Verfahren zur Herstellung 2,2-Difluorethanol
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von 2,2-Difluorethanol ausgehend von 2,2-Difluor-l-chlorethan (l-Chlor-2,2-difluorethan).
2,2-Difluorethanol ist eine wichtige Zwischenstufe bei der Synthese agrochemischer und pharmazeutischer Wirkstoffe. Es sind verschiedene Verfahren zur Herstellung fluorierter Alkohole bekannt. Viele der Verfahren verlaufen über katalytische Hydrierung bzw. durch Einsatz von Reduktionsmitteln.
Henne et al. beschreiben zum Beispiel in j. Am. Chem. Soc. 1952, 74, 1426-1428 die Reduktion eines in situ gebildeten Difluoressigsäurechlorids durch Lithiumaluminiumhydrid, wobei Difluorethanol in 69% Ausbeute erzeugt wird. Wirtschaftlich nachteilig ist der stöchiometrische Einsatz teurer Hydridquellen.
Booth et al. beschreiben in Tetrahedron 1990, 46, 2097-21 10 die Reduktion von Difluoressigsäure mit Boran-Dimethylsulfid-Komplex wobei Difluorethanol in 55 % Ausbeute erhalten wird.
EP-1 820 789 AI beschreibt die Reduktion von fluorierten Carbonsäuren, Carbonsäurehalogemden, oder Carbonsäureestern mit Wasserstoff in Gegenwart eines Katalysators. Die dort beschriebene Methode soll sich insbesondere zur Herstellung von Difluorethanol (CF2HCH2OH) eignen, wobei vorzugsweise von fluorierten Estern ausgegangen wird, insbesondere von Difluoressigsäuremethylester bzw. - ethylester. Die Reaktion findet bei erhöhtem Druck statt, und als Katalysator wird Iridium, Rhodium, oder Ruthenium auf Kohle verwendet. Die Druckschrift beschreibt, dass ausgehend von Difluoressigsäuremethylester durch katalytische Hydrierung unter Verwendung eines Rh/C Katalysators bei 40 bar nach 18 Stunden das gewünschte Difluorethanol in einer Ausbeute von 74,4 % erhalten wurde. Nachteilig bei dies em Verfahren ist zum Einen das Verwenden eine s teuren Edelmetallkatalysators und zum Anderen, dass die Reaktion bei hohem Druck ausgeführt wird, was zur Folge hat, dass die Reaktion in speziellen Hochdruckapparaturen durchgeführt werden muss.
WO 2007/071841, die sich mit der Herstellung von Difluorethanol beschäftigt, verwendet als Ausgangsmaterial für eine (dreifache) katalytische Hydrierung eine Verbindung CF2XC(0)X, wobei Hai für Cl, Br, oder Jod steht (insbesondere Chlordifluoressigsäurechlorid). Als Katalysatoren werden insbesondere Ruthenium, Rhodium, Palladium, Osmium, Iridium, und Platin, die auf einem Träger aufgebracht sind, verwendet. Der Träger sollte dabei gleichfalls die Funktion einer Lewis-Säure besitzen und insbesondere Aluminium-Ionen beinhalten (z.B. Zeolithe oder Montmorillonit). Die Reaktion kann in der Gasphase, dann vorzugsweise bei einer Temperatur von 200 bis 300 °C und einem Wasserstoffdruck von vorzugsweise 1 bis 5 bar stattfinden. Gleichfalls kann die Reaktion in der flüssigen Phase stattfinden, dann liegt die Reaktionstemperatur zwischen 40 und 70 °C. Der Wasserstoff druck ist vorzugsweise zwischen 10 und 20 bar. Die Reaktion in der Gasphase wird als
vorteilhaft herausgestellt, denn sie lieferte bessere Ausbeuten an Difluorethanol und eine höhere Konversionsrate.
