JP7376904B2 - 液体処理ノズル - Google Patents

液体処理ノズル Download PDF

Info

Publication number
JP7376904B2
JP7376904B2 JP2019107472A JP2019107472A JP7376904B2 JP 7376904 B2 JP7376904 B2 JP 7376904B2 JP 2019107472 A JP2019107472 A JP 2019107472A JP 2019107472 A JP2019107472 A JP 2019107472A JP 7376904 B2 JP7376904 B2 JP 7376904B2
Authority
JP
Japan
Prior art keywords
screw
liquid
cross
nozzle
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019107472A
Other languages
English (en)
Other versions
JP2020189286A (ja
Inventor
啓雄 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeshita Co Ltd
Original Assignee
Takeshita Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeshita Co Ltd filed Critical Takeshita Co Ltd
Priority to JP2019107472A priority Critical patent/JP7376904B2/ja
Publication of JP2020189286A publication Critical patent/JP2020189286A/ja
Application granted granted Critical
Publication of JP7376904B2 publication Critical patent/JP7376904B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は、気体を溶存させた液体をキャビテーション処理するための液体処理ノズルに関する。
水の流路にベンチュリやオリフィスにより絞り部を設け、水が高流速化して通過する際の減圧効果により溶存空気を微細気泡として析出させるノズルが種々提案されている(特許文献1~6)。特に、特許文献1、2に開示された方式は、流路の途中にねじ部材を配置し、そのねじ谷、あるいは対向するねじ部材間に形成されたギャップにて水流のさらなる高速化を図るものであり、キャビテーション効率を向上させてより高密度にナノバブルを発生できる旨が謳われている。ここで、キャビテーション効率を高めるには、キャビテーションポイントとなるねじ谷の流路断面内における配置密度(谷点密度)を増加させることが重要である。
本発明者は、特許文献1、2において、上記のような液体処理ノズルにおいて断面内に形成される谷点のうち、キャビテーションポイントとして顕著に機能するのは、液体流速が高くなる断面中心領域、特に中心から流路断面の半径70%までの領域に位置する谷点(70%谷点)である点について言及している。例えば、特許文献2においては、その図3等に開示されているごとく、流路断面内にて同一平面上に複数のねじ部材を断面中心の周り配置することで、断面内の谷点密度を向上させる提案を行なっている。また、同文献においては、液体流路の軸線方向(流れ方向)にて複数のねじ部材を互いにずれた位置に配置することが可能であり、それによってキャビテーションポイントとなる谷部に液体の流れを繰り返し接触させることができ、微細気泡の発生効率やガス溶解効率の更なる向上に寄与できる旨も開示されている(第5ページ9行~13行)。
WO2016-178436号公報 WO2016-195116号公報 WO2013/011570号公報 WO2010/055702号公報 WO2013/012069号公報 特開2011-240206号公報 特開2018-144018号公報
特許文献2が開示する構成では、70%谷点密度については、流路断面の半径70%以内の領域に空隙として形成される流通領域の断面積(70%断面積)により70%谷点数を除した値として算出され、表4の番号106のノズル試験品における1.8(個/mm)が最大値である。本明細書においては、後述のごとく、ねじ部に占有される領域も含めた流路全断面積にて70%谷点数を除した値を70%谷点面積密度の定義として採用するが、特許文献2における上記番号106のノズル試験品の70%谷点密度を該定義の70%谷点面積密度に換算すれば1.1(個/mm)程度の値となる。
特許文献2が開示するねじ部材配置においては、70%谷点面積密度の値は上記の1.1(個/mm)がほぼ限界値とみなされている。その理由は、該文献の第4頁50行以降に記載されているごとく、ねじ部材の先端部が3つ以上の方向から断面中心に向けて集合する関係上、流路断面の中心付近には谷点の配置が幾何学的に不能となる領域が存在するためである。また、特許文献2に開示されている液体流路は内径Dが7mm以下のものであり、得られる流量は液圧0.1MPaにおいて25L/分程度までである(文献第4頁58行~64行参照)。そして、そのような大流量のノズルの具体例については、脚部長を流路内径に合わせて増加させる点が示唆されている。この場合、流路の流通断面積は流路内径の2乗に比例して増加するのに対し、谷点数はねじの脚部長ひいては流路内径の1乗に比例して増加するのみであるから、この方式では流路内径の拡大に伴い谷点密度は急速に減少するので、十分なキャビテーション効率を達成できなくなることにつながる。
この場合、同一面上に配置するねじ部材の数を増やすことで谷点密度を確保することが考えられるが、ねじ部材の占有面積率の増加により、流路断面内径に見合った流量が得られなくなるジレンマがある。また、内径Dが比較的小さいノズルの場合、ねじ部材の占有面積率が増加すると圧損が急速に増し、通常の水道水圧(0.03~0.2MPa程度)での液体流通を行なうとした場合、流速低下によりキャビテーション効率が大きく損なわれる問題もある。また、特許文献7には、ねじ部材を円形断面の流路に1つだけ組み込んだコア部材を、ノズルケーシングに8枚重ねて収容したシステムノズルが開示されているが、8つのねじ部材を流れ方向に1本ずつ分散させて配置する構成のため、キャビテーション処理部を構成する流路長が大きくなりすぎ、圧損が生じやすい問題がある。
本発明の課題は、ねじ部材を用いてキャビテーション処理を行なう構造の液体処理ノズルにおいて、通常水道水圧程度にて十分な液体流速を確保しつつ70%谷点面積密度を飛躍的に向上でき、また、断面内径の大きいノズルにおいても、70%谷点面積密度を大幅に高めつつ、断面内径に見合った流量を確保できる液体処理ノズルを提供することにある。
本発明の液体処理ノズルは、以下の構成を前提部分として備える。すなわち、一端に液体入口を、他端に液体出口を有する円形断面の単一の液体流路が形成されるとともに、該液体流路の一部区間がキャビテーション処理部として定められたノズル本体と、キャビテーション処理部にてノズル本体に脚部先端側が流路内側に突出するように組付けられ、ねじ山ピッチ及びねじ谷深さが0.20mm以上0.40mm以下、公称ねじ径Mが1.0mm以上2.0mm以下の複数のねじ部材とを備える。キャビテーション処理部には、液体流路の中心軸線と直交する仮想的なねじ配置面が該中心軸線に沿って複数設定されるとともに、ねじ部材が各ねじ配置面に対し2つ以上分配される形で脚部の長手方向が該ねじ配置面に沿うように配置される。そして、気体が溶存した液体を液体入口から液体出口に向けて流通させ、キャビテーション処理部にてねじ部材の脚部外周面に形成されたねじ谷に液体を増速しつつ接触させることにより、該液体に溶存ガスの減圧析出に基づくキャビテーション処理を行なう。そして、上記の課題を解決するために、そのキャビテーション処理部が次のような特徴を具備したものとして構成される。
・総数にて8以上のねじ部材が各ねじ配置面に対し2つ以上分配される形で配置される(以下、1つのねじ配置面に配置されたねじ部材のグループのことを「面ねじ組」ともいう)。
・各ねじ配置面において、液体流路の全断面積に占める液体流通領域の割合として定められる面内流通面積率が40%以上に確保され、液体流路の液体流通領域の面積が3.8mm以上確保される。
・中心軸線と直交する平面への投影にて液体流路の断面中心から該液体流路の半径の70%以内の領域に位置する谷点の全ねじ配置面間で合計した総数を、液体流路の断面積で除した70%谷点面積密度と定義したとき、70%谷点面積密度の値が2.0個/mm以上に確保される。
・中心軸線方向に互いに隣接するねじ配置面の間隔が公称ねじ径以上に確保される。
これらの特徴を具備することにより、本発明の液体処理ノズルによれば、通常水道水圧程度にて十分な液体流速を確保しつつ70%谷点密度を飛躍的に向上でき、特に流路断面積を大幅に拡大した大流量ノズルにおいても単純な構造により70%谷点密度を十分な値に確保することができる。以下、詳細に説明する。
