KR20140048940A - 기포발생기구 및 기포발생기구 부착 샤워헤드 - Google Patents

기포발생기구 및 기포발생기구 부착 샤워헤드 Download PDF

Info

Publication number
KR20140048940A
KR20140048940A KR1020147001715A KR20147001715A KR20140048940A KR 20140048940 A KR20140048940 A KR 20140048940A KR 1020147001715 A KR1020147001715 A KR 1020147001715A KR 20147001715 A KR20147001715 A KR 20147001715A KR 20140048940 A KR20140048940 A KR 20140048940A
Authority
KR
South Korea
Prior art keywords
collision
cross
tightening
flow
generating mechanism
Prior art date
Application number
KR1020147001715A
Other languages
English (en)
Inventor
히로오 가토
요시키 시바타
Original Assignee
가부시키가이샤 시바타
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 시바타 filed Critical 가부시키가이샤 시바타
Publication of KR20140048940A publication Critical patent/KR20140048940A/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/14Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
    • B05B1/18Roses; Shower heads
    • B05B1/185Roses; Shower heads characterised by their outlet element; Mounting arrangements therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2323Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2373Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media for obtaining fine bubbles, i.e. bubbles with a size below 100 µm
    • B01F23/2375Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media for obtaining fine bubbles, i.e. bubbles with a size below 100 µm for obtaining bubbles with a size below 1 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/44Mixers in which the components are pressed through slits
    • B01F25/441Mixers in which the components are pressed through slits characterised by the configuration of the surfaces forming the slits
    • B01F25/4412Mixers in which the components are pressed through slits characterised by the configuration of the surfaces forming the slits the slits being formed between opposed planar surfaces, e.g. pushed again each other by springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/44Mixers in which the components are pressed through slits
    • B01F25/441Mixers in which the components are pressed through slits characterised by the configuration of the surfaces forming the slits
    • B01F25/4416Mixers in which the components are pressed through slits characterised by the configuration of the surfaces forming the slits the opposed surfaces being provided with grooves
    • B01F25/44163Helical grooves formed on opposed surfaces, e.g. on cylinders or cones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/44Mixers in which the components are pressed through slits
    • B01F25/442Mixers in which the components are pressed through slits characterised by the relative position of the surfaces during operation
    • B01F25/4422Mixers in which the components are pressed through slits characterised by the relative position of the surfaces during operation the surfaces being maintained in a fixed but adjustable position, spaced from each other, therefore allowing the slit spacing to be varied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/14Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
    • B05B1/18Roses; Shower heads

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Bathtubs, Showers, And Their Attachments (AREA)
  • Nozzles (AREA)

Abstract

(과제)
복잡한 기액혼합기구를 사용하지 않더라도 충분한 양의 미세기포를 발생할 수 있는 기포발생기구를 제공한다.
(해결수단)
부재본체(6)에는, 유입단으로 개구하는 유입구(2n)와 유출단으로 개구하는 유출구(2x)를 연결하는 유로(2)가 관통형태로 형성되고, 그 유로(2)의 중간위치에 유입구(2n)보다 흐름 단면적이 작은 조임부(2c)가 형성되어 있다. 조임부(2c)에는, 유로(2)의 축단면을 3개 이상의 세그먼트 영역(2e)으로 구획하는 형태로 당해 조임부(2c)의 유로 단면적을 더 감소시키는 충돌부(3)가 배치되어 있다.