WO 2009/040367 beschreibt ein Verfahren zur Herstellung von 2,2-Difluorethanol. Hierzu wird in einer ersten Stufe das 1 -Brom-2,2-difluorethan ausgehend von Difluorvinyliden hergestellt. In einer zweiten Stufe wird die Verbindung mit einem Sauerstoff-Nucleophil, wie z.B. Natrium- oder Kaliumsalze von Essig- oder Ameisensäure umgesetzt. WO 2009/040367 beschreibt ferner, dass das Bromatom im 1- Brom-2,2-difluorethan durch Reaktion mit Magnesium, Zink, Lithium oder Kupfer (insbesondere Nal oder KI) vor Reaktion mit dem Sauerstoff-Nucleophil aktiviert wird.
Im speziellen beschreibt WO2009/040367 die Herstellung von Difluorethanol indem in Stufe 2 Difluorbromethan mit Natriumacetat (= Natriumsalz der Essigsäure) in Gegenwart von Kaliumiodid, durch Erhitzen auf 130 °C in DMF für 18 h, umgesetzt wird, gefolgt von einer basenkatalysierten
Umesterung in Gegenwart von Methanol. Das dabei gebildete Difluorethylacetat kann zunächst in einem
Zwischenschritt durch Destillation isoliert werden oder direkt zum Difluorethanol umgesetzt werden.
Ausgehend von eingesetztem Difluorbromethan liegen die Ausbeuten zwischen 56,8 und 87 %. Das hier beschriebene Verfahren ist aufwendig und relativ teuer und verlangt viele Zwischenschritte um zum gewünschten Difluorethanol zu gelangen. Will man nur Schritt 2 durchführen, muss man das teure
Difluorbromethan kaufen.
Die japanische Veröffentlichung JP 62-273925A (=JP 1987-273925A) beschreibt die Herstellung von 2,2-Difluorethanol ausgehend von 1 -Chlor-2,2-difluorethan mit Butyrolacton in Gegenwart von Wasser und Kaliumhydroxid. Die Reaktionsmischung wird hierfür auf 200 °C im Autoklaven für 2,5 h erhitzt, wobei 2,2-Difluorethanol in nur 48,6 %-iger Ausbeute bei 86 % Umsatz des Difluorchlorethans erhalten wird.
All die vorgenannten Verfahren zum Herstellen von 2,2-Difluorethanol sind nicht optimal. Viele der Verfahren verwenden teure Katalysatoren und man muss unter Druck arbeiten, was großtechnisch immer mit einem hohen Aufwand verbunden ist. Andere Verfahren (z.B. das aus WO 2009/040367) bestehen aus mehreren Verfahrensschritten, laufen über das teure 1 -Brom-difluorethan, das zur besseren Reaktion auch noch aktiviert werden muss, oder verwenden das billigere 1 -Chlor-2,2-difluorethan, wobei die erzielte Ausbeute und Selektivität von 48,6 % bei 86 % Umsatz des Difluorchlorethans nur sehr gering ist, was auf das Verwenden des unreaktiven 1 -Chlor-2,2-difluorethans zurückzuführen ist. Ausgehend von den bekannten Verfahren stellte sich nun die Aufgabe, ein Verfahren zur Herstellung von 2,2-Difluorethanol bereitzustellen, das einfach und kostengünstig ist, das als Ausgangsverbindung eine Verbindung verwendet, die zu einem verhältnismäßig günstigen Preis käuflich erhältlich ist und mit dem 2,2-Difluorethanol in hoher Ausbeute und guter Reinheit erhalten wird. Gleichfalls ist es wünschenswert, ein Verfahren bereitzustellen, das eine geringe Anzahl an Reaktionsschritten benötigt
und das weitgehend ohne Reaktionshilfsmittel auskommt und, wenn möglich, das nicht in einem Druckbehälter durchgeführt werden muss.
Die Erfinder haben nun überraschenderweise gefunden, dass 1 -Chlor-2,2-difluorethan einfach in einer nucleophilen Substitutionsreaktion zu einem Carbonsäuredifluorethylester umgesetzt werden kann, der dann durch basenkatalysierte Umesterung in Gegenwart eines Alkohols zum 2,2-Difluorethan weiter reagiert.
