramificado, N-Nonanoil- N-metilglucamina, Nonidet P 40, N-octanoil-N-metilglutamina, solución Span 20 y polisorbato 20.
En otra realización particular, la solución de lisis comprende, además, hasta una concentración 3 M de una sal. Ejemplos de sales que pueden formar parte de la solución de lisis de la invención incluyen, pero no se limitan a, carbonatos, cloruros, fosfatos, nitratos, nitritos, sulfatos, citratos, carboxilatos (acetatos, formiatos, salicilatos, etc.). En una realización particular, la solución de lisis comprende cloruro sódico (NaCl).
En una realización particular, la solución de lisis proporcionada por esta invención comprende Tris entre 0,001 M y 2 M, SDS hasta el 3%, y NaCl hasta una concentración de 3 M, a un pH comprendido entre 3 y 11,5. No obstante, el experto en la materia entenderá que estos compuestos pueden sustituirse por otros compuestos equivalentes; por ejemplo, el SDS puede ser sustituido por Tritón X-100 hasta el 10%.
En otra realización particular, la solución de lisis proporcionada por esta invención comprende (hidroximetil)-l,3-propanediol (Tris) aproximadamente 0,2 M, SDS al 0,025% aproximadamente, cloruro sódico 0,5 M ó 0,05 M aproximadamente, y un pH de 10; en este caso, el SDS puede ser reemplazado por Tritón X-100 aproximadamente al 5%. En otra realización particular, la solución de lisis proporcionada por esta invención comprende (hidroximetil)-l,3-propanediol 0,2 M aproximadamente, Tritón X-100 al 5% aproximadamente, cloruro sódico 1 M aproximadamente, y un pH de 10.
En otra realización particular, la solución de lisis proporcionada por esta invención comprende sodio fosfato bibásico 0,3 M aproximadamente, SDS al 2% aproximadamente, ácido etilendiamino tetraacético (EDTA) 0,05 M aproximadamente, y un pH de 11,45.
Según la solución empleada y el tipo de muestra, las preparaciones se incuban en la solución de lisis entre 0,5 y 120 minutos, preferentemente entre 1 y 35 minutos, más preferentemente durante alrededor de 5 minutos; y a una temperatura comprendida entre 1°C y 45°C, preferentemente entre 15°C y 40°C, más preferentemente entre 22°C y 37°C. En una realización particular, la incubación se lleva a cabo a una temperatura de 22°C. En otra realización particular, la incubación se lleva a cabo a una temperatura de 37°C.
Una vez añadida la solución de lisis al cultivo bacteriano previamente incubado en presencia de un antibiótico que actúa a nivel de la pared celular, se procede a detectar la presencia del nucleoide bacteriano en el medio de cultivo [etapa iii)]. Como se ha explicado para el primer método de la invención, la evaluación de la presencia del nucleoide bacteriano en el medio puede ser efectuada por microscopía o por cualquier otro procedimiento alternativo para detectar ADN liberado por los microorganismos al medio de cultivo, ya sea físico o químico, entre los que se incluyen, sin limitar a electroforesis, anticuerpos, espectrofotometría, reacción en cadena de la polimerasa, técnicas de hibridación, micromatrices (microarrays), microfluídica, nanopartículas, quantum dots, etc. Estos procedimientos son ampliamente conocidos en el estado de la técnica y la puesta en práctica de los mismos es práctica de rutina para el experto en la materia.
No obstante, en una realización particular, la detección del nucleoide bacteriano se lleva a cabo mediante microscopía, para lo cual, es necesario inmovilizar una muestra del cultivo resultante de la etapa i) [es decir, tras la exposición del cultivo bacteriano a la acción del antibiótico] en un soporte, tal como, por ejemplo, un portaobjetos. En este caso, la etapa ii) del segundo método de la invención, es decir, la adición de la solución de lisis que afecta únicamente a las bacterias cuya pared celular ha sido afectada por el antibiótico, puede llevarse a cabo antes o después de inmovilizar las bacterias sobre dicho soporte. Así, en una realización particular, el segundo método de la invención comprende, además, antes o después de la etapa (ii), inmovilizar una muestra del cultivo sobre un soporte. Los procedimientos y técnicas que existen en el estado de la técnica para inmovilizar muestras sobre soportes, así como la preparación de los mismos, ya han sido explicados previamente en relación con el primer método de la invención y son aplicables al segundo método de la invención.
En caso de que el tratamiento con la solución de lisis se haga después de inmovilizar una muestra del cultivo resultante de la etapa i) sobre un soporte, tal como un portaobjetos, éste se sumerge en posición horizontal en un recipiente que contiene la solución de lisis. Después del tratamiento con la solución de lisis (explicado previamente), las preparaciones se pueden lavar para eliminar los restos de esta solución. Para ello se introducen los soportes en una solución de lavado lo más suave posible, evitando agentes quelantes o detergentes; a modo ilustrativo, los soportes pueden sumergirse en posición horizontal en un recipiente que contiene abundante agua destilada o una solución tampón o suero fisiológico durante un tiempo entre 1 y 60 minutos. A continuación, se procede a la deshidratación de la muestra. Para ello se pueden utilizar soluciones de concentración creciente de alcohol. A modo ilustrativo, se levantan los portaobjetos y se sumergen en recipientes con series de concentración creciente de etanol, entre 5% y 100%, durante 30 segundos a 60 minutos cada una y después las preparaciones se dejan secar al aire. La temperatura de los alcoholes puede oscilar desde -20°C hasta temperatura ambiente. Puede ser preferible usar alcoholes a una temperatura de -20°C para mejorar la precipitación del ADN, durante 5 minutos cada uno. Como alternativas a las incubaciones en series de etanol, las preparaciones se pueden deshidratar incubando en soluciones de diferentes alcoholes como el metanol, o bien dejando secar al aire o en estufa.
Finalmente, en la etapa iii) del segundo método de la invención se procede a determinar la presencia del nucleoide bacteriano o bien en el medio de cultivo o bien en el soporte si se ha procedido a inmovilizar la muestra.
En la presente invención se entiende por "nucleoide bacteriano" a la región que contiene ADN en el citoplasma de las células bacteriana. La evidencia experimental sugiere que el nucleoide está compuesto fundamentalmente por ADN (60%), con pequeñas proporciones de ARN y proteínas. Estos dos últimos componentes actúan como ARN mensajero y como proteínas reguladoras del genoma. En el estado de la técnica, el nucleoide bacteriano también es conocido con el nombre de "región nuclear" o "cuerpo nuclear". Las técnicas explicadas previamente para observar la presencia de los fragmentos extracelulares de ADN en el medio de cultivo también pueden emplearse para observar el nucleoide bacteriano tal como requiere el segundo método de la invención.
Si la técnica de elección para determinar la presencia del nucleoide bacteriano es la microscopía, entonces, tal como se ha explicado previamente para el primer método de la invención, es conveniente estabilizar y adherir firmemente los fragmentos de ADN al portaobjetos ya que pueden desprenderse. Una vez tratadas las muestras, y después de estabilizar y adherir firmemente los fragmentos de ADN al portaobjetos, se puede proceder a la tinción de las mismas y a evaluar la integridad de la pared celular de los microorganismos. Así, en una realización particular del segundo método de la invención, la observación de la presencia del nucleoide bacteriano en el medio de cultivo se lleva a cabo mediante tinción. Eligiendo convenientemente las condiciones de tinción se puede obtener una alta calidad de las imágenes y una alta consistencia de los resultados de evaluación. Las distintas técnicas de tinción así como los tintes que se pueden emplear para visualizar ADN mediante microscopía han sido explicados previamente en la presente descripción en relación con el primer método de la invención y son aplicables al segundo método de la invención.
Así, en una realización particular, la observación de la presencia del nucleoide bacteriano en el medio de cultivo se lleva a cabo mediante tinción que, en una realización más particular, se lleva a cabo mediante el empleo de fiuorocromos que, en otra realización todavía más particular, se seleccionan del grupo que consiste en fiuorocromos se seleccionan del grupo que consiste en Hoechst 33342, Hoechst 33258, DAPI, cromomicina A3, mitramicina, bromuro de etidio, naranja de acridina, naranja de tiazoilo, 7-AAD (7-aminoactinomicina D), derivados de cianinas, variantes de los fiuorocromos TOTO, YOYO, BOBO, POPO, JOJO, LOLO, SYTOX, PO-PRO, BO- PRO, YO-PRO, TO-PRO, JO-PRO, PO-PRO y LO-PRO, etc.
La puesta en práctica del segundo método de la invención requiere en una primera etapa añadir a un cultivo bacteriano un antibiótico que actúe a nivel de la pared celular bacteriana. Cualquiera de los antibióticos descritos anteriormente para el primer método de la invención puede emplearse en el segundo método de la invención. Por lo tanto, en una realización particular el antibiótico que actúa a nivel de la pared celular bacteriana se selecciona del grupo que consiste en un antibiótico beta-lactámico (entre los que incluyen, pero no se limita a penicilinas, cefalosporinas, cefamicinas, carbacefem, carbapenémicos, monobactámicos e inhibidores de las beta-lactamasas tales como ácido clavulánico, sulbactam, tazobactam, etc.), una isoniacida, una etionamida, un etambutol, una cicloserina y un antibiótico glucopéptido (entre los que se incluyen, sin limitar a, vancomicina o teicoplanina). Aplicaciones de los métodos de la invención
Como se ha explicado previamente, la aplicación práctica del primer y segundo método de la invención es averiguar de una manera rápida y fiable si una bacteria es sensible o resistente a un antibiótico que actúa a nivel de la pared celular bacteriana. Para ello, basta con evaluar la integridad de la pared bacteriana mediante cualquiera de los métodos de la invención descritos anteriormente en la presente descripción.
Por lo tanto, en otro aspecto, la presente invención se relaciona con un método para determinar la sensibilidad de una bacteria a un antibiótico que actúa a nivel de la pared celular bacteriana que comprende evaluar la integridad de la pared celular de dicha bacteria mediante cualquiera de los métodos de la invención, en el que si la integridad de la pared celular de la bacteria ha sido dañada, entonces la bacteria es sensible al antibiótico. Por el contrario, como entiende el experto en la materia, si la integridad de la pared celular no ha sido dañada y esta aparece intacta (no hay liberación de fragmentos extracelulares de ADN o del nucleoide al medio de cultivo), entonces la bacteria no es sensible al antibiótico, pudiendo ser una bacteria resistente o una bacteria denominada "persister" o tolerante. Ambos tipos de bacterias no son afectadas por el antibiótico que actúa a nivel de la pared celular bacteriana, pero se diferencian en que las bacterias resistentes tienen mutaciones en el ADN de forma que la resistencia al antibiótico es permanente, mientras que las bacterias "persister" no tienen mutaciones de resistencia en el ADN, siendo un estado funcional reversible. Por lo tanto, otras de las aplicaciones de los métodos de la invención consiste en la detección en una muestra de bacterias resistentes o de bacterias "persister" .