まず、発明の前提となる構成において、ねじ部材のねじ山ピッチ及びねじ谷深さの数値範囲を上記のように設定する理由については、以下の通りである。まず、ねじ谷の深さが0.2mm未満ではねじ谷におけるキャビテーション効果(溶存気体の減圧による気泡析出効果)が顕著でなくなり、ねじ谷深さが0.40mm以上ではキャビテーション効果の向上は頭打ちとなる。また、ねじ山ピッチが0.40mm以上に増大すると、ねじ脚部の単位長当たりのねじ谷数が減じるので、70%谷点の面積密度を向上できなくなる。よって、本発明においては、ねじ山ピッチ及びねじ谷深さを0.20mm以上0.40mm以下に設定する。また、ねじ部材の強度確保と、流路断面がねじ部材により過度に占有されないようにすること、ひいては水道圧程度の通常の送液圧でも液体流通量を十分確保できるようにする観点から、ねじ部材の公称ねじ径は1.0mm以上2.0mm以下に設定する。この公称ねじ径の値の範囲は、上記のねじ山ピッチ及びねじ谷深さをカバーするJIS並目ピッチねじの公称ねじ径の範囲とほぼ一致する。以上の技術的な前提は、特許文献2と同じである。
そして、本発明においては、上記のねじ部材を液体流路内に総数にて8以上配置することを必須とする。これは、特許文献2において1つの液体流路内に配置されるねじ部材の最大数(第4頁56行)に相当する。そして、本発明においては、この8以上のねじ部材を1つのねじ配置面内に密集させて配置するのではなく、複数(2以上)の面ねじ組に区分して、複数のねじ配置面に分散配置することで70%谷点密度の増加を図るようにする。
各ねじ配置面において面内流通面積率が過度に小さくなると、水流とねじ部材との接触面積が過剰となり、圧損による流量低下が著しくなる。その結果、通常水道圧による液体流通時において十分な流速が得られる領域は、断面中心から半径70%よりもさらに縮小し、キャビテーションポイントとして有効に機能する谷点数を十分に確保できなくなる。また、面内流通面積率がある程度大きくても、流路断面内径の縮小により液体流通領域の面積の絶対値が小さくなりすぎると、流量低下が同様に著しくなる。
本発明者は本状況に鑑み鋭意検討した結果、各ねじ配置面にて、面内流通面積率が40%以上に確保され、液体流通領域の面積が3.8mm以上確保されていれば、上記のような問題が解消され、個々のねじ配置面を液体流が通過する際の圧損が顕著に減じられることが判明した。そして、本発明においては、隣接するねじ配置面(面ねじ組)の間隔を、使用されるねじ部材の公称ねじ径以上に確保することで、上記のような条件を充足する面ねじ組を流路中心軸線方向に複数連ねて配置しても、面ねじ組を単独で配置する場合と比較した場合の圧損の増加代を極めて小さくとどめることができ、1つの液体流路内に従来よりも多くのねじ部材が配置されているにも関わらず、断面内にて必要な流速を十分に確保できるようになる。その結果、70%谷点面積密度の値を従来実現不能だった1.6個/mm以上に設定した場合に、70%谷点をなすねじ谷にて十分な流速が確保され、キャビテーション効率に極めて優れた液体処理ノズルが実現する。
各ねじ配置面にて、面内流通面積率が40%未満の場合、あるいは液体流通領域の面積が3.8mm未満の場合は、ねじ配置面に配置される個々の面ねじ組の圧損が大きくなり、70%谷点をなすねじ谷にて十分な流速を確保できなくなる。また、隣接する2つのねじ配置面(面ねじ組)の間隔が使用されるねじ部材の公称ねじ径よりも小さくなると、それら2つの面ねじ組の合成圧損が大きくなり、同様に70%谷点をなすねじ谷にて十分な流速を確保できなくなることにつながる。
特許文献2においては、液体流路の軸線方向にて複数のねじ部材を互いにずれた位置に配置する構成も示唆されている。しかし、具体例として開示されているのは、総数にて4本のねじ部材を2本ずつの2組に分割して軸線方向にずらせて配置した構成のみであり(特許文献2:図14参照)、70%ねじ谷面積密度の増加には貢献していない。また、該構成よりもさらにねじ部材の総数を増加させた場合の、液体流通時の圧損に及ぼす影響についても何ら言及されていない。例えば、特許文献2の第5頁9~13行には、「衝突部を流れ方向に複数設けることができ、キャビテーションポイントとなる谷部に、流れを繰り返し接触させることが可能となるので、微細気泡の発生効率や後述のガス溶解効率の更なる向上に寄与する。」との記載があるが、衝突部を流れ方向に複数設ける際の圧損の増加を抑制するための解決手法については、何らの具体的な示唆を与えるものではない。
本発明の液体処理ノズルにおいては、液体流路の液体流通領域の面積を、各ねじ配置面においてより望ましくは5.0mm以上確保するのがよい。本発明者は、面内流通面積率を40%以上に確保しつつ液体流通領域の面積を種々に変更した液体処理ノズルを作成し、通常水道圧における通水テストを実施した結果、液体流通領域の面積が5.0mm以上の領域では、該面積の増加に伴い流量がほぼ直線的に増加する傾向を示すのに対し、5.0mm未満となる領域では、流量は該直線的な関係から下方に外れ、液体流通領域の面積の対数に依存して急速に減少することを見出した。これは、通常の水道圧による流通条件では、液体流通領域の面積が5.0mm未満となったとき、ノズル内の面ねじ組の挿入数が1つ増えるごとに増大する圧損の増加代が急激に大きくなり、断面積に見合った流量が得られなくなることを意味する。よって、面ねじ組の数を増やし、70%谷点面積密度の値をさらに増加させる構成を実現する上で、液体流通領域の面積を5.0mm以上に確保することは極めて重要である。この場合、70%谷点面積密度の値は2.0個/mm(特許文献2が開示する最大値(1.1個/1mm)の約2倍)以上に確保することも可能となる。
ねじ配置面上にてねじ部材は、液体流路の円形の軸断面の直径に脚部の長手方向を一致させる位置関係にて配置することが望ましい。液体流路の円形の軸断面の直径に脚部の長手方向を一致させることで、ねじ部材の先端は流速が大きくなる液体流路の断面中心に近づくので、70%谷点数を増加させる上で有利に作用する。この場合、ねじ部材を3本以上含むねじ配置面を中心軸線方向に2面以上設定することで、ノズル全体の70%谷点面積密度の値を顕著に向上でき、キャビテーション発生効率を大幅に高めることができる。また、ねじ配置面上の3本以上のねじ部材は、各ねじの脚部の先端面が断面中心を取り囲むことにより中心ギャップを形成するように配置することで、最も高流速となる断面中央の流れ(中心流)が液体流通ギャップの形成により妨げられにくくなり、キャビテーション発生効率のさらなる向上を図ることができる。
互いに隣接するねじ配置面間にてねじ部材の脚部は、平面への投影において長手方向を一致させつつ互いに重なり合う位置関係にて配置することが望ましい。該構成によると、多数のねじ部材との接触が許容されているにも関わらず圧損が特に小さい液体処理ノズル、ひいては70%谷点数を飛躍的に増加させつつも低圧損となる液体処理ノズルを実現することができる。
該構成の液体処理ノズルにおいては、隣接するねじ配置面(面ねじ組)間の距離をねじ部材の公称ねじ径に等しい限界値にまで接近させても圧損増加が生じにくく、結果として流路中心軸線方向におけるねじ部材の配置間隔をより密にすることができ、キャビテーション発生効率に優れた液体処理ノズルをコンパクトに構成できる利点が生ずる。該効果は、隣接するねじ配置面(面ねじ組)間の距離を、公称ねじ径の2倍以下にとどめたときに特に顕著である。また、ねじ部材として脚部よりも径大の頭部を有するものを使用する際には、ねじ配置面(面ねじ組)の間隔は該頭部の外径よりも大きく設定されることとなる。
例えば、互いに隣接するねじ配置面のそれぞれにおいて3以上の同数のねじ部材が、脚部が液体流路の断面半径方向に沿うように断面中心周りに等角度間隔にて配置される構成を採用する場合、断面中心周りにおけるねじ部材の配置角度位相が隣接するねじ配置面間にて一致するように定めておくとよい。このようにすると、同じねじ配置面内にて隣り合うねじ部材が軸線方向に壁部状に連なりあい、流路断面は該壁部状のねじ列により分割区画されとともに、その区画された領域内には他のねじ部材が介在しないため、多数のねじが配置されるにもかかわらず液体の衝突抵抗は大きく低減される。そして、上記壁部状のねじ列の内面には個々のねじ部材のねじ谷が多数密に配列し、キャビテーション効率を飛躍的に高めることができる。
一方、互いに隣接するねじ配置面間でねじ部材の脚部は、平面への投影において長手方向を互いに交差させる位置関係にて配置することも可能である。この構成では、複数の面ねじ組を液体流が通過する際の、個々のねじ部材と液体流との衝突による損失はやや大きくなるが、液体を衝突により生ずる乱流により攪拌する効果がより顕著となる。例えば、上記構成の液体処理ノズルにまた、気体(空気、酸素、炭酸ガス、窒素、水素、オゾンなどから選ばれる1種又は2種以上)と液体(水、食用油、ガソリンや軽油などの液体化石燃料、アルコールなど)との混合流を供給すれば、上記の攪拌効果により液体に気体を溶解させる効率を高めることができる。また、相互溶解度の小さい液体同士(例えば、親水性の小さい有機液体と水系液体)を攪拌混合して、エマルジョンを形成したりする目的にも有効に採用可能である。
上記の構成では、中心軸線方向におけるねじ配置面の間隔をねじ部材の公称ねじ径の2.0倍以上に設定するのがよい。これにより、複数の面ねじ組に液体を流通させる際の圧損低減を図ることができる。ねじ配置面の間隔は、より望ましくは4.0倍以上に設定するのがよい。
例えば、互いに隣接するねじ配置面のそれぞれにおいて3以上の同数のねじ部材が、脚部が液体流路の断面半径方向に沿うように断面中心周りに等角度間隔にて配置される場合、上記の構成を採用するには、断面中心周りにおけるねじ部材の配置角度位相が隣接するねじ配置面間にて互いにずれた形で定められることとなる。
本発明の作用及び効果の詳細については、「課題を解決するための手段」の欄にすでに記載したので、ここでは繰り返さない。
