WO2013013419A1 - 一种在绝缘基底上制备石墨烯纳米带的方法 - Google Patents

一种在绝缘基底上制备石墨烯纳米带的方法 Download PDF

Info

Publication number
WO2013013419A1
WO2013013419A1 PCT/CN2011/078070 CN2011078070W WO2013013419A1 WO 2013013419 A1 WO2013013419 A1 WO 2013013419A1 CN 2011078070 W CN2011078070 W CN 2011078070W WO 2013013419 A1 WO2013013419 A1 WO 2013013419A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
insulating substrate
preparing
graphene nanoribbon
substrate according
Prior art date
Application number
PCT/CN2011/078070
Other languages
English (en)
French (fr)
Inventor
唐述杰
丁古巧
谢晓明
陈吉
王陈
江绵恒
Original Assignee
中国科学院上海微系统与信息技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海微系统与信息技术研究所 filed Critical 中国科学院上海微系统与信息技术研究所
Priority to US13/580,240 priority Critical patent/US9328413B2/en
Publication of WO2013013419A1 publication Critical patent/WO2013013419A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/06Graphene nanoribbons
    • C01B2204/065Graphene nanoribbons characterized by their width or by their aspect ratio

Definitions

  • the present invention relates to a method of preparing graphene nanoribbons on an insulating substrate, and more particularly to a method of growing graphene nanoribbons using an insulating substrate having a step of a single atomic layer thickness as a template. It belongs to the field of low-dimensional materials and new materials.
  • the temperature required for SiC pyrolysis is too high, incompatible with current semiconductor processes, and the cost of the SiC substrate itself is high.
  • CVD preparation of graphene is compatible with current semiconductor processes and is low in cost.
  • the preparation of graphene on a transition metal requires transfer of the prepared graphene to an insulating substrate, and a wet chemical process is used in the transfer process, and introduction of defects is unavoidable, which greatly reduces the electron mobility of graphene.
  • the insulating layer of the graphene photovoltaic device currently studied is mostly Si0 2 /Si.
  • the Si0 2 /Si substrate is not a suitable or preferred substrate for graphene electronic devices.
  • hBN is an isoelectric body of graphene and has the same layered structure as graphene. There is no dangling bond on the (0001) plane, and the lattice mismatch with graphene is only 1.7%.
  • articles such as the article published by R. G Decker et al. on Nano Letter, Local Electronic Properties of Graphene on a BN Substrate via Scanning Tunneling Microscopy, and Dean, CR et al. published in Nature Nanotechnology. Boron nitride substrates for High-quality graphene electronics has transferred the graphene mechanically to the hBN substrate.
  • the hBN substrate is also realized by the mechanical stripping block hBN.
  • the MBE method is a method of growing graphene on the surface of mica, but the obtained graphene is inferior in quality.
  • the current direct growth of graphene on hBN is far from meeting the requirements for chip fabrication.
  • the 2010 Nature Chemistry article Etching and narrowing of graphene from the edges reported using a gas phase chemical gel to reduce the graphene width to below 5 nm and a switching ratio of up to 10 4 at room temperature.
  • the main method for preparing graphene nanoribbons is a chemical method for unlocking carbon nanotubes proposed by US20100105834A1 (Methods for Preparation of Graphene Nanoribbons from Carbon Nanotubes and Compositions, Thin Films and Devices Derived Therefrom), and the method for preparing graphene nanoribbons Defects are introduced, which have a great influence on the electron mobility of graphene.
  • US7887888B1 (Methods and Systems for Farbrication of Graphene Nanoribbon) proposes a method for depositing metal nanobelts on graphite and preparing graphene nanoribbons by electrostatic deposition.
  • the deposition of metal destroys the lattice structure of graphene and is affected by the metal nanoribbon limit in size, while there is metal residue on the graphene nanoribbon.
  • it has not been found that high-quality graphene nanoribbons are grown on an insulating substrate satisfying the requirements of microelectronics by directly using CVD or other deposition means.
  • the hBN substrate can maintain the high mobility of graphene, directly prepare graphene on hBN substrate and similar insulators with atomic level cleavage surface, and cut graphene size to realize controllable graphene nanoribbons. , open its band gap, which is an important basis for obtaining high performance graphene optoelectronic devices.
  • the present invention is directed to the insufficiency of directly growing graphene on a hBN substrate and other substrates having an atomic level cleavage surface and the inability to directly prepare graphene nanoribbons, and proposes an atomic layer step.
  • the method of preparing high-quality graphene nanoribbons by step flow on the insulating substrate can meet the needs of preparing transistors and other graphene optoelectronic devices on microelectronics.
  • the first step is to prepare a monoatomic layer step on an insulating substrate;
  • the second step is to use low pressure chemical vapor deposition (LPCVD), plasma assisted chemical vapor deposition (PECVD), pulsed laser
  • LPCVD low pressure chemical vapor deposition
  • PECVD plasma assisted chemical vapor deposition
  • PLD pulsed laser
  • a method such as deposition (PLD) grows graphene nanoribbons in a stepped manner on an insulating substrate.
  • the present invention adopts the following technical solutions: A method for preparing graphene nanoribbons on an insulating substrate, comprising the following steps: 1) preparing a monoatomic layer step on an insulating substrate; 2) Directly growing graphene nanoribbons on the insulating substrate having a single atomic layer step obtained in the step 1).
  • the single atomic layer step is a step having a single step height of one atomic layer thickness or a groove having a depth of one atomic layer thickness.
  • the width of the step is 50 ⁇ 20 ⁇ , and the optimum step pitch is 500 ⁇ 5 ⁇ ; the width of the trench is from 1 nm to 500 nm.
  • the insulating substrate refers to a base material capable of dissociating an atomic-level flat cleavage surface, and is selected from the group consisting of hexagonal boron nitride, gallium nitride, barium titanate, aluminum oxide, and quartz. In the step 1), the method of preparing the monoatomic layer steps for different insulating substrates is different.