Así, en otro aspecto, la invención se relaciona con un método para identificar una bacteria persister o tolerante a un antibiótico que actúa a nivel de la pared celular bacteriana en un cultivo de bacterias sensibles, que comprende evaluar la integridad de la pared celular de las bacterias presentes en dicho cultivo mediante el segundo método de la invención, en el que la bacteria cuya integridad de la pared celular no haya sido dañada es identificada como persister o tolerante. Otra de las aplicaciones prácticas que presentan los métodos de la invención se relaciona con el diseño de una terapia antibiótica personalizada para una persona que padece una enfermedad bacteriana, ya que mediante los métodos de la invención se puede averiguar si la bacteria causante de la enfermedad bacteriana es sensible o resistente a un determinado antibiótico. Si tras aplicar alguno de los métodos de la invención resulta que la bacteria causante de la enfermedad bacteriana es sensible al antibiótico testado, entonces el médico podrá decidir administrar al individuo que padece dicha enfermedad bacteriana una terapia basada en dicho antibiótico. Si por el contrario la bacteria causante de la enfermedad bacteriana es resistente al antibiótico testado, entonces el médico elegirá un tratamiento que no esté basado en dicho antibiótico.
Así, en otro aspecto, la presente invención se relaciona con un método para diseñar una terapia antibiótica personalizada a un individuo que padece una enfermedad bacteriana que comprende
i) aislar la bacteria causante de la enfermedad bacteriana a partir de una muestra procedente de dicho individuo, y
ii) evaluar la integridad de la pared celular de dicha bacteria mediante uno cualquiera de los métodos de la invención,
en el que si la integridad de la pared celular de dicha bacteria ha sido dañada, entonces dicho individuo es susceptible de recibir una terapia basada en antibióticos que actúan a nivel de la pared celular.
En la presente invención se entiende por "individuo" un miembro de cualquier especie animal, entre los que se incluyen, pero no se limita a, mamíferos, en particular, ganado vacuno (vacas, toros, bueyes, yaks, etc,), ganado ovino (ovejas, etc.), ganado porcino (cerdos, jabalíes, etc.), ganado caprino (cabras, etc.), ganado equino o caballar (caballos, yeguas, cebras, etc.), camélidos (camellos, llamas, alpacas, etc.), conejos, liebres, bisontes, búfalos, ciervos, renos, venados, caribús, perros, gatos, ratones, primates no humanos (chimpancés, gorilas, orangutanes, macacos, gibones, etc.). En particular, el mamífero es preferiblemente un ser humano de cualquier sexo, edad o raza. Los términos "individuo" o "sujeto" son sinónimos y pueden emplearse indistintamente a lo largo de la presente descripción.
En la presente invención se entiende por "enfermedad bacteriana" aquella enfermedad que resulta de la infección de un individuo por una bacteria. Ejemplos de enfermedades bacterianas incluyen, sin limitar a, enfermedades provocadas por la infección de bacterias del género Escherichia, Enterobacter, Salmonella, Staphylococcus, Shigella, Listeria, Aerobacter, Helicobacter, Klebsiella, Proteus, Pseudomonas, Streptococcus, Chlamydia, Mycoplasma, Pneumococcus, Neisseria, Clostridium, Bacillus, Corynebacterium, Mycobacterium, Campylobacter, Vibrio, Serratia, Providencia, Chromobacterium, Brucella, Yersinia, Heamophilus y Bordetella.
La primera etapa del método para diseñar una terapia antibiótica personalizada a un individuo que padece una enfermedad bacteriana comprende aislar la bacteria causante de dicha enfermedad bacteriana a partir de una muestra procedente de dicho individuo.
Como sabe el experto en la materia, para garantizar unos buenos resultados es fundamental realizar una buena selección, recolección y trasporte de las muestras, así como el buen procesado de éstas para el correcto aislamiento del microorganismo. Por ejemplo, la muestra tiene que ser representativa del proceso infeccioso y ha de tomarse del lugar anatómico correcto, debe ser recogida en cantidad suficiente para asegurar un examen adecuado, se han de emplear en la recogida dispositivos estériles, etc. Más información sobre los procedimientos y materiales empleados en la recogida de muestras se pueden encontrar en Rotger, R. (editor), 1997 (citado ad supra).
Por otro lado, antibióticos que actúan a nivel de la pared celular y que pueden administrarse al individuo en función de la conclusión alcanzada han sido descritos previamente en la presente descripción. El experto en la materia entenderá que los métodos de la invención también pueden emplearse para identificar nuevos compuestos antibióticos que actúen a nivel de la pared celular. Por lo tanto, en otro aspecto la invención se relaciona con un método para identificar un compuesto que actúa a nivel de la pared celular bacteriana que comprende:
i) poner en contacto un cultivo de una bacteria sensible a un antibiótico que actúa a nivel de la pared celular en presencia del compuesto candidato, y
ii) evaluar la integridad de la pared celular de dicha bacteria mediante cualquiera de los métodos de la invención,
en el que si la integridad de la pared celular de dicha bacteria ha sido dañada, entonces el compuesto candidato es un compuesto que actúa a nivel de la pared celular bacteriana.
En la presente invención, se entiende por "compuesto que actúa a nivel de la pared celular bacteriana" al compuesto que interfiere en cualquiera de las etapas de síntesis de la pared celular bacteriana o afecta su estructura. La primera etapa del método para identificar compuestos que actúen a nivel de la pared celular comprende poner en contacto un cultivo de una bacteria sensible a los antibióticos que actúan a nivel de la pared celular en presencia del compuesto candidato. Ejemplos de bacterias sensibles a los antibióticos que actúan a nivel de la pared celular incluyen, pero no se limitan a, cepas de E. coli sensibles a amoxicilina, cepa de Enterococcus faecaelis sensible a amplicilina, cepa de Acinetobacter baumannii sensible a iminepen, cepa de E.coli sensible a ceftazidima, etc. Más información sobre la sensibilidad de las bacterias a los antibióticos β-lactámicos puede encontrarse en el estado de la técnica (June 2010 CLSI Guidelines). Solución de lisis de la invención
La presente invención está basada en el hecho de que una consecuencia de la actividad de los antibióticos que actúan a nivel de la pared celular sobre las bacterias es la liberación de fragmentos extracelulares de ADN al medio de cultivo. Adicionalmente, cuando el cultivo bacteriano es mixto o contaminado, es decir, hay mezcla de células sensibles o resistentes, la observación de los fragmentos extracelulares de ADN no sería muy adecuada como criterio estricto de discriminación puesto que a pesar de liberar fragmentos extracelulares de ADN, la morfología de las bacterias no se ve alterada por la acción del antibiótico, es decir, tanto las bacterias sensibles como resistentes al antibiótico muestran aparentemente la pared celular intacta. Para solucionar este problema, los inventores diseñaron una solución de lisis que afecta únicamente a las bacterias cuya pared celular ha sido previamente dañada por la acción del antibiótico que actúa a nivel de la pared celular.
Por lo tanto, otro aspecto de la presente invención se relaciona con una solución de lisis, de aquí en adelante solución de lisis de la invención, caracterizada porque afecta solo a las bacterias que presentan la pared bacteriana dañada por acción de un antibiótico, que comprende un tampón y un pH de entre 3 y 11,5.
La solución de lisis que afecta de forma específica a las bacterias que tienen la pared celular dañada por el antibiótico que actúa a nivel de la pared celular bacteriana comprende, básicamente una solución tampón que presenta un pH de entre 3 y 11,5 pero que adicionalmente, tal como se ha explicado en aspectos inventivos anteriores, puede comprender otros componentes, entre los que se incluyen, pero no se limitan a, detergentes iónicos, detergentes no iónicos, sales, etc. en distintas proporciones. Así, en una realización particular, la solución de lisis de la invención comprende, además, hasta un 3% de un detergente iónico o un detergente no iónico. En una realización concreta, dicho detergente iónico es un detergente seleccionado del grupo que consiste en dodecil sulfato de sodio, sulfonato de alquilbenceno, laurilsarcosina, sal hidratada del ácido glicocólico, y sus mezclas. En otra realización concreta, dicho detergente no iónico se selecciona del grupo que consiste en toctilfenoxipolietoxietanol, N,N-Bis(3-D-gluconamidopropil) colamida, Brij(r) 35 P, N-decanoil-N-metilglutamina, digitonina, dodecanoil-N-metilglutamida, heptanoil-N-metilglutamida, octilfenoxi poli(etileneoxi)etanol ramificado, N-Nonanoil-N-metilglutamina, Nonidet P 40, N- octanoil-N-metilglutamina, solución Span 20 y polisorbato 20. En otra realización concreta, la solución de lisis comprende, además, hasta una concentración 3M de una sal, por ejemplo, carbonatos, cloruros, fosfatos, nitratos, nitritos, sulfates, citratos, carboxilatos (acetatos, formiatos, salicilatos, etc.); en una realización particular, la solución de lisis comprende cloruro sódico (NaCl).
En una realización particular, la solución de lisis proporcionada por esta invención comprende Tris entre 0,001 M y 2 M, SDS hasta el 3%, y NaCl hasta una concentración de 3 M, a un pH comprendido entre 3 y 11,5. No obstante, el experto en la materia entenderá que estos compuestos pueden sustituirse por otros compuestos equivalentes; por ejemplo, el SDS puede ser sustituido por Tritón X-100 hasta el 10%. En otra realización particular, la solución de lisis proporcionada por esta invención comprende (hidroximetil)-l,3-propanediol (Tris) aproximadamente 0,2 M, SDS al 0,025% aproximadamente, cloruro sódico 0,5 M ó 0,05 M aproximadamente, y un pH de 10; en este caso, el SDS puede ser reemplazado por Tritón X-100 aproximadamente al 5%.
En otra realización particular, la solución de lisis proporcionada por esta invención comprende (hidroximetil)-l,3-propanediol 0,2 M aproximadamente, Tritón X-100 al 5% aproximadamente, cloruro sódico 1 M aproximadamente, y un pH de 10. En otra realización particular, la solución de lisis proporcionada por esta invención comprende sodio fosfato bibásico 0,3 M aproximadamente, SDS al 2% aproximadamente, ácido etilendiamino tetraacético (EDTA) 0,05 M aproximadamente, y un pH de 11,45. Más detalles y explicaciones sobre las distintas realizaciones particulares de la solución de lisis de la invención pueden encontrarse en la descripción del segundo método de la invención.
En otro aspecto, la invención se relaciona con el uso de la solución de lisis de la invención para evaluar la pared celular bacteriana. Información sobre cómo puede usarse la solución de lisis de la invención para evaluar la pared celular bacteriana puede encontrarse en la descripción del primer y segundo métodos de la invención. Kit de la invención
La puesta en práctica de los métodos de la invención requiere una serie de componentes que pueden disponerse juntos en forma de pack o kit, de aquí en adelante, kit de la invención. Componentes útiles para la puesta en práctica de los métodos de la invención incluyen, pero no se limita a, solución tampón, solución de lisis, tintes, material estéril para hacer la recogida de muestras (hisopos, torundas, pinzas, etc.), cubres y portaobjetos, agua destiladas alcoholes (etanol), etc. Adicionalmente, el kit de la invención puede contener instrucciones o indicaciones que guíen al experto en la materia en la puesta en práctica los métodos de la invención.
Por lo tanto, en otro aspecto, la invención se relaciona con un kit que comprende la solución de lisis de la invención.
Los siguientes ejemplos tan solo ilustran la invención y no pretenden ser limitativos de la misma.
EJEMPLOS
MATERIALES Y MÉTODOS
Material y equipo requerido
Microscopio de fluorescencia (recomendable objetivo de inmersión)
Nevera a 4°C
Estufa a 37°C
Estufa o placa a 80°C (opcional)
Baño de incubación a 37°C
Guantes de plástico
Cubreobjetos de cristal (18x18 mm, 22x22 mm o 24x60 mm)
Micropipetas
4 cajas para incubaciones en horizontal Agua destilada
Etanol 70%, 90%, 100%
Preparación de una muestra por portaobjetos