Description

기포발생기구 및 기포발생기구 부착 샤워헤드{BUBBLE GENERATING MECHANISM AND SHOWERHEAD WITH BUBBLE GENERATING MECHANISM}
본 발명은 기포발생기구(氣泡發生機構), 특히 마이크로버블(microbubble)이나 나노버블(nanobubble) 등의 미세기포의 발생에 적절한 기구와, 그것을 사용한 샤워헤드(showerhead)에 관한 것이다.
수중(水中)에 형성되는 기포는, 그 사이즈에 의해 밀리버블 혹은 마이크로버블(또한 마이크로·나노버블 및 나노버블 등)로 분류되어 있다. 밀리버블은 어느 정도의 거대한 기포로서, 수중을 급속하게 상승하여 최종적으로는 수면에서 파열하여 소멸한다. 이에 대하여 지름이 50㎛ 이하의 기포는, 미세하기 때문에 수중에서의 체재시간(滯在時間)이 길고, 기체의 용해능력(溶解能力)도 우수하기 때문에 수중에 있어서 더 축소해 나가, 드디어는 수중에서 소멸(완전용해)하는 특수한 성질을 구비하고, 이것을 마이크로버블로 부르는 것이 일반화되고 있다(비특허문헌1). 본 명세서에 있어서 「미세기포(微細氣泡)」란, 상기 마이크로버블 외에, 지름이 더 작은 마이크로·나노버블(지름 10nm 이상 1㎛ 미만) 및 나노버블(지름 10nm 미만)을 총칭하는 개념을 가리키는 것으로 한다.
최근에 이러한 미세기포가 많은 용도에 응용되어, 특히 욕실 등에서 사용하는 샤워장치에 관해서는 기포발생기구를 장착한 것이 다양하게 제안되고 있다(특허문헌1∼5). 이들 특허문헌에 개시된 샤워장치에 장착되어 있는 기포발생기구는, 샤워수류(shower水流)를 분출하는 헤드 부분에 선회류(旋回流)를 발생하는 날개를 장착하여, 상기 날개가 형성하는 소용돌이류에 날개축부에 형성된 세공(細孔)으로부터 부압흡인(負壓吸引)되는 외기(外氣)를 끌어들여 기액혼합(氣液混合)하는 방식(특허문헌1 : 2상류 선회방식(2相流 旋回方式)으로 불린다), 샤워본체(헤드 부분으로부터 연장되는 손잡이 부분)내에 벤투리관(venturi tube) 등의 조임기구를 장착하여, 물이 상기 조임기구를 고유속화(高流速化)해서 통과할 때에 베루누이(Bernoulli)의 원리에 유래하여 발생하는 감압효과(減壓效果)에 의하여 물에 용해되어 있던 공기를 미세기포로서 석출(析出)시키는 캐비테이션 방식(cavitation 方式)(특허문헌2∼5)으로 대별(大別)된다.
; 일본국 공개특허 특개2008-229516호 공보 ; 일본국 공개특허 특개2008-73432호 공보 ; 일본국 공개특허 특개2007-209509호 공보 ; 일본국 공개특허 특개2007-50341호 공보 ; 일본국 공개특허 특개2006-116518호 공보
; 인터넷 홈페이지(http://unit.aist.go.jp/emtech-ri/26env-fluid/takahashi.pdf#search='마이크로버블 및 나노버블에 관한 연구')
그러나 상기한 종래의 샤워장치에서는, 어느 타입의 것도 기포의 미세화도(微細化度)가 아직도 불충분하며, 수중에서의 체류시간이 긴 마이크로버블의 발생량, 특히 입자의 지름이 1㎛ 미만인 마이크로·나노버블 영역의 기포발생량이 충분하지 않은 문제가 있었다. 또한 특허문헌1로 대표되는 2상류 선회방식인 것은 샤워헤드 내에 선회류발생 날개를 장착하지 않으면 안되어 기구가 복잡하게 되는 문제가 있다. 또한 입욕용 등의 일반용도에 사용되는 수돗물압력으로는, 흡인하는 외기(外氣)를 충분히 세경화(細徑化)하기에 충분한 회전속도를 얻지 못하여, 마이크로버블 영역 이하의 미세기포의 발생효율이 나쁜 결점이 있다.
한편 캐비테이션 방식을 채용하는 특허문헌2∼4의 샤워장치는, 벤투리관이나 오리피스(orifice) 등에 있어서 주위가 닫힌 조임구멍이 1군데 형성되어 있을 뿐이며, 그 조임구멍 위치에서는 다른 유로부분(流路部分)이 존재하지 않는 구조로 되어 있다. 이 때문에 조임구멍 통과시의 유체저항(流體抵抗)이 상승하여 기대되는 만큼 유속이 증가하지 않고, 또 조임구멍내에서는 구멍내 벽면으로부터의 레이디얼 방향(radial 方向)의 배압(背壓)도 받기 쉬우므로, 캐비테이션(감압) 효과가 불충분하게 되어, 기포 석출량이 부족하기 쉬운 난점이 있다.
본 발명의 과제는, 복잡한 기액혼합기구를 사용하지 않더라도 충분한 양의 기포를 발생할 수 있고, 나아가서는 마이크로버블 영역 혹은 마이크로·나노버블 영역의 기포의 발생량을 종래에 달성할 수 없었던 레벨까지 높일 수 있는 기포발생기구와, 그것을 사용한 샤워헤드를 제공하는 것이다.
상기의 과제를 해결하기 위하여, 본 발명의 기포발생기구는,
액체유입측이 되는 유입단과 액체유출측이 되는 유출단이 정해진 부재본체에 대하여, 유입단으로 개구하는 유입구와 유출단으로 개구하는 유출구를 연결하는 유로(流露)가 관통형태로 형성됨과 아울러, 유로의 중간위치에 유입구보다 흐름 단면적이 작은 조임부가 형성되고, 상기 조임부에서 유로의 축단면을 3개 이상의 세그먼트 영역으로 구획하는 형태로 당해 조임부의 유로 단면적을 더 감소시키는 충돌부(衝突部)가 배치되고,
부재본체의 유입단에 공급된 기체용해액체의 흐름을 충돌부에 충돌시킨 후에, 각 세그먼트 영역으로 분배하면서 증속하여 통과시켜, 그 감압효과에 의해 용해된 기체를 석출시켜 기포함유액체가 되어, 유출구로부터 유출시키도록 하는 것을 특징으로 한다.
이러한 구조의 기포발생기구에 예를 들면 수류(水流)를 공급하면, 유로에 공급된 액체는 조임부에서 좁혀져 유속이 증가한다. 그 결과, 베루누이의 원리를 따라 조임부(및 그 하류측)에 부압역(負壓域)이 형성되고, 그 캐비테이션(감압) 효과에 의해 수류중의 용존기체(예를 들면 공기)를 석출하여 기포가 발생한다.
수중의 기포는 고체입자와 달리, 서로 충돌하여도 기포의 합체(合體)를 발생하기 쉽고, 예를 들면 벤투리관 등의 주지(周知)의 조임기구를 통과시키는 것만으로는 통과수류의 유속이 불충분하기 때문에, 조임구멍의 하류측의 감압 레벨도 작고 소용돌이류의 발생 정도도 작다. 또한 그러한 조임기구에서는 조임부에서 유로단면이 서로 유사하게 축소되는 구조로 되어 있으므로, 유속을 높이려고 너무 지나치게 조임부의 단면을 축소하면 유체의 통과저항이 커져, 단면축소비율에 적당한 유속의 상승을 예상할 수 없고, 기포발생효율이 오히려 감소하게 된다. 따라서 캐비테이션에 의한 기포 석출량도 적고, 기포의 분쇄가 일어나는 정도의 충돌도 충분하게 일으킬 수 없으므로, 미세기포를 충분하게 형성할 수 없었다.
이에 대하여 본 발명의 기포발생기구에 있어서는, 조임부에서 유로의 축단면을 3개 이상의 세그먼트 영역으로 구획하는 형태로 당해 조임부의 유로 단면적을 더 감소시키는 충돌부가 배치되어 있다. 즉 유로의 단면적을 고유속이 되는 단면중심을 향해서 지름방향으로 서로 유사하게 축소하는 것은 아니고, 충돌부를 장해물로서 사용함으로써 액체의 흐름이 가능한 영역을 단면중심에 대한 원주방향으로 말하자면 솎아내는 형태로 유로의 단면축소를 도모하는 것이다. 그 결과, 조임부에서의 유체저항이 과도하게 증가하지 않아, 유속의 증가효과 나아가서는 부압발생효과를 대폭으로 증가시킬 수 있다. 이에 따라 각 세그먼트 영역(및 그 하류)에서의 캐비테이션(감압) 효과가 대폭으로 증가하여, 예를 들면 용존공기농도(溶存空氣濃度)가 동일한 수류이여도 더 다량의 기포를 석출시킬 수 있다.
본 발명의 기포발생기구에 있어서, 세그먼트 영역으로 흘러들어가는 유체는 충돌부의 선단부(先端部)를 우회(迂回)하여 흘러들어가는 것이 주체적(主體的)이 되어, 유속이 가장 커지게 되는 단면중심 부근의 흐름은, 그 우회에 의해 감속하는 경향이 있다. 이 경우에 조임부의 단면중심부를 향해 돌출하는 복수의 충돌부중에서 2개 이상의 충돌부의 선단부 상호간에, 단면주위류에 대하여 상대적으로 고속이 되는 단면중심류를 통과시키기 위한 고속류 갭을 형성해 두는 것이 유효하다. 이에 따라 단면중심 부근의 흐름을 크게 감속시키지 않고 고속류 갭을 거쳐서 통과시킬 수 있어, 상기 고속류를 미세한 기포의 발생에 특히 유효하게 활용하는 것이 가능하게 된다.
고속류 갭은 다양한 형태로 형성할 수 있다. 예를 들면 충돌부의 선단부에 선단을 향할수록 축단면을 축소시키는 뿔모양부를 형성하고, 세그먼트 영역을 사이에 두고 서로 인접하는 2개의 충돌부에 있어서 뿔모양부의 외주면 사이에 고속류 갭을 구성하는 슬릿부를 형성할 수 있다. 슬릿부는 뿔모양부의 외주면의 모선방향(母線方向)으로 형성되므로, 상기 슬릿부를 향하는 흐름은 뿔모양부의 상기 모선을 따라 부푼 곳을 말하자면 타고 넘어가는 형태로 좁혀져 압축된다. 이때에 슬릿부의 길이방향으로 압축된 액체의 유동폭이 주어지므로 유속이 저하하기 어렵고, 캐비테이션(감압) 효과가 더 높아진다. 그리고 캐비테이션 발생영역이, 종래의 벤투리관이나 오리피스에서는 조임중심의 근방에서 포인트모양으로 형성되어 있었던 것을, 상기 구성에서는 슬릿부를 따라 선모양으로 형성되기 때문에 기포가 감압석출하는 영역이 대폭으로 확장하여, 다량의 미세기포를 석출시킬 수 있다.
한편 복수의 충돌부의 적어도 1쌍을, 조임부의 단면중심을 사이에 두고 내경방향으로 대향하는 형태로 배치하고, 그들 충돌부의 선단 사이에 고속류 갭을 구성하는 중심갭(中心gap)을 형성할 수도 있다. 이 구성에 의하면, 가장 고유속이 되는 단면중심의 흐름을, 중심갭을 거쳐서 큰 손실을 발생하지 않고 통과시키는 것이 가능하게 된다. 그 단면중심의 흐름은 중심갭의 통과에 의해 더 좁혀져 고속화하려고 하지만, 세그먼트 영역측에 대한 우회흐름이 허용되어 있기 때문에 유체저항의 증가가 효과적으로 억제되고, 캐비테이션(감압) 효과가 대폭으로 높아져, 단면중심에 있어서의 유속을 대폭으로 증가시킬 수 있으므로 더 다량의 미세기포를 석출시킬 수 있다.
충돌부는 각각 그 돌출방향이 조임부의 축단면에서 서로 직교하는 십자형태로 설치할 수 있고, 그들 충돌부에 의해 조임부를 4개의 조임 세그먼트 영역으로 분할할 수 있다. 충돌부를 서로 직교하는 방향으로 배치해서 4개의 조임 세그먼트 영역으로 분할함으로써, 단면중심에 대한 충돌부 나아가서는 조임 세그먼트 영역의 배치의 대상성(對象性)도 양호해져, 개개의 조임 세그먼트 영역에서 보다 균질(均質)한 미세기포를 석출할 수 있게 된다.
이 경우에 조임부의 단면중심부를 향해 돌출하는 복수의 충돌부중에서 2개 이상의 충돌부의 선단부 상호간에, 단면주위류에 대하여 상대적으로 고속이 되는 단면중심류를 통과시키기 위한 고속류 갭을 형성할 수 있다. 4개의 충돌부는 유로의 내주면으로부터 상기 유로의 중심부를 향해 돌출하는 형태로 설치할 수 있다. 또한 각 충돌부의 선단부에는 선단을 향할수록 축단면을 축소시키는 뿔모양부를 형성함으로써, 세그먼트 영역을 사이에 두고 서로 인접하는 충돌부에 있어서 뿔모양부의 외주면 사이에 고속류 갭을 구성하는 슬릿부를 형성할 수 있다. 그 결과, 조임부의 단면중심을 사이에 두고 내경방향으로 대향하도록 배치되는 충돌부의 선단 사이에 고속류 갭의 일부를 구성하는 중심갭이 형성되고, 고속류 갭은 4개의 슬릿부가 중심갭을 사이에 두고 일체화된 십자형태로 형성된다.