本発明の液体処理ノズルの一実施形態を示す横断面図。 図1の液体処理ノズルの各ねじ配置面におけるねじ部材レイアウトを示す軸断面図。 図2の要部を拡大して示す軸断面図。 図1の液体処理ノズルにおいて、図2のレイアウトの面ねじ組を中心軸線方向に4組配置した液体処理ノズルの要部横断面図。 同じく8組配置した液体処理ノズルの要部横断面図。 図1の液体処理ノズルにおいて、一方の面ねじ組を45°回転させた構造を示す要部横断面図。 図1の液体処理ノズルにおいて、一方の面ねじ組を図6のレイアウトとした液体処理ノズルの要部横断面図。 図7の構造において、面ねじ組を互いに直交するねじ部材対に分割し、それぞれ中心軸線方向に位置をずらせて配置した液体処理ノズルの要部横断面図。 図7の液体処理ノズルと同様の面ねじ組の対を中心軸線方向に2組配置した液体処理ノズルの要部横断面図。 キャビテーション処理部に気体導入機構を設けた液体処理ノズルの一実施形態を示す横断面図。 面ねじ組を3本のねじ部材で構成した液体処理ノズルの要部軸断面図。 面ねじ組を8本のねじ部材で構成した液体処理ノズルの要部軸断面図。 面ねじ組を4本のねじ部材により、中心ギャップを形成しない形で構成した液体処理ノズルの要部軸断面図。 図13の面ねじ組を中心軸線方向に2組配置した液体処理ノズルの要部横断面図。 4本のねじ部材を十字状に配置した液体処理ノズルにおいて、一定動水圧にて水を流通させた時の、液体流通領域の面積と流量との関係を示すグラフ。 4本のねじ部材を十字状に配置した液体処理ノズルの断面内流速分布を、断面内径が4.2mm以上のノズルと断面内径が3.5mmノズルとで比較して示すグラフ。 面ねじ組を交互に45°回転させて複数配置した各種液体処理ノズルの通水動水圧と流量との関係を、比較例の液体処理ノズルについての結果とともに示すグラフ。 面ねじ組を互いに重なる位相関係にて複数配置した各種液体処理ノズルの通水動水圧と流量との関係を、面ねじ組を互いに45°回転させて二組配置した液体処理ノズルについての結果とともに示すグラフ。 処理水のぬめり汚れ除去能力を評価する装置の構造を示す図。 比較例の液体処理ノズルの要部軸断面図。 実験例に使用した液体処理ノズルの各部の寸法関係を説明する図。 通水テストに使用した試験装置の模式図。
以下、本発明の実施の形態を添付の図面に基づき説明する。
図1は、本発明の実施の形態の第一を示す液体処理ノズルの横断面図である。この液体処理ノズル1は、液体流路3が形成されたノズル本体2を備える。ノズル本体2は円筒状に形成され、その中心軸線Oの向きに円形断面の1つの液体流路3が貫通形成されている。液体流路3は一方の端(図面右側)に液体入口4を、他方の端に液体出口5を開口しており、その流れ方向中間位置には液体入口4及び液体出口5よりも径小の絞り部9が液体流路3の一部区間をなす形で形成されている。液体流路3は絞り部9よりも液体入口4側が流入室6とされ、液体出口5側が流出室7とされる。そして、絞り部9には、脚部先端側が流路内側に突出するようにねじ部材10が組み付けられ、キャビテーション処理部CVを形成している。処理対象となる液体は、例えば水(あるいは必要に応じて所望の溶質成分を溶かし込んだ水溶液)であるが、水以外の液体(例えば、アルコール等の有機溶媒、ガソリンや軽油などの化石燃料、食用油など)を用いてもよい。
ノズル本体2の材質は、たとえばABS、ナイロン、ポリカーボネート、ポリアセタール、PTFEなどの樹脂であるが、ステンレス鋼や真鍮などの金属やアルミナ等のセラミックスとしてもよく、用途に応じて適宜選択される。また、ねじ部材10の材質はたとえばステンレス鋼であるが、用途に応じて、より耐食性の高いチタンやハステロイ、インコネル(いずれも商標名)などの耐熱合金を用いてもよいし、耐摩耗性が問題となる場合は石英やアルミナなどのセラミック材料を用いることも可能である。特に、金属コンタミを嫌う分野(たとえば半導体分野)への適用には、石英の採用が好適であり、この場合は樹脂製のノズル本体2はたとえばPTFEで構成するとよい。
ねじ部材10は、ねじピッチ及びねじ谷深さが0.20mm以上0.40mm以下、公称ねじ径Mが1.0mm以上2.0mm以下のものが使用されている。本実施形態にてねじ部材10は、JISに定められた0番1種なべ小ねじが使用されている。キャビテーション処理部CVには、液体流路3の中心軸線Oと直交する仮想的なねじ配置面が該中心軸線Oに沿って複数、図1においてはLP1,LP2の2面が設定されている。上記のねじ部材10は、脚部の長手方向が個々のねじ配置面LP1,LP2に沿うように配置される。図1の実施形態においてねじ部材10の総数は8であり(後述するように、8を超える数であってもよい)、各ねじ配置面LP1,LP2に対し2つ以上、図1においては4つずつ分配されている。
図1において各ねじ配置面LP1,LP2においてねじ部材10は、図2に示すレイアウトに従い配置されている。具体的には、各ねじ配置面LP1,LP2上の4本のねじ部材10は互いに直交する十字形態に配置され、各々ノズル本体2に形成されたねじ孔19内面の雌ねじ部19fにて、その壁部外周面側から脚部先端が絞り部9内へ突出するようにねじ込まれている。ねじ孔19とねじ部材10とは接着剤等によりセッティング固定することができる。図3は、絞り部9の内側をさらに拡大して示すものであり、ねじ部材10と絞り部9の内周面との間には主流通領域21が形成されている。また、各絞り部9において、4つの衝突部10が形成する十字の中心位置には、液体流通ギャップ15が形成されている。液体流通ギャップ15を形成する4つの衝突部10の先端面は平坦に形成され、前述の投影において液体流通ギャップ15は正方形状に形成されている。
図3において、各ねじ配置面LP1,LP2における液体流通領域の面積(以下、全流通断面積ともいう)aを、液体流路の投影領域の外周縁内側の全面積(ここでは、図1の絞り部9の円形軸断面の面積:内径をdとしてπd/4))をS1、衝突部10(4本のねじ部材)の投影領域面積をS2として、
a=S1-S2 (単位:mm
として定義する。この実施形態では、主流通領域21と液体流通ギャップ15との合計面積が全流通断面積aに相当する。図1に示すごとく、液体入口4及び液体出口5の開口径は、絞り部9の内径よりも大きい。すなわち、液体入口4及び液体出口5の開口断面積は全流通断面積aよりも大きく設定されている。また、流入室6及び流出室7の絞り部9に連なる内周面はそれぞれテーパ部13,14とされている。液体出口5側のテーパ部14と液体入口4側のテーパ部13とは絞り比は同じであるが、区間長はテーパ部14の方が大きく設定されている。そして、各ねじ配置面LP1,LP2において、全流通断面積aは3.8mm以上確保され、液体流路の全断面積S1に占める液体流通領域の割合(すなわち、a/S1×100(%))として定められる面内流通面積率は40%以上に確保されている。
図3において、ねじ部材(衝突部)10の投影外形線に現れる谷部21の深さhは0.2mm以上確保されている。また、中心軸線Oの投影点を中心として液体流路の内周縁までの距離の70%に相当する半径にて描いた円を基準円C70として定めたとき、谷部21の最底位置を表す谷点のうち、基準円C70の内側に位置するもの(○で表示)の数、つまり、中心軸線Oと直交する平面への投影にて液体流路3の断面中心から該液体流路3の半径の70%以内の領域に位置する谷点の数を70%谷点数N70と定義する。そして、該70%谷点数N70の値を全ねじ配置面について合計した値を、液体流路3(絞り部9)の断面積S1で除した値を70%谷点面積密度と定義する。図1の液体処理ノズル1においては、70%谷点面積密度の値が1.6個/mm以上に確保されている。
図1において、互いに隣接するねじ配置面LP1,LP2間にてねじ部材10の脚部は、中心軸線Oと直交する平面への投影において長手方向を一致させつつ互いに重なり合う位置関係にて配置されている。具体的には、十字状に配置された4本のねじ部材10からなる面ねじ組が、ねじ配置面LP1,LP2間にて互いに重なり合う位置関係(すなわち、十字状の面ねじ組の中心軸線O周りの配置角度位相が互いに一致する位置関係:以下、このような配置を「同相配置」という)にて配置されている。また、隣接するねじ配置面LP1,LP2間の間隔dpは、図2のねじ頭部10hの外径をdh、ねじ脚部10fの公称ねじ径をMとして、例えば1.05dh以上2M以下に設定されている。
図1の液体処理ノズル1に対し、たとえば、液体出口5側を開放して液体入口4に動圧が通常水道圧(例えば、0.077MPa)程度となるように、液体として例えば水を流通させた場合の作用について説明する。この水はたとえば、空気が溶存しているものとする(たとえば、20℃(常温)での酸素濃度は約8ppm)。水流はまずテーパ部13及び絞り部9で絞られ、ねじ部材10と絞り部9内周面との間に形成される図2の主流通領域21と液体流通ギャップ15とからなる液流通領域にてねじ部材10に衝突しながらこれを通過する。
そして、ねじ部材10の外周面を通過するときに、ねじ谷部に高速領域を、ねじ山部に低速領域をそれぞれ形成する。すると、ねじ谷部の高速領域はベルヌーイの定理により負圧領域となり、キャビテーションが生ずる。ねじ谷部はねじ部材の外周に複数巻形成され、かつ8本以上のねじ部材10が複数のねじ配置面LP1、LP2に分配配置されていることから、キャビテーションは絞り部9内の谷部にて同時多発的に起こることとなる。すると、水流がねじ部材10に衝突する際に、ねじ谷部での溶存空気の減圧析出が沸騰的に激しく起こり、ねじ部材10の表面及び液体流路3の内面との間で水流を激しく摩擦しつつ撹拌する。