  • the preparation of a monoatomic layer on the alumina substrate is carried out by the oblique high temperature processing method involved in the article on Surface Science published by Kurnosikov et al., About anisotropy of atomic-scale height step on (0001) sapphire surface. Further, preparing the monoatomic layer step on the hexagonal boron nitride substrate adopts the following method: cleaving the surface of the hexagonal boron nitride substrate to obtain a fresh atomic surface; and then placing it in a mixed gas of hydrogen and argon Annealing is performed to obtain a hexagonal boron nitride substrate having a single atomic layer step.
  • the hexagonal boron nitride substrate includes, but is not limited to, a bulk hexagonal boron nitride single crystal, a single crystal hexagonal boron nitride thin plate obtained by a mechanical lift-off method, and a hexagonal boron nitride substrate prepared by a chemical vapor deposition method.
  • the hexagonal boron nitride substrate cleavage is to remove the uppermost layer of hexagonal boron nitride by mechanical peeling, and at the same time take away defects such as surface adsorbate and surface mechanical scratches, expose the surface of fresh hBN atoms, and have few surface defects. .
  • the volume ratio of hydrogen to argon is 1:1 to 1:10, preferably 1:2 to 1:9.
  • the annealing temperature of the high temperature annealing treatment is 1000 ° C to 1200 ° C, and the annealing time is 10 min to 300 min.
  • the annealing temperature can regulate the etching rate, and the annealing time can regulate the distribution of the single atomic step.
  • the step 2) using a low pressure chemical vapor deposition (LPCVD), a plasma assisted chemical vapor deposition (PECVD) or a pulsed laser deposition (PLD) method, a step flow on an insulating substrate having a single atomic layer step Growing graphene nanoribbons.
  • LPCVD low pressure chemical vapor deposition
  • PECVD plasma assisted chemical vapor deposition
  • PLD pulsed laser deposition
  • the growth of graphene in a step-flow manner refers to a growth mode in which atoms are continuously absorbed at the edge of each step and the steps are continuously moved forward.
  • the carbon source required for growing the graphene nanoribbon is selected from the group consisting of a gaseous carbon source, a liquid carbon source or a solid carbon source;
  • the gaseous carbon source is selected from the group consisting of gases such as methane, ethylene and acetylene;
  • the source is selected from a liquid such as benzene;
  • the solid carbon source is selected from the group consisting of solids such as polymethyl methacrylate (PMMA), glucose, and graphite.
  • Graphene nanoribbons can be prepared by LPCVD, PECVD or PLD methods depending on the carbon source and the insulating substrate.
  • the growth temperature of the grown graphene nanoribbon is 500 ° C to 1300 ° C, and may be selected according to the width of the nanobelts obtained, preferably 900 ° C to 1200 ° C.
  • the growth time of the grown graphene nanoribbon is 5 min to 5 h, preferably 20 min to 3 h.
  • the graphene nanoribbon when the graphene nanoribbon is directly grown on an insulating substrate having a single atomic layer step, it can be used on the insulating substrate (boron nitride, gallium nitride, aluminum oxide, barium titanate, etc.) used.
  • the graphene nanoribbons are directly grown by any of the deposition methods (PLD, CVD, PECVD, etc.).
  • the present invention exemplifies the following three preferred embodiments:
  • the graphene nanobelt is grown by low pressure chemical vapor deposition; specifically comprising the following steps: in an Ar atmosphere, a step having a single atom
  • the hexagonal boron nitride substrate is heated at 900 ⁇ 1200°C for 5-15min; then the gaseous carbon source is introduced, and the pressure is maintained at l ⁇ 5Pa, and the growth is 60 ⁇ 180min. After the growth is finished, the gaseous carbon source is cut off, and the Ar is continued.
  • Protective gas naturally cooled.
  • the gaseous carbon source is selected from the group consisting of gases such as methane, ethylene and acetylene.
  • the graphene nanoribbon is grown by pulsed laser deposition; specifically comprising the following steps: loading the prepared barium titanate substrate having a single atomic step into a pulsed laser deposition (PLD) growth chamber chamber, a solid carbon target is a carbon source for growth, the growth pressure is 10_ 5 ⁇ 10_ 4 Pa, a frequency of the laser 1 ⁇ 10 Hz, the substrate temperature is 600 ⁇ 850 ° C, the target-substrate distance is 50 ⁇ 70cm; a laser pulse The number is 10 ⁇ 500.
  • the solid carbon source is selected from the group consisting of solids such as polymethyl methacrylate, glucose, and graphite.
  • the graphene nanobelt is grown by plasma-assisted chemical vapor deposition (PECVD); specifically comprising the steps of: etching the etched alumina substrate having a single atomic step into PECVD growth In a tube furnace, keep it at 850 ⁇ 950 °C for 5 ⁇ 15min in Ar atmosphere; a mixed gas of C 2 H 2 and H 2 while maintaining the pressure at 100 to 500 Pa, growing for 60 to 180 min, cutting off the mixed gas of C 2 H 2 and H 2 after the growth, and continuing to use Ar as a shielding gas, naturally cool down.
  • the volume ratio of C 2 H 2 and 3 ⁇ 4 is 1:1 to 1:5.
  • the present invention still further discloses the graphene nanoribbon obtained by the above method.
  • the graphene nanoribbon obtained by the above method provided by the present invention has a characteristic width of from 1 nm to 500 nm.
  • the characteristic length is related to the length of the step of the insulating substrate atomic layer, and the obtained typical nanobelt length is 100 ⁇ to 100 ⁇ .
  • the present invention controls a graphene deposition process based on a substrate having a step of a single atomic layer thickness to grow graphene nanoribbons in the form of step flow.
  • the nucleation work required for nucleation is smaller than the nucleation work on the plane, and the single atomic step on the insulating substrate can become the nucleation zone of graphene growth. .
  • the difference in nucleation energy between the edge of the step and the plane by controlling the temperature, the pressure and the supersaturation of the activated carbon atoms during the growth process, it is possible to control the nucleation only at the atomic step, thereby achieving the growth of graphene nanoribbons. effect.
