WO2013012069A1 - 気泡発生機構及び気泡発生機構付シャワーヘッド - Google Patents

気泡発生機構及び気泡発生機構付シャワーヘッド Download PDF

Info

Publication number
WO2013012069A1
WO2013012069A1 PCT/JP2012/068480 JP2012068480W WO2013012069A1 WO 2013012069 A1 WO2013012069 A1 WO 2013012069A1 JP 2012068480 W JP2012068480 W JP 2012068480W WO 2013012069 A1 WO2013012069 A1 WO 2013012069A1
Authority
WO
WIPO (PCT)
Prior art keywords
collision
flow
cross
throttle
generating mechanism
Prior art date
Application number
PCT/JP2012/068480
Other languages
English (en)
French (fr)
Inventor
啓雄 加藤
芳樹 柴田
Original Assignee
株式会社シバタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社シバタ filed Critical 株式会社シバタ
Priority to KR1020147001715A priority Critical patent/KR20140048940A/ko
Priority to CN201280036169.1A priority patent/CN103747858B/zh
Priority to JP2013524754A priority patent/JP5712292B2/ja
Priority to EP12814186.8A priority patent/EP2735363A4/en
Priority to US14/234,032 priority patent/US9370784B2/en
Publication of WO2013012069A1 publication Critical patent/WO2013012069A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/14Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
    • B05B1/18Roses; Shower heads
    • B05B1/185Roses; Shower heads characterised by their outlet element; Mounting arrangements therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2323Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2373Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media for obtaining fine bubbles, i.e. bubbles with a size below 100 µm
    • B01F23/2375Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media for obtaining fine bubbles, i.e. bubbles with a size below 100 µm for obtaining bubbles with a size below 1 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/44Mixers in which the components are pressed through slits
    • B01F25/441Mixers in which the components are pressed through slits characterised by the configuration of the surfaces forming the slits
    • B01F25/4412Mixers in which the components are pressed through slits characterised by the configuration of the surfaces forming the slits the slits being formed between opposed planar surfaces, e.g. pushed again each other by springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/44Mixers in which the components are pressed through slits
    • B01F25/441Mixers in which the components are pressed through slits characterised by the configuration of the surfaces forming the slits
    • B01F25/4416Mixers in which the components are pressed through slits characterised by the configuration of the surfaces forming the slits the opposed surfaces being provided with grooves
    • B01F25/44163Helical grooves formed on opposed surfaces, e.g. on cylinders or cones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/44Mixers in which the components are pressed through slits
    • B01F25/442Mixers in which the components are pressed through slits characterised by the relative position of the surfaces during operation
    • B01F25/4422Mixers in which the components are pressed through slits characterised by the relative position of the surfaces during operation the surfaces being maintained in a fixed but adjustable position, spaced from each other, therefore allowing the slit spacing to be varied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/14Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
    • B05B1/18Roses; Shower heads