図1の液体処理ノズル1は、各ねじ配置面LP1,LP2にて、面内流通面積率が40%以上に確保され、全流通断面積が3.8mm以上に確保され、さらに隣接するねじ配置面LP1,LP2(面ねじ組)の間隔dpが、使用されるねじ部材10の公称ねじ径よりも大きく確保されている。これにより、面ねじ組を流路中心軸線Oの方向に複数連ねて配置してもノズルの圧損増加を極めて小さくとどめることができる。その結果、1つの液体流路3内に従来よりも多くのねじ部材が配置されているにも関わらず、断面内にて必要な流速を十分に確保できるようになる。例えば、特許文献2では1.1個/mm程度が限界と思われていた70%谷点面積密度の値を、十分な流速を確保しつつも一挙に1.6個/mm以上もの大きな値に設定できるようになる。
本発明者は、特許文献2において、当該文献に開示された液体処理ノズルによりキャビテーション処理を行なった水は肌や髪などへの浸透性が向上すること、該浸透性の向上効果は、液体処理ノズルの70%谷点密度が大きくなるほど顕著となることを示唆した。また、肌や髪の構成成分は高分子であるたんぱく質であり、こうした高分子ネットワークからなる構造体への分子レベルでの水の浸透性改善については、水の中に微小気泡が介在することによる効果のみでは説明がつかない側面があること、例えば、水の物理的な性状、特に、極性分子である水の集団的(統計的)な振る舞いに微細気泡が関与し、水の浸透力等が増している可能性があること、などについても言及した。しかし、70%谷点面積密度の値が上記の大きな値に拡大したノズルを用いてキャビテーション処理を行なった場合に、処理後の液体の特性がどのように改善されるかについては、特許文献2は沈黙している。
本発明の液体処理ノズルにてキャビテーション処理を行なった水は、例えばレーザー回折式粒度計などにより測定すれば、特許文献2と同様に、平均径が100nm~300nm程度のナノ域の微小気泡を多量に含んだ水になっていることを確認できる。しかし、後述の実験結果から明らかな通り、レーザー回折式粒度計によって確認できる上記平均径の微小気泡は、キャビテーション処理後タンクなどに貯留して数分放置すれば大部分が消失し、通常の感度のレーザー回折式粒度計では検出できなくなる。しかし、この微小気泡が検出されなくなった貯留後の処理水であっても、本発明のごとく70%谷点面積密度を高めた液体処理ノズルを用いれば、キャビテーション処理に伴う浸透性改善等の効果は、微小気泡が検出されるノズル流通直後の処理水と同様に発揮されるのである。
以下、本発明の液体処理ノズルの種々の変形例について説明する。
図4は、図1の液体処理ノズル1のキャビテーション処理部CVを、図2に示すレイアウトの面ねじ組を中心軸線Oの方向に4組配置した構成を示す。具体的には、中心軸線Oの向きに4つのねじ配置面LP1~LP4が、図1と同じ面間隔dpにて配置され、図2の十字状の面ねじ組が互いに重なるように(すなわち、同相に)配置されている。この場合、16本のねじ部材10が4つのねじ配置面LP1~LP4に分配されることとなる。また、図5は、図2の面ねじ組を8つのねじ配置面LP1~LP8に対し同相に配置したキャビテーション処理部CVの例を示す。この場合、32本のねじ部材10が8つのねじ配置面LP1~LP8に分配されることとなる。各キャビテーション処理部CVの70%谷点面積密度は、図2の構成と比較して、図4の構成では2倍に、図5の構成では4倍に増加させることができる。
次に、図6は、図1の液体処理ノズル1と同様の面ねじ組を45°回転させた状態を示している。そして、図1の液体処理ノズル1の2つのねじ配置面LP1,LP2のうち、一方のねじ配置面LP2の十字状の面ねじ組を、他方のねじ配置面LP1の面ねじ組に対して中心軸線Oの周りに45°だけ回転させ、図6の状態とした場合のキャビテーション処理部CVの例を、図7に示している。該構成のキャビテーション処理部CVは、図2の構成と同等の70%谷点面積密度を実現できるが、ねじ配置面LP1,LP2の面間隔dpが図1の構成と同一の場合は、液体流通時の圧損が若干大きくなる。しかし、面間隔dpを適度に拡大することで該圧損は減じられ、図2の構成のキャビテーション処理部CVとほぼ同等のキャビテーション処理能力を発揮する。また、液体の乱流攪拌効果は図1の構成よりも大きいため、混相流供給により気体を液体に溶解させる目的においてはより有利となる。
図8は、図7の構成において、面ねじ組を互いに直交するねじ部材対に分割し、それぞれ中心軸線Oの向きに位置をずらせて配置したキャビテーション処理部CVの例を示す。具体的には、図1においてねじ配置面LP1,LP2上に配置されていた各々4本のねじ部材10が、図7の構成では、ねじ部材10の公称ねじ径Mだけ隔てられた2つのねじ配置面LP1,LP1’及びLP2,LP2’に、互いに直交する2本ずつを分散させて配置している。すなわち、8本のねじ部材10を4つのねじ配置面LP1,LP1’,LP2,LP2’に分配した例を示すものである。また、ねじ配置面LP1’とねじ配置面LP2との間隔は、公称ねじ径Mよりも大きく(例えば1.5M~2.0M程度)に設定されている。該構成における70%谷点面積密度は図2の構成と同等である。
また、図9は、図2のレイアウトの面ねじ組と、図6のレイアウトの面ねじ組とを、4つのねじ配置面LP1~LP4に対し、交互に2つずつ合計4組配置したキャビテーション処理部CVの例を示す。この例では、16本のねじ部材10が4つのねじ配置面LP1~LP4に4本ずつ分配配置されている。該構成における70%谷点面積密度は図2の構成の2倍となる。
図10は、キャビテーション処理部に気体導入機構を設けた液体処理ノズルの一実施形態を示す横断面図である。該液体処理ノズル201は、図2のレイアウトの面ねじ組と、図6のレイアウトの面ねじ組とを、中心軸線Oの向きに沿って配列する3つのねじ配置面LP1~LP3に対し、交互に合計3組配置したキャビテーション処理部CVを有する。ノズル本体2には、該ノズル本体2の外周面に開口し、キャビテーション処理部CVよりも上流にて絞り部9に連通する気体導入孔28が形成されている。気体導入孔28のノズル本体2の外周面側の開口にはめねじ孔29が形成され、気体供給管を接続するための気体導入用継手30が該めねじ孔29に取り付けられている。これら気体導入孔28及び気体導入用継手30が気体導入機構を構成しており、該気体導入用継手30に気体供給配管(図示せず)を接続すれば、絞り部9内に溶解するべき気体を簡単に導入することができる。例えば、エアコンプレッサ(図示せず)からの気体供給配管を接続することで被処理水に空気を溶解でき、例えば溶存空気の欠乏した被処理水においてもキャビテーションに必要な溶存空気量を確保できる。
上記の種々の実施形態では、ねじ配置面に対しねじ部材を4本十字状に配置していたが、ねじ配置面におけるねじ部材の配置数及び配置形態はこれらに限定されるものではない。図11は、面ねじ組を3本のねじ部材10で構成した例を示すものである。3本のねじ部材10の先端面は三角形状の中心ギャップ15を形成している。
また、図1の構成において、液体流路3(絞り部9)の内径が拡大した場合、全流通断面積が3.8mm以上確保され、かつ、面内流通面積率が40%以上に確保される条件が充足されるのであれば、1つのねじ配置面上に配置するねじ部材の数、すなわち、面ねじ組の構成ねじ部材数は4つを超えた数とすること、例えば6本や8本としてもよい。図12は、面ねじ組を8本のねじ部材で構成した例を示している。
また、ねじ部材を液体流路3(絞り部9)の内径(直径)に沿って配置する場合、該内径を横断するねじ部材を用いることで、中心ギャップを省略する構成も可能である。図13は、面ねじ組を4本のねじ部材により、中心ギャップを形成しない形で構成した例を示す。また、図14は、図13の面ねじ組を、中心軸線方向に位置をずらせ、かつ角度位相を45°ずらせて2組配置した例を示すものである。特に、絞り部9の内径が10mmを超える大流量のノズルにおいては、中心ギャップを省略しても断面中心付近の流速は十分に確保でき、高流速となる断面中心付近のねじ谷数を増加させる上での支障がない。
以下、本発明の液体処理ノズルの効果を確認するために行った種々の実験の結果について説明する。
試験用の液体処理ノズル(以下、「試験ノズル」と称する)として、図1に示す形状のものを種々作成した。図21に図1の各部の寸法関係を図示している(単位mm)。ノズル本体2の材質はABS樹脂であり、液体入口4と液体出口5の内径はφ20mm、流入室6及び流出室7の流れ方向の長さはそれぞれ15mm及び45mmである。また、キャビテーション処理部において絞り部9の長さは12mm(面ねじ組数4まで)ないし17mm(面ねじ組数8)、絞り部9の内径Dはφ3.8~ψ11.5mmの種々の値に設定した。
採用したねじ部材は、JIS:B0205(1997)に規定されたメートル並目ピッチを有する0番1種なべ小ねじであり、材質はステンレス鋼(SUS304)である。また、脚部の公称ねじ径はM1.0(ねじピッチ:0.25mm、ねじ頭外径:1.8mm)、M1.4(ねじピッチ:0.30mm、ねじ頭外径:2.0mm)、M1.6(ねじピッチ:0.35mm、ねじ頭外径:2.4mm)、M2.0(ねじピッチ:0.40mm、ねじ頭外径:3.0mm)である。キャビテーション処理部におけるねじ配置面(面ねじ組)の数は1~8であり、種々の面間隔にて設定している。なお、比較のため、図20に示す如く、キャビテーション処理部に形成した隔壁部8に2つの絞り孔9を形成し、各絞り孔9について十字形態に4本のねじ部材10を配置した液体処理ノズルも作成した。