  • the invention utilizes a preparation process compatible with a semiconductor process such as LPCVD, PECVD, PLD, etc., realizes graphene nanoribbon directly on an insulating substrate, avoids transfer of graphene, and atomic level flat substrate ensures the prepared graphene performance.
  • the prepared graphene nanoribbons can be directly used to prepare graphene electronic devices.
  • FIG. 1 is an atomic force micrograph of hBN after mechanical peeling in Example 1.
  • FIG. 2 is an atomic force microscope photograph of a single atomic layer step after hBN etching in Example 1.
  • FIG. 3 is an atomic force of surface after hBN etching in Example 2.
  • FIG. 4 is a photomicrograph of the surface of hBN after etching in Example 3;
  • FIG. 5 is an atomic force micrograph of the hBN having a single atomic layer step after etching in Example 4;
  • FIG. 6 is a graph of the lower edge graphite of Example 4 hBN step.
  • FIG. 7 is a Raman spectrum of the graphene nanoribbon of Example 4;
  • FIG. 8 is an atomic force microscope photograph of the graphene nanoribbon along the lower edge of the embodiment 5 hBN; 9 is a Raman spectrum of the graphene nanoribbon of Example 5.
  • FIG. 10 is a topographic phase photograph of the graphene nanoribbon atomic force microscope of Example 6.
  • FIG. 11 is a photograph of the friction phase of the graphene nanobelt atomic force microscope of Example 6.
  • Example 1 Preparation of a hexagonal boron nitride substrate having a single atomic layer step.
  • the height analysis shows that the height difference of the steps is 0.34 nm and 0.33 nm, which is a single BN. Atomic layer steps, the spacing between the steps is about 500nm.
  • Example 2 Preparation of hexagonal boron nitride substrate having a single atomic layer step
  • First step The hBN surface layer was removed by mechanical peeling using a single crystal hBN bulk as a substrate.
  • the second step: the substrate is placed in a tube furnace, and a 300 sccm hydrogen-argon mixture (H 2 : Ar 1:6, volume ratio) is introduced, and the temperature is raised to 1100 ° C at a heating rate of 20 ° C / min. The temperature was kept at 50 min, and then cooled with the furnace, thus obtaining a step of the height of the monoatomic layer, as shown in FIG.
  • the spacing between the steps is 1-5 microns.
  • Example 3 Preparation of hexagonal boron nitride substrate having a single atomic layer step
  • First step The hBN grown by the CVD method was used as a substrate, and the surface layer of hBN was removed by mechanical peeling.
  • the process of preparing hBN by CVD method is as follows: borax is used as BN source, argon is used as carrier gas, The hBN film was obtained by growing at 1000 ° C for 0.5 hour under a pressure of 5 Pa, and transferring the hBN film onto the SiO 2 /Si substrate.
  • the step height analysis result is 0.35 nm, which is a single BN atomic step, and the pitch between the steps is 2-5 microns.
  • the heating rate is raised to 1200 ° C, the temperature is kept for 10 min, and finally cooled with the furnace, thus obtaining a step of the height of the monoatomic layer as shown in FIG. Step 3:
  • the hBN/SiO 2 substrate with atomic steps was raised to 1200 ° C at a rate of 10 volts in an Ar atmosphere, held for 10 min, and CH 4 gas was introduced at a rate of 5 sccm while maintaining the pressure using a vacuum pump.
  • the growth was carried out for 180 min, and after the completion of the growth, the CH 4 gas was cut off, Ar was introduced as a shielding gas, and it was naturally cooled.
  • graphene nanoribbons having a width of 200 nm were grown.
  • Fig. 6 Atomic force microscopy chart and Fig. 7 Raman spectroscopy show that the graphene nanoribbon has a width of 200 nm and the graphene layer number is one atomic layer.
  • Example 5 Preparation of graphene nanoribbons having a width of 40 nm on the basis of hexagonal boron nitride.
  • First step Single crystal hBN was used as a substrate.
  • Step 3 Place the hBN etched with high temperature hydrogen into a CVD growth tube furnace.
  • Example 6 A graphene nanoribbon having a width of 40 nm was prepared on the basis of gallium nitride.
  • First step Using a gallium nitride substrate, a trench having a thickness of a single atomic layer is prepared by a plasma etching method. The width of the trench is from 1 nm to 500 nm.
  • the second step the etched gallium nitride substrate is placed in a CVD growth tube furnace. The temperature was raised to 900 ° C at a rate of 10 volts in Ar atmosphere, held for 10 min, and C 2 H 2 gas was introduced at a speed of I sccm while maintaining the pressure at 1.2 Pa using a vacuum pump, growing for 60 min, and cutting C after the growth.
  • FIGS. 10 and 11 show the atomic force microscope topography and frictional force diagram, respectively, showing that the nanobelt has a width of 40 nm and the graphene has a thickness of one layer.
  • Example 7 Preparation of graphene nanoribbons having a width of 100 nm on the basis of barium titanate.
  • First step A step of monoatomic layer thickness was prepared by a method of chemical directional etching using barium titanate as a substrate.
  • Step two the prepared strontium titanate PLD growth substrate loading chamber to the graphite target as a carbon source for growth, pressure 10_ 4 Pa, the laser frequency ⁇ , a substrate temperature of 800 ° C. Growing 50 pulses. Through the above process, graphene nanoribbons having a width of 100 nm were grown.
  • Example 8 Preparation of Graphene Nanoribbons with a Width of 50 nm Using Alumina as a Substrate.
  • First Step Using a Surface Polished Alumina as a Substrate, Using a Bevel Etching Method to Prepare a Monoatomic Layer Thickness Stairs.
  • Step 2 Place the etched alumina substrate into a PECVD growth tube furnace. The temperature was raised to 900 ° C at a rate of 10 ° C/min in an Ar atmosphere, held for 10 min, and a C 2 H 2 /H 2 mixture was introduced at a rate of 5 sccm (volume ratio of 1:1) while using a vacuum pump. The pressure was maintained at 100 Pa, and the growth was continued for 60 minutes. After the completion of the growth, the C 2 H 2 gas was cut off, Ar was introduced as a shielding gas, and it was naturally cooled. Through the above process, graphene nanoribbons having a width of 40 nm were grown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