상기의 구성에 의하면, 가장 고유속이 되는 단면중심의 흐름은, 단면중심을 둘러싸도록 배치되는 4개의 뿔모양부에 의해 효과적으로 좁혀져 중심갭으로 증속하면서 흘러들어간다. 그리고 중심갭에는 주위의 4개의 슬릿부를 통하여 중심갭내에서 좁혀져 압축되는 흐름은, 슬릿부로 우회함으로써 유체저항의 증가가 매우 효과적으로 억제되고, 또한 슬릿에 의해 좁혀져 있으므로 우회부분에서의 유속저하도 낮게 억제할 수 있다. 그 결과, 중심갭 뿐만 아니라 슬릿부에서도 캐비테이션(감압) 효과는 매우 활발하게 되어, 나노버블 레벨의 미세기포를 고농도로 발생시킬 수 있게 된다.
이 경우에 중심갭에 임하는 충돌부의 선단을 첨예하게 형성하여 둠으로써, 그 근방을 통과하는 흐름을 특히 고속화할 수 있고, 기포미세화가 보다 현저하게 된다. 한편 충돌부의 선단은 평탄하게 형성하는 것도 가능하며, 이 경우는 중심갭의 확장과 흐름의 균일화에 의하여 미세기포의 전체로서의 발생농도 향상에 공헌한다.
충돌부는, 조임부의 단면을 내경을 따라 가로지르도록 배치되는 주충돌부와, 상기 주충돌부와 직교하는 형태로 조임부의 단면중심을 사이에 두고 내경방향으로 대향하도록 배치됨과 아울러, 각각 선단면과 주충돌부의 외주면 사이에 고속류 갭을 구성하는 외주갭을 형성하는 1쌍의 대향 충돌부를 구비하는 것으로서 구성할 수도 있다. 특히 조임부의 내경치수를 축소하지 않을 수 없는 경우에, 상기 구성은 중심갭을 형성하는 구성보다 간략화할 수 있다. 또한 단면중심 부근의 흐름은 주충돌부에 충돌하여 우회하는 형태가 되지만, 주충돌부를 우회하는 원심력의 영향에 의해 증속하면서 대향 충돌부가 형성하는 외주갭을 통과하는 형태가 되므로, 주충돌부와의 충돌에 의한 흐름 감속의 영향이 그다지 크지 않은 장점이 있다.
이 경우에 대향 충돌부의 선단은 평탄하게 형성함으로써, 외주갭을 슬릿모양으로 형성할 수 있고, 슬릿의 길이방향으로 캐비테이션 영역을 확장할 수 있다. 그 결과로 미세기포를 더 고농도로 발생할 수 있다. 또한 주충돌부는, 각각 평탄한 선단면을 구비하는 1쌍의 충돌부를, 그들 선단면 사이에 조임부의 단면중심을 포함하는 중심갭을 형성하는 형태로 조임부의 내경방향으로 대향하도록 배치하는 것도 가능하다. 주충돌부를 이렇게 분할하여, 그 선단면 사이에 중심갭을 형성함으로써, 유속이 가장 커지게 되는 단면중심 부근의 흐름은 중심갭에 의해 더 좁혀져 고속화하고, 중심갭내에서 더 좁혀져 압축되는 흐름은, 슬릿모양의 외주갭으로 우회함으로써 유체저항의 증가가 매우 효과적으로 억제된다. 또한 외주갭도 슬릿모양으로 좁혀져 있으므로 우회부분에서의 유속저하도 낮게 억제할 수 있다. 그 결과, 중심갭 및 슬릿부에서도 캐비테이션(감압) 효과는 매우 활발하게 되어, 나노버블 레벨의 미세기포를 고농도로 발생시킬 수 있게 된다.
한편 대향 충돌부의 선단은 첨예하게 형성하는 것도 가능하며, 외주갭에 있어서 대향 충돌부의 선단 부근의 조임효과가 높아져, 고유속화에 의한 기포미세화를 도모할 수 있다. 이 경우에 주충돌부는, 각각 평탄한 선단면을 구비함과 아울러 상기 선단면의 외주를 따라 베벨링부가 형성된 1쌍의 충돌부를, 상기 선단면에서 서로 접촉하도록 조임부의 내경방향으로 대향하도록 배치 형성한 것으로서 구성할 수 있다. 이때에 대향 충돌부의 선단을, 주충돌부를 이루는 2개의 충돌부의 베벨링부가 만드는 V자모양 단면의 홈부와 대향하는 형태로 외주갭을 형성하도록 하면, 상기한 대향 충돌부의 선단 부근의 고유속화에 의한 기포미세화 효과를 한층 더 높일 수 있다.
충돌부의 외주면에는, 원주방향의 조임 리브를 충돌부의 돌출방향을 따라 복수개 감아 형성할 수 있다. 이렇게 하면 충돌부의 외주면 접선방향으로 흘러들어가는 기체용해액체가, 조임 리브간의 홈부(혹은 골짜기 모양부)내에서 좁혀짐으로써 더 증속하여 감압효과가 높아진다. 한편 골짜기 개구측의 흐름은 상대적으로 저속이 되어, 특히 골짜기의 바닥측의 고속류에 대하여 압력은 높아진다. 그 결과, 골짜기 개구측의 액체의 기체포화 용해량이 증가하고, 골짜기의 바닥측의 포화 용해량이 감소하는 형태가 되어 용해액체가 골짜기의 바닥측으로 흘러, 기포를 매우 활발하게 석출시킬 수 있다.
골짜기 모양부는 골짜기 아래를 향할수록 폭이 축소되는 형상으로 하면, 골짜기 모양부내에서의 흐름조임 효과 나아가서는 기포석출효과를 높이는데 있어서 바람직하다. 이 경우에 골짜기 모양부내의 복수의 조임 리브는 정상부를 예각으로 하면서 서로 인접하여 형성하는 것이 적절하다. 또한 조임 리브의 꼭지각은, 상기 효과를 적정화하는 관점에 있어서 60도 이하 20도 이상으로 설정하는 것이 좋다.
복수개 감겨있는 조임 리브는, 나선모양으로 일체로 형성할 수 있다. 이렇게 하면 조임 리브의 형성이 용이하게 될 뿐만 아니라, 흐름에 대하여 조임 리브가 경사짐으로써 조임 리브의 능선부를 가로지르는 흐름 성분이 증가하여, 흐름 박리에 따른 난류발생 효과가 현저해지므로, 가일층의 기포의 미세화를 도모할 수 있다. 이 경우에 충돌부는, 다리부 말단측이 유로내로 돌출하는 나사부재로 형성해 두면, 상기 나사부재의 다리부의 외주면에 형성되는 나사산을 조임 리브로서 이용할 수 있어 제조가 용이하다.
모든 충돌부의 외주면에 상기한 조임 리브를 연속적으로 형성하면, 각 세그먼트 영역의 양측에 접촉하는 충돌부에는, 그들 조임 리브 나아가서는 골짜기 모양부에 의해 기포석출을 위한 캐비테이션 포인트가 다수 형성되고, 기포석출이 매우 활발하게 되어 수류중의 기포농도를 대폭으로 상승 시킬 수 있다. 이 효과는, 예를 들면 본 발명의 기포발생기구를 샤워헤드나 욕조에 대한 수류분무부(水流噴霧部)에 장착했을 때에, 외기를 받아들이지 않더라도 캐비테이션에 의한 석출효과만으로 수류를 백탁할 수 있는 정도로 대량의 기포를 유입할 수 있는 등 시각적으로 임펙트가 있는 연출이 가능하게 된다. 그러나 조임부로 흘러들어가는 흐름의 유속이 클 경우는 지나친 기포석출이 발생하고, 석출된 기포의 합체가 발생하여 미세기포농도가 오히려 감소해버리는 것도 우려된다. 거기에서 미세기포의 발생을 우선하고 싶은 경우에는, 모든 충돌부의 외주면의 일부에만 조임 리브를 형성하여, 골짜기 모양부에서의 기포석출 빈도를 억제하는 것이 유효하다. 이 경우에 미세기포발생에 대한 공헌이 큰 고유속의 단면중심부에 위치하는 충돌부의 선단부에는 조임 리브를 형성하지 않고, 나머지의 영역에 조임 리브를 형성하는 것이, 미세기포를 기포합체에 의해 손실시키지 않도록 함에 있어서 유효하다. 한편 복수의 충돌부의 일부를 조임 리브 부착으로 하고 나머지를 조임 리브 없음으로서 구성하는 것도 가능하다.
다음에 본 발명의 기포발생기구에 있어서, 부재본체는 외주면을 원통면모양으로 형성함으로써 관부재의 내측에 동축적으로 장착할 수 있다. 이 경우에 상기 관부재에 있어서 부재본체의 유입단보다 상류측에 위치하는 부분이 액체공급관로를, 마찬가지로 유출단보다 하류측에 위치하는 부분이 액체회수 관로를 형성하는 것이 된다. 이렇게 하면 단일(單一)인 관부재에서 액체공급관로와 액체회수관로를 일괄로 형성할 수 있으므로 부품수의 삭감을 도모할 수 있다. 이 경우에 부재본체의 외주면과 관부재의 내주면 사이에, 그들 외주면과 내주면 사이를 액체가 새지 않도록 밀봉하는 링모양의 밀봉부재를 배치하고, 부재본체의 외주면측으로 누설되는 흐름을 저지하도록 구성하는 것이 바람직하다. 또한 부재본체는, 유입단측과 유출단측의 각 단면이 외주면의 축선과 직교하는 평탄면으로 된 원기둥모양 부재로서 형성하면, 제조도 용이하며, 관부재에 대한 장착도 간단하므로 안성맞춤이다.
다음에 유로의 유입구측에는, 상기 유입구를 향해서 직경이 커지는 유입측 테이퍼부를 형성할 수 있다. 이에 따라 조임부에서의 유속을 더 증가시킬 수 있어, 기포발생효과를 높일 수 있다. 또한 충돌부 부착 유로의 유출구측에, 상기 유출구를 향해서 직경이 커지는 유출측 테이퍼부를 형성할 수도 있다. 이에 따라 유로 단면적 감소부를 통과한 흐름을 저손실로 감속하면서 부재본체의 유출단측으로 전달할 수 있고, 나아가서는 기포발생기구로부터의 기포함유액체의 유출효율을 높일 수 있다. 상기 구성에 있어서는, 충돌부 부착 유로의 유입측 테이퍼부와 유출측 테이퍼부 사이에 유로 단면적이 일정한 단면 일정부(斷面 一定部)를 조임부로서 형성하여, 충돌부를 상기 단면 일정부에 배치해 두면, 유입측 테이퍼부에 의해 증속된 흐름을 단면 일정부에서 안정화시키면서, 충돌부 나아가서는 유로 단면적 감소부로 인도할 수 있으므로, 기포를 보다 안정하게 발생시킬 수 있다.
마지막으로 본 발명은, 상기 본 발명의 기포발생기구를 사용한 샤워헤드도 제공한다. 구체적으로는 상기 샤워헤드는, 상기 본 발명의 기포발생기구와,
기포발생기구의 부재본체의 유입단에 대하여 수류를 공급하는 수류공급부와,
부재본체의 유출단에서 집약된 기포함유액체를 샤워수류로서 분사하는 수류분사부를
구비하는 것을 특징으로 한다.
상기 본 발명의 샤워헤드에 의하면, 본 발명의 기포발생기구가 장착됨으로써 용존공기농도가 동일한 수류이더라도 더 다량의 기포를 함유한 샤워수류를 용이하게 형성할 수 있다. 또한 용존공기가 감압석출에 의해 기포화(氣泡化)되므로 벌크물(bulk water)의 용해산소농도(혹은 수돗물 등의 경우에 용해염소농도)를 감소시킬 수 있어, 샤워수류에 접촉하는 피부나 머리카락에 대한 산소(혹은 염소)의 영향을 효과적으로 감소할 수 있다.
도1은 본 발명의 기포발생기구 부착 샤워장치의 일례를 나타내는 측면단면도 및 정면도이다.
도2는 도1의 기포발생기구 부착 샤워장치에 장착된 기포발생 엔진의 설명도이다.
도3은 도2의 기포발생 엔진의 주요부를 확대해서 나타내는 도면이다.
도4는 충돌부의 작용 설명도이다.
도5는 조임 리브의 작용 설명도이다.
도6은 충돌부의 작용 설명도이다.
도7은 충돌부의 제1변형예를 나타내는 도면이다.
도8은 충돌부의 제2변형예를 나타내는 도면이다.
도9는 충돌부의 제3변형예를 나타내는 도면이다.
도10은 충돌부의 제4변형예를 나타내는 도면이다.
도11은 충돌부의 제5변형예를 나타내는 도면이다.
도12는 충돌부의 제6변형예를 나타내는 도면이다.
도13은 충돌부의 제7변형예를 나타내는 도면이다.
도14는 충돌부의 제8변형예를 나타내는 도면이다.
도15는 충돌부의 제9변형예를 나타내는 도면이다.