1) Poner solución de lisis en recipiente de incubación horizontal, en estufa a 37°C, tapado.
2) Diluir la muestra de microorganismos en medio de cultivo o PBS, a una concentración de 5-10 millones por mililitro. Preparación del microgel de agarosa
1) Introducir el tubo Eppendorf con agarosa gelificada, en el flotador, dejándolo al nivel de la tapa, y dejar flotando 5 minutos en agua a 90-100°C, hasta que la agarosa se funda. La fusión de la agarosa se puede realizar alternativamente en un horno microondas.
2) Transferir el tubo Eppendorf con el flotador, a un baño termostático a 37°C, y dejar 5 minutos hasta equilibrar la temperatura.
3) Añadir 60 μΐ. de la muestra de microorganismos al contenido del tubo Eppendorf y resuspender, con la micropipeta.
4) Colocar un portaobjetos pretratado en una superficie fría, a 4°C (por ejemplo, una lámina metálica o de vidrio).
5) Una vez enfriado el portaobjetos, depositar la suspensión de microorganismos con agarosa y poner un cubreobjetos de cristal, evitando formar burbujas de aire. Se recomienda depositar una gota de 12, 20 ó 50 microlitros, para un cubreobjetos de 18x18 milímetros, 22x22 milímetros ó 24x60 milímetros, respectivamente.
6) Introducir la lámina fría con el portaobjetos, en la nevera y dejar gelificar la muestra durante 5 minutos.
Procesado de las muestras
1) Usando guantes, retirar el cubreobjetos, deslizándolo con suavidad, e inmediatamente introducir el portaobjetos, en horizontal, en el recipiente con la solución de lisis, tapando y dejando incubar durante 5 minutos, en la estufa o baño a 37°C.
2) Levantar el portaobjetos con ayuda de la lanceta, usando guantes. Sujetarlo en horizontal, y depositarlo en horizontal, en una caja conteniendo abundante agua destilada o solución tampón, para lavar la solución de lisis. Dejar incubando durante 5 minutos.
3) Introducir el portaobjetos, en horizontal, en una caja con etanol 70% (3 minutos), luego en otra caja con etanol 90% (3 minutos), y finalmente en etanol 100% (3 minutos), a -20°C.
4) Dejar secar al aire, e incubar en horno microondas a 500-1000W durante 1-10 minutos, o en su defecto, en estufa a 80°C durante una hora como mínimo, o toda la noche. Una vez secos, los portaobjetos procesados se pueden guardar en cajas archivadoras, a temperatura ambiente, en oscuridad, durante meses.
Tinción de las muestras para observación en microscopio de fluorescencia
Dependiendo de la disponibilidad de filtros de fluorescencia, las muestras se pueden teñir con fiuorocromos específicos para ADN del tipo EvaGreen o (verde) o GelRed (rojo). Los fiuorocromos de la familia SYBR, concretamente el SYBR Gold, permiten una buena resolución, con cierta fotoestabilidad.
Almacenamiento y estabilidad
Almacenar a temperatura ambiente.
Caducidad: los reactivos y materiales son estables por un periodo mínimo de 6 meses. Se recomienda que la solución de lisis se mantenga en posición vertical y bien cerrada.
Determinación de la integridad de la pared celular
Se diluyó una alícuota de cada muestra hasta una concentración de 5-10 millones de microorganismos/mL en medio líquido Mueller-Hinton fueron incubadas con el antibiótico en medio líquido Mueller-Hinton. Por otra parte, tubos de microcentrífuga de 0,5 mL conteniendo alícuotas gelificadas de agarosa de bajo punto de ebullición se colocaron en un baño de agua a 90°C-100°C durante aproximadamente 5 minutos con el fin de fundir completamente la agarosa y posteriormente se colocaron en un baño de agua a 37°C. A continuación, se añadieron 25 μΙ_, de la muestra diluida a dichos tubos y se mezcló con la agarosa fundida. Una alícuota de 20 μΙ_, de la mezcla muestra-agarosa se pipeteó sobre un portaobjetos recubierto previamente (e.g., con una película de agarosa) y la muestra se cubrió con un cubreobjetos de 22x22 mm. El portaobjetos se colocó en una placa fría de un refrigerador (4°C) durante 5 minutos para permitir que la agarosa formara un microgel con las células intactas atrapadas en su interior. El cubreobjetos se retiró con cuidado y el portaobjetos se sumergió inmediatamente en posición horizontal en una solución de lisis durante 5 minutos a 37°C para las bacterias Gram+ (gram positivas) y a 22°C para las bacterias Gram- (gram negativas). El portaobjetos se lavó horizontalmente en una bandeja con abundante agua destilada durante 3 minutos, se deshidrató incubándolo horizontalmente en etanol frío (-20°C) a concentración creciente (70%, 90% y 100%) durante 3 minutos en cada concentración y se secó con aire en un horno. El portaobjetos seco se incubó en un horno microondas a 750 W durante 4 minutos y el ADN se tiñó con 25 μL· de SYBR Gold (Molecular Probes, Eugene, OR, EEUU) diluido 1 :400 en tampón TBE (Tris-borato 0,09 M, EDTA 0,002 M, pH 7,5) durante 2 minutos en oscuridad, con un cubreobjetos de cristal. Tras un breve lavado en tampón fosfato pH 6,88 (Merck, Darmstadt, Alemania) se añadió un cubreobjetos de 24x60 mm y los portaobjetos fueron visualizados mediante microscopía de fluorescencia.
Microscopía de fluorescencia y análisis digital de la imagen
Las imágenes se visualizaron en un microscopio de epifluorescencia (Nikon E800), con un objetivo de lOOx y filtros de fluorescencia apropiados para FITC-SYBR Gold (excitación 465 nm, emisión 515-555 nm), PI-Cy3 (excitación 540/25 nm, emisión 605/55 nm) y DAPI (excitación 340-380 nm, emisión 435-485 nm). En el experimento de dosis-respuesta a ampicilina, las imágenes fueron capturadas con una cámara CCD de alta sensibvilidad (KX32ME, Apogee Instruments, Roseville, CA, EEUU). Se obtuvieron grupos de imágenes digitales de 16 bit y se archivaron como archivos .tiff El análisis de la imagen utilizó un macro en el programa Visilog 5.1 (Noesis, Gif sur Yvette, Francia). Esto permitió determinar el umbral, sustraer el fondo y medir el tamaño de la anchura media del halo de los nucleoides en μιτι, delimitado entre el extremo periférico del nucleoide y el límite externo del cuerpo celular. En el caso de los cuerpos celulares no reconocidos, se consideró el centroide del nucleoide como punto de referencia interno para medir la anchura del halo del nucleoide diseminado.
EJEMPLO 1 Confirmación del funcionamiento de la técnica: liberación del nucleoide bacteriano y de restos difusos de pared y/o productos bacterianos, en bacterias sensibles a un antibiótico que actúa a nivel de la pared bacteriana Tres cepas diferentes de Escherichia coli fueron expuestas al antibiótico β-lactámico amoxicilina, junto con el inhibidor de las β-lactamasas ácido clavulánico, y procesadas mediante la técnica para evaluación de la integridad de la pared celular de la presente invención. Las bacterias que estaban creciendo en medio líquido Mueller-Hinton fueron incubadas con el antibiótico en medio líquido Mueller-Hinton durante la fase de crecimiento exponencial, a 37°C, con agitación, durante 40 minutos. Las dosis de antibiótico fueron elegidas según los puntos de corte indicados por el Clinical and Laboratory Standards Institute (CLSI). Según sus recomendaciones, una cepa se considera sensible cuando su concentración mínima inhibitoria (CMI) es < 8/4 (amoxicilina: 8 μg/mL y ácido clavulánico: 4 μg/mL) y resistente cuando su CMI es > 32/16 (amoxicilina: 32 μg/mL y ácido clavulánico: 16 μg/mL). Según los datos de difusión en disco, una de las cepas es sensible, otra es intermedia y otra resistente.
Los resultados se visualizan en la Figura 1. Tras la dosis 8/4, solo las bacterias de la cepa sensible aparecen Usadas, mostrando los nucleoides (a'). Tras la dosis 32/16, las cepas sensible e intermedia aparecen Usadas (a" y b"), mientras que la resistente permanece sin Usar (c"). Sin embargo, algún daño en pared celular es visible en algunas células aisladas. Cuando el antibiótico es efectivo, además de la liberación y expansión de los nucleoides, se aprecia un fondo homogéneo microdifuso, granular-fibrilar, de fragmentos extracelulares de ADN, desprendidos por las células.
EJEMPLO 2
Valoración de sensibilidad o resistencia a antibiótico β-lactámico en varias cepas de
E. coli aisladas de hospital Tras los resultados del experimento anterior (Ejemplo 1), se estudiaron 11 cepas diferentes de E. coli, aisladas en un Servicio de Microbiología. Tras crecer en placa con medio Mueller-Hinton, durante 24 horas, fueron expuestas a amoxicilina, junto con ácido clavulánico, en medio líquido Mueller-Hinton durante 1 hora, tras lo cual fueron procesadas mediante la técnica para evaluación de la integridad de la pared celular según la presente invención. Al igual que en el Ejemplo 1 las dosis fueron 0, 8/4 y 32/16 (amoxicilina/ácido clavulánico).
Según el protocolo de la invención:
- Tres cepas mostraron lisis total de pared y fondo intenso de fragmentos extracelulares de ADN ya en la dosis baja (8/4), siendo categorizadas como sensibles.
- En 5 cepas sólo se observó lisis total de pared y fondo intenso de fragmentos extracelulares de ADN en la dosis alta (32/16), siendo conceptuadas como de sensibilidad intermedia.
- Dos cepas mostraron, en la dosis alta, células sin lisar, junto con otras discretamente Usadas, con un fondo de fragmentos extracelulares de ADN muy tenue o nulo. Fueron categorizadas como resistentes.
Los resultados de la técnica encajaron con los aportados por el Laboratorio de Microbiología. La conclusión práctica del experimento es que las cepas sensibles son claramente diferenciables del resto empleando una única dosis, en concreto, la dosis baja (8/4). Esto puede simplificar enormemente el estudio masivo de múltiples cepas, pues desde el punto de vista clínico, lo importante para la decisión terapéutica es diferenciar "sensible" de "no sensible". En caso de una cepa intermedia a un determinado antibiótico, éste no se administraría, y se utilizaría otro alternativo al que fuese totalmente sensible.
EJEMPLO 3
Determinación del tiempo mínimo de incubación con un antibiótico β-lactámico, que permite detectar la afectación de la pared en la cepa sensible y la cepa intermedia de E. coli. Valoración de bacterias procedentes de cultivo de placa o de cultivo líquido
Una cepa sensible, otra intermedia y otra resistente de E. coli, fueron expuestas a amoxicilina, junto con ácido clavulánico, en medio líquido Mueller-Hinton, y procesadas mediante la técnica para evaluación de la integridad de la pared celular de la presente invención. Las dosis (amoxicilina/ácido clavulánico) fueron: 8/4 (baja) y 32/16 (alta). Los tiempos de incubación con el antibiótico fueron 5, 10, 20, 30, 40, 60 y 75 minutos.
A) Cuando las bacterias procedían de cultivo de 24 horas, en placa, se observó lo siguiente:
- En la cepa sensible, a los 20 minutos se empezó a apreciar un efecto muy discreto en la dosis alta (32/16), con algo de fondo de fragmentos extracelulares de ADN y una lisis discreta de las células. Este efecto discreto pasó a observarse a los 40 minutos tras la dosis baja (8/4), mientras que fue algo mayor con la dosis alta. A los 60 minutos el efecto ya era máximo, con discreto fondo de fragmentos extracelulares de ADN y lisis de prácticamente todas las células tras la dosis baja, y mucho fondo y lisis tras la dosis alta.
- La cepa intermedia comenzó a mostrar un efecto claro mucho más tarde que la sensible, a los 60 minutos y sólo tras la dosis alta (32/16). Este efecto fue más evidente a los 75 minutos
- La cepa resistente nunca mostró efecto, aunque a los 75 minutos, tras la dosis alta (32/16), algunas células aisladas aparecían discretamente Usadas, como en la Fig. l c" .
B) Cuando las bacterias procedían de cultivo líquido, en fase de crecimiento exponencial, se observó lo siguiente: - En la cepa sensible ya se empezó a observar un efecto a los 10 minutos. Este era muy discreto en la dosis baja (8/4), y más acusado con la dosis alta (32/16). La intensidad del efecto fue incrementándose progresivamente, siendo a los 30 minutos, muy similar al observado tras 60 minutos en el caso de las que procedían de cultivo en placa.