Überraschend insofern, als dass allgemein bekannt ist, dass Alkylchloride in nucleophilen Substitutionsreaktionen eine deutlich geringere Reaktivität aufweisen als die entsprechenden Alkylbromide und -iodide (March, Advanced Organic Chemistry 5th Edition, Kapitel 10, John Wiley & Sons, New York 2001). Die geringen Ausbeuten aus JP 62-273925 belegen dies.
Überraschend auch insofern, als dass das erfindungsgemäße Verfahren in gewöhnlichen Reaktionsgefäßen ausgeführt werden kann, obwohl l-Chlor-2,2-difluorethan einen Siedepunkt von nur 35 °C besitzt und somit leicht flüchtig ist. Um bei leicht flüchtigen Substanzen eine ausreichend hohe Umsatzgeschwindigkeit zu erreichen muss die Reaktion bei erhöhten Temperaturen und unter Druck durchgeführt werden.
Die Anmeldung betrifft somit ein Verfahren zur Herstellung von 2,2-Difluorethanol umfassend die folgenden Schritte:
Schritt (i): Umsetzen von 1 -Chlor-2,2-difluorethan mit einem Alkalimetallsalz der Ameisensäure oder
Essigsäure in einem geeigneten Lösungsmittel zum entsprechenden 2,2-Difluorethylformiat oder 2,2-Difluorethylacetat, dadurch gekennzeichnet dass 1 -Chlor-2,2-difluorethan in eine auf die gewünschte Reaktionstemperatur erwärmte Mischung aus Lösungsmittel und Alkalimetallsalz der Ameisensäure oder Essigsäure langsam zugegeben wird;
Schritt (ii): Umesterung des 2,2-Difluorethylformiats oder 2,2-Difluorethylacetats aus Schritt (i) in
Gegenwart eines Alkohols (vorzugsweise Methanol) und gegebenenfalls einer Base.
Die Reaktion lässt sich folgendermaßen darstellen:
Das Verwenden von 1 -Chlor-2,2-difluorethan hat den Vorteil, dass es günstiger als l-Brom-2,2- difluorethan und zudem kommerziell in größeren Mengen erhältlich ist.
Durch das langsame Zugeben von 1 -Chlor-2,2-difluorethan zu der erwärmten Mischung aus dem Alkalimetallsalz der Ameisensäure oder Essigsäure und Lösungsmittel wird eine vollständige und einfache Umsetzung zum gewünschten Produkt erreicht ohne dass unter erhöhtem Druck gearbeitet werden muss und ohne dass Reaktionshilfsmittel (z.B. Katalysatoren, Additive) eingesetzt werden müssen. Gleichfalls ist die Reaktionszeit vergleichsweise kurz. Das hat den Vorteil, dass die Reaktion einfach und kostengünstig durchgeführt werden kann und dass sie zudem umweltfreundlich ist, da sie keine Hilfschemikalien benötigt.
Erfindungsgemäß wird unter dem Ausdruck "langsames Zugeben" das portionsweise oder tropfenweise Zugeben von 1 -Chlor-2,2-difluorethan über einen längeren Zeitraum verstanden. Die Länge des Zeitraums bemisst sich an der Größe des Reaktionsansatzes, und somit an der Menge des zuzugebenden 1 -Chlor-2,2-difluorethans und lässt sich vom Fachmann durch Routinemethoden ermitteln. Entscheidend ist, dass das langsam zugegebene l-Chlor-2,2-difluorethan genug Zeit hat, mit dem Alkalimetallsalz der Ameisensäure oder Essigsäure abzureagieren. Die Reaktionsdauer von Schritt (i) im erfindungsgemäßen Verfahren wird demnach so gewählt, dass eine vollständige Umsetzung von 1- Chlor-2,2-difluorethan gewährleistet ist. Die Reaktionsdauer kann im Bereich von 0,1 bis 12 h liegen. Bevorzugt wird das Reaktionssystem so eingestellt, dass die Reaktionsdauer im Bereich von 0,25 bis 5 h und besonders bevorzugt im Bereich von 0,5 bis 2 oder 3 h liegt.