도16은 충돌부의 제10변형예를 나타내는 도면이다.
도17은 충돌부의 제11변형예를 나타내는 도면이다.
도18은 충돌부의 제12변형예를 나타내는 도면이다.
도19는 충돌부의 제13변형예를 나타내는 도면이다.
도20은 충돌부의 제14변형예를 나타내는 도면이다.
도21은 본 발명의 기포발생기구의 다른 이용형태를 나타내는 도식도이다.
도22는 실시예의 기포측정결과를 나타내는 제1도면이다.
도23은 마찬가지로 제2도면이다.
도24는 마찬가지로 제3도면이다.
도25는 마찬가지로 제4도면이다.
도26은 마찬가지로 제5도면이다.
도27은 마찬가지로 제6도면이다.
도28은 마찬가지로 제7도면이다.
도29는 마찬가지로 제8도면이다.
도30은 마찬가지로 제9도면이다.
이하, 본 발명을 실시하기 위한 구체적인 내용을 첨부의 도면을 사용하여 설명한다.
도1은, 본 발명의 1실시형태에 관한 기포발생기구 부착 샤워장치(이하, 간단히 「샤워장치」라고도 함)(100)의 외관을 그 내부구조 단면과 함께 나타내는 것이다. 샤워장치(100)는, 손잡이부(101)와, 그 선단에 일체화된 헤드부(100H)를 구비하는 샤워본체(100M)와, 상기 샤워본체(100M)의 내부에 장착된 기포발생 엔진(氣泡發生 engine)(기포발생기구)(1)을 구비한다. 샤워본체(100M)는 일체의 플라스틱 성형품으로서 구성되어 있다.
본 실시형태에서는, 기포발생 엔진(1)은 통모양의 손잡이부(101)의 내부에 수용되어 있다. 구체적으로는 원기둥형의 기포발생 엔진(1)이 손잡이부(101)의 후단측 개구(開口)로부터 동축적(同軸的)으로 삽입되어, 그 전단면 외주 테두리가 손잡이부(101)의 내주면 전단측에 형성된 단차부(101a)에 닿아 고정되어 있다. 부재본체(部材本體)(6)는 수지제(樹脂製)(금속제라도 좋다)로서, 외주면이 원통면모양으로 형성되어 있고, 손잡이부(관부재(管部材))(101)의 내측에 동축적으로 장착되어 있다. 보다 구체적으로 부재본체(6)는, 유입단측(流入端側)과 유출단측(流出端側)의 각 단면(端面)이 외주면의 축선과 직교하는 평탄면(平坦面)으로 된 원기둥모양 부재로서 형성되어 있다. 그리고 손잡이부(101)에 있어서 부재본체(6)의 유입단보다 상류측에 위치하는 부분이 액체공급관로(液體供給管路)를, 마찬가지로 유출단보다 하류측에 위치하는 부분이 액체회수관로(液體回收管路)(분사용 조임부(10lb))를 형성하고 있다. 부재본체(6)의 외주면과 손잡이부(관부재)(101)의 내주면 사이에는, 그들 외주면과 내주면 사이를 액체가 새지 않도록 밀봉하는 링모양의 밀봉부재(8)가 배치되어, 부재본체(6)의 외주면측으로 누설되는 흐름이 저지되도록 구성되어 있다.
손잡이부(101)의 후단부에는 나사부(104c)가 형성되고, 이것에 호스 접속부(103)가 씰링(seal ring)(104)을 사이에 두고 나사결합되어 있다. 그리고 호스 접속부(103)에 형성된 나사부(103t)에 대하여 도면에 나타나 있지 않은 샤워호스가 나사결합해서 부착되어, 상기 샤워호스를 통하여 손잡이부(101)의 내부에 수류가 공급된다.
손잡이부(101)의 내주면은, 단차부(101a)에 의해 고정된 기포발생 엔진(1)의 전단면보다 전방에 위치하는 부분이 테이퍼 모양의 조임부(10lb) 로 되어 있다. 기포발생 엔진(1)을 통과한 수류는 상기 조임부(10lb)에서 증속(增速)되면서, 손잡이부(101)의 선단측과 연결형태로 일체화된 샤워본체(100M)에 공급되고, 수류분사부(102)의 살수판(撒水板)(109)(복수의 수류분사구(109h)가 분산되어 형성되어 있는)으로부터 샤워수류로서 분사된다.
헤드부(100H)는, 손잡이부(101)와 일체화된 배면본체(107)와, 상기 배면본체(107)의 개구 테두리에 형성된 나사부(107t)에 대하여, 씰링(114)을 사이에 두고 나사부(108t)에 의해 나사결합된 수류분사부(102)로 이루어진다. 기포발생 엔진(1)의 통과수류는 조임부(10lb)를 거쳐서 헤드부(100H)내로 삽입하여, 살수판(109)으로부터 분사된다.
도2는 기포발생 엔진(1)을 꺼내서 나타내는 확대도이다. 부재본체(6)에는, 유입단으로 개구하는 유입구(2n)와 유출단으로 개구하는 유출구(2x)를 연결하는 유로(2)가 관통형태로 형성되어, 그 유로(2)의 중간위치에 유입구(2n)보다 흐름 단면적이 작은 조임부(2c)가 형성되어 있다. 조임부(2c)에는, 도3에 나타나 있는 바와 같이 유로(2)의 축단면을 3개 이상, 이 실시형태에서는 4개의 세그먼트 영역(segment 領域)(2e)으로 구획하는 형태로 당해 조임부(2c)의 유로 단면적을 더 감소시키는 충돌부(3)가 배치되어 있다. 각 충돌부(3)는 나사부재로서 구성되어, 도2에 나타나 있는 바와 같이 조임부(2c)를 향해서 부재본체(6)의 외주면측으로부터 반경방향으로 형성된 나사구멍(3h)에 나사결합되는 형태로 4개 부착되어 있다. 각 세그먼트 영역(2e)은, 유로 단면적이 서로 동일하게 되도록 형성되어 있다.
샤워장치에 공급되는 물(온수(溫水))은 공기가 용해된 기체용해액체이다. 도2에 있어서, 부재본체(6)의 유입단에 공급된 기체용해액체의 흐름은 충돌부(3)에 충돌한 후에, 각 세그먼트 영역(2e)으로 분배되면서 증속하여 통과한다. 그리고 그 감압효과에 의하여 기체용해액체내의 용해기체가 기포가 되어 석출하고, 기포함유액체가 되어 도1의 헤드부(100H)로부터 샤워수류가 되어 분출된다.
도3에 나타나 있는 바와 같이 조임부(2c)의 단면중심부를 향해 돌출하는 복수의 충돌부(3)중에서 2개 이상의 충돌부(3)의 선단부 상호간에는, 단면주위류에 대하여 상대적으로 고속이 되는 단면중심류를 통과시키기 위한 고속류 갭(2g, 2k)이 형성되어 있다. 충돌부(3)의 선단부에는, 선단으로 향할수록 축단면을 축소시키는 뿔모양부(5t)가 형성되어(이 실시형태에서는 원추형(圓錐形)이지만, 4각뿔이나 6각뿔 등의 다른 원추형상이더라도 좋다), 세그먼트 영역(2e)을 사이에 두고 서로 인접하는 2개의 충돌부(3)에 있어서, 그들 뿔모양부(5t)의 외주면간에, 고속류 갭을 구성하는 슬릿부(2g)가 형성되어 있다. 한편 4개의 충돌부(3)에 있어서 조임부(2c)의 단면중심을 사이에 두고 내경방향으로 대향하는 것인 상호간의 선단 사이에는, 고속류 갭을 구성하는 중심갭(2k)이 형성되어 있다.
도3에 나타내는 바와 같이 충돌부(3)는, 각각 그 돌출방향이 조임부(2c)의 축단면에서 서로 직교하는 십자형태로 설치되어 있으며, 그들 충돌부(3)에 의해 조임부는 4개의 조임 세그먼트 영역(2e)으로 분할되어 있다. 4개의 충돌부(3)는 유로(2)의 내주면으로부터 상기 유로(2)의 중심부를 향해 돌출하고 있다. 그리고 세그먼트 영역(2e)을 사이에 두고 서로 인접하는 충돌부(3)에는, 뿔모양부(5t)의 외주면간에 슬릿부(2g)가 4개 형성됨과 아울러, 내경방향으로 대향하도록 배치되는 충돌부(3)의 선단 사이에 중심갭(2k)이 형성된다. 그 결과로 고속류 갭은, 4개의 슬릿부(2g)가 중심갭(2k)을 사이에 두고 일체화된 십자형태로 형성되는 것이 된다.
또한 도3에 나타나 있는 바와 같이 각 충돌부(3)의 외주면에는, 원주방향의 조임 리브(5r)가 충돌부(3)의 돌출방향을 따라 복수개 감겨지도록 형성되어 있다. 골짜기 모양부(21)는 골짜기의 바닥을 향할수록 폭이 축소되는 형상으로 되어 있다. 또한 복수의 조임 리브(5r)는 정상부(頂上部)를 예각(銳角)으로 하면서 서로 인접하여 형성되어 있다. 상기 조임 리브(5r)의 꼭지각은, 예를 들면 60도 이하 20도 이상으로 설정되어 있다. 상기와 같이 충돌부(3)는 나사부재로서, 복수개 감겨있는 조임 리브(5r)는 나선형으로 일체로 형성되어 있다.
이하, 도1의 샤워헤드(100)의 작용·효과에 대해서 설명한다. 샤워헤드(100)의 호스 접속부(103)에 샤워호스(도면에 나타내지 않는다)를 부착하여, 상기 샤워호스를 통하여 수류를 공급한다. 호스 접속부(103)로부터의 수류는 손잡이부(101)내에서 기포발생 엔진(1)을 통과하고, 또한 조임부(10lb)를 거쳐 샤워본체(100M)에 공급되어, 살수판(109)을 구비하는 수류분사부(102)로부터 샤워수류로서 분사된다.
도2에 나타낸 바와 같이 기포발생 엔진(1)은, 조임부(2c)에 있어서 유로(2)의 단면적이, 고유속이 되는 단면중심(O)를 향해서 지름방향으로 서로 유사하게 축소되는 것이 아니라, 충돌부(3)를 장해물로서 사용함으로써, 액체의 흐름이 가능한 영역이 단면중심에 관한 원주방향으로 말하자면 솎아내는 형태로 축소된다. 그 결과, 조임부(2c)에서의 유체저항이 과도하게 증가하지 않아, 유속의 증가효과 나아가서는 부압발생효과를 대폭으로 증가시킬 수 있다. 그리고 세그먼트 영역(2e)(및 그 하류)으로 분배되는 기체용해액체에 대한 캐비테이션(감압) 효과가 대폭으로 증가되어, 용존공기농도(溶存空氣濃度)가 같은 수류라도 더 다량의 기포를 석출시킬 수 있다. 유입측 테이퍼부(2a)와 유출측 테이퍼부(2b) 사이에는 조임부(2c)가 단면 일정부로서 형성되고, 충돌부(3)가 상기 단면 일정부(2c)에 배치되어 있으므로, 유입측 테이퍼부(2a)에 의해 증속된 흐름을 단면 일정부(2c)에서 안정화시키면서 충돌부(3)로 인도할 수 있고, 기포를 보다 안정하게 발생시키는 것이 가능하게 되고 있다.
그리고 조임부(2c)에 있어서는, 유속이 가장 커지게 되는 단면중심 부근의 흐름이 충돌부(3)의 선단부를 우회하여 각 세그먼트 영역(2e)으로 분배된다. 도3에 나타나 있는 바와 같이 충돌부(3)의 선단부 사이에 고속류 갭(2g, 2k)이 형성되어 있으므로, 단면중심 부근의 고유속은 상기 고속류 갭(2g, 2k)에서 크게 감속하지 않고 통과할 수 있다. 그 결과, 상기 고속류 갭(2g, 2k)에서는 통과수류에 의한 캐비테이션 효과가 현저하게 증가되어, 발생하는 기포의 미세화가 매우 현저하게 된다.
고속류 갭(2g, 2k)중에, 세그먼트 영역(2e)을 사이에 두고 인접하는 충돌부(3)의 선단부(뿔모양부)(5t, 5t) 사이에 형성되는 슬릿부(2g)는, 상기 뿔모양부(5t)의 외주면의 모선방향으로 형성된다. 따라서 상기 슬릿부(2g)를 향하는 흐름은 뿔모양부(5t)의 상기 모선을 따라 부푼 곳을 말하자면 타고 넘어가는 형태로 좁혀져 압축된다. 이때에 슬릿부(2g)의 길이방향에는, 압축된 액체의 유동폭이 주어지므로 유속이 저하하기 어렵고, 캐비테이션(감압) 효과가 더 높아진다. 또한 캐비테이션 발생영역은 슬릿부(2g)를 따라 선모양으로 형성되기 때문에, 기포를 감압석출하는 영역이 대폭으로 확장하여, 다량의 미세기포를 석출시킬 수 있다.