- La cepa intermedia comenzó a mostrar un efecto claro mucho más tarde que la sensible, a los 30-40 minutos y sólo tras la dosis alta (32/16). Este efecto fue más evidente a los 60 minutos.
- La cepa resistente nunca mostró efecto, aunque a los 60 minutos, tras la dosis alta (32/16), algunas células aisladas aparecían discretamente Usadas, como en la Fig. l c" . En conclusión:
1) El estado de crecimiento de las bacterias influye en la sensibilidad al antibiótico.
Es bien conocido que las células que no crecen, en fase estacionaria, disminuyen extraordinariamente su sensibilidad a los antibióticos β-lactámicos.
2) Desde el punto de vista práctico, para diferenciar con seguridad las cepas de E. coli sensibles de las demás, es suficiente con incubarlas con el antibiótico durante 30 minutos en caso de estar en fase de crecimiento exponencial (cultivo líquido reciente), o de 40-60 minutos, en caso de proceder de cultivo en placa de 24 horas. Si la placa está más envejecida o el cultivo líquido ha llegado a la fase exponencial, el tiempo de incubación de la muestra de bacterias con el antibiótico en medio líquido, puede alargarse varias horas. En el caso de valoración de muestras clínicas es recomendable procesar simultáneamente una cepa sensible, otra intermedia y otra resistente, como control de la actividad del antibiótico y de la efectividad de la técnica.
EJEMPLO 4 Determinación de sensibilidad o resistencia de diferentes gérmenes Gram+ y
Gram- a diferentes antibióticos beta-lactámicos (penicilinas, cefalosporina y carbapenem) Diferentes cepas bacterianas crecieron en placa con medio Mueller-Hinton, durante 24 horas, luego fueron expuestas al antibiótico β-lactámico durante 60 minutos en medio líquido Mueller-Hinton, a 37°C, en agitación, y, finalmente, se procesaron mediante la técnica para evaluación de la integridad de la pared celular según la presente invención. Las cepas y los antibióticos empleados fueron:
Gram+
Enterococcus faecalis. Cepa sensible a ampicilina (CMI = 4) y resistente a becilpenicilina (CMI >32).
Enterococcus faecium. Cepa resistente a ampicilina (CMI >32) y a bencilpenicilina (CMI >32).
Gram-
Acinetobacter baumannii. Cepa resistente a imipenem (CMI >32) y a ceftazidima (CMI >32).
Acinetobacter baumannii. Cepa sensible a imipenem (CMI = 0,38) e intermedia a ceftazidima (CMI = 12).
Escherichia coli. Cepa intermedia a ampicilina (CMI = 16) y sensible a ceftazidima (CMI = 1).
Escherichia coli. Cepa resistente a ampicilina (CMI> 256) y a ceftazidima (CMI = 32).
Las dosis de antibiótico aplicadas fueron 0, la CMI, determinada en el Laboratorio de Microbiología mediante la técnica de microdilución y/o e-test, y las de los puntos de corte de sensibilidad y de resistencia indicados por el Clinical and Laboratory Standards Institute (CLSI) para cada cepa. También se empleó una dosis 10 veces mayor que la CMI.
Los puntos de corte de los antibióticos varían para cada cepa:
Enterococcus. Ampicilina < 8 (Sensible) > 16 (Resistente)
Acinetobacter . Ceftazidima < 8 (Sensible) > 32 (Resistente)
Imipenem < 4 (Sensible) > 16 (Resistente)
E. coli. Ampicilina < 8 (Sensible) > 32 (Resistente)
Ceftazidima < 8 (Sensible) > 32 (Resistente)
Resultados
Gram+ ■ Enterococcus faecalis. Cepa sensible a ampicilina (CMI = 4) y resistente a bencilpenicilina (CMI >32).
Incubación con ampicilina: 0, 4 (CMI), 8, 12, 16, 40 μ§/ιηΙ.. Tras incubar con dosis de 4 μ§/ιηΙ. (CMI), se observó el efecto sobre la pared en la mayoría de las células, apareciendo Usadas de modo heterogéneo, con discreto fondo de fragmentos de ADN. Muy Usadas: 35%; discretamente Usadas: 25%; Usadas con ADN fragmentado: 12%; sin Usar: 28%. Tras incubar con dosis de 8, 12 y 16 μg/mL dan un resultado similar. A dosis de 40 μg/mL el fondo se hace muy tenue, con pocas células, el 63% sin Usar, un 15%) tienen un pequeño halo de afectación de la pared, un 20%> tiene un halo de lisis grande, y un 2%> aparecen Usadas con nucleoide de ADN fragmentado (Figura 2).
Incubación con bencilpenicilina: 0, 0,06, 16, 32, 320 μg/mL. Tras incubar con dosis de 16 μg/mL se aprecia algo de fondo, que se incrementa algo tras incubar con dosis de 32 y 320 μg/mL. Tras incubar con dosis de 16 μg/mL, aparece el 4,5% Usadas con halo grande. El 81%> siguen sin Usar. Tras incubar con dosis de 32 μg/mL: 4% con halo grande y 4% Usadas con nucleoide con ADN fragmentado. El 65%> siguen sin Usar. Tras incubar con dosis de 320 μg/mL: 72,3% sin Usar y 25% con halo pequeño. Tras incubar con dosis de 16, 32 y 320 μg/mL se aprecian muchas cápsulas vacías tenues:
0,5-1,5%.
Enterococcus faecium. Cepa resistente a ampicilina (CMI>32) y a bencilpenicilina (CMI >32).
Incubación con ampicilina: 0, 8, 12, 16, 32 (CMI), 320 μg/mL. Tras incubar con dosis de 320 μg/mL se ve algo de efecto, con un fondo discreto con 7,5%) de células muy Usadas, 1% de células Usadas con nucleoide con ADN fragmentado, 2% de células con halo pequeño y 89% sin Usar (Figura 3).
Incubación con bencilpenicilina: 0, 0,06, 16, 32, 320 μg/mL. Tras incubar con dosis de 320 μg/mL no hay fondo pero se observa un 5% de células muy Usadas. El resto están sin Usar. Gram-
Acinetobacter baumannii. Cepa resistente a imipenem (CMI >32) y a ceftazidima (CMI >32). Esta cepa muestra un fondo muy discreto de base. - Incubación con imipenem: 0, 4, 8, 16, 32, 320 μg/mL . Tras incubar con dosis de 16 μg/mL no hay fondo de fragmentos extracelulares de ADN y se observa un 1% de células con halo grande, 1% de células con halo pequeño. 0,5%) de células Usadas con nucleoide con ADN fragmentado. Tras incubar con dosis de 32 μg/mL se observa un resultado similar al de la incubvación con una dosis de 16 μg/mL. Tras incubar con dosis de 320 μg/mL se aprecia un discreto fondo de fragmentos extracelulares de ADN, pero el 92% de las células están sin lisar, el 2,5% Usadas con halo pequeño, un 3,5% de células muy Usadas y un 2% de células Usadas con nucleoide con ADN fragmentado. Las no Usadas se muestran de mayor tamaño y más redondeadas.
Incubación con ceftazidima: 0, 8, 20, 32, 256, 2.560 μg/mL. Tras incubar con dosis de 8 μg/mL, el 22% de las células están muy alargadas, filamentosas. En las siguientes dosis, el 90% de las células se muestran filamentosas. Tras incubar con dosis de 20 y 32 μg/mL: el 84,5% de las células muestran halo pequeño, el 1,5% de las células muestran halo grande, sin fondo de fragmentos extracelulares de ADN. Tras incubar con dosis de 256 μg/mL: el 32,3% de las células están muy Usadas, el 63% de las células muestran halo pequeño, el 4,7% están sin lisar, con fondo discreto. Tras incubar con dosis de 2.560 μg/mL continúa el mismo fondo, el 5% de las células sin lisar, el 6,5% de las células muestran halo pequeño, el 63,5% de las células muestran halo grande, y el 25% están Usadas y con nucleoides con ADN fragmentado.
Acinetobacter baumannii. Cepa sensible a imipenem (CMI = 0,38) e intermedia ceftazidima (CMI = 12). Esta cepa no presenta fondo basal.
Incubación con imipenem: 0, 0,038, 0,38 (CMI), 4, 8, 16 μg/mL. Tras incubar con dosis de 0,038 μg/mL hay un poco de fondo. El 75,7% de las células permanecen sin lisar y sólo hay un 1,4% de células con halo grande y un 22,9%) de células con halo pequeño. Tras 0,38 μg/mL hay un fondo claro. El 75,7%) de las células están muy Usadas, con halo grande, el 5,9% de las células poseen un halo pequeño y el 7,4% están Usadas y con nucleoide con ADN fragmentado. Tras incubar con dosis de 4, 8 y 16 μg/mL se aprecia el fondo y muchas cápsulas vacías tenues (12% a dosis de 4 μg/mL; 19,5% a dosis de 8 μg/mL; 15% a dosis de 16 μg/mL). Hay muchas células Usadas con nucleoide con ADN fragmentado (66% a dosis de 4 μg/mL; 69,5% a dosis de 8 μg/mL; 73,5% a dosis de 16 μg/mL). Hay pocas células con halo grande (13,5% a dosis de 4 μg/mL; 6% a dosis de 8 μg/mL; 5% a dosis de 16 μg/mL) y otras pocas sin lisar (8,5% a dosis de 4 μ§/ιηΙ.; 5% a dosis de 8 μ§/ιηΙ.; 6,5% a dosis de 16 μg/mL).
Incubación con ceftazidima: 0, 8, 12 (CMI), 20, 32, 120 μ§/ιηΙ.. Tras incubar con dosis de 8 μ§/ιηΙ. aparecen un 82% de células filamentosas, con un total de 40%) de células Usadas con halo pequeño y un 1%> de células Usadas con nucleoide con ADN fragmentado, sin fondo. Tras incubar con dosis de 12 μ§/ιηΙ. (CMI) y 20 μ§/ιηΙ., aparecen 95% de células filamentosas, con 94,5%> y 91,5%) de células Usadas con halo pequeño, respectivamente, y 1,5% y 3% de células Usadas con halo grande, respectivamente, y un 4% y 5,5% de células no Usadas, respectivamente; con dosis de 12 μ§/ιηΙ. aparece un fondo discreto, que aumenta tras dosis de 20 μ§/ιηΙ.. Tras incubar con dosis de 32 μ§/ιηΙ. hay más fondo, 90% de células alargadas y 88% de células Usadas con halo pequeño, 6% de células Usadas con halo grande y 6% de células sin lisar. Tras incubar a dosis de 120 μg/mL se observa mucho fondo y aparecen 91%) de células filamentosas y 23% de células Usadas, con halo grande, 67% de células Usadas con halo pequeño, 36% de células Usadas con nucleoide con ADN fragmentado y 7% de células sin lisar.
Escherichia coli. Cepa intermedia a ampicilina (CMI = 16) y sensible ceftazidima (CMI = 1).
Incubación con ampicilina: 0, 8, 16 (CMI), 20, 32, 160 μg/mL. Tras incubar con dosis de 8 μg/mL ya se observa mucho fondo y el 55% de las células están muy Usadas, además del 9% Usadas con nucleoide con ADN fragmentado. Tras incubar con dosis de 16 μg/mL (CMI): 60,4% de células Usadas con halo grande, 5,7% de células Usadas con nucleoide con ADN fragmentado, 22,6 de cápsulas vacías, 11,3% de células sin lisar. Tras incubar con dosis de 20 μg/mL: hay muy pocas células. El 47,3% de las células muestran halo grande, el 8,6% son células Usadas con nucleoide con ADN fragmentado, el 31,2% cápsulas vacías, y el 12,9% células sin lisar. Tras incubar con dosis de 32 y 160 μ§/ιηΙ. hay muy escasas células, siendo un 54% cápsulas vacías.
Incubación con ceftazidima: 0, 1 (CMI), 8, 10, 20, 32 μ§/ιηΙ.. Tras incubar con dosis de 1 μ§/ιηΙ. aparecen un 99% de células filamentosas, 97% muy Usadas, con algo de fondo (Figura 4). Tras incubar con dosis de 8 μ§/ιηΙ., el resultado es similar al obtenido al incubar con dosis de 1 μ§/ιηΙ., pero con más fondo. Tras incubar con dosis de 10 μ§/ιηΙ., se obtiene el 76,5% de las células bien Usadas, 11% de células Usadas con nucleoide con ADN fragmentado y 10,5% de cápsulas vacías, con mucho fondo. Tras incubar con dosis de 20 y 32 μ§/ιηΙ. el daño es excesivo, con un 25,3% de cápsulas vacías y un 20% de células Usadas con nucleoide con ADN fragmentado, 52,7%) de células bien Usadas y 2% de células sin Usar.
Escherichia coli. Cepa resistente a ampicilina (CMI>256) y a ceftazidima (CMI2).
Incubación con ampicilina: 0, 8, 20, 32, 256, 2560 μ§/ιηΙ.. Tras incubar con dosis de 256 μ§/ιηΙ. se aprecian solo 0,5% de células Usadas y un 1% de Usadas con nucleoide con ADN fragmentado, sin fondo, similar al basal y dosis anteriores. Tras incubar con dosis de 2.560 μ§/ιηΙ. las células son más alargadas, aunque no filamentosas; un 13% de ellas aparecen muy Usadas, un 5% discretamente Usadas, un 1,5% Usadas con nucleoide con ADN fragmentado y un 4% de cápsulas vacías, con fondo discreto.
Incubación con ceftazidima: 0, 8, 20, 32 (CMI), 320 μg/mL. Tras incubar con dosis de 8 μg/mL aparecen un 13% de células filamentosas, sólo 1% de células bien Usadas. Tras incubar con dosis de 20 μg/mL aparecen 99% de células filamentosas, 94% sin Usar; 5% de células bien Usadas y sin fondo. Tras incubar con dosis de 32 μg/mL, aparecen 98% de células filamentosas, 92% de células sin Usar, 4% de células bien Usadas, 3% de células Usadas con nucleoide con ADN fragmentado, 1% de cápsulas vacías, con fondo discreto. Tras incubar con dosis de 320 μ§/ιηΙ. se observa un fondo discreto, con 99% de células filamentosas y 95% de células discretamente Usadas, 3,5%) muy Usadas, 0,5% Usadas con nucleoide con ADN fragmentado, y 1%> sin Usar.
EJEMPLO 5