各ねじ配置面のねじ部材(面ねじ組)の配置数及びレイアウトは、図11に示す3本、図2及び図6に示す4本及び図12に示す8本であり、隣接するねじ配置面の面ねじ組の位置関係(角度位相)は、図1、4、5に示す同相か、図7~9に示す45°(ねじ配置面が3以上の場合は交互に45°ずらせた配置)のいずれかとした。また、個々のねじ配置面の全流通断面積aは3.4~56.8mm、面内流通面積率は37.5%~73.7%の種々の値とした。なお、表3の番号13及び番号15の試験ノズルについては、直径方向に2本のみねじ部材を配置した1つのねじ配置面を1つ含むように構成した(表中、「1/2」と表示)。
また、絞り部内のねじ部材のレイアウトを示す投影画像上で各ねじ配置面上の基準円内側の70%谷点数を計数し、これをねじ配置面で合計した値を絞り孔の全断面積で除することにより、70%谷点面積密度の値を各試験ノズルについて算出した。作成した各ノズルについて、絞り部内径、組内ねじ数、面ねじ組配置、面ねじ組間隔、面内流通断面積、面内流通面積率、70%谷点総数及び70%谷点面積密度の各値を、表1~表4にまとめて示している。なお、*を付与した番号のノズルは、同様に*を付与した寸法ないしパラメータの値において本発明の範囲外となっていることを示す。なお、表1及び表3の各試験ノズルにおいては、公称ねじ径が上記M1.4のねじ部材を使用している。
Figure 0007376904000001
Figure 0007376904000002
Figure 0007376904000003
Figure 0007376904000004
上記の試験用ノズルを用い、以下のような試験を行なった。
(1)通水テスト
図22に示す試験装置を構築し、各試験ノズルを組み込んで通水テストを行なった。具体的には、水温20℃、溶存酸素濃度6ppmの水道水を容量50Lの貯留タンクに注水した。配管系は内径20mmのPVC管を用いて作成した。吸引配管は一端をベーンポンプ(の吸引側に接続し、他端側を貯留タンクに挿入した。一方、ポンプ吐出側の配管は試験ノズルを装着する試験配管と、試験ノズルを経由しない逃がし配管とに分岐し、逃がし配管を通る水は貯留タンクに戻される。試験配管の先端には試験ノズルが装着され、その上流に動水圧計と流量計とが挿入される。この状態でベーンポンプを駆動することにより、試験ノズルを開放通水したときの動水圧と流量とが読み取り可能である。また、試験ノズルを通過した処理水は回収タンクに回収される。逃がし配管上には流量調整弁が設けられ、その開度を調整することで、ノズルに付加される動水圧及び流量が任意の値に無段階に設定可能である。
通水テストは、動水圧を0.077MPaに固定設定した時の流量を全ての試験ノズルについて測定したほか、特に選定したいくつかの試験ノズルについては、動水圧を種々に変更した時の流量変化についての測定を行なっている。また、ねじ配置面を1面のみとし、ねじ部材(面ねじ組)の配置数及びレイアウトを図2に示す4本とし、絞り孔9の内径及びねじ部材10の公称ねじ径Mにより全流通断面積aを種々に変更した試験ノズルを用い、動水圧を0.077MPaに固定設定した時の流通断面積と流量の関係を調べる試験も別途行なっている。
(2)ぬめり汚れ洗浄力評価テスト
バイオフィルムに類似したぬめり汚れのモデルとしてひきわり納豆を用い、図19の装置200を用いて、各試験ノズルを通水させた水道水の洗浄力評価を行なった。装置200の要部をなす散水ノズル201は、内径20mmのPVC管の先端をキャップで封止するとともに、管軸線方向に5mm間隔で管壁部を貫通するノズル孔を複数ドリル孔設したものである。この散水ノズルを水平に支持するとともに、基端側に試験水を供給することで各ノズル孔から下向きに噴射される。
上記の散水ノズルを、図22の装置系にて試験ノズルに代えて装着した。また、(1)の通水テストで試験ノズルの通過によりキャビテーション処理された処理済み水が回収タンクに回収されるので、これを貯留タンクと置き換える形で設置した(ただし、動水圧を0.077MPaに設定して得られた回収水を用いている)。これにより、図22を援用して説明すれば、回収タンク内の処理済み水はベーンポンプにより吸い上げられ、試験ノズルの代わりに散水ノズルから噴射されることとなる。散水ノズル201の直下には整流用タイル207が垂直に立てた状態で設置される。整流用タイル207の上面に向け斜め手前に水流が当たるように、散水ノズル201は軸線周り手前に傾けてセッティングしてあり、各ノズル孔から噴射された水流WFは、整流用タイル207上で広がって一体化し、水膜状となって流下する。
汚れモデルNTを塗布したサンプルタイル206は整流用タイル207の直下に配置され、整流タイルからの水膜状の洗浄水流WFが幅方向に均等に流下する。サンプルタイル206はスペーサ205により、下端側が前方にせり出す形で約3°傾けられている。散水ノズル201の水流噴射区間の幅は約30cmである。また、整流用タイル207及びサンプルタイル206は、片面に白色・平滑な釉薬層が形成された陶器製であり、高さTHが9cm、幅TWが18cmである。サンプルタイル206上の汚れモデルNTの幅は3~4cmに設定され、噴射される処理水の総流量は6L/分、汚れモデルNTに当たる実質流量は0.6~0.7L/分に調整されている。これにより、汚れモデルNTの除去に対しては、水流の衝突運動エネルギーよりも、納豆粒子をタイルに付着させているぬめり層への浸潤が効果として主体的となる。
汚れモデルNTはひきわり納豆であり、染料により赤く着色してサンプルタイル206に塗付されている。ひきわり納豆に含まれる豆粒子のサイズは2~3mmであり、塗布総重量はデジタルスケールを用いて1g(粒子数:40~50個)に統一している。汚れモデルNTを塗布後のサンプルタイルは、20℃、湿度50%RHの空調室内で90分乾燥させたのち試験に供した。試験中、洗浄進行に伴いサンプルタイル206から納豆粒子が落下・除去されてゆく様子を動画撮影し、サンプルタイル206上の初期総粒子数に対する除去粒子数の比率の通水経過に伴う変化を動画から読み取った。具体的には、処理済み水を流通させる場合と通常水を流通させる場合のそれぞれについて3回同じ試験を繰り返し、除去率が50%となる通水時間の3回の平均値を読み取るようにした。
処理済み水の洗浄力は、上記の通水時間により評価したが、キャビテーション処理を行なっていない通常水道水や、異なる試験ノズルによる処理済み水の間での比較を行いやすくするために、次のような手法を用いた。
・処理済み水については、回収タンクに回収後、10分間静置状態で放置したのち、試験に供した。10分放置後の処理済み水は、レーザー回折式粒度計(島津製作所製:SALD2200)により微細気泡が計測されるか否かを確認したが、いずれの試験ノズルによる処理済み水も、通常水である水道水とともに測定結果は検出限界以下となった(一方、本発明の要件を充足する試験ノズルを通水した処理済み水を直ちに測定に供した場合は、平均気泡径100~200nm前後の微細気泡が検出された)。
・洗浄性の評価は、複数の試験ノズルの処理済み水間で通水時間の絶対値を横断的に比較するのではなく、同条件にて作成したサンプルタイルを用いたときの、キャビテーション処理を行わない通常水(ブランク水)と処理済み水との通水時間比(除去率:50%)で比較するようにした。以上の試験結果を、表1~表4にまとめて示している。
以下、得られた結果について説明する。
図15は、ねじ配置面を1面のみとし、ねじ配置面の全流通断面積(液体流通領域の面積)を種々に変更した試験ノズルにより、動水圧を通常水道圧領域の0.077MPaに固定設定したときの、流通断面積aと流量ρの関係を調べた結果を示すグラフである。このグラフから明らかな通り、ねじ配置面における流通断面積aが5.0mm以上となる領域では、該面積aの増加に伴い流量ρがaの一次関数:
ρ=1.75a+2.93・・・(I)
に従って直線的に増加する傾向を示していることがわかる。一方、流通断面積aが5.0mmとなる領域では、流量ρは上記直線的な関係から下方に外れ、全流通断面積aの縮小に伴って、該面積aの対数に依存する関数:
ρ=9.28×ln(a)-3.37・・・(II)
に従い、流量ρが急速に減少していることがわかる。これは、通常の水道圧領域による流通条件では、全流通断面積aが5.0mm未満となったとき、ノズル内の面ねじ組の挿入数が1つ増えるごとに増加する圧損が急激に大きくなり、流通断面積に見合った流量が得られなくなることを意味している。全流通断面積aが5.0mmとなる具体的な条件は、例えば、絞り部9の内径を4.2mmに設定し、M1.4のねじ部材を図2のレイアウトに従い4本配置した場合に相当する。
図16は、面ねじ組の数を増やし70%谷点面積密度の値をさらに増加させる上で、全流通断面積aを5.0mm以上に確保することが重要である事情を説明するものである。横軸は、円形のねじ配置面をなす絞り孔の、断面半径方向の流速分布を示すものである。断面内にねじ部材が配置されるので、流速分布形状はその影響を当然受けると考えられるが、ねじ部材配置の対称性を考慮すれば、断面内にねじ部材が配置されていない場合と同様に、断面中心が極大値となる放物線状の流速分布を仮定することは、おおむね妥当と考えられる(図中の実線)。この状態から、例えば絞り部9の内径を3.5mmに縮小すると、全流通断面積aは3.5mmとなる。この領域においても、面積aに対し流量ρが(I)式が示す一次関数に従い変化すると考えた場合、(I)式のa=3.5mmへの外挿値から推定される流量は約9.0L/minとなる。しかし、実際には圧損増大のため該領域での流量はaの対数を含む(II)式に支配され、(I)式の上記外挿値よりも10%低い8.3L/min前後となることがわかる。