한편 중심갭(2k)은 단면중심을 포함하는 형태로 형성되고, 유속이 최대로 되는 중심흐름은 이 중심갭(2k)에 의해 우회의 영향을 받지 않고 통과할 수 있다. 또한 중심흐름은 중심갭(2k)의 통과에 의해 더 좁혀져 고속화하려고 하지만, 세그먼트 영역(2e)측에 대한 우회흐름이 허용되어 있기 때문에 유체저항의 증가가 효과적으로 억제된다. 이에 따라 단면중심부에서의 캐비테이션(감압) 효과는 더 높아져, 보다 다량의 미세기포를 석출시킬 수 있다. 세그먼트 영역(2e)으로 분배되는 각 흐름은, 개개의 충돌부(3)의 하류에서 소용돌이류 또는 난류(亂流)를 발생시켜, 발생된 기포가 상기 소용돌이류 또는 난류에 빨려들어 미세화하는 효과도 기대할 수 있다.
그리고 단면중심 부근의 고속류는, 도4에 나타나 있는 바와 같이 단면중심을 둘러싸도록 배치되는 4개의 뿔모양부(5t)에 의해 효과적으로 좁혀져 중심갭(2k)으로 증속하면서 흘러들어 간다. 도3에 나타나 있는 바와 같이 중심갭(2k)에는 주위의 4개의 슬릿부(2g)가 통하고, 중심갭(2k)내에서 좁혀져 압축되는 흐름은 슬릿부(2g)로 우회함으로써 유체저항의 증가가 매우 효과적으로 억제된다. 또한 슬릿부(2g)로 우회하는 흐름 자체도 슬릿 길이방향으로 자유도를 구비하기 때문에, 유속저하는 낮게 억제된다. 그 결과, 중심갭(2k) 및 슬릿부(2g)에서도 캐비테이션(감압) 효과는 매우 활발하게 되어, 나노버블 레벨의 미세기포를 고농도로 발생시킬 수 있게 된다. 또한 중심갭(2k)에 임하는 충돌부(3)(뿔모양부(5t))의 선단은 첨예하게 형성되어 있으며, 그 근방을 통과하는 흐름을 특히 고속화할 수 있으므로 기포미세화가 더 현저하게 된다.
또한 충돌부(3)의 외주면에는 원주방향의 조임 리브(5r)가 충돌부(3)의 돌출방향을 따라 복수개 감겨 형성되어 있다. 충돌부(3)의 외주면 접선방향으로 흘러들어가는 기체용해액체는, 조임 리브(5r) 사이의 홈부(혹은 골짜기 모양부)(21)내에서 좁혀짐으로써 더 증속하여 감압효과가 높아진다. 도5에 나타나 있는 바와 같이 골짜기 개구측의 흐름은 상대적으로 저속이 되어, 특히 골짜기의 바닥측의 고속류에 대하여 압력은 높아진다. 즉 골짜기의 개구측(開口側)에 저속의 고압역(HPA)이, 골짜기의 저측(低側)에 고속의 저압역(LPA)이 형성되어, 골짜기의 개구측의 액체의 기체포화 용해량(氣體飽和 溶解量)이 증가하고, 골짜기의 바닥측의 포화 용해량이 감소한다. 그 결과, 수류중의 용존공기(용해액체)(SGF)는, 도6에 나타나 있는 바와 같이 골짜기 개구측의 저속유역(LF)(고압역(HPA):도4)으로부터 골짜기 저측의 고속유역(FF)(저압역(LPA):도5)으로 흘러, 기포(MB)를 매우 활발하게 석출한다.
또한 도3에 나타낸 바와 같이 충돌부(3)를 나사부재(5)로서 형성하고 있으며, 복수로 감겨있는 조임 리브(5r)를 나선모양으로 일체로 형성하고 있다. 나사산을 조임 리브(5r)로서 간이로 이용할 수 있는 것 외에, 흐름에 대하여 조임 리브(5r)가 경사짐으로써 조임 리브(5r)의 능선부를 가로지르는 흐름 성분이 증가하여, 흐름 박리에 따른 난류발생 효과가 현저하게 되므로, 기포의 가일층의 미세화가 도모되는 장점도 발생하고 있다.
상기와 같이 샤워헤드(100)에 의하면, 기포발생 엔진(1)이 장착됨으로써 용존공기농도가 같은 수류이더라도, 더 다량의 기포를 함유한 샤워수류를 용이하게 형성할 수 있다. 또한 용존공기를 감압석출에 의해 기포화하므로, 벌크물의 용해산소농도(혹은 수돗물 등의 경우에 용해염소농도)를 감소시킬 수 있어, 샤워수류에 접촉하는 피부나 머리카락에 대한 산소(혹은 염소)의 영향을 효과적으로 감소시킬 수 있다. 특히 도3과 같이 모든 충돌부(3)의 외주면에 상기한 조임 리브(5r)가 연속적으로 형성되어 있음으로써, 각 세그먼트 영역(2e)의 양측에 접촉하는 충돌부재(3)에는, 그들 조임 리브(5r) 나아가서는 골짜기 모양부에 의하여 기포석출을 위한 캐비테이션 포인트(cavitation point)가 다수 형성되고, 기포석출이 매우 활발하게 되어, 수류중의 기포농도를 대폭으로 상승시킬 수 있다. 그 결과로 샤워헤드(100)에 의하면, 외기를 받아들이지 않더라도 캐비테이션에 의한 석출효과만으로 수류를 백탁(白濁)할 수 있는 정도로 대량의 기포를 유입할 수 있는 등 시각적으로 임펙트가 있는 연출이 가능하게 된다.
이하, 본 발명의 기포발생 엔진의 다양한 변형예에 대해서 설명한다. 우선 도3과 같이 모든 충돌부(3)의 외주면에 조임 리브(5r)를 연속적으로 형성하는 구성에서는, 조임부(2c)로 흘러들어가는 흐름의 유속이 클 때에 기포석출이 과잉하게 되어, 석출된 기포의 합체가 발생하여 미세기포농도가 오히려 감소해버리는 것도 우려된다. 거기에서 미세기포의 발생을 우선하고 싶은 경우에는, 도8, 도9 및 도10에 나타내는 바와 같이 충돌부의 외주면의 일부에만 조임 리브(5r)를 형성하여, 골짜기 모양부에서의 기포석출 빈도를 억제하는 것이 유효하다.
도8은, 복수개 있는 충돌부(3)의 일부를 조임 리브(5r)가 부착된 것으로 하고, 나머지를 조임 리브(5r)가 없는 것으로 하여 구성한 예이다. 이 실시형태에서는 조임 리브(5r) 부착한 것과 조임 리브(5r) 없는 것을 원주방향으로 교대로 배치하고 있으며, 모든 세그먼트 영역(2e)에 있어서 이것에 접촉하는 충돌부(3)의 일방의 측에서, 조임 리브(5r)에 의한 캐비테이션 효과가 반드시 발생하도록 하고 있다.
또한 미세기포발생에 대한 공헌이 큰 고유속의 단면중심부에 위치하는 충돌부(3)의 선단부에는 조임 리브(5r)를 형성하지 않고, 나머지의 영역에 조임 리브(5r)를 형성하는 것이, 미세기포를 기포합체에 의해 손실시키지 않도록 하는데 있어서 유효하다. 도3에 있어서도, 충돌부(3)의 선단부를 이루는 뿔모양부(5t)의 외주면에는 조임 리브(5r)를 형성하지 않았지만, 기포발생이 과잉인 경우에는, 도9에 나타나 있는 바와 같이 뿔모양부(5t)에 이어 원통모양의 원주측면부(圓周側面部)의 선단측 영역에 있어서 조임 리브(5r)의 형성을 생략하는 구성도 가능하다. 상기 구성은, 단면중심영역에서의 고속류 갭(2g, 2k)에 의한 초미세기포(특히 10nm 이상 800nm 이하인 나노버블)와, 단면주위영역에서의 조임 리브(5r)에 의한 미세기포(1㎛ 이상 100㎛ 이하인 마이크로버블)를 균형있게 발생시키는데 있어서 유효하다고 할 수 있다. 또한 도10은, 원통모양의 원주측면부에 대하여 조임 리브(5r)를 축선방향으로 단속적으로 형성한 예를 나타내고 있다. 또한 나노버블의 발생을 특히 우선시키고 싶은 경우에는, 도7과 같이 충돌부의 외주면에 조임 리브를 형성하지 않는 구성으로 하는 것도 가능하다.
다음에 조임 리브는, 도11에 나타나 있는 바와 같이 충돌부(3)의 축선주위에서 원주방향으로 닫히는 형태로 독립적인 조임 리브(5s)를 축선방향으로 복수밀착하여 접촉시켜서 형성하는 것도 가능하다. 도11에 있어서는, 독립적인 개개의 조임 리브(5s)를 충돌부(3)의 축선과 직교하는 방향으로 형성하고 있지만, 이것을 상기 축선과 직교하는 면에 대하여 경사지게 해서 형성하는 것도 가능하다. 이렇게 하면 도3과 마찬가지로 조임 리브가 경사짐으로써 흐름 박리에 따른 난류발생 효과가 현저해져, 기포의 가일층의 미세화를 도모할 수 있다.
도3에 있어서 충돌부(3)의 선단부를 이루는 뿔모양부(5t)의 선단각은, 충돌부(3)의 축선을 포함하는 평면으로 절단한 단면에 나타나는 각도에서 90도(즉 전체 둘레각 360도를 충돌부(3)의 수(4)로 나눈 값)로 설정되어 있다. 따라서 도12에 나타나 있는 바와 같이 충돌부(3)의 선단을 조임부(2c)의 단면중심에 맞추는 형태로, 인접하는 뿔모양부(5t)의 측면 상호간이 밀착하여 접촉하도록 각 충돌부(3)를 위치결정하면, 고속류 갭을 형성하지 않는 것도 가능하다. 이에 따라 액체의 흐름은 각 세그먼트 영역(2e)에 빠짐없이 분배되어, 조임 리브(5r)를 주체로 한 캐비테이션 효과에 의해 기포발생이 가능하게 된다. 또한 도13에 나타나 있는 바와 같이 내경방향으로 대향하는 1쌍의 충돌부(3, 3)에 대해서 뿔모양부(5t)의 선단을 접촉시키고, 나머지의 1쌍의 충돌부(3, 3)를 축선방향으로 후퇴시키는 배치로 함으로써 슬릿부(2g)를 형성할 수 있다.
충돌부(3)의 선단은 평탄하게 형성하는 것도 가능하다. 도14 및 도15에 나타내는 예에서는, 도3과 동일한 뿔모양부(5t)의 선단부를 절단하는 형태로 평탄한 선단면(5u)을 형성하고 있다. 이에 따라 중심갭(2k)의 확장과 흐름 균일화를 도모할 수 있어, 미세기포의 전체적인 발생농도 향상에 공헌한다. 도14에서는, 인접하는 뿔모양부(5t)의 측면 상호간을 밀착하여 접촉시키고 있지만, 평탄한 선단면(5u)을 형성함으로써, 중심갭(2k)을 주위가 닫힌 형태로 형성하고 있다. 또한 도15에서는, 인접하는 뿔모양부(5t)의 측면 사이에 슬릿부(2g)를 형성한 예를 나타낸다.
도16의 구성에 있어서는, 조임부(2c)의 단면을 내경을 따라 가로지르도록 주충돌부(130)를 배치하고, 또한 상기 주충돌부(130)와 직교하는 형태로 조임부(2c)의 단면중심을 사이에 두고 내경방향으로 대향하는 1쌍의 대향 충돌부(30)를 설치한 예이다. 대향 충돌부(30)의 각 선단면과 주충돌부(130)의 외주면 사이에는, 고속류 갭을 구성하는 외주갭(外周gap)(2j)이 형성되어 있다. 조임부(2c)의 내경치수를 축소하지 않을 수 없는 경우에, 상기 구성은 중심갭(2k)을 형성하는 구성보다 간략화할 수 있다. 단면중심 부근의 흐름은 주충돌부(130)에 충돌해서 우회하는 형태로 되지만, 주충돌부(130)를 우회하는 원심력의 영향에 의해 증속하면서 대향 충돌부(30)가 형성하는 외주갭(2j)을 통과하는 형태로 되므로, 주충돌부(130)와의 충돌에 의한 흐름 감속의 영향이 그다지 크지 않은 장점이 있다.
도16의 구성에서는 대향 충돌부(30)의 선단은 평탄하게 형성되어, 외주갭(2j)이 슬릿모양으로 형성되어 있다. 슬릿의 길이방향으로 캐비테이션 영역을 확장할 수 있으므로, 미세기포를 더 고농도로 발생할 수 있다. 주충돌부(130)는 양쪽 단부가 부재본체(6)에 매설되는 내경방향으로 일체인 부재로서, 조임부(2c)내에 노출되는 부분에서 그 외주면의 전체면에 조임 리브(5r)가 형성되어 있다. 외주갭(2j)에 있어서는, 대향 충돌부(30)의 선단면과 대향하는 주충돌부(130)의 외주면이 조임 리브(5r)에 의해 요철화(凹凸化)하고 있으며, 조임 리브(5r)(산) 위치에서는 갭 간격이 협소화하여 고속류 영역이 발생하고, 골짜기 모양부(21)에서는 갭 간격이 확대하여 저유속 영역이 발생한다. 그 결과, 인접하는 이들 두 영역 사이의 압력차이에 따라 저유속 영역으로부터 고유속 영역을 향해 용존기체의 흐름이 발생하고, 또한 도5 내지 도6에서 나타낸 골짜기 모양부(21)내에서 발생하는 용존기체의 흐름이 더해짐으로써, 기포석출이 매우 활발화하여 고농도의 기포발생을 기대할 수 있다. 또한 주충돌부(130)의 외주면은, 액체유입측으로부터 대향 충돌부(30)의 선단면과의 대향위치를 향해서 간격을 축소하여, 그 조임효과에 의해 유속이 상승하는 것도, 기포발생효과를 높이는 점에 있어서 유리하게 되어 있다. 또 도16중에 파선으로 나타내는 바와 같이, 대향 충돌부(30)의 선단면을 주충돌부(130)의 외주면의 조임 리브(5r)에 접촉시켜도, 골짜기 모양부(21)의 공간이 외주갭(2j)을 형성하는 형태가 되어, 활발한 기포석출을 기대할 수 있다.