Detección de "persisters", in situ, dentro de la población bacteriana, y
cuantificación de su frecuencia El fenómeno de la persistencia tras los tratamientos antibióticos tiene gran interés clínico. En una población de una cepa bacteriana, a pesar de ser sensible al antibiótico, puede haber algunas pocas células que, sin tener ningún mecanismo conocido de resistencia, toleran el antibiótico, permaneciendo sin crecer o creciendo lentamente. Tras quitar el antibiótico, algunas de estas células podrían volver a crecer y podrían ser responsables de la recidiva de la infección cuando se hace un tratamiento antibiótico discontinuo. Estos "persisters" se pueden encontrar en baja proporción cuando las bacterias crecen exponencialmente, pero su frecuencia se incrementa cuando entran en fase estacionaria y en la formación de los biofilms (Lewis K. Persister cells, dormancy and infectious disease. Nat Rev Microbiol 2007;5:48-56).
En el caso de los antibióticos β-lactámicos, los "persisters" se cree que carecen de, o tienen inhabilitado, el sistema de autolisis de la pared, el cual se dispara tras el tratamiento antibiótico. La metodología de la invención podría revelar estas células, lo cual aporta un gran valor a la misma. Se podrían detectar en cultivos de células sensibles a un antibiótico, de modo mucho más simple que otros métodos que existen actualmente, tales como la monitorización del crecimiento celular mediante microscopía continuada en el tiempo o técnicas de citometría de flujo. Estas metodologías son complejas, laboriosas, caras, y no pueden emplearse a nivel clínico {Roostalu J Joers A, Luidalepp H, Kaldalu N, Tensón T. Cell división in Escherichia coli cultures monitored at single cell resolution. BMC Microbiol 2008;8:68).
La Figura 5 muestra células de una cepa sensible de E. coli, procedentes de un cultivo en medio líquido, creciendo en fase exponencial, sensible a amoxicilina/ácido clavulánico, y expuesto a una dosis alta (32/16) durante 90 minutos. Además de las células afectadas en la pared y del fondo de fragmentos extracelulares de ADN, se observa claramente una que mantiene su morfología intacta, luego no afectada por el antibiótico, que lógicamente debe corresponder a un "persister".
Las células "persisters", al no crecer, deberían incrementar progresivamente su proporción relativa en el portaobjetos, a medida que se aumenta el tiempo de incubación con el antibiótico y las células sensibles van despareciendo del cultivo. Este fenómeno también podría tener lugar cuando la cepa se incuba con dosis progresivamente crecientes del antibiótico, durante un tiempo fijo. En realidad, si se ajustasen los resultados por la cantidad de células presentes tras la incubación con el antibiótico, se obtendría que las células sin halo ("persisters") se mantendrían constantes independientemente de la dosis de antibiótico o el tiempo de incubación con el mismo, pues no crecen, mientras que el resto de las células sensibles, con halo, disminuirían progresivamente, al desparecer del cultivo. Con estos dos tipos de experimentos, entre otros, se puede determinar si las células sin lisar corresponden a "persisters".
A) Incubación con dosis creciente de antibiótico. Una cepa de E. coli sensible a ampicilina se incuba con dosis crecientes del antibiótico durante 60 minutos. En la Tabla 1 se observa que el porcentaje de células sin lisar aumenta con la dosis del antibiótico, mientras que el porcentaje de células Usadas disminuye de forma concomitante. Cuando se normalizan según la OD600 relativa, es decir, por el número relativo de células que hay en el cultivo tras cada dosis, se aprecia que la proporción relativa de células sin lisar tiende a permanecer entre 5-8,5, mientras que la proporción relativa de células Usadas disminuye espectacularmente a medida que aumenta la dosis.
Tabla 1
Resultados de la incubación de una cepa sensible de E. coli, con dosis crecientes de ampicilina, durante 60 minutos. El % de células se normalizó mediante la OD 600.
Figure imgf000053_0001
B) Incubación durante tiempos crecientes de antibiótico. Una cepa de E. coli sensible a amoxicilina/ácido clavulánico se incubó con una dosis 32/16 de antibiótico durante 24 horas. Se extrajeron alícuotas del cultivo para ser estudiadas, durante los tiempos especificados en la Figura 6. En la Figura 6, arriba, se observa que la proporción de células sin lisar va aumentando en el cultivo a lo largo del tiempo, a medida que van despareciendo las células afectadas por el antibiótico. De hecho, la curva de caída del porcentaje de células con halo es similar a la caída del porcentaje de células del cultivo, medidas mediante cámara Neubauer. Si se normaliza el porcentaje de células de cada tipo con respecto al porcentaje de células que va quedando en el cultivo, el nivel de células sin halo tiende a mantenerse constante en el tiempo, mientras que el nivel de células con la pared dañada va disminuyendo progresivamente, del mismo modo que el de células del cultivo (Figura 6, abajo).
En conclusión, ambos tipos de experimentos indican que las células sin halo permanecen en el cultivo con antibiótico, a lo largo del tiempo y con diferentes dosis crecientes del antibiótico. Esto apoya su status de "persisters", pues al no ser afectadas por el antibiótico y no crecer, su frecuencia debería ser independiente de la dosis del antibiótico y del tiempo de incubación con el mismo.
EJEMPLO 6 Determinación de nucleoides con ADN fragmentado, exclusivamente en las células afectadas en la pared celular por el antibiótico
Una cepa sensible y otra intermedia de E. coli, en crecimiento exponencial, fueron expuestas a amoxicilina, junto con ácido clavulánico, en medio líquido Mueller-Hinton. La dosis fue 32/16 (amoxicilina/ácido clavulánico). Los tiempos de incubación con el antibiótico fueron 15 minutos, 30 minutos, lh, 2h, 4 h y 6h. Simultáneamente, en esos mismos tiempos, también se procesó un control de la cepa, sin antibiótico. La frecuencia de nucleoides con ADN fragmentado se determinó según el protocolo descrito en Tamayo et al. {Tamayo M, Santiso R, Gosálvez J Bou Q Fernández JL. Rapid assessment of the effect of ciprofloxacin on chromosomal DNA from Escherichia coli using an in situ DNA fragmentation assay. BMC Microbiology 2009; 9: 69). Este protocolo lisa todas las células independientemente de su estado de la pared. Esta es la técnica adecuada para evaluar el estado del ADN del nucleoide en todas las células de una población. Por otra parte, este tipo de nucleoide también se determinó en las preparaciones procesadas para reconocer la afectación de la pared celular, según el protocolo de la presente invención. Este procedimiento no es adecuado porque no permite estimar el estado del ADN en las células sin lisar, no afectadas en su pared celular por el antibiótico. Sin embargo, dado que en este experimento la gran mayoría de las células son afectadas por el antibiótico, esto permite una estimación de la fragmentación del ADN exclusivamente en las células con la pared dañada. Esto es importante, pues permite evaluar la teoría que indica que la células afectadas por el antibiótico a nivel de la pared celular, generarían una respuesta tardía que acabaría afectando también el ADN del nucleoide, el cual se fragmentaría tardíamente durante el proceso de muerte celular, posiblemente por producción de radicales libres de oxígeno (Kohanski, MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 2007; 130:797-810). La Figura 7 muestra varias células procesadas por el procedimiento para la determinación de la afectación de la pared celular. Uno de los nucleoides posee el ADN fragmentado. A diferencia de los nucleoides intactos, éste aparece teñido más tenuemente, ocupando una mayor superficie debido al halo de difusión de los fragmentos de ADN a partir de la zona o residuo bacteriano central.
EJEMPLO 7
Determinación de sensibilidad o resistencia a un antibiótico β-lactámico, sin emplear la lisis, valorando el fondo de fragmentos extracelulares de ADN, en la preparación
Cuando las bacterias se procesan obviando el paso de incubación en la solución de lisis, éstas aparecen intactas en su práctica totalidad, estén afectadas o no por el antibiótico. Sin embargo, si tras incubación pertinente con la dosis de antibiótico de corte para sensible, en la preparación se aprecia o no el fondo homogéneo microdifuso, granular- fibrilar, de fragmentos de ADN desprendidos por las células, se puede claramente decidir si la cepa es sensible o no, respectivamente. Esta valoración del fondo, sin usar la lisis para ver el efecto sobre la pared celular, puede hacerse tiñendo con el fluorocromo el material incluido en microgel, o el material sin incluir en microgel, ya sea fijado o fresco.
En caso de cultivo puro, la valoración del fondo de fragmentos de ADN presentes en la preparación hecha sin emplear la lisis puede ser suficiente para reconocer si una cepa es sensible o resistente, tras el tiempo de incubación adecuado con el antibiótico contra la pared bacteriana. Esto quizás puede agilizar aun más el tiempo de obtención del resultado, cuando éste se hace muy imperioso por urgencia clínica. A) Material incluido en microgel
El líquido con las células se incluye en un microgel de agarosa, que se deshidrata en alcoholes y/o se seca al aire o en estufa y se tiñe con el fluorocromo. Es el mismo proceso descrito con detalle anteriormente, pero sin incubación con la solución de lisis. La evaluación del fondo se puede realizar rápidamente, tras los 15-20 minutos que ocupa realizar la técnica. Las preparaciones son permanentes. El resultado se aprecia en la Figura 8, que muestra las mismas cepas presentadas en la Figura 1, crecidas durante 24 horas en placa y luego incubadas durante 40 minutos con las dosis 0, 8/4 (baja) y 32/16 (alta) de amoxicilina/ácido clavulánico. Este sistema más abreviado no permite detectar los "persisters" de la propia cepa bacteriana, ni discriminar células sensibles de resistentes, en caso de cultivo mixto o contaminado. Además, la intensidad del fondo de fragmentos extracelulares de ADN depende de la concentración de bacterias sensibles. Si esta es reducida, el fondo puede ser muy tenue o casi inobservable. Así, una cepa de E. coli sensible a amoxicilina/ácido clavulánico, incubada con una concentración alta (32/16), a partir de una OD600 de 0,07, muestra fondo muy evidente a los 15 minutos de incubación (OD600: 0,071; 42,5 millones de células por mL, medidas mediante cámara Neubauer; 5,62 % de células viables) y se mantiene intenso hasta las 2 horas de incubación (OD600: 0,033; 14,5 millones de células por mL; 3,77 % de células viables). El fondo pasa a ser escaso a las 3 y 4 horas (OD600: 0,037 y 0,033 respectivamente; 14 millones de células por mL en ambos tiempos; 0,38 % de células viables en ambos tiempos) y ya no se aprecia a las 6 horas (OD600: 0,035; 13,5 millones de células por mL; 0,13 % de células viables). Si bien las células totales se mantienen entre un 40-30% de las iniciales desde los 60 minutos hasta las 6 horas, la intensidad del fondo de fragmentos de ADN se va reduciendo en ese tiempo hasta no ser detectable, posiblemente por degradación del mismo.
B) Material fijado
Una alícuota del cultivo sin antibiótico y otras con las dosis de antibiótico, se pueden mezclar con un fijador. Por ejemplo, se pueden usar fijadores alcohólicos, aldehídicos o cetónicos como metanol, etanol, acetona, formaldehído, glutaraldehído, también ácido acético, ácido pícrico, cloruro de mercurio, ión dicromato, tetróxido de osmio, etc, y mezclas como el metanol: ácido acético, por ejemplo en proporción 3 : 1, como el líquido de Carnoy. En el caso del formaldehído, la solución puede ser acuosa del 0, 1 al 50%, preferentemente al 10%. En el caso de los demás fijadores, se pueden usar en diferentes proporciones, del 0,1 al 100%. Es recomendable una proporción de 5-10% de solución acuosa de microorganismos y 95-90%> de fijador. La ventaja de la fijación sobre la observación en fresco es que el material se puede almacenar durante mucho tiempo y observarse cuando sea conveniente. Se extiende una gota (unos pocos microlitros) sobre el portaobjetos y se deja secar. Luego se añade el fluorocromo SYBR Gold (1 :400), se monta con un cubreobjetos y se examina. El formaldehído conserva el fondo solo brevemente, por lo que no es recomendable. Los otros fijadores son más duraderos y dan una imagen clara del fondo.