In Schritt (i) des erfindungsgemäßen Verfahrens wird bevorzugt Natrium- oder Kaliumacetat, oder Natrium- oder Kaliumformiat eingesetzt, besonders bevorzugt wird Kaliumacetat oder Kaliumformiat verwendet.
Das in Schritt (i) eingesetzte Alkalimetallsalz der Ameisensäure oder Essigsäure wird im etwa 1- bis etwa 10-fachen molaren Überschuss, bevorzugt im etwa 1- bis etwa 2-fachen molaren Überschuss, und besonders bevorzugt im 1,1- bis 1,5-fachen molaren Überschuss, bezogen auf das eingesetzte 1-Chlor- 2,2-difluorethan, verwendet. Das in dem erfindungsgemäßen Verfahren verwendete Lösungsmittel wird vorzugsweise in einer solchen Menge eingesetzt, dass das Reaktionsgemisch während des ganzen Verfahrens gut rührbar bleibt. Vorteilhafterweise wird, bezogen auf das eingesetzte 2,2-Difluor-l-chlorethan, die 1- bis 50- fache Lösungsmittelmenge (v/v), bevorzugt die 2- bis 40-fache Lösungsmittelmenge (v/v), besonders bevorzugt die 2- bis 20-fache Lösungsmittelmenge (v/v) verwendet. Erfindungsgemäße Lösungsmittel in Schritt (i) sind insbesondere organische Lösungsmittel (allein oder als Mischung mit anderen organischen Lösungsmitteln), die einen Siedepunkt über 70 °C haben und unter den Reaktionsbedingungen inert sind. Bevorzugte Lösungsmittel zur Verwendung in Schritt (i) sind Dimethylsulfoxid, Tetramethylensulfoxid, Dipropylsulfoxid, Benzylmethylsulfoxid, Diisobutylsulfoxid, Dibutylsulfoxid, Diisoamylsulfoxid; NN-Dimethylacetamid, N-Methyl-formamid,
NN-Dimethyl-formamid, NN-Dipropyl-formamid, NN-Dibutyl-formamid, N-Methyl-pyrrolidon, N- Methyl-caprolactam und Mischungen davon, besonders bevorzugt sind Ν,Ν-Dimethylacetamid, N- Methylpyrrolidon, NN-Dimethylformamid, Dimethylsulfoxid, Tetramethylensulf oxid und Mischungen davon, ganz besonders bevorzugt ist Dimethylsulfoxid oder N-Methylpyrrolidon und Mischungen davon.
Das langsame Zugeben in Schritt (i) des erfindungsgemäßen Verfahrens erfolgt bei der gewünschten Reaktionstemperatur, wobei unter Reaktionstemperatur die Innentemperatur verstanden wird. Die Reaktionstemperatur liegt gewöhnlich im Bereich von 70 °C bis 200 °C, bevorzugt im Bereich von 80 °C bis 160 °C, besonders bevorzugt im Bereich von 90°C bis 150 °C. Das erfindungsgemäße Verfahren wird grundsätzlich unter Normaldruck durchgeführt. Es kann aber alternativ auch in einem druckstabilen geschlossenen Versuchsgefäß (Autoklav) durchgeführt werden. Der Druck während der Reaktion (d.h. der Eigendruck) ist dann abhängig von der verwendeten Reaktionstemperatur, dem verwendeten Lösungsmittel, und der Menge an verwendeten Edukten. Ist eine Druckerhöhung gewünscht, so kann eine zusätzliche Druckerhöhung mittels Zugabe eines Inertgases, wie Stickstoff oder Argon, durchgeführt werden.