Definitions

  • the present invention relates to a bubble generation mechanism, particularly a mechanism suitable for generating fine bubbles such as microbubbles and nanobubbles, and a shower head using the mechanism.
  • Bubbles formed in the water are classified into millibubbles or microbubbles (further, micro / nano bubbles, nano bubbles, etc.) depending on their sizes. Millibubbles are huge bubbles to some extent, which rise rapidly in water and eventually rupture and disappear at the surface of the water. On the other hand, bubbles with a diameter of 50 ⁇ m or less are fine, so they have a long residence time in water and are excellent in gas dissolving ability, so they further shrink in water, and finally disappear in water ( It has a special property of completely dissolving), and it is becoming common to call this microbubble (Non-patent Document 1).
  • fine bubbles refers to a concept that collectively refers to micro-nano bubbles (diameter: 10 nm or more and less than 1 ⁇ m) and nano bubbles (diameter: less than 10 nm) having a smaller diameter in addition to the micro bubbles.
  • Patent Documents 1 to 5 various shower devices incorporating a bubble generation mechanism have been proposed for use in bathrooms.
  • the bubble generating mechanism incorporated in the shower apparatus disclosed in these patent documents is formed in the wing body shaft portion in the swirl flow generating wing body incorporated in the head portion for ejecting the shower water flow and the vortex formed by the wing body.
  • a method of entraining outside air sucked in from the fine pores into a gas-liquid mixture referred to as Patent Document 1: Two-phase flow swirl method
  • a venturi in the shower body the handle portion extending from the head portion.
  • a cavitation system that incorporates a throttle mechanism such as a pipe and deposits air dissolved in water as fine bubbles due to the pressure reduction effect caused by Bernoulli's principle when water passes through the throttle mechanism at a high flow rate ( It is roughly classified into Patent Documents 2 to 5).
  • JP 2008-229516 A JP 2008-73432 A JP 2007-209509 A JP 2007-50341 A JP 2006-116518 A Internet homepage (http://unit.aist.go.jp/emtech-ri/26env-fluid/takahashi.pdf#search 'Research on microbubbles and nanobubbles')
  • the shower apparatus disclosed in Patent Documents 2 to 4 adopting the cavitation method has only one closed throttle hole around the venturi pipe or orifice, and the flow path portion is provided at the throttle hole position. Has a structure that does not exist. For this reason, the flow velocity does not increase as expected when the fluid resistance when passing through the throttle hole is increased, and the radial pressure from the inner wall surface of the hole is easily received in the throttle hole, so that the cavitation (decompression) effect is achieved. There is a drawback that the amount of bubble deposition tends to be insufficient.
  • An object of the present invention is to generate a sufficient amount of bubbles without using a complicated gas-liquid mixing mechanism. As a result, the amount of bubbles generated in the microbubble region or the micro / nanobubble region can be reduced to a level that could not be achieved conventionally.
  • An object of the present invention is to provide a bubble generation mechanism that can be enhanced and a shower head using the same.
  • the bubble generation mechanism of the present invention is: A flow path connecting the inlet opening at the inflow end and the outlet opening at the outflow end is formed in a penetrating form with respect to the member body in which the inflow end on the liquid inflow side and the outflow end on the liquid outflow side are defined.
  • a throttle part having a smaller flow cross-sectional area than the inlet is formed in the middle of the flow path, and the throttle part is configured to divide the axial cross section of the flow path into three or more segment regions at the throttle part.
  • the collision part is further arranged to further reduce the flow path cross-sectional area of After the gas-dissolved liquid flow supplied to the inflow end of the member body collides with the collision part, it is passed through the segment area while increasing the speed, and the dissolved gas is precipitated by the decompression effect to contain bubbles. It is characterized by being made out of liquid and flowing out from the outlet.
  • the liquid supplied to the flow path is squeezed by the throttle portion and the flow velocity is increased.
  • a negative pressure region is formed in the throttle portion (and its downstream side), and dissolved gas (for example, air) in the water flow is precipitated due to the cavitation (decompression) effect, and bubbles are generated.
  • bubbles in water are likely to coalesce even if they collide with each other.
  • the flow velocity of the passing water flow is insufficient just by passing through a well-known throttle mechanism such as a venturi tube.
  • the pressure reduction level is small and the degree of vortex generation is small.
  • such a throttle mechanism has a structure in which the flow path cross-section is reduced in a similar manner at the throttle, so if the cross-section of the throttle is reduced excessively to increase the flow velocity, the fluid passage resistance increases. Therefore, the increase in the flow rate corresponding to the cross-sectional reduction ratio cannot be expected, and the bubble generation efficiency is decreased. Therefore, the amount of bubble deposition due to cavitation is small, and the collision to the extent that the bubbles are crushed cannot be caused sufficiently, so that the fine bubbles cannot be sufficiently formed.
  • a colliding portion that further reduces the flow passage cross-sectional area of the restriction portion is arranged in a form in which the axial cross section of the flow passage is partitioned into three or more segment regions at the restriction portion.
  • the area where the liquid can flow can be In other words, the cross section of the flow path is reduced in a direction that is thinned out.
  • the fluid resistance at the throttle portion does not increase excessively, and the effect of increasing the flow velocity and thus the effect of generating negative pressure can be greatly increased.
  • region (and its downstream) is improved significantly, for example, even if it is a water flow with the same dissolved air density
  • the fluid flowing into the segment area mainly flows around the tip of the collision portion, and the flow near the center of the cross section where the flow velocity becomes the highest tends to be decelerated due to the bypass. .
  • a cross-sectional central flow that is relatively high speed with respect to the cross-sectional peripheral flow is passed between the tip portions of two or more of the plurality of collision portions that protrude toward the central cross-section of the throttle portion. It is effective to form a high-speed flow gap.
  • the flow near the center of the cross section can be passed through the high-speed flow gap without greatly decelerating, and the high-speed flow can be used particularly effectively for the generation of fine bubbles.
  • the high-speed flow gap can be formed in various forms. For example, a cone-shaped portion that reduces the axial cross section toward the tip of the collision portion is formed at the tip of the collision portion, and a high-speed flow gap is formed between the outer peripheral surfaces of the cone-shaped portions in the two collision portions adjacent to each other across the segment region A slit portion to be formed can be formed. Since the slit portion is formed in the direction of the outer peripheral surface bus of the conical portion, the flow toward the slit portion is squeezed and compressed so as to overcome the bulge along the bus of the conical portion.
  • the cavitation generation region is formed in a point shape in the vicinity of the center of the throttle, but in the above configuration, the cavitation generation region is formed in a linear shape along the slit portion. The area is greatly expanded, and a large amount of fine bubbles can be deposited.
  • At least one pair of a plurality of collision parts is arranged in a shape facing the inner diameter direction across the center of the cross section of the throttle part, and a central gap constituting a high-speed flow gap is formed between the tips of the collision parts
  • the flow at the center of the cross section is further narrowed down by the passage of the center gap to increase the speed, but the flow detour to the segment area side is allowed, so the increase in fluid resistance is effectively suppressed, and cavitation (decompression) Since the effect is greatly enhanced and the flow velocity at the center of the cross section can be greatly increased, a larger amount of fine bubbles can be deposited.
  • the collision parts can be provided in a cross shape in which the projecting directions are orthogonal to each other in the axial section of the diaphragm part, and the diaphragm part can be divided into four diaphragm segment regions by these collision parts.
  • the collision parts By arranging the collision parts in directions perpendicular to each other and dividing them into four diaphragm segment areas, the object of placement of the collision parts and the diaphragm segment areas with respect to the center of the cross section is also improved, and the individual diaphragm segment areas are more homogeneous. Fine bubbles can be deposited.
  • a cross-sectional central flow that is relatively high speed with respect to the cross-sectional peripheral flow is passed between the tip portions of two or more of the plurality of collision portions that protrude toward the central cross-section of the throttle portion.
  • a high-speed flow gap can be formed.
  • the four collision portions can be provided so as to protrude from the inner peripheral surface of the flow channel toward the central portion of the flow channel.
  • a high-speed flow is generated between the outer peripheral surfaces of the cone-shaped portions in the collision portions adjacent to each other across the segment region.
  • the slit part which comprises a gap can be formed.
  • a central gap that constitutes a part of the high-speed flow gap is formed between the tips of the collision portions that are arranged opposite to each other in the inner diameter direction across the center of the cross section of the throttle portion.
  • the part is formed in a cross shape integrated through a central gap.
  • the flow at the center of the cross section at the highest flow velocity is effectively restricted by the four conical portions arranged so as to surround the center of the cross section, and flows into the center gap while being accelerated.
  • the surrounding four slit portions communicate with the center gap, and the flow that is squeezed and compressed in the center gap is extremely effectively suppressed from increasing the fluid resistance by detouring to the slit portion, and Since it is squeezed by the slit, the decrease in the flow velocity at the detour destination can be kept low.
  • the cavitation (decompression) effect is extremely active not only in the center gap but also in the slit portion, and nanobubble-level fine bubbles can be generated at a high concentration.
  • the tip of the collision part facing the center gap, the flow passing through the vicinity can be particularly speeded up, and the bubble miniaturization becomes more remarkable.
  • the tip of the collision part can be formed flat, and in this case, the expansion of the central gap and the uniform flow contribute to an improvement in the generation density of the fine bubbles as a whole.
  • the collision part is disposed so as to face the inner diameter direction across the center of the cross section of the throttle part in a form orthogonal to the main collision part and a main collision part arranged so as to cross the cross section of the throttle part along the inner diameter.
  • a pair of opposing collision portions that form an outer peripheral gap that forms a high-speed flow gap may be provided between the front end surface and the outer peripheral surface of the main collision portion.
  • the outer peripheral gap can be formed in a slit shape, and the cavitation region can be expanded in the slit longitudinal direction.
  • fine bubbles can be generated at a higher concentration.
  • the main collision part is opposed to the pair of collision parts each having a flat tip surface in the inner diameter direction of the throttle part by forming a central gap including the cross-sectional center of the throttle part between the tip surfaces. It is also possible to arrange them.
  • the flow that is compressed is diverted to the slit-shaped outer peripheral gap, so that an increase in fluid resistance is extremely effectively suppressed. Further, since the outer peripheral gap is also narrowed in a slit shape, a decrease in flow velocity at the detour destination can be suppressed to a low level. As a result, the cavitation (decompression) effect is extremely active even in the center gap and the slit portion, and nanobubble-level fine bubbles can be generated at a high concentration.
  • each of the main collision portions has a flat tip surface and a pair of impact portions each having a chamfered portion formed along the outer periphery of the tip surface. It can be configured to be arranged and formed facing the direction.
  • the outer periphery gap is formed so that the tip of the opposing collision portion faces the groove portion of the V-shaped cross section formed by the chamfered portions of the two collision portions forming the main collision portion, the above-described opposing collision portion It is possible to further enhance the bubble refinement effect by increasing the flow velocity near the tip.
  • a plurality of circumferential throttle ribs can be formed on the outer peripheral surface of the collision part along the protruding direction of the collision part.
  • the gas-dissolved liquid flowing in the tangential direction of the outer peripheral surface of the collision portion is further squeezed in the groove portion (or valley-like portion) between the restricting ribs, and the pressure reduction effect is enhanced.
  • the flow on the valley opening side is relatively slow, and the pressure is particularly high with respect to the high-speed flow on the valley bottom side.
  • the gas saturation dissolution amount of the liquid on the valley opening side increases, the saturation dissolution amount on the valley bottom side decreases, and the dissolution liquid flows to the valley bottom side, so that bubbles can be precipitated extremely actively.
  • the valley-shaped part has a shape that decreases in width toward the valley, it is desirable to enhance the flow restricting effect in the valley-like part and the bubble precipitation effect.
  • the plurality of throttle ribs in the valley portion are formed adjacent to each other with the apex portion having an acute angle.
  • the apex angle of the aperture rib is preferably set to 60 ° or less and 20 ° or more from the viewpoint of optimizing the above effect.
  • Multiple winding ribs can be integrally formed in a spiral. In this way, formation of the throttle rib is facilitated, and the throttle rib is inclined with respect to the flow, so that the flow component crossing the ridge line portion of the throttle rib increases, and the turbulent flow generation effect accompanying flow separation becomes remarkable. Therefore, the bubbles can be further miniaturized.
  • the collision part is formed with a screw member whose leg end side protrudes into the flow path, the thread formed on the outer peripheral surface of the leg part of the screw member can be used as a throttle rib, and manufactured. Is easy.
  • the member body can be coaxially mounted inside the tube member by forming the outer peripheral surface into a cylindrical surface.
  • a portion of the pipe member positioned upstream of the inflow end of the member main body forms a liquid supply conduit
  • a portion of the tube member positioned downstream of the outflow end forms a liquid recovery conduit.
  • the liquid supply conduit and the liquid recovery conduit can be formed collectively with a single tube member, so that the number of parts can be reduced.
  • a ring-shaped seal member is provided between the outer peripheral surface of the member main body and the inner peripheral surface of the pipe member to seal the space between the outer peripheral surface and the inner peripheral surface.
  • the member main body is formed as a columnar member in which the end surfaces of the inflow end side and the outflow end side are flat surfaces orthogonal to the axis of the outer peripheral surface, it is easy to manufacture and can be attached to the tube member. It is convenient because it is simple.
  • an inflow side taper portion that expands toward the inflow port can be formed on the inflow side of the flow path.
  • the flow velocity at the throttle portion can be further increased, and the bubble generation effect can be enhanced.
  • the outflow side taper part which diameter-expands toward this outflow port can also be formed in the outflow side of a flow path with a collision part.
  • a constant cross-sectional portion having a constant flow cross-sectional area is formed as a throttle portion between the inflow side taper portion and the outflow side taper portion of the flow path with a collision portion, and the collision portion is disposed in the constant cross-section portion. If this is done, the flow accelerated by the inflow side taper can be stabilized at the constant cross-section, and can be led to the collision portion and thus the flow passage cross-sectional area reduction portion, so that bubbles can be generated more stably. .
  • the present invention also provides a shower head using the bubble generating mechanism of the present invention.
  • the shower head includes the bubble generating mechanism of the present invention.
  • a water flow supply unit for supplying a water flow to the inflow end of the member body of the bubble generating mechanism;
  • a water jet unit that jets the bubble-containing liquid collected at the outflow end of the member main body as a shower water flow.
  • a shower water flow containing a larger amount of bubbles can be easily formed even with a water flow having the same dissolved air concentration.
  • dissolved air is bubbled by precipitation under reduced pressure, the dissolved oxygen concentration of bulk water (or dissolved chlorine concentration in the case of tap water, etc.) is reduced, and oxygen (or chlorine) for the skin and hair in contact with the shower water flow Can be effectively reduced.
  • the figure which shows the 6th modification of a collision part The figure which shows the 7th modification of a collision part.
  • the figure which shows the 9th modification of a collision part The figure which shows the 10th modification of a collision part.
  • the figure which shows the 14th modification of a collision part The schematic diagram which shows another utilization form of the bubble generation mechanism of this invention.
  • the second figure. The third figure.
  • the sixth figure. The seventh figure.
  • FIG. 1 shows the appearance of a shower device with a bubble generating mechanism (hereinafter also simply referred to as “shower device”) 100 according to an embodiment of the present invention, along with its internal structure cross section.
  • the shower apparatus 100 includes a hand grip portion 101, a shower main body 100M having a head portion 100H integrated at the tip thereof, and a bubble generation engine (bubble generation mechanism) 1 incorporated in the shower main body 100M.
  • the shower main body 100M is configured as an integral plastic molded product.
  • the bubble generation engine 1 is accommodated in the cylindrical grip 101. Specifically, the cylindrical bubble generating engine 1 is inserted coaxially from the rear end side opening of the grip portion 101, and the outer peripheral edge of the front end surface is formed on the front end side of the inner peripheral surface of the grip portion 101. It is stopped by the part 101a.
  • the member body 6 is made of resin (may be made of metal), has an outer peripheral surface formed in a cylindrical shape, and is coaxially mounted on the inside of the grip portion (tube member) 101. More specifically, the member main body 6 is formed as a columnar member in which the end surfaces on the inflow end side and the outflow end side are flat surfaces orthogonal to the axis of the outer peripheral surface.
  • a portion of the grip portion 101 located upstream from the inflow end of the member main body 6 is a liquid supply conduit, and a portion located downstream of the outflow end is a liquid recovery conduit (injection restricting portion 101b). ) Is formed. Between the outer peripheral surface of the member main body 6 and the inner peripheral surface of the grip portion (tube member) 101, a ring-shaped seal member 8 that seals between the outer peripheral surface and the inner peripheral surface in a liquid-tight manner may be disposed. The flow leaking to the outer peripheral surface side of the member main body 6 is prevented.
  • a threaded portion 104 c is formed at the rear end of the gripping portion 101, and a hose connecting portion 103 is screwed and coupled thereto via a seal ring 104.
  • a shower hose (not shown) is screwed and attached to the screw portion 103t formed in the hose connection portion 103, and a water flow is supplied into the grip portion 101 via the shower hose.
  • the inner peripheral surface of the gripping portion 101 has a tapered throttle portion 101b at a portion located in front of the front end surface of the bubble generating engine 1 fixed by the step portion 101a.
  • the water flow that has passed through the bubble generating engine 1 is supplied to the shower main body 101M integrated in a communicating form with the tip end side of the gripping portion 101 while being accelerated by the throttle portion 101b. It is jetted as a shower water stream from (a plurality of water jet nozzles 109h are dispersedly formed).
  • the head portion 100H is screwed by a screw portion 108t via a seal ring 114 to a back body 107 integrated with the gripping hand portion 101 and a screw portion 107t formed on the opening periphery of the back body 108.
  • a water jet unit 102 The passing water flow of the bubble generating engine 1 enters the head portion 100H through the throttle portion 101b and is jetted from the water spray plate 109.
  • FIG. 2 is an enlarged view showing the bubble generation engine 1 taken out.
  • the member body 6 is formed with a passage 2 connecting the inlet 2n opening at the inflow end and the outlet 2x opening at the outflow end in a penetrating form, and flows in the middle of the channel 2 from the inlet 2n.
  • a narrowed portion 2c having a small cross-sectional area is formed.
  • the throttle section 2c further reduces the channel cross-sectional area of the throttle section 2c by dividing the axial section of the flow path 3 into three or more, in this embodiment, four segment regions 2e.
  • the collision part 3 to be made is arranged.
  • Each collision portion 3 is configured as a screw member, and as shown in FIG.
  • Each segment region 2e is formed such that the flow path cross-sectional areas are equal to each other.
  • the water (hot water) supplied to the shower device is a gas-dissolved liquid in which air is dissolved.
  • the flow of the gas-dissolved liquid supplied to the inflow end of the member main body 6 collides with the collision portion 3 and then passes while being distributed to each segment region 2 e. Then, due to the pressure reducing effect, the dissolved gas in the gas-dissolved liquid is deposited as bubbles, becomes a bubble-containing liquid, and is ejected as a shower water flow from the head portion 100H of FIG.
  • High-speed flow gaps 2g and 2k for passing the central flow are formed.
  • a conical portion 5t that reduces the axial cross section toward the distal end is formed at the distal end portion of the collision portion 3 (in this embodiment, it is conical, but other conical shapes such as a quadrangular pyramid and a hexagonal pyramid are formed.
  • a slit portion 2g constituting a high-speed flow gap is formed between the outer peripheral surfaces of the conical portions 5t.
  • a center gap 2k constituting a high-speed flow gap is formed between the tips of the four collision portions 3 facing each other in the inner diameter direction across the center of the section of the throttle portion 2c.
  • the collision portions 3 are provided in a cross shape in which the projecting directions are orthogonal to each other in the axial section of the restriction portion 2c.
  • the collision portions 3 cause the restriction portions to be divided into four restriction segment regions 2e. It is divided.