Es preferible el metanol: ácido acético. Con el metanol: ácido acético, el material se extiende más fácilmente sobre el portaobjetos y el material de fondo y las bacterias quedan mejor adheridos al vidrio, mientras que con los otros fijadores es más probable que se desprendan al teñir, a no ser que se incube previamente con calor seco. El fondo de fragmentos extracelulares de ADN se aprecia como un agregado disperso (Figura 9). La extensión del material fijado sobre el portaobjetos tarda en secar unos 8-10 minutos, aunque cuando el portaobjetos se coloca sobre una placa o estufa a 37°C se seca en 5 minutos. Si el metanol: ácido:acético (3: 1) está al 95%, el secado tras la extensión de la gota es rápido, en menos de 1 minuto. Aunque más sencilla en materiales, las fijaciones no aportan gran ventaja en cuanto al tiempo de preparación y observación, con respecto a la preparación del microgel, el cual también es permanente. Así pues, de cara a una primera determinación provisional rápida de sensibilidad o resistencia, la operatividad de la fijación o del uso del microgel es prácticamente similar.
C) Material fresco
Se añade el fluorocromo a una alícuota del cultivo, se coloca un cubreobjetos y se examina directamente con el microscopio de fluorescencia. Por ejemplo, a unos 10 μΕ del cultivo líquido con bacterias, se añaden 2 μΕ de fluorocromo SYBR Gold (1 :400). Esto se hace en cultivos con antibiótico que actúa sobre la pared celular, incluyendo un cultivo control, sin antibiótico. En el cultivo con el antibiótico, además de las bacterias flotando, se aprecia material difuso intercelular micro filamentoso o granular, en continuo movimiento browniano, que corresponde al fondo emitido por las bacterias sensibles (Figura 9). Esta determinación de la sensibilidad o resistencia al antibiótico que actúa sobre la pared celular, es la más rápida y sencilla, en 1 minuto. De todos modos depende de la concentración de células, la capacidad de la célula sensible para soltar material celular, la pureza de la cepa, tiempo de incubación con el antibiótico, dosis del antibiótico, etc. Ocasionalmente puede observarse alguna bacteria Usada, que suelta el nucleoide de ADN, pero la mayoría no se comportan así. La técnica no permite detectar los "persisters" de la propia cepa bacteriana, ni discriminar células sensibles de resistentes, en caso de cultivo mixto o contaminado. Finalmente, la calidad de la imagen no es tan clara y nítida como en el caso de inclusión en microgel, y la preparación no es permanente, por lo que no se puede almacenar y examinar en el futuro, a no ser que se congele.
Cuando se centrifugan las bacterias que crecen en un medio líquido con un antibiótico contra la pared, al que son sensibles, las bacterias se acumulan en el pellet, mientras que los fragmentos de extracelulares ADN permanecen en la fracción sobrenadante. Un alícuota de esta fracción sobrenadante se puede teñir con el fluorocromo, para ser valorada, ya en fresco o fijada o procesada en microgel. De este modo también se obtiene información rápida de la sensibilidad o resistencia al antibiótico. La valoración de este fondo de fragmentos extracelulares de ADN pude ser realizada no solo mediante la microscopía, sino por cualquier otro procedimiento alternativo para detectar ADN, ya sea físico o químico (electroforesis, anticuerpos, espectrofotometría, reacción en cadena de la polimerasa, técnicas de hibridación, microarrays, microfluídica, nanopartículas, quantum dots, etc).
EJEMPLO 8
Evaluación de la naturaleza del fondo microgranular-fibrilar observado en las preparaciones de cultivos de bacterias sensibles a antibióticos contra la pared celular
Para investigar la naturaleza del fondo microgranular-fibrilar observado en preparaciones de cultivos de bacterias sensibles a antibióticos contra la pared celular se procedió a realizar una digestión in situ con enzimas (proteinasa K y DNAasa I), una hibridación in situ fluorescente (FISH) y una tinción de microgel de cultivo diluido.
A) Incubación in situ con proteinasa K, enzima que degrada las proteínas, y con DNAasa F enzima que digiere el ADN
El experimento se realizó con una cepa de E. coli sensible a ampicilina y un cepa de A. baumanii sensible a imipenem. La primera se incubó con ampicilina 32 μg/mL y la segunda con imipenem 0,76 μg/mL, durante 60 minutos, en medio líquido Mueller- Hinton, a 37°C, en agitación. Tras la incubación, cada cultivo con las células se incluyó en microgeles sobre el portaobjetos. En cada portaobjetos se colocó un microgel del cultivo control sin antibiótico, y 2 microgeles del cultivo tratado con antibiótico. El tamaño de cada microgel es el que corresponde a un cubreojetos de 18xl8mm. Estos microgeles, en unos portaobjetos fueron lavados en tampón de proteinasa K (SDS 1%, EDTA 2 mM) y en otros portaobjetos, en tampón de DNAasa I (Tris-HCl 20 mM, pH 8,3, MgCl2 2 mM). En los primeros, uno de los microgeles del cultivo tratado con ampicilina se incubó solamente con tampón de proteinasa K y el otro microgel del cultivo tratado con ampicilina se incubó con 5 μΐ de la propia proteinasa K, 2 mg/mL, en su tampón. En los portaobjetos lavados con tampón de DNAasa I, uno de los microgeles del cultivo tratado con ampicilina se incubó solamente con tampón de DNAasa I y el otro microgel del cultivo tratado con ampicilina se incubó con 5 μΐ de la propia DNAasa I, 2,5 U, en su tampón. Las incubaciones se realizaron durante 30 minutos, a 37°C, en cámara húmeda. Posteriormente los portaobjetos se lavan en agua destilada, se deshidratan en alcoholes crecientes, se secan y se tiñen con SYBR Gold (1 :400).
Resultado:
Los cultivos sin tratar con la ampicilina o el imipenem no mostraron fondo micro granular-fibrilar en la preparación (Figura 10 a). En los cultivos tratados con ampicilina o imipenem, apareció el fondo, el cual se mantuvo en los microgeles incubados exclusivamente con los tampones de las enzimas (Figura 10 b, c y e). Cuando se incubó con proteinasa K, el fondo permaneció inalterado (Figura 10 f), mientras que cuando se incubó con DNAasa I, el fondo desapareció (Figura 10 d). Incrementar la concentración de proteinasa K a 10 mg/mL en el mismo tampón o en agua, tampoco resultó en afectación del fondo, sea en microgel o en extensión en Carnoy. Esto indica que el fondo observado incluye principalmente fragmentos extracelulares de ADN procedentes de las células afectadas por el antibiótico. Este fondo no se aprecia cuando se usan otros tipos de antibióticos, como las quinolonas.
B) Hibridación in situ Fluorescente (FISH) con sonda de ADN genómico total de E. coli Un cultivo de E. coli sensible a ampicilina se incubó con dicho antibiótico, 32 μ§/ιηΙ., durante 60 minutos, en medio líquido Mueller-Hinton, a 37°C, en agitación. 50 μΐ. de cultivo se mezclaron 950 μΐ. con metanol:ácido acético (3: 1) y se extendieron sobre portaobjetos. Tras secar al aire, los portaobjetos se sumergieron 5 minutos en metanol: ácido acético (3 : 1) (líquido de Carnoy) y se dejaron secar. Posteriormente se incubaron en alcoholes de 70%, 90% y 100%, a -20°C, 5 minutos cada uno y se dejaron secar. El ADN presente en los portaobjetos se desnaturalizó, incubándolos en 75% formamida/2XSSC, pH7, a 67°C, 90 segundos. Posteriormente se volvieron a pasar por alcoholes de 70%, 90% y 100%, a -20°C, 5 minutos cada uno y se dejaron secar. En cada uno de ellos, a nivel del área de la extensión, se pipetearon microlitros de sonda de ADN genómico total de E. coli, marcada con biotina (4,3 ng/μΐ en 50% formamida, 2XSSC, 10%) sulfato de dextrano, fosfato sódico 100 mM, pH 7), poniendo un cubreobjetos de 18xl8mm. La sonda se incubó toda la noche en cámara húmeda. La sonda no hibridada se lavó en 50% formamida/2XSSC, pH 7, dos lavados de 5 minutos y luego en 2XSSC, pH 7, dos lavados de 3 minutos cada uno, a 37°C. Para revelar la sonda hibridada, los portaobjetos se incubaron en solución bloqueante de anticuerpos (5% BSA, 4XSSC, 0,1% Tritón X-100) durante 5 minutos a 37°C y luego en estreptavidina-Cy3 (1 :200, en 1% BSA, 4XSSC, 0, 1% Tritón X-100), 30 minutos. Los portaobjetos se contratiñeron con DAPI (1 μg/mL en Vectashield) y se examinaron con microscopio de fluorescencia.
Resultado:
La contratinción con DAPI evidencia que en las preparaciones fijadas en Carnoy, en el fondo se muestran agregados, que pueden englobar células bacterianas cuyos nucleoides se tiñen con DAPI. El colorante del ADN penetra fácilmente debido a la ausencia de pared en dichas células. El DAPI también tiñe, más tenuemente, el fondo agregado (Figura 11 a). Al examinar la señal de hibridación de la sonda, se observa que los nucleoides de las células, desprovistas de pared debido al tratamiento antibiótico, hibridan la sonda de ADN genómico total. El fondo agregado muestra señal intensa de hibridación (Figura 11 b), demostrando, de modo concluyente, que corresponde a ADN bacteriano. C) Tinción de microgel de cultivo diluido de Acinetobacter baumannü sensible a imipenem
Un cultivo de A. baumannü sensible a imipenem se incubó con dicho antibiótico, 0,76 μ§/ιηΙ., durante 60 minutos, en medio líquido Mueller-Hinton, a 37°C, en agitación. Un alícuota de dicho cultivo se diluyó 10 veces y se incluyó en microgel sin usar lisis, se deshidrató en alcoholes crecientes, se secó y se tiñó con SYBR Gold. La dilución permitió observar con mayor detalle el aspecto del fondo microgranular-fibrilar, el cual corresponde a fragmentos de ADN en diferentes niveles de estiramiento, desde el aspecto puntual retraído hasta la apariencia fibrilar extendida (Figura 12).
Resultado:
El fondo microgranular-fibrilar observado en el medio de los cultivos de microorganismos donde el antibiótico contra la pared celular ha sido efectivo corresponde a fragmentos de ADN extracelular, liberado por el microorganismo.
CONCLUSIONES
En su conjunto, los resultados obtenidos en los Ejemplos 1 a 8 ponen de manifiesto la eficacia de los métodos proporcionados por la presente invención para la determinación rápida in situ de la sensibilidad o resistencia bacteriana a antibióticos que actúan a nivel de la pared celular, por ejemplo, inhibiendo la biosíntesis de peptidoglicano. Dichos resultados han sido ratificados en ensayos realizados empleando diferentes microorganismos (e.g., Acinetobacter baumanii, Enterobacter cloacae, Escherichia coli, Klebsiella oxytoca, Klebsiella spp., Morganella morganii, Proteus mirabilis, Salmonella spp., Enterococcus faecalis, Enterococcus faecium, Enterococcus spp., y Staphylococcus aureus) procedentes de aislados clínicos recogidos en el Hospital de A coruña (España) de distintos pacientes y antibióticos inhibidores de la síntesis de peptidoglicano (e.g., ampicilina, ceftazidima, imipenem, penicilina y vancomicina) tal como se menciona en Santiso et al. (Santiso et al, BMC Microbiology 2011, 11:191), cuyo contenido se incorpora por referencia. La técnica para evaluar la integridad de la pared celular proporcionada por esta invención es un procedimiento rápido y simple que permite discriminar entre cepas resistentes y sensibles a antibióticos que actúan a nivel de la pared celular, por ejemplo, interfiriendo en la biosíntesis de peptidoglicano. Esta metodología puede ser útil no solo a nivel clínico sino también para realizar estudios básicos sobre el mecanismo de acción de antibióticos que actúan a nivel de la pared celular.