Schritt (i) im erfindungsgemäßen Verfahren wird grundsätzlich in Abwesenheit eines Reaktionshilfsmittels (z.B. Katalysatoren oder Additive) durchgeführt. Es ist aus chemischer Sicht möglich, zur Aktivierung von 1 -Chlor-2,2-difluorethan ein Reaktionshilfsmittel / Katalysator zur Mischung aus Alkalimetallsalz der Ameisensäure oder Essigsäure und Lösungsmittel zuzugeben. Denkbar ist der Einsatz von Alkalimetalliodiden und -bromiden (z.B. Natriumiodid, Kaliumiodid, Natriumbromid oder Kaliumbromid). Gleichfalls könnten quarternäre Ammoniumsalze der Form NR4+X", worin R für Ci-12-Alkyl und X für Br oder I stehen (z.B. Tetrabutylammoniumbromid, Tetrabutylammoniumiodid sowie Tricaprylmethylammoniumbromid) eingesetzt werden. Mögliche Konzentrationen der Katalysatoren liegen im Bereich von 0,001 bis 0,1 Äquivalente bezogen auf das eingesetzte 1 -Chlor-2,2-difluorethan.
Die Umesterung in Schritt (ii) ist basenkatalysiert. Schritt (ii) kann mit der Reaktionsmischung aus Schritt (i), d.h. ohne Isolierung des in Schritt (i) hergestellten 2,2-Difluorethylformiats oder 2,2- Difluorethylacetats durchgeführt werden, wobei dann keine Base zum Reaktionsgemisch hinzugefügt werden muss, da sie bereits im Reaktionsgemisch vorhanden ist (z.B. Alkalimetallsalz der Ameisensäure oder Essigsäure aus Schritt (i)). Es ist bevorzugt im Schritt (ii) die Reaktionsmischung aus Schritt (i) ohne weiteren Isolierungsschritt zu verwenden.
Selbstverständlich kann im S chritt (ii) auch isoliertes 2,2-Difluorethylformiat oder 2,2- Difluorethylacetat verwendet werden. Hierfür kann die nach Schritt (i) erhaltene Reaktionsmischung aufgearbeitet und 2,2-Difluorethylformiat oder 2,2-Difluorethylacetat isoliert werden. Diese Ester
können femer destillativ abgetrennt werden. Wird das in Schritt (i) gewonnene 2,2-Difluorethylformiat oder 2,2-Difluorethylacetat nach Schritt (i) isoliert, muss in Schritt (ii) eine Base zugegeben werden.
Schritt (ii) erfolgt gewöhnlich in Substanz, d.h. ohne Zugabe von (weiteren) Lösungsmitteln, wobei der in Schritt (ii) verwendete Alkohol als Lösungsmittel dient. Die Umesterung erfolgt indem man zu der Reaktionsmischung aus Schritt (i) oder zu dem isolierten Ester, gegebenenfalls die Base und den Alkohol zugibt. Vor allem bei Einsatz des isolierten Esters wird auf die Zugabe eines Lösungsmittels verzichtet. Die so erhaltene Mischung wird bei Raumtemperatur oder unter Rückflussbedingungen für 0,5 bis 2 h gerührt.
In Schritt (ii) verwendbare Alkohole, die gleichzeitig als Lösungsmittel dienen können, sind Methanol, Butanol, Isobutanol, Pentanol und seine Isomeren, Hexanol und seine Isomeren, bevorzugt wird Methanol verwendet. Der Alkohol wird im 1- bis 40-fachen Überschuss, bevorzugt im 1,5- bis 10- fachen Überschuss und besonders bevorzugt im 2- bis 5-fachen Überschuss eingesetzt.
Beispiele für die in Schritt (ii) benötigten erfindungsgemäßen Basen sind Alkalimetallhydroxide, und Alkalimetallmethanolat in fester Form oder als Lösung in Methanol, Alkalimetallcarbonate, Alkalimetallacetate, Alkalimetallformiate und Alkalimetallphosphate. Bevorzugte B as en s ind Natriummethanolat, Natriumhydroxid und Kaliumacetat. Die Menge an zugesetzter Base beträgt 0,001 bis 0,1 Äquivalente bezogen auf das eingesetzte 2,2-Difluorethylformiat oder 2,2-Difluorethylacetat.
Die Aufarbeitung (Reinigung) des 2,2-Difluorethanols erfolgt durch Destillation.