  • the four collision portions 3 protrude from the inner peripheral surface of the flow channel 2 toward the central portion of the flow channel 2.
  • four slit parts 2g are formed between the outer peripheral surfaces of the cone-shaped part 5t, and the collision part 3 arranged opposite to the inner diameter direction is formed.
  • a central gap 2k is formed between the tips.
  • the high-speed flow gap is formed in a cross shape in which the four slit portions 2g are integrated via the center gap 2k.
  • a plurality of circumferential restriction ribs 5 r are formed on the outer peripheral surface of each collision portion 3 along the protruding direction of the collision portion 3.
  • the valley-shaped portion 21 has a shape in which the width is reduced toward the valley low.
  • the plurality of diaphragm ribs 5r are formed adjacent to each other with the apex being an acute angle.
  • the apex angle of the aperture rib 5r is set to 60 ° or less and 20 ° or more, for example.
  • the collision portion 3 is a screw member, and the plurality of winding ribs 5r are integrally formed in a spiral shape.
  • a shower hose (not shown) is attached to the hose connection part 103 of the shower head 100, and a water flow is supplied through the shower hose.
  • the water flow from the hose connection portion 103 passes through the bubble generation engine 1 in the grip portion 101, and is further supplied to the shower main body 101M via the throttle portion 101b.
  • the water flow is injected as a shower water flow from the water flow injection portion 102 having the water spray plate 109. Is done.
  • the bubble generation engine 1 does not reduce the cross-sectional area of the flow path 2 in the throttle portion 2 c in a similar manner in the radial direction toward the cross-sectional center O where the flow velocity is high, By using it as an obstacle, the region through which the liquid can flow is reduced in the form of thinning out in the circumferential direction with respect to the center of the cross section. As a result, the fluid resistance at the throttle portion 2c does not increase excessively, and the effect of increasing the flow velocity and thus the effect of generating negative pressure can be greatly increased.
  • a constricted portion 2c is formed as a constant cross section, and the collision portion 3 is disposed in the constant cross section 2c.
  • the stabilized flow can be guided to the collision portion 3 while being stabilized by the constant cross-section portion 2c, and bubbles can be generated more stably.
  • the flow in the vicinity of the center of the cross section where the flow velocity is the largest is distributed to each segment region 2e, bypassing the tip portion of the collision portion 3.
  • the high-speed flow gaps 2g and 2k are formed between the front end portions of the collision portion 3, the high flow velocity near the center of the cross section passes through the high-speed flow gaps 2g and 2k without significantly decelerating. it can.
  • the cavitation effect due to the passing water flow is remarkably enhanced, and the generation of the generated bubbles becomes extremely remarkable.
  • the slit portion 2g formed between the tip portions (cone portions) 5t and 5t of the collision portion 3 adjacent to each other across the segment region 2e is an outer peripheral surface bus of the conical portion 5t. Formed in the direction. Accordingly, the flow toward the slit portion 2g is squeezed and compressed so as to overcome the bulge along the generatrix of the cone-shaped portion 5t. At this time, since the flow allowance of the compressed liquid is given in the longitudinal direction of the slit portion 2g, the flow velocity is hardly lowered, and the cavitation (decompression) effect is further enhanced. Further, since the cavitation generation region is formed linearly along the slit portion 2g, the region where bubbles are deposited under reduced pressure is greatly expanded, and a large amount of fine bubbles can be deposited.
  • the center gap 2k is formed so as to include the center of the cross section, and the center flow having the maximum flow velocity can pass through the center gap 2k without being influenced by detours.
  • the center flow is further narrowed by the passage of the center gap 2k to increase the speed, but since the flow detour to the segment region 2e side is permitted, an increase in fluid resistance is effectively suppressed. Thereby, the cavitation (decompression) effect in the center of the cross section is further enhanced, and a larger amount of fine bubbles can be deposited.
  • Each flow distributed to the segment region 2e generates an eddy current or turbulent flow downstream of each collision part 3, and it can be expected that the generated bubbles are entrained in the eddy current or turbulent flow and refined.
  • the high-speed flow near the center of the cross section is effectively restricted by the four conical portions 5t arranged so as to surround the center of the cross section, and flows into the center gap 2k while being increased.
  • four slit portions 2g around the center gap 2k communicate with each other, and the flow compressed and compressed in the center gap 2k bypasses the slit portion 2g, so that the fluid resistance is extremely increased. Effectively suppressed.
  • the flow detouring to the slit portion 2g itself also has a degree of freedom in the slit longitudinal direction, a decrease in the flow velocity can be suppressed low.
  • the cavitation (decompression) effect is very active even in the center gap 2k and the slit portion 2g, and nanobubble-level fine bubbles can be generated at a high concentration.
  • the tip of the collision part 3 (conical part 5t) facing the center gap 2k is sharply formed, and the flow passing through the vicinity thereof can be made particularly fast, so that the bubble miniaturization becomes more remarkable.
  • a plurality of circumferentially drawn diaphragm ribs 5 r are formed on the outer peripheral surface of the collision part 3 along the protruding direction of the collision part 3.
  • the gas-dissolved liquid that flows in the tangential direction of the outer peripheral surface of the collision portion 3 is further increased in speed by being squeezed in the groove portion (or valley-like portion) 21 between the squeezing ribs 5r, and the pressure reduction effect is enhanced.
  • the flow on the valley opening side is relatively slow, and in particular, the pressure is higher than the high-speed flow on the valley bottom side.
  • a low-speed high-pressure area HPA is formed on the valley opening side
  • a high-speed low-pressure area LPA is formed on the valley low side, so that the gas saturation dissolution amount of the liquid on the valley opening side increases and the saturation dissolution amount on the valley bottom side decreases.
  • the dissolved air (dissolved liquid) SGF in the water flow is changed from the low-speed flow region LF (high pressure region HPA: FIG. 4) on the valley opening side to the high-speed flow region FF (low pressure region LPA: 5), the bubbles MB are deposited very actively.
  • the collision portion 3 is formed by a screw member 5, and a plurality of winding ribs 5r are integrally formed in a spiral shape.
  • the flow component crossing the ridge portion of the throttle rib 5r increases, and the effect of generating turbulent flow accompanying flow separation becomes significant. Therefore, there is an advantage that the bubbles can be further miniaturized.
  • the shower head 100 by incorporating the bubble generation engine 1, it is possible to easily form a shower water flow containing a larger amount of bubbles even if the water flow has the same dissolved air concentration. Also, since dissolved air is bubbled by precipitation under reduced pressure, the dissolved oxygen concentration of bulk water (or dissolved chlorine concentration in the case of tap water, etc.) is reduced, and oxygen (or chlorine) for the skin and hair in contact with the shower water flow Can be effectively reduced. In particular, as shown in FIG.
  • the above-mentioned throttle ribs 5r are continuously formed on the outer peripheral surface of all the collision parts 3, so that the collision part 3 material contacting both sides of each segment region 2e A large number of cavitation points for bubble deposition are formed by 5r and the valley-like portion, and bubble deposition becomes extremely active, and the bubble concentration in the water stream can be significantly increased.
  • the shower head 100 it is possible to produce a visually impactful effect such that a large amount of bubbles can be introduced to the extent that the water flow can be clouded only by the precipitation effect by cavitation without taking in outside air.
  • FIG. 8 shows an example in which a part of the plurality of collision portions 3 is configured with a diaphragm rib 5r and the rest is configured without a diaphragm rib 5r.
  • the ones with the diaphragm ribs 5r and the ones without the diaphragm ribs 5r are alternately arranged in the circumferential direction, and the diaphragm ribs are formed on one side of the collision portion 3 in contact with each segment region 2e. The cavitation effect by 5r is sure to occur.
  • the narrowed rib 5r in the remaining region without forming the narrowed rib 5r at the tip of the collision portion 3 located at the center of the cross section of the high flow velocity that greatly contributes to the generation of the fine bubble. This is effective in preventing the loss due to bubble coalescence.
  • the diaphragm rib 5r was not formed on the outer peripheral surface of the conical portion 5t that forms the tip of the collision portion 3, but when the bubble generation is excessive, as shown in FIG. A configuration in which the formation of the diaphragm rib 5r is omitted in the tip side region of the cylindrical peripheral side surface portion following the conical portion 5t is also possible.
  • the configuration consists of ultrafine bubbles (especially nanobubbles of 10 nm to 800 nm or less) due to the high-speed flow gaps 2g and 2k in the central region of the cross section and fine bubbles (1 ⁇ m or more and 100 ⁇ m or less of microbubbles) due to the squeezing rib 5r in the peripheral region. It can be said that it is effective in generating the above in a balanced manner.
  • FIG. 10 shows an example in which the diaphragm rib 5r is intermittently formed in the axial direction on the cylindrical peripheral side surface portion. If it is desired to give priority to the generation of nanobubbles, it is possible to adopt a configuration in which no diaphragm rib is formed on the outer peripheral surface of the collision portion as shown in FIG.
  • independent diaphragm ribs 5s in close contact with each other in the axial direction so as to be closed in the circumferential direction around the axis of the collision portion 3 as shown in FIG.
  • independent individual restricting ribs 5 s are formed in a direction orthogonal to the axis of the collision portion 3, but it is also possible to form them by inclining with respect to a plane orthogonal to the axis. In this manner, as in FIG. 3, the squeezing rib is inclined, so that the effect of generating turbulent flow accompanying flow separation becomes significant, and the bubbles can be further miniaturized.
  • the tip angle of the cone-shaped portion 5t that forms the tip of the collision portion 3 is 90 ° (that is, the entire circumferential angle is 360 °) expressed by a cross section cut by a plane including the axis of the collision portion 3. (Value divided by the number (4) of the collision parts 3). Therefore, as shown in FIG. 12, if each collision part 3 is positioned so that the side surfaces of the adjacent cone-shaped parts 5t are in close contact with each other so that the tip of the collision part 3 is aligned with the center of the cross section of the throttle part 2c, It is also possible to have no flow gap.
  • the flow of the liquid is distributed to each segment region 2e, and bubbles can be generated by the cavitation effect mainly composed of the throttle rib 5r.
  • the tip of the cone-shaped part 5t is brought into contact with the pair of collision parts 3 and 3 opposed in the inner diameter direction, and the remaining pair of collision parts 3 and 3 are retracted in the axial direction. By doing so, the slit portion 2g can be formed.
  • the tip of the collision part 3 can be formed flat.
  • the flat tip surface 5u is formed by cutting out the tip portion of the conical portion 5t similar to FIG.
  • the center gap 2k can be expanded and the flow can be made uniform, which contributes to an improvement in the concentration of fine bubbles as a whole.
  • the side surfaces of the adjacent conical portions 5t are brought into close contact with each other, but the center gap 2k is formed in a closed shape by forming a flat front end surface 5u.
  • FIG. 15 shows an example in which the slit portion 2g is formed between the side surfaces of the adjacent conical portions 5t.
  • the main collision portion 130 is disposed so as to cross the cross section of the throttle portion 2c along the inner diameter, and further, the cross section center of the throttle portion 2c is sandwiched between the main collision portion 130 and the main collision portion 130.
  • This is an example in which a pair of opposed collision portions 30 opposed in the inner diameter direction are provided.
  • An outer peripheral gap 2j constituting a high-speed flow gap is formed between each front end surface of the opposing collision unit 30 and the outer peripheral surface of the main collision unit 130.
  • the tip of the opposing collision part 30 is formed flat, and the outer peripheral gap 2j is formed in a slit shape. Since the cavitation region can be expanded in the slit longitudinal direction, fine bubbles can be generated at a higher concentration.
  • the main collision part 130 is an integral member in the inner diameter direction in which both end parts are embedded in the member main body 6, and a throttle rib 5 r is formed on the entire outer peripheral surface of the part exposed in the throttle part 2 c.
  • the outer peripheral surface of the main collision portion 130 facing the tip surface of the opposing collision portion 30 is uneven by the restriction rib 5r, and the gap interval is narrowed at the position of the restriction rib 5r (mountain) so that the high-speed flow region In the valley portion 21, the gap interval is increased and a low flow velocity region is generated.
  • a dissolved gas flow is generated from the low flow velocity region to the high flow velocity region in accordance with the pressure difference between the two adjacent regions, and further, the dissolved gas is generated in the valley portion 21 shown in FIGS.
  • the outer peripheral surface of the main collision part 130 is reduced in distance from the liquid inflow side to the position facing the front end surface of the opposing collision part 30, and the increase in flow velocity due to the throttling effect also enhances the bubble generation effect. This is advantageous. Note that, as indicated by broken lines in FIG. 16, the space of the valley-shaped portion 21 forms the outer peripheral gap 2j even if the front end surface of the opposing collision portion 30 is brought into contact with the diaphragm rib 5 on the outer peripheral surface of the main collision portion 130. It becomes a shape and active bubble deposition can be expected.
  • FIG. 17 shows an example in which the front ends of the opposed collision portions 3 and 3 are sharply formed.
  • the squeezing effect in the vicinity of the tip of the opposing collision portion 3 is enhanced, and the bubbles can be miniaturized by increasing the flow velocity.
  • Each of the main collision parts has a flat front end surface 5u and a pair of collision parts 30 and 30 each having a chamfered portion 3t formed along the outer periphery of the front end surface 5u are in contact with each other at the front end surfaces 5u and 5u. In this manner, it is arranged so as to face the inner diameter direction of the throttle portion 2c.
  • the front ends of the opposing collision portions 3 and 3 form an outer peripheral gap 2j so as to face a groove portion having a V-shaped cross section formed by the chamfered portion 3t of the two collision portions 30 and 30 forming the main collision portion.
  • tip is further heightened.
  • the main collision portion is indicated by a pair of collision portions 30 ′, 30 ′ (hereinafter referred to as main collision portions 30 ′, 30 ′) each having flat tip surfaces 5u, 5u. It is also possible to form a central gap 2k that includes the center of the cross section of the throttle portion 2c between the tip surfaces 5u and 5u, and to be disposed opposite to the inner diameter direction of the throttle portion 2c. .
  • FIG. 18 shows a configuration in which the distal end surfaces of the opposing collision portions 30 and 30 are brought into contact with the outer peripheral surfaces of the leading end portions of the main collision portions 30 ′ and 30 ′ (as a result, the diaphragm rib 5 r).
  • FIG. 19 shows a slit-like outer peripheral gap 2j in which the front end surfaces 5u and 5u of the opposing collision portions 30 and 30 are separated from the outer peripheral surface of the front end portion of the main collision portions 30 ′ and 30 ′ (and consequently the diaphragm rib 5r). An example in which is further formed will be shown.
  • the flow that is squeezed and compressed in the center gap 2k is diverted to the slit-shaped outer peripheral gap 2j, so that an increase in fluid resistance is extremely effectively suppressed. Further, since the outer peripheral gap 2j is also narrowed in a slit shape, a decrease in flow velocity at the detour destination can be suppressed to a low level. As a result, the cavitation (decompression) effect is very active even in the center gap 2k and the slit portion 2g, and nanobubble-level fine bubbles can be generated at a high concentration.
  • all four segment areas are formed.
  • the number of segment areas is not limited to four.
  • the number of segment regions formed can be made 5 or more by reducing the outer diameter of the collision part.
  • FIG. 21 is a schematic diagram of a circulation type bubble generation mechanism 200 using the bubble generation engine 1.
  • the bubble generating engine 1 is incorporated in a wall portion of the water tank 54 to be a water flow outlet for the water tank 54, while a water flow inlet 53 is formed at another position of the wall portion, and the water tank is formed by a pump 51 through pipes 50 and 52. Inside water W bubble generation engine 1 It is designed to circulate through. When the water flow pumped by the pump 51 passes through the bubble generation engine 1, the bubbles MB are deposited and discharged into the water tank 54 as a bubble-containing liquid.
  • a known ejector nozzle is mounted on the pipe 50 or the pipe 52, and the sucked gas is further finely pulverized into the water tank 54 while passing through the bubble generating engine 1 while sucking and taking in outside air through the ejector nozzle. It can also be configured to release.
  • Inner diameter 16 mm
  • flow path length L2 8 mm
  • Collision part 3 Screw outer diameter: M2, tip part has a tip angle of 90 ° in the cross section including the axis, and the size of the center gap 2k (length between the tip of the opposing collision part 3): 0 mm, 0. 3 conditions of 18mm and 0.36mm
  • a hose was connected to the bubble generation engine 2, 10 ° C. water was supplied to the inlet 2 n at a supply pressure of 0.12 MPa, and the injected water was discharged into a water tank having a volume of about 90 liters. At this time, the injection flow rate from the outlet 2x was about 10 liters / minute.
  • the laser diffraction particle size distribution measuring device makes the laser light beam incident on the measurement cell at a certain angle, and uses the fact that the scattering angle varies depending on the particle size of the particle to be measured (here, bubble).
  • the scattered light intensity is detected by an individual photodetector, and information related to the particle size distribution is obtained from the detected intensity of each sensor.
  • the detection intensity of scattered light at the corresponding detector tends to increase as the volume of the bubble increases, so that multiple light detections with different particle size intervals are handled.
  • What is directly calculated using the output intensity ratio of the vessel is distribution information using the relative total volume (hereinafter also referred to as volume relative frequency) for each particle size interval as an index.
  • volume relative frequency the relative total volume
  • the recognition of the average diameter is high is the number average diameter obtained by dividing the total value of the particle diameter by the number of particles, but in the case of a laser diffraction particle size distribution measuring device, on the measurement principle, Only the volume average diameter weighted by the particle volume can be calculated directly. Therefore, the bubble diameter distribution was calculated by converting the volume relative frequency into the number relative frequency on the assumption that the bubble was spherical by using software installed as standard in the apparatus.
  • FIG. 22 shows a measurement result while water is flowing when the center gap 2k is 0 mm at a supply pressure of 0.12 MPa, that is, when the slit portion 2g is not formed.
  • the upper row shows the bubble diameter distribution by the number relative frequency
  • the lower row shows the scattered light intensity at each detector (that is, the scattering angle position) at that time.
  • the measurement result of the number average diameter at this time is 27.244 ⁇ m.
  • the water flow was stopped, and after leaving for about 1 minute until the coarse bubbles in the water tank rose on the water surface, the same measurement was performed.
  • the results are shown in FIG. Although the average diameter was 0.128 ⁇ m, it was found that very fine bubbles existed, but the absorbance of water (indicating the degree of laser light loss due to scattering) was greatly reduced, and the concentration of fine bubbles Is considered low.
  • FIG. 24 shows the measurement results when the supply pressure was lowered to 0.09 MPa, and after standing for about one minute after the water flow was stopped, the measurement was performed in exactly the same manner. Very fine bubbles having an average diameter of 0.113 ⁇ m are confirmed, the absorbance is as high as 0.012, and it can be seen that the fine bubbles are formed at a relatively high concentration. It can be seen that fine bubbles can be formed at a high concentration even in an engine without a central gap by setting the supply pressure somewhat low and moderately suppressing the coalescence of bubbles.
  • FIG. 25 shows the measurement results during water flow when the center gap 2k is 0.18 mm at a supply pressure of 0.12 MPa.
  • the inside of the water tank was cloudy, but the rising speed of the bubbles was clearly slower than that in the case where the center gap 2k was not formed, and the average diameter of the bubbles was reduced to 18.539 ⁇ m.
  • the measurement result after one minute progress after a water flow stop is FIG. It can be seen that the average diameter decreases to 2.63 ⁇ m while maintaining a relatively high absorbance (0.025).
  • FIG. 27 shows the result of measurement performed in the same manner by dropping the supply pressure to 0.09 MPa and stopping the water flow for about 1 minute. It can be seen that extremely fine bubbles having an average diameter of 0.024 ⁇ m are formed at a high concentration while maintaining the absorbance as high as 0.020.
  • FIG. 28 shows the measurement results during water flow when the center gap 2k is 0.36 mm at a supply pressure of 0.12 MPa. Compared to the case where the central gap 2k is not formed, the average bubble diameter is as small as 18.477 ⁇ m.
  • FIG. 29 shows the measurement result after one minute has elapsed after stopping the water flow, and the average diameter is reduced to 0.153 ⁇ m while maintaining a relatively high absorbance (0.017). It can be seen that even if the supply pressure is slightly high, fine bubbles in the nanometer range are formed at a high concentration.
  • FIG. 30 shows the measurement results obtained by reducing the supply pressure to 0.09 MPa and leaving it for about 1 minute after stopping water flow. It can be seen that extremely fine bubbles having an average diameter of 0.071 ⁇ m are formed at a high concentration while maintaining the absorbance as high as 0.015.
  • Bubble generation engine (bubble generation mechanism) 2 channel 2a inflow side taper part 2b outflow side taper part 2c throttle part 2e segment area 2n inflow port 2x outflow port 2g slit part (high-speed flow gap) 2k Center gap (High-speed flow gap) 3, 30, 30 ', 130 Colliding part 5t Conical part 5r Drawing rib 6 Member main body 100 shower device