Claims

REIVINDICACIONES
1. Un método para evaluar la integridad de la pared celular de una bacteria en un cultivo puro en presencia de un antibiótico que actúa a nivel de la pared celular bacteriana que comprende:
i) añadir a dicho cultivo puro de dicha bacteria un antibiótico que actúa a nivel de la pared celular bacteriana, y
ii) determinar la presencia de fragmentos extracelulares de ADN en el medio de cultivo,
en el que la presencia de fragmentos extracelulares de ADN en el medio de cultivo es indicativo de que la integridad de la pared celular de la bacteria ha sido dañada.
2. Método según la reivindicación 1, en el que el método comprende entre las etapas (i) e (ii), inmovilizar una muestra del cultivo de la etapa (i) sobre un portaobjetos.
3. Un método para evaluar la integridad de la pared celular de las bacterias presentes en un cultivo en presencia de un antibiótico que actúa a nivel de la pared celular bacteriana que comprende:
i) añadir a dicho cultivo un antibiótico que actúa a nivel de la pared celular
bacteriana,
ii) añadir solución de lisis al cultivo resultante de la etapa i), en donde dicha
solución de lisis es una solución de lisis específica para aquellas bacterias cuya pared celular ha sido dañada por el antibiótico que actúa a nivel de la pared celular bacteriana, y comprende un tampón con un pH comprendido entre 3 y 11,5, y
iii) determinar la presencia del nucleoide bacteriano,
en el que la presencia del nucleoide bacteriano en el medio es indicativa de que la integridad de la pared celular de las bacterias ha sido dañada.
4. Método según la reivindicación 3, en el que las bacterias presentes en el cultivo pertenecen a la misma especie o a especies distintas.
5. Método según la reivindicación 3 ó 4, en el que la solución de lisis comprende, además, hasta un 3% de un detergente iónico o un detergente no iónico.
6. Método según la reivindicación 5, en el que el detergente iónico es un detergente seleccionado del grupo que consiste en dodecil sulfato de sodio, sulfonato de alquilbenceno, laurilsarcosina, sal hidratada del ácido glicocólico, y sus mezclas.
7. Método según la reivindicación 5, en el que el detergente no iónico se selecciona del grupo que consiste en el toctilfenoxipolietoxietanol, N,N-Bis(3-D-gluconamidopropil) colamida, tricosaetilen gliol dodecileter, N-decanoil-N-metilglutamina, digitonina, dodecanoil-N-metilglucamida, heptanoil-N-metilglutamida, octilfenoxi poli(etileneoxi)etanol ramificado, N-Nonanoil-N-metilglucamina, octilfenoxipolietoxietanol, N-octanoil-N-metilglutamina, solución Span 20 y polisorbato 20.
8. Método según cualquiera de las reivindicaciones 3 a 7, en el que la solución de lisis comprende, además, hasta una concentración 3 M de una sal.
9. Método según la reivindicación 3 ó 4, en el que la solución de lisis comprende (hidroximetil)-l,3-propanediol 0,2M, dodecil sulfato de sodio 0,025%, cloruro sódico
0,5M ó 0,05M, y un pH de 10.
10. Método según la reivindicación 3 ó 4, en el que la solución de lisis comprende (hidroximetil)-l,3-propanediol 0,2M, Tritón X-100 5%, cloruro sódico 1M y pH de 10.
11. Método según la reivindicación 3 ó 4, en el que la solución de lisis comprende sodio fosfato bibásico 0,3M, dodecil sulfato de sodio 2%, ácido etilendiamino tetraacético 0,05M, y un pH de 11,45.
12. Método según cualquiera de las reivindicaciones 3 a 11, en el que el método comprende, además, antes o después de la etapa (ii), inmovilizar una muestra del cultivo sobre un soporte.
13. Método según cualquiera de las reivindicaciones 1 a 12, en el que la observación de la presencia de fragmentos extracelulares de ADN o del nucleoide bacteriano en el medio de cultivo se lleva a cabo mediante tinción.
14. Método según la reivindicación 13, en el que la tinción se lleva a cabo mediante el empleo de uno o más fluorocromos.
15. Método según la reivindicación 14, en el que dichos fluorocromos se seleccionan del grupo que consiste en Hoechst 33342, Hoechst 33258, DAPI, cromomicina A3, mitramicina, bromuro de etidio, naranja de acridina, naranja de tiazoilo, 7-AAD, derivados de cianinas, y las variantes de los fluorocromos TOTO, YOYO, BOBO, POPO, JOJO, LOLO, SYTOX, PO-PRO, BO-PRO, YO-PRO, TO-PRO, JO-PRO, PO- PRO y LO-PRO.
16. Método según cualquiera de las reivindicaciones 1 a 15, en el que el antibiótico que actúa a nivel de la pared celular bacteriana se selecciona del grupo que consiste en un antibiótico β-lactámico, una isoniacida, una etionamida, un etambutol, una cicloserina y un antibiótico glucopéptido.
17. Método según la reivindicación 16, en el que el antibiótico β-lactámico se selecciona del grupo que consiste en penicilinas, cefalosporinas, cefamicinas, carbacefem, carbapenémicos, monobactámicos e inhibidores de las β-lactamasas.
18. Método según la reivindicación 17, en el que los inhibidores de las β-lactamasas se seleccionan del grupo que consiste en ácido clavulánico, sulbactam y tazobactam.
19. Método según la reivindicación 16, en el que el antibiótico glucopéptido es vancomicina o teicoplanina.
20. Un método para determinar la sensibilidad de una bacteria a un antibiótico que actúa a nivel de la pared celular bacteriana que comprende evaluar la integridad de la pared celular de dicha bacteria mediante un método según cualquiera de las reivindicaciones 1 a 19, en el que si la integridad de la pared celular de la bacteria ha sido dañada, entonces la bacteria es sensible al antibiótico.
21. Un método para diseñar una terapia antibiótica personalizada a un individuo que padece una enfermedad bacteriana que comprende
i) aislar la bacteria causante de la enfermedad bacteriana a partir de una muestra procedente de dicho individuo, y
ii) evaluar la integridad de la pared celular de dicha bacteria mediante un método según cualquiera de las reivindicaciones 1 a 19,
en el que si la integridad de la pared celular de dicha bacteria ha sido dañada, entonces dicho individuo es susceptible de recibir una terapia basada en un antibiótico que actúan a nivel de la pared celular.
22. Un método para identificar un compuesto que actúa a nivel de la pared celular bacteriana que comprende:
i) poner en contacto un cultivo de una bacteria sensible a un antibiótico que actúa a nivel de la pared celular bacteriana en presencia del compuesto candidato, y ii) evaluar la integridad de la pared celular de dicha bacteria mediante un método según cualquiera de las reivindicaciones 1 a 19,
en el que si la integridad de la pared celular de dicha bacteria ha sido dañada, entonces el compuesto candidato es un compuesto que actúa a nivel de la pared celular bacteriana.
23. Un método para identificar una bacteria persister o tolerante a un antibiótico que actúa a nivel de la pared celular bacteriana en un cultivo de bacterias sensibles, que comprende evaluar la integridad de la pared celular de las bacterias presentes en dicho cultivo mediante un método según cualquiera de las reivindicaciones 3 a 19, en el que la bacteria cuya integridad de la pared celular no haya sido dañada es identificada como persister o tolerante.
24. Una solución de lisis caracterizada porque afecta solo a las bacterias que presentan la pared bacteriana dañada por acción de un antibiótico, que comprende un tampón y un pH de entre 3 y 11,5.
25. Solución de lisis según la reivindicación 24, en el que dicha solución de lisis comprende, además, hasta un 3% de un detergente iónico o un detergente no iónico
26. Solución de lisis según la reivindicación 25, en el que el detergente iónico es un detergente seleccionado del grupo que consiste en dodecil sulfato de sodio, sulfonato de alquilbenceno, laurilsarcosina, sal hidratada del ácido glicocólico, y sus mezclas.
27. Solución de lisis según cualquiera de las reivindicaciones 25, en el que el detergente no iónico se selecciona del grupo que consiste en el toctilfenoxipolietoxietanol, N,N- Bis(3-D-gluconamidopropil) colamida, Brij(r) 35 P, N-decanoil-N-metilglutamina, digitonina, dodecanoil-N-metilglutamida, heptanoil-N-metilglutamida, octilfenoxi poli(etileneoxi)etanol ramificado, N-Nonanoil-N-metilglutamina, Nonidet P 40, N- octanoil-N-metilglutamina, solución Span 20 y polisorbato 20.
28. Solución de lisis según cualquiera de las reivindicaciones 24 a 27, en el que la solución de lisis comprende, además, hasta una concentración 3 M de una sal.
29. Solución de lisis según la reivindicación 24, en el que la solución de lisis comprende (hidroximetil)-l,3-propanediol 0,2M, dodecil sulfato de sodio 0,025%, cloruro sódico 0,5M ó 0,05M, y un pH de 10.
30. Solución de lisis según la reivindicación 24, en el que la solución de lisis comprende (hidroximetil)-l,3-propanediol 0,2M, Tritón X-100 5%, cloruro sódico 1M, y un pH de 10.
31. Solución de lisis según la reivindicación 24, en el que la solución de lisis comprende sodio fosfato bibásico 0,3M, dodecil sulfato de sodio 2%, ácido etilendiamino tetraacético 0,05M, y un pH de 11,45.
32. Uso de una solución de lisis según cualquiera de las reivindicaciones 24 a 31, para evaluar la integridad de pared celular bacteriana.
33. Un kit que comprende una solución de lisis según cualquiera de las reivindicaciones 24 a 31.
PCT/ES2012/070575 2011-07-26 2012-07-26 Método para evaluar la integridad de la pared celular bacteriana WO2013014324A1 (es)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201280046327.1A CN103946389A (zh) 2011-07-26 2012-07-26 用于评价细菌细胞壁完整性的方法
MX2014000920A MX357457B (es) 2011-07-26 2012-07-26 Metodo para evaluar la integridad de la pared celular bacteriana.
ES12817952T ES2908261T3 (es) 2011-07-26 2012-07-26 Procedimiento para evaluar la integridad de la pared celular bacteriana
US14/234,875 US9976170B2 (en) 2011-07-26 2012-07-26 Method for evaluating bacterial cell wall integrity
EP12817952.0A EP2738262B1 (en) 2011-07-26 2012-07-26 Method for evaluating bacterial cell wall integrity
CA2842865A CA2842865C (en) 2011-07-26 2012-07-26 Method for evaluating bacterial cell wall integrity
BR112014001871-5A BR112014001871B1 (pt) 2011-07-26 2012-07-26 Solução de lise, método para avaliar a integridade da parede celular das bactérias, método para prescrever uma terapia com antibiótico, método para identificar um composto que atua sobre a parede celular bacteriana, uso de uma solução de lise e kit que compreende uma solução de lise
EP22152446.5A EP4050108A1 (en) 2011-07-26 2012-07-26 Lysis solution
HK14110731A HK1197271A1 (en) 2011-07-26 2014-10-27 Method for evaluating bacterial cell wall integrity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201131276 2011-07-26
ES201131276A ES2396820B1 (es) 2011-07-26 2011-07-26 Método para evaluar la integridad de la pared celular bacteriana.