この場合、該領域でも圧損の影響が小さく(I)式が成立していれば、断面半径方向の流速分布はa=5.0mmの場合と同じになるはずであるが、実際には断面半径方向の流速分布は、図16に破線で示すように、a=5.0mmの場合から最大値が10%減じた放物線状となる。断面半径の70%となる位置では、最大値ρのほぼ1/2の流速となる。よって、最大流速が(I)式による外挿値から10%減ずれば、a=5.0mmの場合の最大値ρの1/2の流量となる断面半径位置は、計算によると70%位置から67%位置へ縮小する。このような特性の面ねじ組を、流路軸線方向にさらに一組追加すれば、ρの1/2を与える断面半径位置はさらに縮小して63%位置となる。
絞り部9の内径が3.5mm、ねじ部材の公称ねじ径Mが1.4の場合、幾何学的な計算によると、70%ねじ谷数は8個となるのに対し、63%ねじ谷数は半分の4個に減ずる。このように、a=3.5mmの面ねじ組は、仮に軸線方向に2組配置して流路断面内のねじ部材数を倍増させても、圧損増加により、面ねじ組を1組のみとした場合と比較して70%ねじ谷数の増加には全く寄与できなくなることがわかる。逆に、a>3.5mmに設定される面ねじ組であれば、軸線方向に2組配置したときの圧損増加がa=3.5mmの場合よりも小さくなるので、面ねじ組の増加は70%ねじ谷数の増加、すなわち70%谷点面積密度の増加に理論的には貢献すると考えられる。本発明では、全流通断面積aの下限値を3.8mmに定めているが、より好ましくは上記(I)式が成立する5.0mm以上に設定するのがよいことは言うまでもない。そして、実験結果に基づいて以下に詳細に説明するごとく、面ねじ組を構成する十字状の4つのねじ部材を、互いに隣接するねじ配置面間で同相に配置する(つまり、ねじ部材の脚部を、長手方向を一致させつつ互いに重なり合う位置関係にて配置する)構成を採用するとき、面ねじ組の追加に伴う圧損増加はほとんど生じなくなり、70%ねじ谷数を劇的に増加させることができる。また、互いに隣接するねじ配置面間で角度位相をずらせて面ねじ組を配置した場合も、面ねじ組間の距離を増加させることにより、面ねじ組の追加に伴う圧損増加を抑制でき、70%ねじ谷数を同様に増加させることができるようになるのである。
図17は、絞り部の内径を5.0mmとし、十字状の4つのねじ部材(M1.4)からなる面ねじ組を、ねじ配置面間隔が1.4mm~8.4mm(公称ねじ径をMとして、1.0M~6.0M)となるように設定し、図7のごとく、それらを互いに45°ずれた角度位相にて配置した試験ノズル(番号1~5、以下、45°ノズルという:前述の表1にて、洗浄性評価に供したのは番号2及び4のみ)を用いて行った通水テストの結果を示すものである。動水圧は0.046MPa~0.089MPaの種々の値に設定され、各々測定された流量の値を、設定動水圧の値に対してプロットしている。また、比較用のノズルとして、面ねじ組を1組のみとしたもの(番号101)、面ねじ組を1組のみとしつつねじ部材の本数を8本に増加させたもの(番号102)、絞り孔を図20の2孔タイプとしたもの(番号103)を用いた場合の結果についても併せて示している。
上記の結果によると、ねじ配置面間隔dpが公称ねじ径と等しくなる1.4mm(1.0M)の場合は、面ねじ組を1組のみとした番号101のノズルと比較すれば圧損増加は大きいが、同一面内に8本のねじ部材を配置した番号102のノズルよりは流量が大きくなっており、面ねじ組を軸線方向に分散配置することによる圧損減少効果が明確に認められる。また、ねじ配置面間隔dpを1.5Mに拡大した番号2のノズルは流量が大幅に増加しており、圧損減少効果は極めて顕著となる。この傾向はねじ配置面間隔dpがさらに拡大することによってより顕著となり(番号3:dp=3.0M)、ねじ配置面間隔dpが4.5Mに達すると、面ねじ組を軸線方向に多重化しない番号101及び番号103と比較しても流量特性はほぼ等しくなる。すなわち、このような配置面間隔を採用することで、角度移相をずらせた形で面ねじ組を追加しても、圧損増加がほとんど生じていないことがわかる。
図18は、絞り部の内径を5.0mmとし、十字状の4つのねじ部材(M1.4)からなる面ねじ組を、ねじ配置面間隔dpが2.1mm(=1.5M)となるように設定し、図2、図4及び図5のごとく、それらを互いに同相にて2~8組配置した試験ノズル(番号6~8)を用いて行った通水テストの結果を示すものである。動水圧は0.046MPa~0.089MPaの種々の値に設定され、各々測定された流量の値を、設定動水圧の値に対してプロットしている。また、同じねじ配置面間隔を有する、図17の番号2の45°ノズルの結果についても併せて示している。面ねじ組を同相配置することにより、面ねじ組の数を8組まで増加させても、圧損はほとんど増加していないことがわかる。また、同じ面間隔による45°ノズル(番号2)よりも、流量の値は大幅に増加していることもわかる。
以下、各ノズルについて行ったぬめり汚れ洗浄力評価テストの結果について、表1~表4を参照しつつ説明する。表1は、上記通水テストで用いた番号2及び番号4の45°ノズル及び番号6の同相ノズルについての結果を、番号101~103の比較用ノズルについての結果とともに示している。また、番号200は、キャビテーション処理を行わない通常の水道水をブランク水(通常水)として用いた場合の結果を示すものである。評価は前述のごとく、除去率が50%となるときのブランク水に対する処理済み水の通水時間比(除去率:50%)で行っており、この通水時間比の値が1のとき、ぬめり汚れに対する洗浄力はブランク水と同等であり、1より小さいときは、ブランク水より短時間でぬめり汚れを除去できていることを意味し、その絶対値が小さいほどぬめり汚れに対する洗浄力に優れていることを示す。
まず、比較用のノズルについての結果を説明すると、面ねじ組を1組のみとした番号101のノズルによる処理水は、通水時間比が1よりも小さい値となっており、ブランク水よりは洗浄力は良好である。また、面ねじ組を1組のみとしつつねじ部材の本数を8本に増加させた番号102のノズル、及び絞り孔を2孔タイプとした番号103についての結果も、ブランク水よりは良好であることを示している。
ここで、番号102のノズルは70%谷点面積密度が番号101のノズルの1.8倍程度となっており、特に良好な洗浄効果を示している。また、面内流通面積率も5.1mm確保されており、キャビテーションに必要な流速は十分確保されていると考えられるが、面内流通面積率の値は26%と小さく、流量は6.8L/minと非常に小さくなっており、絞り部の内径に見合った流量が全く得られていないことがわかる。なお、汚れ洗浄力評価テストは、処理水をブランク水にて2倍(ないし3倍)に希釈した水についても同様に行っているが、番号102のノズルは2倍希釈した場合も通水時間比は0.5以下と良好な値を示す。表中には、70%谷点数を動水圧0.077MPaでの通水流量で除して得られる70%谷点流量密度の計算値も併せて示しているが、この値が大きいほど通水時間比が示す洗浄能力が良好となることも把握できる。
次に、本発明の実施形態にかかる番号2、4、6の試験ノズルの結果については、番号101及び番号103のノズルと比較して70%谷点面積密度が大きいため、処理水の洗浄能力は明らかに優れていることがわかる。他方、70%谷点流量密度の比較では、番号102のノズルよりも若干劣っており、洗浄能力はこれには及ばないものの、これに近い能力が発揮されており、かつ、番号102のノズルと比較したとき、面内流通面積率が増大していることにより、流量については圧倒的に良好な結果を示している。
表2は、同相配置にて面ねじ組の数を増加させた番号7及び番号8のノズルについての結果を、番号101及び番号6の試験ノズルの結果と比較して示すものである。番号7及び番号8のノズルは、面ねじ組数の増加に伴う圧損増加が小さいため、大流量を維持しつつ70%谷点面積密度及び70%谷点流量密度がいずれも顕著に増加している。その結果、希釈率を2倍ないし3倍に増加させた場合においても通水時間比が示す洗浄能力は良好である。
表3は、M1.4のねじ部材を用いつつ、絞り部内径、面ねじ組のねじ本数及び面ねじ組の数を種々に変更した試験ノズル(番号9~15)についての結果をまとめたものである。また、番号109、111、112及び113は、番号9、11、12及び13の試験ノズルと同じ構成の面ねじ組を1組のみ設けた比較例のノズルを表している。番号10のノズルは、3本のねじ部材で構成した図11に示す面ねじ組を用いたものであり、番号15は、絞り部内径が10mmを超える値に設定される一方、面ねじ組を図12に示す8本にて構成したものである。また、番号13及び番号15のノズルは、4本ないし8本の面ねじ組を用いつつ、1層だけねじ本数を1/2(4本の面ねじ組については、直径方向に対抗する2本のみとし、8本の面ねじ組については、十字状の4本のみに間引いたもの)に縮小したものとして構成している。番号9~15の実施例の試験ノズルは、絞り部9の内径の拡大に伴い流量が30L/min以上に増加しているにも関わらず、70%谷点面積密度を2.0個/mm以上に確保できており、比較例のノズルよりも大幅に良好な洗浄性能が発揮されている。
表4は、面内流通断面積の値をほぼ同等に設定しつつ、使用するねじ部材の公称ねじ径を変更することにより、70%谷点密度を種々の値に設定した試験ノズル(番号21~24)についての結果を示すものである。いずれも良好な洗浄性能を発揮しているが、ねじ谷深さの大きいM1.4~M2.0のねじ部材を用いた番号22~番号24のノズルは、ねじ谷深さの小さいM1.0のねじ部材を用いた番号21のノズルと比較して、より小さい70%谷点面積密度にて同等の洗浄性能が達成できていることがわかる。
1,201 液体処理ノズル
2 ノズル本体
3 液体流路
5 液体出口
4 液体入口
9 絞り孔
10 ねじ部材
LP1~LP4 ねじ配置面
CV キャビテーション処理部