또한 도17은, 대향 충돌부(3, 3)의 선단을 첨예하게 형성한 예이다. 외주갭(2j)에 있어서 대향 충돌부(3)의 선단 부근의 조임효과를 높일 수 있어, 고유속화에 의한 기포미세화를 도모할 수 있다. 주충돌부는, 각각 평탄한 선단면(5u)을 구비함과 아울러 상기 선단면(5u)의 외주를 따라 베벨링부(3t)가 형성된 1쌍의 충돌부(30, 30)를, 상기 선단면(5u, 5u)에서 서로 접촉하도록 조임부(2c)의 내경방향으로 대향하도록 배치 형성하고 있다. 대향 충돌부(3, 3)의 선단은, 주충돌부를 이루는 2개의 충돌부(30, 30)의 베벨링부(3t)가 만드는 V자모양 단면의 홈부와 대향하는 형태로 외주갭(2q)을 형성하고 있다. 이에 따라 상기한 대향 충돌부(3)의 선단 부근의 고유속화에 의한 기포미세화 효과가 한층 더 높여져 있다.
또한 도18, 도19에 나타나 있는 바와 같이 주충돌부는, 각각 평탄한 선단면(5u, 5u)을 구비하는 1쌍의 충돌부(30', 30')(이하 주충돌부(30', 30')로 표시한다)를, 그들 선단면(5u, 5u) 사이에 조임부(2c)의 단면중심을 포함하는 중심갭(2k)을 형성하는 형태로 조임부(2c)의 내경방향으로 대향하도록 배치하는 형태로 하는 것도 가능하다. 도18은, 주충돌부(30', 30')의 선단부 외주면(나아가서는 조임 리브(5r))에 대하여, 대향 충돌부(30, 30)의 각 선단면을 접촉시킨 구성을 나타낸다. 이렇게 2개의 충돌부(30', 30')로 분할하여, 그 선단면 사이에 중심갭(2k)을 형성함으로써, 유속이 가장 커지게 되는 단면중심 부근의 흐름은 중심갭(2k)에 의해 좁혀져 더 고속화한다. 또한 도19는, 대향 충돌부(30, 30)의 각 선단면(5u, 5u)을 주충돌부(30', 30')의 선단부 외주면(나아가서는 조임 리브(5r))으로부터 이격시켜, 슬릿모양의 외주갭(2j)을 더 형성한 예를 나타낸다. 중심갭(2k)내에서 좁혀져 압축되는 흐름은, 슬릿모양의 외주갭(2j)으로 우회함으로써 유체저항의 증가가 매우 효과적으로 억제된다. 또한 외주갭(2j)도 슬릿모양으로 좁혀져 있으므로 우회부분에서의 유속저하도 낮게 억제할 수 있다. 그 결과, 중심갭(2k) 및 슬릿부(2g)에서도 캐비테이션(감압) 효과는 매우 활발하게 되어, 나노버블 레벨의 미세기포를 고농도로 발생시킬 수 있게 된다.
또한 이상 설명한 실시형태에서는 세그먼트 영역이 모두 4개 형성되어 있었지만, 세그먼트 영역의 형성개수는 4개에 한정하지 않고, 예를 들면 도20에 나타나 있는 바와 같이 3개의 충돌부(3)에 의해 세그먼트 영역(2e)을 3개 형성하는 것도 가능하다. 또한 충돌부의 외경을 감소시킴으로써 세그먼트 영역의 형성개수를 5개 이상으로 하는 것도 가능하다.
또한 본 발명의 기포발생기구는 샤워장치에 한정하지 않고, 다양한 목적으로 활용할 수 있다. 도21은, 기포발생 엔진(1)을 사용한 순환식 기포발생기구(循環式 氣泡發生機構)(200)의 도식도이다. 기포발생 엔진(1)은 수조(水槽)(54)의 벽부(壁部)에 장착되어 수조(54)에 대한 수류분출구가 되는 한편, 벽부의 다른 위치에 수류취입구(53)가 형성되어, 배관(50, 52)을 통하여 펌프(51)에 의해 수조내의 물(W)을 기포발생 엔진(1)을 통하여 순환시키도록 되어 있다. 펌프(51)에 의하여 압력공급되는 수류는 기포발생 엔진(1)을 통과할 때에 기포(MB)가 석출하여, 기포함유액체가 되어 수조(54)내에 방출된다. 또한 배관(50) 또는 배관(52)상에 주지의 이젝터 노즐(ejector nozzle)을 부착하고, 상기 이젝터 노즐을 통하여 외기를 흡인하여 받아들이면서, 그 흡인한 기체를 기포발생 엔진(1) 통과시에 더 미분쇄(黴粉碎)하여 수조(54)내에 방출하도록 구성하는 것도 가능하다.
[실시예]
도2의 유로 및 충돌부재의 구체적인 치수를 다음과 같이 정한 기포발생 엔진(1)을 준비했다.
(도3)
· 유입구(2n) 및 유출구(2x) : 내경(D1) = 16mm
· 유입측 테이퍼부(2a) : 유로길이(L3) = 24mm
· 유출측 테이퍼부(2b) : 유로길이(L1) = 16mm
· 조임부(2c) : 내경(D2) = 8mm, 유로길이(L2) = 8mm
· 충돌부(3) : 나사외경 : M2, 선단부는 축선 포함하는 단면에서 선단각 90도의 뾰족한 곳
· 중심갭(2k)의 크기(대향하는 충돌부(3)의 뾰족한 곳 사이의 길이) : 0mm, 0.18mm 및 0.36mm의 3조건
상기 기포발생 엔진(1)에 호스를 접속하여, 유입구(2n)에 공급압력 0.12MPa에서 10℃의 물을 공급하고, 분사되는 물을 용적 약 90리터의 수조중으로 방출했다. 이때에 유출구(2x)로부터의 분사유량은 약 10리터/분이었다.
그리고 수조의 측벽에 설치한 측정수배출관(測定水排出管)(수조 바닥면으로부터의 배수구 높이 : 약 40cm)으로부터 수조내에 모인 물을 유출시켜 레이저 회절식 입도분포 측정장치(laser 回折式 粒度分布 測定裝置)((주)시마즈제작소((株)島津製作所) : SALD7100H)의 측정 셀에 도입하여 기포지름분포를 측정했다. 레이저 회절식 입도분포 측정장치는, 측정 셀에 레이저광선을 일정한 각도로 입사함과 아울러, 측정대상 입자(여기에서는 기포)의 입자의 지름(粒徑)에 따라 그 산란각도(散亂角度)가 다르다는 것을 이용하여 각도별의 산란광 강도를 개별의 광검출기에 의해 검출하고, 각 센서의 검출강도로부터 입자의 지름의 분포에 관한 정보를 얻는 것이다. 이 측정원리로부터 밝혀진 바와 같이 레이저 회절식 입도분포 측정장치에 있어서는, 부피가 큰 기포일수록 대응하는 검출기에 있어서의 산란광의 검출강도는 증대하는 경향이 있기 때문에, 담당하는 입자의 지름구간(徑區間)이 다른 복수의 광검출기의 출력강도비를 사용해서 직접 계산되는 것은, 입자의 지름구간별 상대 합계부피(이하 부피상대 빈도라고도 한다)를 지표로 한 분포정보이다. 즉 일반적으로 평균지름으로서의 인식도가 높은 것은 입자지름의 합계값을 입자의 개수로 나눈 수평균지름이지만, 레이저 회절식 입도분포 측정장치의 경우에는 측정원리상, 입자부피에 의해 가중된 부피평균지름만 직접적으로는 산출할 수 없다. 거기에서 장치에 표준탑재된 소프트웨어에 의하여 기포를 구형(球形)으로 가정해서 부피상대 빈도를 개수상대 빈도로 변환한 형태로 기포지름분포를 산출했다.
도22는, 공급압력 0.12MPa에서 중심갭(2k)을 0mm로 하였을 경우에, 즉 슬릿부(2g)를 비형성으로 하였을 경우의, 물의 공급이 계속되는 동안의 측정결과를 나타내는 것이다. 도면중에 상단이 개수상대 빈도에 의한 기포지름분포를, 하단이 그때의 각 검출기(즉 산란각도위치)에서의 산란광강도를 나타낸다. 물의 공급이 계속되는 동안은, 육안으로도 확인할 수 있는 거칠고 큰 기포의 발생이 현저하여, 수조내는 백탁한 상태가 되었다. 이때의 개수평균지름의 측정결과는 27.244㎛이다. 거기에서 물의 공급을 정지하고, 수조내의 거칠고 큰 기포가 수면위로 상승할 때까지 약 1분 방치한 후에 동일한 측정을 했다. 결과를 도23에 나타낸다. 평균지름은 0.128㎛으로 매우 미세한 기포가 존재하고 있는 것을 알았지만, 물의 흡광도(吸光度)(산란에 의한 레이저광의 손실 정도를 나타낸다)는 대폭으로 감소하고 있으며, 미세기포의 농도는 낮다고 생각된다.
한편 도24는, 공급압력을 0.09MPa로 떨어뜨리고, 물의 공급을 정지한 후에 약 1분 방치하여 완전히 동일하게 실시한 측정결과를 나타내는 것이다. 평균지름 0.113㎛의 매우 미세한 기포가 확인되고, 흡광도도 0.012로 높아, 미세기포가 비교적 고농도로 형성되어 있는 것을 알 수 있다. 공급압력을 다소 낮게 설정하여 기포의 합체를 적절하게 억제함으로써, 중심갭이 비형성인 엔진에서도 미세기포를 고농도로 형성할 수 있는 것을 알 수 있다.
도25는, 공급압력 0.12MPa에서 중심갭(2k)을 0.18mm로 하였을 경우의, 물의 공급이 계속되는 동안의 측정결과를 나타내는 것이다. 이 경우도 수조내는 백탁하고 있었지만, 중심갭(2k)을 비형성의 경우와 비교하여 기포의 부상속도(浮上速度)는 분명하게 늦고, 기포의 평균지름은 18.539㎛까지 축소하고 있었다. 그리고 물의 공급을 정지한 후에 1분 경과후의 측정결과가 도26이다. 비교적 높은 흡광도(0.025)를 유지하면서, 평균지름은 2.63㎛까지 감소하고 있는 것을 알 수 있다. 그리고 공급압력을 0.09MPa에 떨어뜨리고, 물의 공급을 정지한 후에 약 1분 방치하여 동일하게 실시한 측정결과를 도27에 나타낸다. 흡광도는 0.020로 높은 값을 유지하면서, 평균지름 0.024㎛으로 매우 미세한 기포가 고농도로 형성되어 있는 것을 알 수 있다.
도28은, 공급압력 0.12MPa에서 중심갭(2k)을 0.36mm로 하였을 경우의, 물의 공급이 계속되는 동안의 측정결과를 나타내는 것이다. 중심갭(2k)을 비형성의 경우와 비교하여 기포의 평균지름은 18.477㎛으로 작다. 또한 물의 공급을 정지한 후에 1분 경과후의 측정결과가 도29로서, 비교적 높은 흡광도(0.017)를 유지하면서, 평균지름은 0.153㎛까지 감소하고 있다. 공급압력이 약간 높더라도, 나노미터(nanometer) 영역의 미세기포가 고농도로 형성되어 있는 것을 알 수 있다. 그리고 공급압력을 0.09MPa에 떨어뜨리고, 물의 공급을 정지한 후에 약 1분 방치하여 동일하게 실시한 측정결과를 도30에 나타낸다. 흡광도는 0.015로 높은 값을 유지하면서, 평균지름 0.071㎛으로 매우 미세한 기포가 고농도로 형성되어 있는 것을 알 수 있다.
1 ; 기포발생 엔진(기포발생기구)
2 ; 유로
2a ; 유입측 테이퍼부
2b ; 유출측 테이퍼부
2c ; 조임부
2e ; 세그먼트 영역
2n ; 유입구
2x ; 유출구
2g ; 슬릿부(고속류 갭)
2k ; 중심갭(고속류 갭)
3, 30, 30', 130 ; 충돌부
5t ; 뿔모양부
5r ; 조임 리브
6 ; 부재본체
100 ; 샤워장치