Publications (1)

Publication Number Publication Date
WO2013014324A1 true WO2013014324A1 (es) 2013-01-31

Family

ID=47600556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070575 WO2013014324A1 (es) 2011-07-26 2012-07-26 Método para evaluar la integridad de la pared celular bacteriana

Country Status (9)

Country Link
US (1) US9976170B2 (es)
EP (2) EP4050108A1 (es)
CN (1) CN103946389A (es)
BR (1) BR112014001871B1 (es)
CA (1) CA2842865C (es)
ES (2) ES2396820B1 (es)
HK (1) HK1197271A1 (es)
MX (1) MX357457B (es)
WO (1) WO2013014324A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105358982A (zh) * 2013-07-04 2016-02-24 Abm科技公司 用于快速确定细菌对抗生素的敏感性或耐药性的方法
US10472663B2 (en) 2015-01-21 2019-11-12 Abm Technologies, Llc Procedure for the rapid determination of bacterial susceptibility to antibiotics that inhibit protein synthesis

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3052642A2 (en) 2013-09-30 2016-08-10 AdvanDx, Inc. Antimicrobial compound susceptibility test
US9597319B2 (en) * 2014-04-23 2017-03-21 Case Western Reserve University Compositions and methods of inhibiting metallo-β-lactamases
CN107656056B (zh) * 2017-08-29 2019-05-28 山东师范大学 一种基于细菌增长对细菌快速镜检的方法
GB201801022D0 (en) * 2018-01-22 2018-03-07 Q Linea Ab Single dye concentration determination
FR3103197A1 (fr) * 2019-11-15 2021-05-21 bioMérieux Determination par spectrometrie de masse de la sensibilite ou de la resistance de bacteries a un antibiotique
CN111458313A (zh) * 2020-04-07 2020-07-28 上海交通大学医学院附属仁济医院 基于荧光d型氨基酸代谢标记的抗菌药敏试验检测方法
CN113188876B (zh) * 2021-04-29 2022-10-25 西北农林科技大学 一种枣根尖染色体压片的制备方法
CN113106082B (zh) * 2021-05-27 2022-11-04 云南师范大学 动物粪便宏基因组来源的丙氨酸消旋酶及其制备和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2128737A (en) * 1982-10-07 1984-05-02 Beecham Group Plc Antiobiotic susceptibility test material
EP0135023A2 (de) 1983-08-02 1985-03-27 MERCK PATENT GmbH Verfahren zur Empfindlichkeitsprüfung von Bakterien
WO1992019763A1 (en) 1991-05-06 1992-11-12 Baxter Diagnostics Inc. Rapid inducible beta-lactamase screen test
WO2002055015A2 (en) * 2000-09-28 2002-07-18 Essential Therapeutics, Inc. Rapid antibiotic susceptibility test
WO2003048380A1 (en) * 2001-12-05 2003-06-12 Astrazeneca Ab Method of screening forpotential anti-bacterial agents
US20040014066A1 (en) 2000-06-01 2004-01-22 Hee-Jeon Hong Screening system
WO2008089280A2 (en) * 2007-01-16 2008-07-24 Applied Biosystems, Llc Selective lysis of sperm cells
US20090142798A1 (en) * 2007-12-04 2009-06-04 Samsung Electronics Co., Ltd. Method of selectively lysing non-viable cells in cell population in sample
EP2333105A1 (en) * 2009-12-08 2011-06-15 Koninklijke Philips Electronics N.V. Selective lysis of cells
US20110151455A1 (en) * 2006-06-23 2011-06-23 University Of South Florida Fish-ribosyn for antibiotic susceptibility testing

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3636849B2 (ja) * 1996-11-14 2005-04-06 キッコーマン株式会社 微生物の薬剤感受性試験法、同試験用キット、微生物の最少発育阻止濃度測定法並びに同測定用キット
CN1934272A (zh) * 2004-01-26 2007-03-21 马德里自治大学 动物精子中dna片段测定的方法
ES2329637B1 (es) * 2006-11-10 2010-09-22 Universidad Autonoma De Madrid Procedimiento para la determinacion de la fragmentacion del adn en microorganismos.

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2128737A (en) * 1982-10-07 1984-05-02 Beecham Group Plc Antiobiotic susceptibility test material
EP0135023A2 (de) 1983-08-02 1985-03-27 MERCK PATENT GmbH Verfahren zur Empfindlichkeitsprüfung von Bakterien
WO1992019763A1 (en) 1991-05-06 1992-11-12 Baxter Diagnostics Inc. Rapid inducible beta-lactamase screen test
US20040014066A1 (en) 2000-06-01 2004-01-22 Hee-Jeon Hong Screening system
WO2002055015A2 (en) * 2000-09-28 2002-07-18 Essential Therapeutics, Inc. Rapid antibiotic susceptibility test
WO2003048380A1 (en) * 2001-12-05 2003-06-12 Astrazeneca Ab Method of screening forpotential anti-bacterial agents
US20110151455A1 (en) * 2006-06-23 2011-06-23 University Of South Florida Fish-ribosyn for antibiotic susceptibility testing
WO2008089280A2 (en) * 2007-01-16 2008-07-24 Applied Biosystems, Llc Selective lysis of sperm cells
US20090142798A1 (en) * 2007-12-04 2009-06-04 Samsung Electronics Co., Ltd. Method of selectively lysing non-viable cells in cell population in sample
EP2333105A1 (en) * 2009-12-08 2011-06-15 Koninklijke Philips Electronics N.V. Selective lysis of cells

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
"Microbiologia Sanitaria y clinica", 1997, EDITORIAL SINTESIS
BAUER A W ET AL., AM. J. CLIN. PATHOL., vol. 45, 1966, pages 493 - 496
FERNANDEZ, J.L. ET AL.: "DNA fragmentation in microorganisms assessed in situ", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 74, no. 19, October 2008 (2008-10-01), pages 5925 - 5933, XP002547754 *
HOETTGES KF; DALE JW; HUGHESMP: "Rapid determination of antibiotic resistance in E. coli using dielectrophoresis", PHYS MED BIOL, vol. 52, 2007, pages 6001 - 6009, XP020113099, DOI: doi:10.1088/0031-9155/52/19/019
KOHANSKI, MA; DWYER DJ; HAYETE B; LAWRENCE CA; COLLINS JJ: "A common mechanism of cellular death induced by bactericidal antibiotics", CELL, vol. 130, 2007, pages 797 - 810, XP055001030, DOI: doi:10.1016/j.cell.2007.06.049
LEWIS K: "Persister cells, dormancy and infectious disease", NAT REV MICROBIOL, vol. 5, 2007, pages 48 - 56, XP009164216, DOI: doi:10.1038/nrmicro1557
ROOSTALU J; JOERS A; LUIDALEPP H; KALDALU N; TENSON T: "Cell division in Escherichia coli cultures monitored at single cell resolution", BMC MICROBIOL, vol. 8, 2008, pages 68, XP021033370
SANTISO ET AL., BMC MICROBIOLOGY, vol. 11, 2011, pages 191
SANTISO, R. ET AL.: "A rapid in situ procedure for determination of bacterial susceptibility or resistance to antibiotics that inhibit peptidoglycan biosynthesis", BMC MICROBIOLOGY, vol. 11, August 2011 (2011-08-01), pages 191, XP002686563 *
See also references of EP2738262A4
SINGH, N.P.: "A simple method for accurate estimation of apoptotic cells", EXPERIMENTAL CELL RESEARCH, vol. 256, no. 1, 2000, pages 328 - 337, XP009123246 *
TAMAYO M; SANTISO R; GOSALVEZ J; BOU G; FERNANDEZ JL: "Rapid assessment of the effect of ciprofloxacin on chromosomal DNA from Escherichia coli using an in situ DNA fragmentation assay", BMC MICROBIOLOGY, vol. 9, 2009, pages 69, XP021048240, DOI: doi:10.1186/1471-2180-9-69

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105358982A (zh) * 2013-07-04 2016-02-24 Abm科技公司 用于快速确定细菌对抗生素的敏感性或耐药性的方法
US11319574B2 (en) 2013-07-04 2022-05-03 Abm Technologies, Llc Method for the rapid determination of susceptibility or resistance of bacteria to antibiotics
US10472663B2 (en) 2015-01-21 2019-11-12 Abm Technologies, Llc Procedure for the rapid determination of bacterial susceptibility to antibiotics that inhibit protein synthesis

Also Published As

Publication number Publication date
EP2738262B1 (en) 2022-02-09
EP2738262A1 (en) 2014-06-04
HK1197271A1 (en) 2015-01-09
ES2908261T3 (es) 2022-04-28
BR112014001871B1 (pt) 2021-03-30
EP4050108A1 (en) 2022-08-31
CA2842865C (en) 2020-03-10
US9976170B2 (en) 2018-05-22
MX357457B (es) 2018-07-11
US20140206573A1 (en) 2014-07-24
ES2396820B1 (es) 2014-01-31
MX2014000920A (es) 2014-05-12
CA2842865A1 (en) 2013-01-31
EP2738262A4 (en) 2015-04-08
ES2396820A1 (es) 2013-02-27
BR112014001871A2 (pt) 2017-02-21
CN103946389A (zh) 2014-07-23

Similar Documents

Publication Publication Date Title
ES2908261T3 (es) Procedimiento para evaluar la integridad de la pared celular bacteriana
ES2372538T3 (es) Procedimiento para mejorar la permeabilidad celular a partículas foráneas.
ES2344873T3 (es) Procedimiento de hibridacion in situ para detectar un acido nucleico diana.
EP2821499B1 (en) Method for the rapid determination of susceptibility or resistance of bacteria to antibiotics
Pernthaler et al. Fluorescence in situ hybridization for the identification of environmental microbes
KR101315007B1 (ko) 세포내 효소의 방출 전 세포외 효소를 불활성화함으로써시료 내 세포를 구별하는 방법
CN108546736A (zh) 用于检测和鉴定生物样品中的核酸序列的组合物和方法
US20210032674A1 (en) Method for determining microorganism concentration
US20140024031A1 (en) Method For Determining DNA Fragmentation In Microorganisms
US20200299748A1 (en) Method for determining the concentration of intact microorganisms in a sample
JPH10503655A (ja) ミコバクテリアの検出
Ford et al. Switching and torque generation in swarming E. coli
JP5753778B2 (ja) 蠕虫卵、特に鞭虫卵の生物学的活性を測定する方法
EP3052642A2 (en) Antimicrobial compound susceptibility test
ES2966701T3 (es) Captura de microorganismos a partir de una solución que contiene antimicrobianos
Cooper Jr et al. Assays for determining cell differentiation in biomaterials
JP5522665B2 (ja) ヌクレオチドの抽出方法
RU2518249C1 (ru) Способ определения неспецифической устойчивости патогенных микроогранизмов к антибиотикам на основании измерения каталитической активности фосфодиэстераз, расщепляющих циклический дигуанозинмонофосфат
US20160138090A1 (en) Determination of intracellular bacteria
JP2022554358A (ja) 微生物検出プラットフォーム
Johan TECHNICAL FIELD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817952

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012817952

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2842865

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/000920

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 14234875

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014001871

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014001871

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140124