Claims (5)

  1. 一端に液体入口を、他端に液体出口を有する円形断面の単一の液体流路が形成されるとともに、該液体流路の一部区間がキャビテーション処理部として定められたノズル本体と、前記キャビテーション処理部にて前記ノズル本体に脚部先端側が流路内側に突出するように組付けられる、ねじピッチ及びねじ谷深さが0.20mm以上0.40mm以下、公称ねじ径Mが1.0mm以上2.0mm以下の複数のねじ部材とを備え、前記キャビテーション処理部には、前記液体流路の中心軸線と直交する仮想的なねじ配置面が該中心軸線に沿って複数設定されるとともに、前記ねじ部材が各前記ねじ配置面に対し2つ以上分配される形で前記脚部の長手方向が該ねじ配置面に沿うように配置された構造を有し、ガスが溶存した液体を前記液体入口から前記液体出口に向けて流通させ、前記キャビテーション処理部にて前記ねじ部材の脚部外周面に形成されたねじ谷に前記液体を増速しつつ接触させることにより、該液体に溶存ガスの減圧析出に基づくキャビテーション処理を行なうようにした液体処理ノズルにおいて、前記キャビテーション処理部が、
    総数にて8以上の前記ねじ部材が各前記ねじ配置面に対し2つ以上分配される形で配置されるとともに、前記液体流路の液体流通領域の面積が各前記ねじ配置面において3.8mm以上確保され、前記液体流路の全断面積に占める液体流通領域の割合として定められる面内流通面積率が40%以上に確保され、前記中心軸線と直交する平面への投影にて前記液体流路の断面中心から該液体流路の半径の70%以内の領域に位置する谷点の全ねじ配置面間で合計した総数を、前記液体流路の断面積で除した70%谷点面積密度と定義したとき、前記70%谷点面積密度の値が1.6個/mm以上に確保され、
    さらに、前記中心軸線方向に互いに隣り合う前記ねじ配置面の間隔が前記公称ねじ径以上に確保され、
    前記互いに隣り合うねじ配置面のそれぞれにおいて3以上の同数の前記ねじ部材が、前記脚部が前記液体流路の断面半径方向に沿うように前記断面中心周りに等角度間隔にて配置されるとともに、前記断面中心周りにおける前記ねじ部材の配置角度位相が、前記隣り合うねじ配置面間にて一致するように定められてなることを特徴とする液体処理ノズル。
  2. 前記液体流路の液体流通領域の面積が各前記ねじ配置面において5.0mm以上確保され、前記70%谷点面積密度の値が2.0個/mm以上に確保されてなる請求項1記載の液体処理ノズル。
  3. 前記ねじ配置面上の3本以上の前記ねじ部材は、各ねじの前記脚部の先端面が前記断面中心を取り囲むことにより中心ギャップを形成するように配置されてなる請求項1記載の液体処理ノズル。
  4. 前記ねじ部材は前記脚部よりも径大の頭部を有し、前記ねじ配置面の間隔が該頭部の外径よりも大きく設定されてなる請求項1記載の液体処理ノズル。
  5. 一端に液体入口を、他端に液体出口を有する円形断面の単一の液体流路が形成されるとともに、該液体流路の一部区間がキャビテーション処理部として定められたノズル本体と、前記キャビテーション処理部にて前記ノズル本体に脚部先端側が流路内側に突出するように組付けられる、ねじピッチ及びねじ谷深さが0.20mm以上0.40mm以下、公称ねじ径Mが1.0mm以上2.0mm以下の複数のねじ部材とを備え、前記キャビテーション処理部には、前記液体流路の中心軸線と直交する仮想的なねじ配置面が該中心軸線に沿って複数設定されるとともに、前記ねじ部材が各前記ねじ配置面に対し2つ以上分配される形で前記脚部の長手方向が該ねじ配置面に沿うように配置された構造を有し、ガスが溶存した液体を前記液体入口から前記液体出口に向けて流通させ、前記キャビテーション処理部にて前記ねじ部材の脚部外周面に形成されたねじ谷に前記液体を増速しつつ接触させることにより、該液体に溶存ガスの減圧析出に基づくキャビテーション処理を行なうようにした液体処理ノズルにおいて、前記キャビテーション処理部が、
    総数にて8以上の前記ねじ部材が各前記ねじ配置面に対し2つ以上分配される形で配置されるとともに、前記液体流路の液体流通領域の面積が各前記ねじ配置面において3.8mm以上確保され、前記液体流路の全断面積に占める液体流通領域の割合として定められる面内流通面積率が40%以上に確保され、前記中心軸線と直交する平面への投影にて前記液体流路の断面中心から該液体流路の半径の70%以内の領域に位置する谷点の全ねじ配置面間で合計した総数を、前記液体流路の断面積で除した70%谷点面積密度と定義したとき、前記70%谷点面積密度の値が1.6個/mm以上に確保され、
    前記ねじ配置面として、前記中心軸線に沿って、少なくとも第1ねじ配置面、第2ねじ配置面、第3ねじ配置面、及び、第4ねじ配置面が、この順番で設定されるとともに、各ねじ配置面では、3本以上の同数の前記ねじ部材が、前記脚部が前記液体流路の断面半径方向に沿うように前記断面中心周りに等角度間隔にて配置され、
    前記第1ねじ配置面、前記第2ねじ配置面、前記第3ねじ配置面、及び、前記第4ねじ配置面では、前記中心軸線方向に互いに隣り合う前記ねじ配置面の間隔が前記公称ねじ径の1.5倍以上に確保され、且つ、前記断面中心周りにおける前記ねじ部材の配置角度位相が、前記隣り合うねじ配置面間にて互いにずれた形で定められ、
    前記第1ねじ配置面と前記第3ねじ配置面間では、前記ねじ部材の配置角度位相が互いに一致するように定められ、
    前記第2ねじ配置面と前記第4ねじ配置面間では、前記ねじ部材の配置角度位相が互いに一致するように定められていることを特徴とする液体処理ノズル。
JP2019107472A 2019-05-22 2019-05-22 液体処理ノズル Active JP7376904B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019107472A JP7376904B2 (ja) 2019-05-22 2019-05-22 液体処理ノズル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019107472A JP7376904B2 (ja) 2019-05-22 2019-05-22 液体処理ノズル

Publications (2)

Publication Number Publication Date
JP2020189286A JP2020189286A (ja) 2020-11-26
JP7376904B2 true JP7376904B2 (ja) 2023-11-09

Family

ID=73454862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019107472A Active JP7376904B2 (ja) 2019-05-22 2019-05-22 液体処理ノズル

Country Status (1)

Country Link
JP (1) JP7376904B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022079414A (ja) * 2020-11-16 2022-05-26 株式会社アクアフューチャー研究所 液体処理ノズル

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013012069A1 (ja) 2011-07-21 2013-01-24 株式会社シバタ 気泡発生機構及び気泡発生機構付シャワーヘッド
JP2013215421A (ja) 2012-04-10 2013-10-24 Shibata:Kk シャワーヘッド
JP2015174056A (ja) 2014-03-17 2015-10-05 株式会社シバタ 炭酸ガス溶解装置
WO2016195116A2 (ja) 2015-06-02 2016-12-08 株式会社ウォーターデザイン 液体処理ノズル、それを用いた液体処理方法、ガス溶解方法及びガス溶解装置
WO2016178436A3 (ja) 2015-05-07 2017-01-26 株式会社ウォーターデザイン 液体処理ノズル、それを用いた液体処理方法、ガス溶解方法及びガス溶解装置
JP2018015756A (ja) 2017-03-03 2018-02-01 丸福水産株式会社 混合処理体、混合処理法、流体混合器、流体混合処理装置、魚介類養殖システム、及び、魚介類養殖法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013012069A1 (ja) 2011-07-21 2013-01-24 株式会社シバタ 気泡発生機構及び気泡発生機構付シャワーヘッド
JP2015062906A (ja) 2011-07-21 2015-04-09 株式会社シバタ 気泡発生機構及び気泡発生機構付シャワーヘッド
JP2013215421A (ja) 2012-04-10 2013-10-24 Shibata:Kk シャワーヘッド
JP2015174056A (ja) 2014-03-17 2015-10-05 株式会社シバタ 炭酸ガス溶解装置
WO2016178436A3 (ja) 2015-05-07 2017-01-26 株式会社ウォーターデザイン 液体処理ノズル、それを用いた液体処理方法、ガス溶解方法及びガス溶解装置
WO2016195116A2 (ja) 2015-06-02 2016-12-08 株式会社ウォーターデザイン 液体処理ノズル、それを用いた液体処理方法、ガス溶解方法及びガス溶解装置
JP2018015756A (ja) 2017-03-03 2018-02-01 丸福水産株式会社 混合処理体、混合処理法、流体混合器、流体混合処理装置、魚介類養殖システム、及び、魚介類養殖法

Also Published As

Publication number Publication date
JP2020189286A (ja) 2020-11-26

Similar Documents

Publication Publication Date Title
JP7370534B2 (ja) 液体処理装置
JP6673591B2 (ja) 内部構造体
US9370784B2 (en) Bubble generating mechanism and showerhead with bubble generating mechanism
JP7376904B2 (ja) 液体処理ノズル
US20200261869A1 (en) Fluid supply device, internal structure, and method for manufacturing the same
TWI694866B (zh) 流體供給裝置,流體供給裝置的內部結構體,以及具有該流體供給裝置的機床、淋浴噴頭、流體混合裝置及水耕栽培裝置
TWI829174B (zh) 內部構造體、流體特性變化裝置、及流體特性變化裝置之利用裝置
JP2019013889A (ja) 気泡発生装置
JP2019063986A (ja) 内部構造体
JP2021058877A (ja) 流体供給装置、内部構造体及びその製造方法
JP2018122234A (ja) ファインバブル発生装置
JP7355377B2 (ja) 流体供給装置
JP2022091818A (ja) 液体処理ノズル
JP4321862B2 (ja) キャビテーション安定器
JP7355418B2 (ja) 流体システム及びその検査装置、検査方法並びに流体システムの制御方法及び制御プログラム
JPWO2019069349A1 (ja) 気泡生成装置、気泡生成方法
JP2017042899A (ja) 放電加工液処理装置、放電加工製品の製造方法及び放電加工装置
JP2022184559A (ja) 内部構造体、流体特性変化装置及びその利用装置
US20230093100A1 (en) Fluid supply apparatus for inducing cavitation and coanda effects
KR102220498B1 (ko) 캐비테이션 및 코안다 효과를 유도하는 유체 공급장치
JP2019098222A5 (ja) 内部構造体及びそれを収納した流体供給管
JP6792254B1 (ja) ファインバブル発生器
JP2023008752A (ja) 内部構造体、流体特性変化装置及びその利用装置
JP2018134587A (ja) 微細気泡生成器
JP2022111965A (ja) フレキシブル管ユニット

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220513

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220521

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220810

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20221109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20221110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231020

R150 Certificate of patent or registration of utility model

Ref document number: 7376904

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150