提供一种在绝缘基底上制备石墨烯纳米带的方法,包括如下步骤:1)在绝缘基底上制备单原子层台阶;2)在步骤1)所获得的具有单原子层台阶的绝缘基底上直接生长石墨烯纳米带。还提供一种由该方法获得的石墨烯纳米带。该方法利用石墨烯在原子台阶和平整解理面上成核功能不同的特点,通过调节温度、压强、活性碳原子饱和度等条件使石墨烯仅沿台阶边缘生长,生长成为尺寸可调的石墨烯纳米带。

Description

一种在绝缘基底上制备石墨烯纳米带的方法
技术领域 本发明涉及一种在绝缘基底上制备石墨烯纳米带的方法,具体的讲是涉及一种 以具有单原子层厚度台阶的绝缘基底为模板, 生长石墨烯纳米带的方法。属于低维 材料和新材料领域。
背景技术 受物理原理的制约,硅材料的加工极限一般认为是 10纳米线宽, 小于 10纳米 后不太可能生产出性能稳定、集成度更高的产品。寻找硅的替代材料作为下一代光 电器件沟道层成为延续摩尔定律, 获得更高性能芯片的当务之急。 石墨烯自 2004 年发现以来, 由于其独特的性质, 包括最薄、 最牢固、 高热导率、 高硬度、 高电子 迁移率、 零有效质量、 室温弹道输运、 耐受电流密度比铜高 6个数量级等, 在下一 代光电器件, 透明导电膜, 传感器等领域显示了巨大的应用潜力。尤其是其电子迁 移率在常温下超过 15000 cm2/Vs, 被期待替代硅用来发展出更薄、 导电速度更快的 新一代电子元件或光电器件。 目前发展的常规的石墨烯制备方法有: 微机械剥离、 热解碳化硅(SiC)、在过渡金属及重金属上的化学气相沉积(CVD) 以及化学插层 氧化还原法。适合石墨烯光电器件制备的方法有 SiC热解和过渡金属上 CVD方法。 SiC热解所需的温度过高, 与目前的半导体工艺不兼容, 且 SiC基底本身成本高。 新型电子器件的应用中, CVD制备石墨烯与目前的半导体工艺兼容, 并且成本低。 但目前在过渡金属上制备石墨烯, 需要将制备的石墨烯转移到绝缘基底,转移 过程中使用了湿法化学过程,缺陷引入不可避免,这大大降低了石墨烯电子迁移率。 另外, 当前研究的石墨烯光电器件的绝缘层大多为 Si02/Si。 Si02/Si基底并非石墨 烯电子器件的合适的或首选的基底。 J. H. Chen 等 2008 年发表在 Nature Nanotechnology 上的文章 Intrinsic and Extrinsic Performance Limits of Graphene Devices on Si02指出由于 Si02 表面电荷聚集引起的石墨烯局域载流子掺杂, 以及 Si02-石墨烯界面上声子对于石墨烯载流子的散射作用, 使得石墨烯电子迁移率上 限降为 40000 cm2/Vs, 这大大降低了石墨烯的应用。 如何避免转移并克服 Si02/Si基底的不足是石墨烯光电器件的关键之一。 六角 氮化硼(hBN)应该是最具有潜力的一种石墨烯用绝缘基底。 hBN是石墨烯的等电 子体, 具有与石墨烯相同的层状结构, 在 (0001 )面上不存在悬挂键, 与石墨烯的 晶格失配仅为 1.7%。目前已经有多篇文献,如 R. G Decker等人发表在 Nano Letter 上的文章 Local Electronic Properties of Graphene on a BN Substrate via Scanning Tunneling Microscopy以及 Dean, C. R.等发表在 Nature Nanotechnology上的文章 Boron nitride substrates for high-quality graphene electronics 艮道了将石墨烯机械转 移到 hBN基底, hBN基底也是利用机械剥离块体 hBN实现, 实验结果表明电子迁 移率比 Si02上提高了一个数量级。 类似于六角氮化硼, 具有原子级平整度解理面 的氮化镓, 氧化铝, 钛酸锶, 石英等, 都有可能成为保持石墨烯高迁移率的理想基 底。 除了对于转移的石墨烯, hBN基底优于 Si02/Si基底之外, 已有报道表明高质 量的石墨烯有望直接生长在 hBN上, 这就避免了目前普遍使用的转移工艺过程。 我们研究小组于 2011年在 Carbon上的文章 Direct growth of few layer graphene on hexagonal boron nitride by chemical vapor deposition报道了一禾中以 hBN 为基底 CVD 方法制备石墨烯的方法, 实现了在 hBN上石墨烯的直接生长, 但是该方法制备的 石墨烯完全包覆 hBN基底, 同时厚度的可控性不足, 实现均一的单层及双层石墨 烯存在困难。 G. Lippert等的文章 Direct graphene growth on insulator提出了一种
MBE方法在云母表面生长石墨烯的方法,但是得到的石墨烯质量较差。目前在 hBN 上直接生长石墨烯还远远达不到制备芯片的要求。 石墨烯纳米带, 作为石墨烯的一种结构, 破坏了石墨烯的平移对称性, 打开了 石墨烯的带隙,这是石墨烯电子器件应用的重要突破。 2010年 Nature Chemistry文 章 Etching and narrowing of graphene from the edges报道使用气相化学亥 lj烛将石墨 烯宽度降到 5nm以下, 在室温获得高达 104的开关比。 目前制备石墨烯纳米带的主 要方法有 US20100105834A1 (Methods for Preparation of Graphene Nanoribbons from Carbon Nanotubes and Compositions, Thin Films and Devices Derived Therefrom) 提出 的化学方法解锁碳纳米管, 该方法在制备石墨烯纳米带的过程中引入了缺陷, 会对 石墨烯的电子迁移率有很大的影响。 US20090226361A1 (CVD-Grown Graphite Nanoribbon), US20100047154 Al (Method for Preparing Graphene Ribbons) 及 US20110097258A1 (Method For Preparing Graphene Ribbons Where Stmctore is Controlled) 提出了 CVD 方法制备无基底的石墨烯纳米带前驱体-螺旋石墨烯纳米 带和杂乱堆叠的石墨带, 并施加能量使之分散为单分散的石墨烯纳米带的方法, 这 两种方法制备的石墨烯纳米带特征尺寸及厚度具有一定的分布, 很难精确控制, 作 为电子材料应用还需要转移到合适基底。 US7887888B1 (Methods and Systems for Farbrication of Graphene Nanoribbon) 提出了一种在石墨上蒸镀金属纳米带并用静 电沉积的办法制备石墨烯纳米带的方法。金属的沉积会破坏石墨烯的晶格结构, 且 在尺寸上受金属纳米带极限的影响,同时在石墨烯纳米带上会有金属的残留。目前, 还未见直接利用 CVD或其他沉积手段在满足微电子需求的绝缘基底上生长出高质 量的石墨烯纳米带。 综上可见, hBN基底可以保持石墨烯的高迁移率, 在 hBN基底以及类似具有 原子级平整度解理面的绝缘体上直接制备石墨烯, 并剪裁石墨烯尺寸, 实现可控的 石墨烯纳米带, 打开其带隙, 这是获得高性能石墨烯光电器件的重要基础。
发明内容 本发明针对现有技术中 hBN基底及其他具有原子级平整度解理面的基底上直 接生长石墨烯的不足以及不能直接制备石墨烯纳米带的不足,提出了一种在具有原 子层台阶的绝缘基底上以台阶流动的方式可控制备高质量石墨烯纳米带的方法,以 满足微电子上制备晶体管以及其他石墨烯光电器件的需要。 本发明是根据以下技术方案实现的:第一步,在绝缘基底上制备单原子层台阶; 第二步, 使用低压化学气相沉积 (LPCVD ) , 等离子体辅助的化学气相沉积 (PECVD), 脉冲激光沉积 (PLD) 等方法在绝缘基底上以台阶流动的方式生长石 墨烯纳米带。 本发明采用以下技术方案: 一种在绝缘基底上制备石墨烯纳米带的方法, 包括如下步骤: 1 ) 在绝缘基底上制备单原子层台阶; 2) 在步骤 1 ) 所获得的具有单原子层台阶的绝缘基底上直接生长石墨烯纳米 带。 所述的单原子层台阶是单个台阶高度为一个原子层厚度的台阶,或者是深度为 一个原子层厚度的沟槽。 较佳的, 所述台阶的宽度为 50ηιη〜20μιη, 最佳的台阶间 距为 500ηιη〜5μιη; 所述沟槽的宽度在 lnm〜500nm。 所述的绝缘基底是指能够解离出原子级平整度解理面的基底材料,选自六角氮 化硼、 氮化镓、 钛酸锶、 氧化铝和石英等。 所述步骤 1 ) 中, 针对不同的绝缘基底制备单原子层台阶的方法不同。 例如: 在所述六角氮化硼基底上制备单原子层台阶,通过将六角氮化硼在氢氩混合气中退 火实现; 在所述钛酸锶基底上制备单原子层台阶, 通过 KAWASAKI, M等 1994年 发表在 science上 ATOMIC CONTROL OF THE SRTI03 CRYSTAL-SURFACE 一文 中提供的化学定向腐蚀方法实现; 在所述石英或氮化镓基底上制备单原子层台阶, 通过将石英或氮化镓进行等离子体腐蚀实现实现。在所述氧化铝基底上制备单原子 层台阶,通过 0. Kurnosikov等人发表在 Surface Science上的文章 About anisotropy of atomic-scale height step on (0001) sapphire surface中涉及的斜切高温处理方法实现。 进一步的,在所述六角氮化硼基底上制备单原子层台阶采用如下方法:将六角 氮化硼基底的表面解理得到新鲜的原子表面;然后将其置于氢气与氩气的混合气体 中进行退火处理, 得到具有单原子层台阶的六角氮化硼基底。 所述的六角氮化硼基底包括但不限于块体六角氮化硼单晶、用机械剥离法获得 的单晶六角氮化硼薄片以及用化学气相沉积法制备的六角氮化硼基底。 所述的六角氮化硼基底解理是通过机械剥离的方法移除最上层六角氮化硼,同 时带走表面吸附物及表面机械划痕等缺陷, 暴露出新鲜的 hBN原子表面, 表面缺 陷少。 较佳的, 所述氢气与氩气的混合气体中, 氢气与氩气的体积比为 1 : 1〜1 : 10, 优选为 1 :2〜1 :9。所述的高温退火处理的退火温度为 1000°C〜1200°C,退火时间为 10min〜300 min。 退火温度可以调控刻蚀速率, 退火时间可以调控单原子台阶的分 布。 所述步骤 2) 中, 利用低压化学气相沉积 (LPCVD)、 等离子体辅助的化学气 相沉积 (PECVD ) 或脉冲激光沉积 (PLD ) 方法, 在具有单原子层台阶的绝缘基 底上以台阶流动的方式生长石墨烯纳米带。所述以台阶流动的方式生长石墨烯是指 在在各个台阶边缘不断吸收原子而台阶不断向前移动的生长模式。 所述步骤 2) 中, 生长石墨烯纳米带所需的碳源选自气态碳源、 液态碳源或固 态碳源;所述气态碳源选自甲烷、乙烯和乙炔等气体;所述液态碳源选自苯等液体; 所述固态碳源选自聚甲基丙烯酸甲酯 (PMMA)、 葡萄糖、 石墨等固体。 可根据碳 源和绝缘基底的不同, 选择 LPCVD、 PECVD或者 PLD方法制备石墨烯纳米带。 所述步骤 2) 中, 生长石墨烯纳米带的生长温度在 500°C〜1300°C, 可根据需 要获得的纳米带的宽度不同进行选择, 优选为 900°C〜1200°C。 生长石墨烯纳米带 的生长时间为 5min〜5h, 优选为 20min〜3h。 所述步骤 2)中, 在具有单原子层台阶的绝缘基底上直接生长石墨烯纳米带时, 可在所使用的绝缘基底 (氮化硼、 氮化镓、 氧化铝、 钛酸锶等)上采用所述沉积方 法 (PLD、 CVD、 PECVD等) 中的任意一种直接生长石墨烯纳米带。 作为优选的 方案, 本发明在此列举出了下列三种较佳的实施方式:
当所述基底为六角氮化硼或氮化镓时, 所述步骤 2) 中, 采用低压化学气相沉 积法生长石墨烯纳米带; 具体包括如下步骤: 在 Ar气氛中, 将具有单原子台阶的 六角氮化硼基底于 900〜1200°C, 保温 5-15min; 再通入气态碳源, 同时将压强维 持在 l〜5Pa,生长 60〜180min,生长结束后切断气态碳源,继续通 Ar作为保护气, 自然冷却。 较佳的, 所述气态碳源选自甲烷、 乙烯和乙炔等气体。 当所述基底为钛酸锶基底时, 采用脉冲激光沉积法生长石墨烯纳米带; 具体包 括如下步骤: 将制备好的具有单原子台阶的钛酸锶基底载入脉冲激光沉积 (PLD) 生长腔室, 以固态碳源靶为生长碳源, 生长压力为 10_5〜10_4 Pa, 激光频率为 1〜 10 Hz, 基底温度为 600〜850°C, 靶基距为 50〜70cm; 激光脉冲个数为 10〜500。 较佳的, 所述固态碳源选自聚甲基丙烯酸甲酯、 葡萄糖、 石墨等固体。 当所述基底为氧化铝基底时, 采用等离子体辅助的化学气相沉积(PECVD)法 生长石墨烯纳米带; 具体包括如下步骤: 将刻蚀好的具有单原子台阶的氧化铝基底 放入 PECVD生长管式炉中, 在 Ar气氛中于 850〜950°C下保温 5〜15min; 再通入 C2H2和 H2的混合气体, 同时将压强维持在 100〜500 Pa, 生长 60〜180 min, 生长 结束后切断 C2H2和 H2的混合气体, 继续通 Ar作为保护气, 自然冷却。 较佳的, 所述 C2H2和 ¾的体积比为 1 : 1〜1 :5。 本发明还进一步公开了由上述方法所获得的石墨烯纳米带。 通过本发明所提供 的上述方法获得的石墨烯纳米带, 其特征宽度为 lnm〜500nm。 其特征长度与绝缘 基底原子层台阶的长度相关, 所获得的典型纳米带长度为 100ηιη〜100μιη。 本发明以具备单原子层厚度台阶的基底为基础, 控制石墨烯沉积工艺, 以台阶 流动的形式生长石墨烯纳米带。在石墨烯的生长成核过程中, 缺陷处, 尤其是台阶 下方, 成核所需要的成核功小于平面上的成核功, 绝缘基底上的单原子台阶能够成 为石墨烯生长的成核带。利用台阶边缘和平面上成核能量上的差异, 在生长过程中 通过控制温度, 压强和活性碳原子的过饱和度可以控制成核仅仅发生在原子台阶 处, 由此达到生长石墨烯纳米带的效果。 本发明利用 LPCVD, PECVD, PLD等与半导体工艺相兼容的制备工艺, 直接 在绝缘基底上实现了石墨烯纳米带, 避免了石墨烯的转移, 并且原子级平整的基底 保证了所制备石墨烯的性能。所制备的石墨烯纳米带可以直接用于制备石墨烯电子 器件。
附图说明
图 1是实施例 1 中机械剥离后 hBN的原子力显微镜照片; 图 2是实施例 1 中 hBN刻蚀后具有单原子层台阶的原子力显微镜照片; 图 3是实施例 2中 hBN刻蚀后表面原子力显微镜照片; 图 4是实施例 3中 hBN刻蚀后表面原子力显微镜照片; 图 5是实施例 4 刻蚀后具有单原子层台阶的 hBN原子力显微镜照片; 图 6是实施例 4 hBN台阶下沿石墨烯纳米带的原子力显微镜照片; 图 7是实施例 4 石墨烯纳米带的 Raman谱; 图 8是实施例 5 hBN台阶下沿石墨烯纳米带的原子力显微镜照片; 图 9是实施例 5石墨烯纳米带的 Raman谱; 图 10是实施例 6石墨烯纳米带原子力显微镜拓扑相照片; 图 11是实施例 6石墨烯纳米带原子力显微镜摩擦力相照片。
具体实施方式 下面通过具体实施例描述, 进一步阐述本发明的实质性特点和显著进步, 但本 发明决非仅局限于实施例。 实施例 1 : 具有单原子层台阶的六角氮化硼基底的制备 第一步: 以单晶 hBN薄片为原料, 在 Si02/Si基底上机械剥离得到具有新鲜解 理面的 hBN片层, 如图 1所示, 其表面非常平整, 没有任何台阶。 第二步: 将第一步得到的 hBN/Si02基底放入管式炉, 通入 300SCCm的氢氩混 合气 (H2:Ar=l :3 , 体积比), 以 20°C/min 的升温速率升温到 1200 °C, 恒温 10min, 然后随炉冷却, 这样得到如图 2所示的单原子层高度的台阶, 高度分析显示台阶的 高度差为 0.34nm和 0.33nm, 为单个 BN原子层台阶, 台阶之间的间距为 500nm左 右。
实施例 2: 具有单原子层台阶的六角氮化硼基底的制备 第一步: 以单晶 hBN块体为基底, 使用机械剥离的方法去除 hBN表面层。 第二步: 将基底放入管式炉, 通入 300 sccm的氢氩混合气 (H2:Ar=l :6, 体积 比), 以 20°C/min 的升温速率升温到 1100 °C, 恒温 50min, 然后随炉冷却, 这样得 到单原子层高度的台阶, 如图 3所示。 台阶之间的间距为 1-5微米。
实施例 3 : 具有单原子层台阶的六角氮化硼基底的制备 第一步: 以 CVD方法生长的 hBN为基底, 使用机械剥离的方法去除 hBN表 面层。 CVD方法制备 hBN的过程如下: 以环硼氮烷为 BN源, 以氩气为载气, 在 1000°C以金属 Ni为基底, 在 5 Pa压力下生长半小时得到 hBN薄膜, 将 hBN薄膜 转移到 Si02/Si基底上。 第二步: 将基底放入管式炉, 通入 300 sccm的氢氩混合气 (H2:Ar=l :9, 体积 比), 以 20°C/min 的升温速率升温到 1000 °C, 恒温 300 min, 最后随炉冷却, 这样 得到单原子层高度的台阶, 如图 4所示。 台阶高度分析结果为 0.35nm, 为单个 BN 原子台阶, 台阶之间的间距为 2-5微米。
实施例 4: 以六角氮化硼为基底制备宽度为 200nm的石墨烯纳米带 第一步: 以单晶 hBN为原料, 在 Si02/Si基底上机械剥离得到具有新鲜解理面 的 hBN片层。 第二步: 将第一步得到的 hBN/Si02基底放入管式炉, 通入 300SCCm的氢氩混 合气 (¾: Ar=l :2, 体积比), 以 20°C/min 的升温速率升温到 1200 °C, 恒温 10min, 最后随炉冷却, 这样得到如图 1的单原子层高度的台阶。 第三步: 将具有原子台阶的 hBN/Si02基底, 在 Ar气氛中以 lOtVmin的速率 将温度升至 1200°C, 保温 10min, 以 5sccm的速度通入 CH4气体, 同时使用真空 泵将压强维持在 4.1Pa, 生长 180min, 生长结束后切断 CH4气体, 通入 Ar作为保 护气, 自然冷却。 通过上述工艺, 生长出宽度为 200nm的石墨烯纳米带。 图 6原子力显微镜图 和图 7 Raman光谱表明石墨烯纳米带的宽度为 200nm, 石墨烯层数为 1个原子层。
实施例 5 : 以六角氮化硼为基底制备宽度为 40nm的石墨烯纳米带 第一步: 以单晶 hBN为基底。 第二步: 将基底放入管式炉, 通入 300sccm的氢氩混合气 (H2 : Ar=l :2), 以 20°C/min 的升温速率升温到 1200°C, 恒温 10min, 最后随炉冷却, 这样得到单原 子层高度的台阶。 第三步: 将使用高温氢气刻蚀好的 hBN放入 CVD生长管式炉。 在 Ar气氛中 以 10°C/min的速率将温度升至 1150°C, 保温 lOmin, 以 Isccm的速度通入 C2H2气 体, 同时使用真空泵将压强维持在 1.2Pa, 生长 60min, 生长结束后切断 C2H2气体, 通入 Ar作为保护气, 自然冷却。 通过上述工艺, 生长出宽度为 40nm的石墨烯纳米带。 图 8原子力显微镜图和 图 9的 Raman光谱显示纳米带的宽度为 40nm, 石墨烯厚度为 1层。
实施例 6: 以氮化镓为基底制备宽度为 40nm的石墨烯纳米带。 第一步: 以氮化镓为基底, 使用等离子体腐蚀方法制备单原子层厚度的沟槽。 沟槽的宽度在 lnm〜500nm。 第二步:将刻蚀好的氮化镓基底放入 CVD生长管式炉。在 Ar气氛中以 lOtVmin 的速率将温度升至 900°C, 保温 10min, 以 I sccm的速度通入 C2H2气体, 同时使用 真空泵将压强维持在 1.2Pa, 生长 60min, 生长结束后切断 C2H2气体, 通入 Ar作 为保护气, 自然冷却。 通过上述工艺, 生长出宽度为 40nm的石墨烯纳米带。 图 10、 11分别为原子 力显微镜拓扑图及摩擦力图, 显示纳米带的宽度为 40nm, 石墨烯厚度为 1层。
实施例 7: 以钛酸锶为基底制备宽度为 lOOnm的石墨烯纳米带 第一步: 以钛酸锶为基底, 使用化学定向腐蚀的的方法制备单原子层厚度的台 阶。 第二步: 将制备好的钛酸锶基底载入 PLD生长腔室, 以石墨靶为生长碳源, 压力为 10_4Pa, 激光频率 ΙΟΗΖ, 基底温度 800°C。 生长 50个脉冲。 通过上述工艺, 生长出宽度为 lOOnm的石墨烯纳米带。
实施例 8: 以氧化铝为基底制备宽度为 50nm的石墨烯纳米带 第一步: 以表面抛光氧化铝为基底, 使用斜切刻蚀的的方法制备单原子层厚度 的台阶。 第二步: 将刻蚀好的氧化铝基底放入 PECVD 生长管式炉。 在 Ar气氛中以 10°C/min的速率将温度升至 900 °C, 保温 10min, 以 5sccm的速度通入 C2H2/H2混 合气 (体积比为 1 : 1 ), 同时使用真空泵将压强维持在 100Pa, 生长 60min, 生长结 束后切断 C2H2气体, 通入 Ar作为保护气, 自然冷却。 通过上述工艺, 生长出宽度为 40nm的石墨烯纳米带。

Claims

权利要求书
1. 一种在绝缘基底上制备石墨烯纳米带的方法, 包括如下步骤:
1 ) 在绝缘基底上制备单原子层台阶;
2) 在步骤 1 ) 所获得的具有单原子层台阶的绝缘基底上直接生长石墨烯纳 米带。
2. 如权利要求 1所述的在绝缘基底上制备石墨烯纳米带的方法, 其特征在于, 所述的单原子层台阶是单个台阶高度为一个原子层厚度的台阶, 或者是深度 为一个原子层厚度的沟槽。
3. 如权利要求 2所述的在绝缘基底上制备石墨烯纳米带的方法, 其特征在于, 所述台阶的宽度为 50ηιη〜20μιη; 所述沟槽的宽度在 lnm〜500nm。
4. 如权利要求 3所述的在绝缘基底上制备石墨烯纳米带的方法, 其特征在于, 所述台阶的宽度为 500ηιη〜5μιη。
5. 如权利要求 1所述的在绝缘基底上制备石墨烯纳米带的方法, 其特征在于, 所述的绝缘基底是指能够解离出原子级平整度解理面的基底材料。
6. 如权利要求 5所述的在绝缘基底上制备石墨烯纳米带的方法, 其特征在于, 所述的绝缘基底选自六角氮化硼、 氮化镓、 钛酸锶、 氧化铝和石英。
7. 如权利要求 6所述的在绝缘基底上制备石墨烯纳米带的方法, 其特征在于, 在所述六角氮化硼基底上制备单原子层台阶采用如下方法: 将六角氮化硼基 底的表面解理得到新鲜的原子表面; 然后将其置于氢气与氩气的混合气体中 进行退火处理, 得到具有单原子层台阶的六角氮化硼基底。
8. 如权利要求 7所述的在绝缘基底上制备石墨烯纳米带的方法, 其特征在于, 所述氢气与氩气的混合气体中, 氢气与氩气的体积比为 1 : 1〜1 : 10。
9. 如权利要求 8所述的在绝缘基底上制备石墨烯纳米带的方法, 其特征在于, 所述的高温退火处理的退火温度为 1000°C〜1200°C,退火时间为 10min〜300 min。
11 如权利要求 1-9任一所述的在绝缘基底上制备石墨烯纳米带的方法, 其特征 在于, 所述步骤 2) 中, 利用低压化学气相沉积、 等离子体辅助的化学气相 沉积或脉冲激光沉积方法, 在具有单原子层台阶的绝缘基底上以台阶流动的 方式生长石墨烯纳米带。 如权利要求 10所述的在绝缘基底上制备石墨烯纳米带的方法, 其特征在于, 所述步骤 2) 中, 生长石墨烯纳米带所需的碳源选自气态碳源、 液态碳源或 固态碳源; 所述气态碳源选自甲烷、 乙烯和乙炔; 所述液态碳源为苯; 所述 固态碳源选自聚甲基丙烯酸甲酯、 葡萄糖和石墨。 如权利要求 10所述的在绝缘基底上制备石墨烯纳米带的方法, 其特征在于, 所述步骤 2)中, 生长石墨烯纳米带的生长温度在 500°C〜1300°C, 生长时间 为 5min〜5h。 一种石墨烯纳米带, 由如权利要求 1-12任一所述的在绝缘基底上制备石墨烯 纳米带的方法获得。 如权利要求 13所述的石墨烯纳米带,其特征在于,所述石墨烯纳米带的宽度 为 lnm〜500nm, 长度为 100ηιη〜100μιη。
12
PCT/CN2011/078070 2011-07-22 2011-08-05 一种在绝缘基底上制备石墨烯纳米带的方法 WO2013013419A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/580,240 US9328413B2 (en) 2011-07-22 2011-08-05 Method for preparing graphene nanoribbon on insulating substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110206608.6 2011-07-22
CN2011102066086A CN102392225B (zh) 2011-07-22 2011-07-22 一种在绝缘基底上制备石墨烯纳米带的方法

Publications (1)

Publication Number Publication Date
WO2013013419A1 true WO2013013419A1 (zh) 2013-01-31

Family

ID=45859603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/078070 WO2013013419A1 (zh) 2011-07-22 2011-08-05 一种在绝缘基底上制备石墨烯纳米带的方法

Country Status (2)