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Bathtubs, Showers, And Their Attachments (AREA)
  • Nozzles (AREA)

Abstract

 複雑な気液混合機構を用いずとも十分な量の微細気泡を発生できる気泡発生機構を提供する。 部材本体6には、流入端に開口する流入口2nと流出端に開口する流出口2xとをつなぐ流路2が貫通形態に形成され、その流路2の途中位置に流入口2nよりも流通断面積が小さい絞り部2cが形成されている。絞り部2cには、流路2の軸断面を3以上のセグメント領域2eに区画する形態で、当該絞り部2cの流路断面積をさらに減少させる衝突部3が配置されている。

Description

気泡発生機構及び気泡発生機構付シャワーヘッド
 本発明は、気泡発生機構、特にマイクロバブルやナノバブルなどの微細気泡の発生に好適な機構と、それを用いたシャワーヘッドに関するものである。
 水中に形成される気泡は、そのサイズによりミリバブルあるいはマイクロバブル(さらには、マイクロ・ナノバブルおよびナノバブル等)に分類されている。ミリバブルはある程度の巨大な気泡であり、水中を急速に上昇して最終的には水面で破裂して消滅する。これに対して、直径が50μm以下の気泡は、微細であるが故に水中での滞在時間が長く、気体の溶解能力にも優れているため水中においてさらに縮小していき、ついには水中で消滅(完全溶解)する特殊な性質を有し、これをマイクロバブルと称することが一般化しつつある(非特許文献1)。本明細書において「微細気泡」とは、上記マイクロバブルのほか、さらに径の小さいマイクロ・ナノバブル(直径10nm以上1μm未満)およびナノバブル(直径10nm未満)を総称する概念を指すものとする。
 近年、こうした微細気泡が多くの用途に応用され、特に、浴室等で使用するシャワー装置に関しては気泡発生機構を組み込んだものが種々提案されている(特許文献1~5)。これら特許文献に開示されたシャワー装置に組み込まれている気泡発生機構は、シャワー水流を噴出するヘッド部分に旋回流発生翼体を組み込み、該翼体が形成する渦流に翼体軸部に形成された細孔から負圧吸引される外気を巻き込んで気液混合する方式(特許文献1:二相流旋回方式と称される)、シャワー本体(ヘッド部分から延出する把手の部分)内にベンチュリ管などの絞り機構を組み込み、水が該絞り機構を高流速化して通過する際にベルヌーイの原理に由来して生ずる減圧効果により、水に溶解していた空気を微細気泡として析出させるキャビテーション方式(特許文献2~5)に大別される。
特開2008-229516号公報 特開2008- 73432号公報 特開2007-209509号公報 特開2007- 50341号公報 特開2006-116518号公報 インターネットホームページ(http://unit.aist.go.jp/emtech-ri/26env-fluid/takahashi.pdf#search='マイクロバブルおよびナノバブルに関する研究')
 しかし、上記従来のシャワー装置では、いずれのタイプのものも気泡の微細化度がまだまだ不十分であり、水中での滞留時間が長いマイクロバブルの発生量、特に粒径1μm未満のマイクロ・ナノバブル領域の気泡発生量が十分でない問題があった。また、特許文献1に代表される二相流旋回方式のものはシャワーヘッド内に旋回流発生翼を組み込まねばならず機構が複雑となる問題がある。さらに、入浴用等の一般用途に使用される水道水圧力では、吸引する外気を十分細径化するのに十分な回転速度が得られず、マイクロバブル領域以下の微細気泡の発生効率が悪い欠点がある。
 他方、キャビテーション方式を採用する特許文献2~4のシャワー装置はベンチュリ管やオリフィスなどの周囲の閉じた絞り孔が1か所設けられているのみであり、その絞り孔位置では他に流路部分が存在しない構造になっている。このため、絞り孔通過時の流体抵抗が上昇して期待されるほど流速が増加せず、また絞り孔内では孔内壁面からのラジアル方向の背圧も受けやすいので、キャビテーション(減圧)効果が不十分となり、気泡析出量が不足しやすい難点がある。
 本発明の課題は、複雑な気液混合機構を用いずとも十分な量の気泡を発生でき、ひいてはマイクロバブル領域あるいはマイクロ・ナノバブル領域の気泡の発生量を、従来達成し得なかったレベルにまで高めることができる気泡発生機構と、それを用いたシャワーヘッドを提供することにある。
 上記の課題を解決するために、本発明の気泡発生機構は、
 液体流入側となる流入端と液体流出側となる流出端とが定められた部材本体に対し、流入端に開口する流入口と流出端に開口する流出口とをつなぐ流路が貫通形態に形成されるとともに、流路の途中位置に流入口よりも流通断面積が小さい絞り部が形成され、該絞り部にて流路の軸断面を3以上のセグメント領域に区画する形態で、当該絞り部の流路断面積をさらに減少させる衝突部が配置され、
 部材本体の流入端に供給された気体溶解液体の流れを衝突部に衝突させた後、各セグメント領域に分配しつつ増速して通過させ、その減圧効果により溶解した気体を析出させて気泡含有液体となし、流出口から流出させるようにしたことを特徴とする。
 このような構造の気泡発生機構に例えば水流を供給すると、流路に供給された液体は絞り部にて絞られ流速が増加する。その結果、ベルヌーイの原理に従い絞り部(及びその下流側)に負圧域が形成され、そのキャビテーション(減圧)効果により水流中の溶存気体(例えば空気)が析出して気泡が発生する。
 水中の気泡は固体粒子と異なり、相互衝突しても気泡の合体が生じやすく、例えば、ベンチュリ管などの周知の絞り機構を通過させるだけでは通過水流の流速が不十分なため、絞り孔下流側の減圧レベルも小さく渦流の発生程度も小さい。また、そのような絞り機構では絞り部にて流路断面が相似的に縮小する構造になっているので、流速を高めようとするあまりむやみに絞り部の断面を縮小すると流体の通過抵抗が大きくなり、断面縮小比に見合った流速の上昇が見込めず、気泡発生効率が却って低下することになる。従って、キャビテーションによる気泡析出量も少ないし、気泡の粉砕が起きる程度の衝突も十分に起こすことができないので、微細気泡を十分に形成することができなかった。
 これに対し、本発明の気泡発生機構においては、絞り部にて流路の軸断面を3以上のセグメント領域に区画する形態で、当該絞り部の流路断面積をさらに減少させる衝突部が配置されている。つまり、流路の断面積を高流速となる断面中心に向けて径方向に相似的に縮小するのではなく、衝突部を障害物として用いることで、液体が流通可能な領域を断面中心に関する周方向にいわば間引く形で流路の断面縮小を図るのである。その結果、絞り部での流体抵抗が過度に増加せず、流速の増加効果ひいては負圧発生効果を大幅に増すことができる。これにより、各セグメント領域(及びその下流)でのキャビテーション(減圧)効果が大幅に高められ、例えば、溶存空気濃度が同じ水流であってもより多量の気泡を析出させることができる。
 本発明の気泡発生機構において、セグメント領域に流れ込む流体は衝突部の先端部を迂回して流れ込むものが主体的となり、流速が最も大きくなる断面中心付近の流れは、その迂回により減速する傾向にある。この場合、絞り部の断面中心部に向けて突出する複数の衝突部の2つ以上のものの先端部同士の間に、断面周囲流に対し相対的に高速となる断面中心流を通過させるための高速流ギャップを形成しておくことが有効である。これにより、断面中心付近の流れを大きく減速させずに高速流ギャップを経て通過させることができ、該高速流を微細な気泡の発生に特に有効に活用することが可能となる。
 高速流ギャップは種々の形態に形成できる。例えば衝突部の先端部に先端に向かうほど軸断面を縮小させる錐状部を形成し、セグメント領域を挟んで互いに隣接する2つの衝突部において錐状部の外周面間に、高速流ギャップを構成するスリット部を形成することができる。スリット部は錐状部の外周面母線方向に形成されるので、該スリット部に向かう流れは錐状部の該母線に沿う膨らみをいわば乗り越える形で絞られ圧縮される。このとき、スリット部の長手方向に圧縮された液体の流動代が与えられるので流速が低下しにくく、キャビテーション(減圧)効果がさらに高められる。そして、キャビテーション発生領域が、従来のベンチュリ管やオリフィスでは絞り中心の近傍でポイント状に形成されていたのが、上記構成ではスリット部に沿って線状に形成されるため、気泡が減圧析出する領域が大幅に拡張し、多量の微細気泡を析出させることができる。
 他方、複数の衝突部の少なくとも1対のものを、絞り部の断面中心を挟んで内径方向に対向する形で配置し、それら衝突部の先端間に、高速流ギャップを構成する中心ギャップを形成することもできる。この構成によると、最も高流速となる断面中心の流れを、中心ギャップを経て大きな損失を生じることなく通過させることが可能となる。その断面中心の流れは中心ギャップの通過によりさらに絞られて高速化しようとするが、セグメント領域側への流れ迂回が許容されているため流体抵抗の増加が効果的に抑制され、キャビテーション(減圧)効果が大幅に高められ、断面中心における流速を大幅に増加できるので、より多量の微細気泡を析出させることができる。
 衝突部は、各々その突出方向が絞り部の軸断面にて互いに直交する十字形態に設けることができ、それら衝突部により絞り部を4つの絞りセグメント領域に分割することができる。衝突部を互いに直交する向きに配置して4つの絞りセグメント領域に分割することで、断面中心に関する衝突部ひいては絞りセグメント領域の配置の対象性も良好となり、個々の絞りセグメント領域にてより均質に微細気泡を析出することができるようになる。
 この場合、絞り部の断面中心部に向けて突出する複数の衝突部の2つ以上のものの先端部同士の間に、断面周囲流に対し相対的に高速となる断面中心流を通過させるための高速流ギャップを形成できる。4つの衝突部は流路の内周面から該流路の中心部に向けて突出する形で設けることができる。また、各衝突部の先端部には先端に向かうほど軸断面を縮小させる錐状部を形成することで、セグメント領域を挟んで互いに隣接する衝突部において錐状部の外周面間に、高速流ギャップを構成するスリット部を形成できる。その結果、絞り部の断面中心を挟んで内径方向に対向して配置される衝突部の先端間に、高速流ギャップの一部を構成する中心ギャップが形成され、高速流ギャップは、4つのスリット部が中心ギャップを介して一体化された十字形態に形成される。
 上記の構成によると、最も高流速となる断面中心の流れは、断面中心を取り囲むように配置される4つの錐状部により効果的に絞られて中心ギャップに増速しつつ流れ込む。そして、中心ギャップには周囲の4つのスリット部が連通し、中心ギャップ内で絞られて圧縮される流れは、スリット部へ迂回することで流体抵抗の増加が極めて効果的に抑制され、かつ、スリットにより絞られているので迂回先での流速低下も低く抑えられる。その結果、中心ギャップだけでなくスリット部でもキャビテーション(減圧)効果は極めて活発となり、ナノバブルレベルの微細気泡を高濃度に発生させることができるようになる。
 この場合、中心ギャップに臨む衝突部の先端を先鋭に形成しておくことにより、その近傍を通過する流れを特に高速化でき、気泡微細化がより顕著となる。一方、衝突部の先端は平坦に形成することも可能であり、この場合は、中心ギャップの拡張と流れ均一化により、微細気泡の全体としての発生濃度向上に貢献する。
 衝突部は、絞り部の断面を内径に沿って横切るように配置される主衝突部と、該主衝突部と直交する形で、絞り部の断面中心を挟んで内径方向に対向して配置されるとともに、各々先端面と主衝突部の外周面との間に、高速流ギャップを構成する外周ギャップを形成する1対の対向衝突部とを備えるものとして構成することもできる。特に、絞り部の内径寸法を縮小せざるを得ない場合に、上記構成は中心ギャップを形成する構成よりも簡略化できる。また、断面中心付近の流れは主衝突部に衝突して迂回する形となるが、主衝突部を迂回する遠心力の影響により増速しつつ対向衝突部が形成する外周ギャップを通過する形となるので、主衝突部との衝突による流れ減速の影響がそれほど大きくない利点がある。
 この場合、対向衝突部の先端は平坦に形成することで、外周ギャップをスリット状に形成でき、スリット長手方向にキャビテーション領域を拡張できる。その結果、微細気泡をより高濃度で発生することができる。また、主衝突部は、各々平坦な先端面を有する1対の衝突部を、それら先端面間に絞り部の断面中心を包含する中心ギャップを形成する形で、絞り部の内径方向に対向して配置することも可能である。主衝突部をこのように分割し、その先端面間に中心ギャップを形成することで、流速が最も大きくなる断面中心付近の流れは中心ギャップによりさらに絞られて高速化し、さらに中心ギャップ内で絞られて圧縮される流れは、スリット状の外周ギャップへ迂回することで流体抵抗の増加が極めて効果的に抑制される。また、外周ギャップもスリット状に絞られているので迂回先での流速低下も低く抑えられる。その結果、中心ギャップおよびスリット部でもキャビテーション(減圧)効果は極めて活発となり、ナノバブルレベルの微細気泡を高濃度に発生させることができるようになる。
 他方、対向衝突部の先端は先鋭に形成することも可能であり、外周ギャップにおいて対向衝突部先端付近の絞り効果が高められ、高流速化による気泡微細化を図ることができる。この場合、主衝突部は、各々平坦な先端面を有するとともに該先端面の外周に沿って面取り部が形成された1対の衝突部を、該先端面にて互いに接するように絞り部の内径方向に対向して配置形成したものとして構成できる。このとき、対向衝突部の先端を、主衝突部をなす2つの衝突部の面取り部が作るV字状断面の溝部と対向する形で外周ギャップを形成するようにすれば、上記の対向衝突部先端付近の高流速化による気泡微細化効果を一層高めることができる。
 衝突部の外周面には、周方向の絞りリブを衝突部の突出方向に沿って複数巻形成することができる。このようにすると、衝突部の外周面接線方向に流れ込む気体溶解液体が、絞りリブ間の溝部(あるいは谷状部)内にて絞られることによりさらに増速し、減圧効果が高められる。他方、谷開口側の流れは相対的に低速となり、特に谷底側の高速流に対して圧力は高くなる。その結果、谷開口側の液体の気体飽和溶解量が増加し、谷底側の飽和溶解量が減少する形となって溶解液体が谷底側に流れ、気泡を極めて活発に析出させることができる。
 谷状部は谷低に向かうほど幅が縮小する形状とすれば、谷状部内での流れ絞り効果ひいては気泡析出効果を高める上で望ましい。この場合、谷状部内の複数の絞りリブは頂部を鋭角としつつ互いに隣接して形成するのが好適である。また、絞りリブの頂角は、上記効果を適正化する観点において60°以下20°以上に設定するのがよい。
 複数巻の絞りリブは、らせん状に一体形成することができる。このようにすると、絞りリブの形成が容易になるほか、流れに対し絞りリブが傾斜することで、絞りリブの稜線部を横切る流れ成分が増加し、流れ剥離に伴う乱流発生効果が著しくなるので、気泡のさらなる微細化を図ることができる。この場合、衝突部は、脚部末端側が流路内に突出するねじ部材にて形成しておくと、該ねじ部材の脚部の外周面に形成されるねじ山を絞りリブとして利用でき、製造が容易である。
 全ての衝突部の外周面に上記の絞りリブを連続的に形成すれば、各セグメント領域の両側に接する衝突部には、それら絞りリブひいては谷状部により気泡析出のためのキャビテーションポイントが多数形成され、気泡析出が極めて活発となって水流中の気泡濃度を大幅に上昇させることができる。この効果は、例えば本発明の気泡発生機構をシャワーヘッドや浴槽への水流噴霧部に組み込んだとき、外気を取り入れずともキャビテーションによる析出効果のみで水流を白濁できる程度に大量の気泡を導入できるなど、視覚的にインパクトのある演出が可能となる。しかし、絞り部に流れ込む流れの流速が大きい場合は過剰な気泡析出が生じ、析出した気泡の合体が生じて微細気泡濃度が却って減少してしまうことも懸念される。そこで、微細気泡の発生を優先したい場合には、全ての衝突部の外周面の一部にのみ絞りリブを形成して、谷状部での気泡析出頻度を抑制することが有効である。この場合、微細気泡発生への貢献が大きい高流速の断面中心部に位置する衝突部の先端部には絞りリブを形成せず、残余の領域に絞りリブを形成することが、微細気泡を気泡合体により損失させないようにする上で有効である。他方、複数ある衝突部の一部を絞りリブ付きとし、残余を絞りリブなしとして構成することも可能である。
 次に、本発明の気泡発生機構において、部材本体は外周面を円筒面状に形成することにより、管部材の内側に同軸的に装着できる。この場合、該管部材の部材本体の流入端よりも上流側に位置する部分が液体供給管路を、同じく流出端よりも下流側に位置する部分が液体回収管路を形成することとなる。このようにすると、単一の管部材にて液体供給管路と液体回収管路とを一括形成できるので部品点数の削減を図ることができる。この場合、部材本体の外周面と管部材の内周面との間に、それら外周面と内周面との間を液密にシールするリング状のシール部材を配置し、部材本体外周面側に漏洩する流れを阻止するように構成することが望ましい。また、部材本体は、流入端側と流出端側との各端面が外周面の軸線と直交する平坦面とされた円柱状部材として形成すれば、製造も容易であり、管部材への装着も簡単なので好都合である。
 次に、流路の流入口側には、該流入口に向けて拡径する流入側テーパ部を形成できる。これにより、絞り部での流速をさらに増加でき、気泡発生効果を高めることができる。また、衝突部付流路の流出口側に、該流出口に向けて拡径する流出側テーパ部を形成することもできる。これにより、流路断面積減少部を通過した流れを低損失にて減速しつつ部材本体の流出端側に受け渡すことでき、ひいては気泡発生機構からの気泡含有液体の流出効率を高めることができる。該構成においては、衝突部付流路の流入側テーパ部と流出側テーパ部との間に流路断面積が一定の断面一定部を絞り部として形成し、衝突部を該断面一定部に配置しておけば、流入側テーパ部により増速された流れを断面一定部にて安定化させつつ、衝突部ひいては流路断面積減少部に導けるので、気泡をより安定して発生させることができる。
 最後に、本発明は、上記本発明の気泡発生機構を用いたシャワーヘッドも提供する。具体的には、該シャワーヘッドは、上記本発明の気泡発生機構と、
 気泡発生機構の部材本体の流入端に対し水流を供給する水流供給部と、
 部材本体の流出端にて集約された気泡含有液体をシャワー水流として噴射する水流噴射部と、を備えたことを特徴とする。
 上記本発明のシャワーヘッドによれば、本発明の気泡発生機構が組み込まれることにより、溶存空気濃度が同じ水流であっても、より多量の気泡を含有したシャワー水流を容易に形成することができる。また、溶存空気が減圧析出により気泡化するので、バルク水の溶解酸素濃度(あるいは、水道水等の場合、溶解塩素濃度)が減じられ、シャワー水流に接触する肌や髪に対する酸素(あるいは塩素)の影響を効果的に低減できる。
本発明の気泡発生機構付シャワー装置の一例を示す側面断面図及び正面図。 図1の気泡発生機構付シャワー装置に組み込まれた気泡発生エンジンの説明図。 図2の気泡発生エンジンの要部を拡大して示す図。 衝突部の作用説明図。 絞りリブの作用説明図。 衝突部の作用説明図。 衝突部の第一変形例を示す図。 衝突部の第二変形例を示す図。 衝突部の第三変形例を示す図。 衝突部の第四変形例を示す図。 衝突部の第五変形例を示す図。 衝突部の第六変形例を示す図。 衝突部の第七変形例を示す図。 衝突部の第八変形例を示す図。 衝突部の第九変形例を示す図。 衝突部の第十変形例を示す図。 衝突部の第十一変形例を示す図。 衝突部の第十二変形例を示す図。 衝突部の第十三変形例を示す図。 衝突部の第十四変形例を示す図。 本発明の気泡発生機構の別利用形態を示す模式図。 実施例の気泡測定結果を示す第一の図。 同じく第二の図。 同じく第三の図。 同じく第四の図。 同じく第五の図。 同じく第六の図。 同じく第七の図。 同じく第八の図。 同じく第九の図。
 以下、本発明を実施するための形態を添付の図面を用いて説明する。
 図1は、本発明の一実施形態に係る気泡発生機構付シャワー装置(以下、単に「シャワー装置」ともいう)100の外観をその内部構造断面とともに示すものである。シャワー装置100は、握り手部101と、その先端に一体化されたヘッド部100Hを有するシャワー本体100Mと、該シャワー本体100Mの内部に組み込まれた気泡発生エンジン(気泡発生機構)1とを有する。シャワー本体100Mは一体のプラスチック成型品として構成されている。
 この実施形態では、気泡発生エンジン1は筒状の握り手部101の内部に収容されている。具体的には、円柱形の気泡発生エンジン1が握り手部101の後端側開口から同軸的に挿入され、その前端面外周縁が握り手部101の内周面前端側に形成された段差部101aに当て止めされている。部材本体6は樹脂製(金属製でもよい)であり、外周面が円筒面状に形成されており、握り手部(管部材)101の内側に同軸的に装着されている。より具体的には部材本体6は、流入端側と流出端側との各端面が外周面の軸線と直交する平坦面とされた円柱状部材として形成されている。そして、握り手部101の部材本体6の流入端よりも上流側に位置する部分が液体供給管路を、同じく流出端よりも下流側に位置する部分が液体回収管路(噴射用絞り部101b)を形成している。部材本体6の外周面と握り手部(管部材)101の内周面との間には、それら外周面と内周面との間を液密にシールするリング状のシール部材8が配置ざれ、部材本体6の外周面側に漏洩する流れが阻止されるように構成されている。
 握り手部101の後端部にはねじ部104cが形成され、これにホース接続部103がシールリング104を介して螺合結合されている。そして、ホース接続部103に形成されたねじ部103tに対し図示しないシャワーホースが螺合取り付けされ、該シャワーホースを介して握り手部101の内部に水流が供給される。
 握り手部101の内周面は、段差部101aにより固定された気泡発生エンジン1の前端面よりも前方に位置する部分がテーパ状の絞り部101bとされている。気泡発生エンジン1を通過した水流は該絞り部101bにて増速されつつ、握り手部101の先端側に連通形態で一体化されたシャワー本体101Mに供給され、水流噴射部102の散水板109(複数の水流噴射口109hが分散形成されている)からシャワー水流として噴射される。
 ヘッド部100Hは、握り手部101に一体化された背面本体107と、該背面本体108の開口周縁に形成されたねじ部107tに対し、シールリング114を介して、ねじ部108tにより螺着された水流噴射部102とからなる。気泡発生エンジン1の通過水流は、絞り部101bを経てヘッド部100H内に入り込み、散水板109から噴射される。
 図2は、気泡発生エンジン1を取り出して示す拡大図である。部材本体6には、流入端に開口する流入口2nと流出端に開口する流出口2xとをつなぐ流路2が貫通形態に形成され、その流路2の途中位置に流入口2nよりも流通断面積が小さい絞り部2cが形成されている。絞り部2cには、図3に示すように、流路2の軸断面を3以上、この実施形態では4つのセグメント領域2eに区画する形態で、当該絞り部2cの流路断面積をさらに減少させる衝突部3が配置されている。各衝突部3はねじ部材として構成され、図2に示すように、絞り部2cに向けて部材本体6の外周面側から半径方向に孔設されたねじ孔3hにねじ込まれる形で4本取り付けられている。各セグメント領域2eは、流路断面積が互いに等しくなるように形成されている。
 シャワー装置に供給される水(温水)は空気が溶け込んだ気体溶解液体である。図2において、部材本体6の流入端に供給された気体溶解液体の流れは衝突部3に衝突した後、各セグメント領域2eに分配されつつ増速して通過する。そして、その減圧効果により、気体溶解液体中の溶解気体が気泡となって析出し、気泡含有液体となり、図1のヘッド部100Hからシャワー水流となって噴出される。
 図3に示すように、絞り部2cの断面中心部に向けて突出する複数の衝突部3の2つ以上のものの先端部同士の間には、断面周囲流に対し相対的に高速となる断面中心流を通過させるための高速流ギャップ2g,2kが形成されている。衝突部3の先端部には、先端に向かうほど軸断面を縮小させる錐状部5tが形成され(この実施形態では円錐状であるが、四角錐や六角錐などの他の錐体形状であってもよい)、セグメント領域2eを挟んで互いに隣接する2つの衝突部3において、それら錐状部5tの外周面間に、高速流ギャップを構成するスリット部2gが形成されている。一方、4つの衝突部3の、絞り部2cの断面中心を挟んで内径方向に対向するもの同士の先端間には、高速流ギャップを構成する中心ギャップ2kが形成されている。
 図3に示すごとく、衝突部3は、各々その突出方向が絞り部2cの軸断面にて互いに直交する十字形態に設けられており、それら衝突部3により絞り部は4つの絞りセグメント領域2eに分割されている。4つの衝突部3は流路2の内周面から該流路2の中心部に向けて突出している。そして、セグメント領域2eを挟んで互いに隣接する衝突部3には、錐状部5tの外周面間にスリット部2gが4つ形成されるとともに、内径方向に対向して配置される衝突部3の先端間に中心ギャップ2kが形成される。その結果、高速流ギャップは、4つのスリット部2gが中心ギャップ2kを介して一体化された十字形態に形成されることとなる。
 また、図3に示すように、各衝突部3の外周面には、周方向の絞りリブ5rが衝突部3の突出方向に沿って複数巻形成されている。谷状部21は谷低に向かうほど幅が縮小する形状となっている。また、複数の絞りリブ5rは頂部を鋭角としつつ互いに隣接して形成されている。該絞りリブ5rの頂角は、例えば60°以下20°以上に設定されている。前述のごとく衝突部3はねじ部材であり、複数巻の絞りリブ5rはらせん状に一体形成されている。
 以下、図1のシャワーヘッド100の作用・効果について説明する。シャワーヘッド100のホース接続部103にシャワーホース(不図示)を取り付け、該シャワーホースを介して水流を供給する。ホース接続部103からの水流は握り手部101内にて気泡発生エンジン1を通過し、さらに絞り部101bを経てシャワー本体101Mに供給され、散水板109を有する水流噴射部102よりシャワー水流として噴射される。
 図2に示すごとく、気泡発生エンジン1は、絞り部2cにおいて流路2の断面積が、高流速となる断面中心Oに向けて径方向に相似的に縮小するのではなく、衝突部3を障害物として用いることにより、液体が流通可能な領域が断面中心に関する周方向にいわば間引く形で縮小される。その結果、絞り部2cでの流体抵抗が過度に増加せず、流速の増加効果ひいては負圧発生効果を大幅に増すことができる。そして、セグメント領域2e(及びその下流)に分配される気体溶解液体へのキャビテーション(減圧)効果が大幅に高められ、溶存空気濃度が同じ水流であってもより多量の気泡を析出させることができる。流入側テーパ部2aと流出側テーパ部2bとの間には絞り部2cが断面一定部として形成され、衝突部3が該断面一定部2cに配置されているので、流入側テーパ部2aにより増速された流れを断面一定部2cにて安定化させつつ、衝突部3に導くことができ、気泡をより安定して発生させることが可能となっている。
 そして、絞り部2cにおいては、流速が最も大きくなる断面中心付近の流れが衝突部3の先端部を迂回して各セグメント領域2eに分配される。図3に示すように、衝突部3の先端部間に高速流ギャップ2g,2kが形成されているので、断面中心付近の高流速は該高速流ギャップ2g,2kにて大きく減速することなく通過できる。その結果、該高速流ギャップ2g,2kでは通過水流によるキャビテーション効果が著しく高められ、発生する気泡の微細化が極めて顕著となる。
 高速流ギャップ2g,2kのうち、セグメント領域2eを挟んで隣接する衝突部3の先端部(錐状部)5t,5t間に形成されるスリット部2gは、該錐状部5tの外周面母線方向に形成される。従って、該スリット部2gに向かう流れは錐状部5tの該母線に沿う膨らみをいわば乗り越える形で絞られ圧縮される。このとき、スリット部2gの長手方向には、圧縮された液体の流動代が与えられるので流速が低下しにくく、キャビテーション(減圧)効果がさらに高められる。また、キャビテーション発生領域はスリット部2gに沿って線状に形成されるため、気泡が減圧析出する領域が大幅に拡張し、多量の微細気泡を析出させることができる。
 一方、中心ギャップ2kは断面中心を包含する形で形成され、流速最大となる中心流れは、この中心ギャップ2kにより迂回の影響を受けずに通過できる。また、中心流れは中心ギャップ2kの通過によりさらに絞られて高速化しようとするが、セグメント領域2e側への流れ迂回が許容されているため流体抵抗の増加が効果的に抑制される。これにより、断面中心部でのキャビテーション(減圧)効果はさらに高められ、より多量の微細気泡を析出させることができる。セグメント領域2eに分配される各流れは、個々の衝突部3の下流で渦流ないし乱流を発生させ、発生した気泡が該渦流ないし乱流に巻き込まれて微細化する効果も期待できる。
 そして、断面中心付近の高速流は、図4に示すように、断面中心を取り囲むように配置される4つの錐状部5tにより効果的に絞られて中心ギャップ2kに増速しつつ流れ込む。図3に示すように、中心ギャップ2kには周囲の4つのスリット部2gが連通し、中心ギャップ2k内で絞られて圧縮される流れはスリット部2gへ迂回することで流体抵抗の増加が極めて効果的に抑制される。また、スリット部2gへ迂回する流れ自体もスリット長手方向に自由度を有するため、流速低下は低く抑えられる。その結果、中心ギャップ2kおよびスリット部2gでもキャビテーション(減圧)効果は極めて活発となり、ナノバブルレベルの微細気泡を高濃度に発生させることができるようになる。また、中心ギャップ2kに臨む衝突部3(錐状部5t)の先端は先鋭に形成されており、その近傍を通過する流れを特に高速化できるので、気泡微細化がより顕著となる。
 また、衝突部3の外周面には周方向の絞りリブ5rが衝突部3の突出方向に沿って複数巻形成されている。衝突部3の外周面接線方向に流れ込む気体溶解液体は、絞りリブ5r間の溝部(あるいは谷状部)21内にて絞られることによりさらに増速し、減圧効果が高められる。図5に示すように、谷開口側の流れは相対的に低速となり、特に谷底側の高速流に対して圧力は高くなる。つまり、谷開口側に低速の高圧域HPAが、谷低側に高速の低圧域LPAが形成され、谷開口側の液体の気体飽和溶解量が増加し、谷底側の飽和溶解量が減少する。その結果、水流中の溶存空気(溶解液体)SGFは、図6に示すように、谷開口側の低速流域LF(高圧域HPA:図4)から谷低側の高速流域FF(低圧域LPA:図5)に流れ、気泡MBが極めて活発に析出する。
 また、図3に示すごとく、衝突部3をねじ部材5にて形成しており、複数巻の絞りリブ5rを、らせん状に一体形成している。ねじ山を絞りリブ5rとして簡易に利用できるほか、流れに対し絞りリブ5rが傾斜することで、絞りリブ5rの稜線部を横切る流れ成分が増加し、流れ剥離に伴う乱流発生効果が著しくなるので、気泡のさらなる微細化が図れる利点も生じている。
 上記のごとく、シャワーヘッド100によれば、気泡発生エンジン1が組み込まれることにより、溶存空気濃度が同じ水流であっても、より多量の気泡を含有したシャワー水流を容易に形成することができる。また、溶存空気が減圧析出により気泡化するので、バルク水の溶解酸素濃度(あるいは、水道水等の場合、溶解塩素濃度)が減じられ、シャワー水流に接触する肌や髪に対する酸素(あるいは塩素)の影響を効果的に低減できる。特に、図3のごとく、全ての衝突部3の外周面に上記の絞りリブ5rを連続的に形成していることで、各セグメント領域2eの両側に接する衝突部3材には、それら絞りリブ5rひいては谷状部により、気泡析出のためのキャビテーションポイントが多数形成され、気泡析出が極めて活発となり、水流中の気泡濃度を大幅に上昇させることができる。その結果、シャワーヘッド100によれば、外気を取り入れずともキャビテーションによる析出効果のみで水流を白濁できる程度に大量の気泡を導入できるなど、視覚的にインパクトのある演出が可能となる。
 以下、本発明の気泡発生エンジンの種々の変形例について説明する。まず、図3のごとく、全ての衝突部3の外周面に絞りリブ5rを連続的に形成する構成では、絞り部2cに流れ込む流れの流速が大きいときに気泡析出が過剰となり、析出した気泡の合体が生じて微細気泡濃度が却って減少してしまうことも懸念される。そこで、微細気泡の発生を優先したい場合には、図8、図9及び図10に示すごとく、衝突部の外周面の一部にのみ絞りリブ5rを形成して、谷状部での気泡析出頻度を抑制することが有効である。
 図8は、複数ある衝突部3の一部を絞りリブ5r付きとし、残余を絞りリブ5rなしとして構成した例である。この実施形態では、絞りリブ5r付きのものと絞りリブ5rなしのものとを周方向に交互に配置しており、全てのセグメント領域2eにおいてこれに接する衝突部3の一方の側で、絞りリブ5rによるキャビテーション効果が必ず生ずるようにしてある。
 また、微細気泡発生への貢献が大きい高流速の断面中心部に位置する衝突部3の先端部には絞りリブ5rを形成せず、残余の領域に絞りリブ5rを形成することが、微細気泡を気泡合体により損失させないようにする上で有効である。図3においても、衝突部3の先端部をなす錐状部5tの外周面には絞りリブ5rを形成していなかったが、気泡発生が過剰である場合には、図9に示すように、錐状部5tに続く円筒状の周側面部の先端側領域において絞りリブ5rの形成を省略する構成も可能である。該構成は、断面中心領域での高速流ギャップ2g,2kによる超微細気泡(特に10nm以上800nm以下のナノバブル)と、断面周囲領域での絞りリブ5rによる微細気泡(1μm以上100μm以下のマイクロバブル)とをバランスよく発生させる上で有効であるといえる。さらに、図10は、円筒状の周側面部に対し、絞りリブ5rを軸線方向にて断続的に形成した例を示している。また、ナノバブルの発生を特に優先させたい場合には、図7のごとく、衝突部の外周面に絞りリブを形成しない構成とすることも可能である。
 次に、絞りリブは、図11に示すように、衝突部3の軸線周りにて周方向に閉じる形で独立した絞りリブ5sを、軸線方向に複数密接させて形成することも可能である。図11においては、独立した個々の絞りリブ5sを衝突部3の軸線と直交する向きに形成しているが、これを該軸線と直交する面に対し傾斜させて形成することも可能である。このようにすれば、図3と同様に、絞りリブが傾斜することで、流れ剥離に伴う乱流発生効果が著しくなり、気泡のさらなる微細化が図ることができる。
 図3において、衝突部3の先端部をなす錐状部5tの先端角は、衝突部3の軸線を含む平面で切断した断面に表われる角度にて90°(つまり、全周角360°を衝突部3の数(4)で割った値)に設定されている。従って、図12に示すように、衝突部3の先端を絞り部2cの断面中心に合わせる形で、隣接する錐状部5tの側面同士が密接するように各衝突部3を位置決めすれば、高速流ギャップを非形成とすることも可能である。これにより、液体の流れは各セグメント領域2eにもれなく分配され、絞りリブ5rを主体としたキャビテーション効果により気泡発生が可能となる。また、図13に示すように、内径方向に対向する1対の衝突部3,3について錐状部5tの先端を接触させ、残余の1対の衝突部3,3を軸線方向に後退させる配置とすることで、スリット部2gを形成することができる。
 衝突部3の先端は平坦に形成することも可能である。図14及び図15に示す例では、図3と同様の錐状部5tの先端部を切り欠く形で平坦な先端面5uを形成している。これにより、中心ギャップ2kの拡張と流れ均一化とを図ることができ、微細気泡の全体としての発生濃度向上に貢献する。図14では、隣接する錐状部5tの側面同士を密接させているが、平坦な先端面5uを形成することで、中心ギャップ2kを周囲が閉じた形で形成している。また、図15では、隣接する錐状部5tの側面間にスリット部2gを形成した例を示す。
 図16の構成においては、絞り部2cの断面を内径に沿って横切るように主衝突部130を配置し、さらに、該主衝突部130と直交する形で、絞り部2cの断面中心を挟んで内径方向に対向する1対の対向衝突部30とを設けた例である。対向衝突部30の各先端面と主衝突部130の外周面との間には、高速流ギャップを構成する外周ギャップ2jが形成されている。絞り部2cの内径寸法を縮小せざるを得ない場合、上記構成は中心ギャップ2kを形成する構成よりも簡略化できる。断面中心付近の流れは主衝突部130に衝突して迂回する形となるが、主衝突部130を迂回する遠心力の影響により増速しつつ対向衝突部30が形成する外周ギャップ2jを通過する形となるので、主衝突部130との衝突による流れ減速の影響がそれほど大きくない利点がある。
 図16の構成では、対向衝突部30の先端は平坦に形成され、外周ギャップ2jがスリット状に形成されている。スリット長手方向にキャビテーション領域を拡張できるので、微細気泡をより高濃度で発生することができる。主衝突部130は両端部が部材本体6に埋設される内径方向に一体の部材であり、絞り部2c内に露出する部分にてその外周面の全面に絞りリブ5rが形成されている。外周ギャップ2jにおいては、対向衝突部30の先端面と対向する主衝突部130の外周面が絞りリブ5rにより凹凸化しており、絞りリブ5r(山)位置ではギャップ間隔が狭小化して高速流領域が生じ、谷状部21ではギャップ間隔が拡大して低流速領域が生じる。その結果、隣接するこれら2領域間の圧力差に伴い低流速領域から高流速領域に向けて溶存気体の流れが生じ、さらに、図5ないし図6にて示した谷状部21内で生ずる溶存気体の流れが加わることで、気泡析出が極めて活発化し、高濃度の気泡発生が期待できる。また、主衝突部130の外周面は、液体流入側から対向衝突部30の先端面との対向位置に向けて間隔を縮小し,その絞り効果により流速が上昇することも、気泡発生効果を高める点において有利となっている。なお、図16中に破線で示すごとく、対向衝突部30の先端面を主衝突部130の外周面の絞りリブ5に当接させても、谷状部21の空間が外周ギャップ2jを形成する形となり、活発な気泡析出が期待できる。
 また、図17は、対向衝突部3,3の先端を先鋭に形成した例である。外周ギャップ2jにおいて対向衝突部3の先端付近の絞り効果が高められ、高流速化による気泡微細化を図ることができる。主衝突部は、各々平坦な先端面5uを有するとともに該先端面5uの外周に沿って面取り部3tが形成された1対の衝突部30,30を、該先端面5u,5uにて互いに接するように絞り部2cの内径方向に対向して配置形成している。対向衝突部3,3の先端は、主衝突部をなす2つの衝突部30,30の面取り部3tが作るV字状断面の溝部と対向する形で外周ギャップ2jを形成している。これにより、上記の対向衝突部3先端付近の高流速化による気泡微細化効果が一層高められている。
 また、図18、図19に示すように、主衝突部は、各々平坦な先端面5u,5uを有する1対の衝突部30’,30’(以下、主衝突部30’,30’と表示する)を、それら先端面5u,5u間に絞り部2cの断面中心を包含する中心ギャップ2kを形成する形で、絞り部2cの内径方向に対向して配置する形とすることも可能である。図18は、主衝突部30’,30’の先端部外周面(ひいては絞りリブ5r)に対し、対向衝突部30,30の各先端面を当接させた構成を示す。このように2つの衝突部30’,30’に分割し、その先端面間に中心ギャップ2kを形成することで、流速が最も大きくなる断面中心付近の流れは中心ギャップ2kにより絞られてさらに高速化する。また、図19は、対向衝突部30,30の各先端面5u,5uを主衝突部30’,30’の先端部外周面(ひいては絞りリブ5r)から離間させて、スリット状の外周ギャップ2jをさらに形成した例を示す。中心ギャップ2k内で絞られて圧縮される流れは、スリット状の外周ギャップ2jへ迂回することで流体抵抗の増加が極めて効果的に抑制される。また、外周ギャップ2jもスリット状に絞られているので迂回先での流速低下も低く抑えられる。その結果、中心ギャップ2kおよびスリット部2gでもキャビテーション(減圧)効果は極めて活発となり、ナノバブルレベルの微細気泡を高濃度に発生させることができるようになる。
 なお、以上説明した実施形態ではセグメント領域がいずれも4つ形成されていたが、セグメント領域の形成個数は4つに限らず、例えば図20に示すように3つの衝突部3によりセグメント領域2eを3つ形成することも可能である。また、衝突部の外径を減ずることで、セグメント領域の形成個数を5以上とすることも可能である。
 なお、本発明の気泡発生機構はシャワー装置に限らず、種々の目的に活用することができる。図21は、気泡発生エンジン1を用いた循環式気泡発生機構200の模式図である。気泡発生エンジン1は水槽54の壁部に組み込まれて水槽54に対する水流噴出口となる一方、壁部の別の位置に水流取入口53が形成され、配管50,52を介してポンプ51により水槽内の水Wを気泡発生エンジン1
を介して循環させるようになっている。ポンプ51によりにより圧送される水流は気泡発生エンジン1を通過する際に気泡MBが析出し、気泡含有液体となって水槽54内に放出される。なお、配管50又は配管52上に周知のエジェクタノズルを取り付け、該エジェクタノズルを介して外気を吸引取り込みしつつ、その吸引した気体を気泡発生エンジン1の通過時にさらに微粉砕して水槽54内に放出するように構成することも可能である。
 図2の流路及び衝突部材の具体的寸法を次のように定めた気泡発生エンジン2を用意した。
(図3)
・流入口2n及び流出口2x: 内径=16mm
・流入側テーパ部2a:流路長L3=24mm
・流出側テーパ部2b:流路長L1=16mm
・絞り部2c: 内径D2=8mm、流路長L2=8mm
・衝突部3: ねじ外径:M2、先端部は軸線含む断面にて先端角90°のとがり先
・中心ギャップ2kの大きさ(対向する衝突部3のとがり先間長):0mm、0.18mm及び0.36mmの3条件
 該気泡発生エンジン2にホースを接続し、流入口2nに供給圧力0.12MPaにて10℃の水を供給し、噴射される水を容積約90リットルの水槽中に放出した。このとき、流出口2xからの噴射流量は約10リットル/分であった。
 そして、水槽の側壁に設けた測定水排出管(槽底面からの排水口高さ:約40cm)から槽内に溜まった水を流出させてレーザー回折式粒度分布測定装置((株)島津製作所:SALD7100H)の測定セルに導き、気泡径分布を測定した。レーザー回折式粒度分布測定装置は、測定セルにレーザー光ビームを一定角度で入射するとともに、測定対象粒子(ここでは気泡)の粒径に応じてその散乱角度が異なることを利用して、角度別の散乱光強度を個別の光検出器により検出し、各センサの検出強度から粒径の分布に係る情報を得るものである。この測定原理から明らかなごとく、レーザー回折式粒度分布測定装置においては体積の大きい気泡ほど対応する検出器における散乱光の検出強度は増大する傾向にあるため、受け持つ粒径区間が異なる複数の光検出器の出力強度比を用いて直接計算されるのは、粒径区間毎の相対合計体積(以下、体積相対頻度ともいう)を指標とした分布情報である。つまり、一般的に平均径としての認知度が高いのは粒子の直径の合計値を粒子の個数で除した数平均径であるが、レーザー回折式粒度分布測定装置の場合は、測定原理上、粒子体積により重み付けした体積平均径しか直接的には算出できない。そこで、装置に標準搭載されたソフトウェアにより、気泡を球形と仮定して体積相対頻度を個数相対頻度に変換した形で気泡径分布を算出した。
 図22は、供給圧力0.12MPaにて中心ギャップ2kを0mmとした場合、つまり、スリット部2gを非形成とした場合の、通水継続中の測定結果を示すものである。図中、上段が個数相対頻度による気泡径分布を、下段がそのときの、各検出器(すなわち、散乱角度位置)での散乱光強度を示す。通水継続中は、目視でも確認できる粗大な気泡の発生が著しく、水槽内は白濁した状態となった。このときの個数平均径の測定結果は27.244μmである。そこで、通水を停止し、水槽内の粗大気泡が水面上に上昇するまで約1分放置した後、同様の測定を行った。結果を図23に示す。平均径は0.128μmと、非常に微細な気泡が存在していることがわかったが、水の吸光度(散乱によるレーザー光の損失度合いを示す)は大幅に減少しており、微細気泡の濃度は低いと考えられる。
 一方、図24は、供給圧力を0.09MPaに落として、通水停止後、約1分放置して全く同様に実施した測定結果を示すものである。平均径0.113μmの非常に微細な気泡が確認され、吸光度も0.012と高く、微細気泡が比較的高濃度に形成されていることがわかる。供給圧力を多少低めに設定して気泡の合体を適度に抑制することにより、中心ギャップ非形成のエンジンでも微細気泡を高濃度に形成できることがわかる。
 図25は、供給圧力0.12MPaにて中心ギャップ2kを0.18mmとした場合の、通水継続中の測定結果を示すものである。この場合も水槽内は白濁していたが、中心ギャップ2kを非形成の場合と比較して気泡の浮上速度は明らかに遅く、気泡の平均径は18.539μmまで縮小していた。そして、通水停止後1分経過後の測定結果が図26である。比較的高い吸光度(0.025)を維持しつつ、平均径は2.63μmまで減少していることがわかる。そして、供給圧力を0.09MPaに落として、通水停止後、約1分放置して同様に実施した測定結果を図27に示す。吸光度は0.020と高い値を維持しつつ、平均径0.024μmと極めて微細な気泡が高濃度に形成されていることがわかる。
 図28は、供給圧力0.12MPaにて中心ギャップ2kを0.36mmとした場合の、通水継続中の測定結果を示すものである。中心ギャップ2kを非形成の場合と比較して、気泡の平均径は18.477μmと小さい。また、通水停止後1分経過後の測定結果が図29であり、比較的高い吸光度(0.017)を維持しつつ、平均径は0.153μmまで減少している。供給圧力が若干高くとも、ナノメートル域の微細気泡が高濃度に形成されていることがわかる。そして、供給圧力を0.09MPaに落として、通水停止後、約1分放置して同様に実施した測定結果を図30に示す。吸光度は0.015と高い値を維持しつつ、平均径0.071μmと極めて微細な気泡が高濃度に形成されていることがわかる。
 1 気泡発生エンジン(気泡発生機構)
 2 流路
 2a 流入側テーパ部
 2b 流出側テーパ部
 2c 絞り部
 2e セグメント領域
 2n 流入口
 2x 流出口
 2g スリット部(高速流ギャップ)
 2k 中心ギャップ(高速流ギャップ)
 3,30,30’,130 衝突部
 5t 錐状部
 5r 絞りリブ
 6 部材本体
 100 シャワー装置

Claims (26)

  1. 液体流入側となる流入端と液体流出側となる流出端とが定められた部材本体に対し、前記流入端に開口する流入口と前記流出端に開口する流出口とをつなぐ流路が貫通形態に形成されるとともに、前記流路の途中位置に前記流入口よりも流通断面積が小さい絞り部が形成され、該絞り部にて前記流路の軸断面を3以上のセグメント領域に区画する形態で、当該絞り部の流路断面積をさらに減少させる衝突部が配置され、
     前記部材本体の前記流入端に供給された気体溶解液体の流れを前記衝突部に衝突させた後、各前記セグメント領域に分配しつつ増速して通過させ、その減圧効果により溶解した気体を析出させて気泡含有液体となし、前記流出口から流出させるようにしたことを特徴とする気泡発生機構。
  2. 前記絞り部の断面中心部に向けて突出する複数の前記衝突部の2つ以上のものの先端部同士の間に、断面周囲流に対し相対的に高速となる断面中心流を通過させるための高速流ギャップが形成されている請求項1記載の気泡発生機構。
  3. 前記衝突部の先端部には先端に向かうほど軸断面を縮小させる錐状部が形成されてなり、前記セグメント領域を挟んで互いに隣接する2つの前記衝突部において前記錐状部の外周面間に、前記高速流ギャップを構成するスリット部が形成されている請求項2記載の気泡発生機構。
  4. 複数の前記衝突部の少なくとも1対のものが、前記絞り部の断面中心を挟んで内径方向に対向する形で配置され、それら衝突部の先端間に、前記高速流ギャップを構成する中心ギャップが形成されている請求項2又は請求項3に記載の気泡発生機構。
  5. 前記衝突部は、各々その突出方向が前記絞り部の軸断面にて互いに直交する十字形態に設けられ、それら衝突部により前記絞り部が4つの前記絞りセグメント領域に分割されてなる請求項1ないし請求項4のいずれか1項に記載の気泡発生機構。
  6. 前記絞り部の断面中心部に向けて突出する複数の前記衝突部の2つ以上のものの先端部同士の間に、断面周囲流に対し相対的に高速となる断面中心流を通過させるための高速流ギャップが形成され、
     4つの前記衝突部が前記流路の内周面から該流路の中心部に向けて突出する形で設けられ、
     各前記衝突部の先端部には先端に向かうほど軸断面を縮小させる錐状部が形成されてなり、
     前記セグメント領域を挟んで互いに隣接する前記衝突部において前記錐状部の外周面間に、前記高速流ギャップを構成するスリット部が形成され、
     前記絞り部の断面中心を挟んで内径方向に対向して配置される前記衝突部の先端間に、前記高速流ギャップの一部を構成する中心ギャップが形成され、
     前記高速流ギャップは、4つの前記スリット部が前記中心ギャップを介して一体化された十字形態に形成されてなる請求項5記載の気泡発生機構。
  7. 前記衝突部の先端が先鋭に形成されてなる請求項6記載の気泡発生機構。
  8. 前記衝突部の先端が平坦に形成されてなる請求項7記載の気泡発生機構。
  9. 前記衝突部は、前記絞り部の断面を内径に沿って横切るように配置される主衝突部と、該主衝突部と直交する形で、前記絞り部の断面中心を挟んで内径方向に対向して配置されるとともに、各々先端面と前記主衝突部の外周面との間に前記高速流ギャップを構成する外周ギャップを形成する1対の対向衝突部とを備える請求項5記載の気泡発生機構。
  10. 前記対向衝突部の先端が平坦に形成されてなる請求項9記載の気泡発生機構。
  11. 前記主衝突部は、各々平坦な先端面を有する1対の衝突部が、それら先端面間に前記絞り部の断面中心を包含する中心ギャップを形成する形で、前記絞り部の内径方向に対向して配置されて形成されたものである請求項9又は請求項10に記載の気泡発生機構。
  12. 前記対向衝突部の先端が先鋭に形成されてなる請求項9記載の気泡発生機構。
  13. 前記主衝突部は、各々平坦な先端面を有するとともに該先端面の外周に沿って面取り部が形成された1対の衝突部が、該先端面にて互いに接するように前記絞り部の内径方向に対向して配置されて形成されたものであり、
     前記対向衝突部の先端が、前記主衝突部をなす2つの衝突部の前記面取り部が作るV字状断面の溝部と対向する形で前記外周ギャップを形成してなる請求項12記載の気泡発生機構。
  14. 前記セグメント領域を挟んで互いに隣接する2つの前記衝突部の少なくともいずれかの外周面に、周方向の絞りリブが前記突出方向に沿って複数巻形成されている請求項1ないし請求項13のいずれか1項に記載の気泡発生機構。
  15. 前記絞りリブは頂部が鋭角に形成されてなる請求項14記載の気泡発生機構。
  16. 複数巻の前記絞りリブがらせん状に一体形成されている請求項13又は請求項14に記載の気泡発生機構。
  17. 前記衝突部はねじ部材にて形成され、該ねじ部材の前記脚部の外周面に形成されるねじ山が前記絞りリブを形成する請求項16記載の気泡発生機構。
  18. 前記衝突部の外周面の一部にのみ前記絞りリブが形成されている請求項14ないし請求項17のいずれか1項に記載の気泡発生機構。
  19. 前記衝突部の先端部を除く領域に前記絞りリブが形成されている請求項18記載の気泡発生機構。
  20. 前記部材本体は外周面が円筒面状に形成されるとともに管部材の内側に同軸的に装着されてなり、当該管部材の前記部材本体の流入端よりも上流側に位置する部分が液体供給管路を、同じく流出端よりも下流側に位置する部分が液体回収管路を形成している請求項1ないし請求項19のいずれか1項に記載の気泡発生機構。
  21. 前記部材本体の外周面と前記管部材の内周面との間に、それら外周面と内周面との間を液密にシールするリング状のシール部材が配置されてなる請求項20記載の気泡発生機構。
  22. 前記部材本体は、前記流入端側と前記流出端側との各端面が前記外周面の軸線と直交する平坦面とされた円柱状部材として形成されてなる請求項21記載の気泡発生機構。
  23. 前記流路の前記流入口側に、該流入口に向けて拡径する流入側テーパ部が形成されている請求項1ないし請求項22のいずれか1項に記載の気泡発生機構。
  24. 前記流路の前記流出口側に、該流出口に向けて拡径する流出側テーパ部が形成されている請求項23記載の気泡発生機構。
  25. 前記流路の前記流入側テーパ部と前記流出側テーパ部との間に流路断面積が一定の断面一定部が前記絞り部として形成され、前記衝突部が該断面一定部に配置されている請求項24記載の気泡発生機構。
  26. 請求項1ないし請求項25のいずれか1項に記載の気泡発生機構と、
     前記気泡発生機構の前記部材本体の前記流入端に対し水流を供給する水流供給部と、
     前記部材本体の前記流出端にて集約された前記気泡含有液体をシャワー水流として噴射する水流噴射部と、
     を備えたことを特徴とする気泡発生機構付シャワーヘッド。
PCT/JP2012/068480 2011-07-21 2012-07-20 気泡発生機構及び気泡発生機構付シャワーヘッド WO2013012069A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147001715A KR20140048940A (ko) 2011-07-21 2012-07-20 기포발생기구 및 기포발생기구 부착 샤워헤드
CN201280036169.1A CN103747858B (zh) 2011-07-21 2012-07-20 气泡发生机构以及带气泡发生机构的喷头
JP2013524754A JP5712292B2 (ja) 2011-07-21 2012-07-20 気泡発生機構及び気泡発生機構付シャワーヘッド
EP12814186.8A EP2735363A4 (en) 2011-07-21 2012-07-20 BUBBLE GENERATION MECHANISM AND SHOWERHEAD HAVING A BUBBLE GENERATION MECHANISM
US14/234,032 US9370784B2 (en) 2011-07-21 2012-07-20 Bubble generating mechanism and showerhead with bubble generating mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-160272 2011-07-21
JP2011160272 2011-07-21

Publications (1)

Publication Number Publication Date
WO2013012069A1 true WO2013012069A1 (ja) 2013-01-24

Family

ID=47558244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068480 WO2013012069A1 (ja) 2011-07-21 2012-07-20 気泡発生機構及び気泡発生機構付シャワーヘッド

Country Status (6)

Country Link
US (1) US9370784B2 (ja)
EP (1) EP2735363A4 (ja)
JP (2) JP5712292B2 (ja)
KR (1) KR20140048940A (ja)
CN (1) CN103747858B (ja)
WO (1) WO2013012069A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014121689A (ja) * 2012-12-21 2014-07-03 Shibata:Kk 炭酸ガス微細気泡発生ユニット
JP2014147901A (ja) * 2013-02-01 2014-08-21 Micro-Bub Kk マイクロバブル生成器及びマイクロバブル生成管路構造
KR20160000408A (ko) 2014-06-24 2016-01-04 가부시끼가이샤 도시바 세탁기
WO2016195116A3 (ja) * 2015-06-02 2017-01-19 株式会社ウォーターデザイン 液体処理ノズル、それを用いた液体処理方法、ガス溶解方法及びガス溶解装置
WO2016178436A3 (ja) * 2015-05-07 2017-01-26 株式会社ウォーターデザイン 液体処理ノズル、それを用いた液体処理方法、ガス溶解方法及びガス溶解装置
WO2016199930A3 (ja) * 2015-06-07 2017-01-26 株式会社ウォーターデザイン 水素含有液状水性組成物の製造方法
JP2018012919A (ja) * 2016-07-19 2018-01-25 東日本旅客鉄道株式会社 洗浄機構付小便器及びそれに用いる液体処理ノズル
WO2018030215A1 (ja) * 2016-08-10 2018-02-15 東芝ライフスタイル株式会社 微細気泡発生器
JP6290366B1 (ja) * 2016-12-21 2018-03-07 東芝ライフスタイル株式会社 微細気泡発生器、微細気泡発生器を備えた家電機器
JP6321877B1 (ja) * 2016-11-17 2018-05-09 丸福水産株式会社 流体混合処理装置
JP2018099687A (ja) * 2018-02-05 2018-06-28 東芝ライフスタイル株式会社 微細気泡発生器、注水ケース、及び微細気泡発生器を備えた家電機器
JPWO2018021092A1 (ja) * 2016-07-25 2018-07-26 丸福水産株式会社 混合処理体、混合処理法、混合生成流体、流体混合器、流体混合処理装置、魚介類養殖システム、及び、魚介類養殖法
KR20180087419A (ko) 2015-12-25 2018-08-01 도시바 라이프스타일 가부시키가이샤 세탁기
JP2018175445A (ja) * 2017-04-13 2018-11-15 東芝ライフスタイル株式会社 食器洗浄機
KR101945517B1 (ko) * 2017-01-16 2019-02-07 한국광해관리공단 유가스전 폐수 처리 시스템
JP2019129927A (ja) * 2018-01-30 2019-08-08 株式会社水生活製作所 シャワーヘッド
JP2020189274A (ja) * 2019-05-22 2020-11-26 株式会社リスニ 液体処理装置
JP2020189286A (ja) * 2019-05-22 2020-11-26 啓雄 加藤 液体処理ノズル
JP2021177811A (ja) * 2020-05-11 2021-11-18 株式会社丸山製作所 シャワーノズル及び液体流通構造
JP2022066455A (ja) * 2016-07-25 2022-04-28 株式会社シバタ 気泡発生装置
JP2022079413A (ja) * 2020-11-16 2022-05-26 株式会社アクアフューチャー研究所 液体処理ノズル