Die vorliegende Erfindung wird anhand der nachfolgenden Beispiele näher erläutert, wobei die Beispiele nicht in die Erfindung einschränkender Weise zu interpretieren sind.
Herstellungsbeispiele:
Beispiel 1
Schritt (i): Herstellung von 2,2-Difluorethylacetat
In einem Dreihalskolben mit mechanischem Rührer, Tropftrichter und Trockeneiskühler werden 148 g (1,475 mol) Kaliumacetat in 300 mL Dimethylsulfoxid vorgelegt und auf 120 °C erhitzt. Anschließend wird eine Mischung aus 100 g (0,983 mol) 2,2-Difluor-l-chlorethan in 100 mL Dimethylsulfoxid innerhalb einer Stunde zugetropft. Die Reaktionsmischung wird 1,5 h bei 120 °C nachgerührt und auf Raumtemperatur abgekühlt. Eine Reaktionskontrolle über Gaschromatographie zeigt vollständigen Umsatz des 2,2-Difluor-l-chlorethans. Nach Destillation wird das gewünschte 2,2-Difluorethylacetat in 90,8 %-iger Ausbeute erhalten.
NMR lH (CDC13): 5.94 (tt, 1H, J= 3.9 Hz, 55.1 Hz), 4.27 (dt, 2H, J= 4.0 Hz, 13.7 Hz), 2.14 (s, 3H) NMR 19F (CDCI3): -126.24 (td, J= 13.7 Hz, 55.1 Hz)
Schritt (ii): Herstellung von 2,2-Difluorethanol aus 2,2-Difluorethylacetat
In einem Dreihalskolben mit mechanischem Rührer und Rückflusskühler werden 112 g (889 mmol) 2,2- Difluorethylacetat mit 100 g (3.11 mol) Methanol versetzt und 2.14 g (53 mmol) festes Natriumhydroxid zugegeben. Die Reaktionsmischung wird 1 h bei Raumtemperatur gerührt. Eine Reaktionskontrolle über Gaschromatographie zeigt vollständigen Umsatz des Einsatzmaterials. Nach Destillation wird das Zielprodukt in 74,4 %iger Ausbeute erhalten. NMR lH (CDC13): 5.85 (tt, 1H, J= 3.9 Hz, 55.8 Hz), 3.84 - 3.78 (m, 2H), 2.02 (br t, 1H, J= 6.7 Hz) NMR 19F (CDCI3): -128.3 (td, J = 14.4 Hz, 55.8 Hz)
Beispiel 2 - ohne Isolierung von 2,2-Difluorethylacetat
Schritt (i): In einem Dreihalskolben mit mechanischem Rührer, Tropftrichter und Trockeneiskühler werden 289,5 g (2,95 mol) Kaliumacetat in 600 mL Dimethylsulfoxid vorgelegt und auf 120 °C erhitzt und anschließend eine Mischung aus 200 g ( 1 ,97 mol) 2,2-Difluor-l-chlorethan in 200 mL Dimethylsulfoxid innerhalb von 30 Minuten zugetropft. Die Reaktionsmischung wird 2 h nachgerührt und auf 60 °C abgekühlt. Eine Reaktionskontrolle über Gaschromatographie zeigt vollständigen Umsatz des 2,2-Difluor-l-chlorethans. Schritt (ii): Es werden innerhalb von 20 Minuten 221 g (6,88 mol) Methanol zugetropft und die Reaktionsmischung anschließend für 2h auf 90 °C erwärmt.
Eine Reaktionskontrolle mittels Gaschromatographie zeigte vollständigen Umsatz des 2,2- Difluorethylacetats. Nach Destillation wird das 2,2-Difluorethanol in 84,4 %-iger Ausbeute erhalten.
NMR lH (CDC13): 5.85 (tt, 1H, J= 3.9 Hz, 55.8 Hz), 3.84 - 3.78 (m, 2H), 2.02 (br t, 1H, J= 6.7 Hz) NMR 19F (CDCI3): -128.3 (td, J = 14.4 Hz, 55.8 Hz)