Country Link
CN (1) CN102392225B (zh)
WO (1) WO2013013419A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102701196B (zh) * 2012-06-25 2014-04-30 北京大学 一种石墨烯纳米带的制备方法
US10370774B2 (en) 2013-01-09 2019-08-06 The Regents Of The University Of California Chemical vapor deposition growth of graphene
US10105683B2 (en) * 2013-02-22 2018-10-23 Sumitomo Electric Industries, Ltd. Porous member and catalyst member
CN103236320A (zh) * 2013-03-22 2013-08-07 重庆绿色智能技术研究院 金属网格-石墨烯透明电极制作方法及其用于制作触摸屏的方法
CN103236280B (zh) * 2013-04-25 2015-08-12 中国科学院重庆绿色智能技术研究院 一种柔性导电薄膜
CN103935990B (zh) * 2014-04-15 2016-09-14 江苏大学 基于聚焦离子束系统的He离子刻蚀制备石墨烯纳米带方法
CN105019030B (zh) * 2014-04-28 2019-01-08 中国科学院物理研究所 石墨烯/六方氮化硼的高度晶向匹配堆叠结构及其制备方法
CN104726845B (zh) * 2015-03-05 2018-05-01 中国科学院上海微系统与信息技术研究所 h-BN上石墨烯纳米带的制备方法
CN104909359A (zh) * 2015-05-26 2015-09-16 韩山师范学院 一种在SiO2/Si衬底上直接快速制备单层石墨烯的方法
CN105568251A (zh) * 2016-01-06 2016-05-11 中国科学院物理研究所 一种绝缘衬底上生长石墨烯的方法
CN106629686A (zh) * 2016-12-15 2017-05-10 北京华进创威电子有限公司 一种制备石墨烯纳米带的方法
KR102422422B1 (ko) * 2017-06-01 2022-07-19 삼성전자주식회사 그래핀을 포함하는 반도체 소자 및 그 제조방법
CN107354446B (zh) * 2017-07-01 2019-09-24 中国科学院兰州化学物理研究所 一种化学气相合成超薄碳纳米片的方法
CN109304214B (zh) * 2017-07-28 2021-04-02 中国科学院宁波材料技术与工程研究所 一种加氢裂化催化剂及其制备方法与应用
CN108190864B (zh) * 2018-01-16 2021-07-06 电子科技大学 一种石墨烯制备方法
CN108751174B (zh) * 2018-07-01 2022-04-12 曲靖师范学院 一种连续的宏观石墨烯纳米带纤维及其制备方法
CN109850877A (zh) * 2019-02-21 2019-06-07 中国科学院上海微系统与信息技术研究所 石墨烯纳米带的转移方法
CN112542380B (zh) * 2019-09-20 2024-07-05 中国科学院苏州纳米技术与纳米仿生研究所 异质结结构的制作方法及电极结构和电子器件

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101913599A (zh) * 2010-08-13 2010-12-15 东华大学 一种石墨烯纳米带的制备方法
WO2011027585A1 (ja) * 2009-09-04 2011-03-10 並木精密宝石株式会社 グラフェン基板、グラフェン電子デバイス及びそれらの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005260017A (ja) * 2004-03-12 2005-09-22 Japan Synchrotron Radiation Research Inst 超微細ワイヤー構造の作成方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027585A1 (ja) * 2009-09-04 2011-03-10 並木精密宝石株式会社 グラフェン基板、グラフェン電子デバイス及びそれらの製造方法
CN101913599A (zh) * 2010-08-13 2010-12-15 东华大学 一种石墨烯纳米带的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DING, XULI ET AL.: "Direct growth of few layer graphene on hexagonal boron nitride by chemical vapor deposition", CARBON, vol. 49, no. 7, 15 February 2011 (2011-02-15), pages 2522 - 2525, XP028368382, DOI: doi:10.1016/j.carbon.2011.02.022 *
TSUKAMOTO, T. ET AL.: "Morphology of Graphene on Step-Controlled Sapphire Surfaces", APPLIED PHYSICS EXPRESS, vol. 2, no. 7, 19 June 2009 (2009-06-19), pages 075502-1 - 075502-3 *

Also Published As

Publication number Publication date
CN102392225A (zh) 2012-03-28
CN102392225B (zh) 2013-12-18

Similar Documents

Publication Publication Date Title
WO2013013419A1 (zh) 一种在绝缘基底上制备石墨烯纳米带的方法
US9328413B2 (en) Method for preparing graphene nanoribbon on insulating substrate
JP6177295B2 (ja) h−BN上におけるグラフェンナノリボンの製造方法
Nyakiti et al. Enabling graphene-based technologies: Toward wafer-scale production of epitaxial graphene
JP5316612B2 (ja) 炭化珪素半導体エピタキシャル基板の製造方法
US20140264282A1 (en) Heterogeneous layered structure, method of preparing the heterogeneous layered structure, and electronic device including the heterogeneous layered structure
WO2013013418A1 (zh) 一种具有单原子层台阶的六角氮化硼基底及其制备方法与应用
CN111620325B (zh) 一种制备石墨烯纳米带阵列的方法
CN104313684A (zh) 一种制备六方氮化硼二维原子晶体的方法
US10017878B2 (en) Growth method of graphene
CN105441902A (zh) 一种外延碳化硅-石墨烯复合薄膜的制备方法
CN106517165A (zh) 一种在 6H/4H‑SiC硅面上用金属辅助内外碳源结合方式生长石墨烯的方法
CN103346073A (zh) 一种β-碳化硅薄膜的制备方法
CN113549898A (zh) 一种二维氮化镓膜的限域模板制备方法、制得的二维氮化镓膜
WO2019027645A1 (en) MONO- AND MULTI-LAYER SILICENE PREPARED BY PLASMA ASSISTED CHEMICAL VAPOR DEPOSITION
CN106637393B (zh) 一种利用金属辅助在6H/4H-SiC碳面上外延生长石墨烯的方法
CN109119327A (zh) 在纳米图形化蓝宝石衬底上外延生长氮化铝的方法
CN113089093A (zh) 金刚石半导体结构的形成方法
CN107244666B (zh) 一种以六方氮化硼为点籽晶生长大晶畴石墨烯的方法
CN108183064B (zh) 碳化硅热解制备石墨烯的衬底可控台阶形貌预处理方法
Zou et al. The fabrication of cubic boron nitride nanocone and nanopillar arrays via reactive ion etching
CN111676450A (zh) 基于离子束溅射沉积的六方氮化硼厚膜及制备方法和应用
Nurfahana et al. Growth and characterization of AlN thin film deposited by sol-gel spin coating techniques
CN114975097B (zh) 一种碳化硅晶体及其制备方法与应用
WO2023100578A1 (ja) 単結晶ダイヤモンド膜の形成方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13580240

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11870147

Country of ref document: EP

Kind code of ref document: A1