Claims (26)

  1. 액체유입측이 되는 유입단(流入端)과 액체유출측이 되는 유출단(流出端)이 정해진 부재본체(部材本體)에 대하여, 상기 유입단으로 개구(開口)하는 유입구와 상기 유출단으로 개구하는 유출구를 연결하는 유로(流路)가 관통형태(貫通形態)로 형성됨과 아울러, 상기 유로의 중간위치에 상기 유입구보다 흐름 단면적이 작은 조임부가 형성되고, 상기 조임부에서 상기 유로의 축단면을 3개 이상의 세그먼트 영역(segment 領域)으로 구획(區劃)하는 형태로 상기 조임부의 유로 단면적을 더 감소시키는 충돌부(衝突部)가 배치되고,
    상기 부재본체의 상기 유입단에 공급된 기체용해액체(氣體溶解液體)의 흐름을 상기 충돌부에 충돌시킨 후에, 각 상기 세그먼트 영역으로 분배하면서 증속(增速)하여 통과시켜, 그 감압효과(減壓效果)에 의해 용해된 기체를 석출(析出)시켜 기포함유액체(氣泡含有液體)로 하여, 상기 유출구로부터 유출시키도록 하는 것을 특징으로 하는 기포발생기구(氣泡發生機構).
  2. 제1항에 있어서,
    상기 조임부의 단면중심부를 향해 돌출하는 복수의 상기 충돌부중에서 2개 이상의 충돌부의 선단부(先端部) 상호간에, 단면주위류(斷面周圍流)에 대하여 상대적으로 고속이 되는 단면중심류(斷面中心流)를 통과시키기 위한 고속류 갭(高速流 gap)이 형성되어 있는 기포발생기구.
  3. 제2항에 있어서,
    상기 충돌부의 선단부에는 선단을 향할수록 축단면을 축소시키는 뿔모양부가 형성되어 이루어지고, 상기 세그먼트 영역을 사이에 두고 서로 인접하는 2개의 상기 충돌부에 있어서 상기 뿔모양부의 외주면 사이에 상기 고속류 갭을 구성하는 슬릿부(slit部)가 형성되어 있는 기포발생기구.
  4. 제2항 또는 제3항에 있어서,
    복수의 상기 충돌부의 적어도 1쌍이, 상기 조임부의 단면중심을 사이에 두고 내경방향으로 대향하는 형태로 배치되고, 그들 충돌부의 선단 사이에 상기 고속류 갭을 구성하는 중심갭(中心gap)이 형성되어 있는 기포발생기구.
  5. 제1항 내지 제4항 중의 어느 하나의 항에 있어서,
    상기 충돌부는, 각각 그 돌출방향이 상기 조임부의 축단면에서 서로 직교하는 십자형태(十字形態)로 설치되고, 그들 충돌부에 의해 상기 조임부가 4개의 상기 조임 세그먼트 영역으로 분할되어 이루어지는 기포발생기구.
  6. 제5항에 있어서,
    상기 조임부의 단면중심부를 향해 돌출하는 복수의 상기 충돌부중에서 2개 이상의 충돌부의 선단부 상호간에, 단면주위류에 대하여 상대적으로 고속이 되는 단면중심류를 통과시키기 위한 고속류 갭이 형성되고,
    4개의 상기 충돌부가 상기 유로의 내주면(內周面)으로부터 상기 유로의 중심부를 향해 돌출하는 형태로 설치되고,
    각 상기 충돌부의 선단부에는 선단을 향할수록 축단면을 축소시키는 뿔모양부가 형성되어 이루어지고,
    상기 세그먼트 영역을 사이에 두고 서로 인접하는 상기 충돌부에 있어서, 상기 뿔모양부의 외주면 사이에 상기 고속류 갭을 구성하는 슬릿부가 형성되고,
    상기 조임부의 단면중심을 사이에 두고 내경방향으로 대향하도록 배치되는 상기 충돌부의 선단 사이에, 상기 고속류 갭의 일부를 구성하는 중심갭이 형성되고,
    상기 고속류 갭은, 4개의 상기 슬릿부가 상기 중심갭을 사이에 두고 일체화된 십자형태로 형성되어 이루어지는 기포발생기구.
  7. 제6항에 있어서,
    상기 충돌부의 선단이 첨예(尖銳)하게 형성되어 이루어지는 기포발생기구.
  8. 제7항에 있어서,
    상기 충돌부의 선단이 평탄(平坦)하게 형성되어 이루어지는 기포발생기구.
  9. 제5항에 있어서,
    상기 충돌부는,
    상기 조임부의 단면을 내경을 따라 가로지르도록 배치되는 주충돌부(主衝突部)와,
    상기 주충돌부와 직교하는 형태로 상기 조임부의 단면중심을 사이에 두고 내경방향으로 대향하도록 배치됨과 아울러, 각각 선단면과 상기 주충돌부의 외주면 사이에 상기 고속류 갭을 구성하는 외주갭(外周gap)을 형성하는 1쌍의 대향 충돌부(對向 衝突部)를
    구비하는 기포발생기구.
  10. 제9항에 있어서,
    상기 대향 충돌부의 선단이 평탄하게 형성되어 이루어지는 기포발생기구.
  11. 제9항 또는 제10항에 있어서,
    상기 주충돌부는, 각각 평탄한 선단면을 구비하는 1쌍의 충돌부가, 그들 선단면 사이에 상기 조임부의 단면중심을 포함하는 중심갭을 형성하는 형태로 상기 조임부의 내경방향으로 대향하도록 배치되어 형성된 것인 기포발생기구.
  12. 제9항에 있어서,
    상기 대향 충돌부의 선단이 첨예하게 형성되어 이루어지는 기포발생기구.
  13. 제12항에 있어서,
    상기 주충돌부는, 각각 평탄한 선단면을 구비함과 아울러 상기 선단면의 외주를 따라 베벨링부(beveling部)가 형성된 1쌍의 충돌부가, 상기 선단면에서 서로 접촉하도록 상기 조임부의 내경방향으로 대향하도록 배치되어 형성된 것이고,
    상기 대향 충돌부의 선단이, 상기 주충돌부를 이루는 2개의 충돌부의 상기 베벨링부가 만드는 V자모양 단면의 홈부와 대향하는 형태로 상기 외주 갭을 형성하여 이루어지는 기포발생기구.
  14. 제1항 내지 제13항 중의 어느 하나의 항에 있어서,
    상기 세그먼트 영역을 사이에 두고 서로 인접하는 2개의 상기 충돌부의 적어도 어느 하나의 외주면에, 원주방향의 조임 리브가 상기 돌출방향을 따라 복수개 감겨지도록 형성되어 있는 기포발생기구.
  15. 제14항에 있어서,
    상기 조임 리브는 정상부(頂上部)가 예각(銳角)으로 형성되어 이루어지는 기포발생기구.
  16. 제13항 또는 제14항에 있어서,
    복수개 감겨있는 상기 조임 리브가 나선모양으로 일체형성(一體形成)되어 있는 기포발생기구.
  17. 제16항에 있어서,
    상기 충돌부는 나사부재로 형성되고, 상기 나사부재의 상기 다리부의 외주면에 형성되는 나사산이 상기 조임 리브를 형성하는 기포발생기구.
  18. 제14항 내지 제17항 중의 어느 하나의 항에 있어서,
    상기 충돌부의 외주면의 일부에만 상기 조임 리브가 형성되어 있는 기포발생기구.
  19. 제18항에 있어서,
    상기 충돌부의 선단부를 제외한 영역에 상기 조임 리브가 형성되어 있는 기포발생기구.
  20. 제1항 내지 제19항 중의 어느 하나의 항에 있어서,
    상기 부재본체는 외주면이 원통면모양으로 형성됨과 아울러 관부재(管部材)의 내측에 동축적(同軸的)으로 장착되어서 이루어지고, 상기 관부재에 있어서 상기 부재본체의 유입단보다 상류측에 위치하는 부분이 액체공급관로(液體供給管路)를, 마찬가지로 유출단보다 하류측에 위치하는 부분이 액체회수관로(液體回收管路)를 형성하고 있는 기포발생기구.
  21. 제20항에 있어서,
    상기 부재본체의 외주면과 상기 관부재의 내주면 사이에, 그들 외주면과 내주면 사이를 액체가 새지 않도록 밀봉하는 링모양의 밀봉부재(密封部材)가 배치되어 이루어지는 기포발생기구.
  22. 제21항에 있어서,
    상기 부재본체는, 상기 유입단측과 상기 유출단측의 각 단면(端面)이 상기 외주면의 축선과 직교하는 평탄면으로 된 원기둥모양 부재로서 형성되어 이루어지는 기포발생기구.
  23. 제1항 내지 제22항 중의 어느 하나의 항에 있어서,
    상기 유로의 상기 유입구측에, 상기 유입구를 향해서 직경이 커지는 유입측 테이퍼부(流入側 taper部)가 형성되어 있는 기포발생기구.
  24. 제23항에 있어서,
    상기 유로의 상기 유출구측에, 상기 유출구를 향해서 직경이 커지는 유출측 테이퍼부(流出側 taper部)가 형성되어 있는 기포발생기구.
  25. 제24항에 있어서,
    상기 유로의 상기 유입측 테이퍼부와 상기 유출측 테이퍼부 사이에 유로 단면적이 일정한 단면 일정부(斷面 一定部)가 상기 조임부로서 형성되고, 상기 충돌부가 상기 단면 일정부에 배치되어 있는 기포발생기구.
  26. 제1항 내지 제25항 중의 어느 하나의 항의 기포발생기구와,
    상기 기포발생기구의 상기 부재본체의 상기 유입단에 대하여 수류를 공급하는 수류공급부(水流供給部)와,
    상기 부재본체의 상기 유출단에서 집약된 상기 기포함유액체를 샤워수류로서 분사하는 수류분사부(水流噴射部)를
    구비하는 것을 특징으로 하는 기포발생기구 부착 샤워헤드.
KR1020147001715A 2011-07-21 2012-07-20 기포발생기구 및 기포발생기구 부착 샤워헤드 KR20140048940A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011160272 2011-07-21
JPJP-P-2011-160272 2011-07-21
PCT/JP2012/068480 WO2013012069A1 (ja) 2011-07-21 2012-07-20 気泡発生機構及び気泡発生機構付シャワーヘッド