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6358613B2 (ja) * 2014-06-16 2018-07-18 株式会社micro−bub 散水板を備えなくてもシャワー体感を得られるシャワーヘッド
JP6670564B2 (ja) * 2015-07-29 2020-03-25 東芝ライフスタイル株式会社 液体用電磁弁、液体用電磁弁の製造方法、及び洗濯機
JP6126728B1 (ja) * 2016-07-25 2017-05-10 丸福水産株式会社 混合処理体、混合処理法、流体混合器、気液混合処理装置、及び、魚介類養殖システム
CN106582339A (zh) * 2017-01-24 2017-04-26 淮南市知产创新技术研究有限公司 微细气泡产生机构
CN107583479B (zh) * 2017-09-22 2024-05-31 乔登卫浴(江门)有限公司 一种微纳米气泡发生器及应用该发生器的喷淋装置
JP6433041B1 (ja) * 2017-10-25 2018-12-05 株式会社塩 流体供給装置
CN111417455B (zh) * 2017-11-29 2022-07-26 东芝生活电器株式会社 细微气泡产生器、洗衣机以及家用电器
CN111195568A (zh) * 2018-11-19 2020-05-26 厦门市得尔美卫浴有限公司 一种增压花洒
CN109673338B (zh) * 2018-12-29 2021-02-09 陕西师范大学 一种微氧气泡水稻富氧育种装置及富氧育种方法
CN110538064A (zh) * 2019-09-06 2019-12-06 辽宁大学 水力空化辅助中药皮肤病治疗浴缸
US11130100B1 (en) * 2020-06-22 2021-09-28 Jacob H. Berg Aerating eductor device
EP4367066A1 (de) * 2021-07-09 2024-05-15 Ar-Water Tec E.U. Vorrichtung und verfahren zur behandlung von flüssigkeiten
CN117046335B (zh) * 2023-10-11 2024-01-12 青岛朗兹环保科技有限公司 一种对冲式微纳米气泡发生装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166926A (en) * 1980-05-26 1981-12-22 Showa Denko Kk Mixer
JPH08103641A (ja) * 1994-09-30 1996-04-23 Idec Izumi Corp 気液溶解混合方法と装置
JP2000184978A (ja) * 1998-12-24 2000-07-04 Noritz Corp 微細気泡発生装置ならびに浴槽システム
JP2006116518A (ja) 2004-10-25 2006-05-11 Fujio Negoro マイクロバブル発生シャワー
JP2007050341A (ja) 2005-08-18 2007-03-01 Matsushita Electric Ind Co Ltd 微細気泡発生装置とそれを用いたシャワー装置
JP2007209509A (ja) 2006-02-09 2007-08-23 Matsushita Electric Ind Co Ltd 微細気泡発生装置およびそれを用いたシャワー装置
JP2008073432A (ja) 2006-09-25 2008-04-03 Aisin Seiki Co Ltd マイクロバブルシャワー装置
JP2008229516A (ja) 2007-03-20 2008-10-02 Univ Of Tsukuba マイクロバブルシャワー
JP2008290051A (ja) * 2007-05-28 2008-12-04 Panasonic Electric Works Co Ltd 微細気泡発生装置
JP2008307511A (ja) * 2007-06-18 2008-12-25 Panasonic Electric Works Co Ltd 微細気泡発生装置
WO2010055702A1 (ja) * 2008-11-14 2010-05-20 株式会社シバタ 微細気泡発生機構付シャワー装置
JP2011240210A (ja) * 2010-05-14 2011-12-01 Maindorei Gijutsu Kagaku Kenkyusho:Kk 微小気泡発生機構

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5427181A (en) 1993-06-14 1995-06-27 Hale Fire Pump Company Mixer for compressed air foam system
US5460449A (en) * 1994-01-27 1995-10-24 Kent; J. Howard In-line mixer for dispersions
US6193171B1 (en) * 1998-02-09 2001-02-27 Patricia J. Albertson Water pulsator
DE60137819D1 (de) * 2000-02-02 2009-04-16 Toray Industries Vorrichtung zum umschalten des durchflusses und damit ausgerüstete duscheinheit
JP3677516B2 (ja) * 2001-03-05 2005-08-03 健 宮川 微細化気泡水生成装置
JP4749961B2 (ja) 2006-07-12 2011-08-17 株式会社アイエンス 気泡発生装置
JP3169936U (ja) * 2011-06-14 2011-08-25 森鉄工株式会社 マイクロバブル発生器

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166926A (en) * 1980-05-26 1981-12-22 Showa Denko Kk Mixer
JPH08103641A (ja) * 1994-09-30 1996-04-23 Idec Izumi Corp 気液溶解混合方法と装置
JP2000184978A (ja) * 1998-12-24 2000-07-04 Noritz Corp 微細気泡発生装置ならびに浴槽システム
JP2006116518A (ja) 2004-10-25 2006-05-11 Fujio Negoro マイクロバブル発生シャワー
JP2007050341A (ja) 2005-08-18 2007-03-01 Matsushita Electric Ind Co Ltd 微細気泡発生装置とそれを用いたシャワー装置
JP2007209509A (ja) 2006-02-09 2007-08-23 Matsushita Electric Ind Co Ltd 微細気泡発生装置およびそれを用いたシャワー装置
JP2008073432A (ja) 2006-09-25 2008-04-03 Aisin Seiki Co Ltd マイクロバブルシャワー装置
JP2008229516A (ja) 2007-03-20 2008-10-02 Univ Of Tsukuba マイクロバブルシャワー
JP2008290051A (ja) * 2007-05-28 2008-12-04 Panasonic Electric Works Co Ltd 微細気泡発生装置
JP2008307511A (ja) * 2007-06-18 2008-12-25 Panasonic Electric Works Co Ltd 微細気泡発生装置
WO2010055702A1 (ja) * 2008-11-14 2010-05-20 株式会社シバタ 微細気泡発生機構付シャワー装置
JP2011240210A (ja) * 2010-05-14 2011-12-01 Maindorei Gijutsu Kagaku Kenkyusho:Kk 微小気泡発生機構

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2735363A4

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014121689A (ja) * 2012-12-21 2014-07-03 Shibata:Kk 炭酸ガス微細気泡発生ユニット
JP2014147901A (ja) * 2013-02-01 2014-08-21 Micro-Bub Kk マイクロバブル生成器及びマイクロバブル生成管路構造
KR20170027333A (ko) 2014-06-24 2017-03-09 도시바 라이프스타일 가부시키가이샤 세탁기
KR20160000408A (ko) 2014-06-24 2016-01-04 가부시끼가이샤 도시바 세탁기
WO2016178436A3 (ja) * 2015-05-07 2017-01-26 株式会社ウォーターデザイン 液体処理ノズル、それを用いた液体処理方法、ガス溶解方法及びガス溶解装置
JPWO2016178436A1 (ja) * 2015-05-07 2017-05-18 株式会社ウォーターデザイン 液体処理ノズル、それを用いた液体処理方法、ガス溶解方法及びガス溶解装置
WO2016195116A3 (ja) * 2015-06-02 2017-01-19 株式会社ウォーターデザイン 液体処理ノズル、それを用いた液体処理方法、ガス溶解方法及びガス溶解装置
WO2016199930A3 (ja) * 2015-06-07 2017-01-26 株式会社ウォーターデザイン 水素含有液状水性組成物の製造方法
US10988887B2 (en) 2015-12-25 2021-04-27 Toshiba Lifestyle Products & Services Corporation Washing machine
KR20180087419A (ko) 2015-12-25 2018-08-01 도시바 라이프스타일 가부시키가이샤 세탁기
JP2018012919A (ja) * 2016-07-19 2018-01-25 東日本旅客鉄道株式会社 洗浄機構付小便器及びそれに用いる液体処理ノズル
US12076696B2 (en) 2016-07-25 2024-09-03 Shibata Corporation Bubble generating device
US11794152B2 (en) 2016-07-25 2023-10-24 Shibata Corporation Bubble generating device
JP2022066455A (ja) * 2016-07-25 2022-04-28 株式会社シバタ 気泡発生装置
JPWO2018021092A1 (ja) * 2016-07-25 2018-07-26 丸福水産株式会社 混合処理体、混合処理法、混合生成流体、流体混合器、流体混合処理装置、魚介類養殖システム、及び、魚介類養殖法
CN109152995B (zh) * 2016-08-10 2021-11-19 东芝生活电器株式会社 细微气泡产生器
CN109152995A (zh) * 2016-08-10 2019-01-04 东芝生活电器株式会社 细微气泡产生器
WO2018030215A1 (ja) * 2016-08-10 2018-02-15 東芝ライフスタイル株式会社 微細気泡発生器
JP2018023936A (ja) * 2016-08-10 2018-02-15 東芝ライフスタイル株式会社 微細気泡発生器
JP6321877B1 (ja) * 2016-11-17 2018-05-09 丸福水産株式会社 流体混合処理装置
JP2018167255A (ja) * 2016-11-17 2018-11-01 丸福水産株式会社 流体混合処理装置
JP2018099655A (ja) * 2016-12-21 2018-06-28 東芝ライフスタイル株式会社 微細気泡発生器、微細気泡発生器を備えた家電機器
US11331635B2 (en) 2016-12-21 2022-05-17 Toshiba Lifestyle Products & Services Corporation Minute bubble generator, home appliance provided with minute bubble generator, and method of manufacturing minute bubble generator
JP6290366B1 (ja) * 2016-12-21 2018-03-07 東芝ライフスタイル株式会社 微細気泡発生器、微細気泡発生器を備えた家電機器
WO2018116518A1 (ja) * 2016-12-21 2018-06-28 東芝ライフスタイル株式会社 微細気泡発生器、微細気泡発生器を備えた家電機器、及び微細気泡発生器の製造方法
KR101945517B1 (ko) * 2017-01-16 2019-02-07 한국광해관리공단 유가스전 폐수 처리 시스템
JP2018175445A (ja) * 2017-04-13 2018-11-15 東芝ライフスタイル株式会社 食器洗浄機
JP7029793B2 (ja) 2018-01-30 2022-03-04 株式会社水生活製作所 シャワーヘッド
JP2019129927A (ja) * 2018-01-30 2019-08-08 株式会社水生活製作所 シャワーヘッド
JP2018099687A (ja) * 2018-02-05 2018-06-28 東芝ライフスタイル株式会社 微細気泡発生器、注水ケース、及び微細気泡発生器を備えた家電機器
JP2020189286A (ja) * 2019-05-22 2020-11-26 啓雄 加藤 液体処理ノズル
JP2020189274A (ja) * 2019-05-22 2020-11-26 株式会社リスニ 液体処理装置
JP7376904B2 (ja) 2019-05-22 2023-11-09 株式会社タケシタ 液体処理ノズル
JP7370534B2 (ja) 2019-05-22 2023-10-30 株式会社リスニ 液体処理装置
JP2021177811A (ja) * 2020-05-11 2021-11-18 株式会社丸山製作所 シャワーノズル及び液体流通構造
JP7390661B2 (ja) 2020-05-11 2023-12-04 株式会社丸山製作所 シャワーノズル及び液体流通構造
JP7260925B2 (ja) 2020-11-16 2023-04-19 株式会社タケシタ 液体処理ノズル
WO2023027136A1 (ja) * 2020-11-16 2023-03-02 株式会社タケシタ 液体処理ノズル
JP2022079413A (ja) * 2020-11-16 2022-05-26 株式会社アクアフューチャー研究所 液体処理ノズル

Also Published As

Publication number Publication date
JP2015062906A (ja) 2015-04-09
EP2735363A1 (en) 2014-05-28
KR20140048940A (ko) 2014-04-24
JP5712292B2 (ja) 2015-05-07
US20140151470A1 (en) 2014-06-05
JPWO2013012069A1 (ja) 2015-02-23
US9370784B2 (en) 2016-06-21
CN103747858A (zh) 2014-04-23
CN103747858B (zh) 2015-09-23
EP2735363A4 (en) 2015-08-05

Similar Documents

Publication Publication Date Title
JP5712292B2 (ja) 気泡発生機構及び気泡発生機構付シャワーヘッド
JP5731650B2 (ja) 気泡発生機構及び気泡発生機構付シャワーヘッド
WO2010055702A1 (ja) 微細気泡発生機構付シャワー装置
JP4636420B2 (ja) 微細気泡発生装置
JP5669031B2 (ja) 超微細気泡発生器
US8622715B1 (en) Twin turbine asymmetrical nozzle and jet pump incorporating such nozzle
JP4142728B1 (ja) 気泡微細化器
JP5573879B2 (ja) 微細気泡発生装置
JP2014121689A (ja) 炭酸ガス微細気泡発生ユニット
JP2008086868A (ja) マイクロバブル発生装置
TWI694860B (zh) 微氣泡獲得裝置
JP2010234242A (ja) 微細気泡発生装置
JP2017225961A (ja) 微細気泡発生ノズル
CN110891674A (zh) 微气泡产生设备和微气泡产生方法,以及具有该微气泡产生设备的淋浴装置和油水分离装置
CN112177107A (zh) 一种出水装置
JP2010188046A (ja) シャワー装置
JP2013000626A (ja) 微細気泡発生装置
JP2011240268A (ja) 微小気泡発生機構
JP2013215421A (ja) シャワーヘッド
JP6646300B2 (ja) 汚水浄化用の気泡発生装置及び汚水浄化方法
JP2011240210A (ja) 微小気泡発生機構
JP2019166493A (ja) 微細気泡発生ノズル
JP4903292B1 (ja) 旋回式微細気泡発生装置
JP2011240267A (ja) 微小気泡発生機構
CN214061831U (zh) 一种出水装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12814186

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013524754

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14234032

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147001715

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012814186

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012814186

Country of ref document: EP