Publications (1)

Publication Number Publication Date
KR20140048940A true KR20140048940A (ko) 2014-04-24

Family

ID=47558244

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147001715A KR20140048940A (ko) 2011-07-21 2012-07-20 기포발생기구 및 기포발생기구 부착 샤워헤드

Country Status (6)

Country Link
US (1) US9370784B2 (ko)
EP (1) EP2735363A4 (ko)
JP (2) JP5712292B2 (ko)
KR (1) KR20140048940A (ko)
CN (1) CN103747858B (ko)
WO (1) WO2013012069A1 (ko)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014121689A (ja) * 2012-12-21 2014-07-03 Shibata:Kk 炭酸ガス微細気泡発生ユニット
JP2014147901A (ja) * 2013-02-01 2014-08-21 Micro-Bub Kk マイクロバブル生成器及びマイクロバブル生成管路構造
JP6358613B2 (ja) * 2014-06-16 2018-07-18 株式会社micro−bub 散水板を備えなくてもシャワー体感を得られるシャワーヘッド
JP6388380B2 (ja) 2014-06-24 2018-09-12 東芝ライフスタイル株式会社 洗濯機
WO2016178436A2 (ja) * 2015-05-07 2016-11-10 株式会社ウォーターデザイン 液体処理ノズル、それを用いた液体処理方法、ガス溶解方法及びガス溶解装置
WO2016195116A2 (ja) * 2015-06-02 2016-12-08 株式会社ウォーターデザイン 液体処理ノズル、それを用いた液体処理方法、ガス溶解方法及びガス溶解装置
JPWO2016199930A1 (ja) * 2015-06-07 2018-07-12 啓雄 加藤 水素含有液状水性組成物の製造方法
JP6670564B2 (ja) * 2015-07-29 2020-03-25 東芝ライフスタイル株式会社 液体用電磁弁、液体用電磁弁の製造方法、及び洗濯機
WO2017110406A1 (ja) 2015-12-25 2017-06-29 東芝ライフスタイル株式会社 洗濯機
JP2018012919A (ja) * 2016-07-19 2018-01-25 東日本旅客鉄道株式会社 洗浄機構付小便器及びそれに用いる液体処理ノズル
CN113648858B (zh) 2016-07-25 2024-06-11 柴田股份有限公司 气泡产生装置以及气泡产生单元
JP6126728B1 (ja) * 2016-07-25 2017-05-10 丸福水産株式会社 混合処理体、混合処理法、流体混合器、気液混合処理装置、及び、魚介類養殖システム
CN109475827B (zh) * 2016-07-25 2021-11-05 丸福水产株式会社 混合处理体、混合处理法、混合生成流体、流体混合器、流体混合处理装置、鱼贝类养殖系统和鱼贝类养殖法
JP6985790B2 (ja) * 2016-08-10 2021-12-22 東芝ライフスタイル株式会社 微細気泡発生器
JP6391796B1 (ja) * 2016-11-17 2018-09-19 丸福水産株式会社 閉鎖系水域の水質改善システム
JP6290366B1 (ja) 2016-12-21 2018-03-07 東芝ライフスタイル株式会社 微細気泡発生器、微細気泡発生器を備えた家電機器
KR101945517B1 (ko) * 2017-01-16 2019-02-07 한국광해관리공단 유가스전 폐수 처리 시스템
CN106582339A (zh) * 2017-01-24 2017-04-26 淮南市知产创新技术研究有限公司 微细气泡产生机构
JP6889594B2 (ja) * 2017-04-13 2021-06-18 東芝ライフスタイル株式会社 食器洗浄機
CN107583479B (zh) * 2017-09-22 2024-05-31 乔登卫浴(江门)有限公司 一种微纳米气泡发生器及应用该发生器的喷淋装置
JP6433041B1 (ja) * 2017-10-25 2018-12-05 株式会社塩 流体供給装置
WO2019106908A1 (ja) * 2017-11-29 2019-06-06 東芝ライフスタイル株式会社 微細気泡発生器、洗濯機および家電機器
JP7029793B2 (ja) * 2018-01-30 2022-03-04 株式会社水生活製作所 シャワーヘッド
JP6472908B2 (ja) * 2018-02-05 2019-02-20 東芝ライフスタイル株式会社 微細気泡発生器、注水ケース、及び微細気泡発生器を備えた家電機器
CN111195568A (zh) * 2018-11-19 2020-05-26 厦门市得尔美卫浴有限公司 一种增压花洒
CN109673338B (zh) * 2018-12-29 2021-02-09 陕西师范大学 一种微氧气泡水稻富氧育种装置及富氧育种方法
JP7376904B2 (ja) * 2019-05-22 2023-11-09 株式会社タケシタ 液体処理ノズル
JP7370534B2 (ja) * 2019-05-22 2023-10-30 株式会社リスニ 液体処理装置
CN110538064A (zh) * 2019-09-06 2019-12-06 辽宁大学 水力空化辅助中药皮肤病治疗浴缸
JP7390661B2 (ja) * 2020-05-11 2023-12-04 株式会社丸山製作所 シャワーノズル及び液体流通構造
US11130100B1 (en) * 2020-06-22 2021-09-28 Jacob H. Berg Aerating eductor device
JP2022079415A (ja) * 2020-11-16 2022-05-26 株式会社アクアフューチャー研究所 液体処理ノズル
WO2023279124A1 (de) * 2021-07-09 2023-01-12 Ar-Water Tec E.U. Vorrichtung und verfahren zur behandlung von flüssigkeiten
CN117046335B (zh) * 2023-10-11 2024-01-12 青岛朗兹环保科技有限公司 一种对冲式微纳米气泡发生装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166926A (en) * 1980-05-26 1981-12-22 Showa Denko Kk Mixer
US5427181A (en) * 1993-06-14 1995-06-27 Hale Fire Pump Company Mixer for compressed air foam system
US5460449A (en) * 1994-01-27 1995-10-24 Kent; J. Howard In-line mixer for dispersions
JP2974236B2 (ja) * 1994-09-30 1999-11-10 和泉電気株式会社 気液溶解混合方法と装置
US6193171B1 (en) * 1998-02-09 2001-02-27 Patricia J. Albertson Water pulsator
JP4265015B2 (ja) * 1998-12-24 2009-05-20 株式会社ノーリツ 微細気泡発生装置ならびに浴槽システム
AU778815B2 (en) * 2000-02-02 2004-12-23 Toray Industries, Inc. Flow channel switching device, and shower unit having the same
JP3677516B2 (ja) * 2001-03-05 2005-08-03 健 宮川 微細化気泡水生成装置
JP2006116518A (ja) 2004-10-25 2006-05-11 Fujio Negoro マイクロバブル発生シャワー
JP2007050341A (ja) 2005-08-18 2007-03-01 Matsushita Electric Ind Co Ltd 微細気泡発生装置とそれを用いたシャワー装置
JP2007209509A (ja) 2006-02-09 2007-08-23 Matsushita Electric Ind Co Ltd 微細気泡発生装置およびそれを用いたシャワー装置
JP4749961B2 (ja) 2006-07-12 2011-08-17 株式会社アイエンス 気泡発生装置
JP2008073432A (ja) 2006-09-25 2008-04-03 Aisin Seiki Co Ltd マイクロバブルシャワー装置
JP2008229516A (ja) 2007-03-20 2008-10-02 Univ Of Tsukuba マイクロバブルシャワー
JP4706665B2 (ja) * 2007-05-28 2011-06-22 パナソニック電工株式会社 微細気泡発生装置
JP4858327B2 (ja) * 2007-06-18 2012-01-18 パナソニック電工株式会社 微細気泡発生装置
JP2012040448A (ja) * 2008-11-14 2012-03-01 Yasutaka Sakamoto マイクロバブル発生装置
JP2011240210A (ja) * 2010-05-14 2011-12-01 Maindorei Gijutsu Kagaku Kenkyusho:Kk 微小気泡発生機構
JP3169936U (ja) * 2011-06-14 2011-08-25 森鉄工株式会社 マイクロバブル発生器

Also Published As

Publication number Publication date
CN103747858B (zh) 2015-09-23
EP2735363A4 (en) 2015-08-05
US20140151470A1 (en) 2014-06-05
JP5712292B2 (ja) 2015-05-07
EP2735363A1 (en) 2014-05-28
JP2015062906A (ja) 2015-04-09
WO2013012069A1 (ja) 2013-01-24
CN103747858A (zh) 2014-04-23
US9370784B2 (en) 2016-06-21
JPWO2013012069A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
KR20140048940A (ko) 기포발생기구 및 기포발생기구 부착 샤워헤드
JP5731650B2 (ja) 気泡発生機構及び気泡発生機構付シャワーヘッド
WO2010055702A1 (ja) 微細気泡発生機構付シャワー装置
JP4142728B1 (ja) 気泡微細化器
JP2008136931A (ja) 液吐出装置
TWI694860B (zh) 微氣泡獲得裝置
CN112177107A (zh) 一种出水装置
JP2010234242A (ja) 微細気泡発生装置
JP2014121689A (ja) 炭酸ガス微細気泡発生ユニット
CN211395014U (zh) 微气泡喷头及具有该微气泡喷头的洗涤设备
JP2011240268A (ja) 微小気泡発生機構
JP2011240210A (ja) 微小気泡発生機構
KR101406268B1 (ko) 미세기포 발생장치
CN211395013U (zh) 微气泡喷头及具有该微气泡喷头的洗涤设备
JP6646300B2 (ja) 汚水浄化用の気泡発生装置及び汚水浄化方法
EP2889079A1 (en) Nozzle for dissolved air flotation system
JP2019166493A (ja) 微細気泡発生ノズル
CN214061831U (zh) 一种出水装置
JP2011240211A (ja) 微小気泡発生機構
JP2009178661A (ja) 液吐出装置
CN111450719B (zh) 一种复合文丘里式微气泡发生装置
CN114917781A (zh) 一种气泡粉碎细化装置及水龙头
JP2011240209A (ja) 微小気泡発生機構
JP5660281B2 (ja) 吐水装置
KR20210096489A (ko) 마이크로 버블 발생장치

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid