WO2013001853A1 - カメラ装置、交換レンズ装置、カメラ本体部およびフォーカス制御方法 - Google Patents

カメラ装置、交換レンズ装置、カメラ本体部およびフォーカス制御方法 Download PDF

Info

Publication number
WO2013001853A1
WO2013001853A1 PCT/JP2012/054988 JP2012054988W WO2013001853A1 WO 2013001853 A1 WO2013001853 A1 WO 2013001853A1 JP 2012054988 W JP2012054988 W JP 2012054988W WO 2013001853 A1 WO2013001853 A1 WO 2013001853A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
unit
signal
drive
camera
Prior art date
Application number
PCT/JP2012/054988
Other languages
English (en)
French (fr)
Inventor
建 法華津
慎也 阿部
Original Assignee
オリンパスイメージング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスイメージング株式会社 filed Critical オリンパスイメージング株式会社
Priority to JP2013522484A priority Critical patent/JP5393930B2/ja
Priority to US14/129,861 priority patent/US8953090B2/en
Priority to EP12805257.8A priority patent/EP2713206B1/en
Priority to CN201280031704.4A priority patent/CN103635856B/zh
Publication of WO2013001853A1 publication Critical patent/WO2013001853A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • G03B17/14Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets interchangeably
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/10Power-operated focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • H04N23/663Remote control of cameras or camera parts, e.g. by remote control devices for controlling interchangeable camera parts based on electronic image sensor signals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur

Definitions

  • the present invention relates to a camera device that generates image data by imaging a predetermined visual field area and performing photoelectric conversion, a camera device that can exchange lenses, an interchangeable lens device, a camera body, and a focus control method.
  • the focus lens in the AF mechanism is in the optical axis direction within the focal depth of the subject in synchronization with the moving image frame rate.
  • the focus position on the subject is searched based on the contrast evaluation value (hereinafter referred to as “AF evaluation value”) obtained from the spatial luminance change from the acquired image at each frame rate.
  • AF evaluation value the contrast evaluation value obtained from the spatial luminance change from the acquired image at each frame rate.
  • Wob The wobbling (hereinafter referred to as “Wob”) driving of the AF operation to follow the in-focus position is performed.
  • the AF mechanism when the focus lens is driven by Wob in accordance with the speeding up of the moving image frame rate, the period of the Wob drive is shortened, whereby the inertial force at the time of lens drive is increased. Since the vibration and the reaction vibration of the support member supporting the focus lens increase, the driving noise generated at the time of lens driving becomes large. As a result, at the time of moving image shooting, there has been a problem that the driving sound by the AF drive is picked up as noise by the sound collecting microphone.
  • a motor such as a voice coil motor (hereinafter referred to as "VCM" is employed as a drive unit for driving the focus lens in order to speed up Wob driving and reduce vibration and noise during Wob driving.
  • VCM voice coil motor
  • the focus lens drive unit has a unique resonance frequency that emphasizes vibration due to the elastic characteristics of the focus lens and the drive member. For this reason, if the resonance frequency of the drive unit is included in the frequency component included in the supplied current supplied to the drive unit by the lens control unit in the interchangeable lens device, the drive amplitude is amplified, and the drive is performed during the AF operation. The sound gets louder.
  • the present invention has been made in view of the above, and a lens device, an interchangeable lens device, a camera body, and a focus control capable of realizing reduction of noise generated by AF operation at a high frame rate at the time of moving image shooting Intended to provide a method.
  • a camera device is a camera device having an imaging element that generates image data by performing photoelectric conversion, and the imaging surface of the imaging element A focus lens for adjusting a focal position of an object to be imaged, a lens drive unit for driving the focus lens so as to be movable back and forth along the optical axis direction of the camera device, and a lens position of the focus lens on the optical axis A lens control unit for controlling the lens drive unit; and a control unit for controlling a photographing operation at the time of shooting of the camera device, the lens control unit for detecting the lens position A lens position signal indicating the lens position detected by the unit; and a target position on the optical axis of the focus lens transmitted from the control unit And a drive amount calculation unit which calculates a drive amount output of the focus lens based on the sampled lens position signal and the target position signal by sampling signals and each first time period, and An up-sampling unit for performing up-sampling in a second time period
  • the resonance suppression calculation unit cuts off the high-order resonance frequency component to a half or less of a sampling frequency which is an inverse of the second time period. It is characterized in that digital filter arithmetic processing is performed which has a frequency and has a characteristic of passing a frequency range lower than the cutoff frequency.
  • the resonance suppression calculating unit may be configured to calculate the first low-pass filter characteristic with respect to the calculated value at the time of sampling the drive amount output in the second time period. It is characterized by being obtained by performing digital filter arithmetic processing to form a first-order IIR filter.
  • the resonance suppression operation unit is a digital filter of FIR filter type, and the time point when the drive amount output of the focus lens is sampled at the second time period.
  • the present invention is characterized in that it is obtained by averaging the operation value in step 1 and the operation sampled one cycle earlier.
  • the lens control unit changes the setting value of the cutoff frequency band for blocking the resonant frequency band based on the instruction signal transmitted from the control unit. It is characterized by further having a change part.
  • the drive amount calculation unit controls the drive amount output by the lens drive unit based on a difference between the lens position signal and the target position signal.
  • a feedback operation unit that calculates an amount
  • a feedforward operation unit that calculates the drive amount by the lens drive unit based on the target position signal when the focus lens is moving
  • the feedback operation unit And an adder for outputting the drive amount output obtained by adding the control amount and the drive amount calculated by the feedforward calculation unit.
  • the feedforward operation unit is configured to stop operation on the target position signal when the focus lens is on standby at a predetermined position.
  • the lens driving unit has a linear motor.
  • the camera apparatus according to the present invention is characterized in that, in the above-mentioned invention, the resonance frequency band present in the lens drive section is present in an audible frequency band.
  • the interchangeable lens device is an interchangeable lens device detachably mounted on a lens-interchangeable camera body having an imaging device that generates image data by performing photoelectric conversion, A focusing lens for adjusting a focal position of an object formed on the imaging surface of the lens; a lens driving unit for driving the focusing lens so as to be movable back and forth along the optical axis of the interchangeable lens device; And a lens control unit for controlling the lens drive unit, wherein the lens control unit is a lens position signal indicating the lens position detected by the position detection unit; The target position signal on the optical axis of the focus lens transmitted from the camera body portion is sampled at each first time period.
  • a drive amount calculator for calculating the drive amount output of the focus lens by the lens driver based on the sampled lens position signal and the target position signal; and the drive amount calculator obtained by the drive amount calculator
  • An up-sampling unit performing up-sampling in a second time period which is an integral fraction of the first time period with respect to a drive amount output, and a result of sampling the drive amount output in the second time period
  • a resonance suppression operation unit that performs an operation to suppress high-order resonance frequency components in a predetermined resonance frequency band.
  • the resonance suppression operation unit cuts off the high-order resonance frequency component to a half or less of the sampling frequency which is the reciprocal of the second time period.
  • a cutoff frequency is provided, and digital filter arithmetic processing having a characteristic of passing a lower frequency band than the cutoff frequency is performed.
  • the resonance suppression operation unit may have first-order low-pass filter characteristics with respect to the operation value at the time of sampling the drive amount output in the second time period. It is characterized by being obtained by performing digital filter arithmetic processing to form a first-order IIR filter of
  • the resonance suppression operation unit is a digital filter of FIR filter type, and the drive amount output of the focus lens is sampled at the second time period. It is characterized in that it is obtained by averaging the operation value at the time point and the operation sampled one cycle earlier.
  • the lens control unit changes the set value of the cutoff frequency band for blocking the resonant frequency band based on the instruction signal transmitted from the control unit. It is characterized by further having a parameter change part.
  • the drive amount calculation unit adjusts the drive amount output by the lens drive unit based on a difference between the lens position signal and the target position signal.
  • a feedback operation unit that calculates a control amount; a feedforward operation unit that calculates the drive amount by the lens drive unit based on the target position signal when the focus lens is moving; and the feedback operation unit And an adder for outputting the drive amount output obtained by adding the control amount and the drive amount calculated by the feedforward operation unit.
  • the feedforward operation unit is configured to stop the operation on the target position signal when the focus lens is on standby at a predetermined position.
  • the lens drive unit has a linear motor.
  • the interchangeable lens device is characterized in that, in the above-mentioned invention, a resonance frequency band present in the lens drive section is present in an audible frequency band.
  • the camera body according to the present invention can attach and remove the interchangeable lens device having the focus lens for adjusting the focal position of the subject formed on the imaging surface of the imaging device that generates image data by performing photoelectric conversion.
  • a camera body unit which drives and controls the image pickup element to acquire an image signal, and selects a control unit that calculates a control amount to the interchangeable lens device, and selects either still image shooting or moving image shooting Main unit communication that transmits a control signal output from the control unit to the interchangeable lens device and receives the control signal output from the interchangeable lens device, based on the calculation result of the imaging condition selection unit and the control unit
  • the control amount including the movement amount and the reciprocation period is calculated and output to the main body communication unit, and indicates the lens position on the optical axis of the current focus lens from the interchangeable lens device through the main body communication unit.
  • the lens position information is obtained.
  • control unit may perform the body communication in synchronization with a frame rate of the image data generated by the imaging device at the time of moving image shooting of the camera body.
  • the lens position information is obtained from the interchangeable lens device via a unit, and the control amount is calculated and output to the interchangeable lens device.
  • control unit is a control signal for changing the setting of the cutoff frequency band for blocking the resonant frequency band of the interchangeable lens device via the body communication unit. Is transmitted to the interchangeable lens device.
  • a camera main body having an imaging unit that generates image data by performing photoelectric conversion
  • the camera main body can be detachably attached to the camera main body.
  • Camera control method comprising: an interchangeable lens apparatus having: a focus lens for adjusting a focal position of an object imaged on the lens; and a lens drive unit for moving the focus lens back and forth along the optical axis
  • a position detection step of detecting a lens position of the focus lens on the optical axis; a lens position signal indicating the lens position detected by the position detection step; and the focus lens transmitted from the camera body
  • a driving amount calculating step of calculating a driving amount output indicating a driving amount of the focus lens by the lens driving unit based on the sampled lens position signal and the target position signal; and the driving amount calculating step
  • An up-sampling step of performing up-sampling in a second time period which is an integral fraction of the first time period with respect to the drive amount signal; and
  • the drive amount calculation unit samples the target position signal and the range position signal every first cycle, and drives the focus lens by the lens drive unit based on the sampled target position signal and position signal. Calculate a drive amount signal that indicates the amount.
  • the upsampling unit performs upsampling in the second time period which is an integral fraction of the first time period, and the resonance suppression operation unit performs driving amount signal upsampling by the upsampling unit.
  • the output of the predetermined suppression frequency band is attenuated to suppress the high-order resonance frequency component output of the focus lens driving unit.
  • FIG. 1 is a schematic configuration diagram of a camera system to which the interchangeable lens device according to the first embodiment of the present invention is attached.
  • FIG. 2 is a block diagram showing the configuration of a camera system to which the interchangeable lens device according to Embodiment 1 of the present invention is attached.
  • FIG. 3 is a block diagram showing a detailed configuration of the lens position detection unit and the lens control unit shown in FIG.
  • FIG. 4 is a block diagram showing the configuration of the resonance suppression operation unit shown in FIG.
  • FIG. 5 is a flowchart showing an outline of processing performed by the camera system according to the first embodiment of the present invention.
  • FIG. 6 is a flowchart showing an outline of the moving image AF process shown in FIG. FIG.
  • FIG. 7 is a schematic diagram for explaining an example of the moving image AF operation performed by the camera system according to the first embodiment of the present invention.
  • FIG. 8 is a timing chart showing the processing timing of each part at the time of moving image AF processing of the control part.
  • FIG. 9 is a flowchart showing an outline of processing performed by the lens control unit.
  • FIG. 10 is a timing chart showing the processing timing of each part at the time of moving image AF processing of the lens control part.
  • FIG. 11 is a Bode diagram of the transfer characteristic of the processing result of the phase compensation calculation unit.
  • FIG. 12 is a Bode diagram of the transfer characteristic of the second calculation result.
  • FIG. 13 is a Bode diagram of the transfer characteristic of the result of performing the second calculation process on the first calculation result.
  • FIG. 14 is a Bode diagram of the transfer characteristic of the lens drive unit.
  • FIG. 15 is a block diagram showing the configuration of the resonance suppression operation unit according to the second embodiment of the present invention.
  • FIG. 16 is a Bode diagram of a transfer characteristic to which the calculation result of the second calculation process according to the second embodiment of the present invention is added.
  • FIG. 17 is a Bode diagram of the transfer characteristic of the calculation result obtained by the second calculation process on the calculation result of the first calculation process.
  • FIG. 1 is a schematic configuration diagram of a camera system to which the interchangeable lens device according to the first embodiment of the present invention is attached.
  • FIG. 2 is a block diagram showing the configuration of a camera system to which the interchangeable lens device according to Embodiment 1 of the present invention is attached.
  • the left side is referred to as the front side
  • the right side is referred to as the rear side.
  • the camera system 1 shown in FIGS. 1 and 2 includes a main body 2 and an interchangeable lens device 3 that can be attached to the main body 2.
  • the interchangeable lens device 3 is mounted on the main body 2 by connecting the rear side lens mount 31 provided on the rear side of the interchangeable lens device 3 to the main body side mount ring 21 provided on the front side of the main body 2 Be done. Thereby, the main body 2 and the interchangeable lens device 3 are integrally connected.
  • the main body side mount ring 21 mentioned above should just be bayonet type, for example.
  • the main body unit 2 includes a shutter 201, a shutter drive unit 202, an imaging device 203, an imaging device drive unit 204, a signal processing unit 205, an A / D conversion unit 206, a strobe 207, and a strobe drive unit 208.
  • the shutter 201 performs an opening and closing operation to perform an exposure operation for setting the state of the imaging element 203 to an exposure state or a light blocking state.
  • the shutter drive unit 202 is configured using a stepping motor or the like, and drives the shutter 201 in accordance with an instruction signal input from the control unit 220.
  • the imaging device 203 is configured using a charge coupled device (CCD), a complementary metal oxide semiconductor (CMOS), or the like.
  • the imaging element 203 receives light collected by the interchangeable lens device 3, performs photoelectric conversion on each pixel, and sequentially transfers electric signals to generate two-dimensional image data.
  • the imaging element drive unit 204 carries out the exposure operation of the imaging element 203 and the transfer operation of the electric signal at a predetermined imaging timing.
  • the imaging device driving unit 204 sequentially transfers and outputs to the signal processing unit 205 the image data of the analog signal of the charge amount output or the voltage output photoelectrically converted in each pixel of the imaging device 203 at the time of the transfer operation of the electric signal.
  • the signal processing unit 205 subjects the image data of each pixel transferred from the imaging device 203 to analog signal processing and outputs the processed data to the A / D conversion unit 206. Specifically, the signal processing unit 205 performs noise reduction processing such as filtering and bias offset cancellation, amplification processing of pixel output, and the like on the image data.
  • the A / D conversion unit 206 combines the horizontal direction and the vertical direction detected by the imaging device 203 by sequentially performing A / D conversion on the image data of each pixel processed by the signal processing unit 205.
  • Two-dimensional digitized image data (RAW data) is generated and output to the control unit 220.
  • the strobe 207 is configured of a xenon lamp or an LED.
  • the strobe 207 emits light toward a predetermined visual field in synchronization with the exposure operation of the shutter 201.
  • the strobe drive unit 208 causes the strobe 207 to emit light under the control of the control unit 220.
  • the voice input / output unit 209 has a voice input unit 209 a and a voice output unit 209 b.
  • the voice input unit 209a is configured using a microphone or the like.
  • the audio output unit 209 b is configured using a speaker or the like.
  • the voice input unit 209a obtains voice information.
  • the audio output unit 209 b reproduces and outputs the acquired audio information.
  • the audio signal processing unit 210 performs predetermined signal processing on audio data (analog signal) input from the audio input unit 209 a and performs A / D conversion to generate digital audio data, and generates the audio data.
  • the voice data thus obtained is output to the control unit (BCPU) 220, and the voice recording operation is performed.
  • the audio signal processing unit 210 when the audio signal processing unit 210 performs audio reproduction, the audio signal processing unit 210 performs D / A conversion on audio data input from the BCPU 220 to generate analog audio data, and generates the generated audio data as audio.
  • the audio output unit 209 b included in the input / output unit 209 outputs the audio data to reproduce and output the recorded data.
  • the image processing unit 211 performs various types of image processing on image data. Specifically, the image processing unit 211 performs optical black subtraction processing for correcting the output offset due to dark current output of the imaging device, and the RGB output mixing ratio, and performs color temperature correction of the subject on the image data. Perform image processing including white balance adjustment processing, simultaneous processing of image data, color matrix operation processing to convert three primary color output of RGB information to luminance-color difference-hue component, ⁇ correction processing, color reproduction processing and edge enhancement processing .
  • the image processing unit 211 calculates an AF evaluation value from a predetermined spatial frequency spectrum by extracting spatial high frequency components (contrast) from image data in the focus detection area by spatial high pass filter arithmetic processing. I do.
  • the image processing unit 211 performs a predetermined method, for example, a JPEG (Joint Photographic Experts Group) method, when the image data is a predetermined method.
  • the image processing unit 211 also compresses compressed image data according to the Motion JPEG method or the MP4 (H.264) method or the like having a higher data compression rate if it is continuous moving image shooting data, and records the compressed image data in the recording medium 217.
  • the input unit 212 is a power switch (not shown) that switches the power state of the camera system 1 to the on state or the off state, the release switch 212a that receives an input of a still image release signal for giving a still image shooting instruction, A shooting mode switch (not shown) for switching various shooting modes set to 1 and a moving image switch 212b for receiving an input of a moving image release signal for giving an instruction for moving image shooting.
  • the release switch 212a can be advanced and retracted by external pressure, and receives an input of a first release signal instructing a shooting preparation operation when pressed halfway, and a second release that instructs still image shooting when pressed fully. Accept signal input.
  • the display unit 213 is configured using a display panel made of liquid crystal, organic EL (Electro Luminescence), or the like.
  • the display drive unit 214 causes the display unit 213 to display the captured image data.
  • the display drive unit 214 causes the display unit 213 to display various shooting information including the shutter speed, the aperture value, the sensitivity, the shooting date and time, and the like.
  • the FROM 215 is configured using a non-volatile memory.
  • the FROM 215 stores various programs for operating the camera system 1, various data used during the execution of the programs, various parameters necessary for the image processing operation by the image processing unit 211, and the like.
  • the SDRAM 216 is configured using volatile memory.
  • the SDRAM 216 temporarily stores information being processed by the control unit 220. For example, when capturing a still image continuously or capturing a moving image, the SDRAM 216 temporarily stores digitized image data, thereby performing signal processing in the image processing unit 211 and recording medium 217. Make data transfer run smoothly.
  • the recording medium 217 is configured using a memory card or the like mounted from the outside of the main body 2.
  • the recording medium 217 is detachably attached to the main body 2 via a memory I / F (not shown). While the image data is recorded on the recording medium 217, the recorded image data is read out.
  • the power supply unit 218 is connected to the BCPU 220 included in the main unit 2 and each component that performs electronic control and drive, and supplies power to each component.
  • the power supply unit 218 supplies power to each unit constituting the interchangeable lens device 3 via the main body communication unit 219.
  • the power supply unit 218 smoothes and boosts a predetermined direct current voltage of a battery (not shown) attached to the main unit 2 and supplies power to each component in the main unit 2.
  • the main body communication unit 219 is a communication interface for performing command communication with the interchangeable lens device 3 mounted on the main body unit 2 and power supply.
  • the BCPU 220 is configured using a CPU (Central Processing Unit) or the like. In response to an instruction signal from the input unit 212, the BCPU 220 transfers instructions and data corresponding to each unit constituting the camera system 1 to centrally control the operation of the camera system.
  • the BCPU 220 transmits a drive signal for driving the interchangeable lens device 3 and a request signal for requesting a lens state of the interchangeable lens device 3 via the main body communication unit 219.
  • the BCPU 220 is an interchangeable lens device at a cycle of 1/120 in synchronization with this frame rate. Send a drive signal to drive 3.
  • the external communication unit 221 includes an electronic view finder (EVF) attached to the main unit 2 and a communication unit etc. that bidirectionally communicates with an external processing device (not shown) such as a personal computer via the Internet. It functions as an interface connected to 2.
  • EMF electronic view finder
  • the interchangeable lens device 3 includes an optical system 301, a lens drive unit 302, an aperture mechanism 303, an aperture drive unit 304, a focus ring 305, a zoom ring 306, a lens position detection unit 307, and a zoom position detection unit 308. , Lens EEPROM 309, lens RAM 310, lens communication unit 311, and lens control unit 312.
  • the optical system 301 is configured by a lens group of a three-group configuration that forms an image on an imaging surface on the imaging element 203.
  • the optical system 301 includes, in order from the front side to the rear side, a front lens group 301a which is a first lens group, a focus lens 301b which is a second lens group, and a rear lens group which is a third lens group. And 301c.
  • the front group lens 301a is configured using, for example, two lenses, and has negative refractive power.
  • the focus lens 301 b is configured using one or more lenses and has positive refractive power.
  • the focus lens 301 b is supported by the lens frame 301 d, and is driven along the optical axis O direction at focusing (during AF).
  • the rear group lens 301 c is configured using, for example, three lenses, and has positive refractive power.
  • the front group lens 301a, the focus lens 301b, and the rear group lens 301c are driven along the optical axis O direction during zooming.
  • the lens driving unit 302 moves the focus lens 301 b toward the focusing position in the direction of the optical axis O by driving the lens frame 301 d along the direction of the optical axis O at the time of focusing.
  • the lens driving unit 302 reciprocates the focus lens 301b along the optical axis O to perform Wob driving.
  • Wob driving when the camera system 1 performs moving image shooting, the focusing lens 301b of the interchangeable lens device 3 is centered on the in-focus position of the camera system 1 at a cycle synchronized with the frame rate at the time of moving image shooting.
  • the lens driving unit 302 is configured using a voice coil motor (hereinafter, referred to as “VCM”), a linear motor, a lens driving driver, or the like.
  • VCM voice coil motor
  • the aperture mechanism 303 changes the light transmission area by the opening and closing operation of a plurality of aperture blades (not shown), and adjusts the exposure by limiting the amount of incident light collected by the optical system 301.
  • the diaphragm drive unit 304 is configured using a stepping motor, a motor driver, and the like, and drives the diaphragm mechanism 303.
  • the focus ring 305 When the focus ring 305 is operated by the photographer in a state where the camera system 1 is set to the manual focus mode (hereinafter referred to as "MF mode"), the position of the focus lens 301b is along the optical axis O direction. The focus position of the interchangeable lens device 3 is adjusted by moving it.
  • the focus ring 305 is a rotatable ring provided around the lens barrel of the interchangeable lens device 3.
  • the zoom ring 306 moves the position of the rear lens group 301c along the direction of the optical axis O to change the angle of view (focal length) of the interchangeable lens device 3.
  • the zoom ring 306 is a rotatable ring provided around the lens barrel of the interchangeable lens device 3.
  • the lens position detection unit 307 detects the position of the focus lens 301 b driven by the lens drive unit 302.
  • the lens position detection unit 307 is configured using a photo interrupter or the like.
  • the zoom position detection unit 308 detects the position of the rear group lens 301 c driven by the zoom ring 306.
  • the zoom position detection unit 308 is configured of a linear encoder sensor, a potentiometer such as a variable resistance element, or the like.
  • the zoom position detection unit 308 converts the analog output voltage obtained by the linear encoder sensor or the potentiometer into digital by an A / D conversion circuit, and detects the zoom position based on the converted digital signal.
  • the lens EEPROM 309 stores lens data including a control program for determining the position and movement of the optical system 301, lens characteristics of the optical system 301, and various parameters.
  • the lens EEPROM 309 is configured using a non-volatile memory.
  • the lens RAM 310 temporarily stores information being processed by the lens control unit 312.
  • the lens RAM 310 is configured using a volatile memory.
  • the lens communication unit 311 is a communication interface for communicating with the main body communication unit 219 of the main body unit 2 when the interchangeable lens device 3 is attached to the main body unit 2. Further, power is supplied to each component included in the interchangeable lens device 3 from the power supply unit 218 of the main body 2 via the lens communication unit 311 and the main body communication unit 219.
  • the lens control unit 312 is configured using a CPU or the like.
  • the lens control unit 312 (hereinafter referred to as “LCPU 312”) controls the operation of the interchangeable lens device 3. Specifically, the LCPU 312 drives the lens drive unit 302 to perform focusing of the interchangeable lens device 3 and also drives the diaphragm drive unit 304 to change the aperture value.
  • the LCPU 312 is electrically connected to the BCPU 220 when the interchangeable lens device 3 is mounted on the main body 2, and is controlled in accordance with the drive signal and the instruction signal from the BCPU 220.
  • the drive signal includes a target position for moving the focus lens 301b along the optical axis O, an amount of reciprocation for reciprocating the focus lens 301b around the target position, and a reciprocation period.
  • FIG. 3 is a block diagram showing detailed configurations of the lens position detection unit 307 and the LCPU 312.
  • the lens position detection unit 307 includes a photo interrupter 307 a, an amplification circuit 307 b, and a band limiting circuit 307 c.
  • the photo interrupter 307a has a reflecting member (not shown) and a photo reflector (not shown).
  • the reflecting member and the photo reflector are respectively provided in the state of facing the lens frame 301 d and the lens barrel of the interchangeable lens device 3.
  • the light from the photo reflector is reflected by the reflective member and is again incident on the photo reflector.
  • the photo interrupter 307a detects the position of the lens frame 301d by converting the photoelectric conversion into a voltage output in response to the change in the amount of light received according to the lens position, and detects the position signal according to the detection result. (Analog signal) is output to the amplification circuit 307 b.
  • the amplification circuit 307 b amplifies the position signal input from the photo interrupter 307 a and outputs the amplified signal to the band limiting circuit 307 c.
  • the lens position detection unit 307 is a combination of the photo interrupter 307 a and the photo reflector.
  • a magnetic scale magnetized at a constant interval may be used instead of the photo reflector.
  • a magnetic sensor such as a Hall sensor or an MR sensor (magnetic resistance element) may be used instead of the photo interrupter.
  • the band limiting circuit 307 c is connected to the A / D converter 402 of the LCPU 312.
  • the band limiting circuit 307 c applies a predetermined band limitation to the position signal input from the amplifier circuit 307 b to extract a specific frequency component, and outputs the position signal of the extracted frequency component as an A_POS signal.
  • the band limit of the frequency is described later LCPU312 converts A / D, band-limited below 1 become frequency half of the first of the reciprocal of the period T 1 for sampling and holding.
  • the LCPU 312 includes an operation clock generation unit 400, a sampling synchronization generation unit 401, an A / D conversion unit 402, a sample hold unit 403, a lens position calculation unit 404, a transmission / reception unit 405, and a focus lens target value setting unit 406. , A subtractor 407, a phase compensation operation unit 408, an upsampling unit 409, a resonance suppression operation unit 410, and a PWM modulation unit 411.
  • the operation clock generation unit 400 generates a reference clock to be referred to when each unit of the LCPU 312 performs an operation.
  • the operation clock generation unit 400 may generate the reference clock in synchronization with the clock of the BCPU 220.
  • the first period T 1 and the second period T 2 to be referred to when controlling the focus lens 301b in the LCPU312 is generated a clock frequency of the operation clock generating unit 400 by the frequency division to form. Note that the first period T 1 and the second period T 2 are described below.
  • Sampling synchronization generation unit 401 generates a first period T 1 and the second period T 2 referenced when each part of the LCPU 312 is computed in controlling the focus lens 301b in the LCPU 312.
  • the A / D conversion unit 402 performs A / D conversion on the position signal (A_POS) input from the band limiting circuit 307 c and outputs the result to the sample hold unit 403.
  • the sample hold unit 403 shapes the waveform of the position signal input from the A / D conversion unit 402 and outputs the shaped signal to the lens position calculation unit 404. Specifically, the sample and hold unit 403 samples the position signal input from the A / D converter 402 at a predetermined timing (sampling cycle T 1 ), and the sampled position signal is sampled by the lens position calculator At step 404, calculation processing is performed, and the calculation result is held until the time of the next sampling cycle.
  • the lens position calculation unit 404 calculates the lens position of the focus lens 301 b in the optical axis O based on the position signal input from the sample and hold unit 403, and outputs the D_POS signal obtained as the calculation result to the subtractor 407. .
  • the transmission / reception unit 405 transmits the instruction signal sent from the BCPU 220 via the lens communication unit 311 to the focus lens target value setting unit 406. In addition, the transmission / reception unit 405 outputs a signal indicating the determination result of the movement completion determination unit 413 to the BCPU 220 via the lens communication unit 311.
  • the focus lens target value setting unit 406 sets a target position signal indicating a target position up to the position for driving the focus lens 301b based on the drive signal from the BCPU 220, and subtracts the set target position signal (T_Pos) Output to 407.
  • the subtractor 407 calculates the difference (deviation amount from the target value) between the target position signal (T_Pos) input from the focus lens target value setting unit 406 and the lens position signal (D_Pos) input from the lens position calculation unit 404.
  • the signal (dev) obtained by this operation is output to the phase compensation operation unit 408.
  • the phase compensation operation unit 408 performs operation processing by the phase compensation operation unit 408 from the target position signal (T_Pos) input from the focus lens target value setting unit 406 and the signal (dev) obtained from the subtractor 407, and performs this operation.
  • the signal (drv1) that has been subjected to is output to the up-sampling unit 409 every first time period T1.
  • the phase compensation operation unit 408 performs a target position input from the focus lens target value setting unit 406 every first time cycle (T 1 ).
  • the phase compensation operation unit 408 includes an FB (feedback) operation unit 408 a, an FF (Feedforward) operation unit 408 b, and an adder 408 c.
  • the FB calculation unit 408a calculates a follow control amount by feedback control to be a drive amount of the focus lens 301b by the lens drive unit 302 based on the output signal (dev) of the subtractor 407, and a signal obtained by this calculation (FB_out ) Is output to the adder 408c.
  • the FB operation unit 408a performs phase lead compensation filter operation and phase delay compensation filter operation on the signal (dev) output from the subtractor 407, and performs lens position feedback control by phase lead compensation filter operation.
  • the closed loop gain of the feedback control system at the drive frequency at the time of Wob driving is performed in order to secure the control stability (phase margin) at the above and obtain the tracking performance of the drive frequency at the time of Wob driving by phase delay compensation.
  • the FF calculation unit 408b calculates the drive amount of the focus lens 301b by the lens drive unit 302 based on the target position signal (T_pos) input from the focus lens target value setting unit 406 when the focus lens 301b is moving. And outputs the signal (FF_out) obtained by this calculation to the adder 408 c. Specifically, the FF calculation unit 408 b determines the transfer characteristic of the focus lens drive unit based on the target position signal (FF_out) input from the focus lens target value setting unit 406 every first time cycle (T 1 ).
  • the drive amount of the focus lens 301b by the lens drive unit 302 is calculated, and the signal (FF_out) obtained by this calculation is output to the adder 408c. Furthermore, when the focus lens 301 b is holding on the optical axis O, the FF calculation unit 408 b stops the calculation of the target position signal input from the focus lens target value setting unit 406.
  • the adder 408 c adds the output signal (FB_out) of the FB calculating unit 408 a and the output signal (FF_out) of the FF calculating unit 408 b, and outputs the addition result (drv 1) to the up-sampling unit 409.
  • the up-sampling unit 409 up-samples the signal (drv1) input from the phase compensation calculation unit 408 in a second time period (T 2 ) which is half of the first time period (T 1 ). To the input signal to the resonance suppression calculation unit 410. In other words, the up-sampling unit 409 performs sampling processing on the signal input from the phase compensation calculation unit 408 at a sampling frequency that is twice the sampling frequency, and outputs the sampling processing to the resonance suppression calculation unit 410.
  • the resonance suppression calculation unit 410 is configured by digital filter calculation in a low pass filter format.
  • the resonance suppression calculation unit 410 performs calculation to suppress high-order resonance frequency components in the resonance frequency band unique to the interchangeable lens device 3 on the signal up-sampled by the up-sampling unit 409, and outputs the result to the PWM modulation unit 411.
  • resonance suppression arithmetic operation section 410 performs low-pass filter arithmetic processing for cutting off a frequency band equal to or lower than a predetermined frequency with respect to the signal input from upsampling section 409, and outputs the result to PWM modulation section 411.
  • the frequency band below the predetermined frequency is the audio frequency range of the high-order resonance frequency band included in the signal.
  • FIG. 4 is a block diagram showing the configuration of the digital filter operation of the resonance suppression operation unit 410. As shown in FIG. As shown in FIG. 4, the resonance suppression calculation unit 410 performs up-sampling latest signal (X (N)) having the second time period T 2 in the calculation output signal (drv 1) of the phase compensation calculation unit 408.
  • the signal (X (N-1)) before one sampling, and the calculation result Y (N-1) before one sampling by the resonance suppression calculation unit 410 are respectively given predetermined coefficients A 0 , A 1 and B 1
  • the weighted (integrated) ones are added to each other to form an arithmetic output Y (N), which is constituted by a first-order IIR (Infinite Impulse Response) filter based on a three-term product-sum operation configuration.
  • the resonance suppression operation unit 410 includes a multiplier 410a, an input delay unit 410b, a multiplier 410c, an adder 410d, an adder 410e, an output delay unit 410f, and a multiplier 410g.
  • Multiplier 410a is (0 ⁇ A) predetermined multiple of the input signal X (N) from the up-sampling unit 409 and outputs.
  • the input delay unit 410 b outputs the input data of one sampling cycle before the output timing of the input signal X (N) from the up-sampling unit 409.
  • the multiplier 410 c multiplies the output signal X (N ⁇ 1) of the input delay unit 410 b by a predetermined factor (A 1 ) and outputs the result.
  • the adder 410d calculates and outputs the sum of the output signal of the multiplier 410c and the output signal of the multiplier 410g.
  • the adder 410e calculates and outputs the sum of the output signal of the multiplier 410a and the output signal of the adder 410d.
  • the output delay unit 410f outputs a value Y (N-1) one sampling before the output signal Y (N) of the adder 410g.
  • the adder 410 g multiplies the output signal Y (N ⁇ 1) of the output delay unit 410 f by a predetermined factor (B 1 ) and outputs the result.
  • the output signal of the multiplier 410 a is A 0 X (N)
  • the output signal of the input delay unit 410 b is X (N ⁇ 1)
  • the output of the multiplier 410 c The signal is given by A 1 X (N-1).
  • the output signal of the adder 410e and Y (N) is Y (N-1)
  • the output signal of the multiplier 410g is given by B 1 Y (N-1) . Therefore, the output signal Y (N) of the resonance suppression calculation unit 410 is expressed by the following recurrence formula (1).
  • Y (N) A 0 ⁇ X (N) + A 1 ⁇ X (N-1) + B 1 ⁇ Y (N-1) (1)
  • the coefficients A 0 , A 1 and B 1 of the equation (1) are defined, for example, by the following equations (2) and (3).
  • B 1 (f s2 - ⁇ ⁇ f c) / (f s2 + ⁇ ⁇ f c) ⁇ (3)
  • f c is the cut-off frequency of the resonance suppression calculation unit 410
  • f s2 is the up-sampling frequency of the up-sampling unit 409.
  • the digital filter characteristic at the sampling frequency f s2 is expressed as the transfer function (z function) of the discretized Laplace transform by the bilinear transformation (5).
  • S 2 ⁇ f s2 ⁇ ( 1-z -1) / (1+ z -1) ⁇ (5)
  • the transfer characteristic of one sampling delay of z ⁇ 1 in equation (5) is defined by the following equation (6).
  • z -1 exp (-s / f s2 ) (6)
  • the PWM modulation unit 411 outputs a pulse signal converted to a switching pulse time width by PWM modulation to the lens drive driver 302 a according to the signal input from the resonance suppression calculation unit 410.
  • the parameter change unit 412 refers to various parameters stored in the lens EEPROM 309 based on the instruction signal transmitted from the BCPU 220 via the lens communication unit 311 and the transmission / reception unit 405, and performs the second time performed by the upsampling unit 409. The cycle and the setting value of the cutoff frequency band for blocking the resonance frequency band of the interchangeable lens device 3 are changed.
  • the movement completion determination unit 413 outputs, to the transmission / reception unit 405, a signal indicating that the movement of the focus lens 301b is completed. This signal is output to the BCPU 220 via the lens communication unit 311.
  • FIG. 5 is a flowchart showing an outline of processing performed by the camera system 1 according to the first embodiment.
  • the BCPU 220 acquires lens data from the interchangeable lens device 3 via the main body communication unit 219 (step S101). Specifically, the BCPU 220 transmits a lens data request signal to the LCPU 312, and acquires lens data transmitted from the LCPU 312.
  • the lens data includes operation parameters of the focus lens 301 b and optical data.
  • the operating parameters are maximum operating speed information and Wob driving information of the focus lens 301b.
  • Optical data is spectral transmittance information, distortion correction information, chromatic aberration information, and the like.
  • the BCPU 220 starts synchronous communication for confirming lens information with the LCPU 312 (step S102). Specifically, the BCPU 220 transmits a lens state data request signal requesting lens state data including the lens position of the focus lens 301b to the LCPU 312 every synchronization cycle, and acquires lens state data transmitted from the LCPU 312.
  • the BCPU 220 operates the imaging device 203 for each synchronization cycle by driving the imaging device driving unit 204 to acquire image data, and the image processing unit 211 performs live view image display on the acquired image data.
  • the image processing is performed and the live view image is displayed on the display unit 213 (step S103).
  • step S104 when the moving image switch 212b is turned on by operating the moving image switch 212b (step S104: Yes), the BCPU 220 starts moving image shooting (step S105). Specifically, the BCPU 220 operates the imaging device 203 at each synchronization cycle by driving the imaging device driving unit 204, and the image processing unit 211 operates on the image data continuously output from the imaging device 203. Image processing is sequentially performed, and storage in the SDRAM 216 or the recording medium 217 is started.
  • the BCPU 220 executes moving image AF processing to automatically focus during moving image shooting (step S106).
  • the details of the video AF process will be described later.
  • the BCPU 220 also executes other operations necessary for shooting such as photometry and exposure value calculation processing in parallel with the moving image AF processing.
  • the BCPU 220 causes the imaging element driving unit 204 to stop the operation of the imaging element 203, and ends the moving image shooting (step S107), and returns to step S103.
  • step S104 when the moving image switch 212b is not in the on state (step S104: No) and the release switch 212a is in the on state (step S108: Yes), the BCPU 220 applies to the image data output from the imaging element 203, The image processing unit 211 performs image processing and executes still image photographing processing to be recorded on the recording medium 217 (step S109). Thereafter, the BCPU 220 returns to step S103.
  • step S108 when the release switch 212a is not in the on state (step S108: No) and the power of the camera system 1 is in the off state (step S110: Yes), the camera system 1 ends the present process. On the other hand, when the power supply of the camera system 1 is not in the off state (step S110: No), the camera system 1 returns to step S103.
  • FIG. 6 is a flowchart showing an outline of the video AF process.
  • the BCPU 220 initializes the lens position of the focus lens 301b (step S201). Specifically, the BCPU 220 transmits, to the LCPU 312, a lens drive signal for driving the focus lens 301b to the initial position.
  • the initial position is a central position in the movable range of the focus lens 301b.
  • the BCPU 220 drives the focus lens 301b to determine the moving direction to the in-focus position (step S202). Specifically, the BCPU 220 transmits to the LCPU 312 a drive signal for driving the focus lens 301b in a predetermined direction, for example, a close direction from the current position, and the AF evaluation value calculated for each synchronization cycle and the focus transmitted from the LCPU 312 The movement direction to the in-focus position is determined based on the lens position of the lens 301b.
  • FIG. 7 is a schematic view for explaining an example of the moving image AF operation performed by the camera system 1.
  • the vertical axis indicates the AF evaluation value
  • the horizontal axis indicates the lens position of the focus lens 301b.
  • the left side indicates the infinite direction
  • the right side indicates the close direction.
  • CD1 to CD14 indicate AF evaluation values sequentially acquired according to the position of the focus lens 301b.
  • LP1 to LP14 indicate the lens position of the focus lens 301b that the BCPU 220 acquires from the LCPU 312 each time the imaging operation of the imaging device 203 is performed.
  • the BCPU 220 measures the AF evaluation values CD1 to CD4 and the focus lens 301b in the range of the lens drive LD1 for determining the direction of four synchronous cycles (LD1) from the start of driving the focus lens 301b in the close direction.
  • the lens positions LP1 to LP4 of the above are acquired, and it is determined whether the AF evaluation value tends to increase by the least square method or the like.
  • the BCPU 220 determines that the movement direction in which the close-up direction is in focus when the AF evaluation value tends to increase, and determines that the movement direction focuses in the infinite direction when the AF evaluation value decreases. In FIG. 7, it is assumed that the in-focus position is in the close direction.
  • the BCPU 220 starts scan driving of the in-focus position in the direction determined as the moving direction to the in-focus position where the focus lens 301b is in focus (step S203). Specifically, the BCPU 220 transmits, to the LCPU 312, a drive signal for driving the focus lens 301b to the in-focus position, and calculates an AF evaluation value to detect a peak of the AF evaluation value.
  • the BCPU 220 drives the imaging device driving unit 204 to cause the imaging device 203 to execute an imaging operation for each synchronization cycle, causes the image processing unit 211 to calculate an AF evaluation value, and stores it in the SDRAM 216 in time series. (Step S204).
  • the BCPU 220 acquires the lens position of the focus lens 301b for each imaging operation of the imaging element 203, and stores it in the SDRAM 216 in association with the AF evaluation value calculated by the image processing unit 211 (step S205).
  • the BCPU 220 determines whether the AF evaluation value exceeds the peak based on the AF evaluation value stored in the SDRAM 216 (step S206). Specifically, as shown in FIG. 7, the BCPU 220 detects the peak of the AF evaluation value toward the close distance direction of the focus lens 301 b based on the lens position LP4 after the direction determination in step S202. The point at which the AF evaluation value CD14 at which the AF evaluation value acquired for each synchronization cycle from the start of driving turns to increase after decrease is detected is determined as the peak over of the AF evaluation value.
  • the BCPU 220 determines the maximum (maximum) value (CD13) of the AF evaluation value at the time of judging the peak crossing of the AF evaluation value, the value (CD12, CD14) at the time before and after that, and these AF evaluation values. And the lens positions (LP13, LP12, and LP14) at the time of acquisition of the image data are stored in the SDRAM 216 as data for focus position calculation.
  • step S207: Yes the camera system 1 proceeds to step S208 described later.
  • step S207: No the camera system 1 returns to step S204.
  • step S208 the BCPU 220 stops scan driving of the focus lens 301b that detects the peak of the AF evaluation value (step S208). Specifically, when detecting the peak of the AF evaluation value, the BCPU 220 transmits a drive stop signal of the focus lens 301 b to the LCPU 312.
  • the BCPU 220 calculates the in-focus position of the camera system 1 based on the in-focus position calculation data recorded in the SDRAM 216 (step S209). Specifically, the BCPU 220 calculates the in-focus position (see LPmax in FIG. 7) of the camera system 1 by the three-point compensation calculation. Furthermore, the BCPU 220 sets the vibration center at the time of Wob driving the focus lens 301b at the in-focus position (LPmax in FIG. 7), and the drive range by Wob drive (CD12 to CD14) before and after the set in-focus position. It is set as E 1) in FIG.
  • the method of calculating the in-focus position is not limited to the above-described three-point compensation calculation, and may be calculated by another method such as a quadratic function approximation calculation.
  • the BCPU 220 causes the focus lens 301b to start Wob driving (step S210). Specifically, the BCPU 220 transmits a drive signal to the LCPU 312.
  • the BCPU 220 determines whether the moving image switch 212b is in the off state (step S211).
  • the BCPU 220 instructs the focus lens 301 b to drive Wob (step S 212).
  • the BCPU 220 transmits a drive signal and also transmits a Wob parameter for performing Wob driving to the LCPU 312.
  • the Wob parameter is a parameter including the movement amount from the amplitude of the Wob drive (E 1 in FIG. 7 and LPmax of the vibration center diagram 7) to the target value.
  • Steps S213 to S216 correspond to steps S204 to S207 described above.
  • FIG. 8 is a timing chart showing the processing timing of each part at the time of moving image AF processing of the BCPU 220.
  • the BCPU 220 periodically generates a frame periodic signal (vertical synchronization signal VD) (for example, timing t 1 ).
  • VD vertical synchronization signal
  • the BCPU 220 causes the image sensor 203 to generate image data by controlling the driving of the image sensor drive unit 204 and the exposure of the image sensor 203 in synchronization with the frame cycle signal. (for example, timing t 2).
  • the BCPU 220 performs main body-lens synchronous communication based on the frame cycle signal, and transmits a drive signal to the lens device 3 (for example, timing t 3 ). At this time, the BCPU 220 acquires lens position information of the focus lens 301 b from the interchangeable lens device 3.
  • the LCPU 312 moves the focus lens 301b toward the infinite side, for example, toward the infinity side based on the drive signal (for example, timing t 4 ) or toward the near side.
  • the focus lens 301 b is moved (timing t 5 ).
  • the detailed operation of the LCPU 312 will be described later.
  • the BCPU 220 calculates an AF evaluation value (AF1) based on the acquired image data, and stores the AF evaluation value in the SDRAM 216 (for example, timing t 4 ).
  • the Wob driving at the time of the moving image AF processing is performed by driving the respective units based on the frame cycle signal generated by the BCPU 220. In this way, it is possible to perform moving image shooting while always focusing on the subject.
  • step S ⁇ b> 217 the BCPU 220 calculates the in-focus position of the camera system 1 based on the data for calculating the in-focus position stored in the SDRAM 216. Thereafter, the camera system 1 returns to step S211.
  • step S211 A case where the BCPU 220 determines that the moving image switch 212b is in the OFF state in step S211 (step S211: Yes) will be described.
  • the BCPU 220 stops the Wob driving of the focus lens 301b (step S218).
  • the BCPU 220 transmits, to the LCPU 312, a drive stop signal for stopping the Wob driving of the focus lens 301b.
  • the camera system 1 returns to the main routine shown in FIG.
  • FIG. 9 is a flowchart showing an outline of processing performed by the LCPU 312 of the interchangeable lens device 3.
  • FIG. 10 is a timing chart showing the processing timing of each part at the time of moving image AF processing of the LCPU 312.
  • the LCPU 312 moves the lens position of the focus lens 301b to the initial position by driving the lens drive unit 302 based on the drive signal input from the BCPU 220 (step S301).
  • the LCPU 312 transmits the lens position of the focus lens 301b to the BCPU 220 (step S303). Specifically, based on the lens position signal input from the lens position detection unit 307 via the A / D conversion unit 402 and the sample hold unit 403, the lens position calculation unit 404 of the LCPU 312 determines the lens position of the focus lens 301b. Are calculated, and a lens position signal indicating the calculation result is transmitted to the BCPU 220. Thereafter, the LCPU 312 returns to step S302.
  • step S302 the LCPU 312 does not receive a lens state request signal for requesting the lens state of the focus lens 301b from the BCPU 220 (step S302: No), and receives a Wob drive signal for Wob driving the focus lens 301b (step S304).
  • the focus lens target value setting unit 406 sets and sets a target position signal indicating the target position of the focus lens 301 b based on the Wob drive signal received through the lens communication unit 311 and the transmission / reception unit 405.
  • the target position signal is output to the subtractor 407 (step S305).
  • the lens position calculation unit 404 calculates the lens position of the focus lens 301b according to the sampling start clock (step S306). Specifically, as shown in FIG. 3, the lens position calculation unit 404 outputs from the lens position detection unit 307 via the A / D conversion unit 402 and the sample hold unit 403 in accordance with the first cycle (T 1 ). The lens position of the focus lens 301 b is calculated based on the lens position signal (hereinafter referred to as “ADC processing”), and a lens position signal indicating the focus lens position obtained as a calculation result is output to the subtractor 407.
  • ADC processing lens position signal
  • the subtractor 407 calculates the difference between the target value input from the focus lens target value setting unit 406 and the lens position signal input from the lens position calculation unit 404, and the signal obtained by this calculation is phase compensated It outputs to the calculating part 408 (step S307).
  • the phase compensation calculation unit 408 calculates the drive amount of the focus lens 301b by the lens drive unit 302 when the focus lens 301b is controlled to follow the target position based on the signal input from the subtractor 407 (step S308). Specifically, the FB calculating unit 408 a of the phase compensation calculating unit 408 calculates a control amount for adjusting the driving amount of the focus lens 301 b by the lens driving unit 302 based on the difference input from the subtractor 407, and The signal obtained by the operation is output to the adder 408c.
  • the FF calculation unit 408b of the phase compensation calculation unit 408 calculates the drive amount of the focus lens 301b by the lens drive unit 302 based on the target value signal input from the focus lens target value setting unit 406, and the signal obtained by the calculation Is output to the adder 408c.
  • the adder 408 c calculates the sum of the signal input from the FB operation unit 408 a and the signal input from the FF operation unit 408 b, and outputs the sum to the up-sampling unit 409.
  • the frequency transfer characteristic of the input signal has a characteristic (hereinafter referred to as "aliasing characteristic") in which the frequency transfer characteristic is folded back at the Nyquist frequency or less with the Nyquist frequency as the axis of symmetry. Is shown.
  • FIG. 11 is a Bode diagram showing the transfer characteristic of the processing result of the phase compensation calculation unit 408. As shown in FIG. Specifically, FIG. 11A is a Bode diagram showing frequency characteristics of gain, and FIG. 11B is a Bode diagram showing frequency characteristics of phase. In FIG. 11, the sampling frequency (f s ) is considered to be 12 kHz.
  • the transfer characteristic of the phase compensation operation unit 408 increases the gain with a phase delay compensation characteristic of 100 Hz or less to increase the gain of the frequency band to be followed in the frequency band of f ⁇ f s / 2 . Furthermore, in the transfer characteristic of the phase compensation calculation unit 408, the gain crossover frequency (rapid responsiveness) of the open loop characteristic is set to about 200 Hz to 300 Hz, and in order to secure control stability (phase margin) of this gain crossover frequency, phase lead compensation Perform advance operation by.
  • the phase compensation operation unit 408 controls the FB operation unit 408 a of the phase compensation operation unit 408 according to the aliasing characteristic.
  • the gain of the transmission for outputting the amount of operation of the focus lens is folded back and made larger and output in the frequency range where it is impossible. Therefore, the LCPU 312 performs a second calculation process (steps S309 to S310) described later in order to offset the increase in the transmission gain due to the aliasing characteristic shown in equation (5).
  • UpSamp Upsampling processing
  • resonance suppression arithmetic operation section 410 performs arithmetic processing for suppressing high-order resonance frequency components on the signal input from upsampling section 409, and outputs the arithmetic result to PWM modulation section 411 (step S310). .
  • the resonance suppression operation unit 410 suppresses the output near the high-order resonance frequency included in the signal by performing low-pass filter processing (hereinafter, referred to as “LPF processing”).
  • LPF processing low-pass filter processing
  • the transfer characteristic of the low-pass filter characteristic has an aliasing characteristic in which the gain is folded back at f s2 / 2 (Hz) which is the Nyquist frequency of the up-sampling frequency f s2 (Hz). Therefore, the output suppression frequency range of the second arithmetic processing is f c (Hz) to f c + (f s 2/2 ) (Hz). That is, in the first embodiment, the output suppression frequency range based on the second calculation result can be set by setting the upsampling frequency f s2 of the upsampling unit 409 and the cutoff frequency f c .
  • the second calculation process when the calculation result including the lens position calculation unit 404, the focus lens target value setting unit 406, and the phase compensation calculation unit 408 (hereinafter, referred to as “first calculation process”) is updated By performing the second arithmetic processing based on the updated first arithmetic processing result, the amount of operation for driving the lens driving unit 302 is calculated, while when the first arithmetic processing result is not updated, the previous time By performing the second arithmetic processing based on the first arithmetic processing result referred to, the operation amount for driving the lens driving unit 302 is calculated.
  • FIG. 12 is a Bode diagram showing the transfer characteristic of the second calculation result.
  • FIG. 13 is a Bode diagram showing the transfer characteristic as a result of performing the second arithmetic processing on the first arithmetic processing.
  • FIG. 14 is a Bode diagram showing the transfer characteristic of the lens drive unit 302.
  • the curve L11 shows the gain characteristic of the IIR filter calculation
  • the curve L12 shows the gain characteristic of the input frequency
  • the curve L21 shows the phase characteristic of the IIR filter calculation
  • the curve L22 shows the phase characteristic of the input frequency.
  • the curve L31 shows the gain characteristic of the second arithmetic processing
  • the curve L32 shows the gain characteristic of the first arithmetic result
  • the curve L41 shows the second.
  • the phase characteristic of the calculation process is shown
  • the curve L42 shows the phase characteristic of the first calculation result.
  • a curve L51 indicates the image gain of the lens drive unit 302
  • a curve L52 indicates the gain of the lens drive unit 302
  • a curve L61 indicates an image of the lens drive unit 302 in FIG. A phase is shown
  • a curve L62 shows the phase of the lens drive unit 302.
  • the upsampling frequency is considered to be 24 kHz.
  • the lens drive unit 302 is obtained by adding the calculation result of the second calculation process (see FIG. 12) to the calculation result of the first calculation process (see FIG. 11). It is possible to suppress the output component in the frequency band of 3 kHz to 20 kHz that is included in the drive amount signal for driving the focus lens 301b according to. As described above, even if the high-order resonance frequency band of the lens driving unit 302 is in the audible frequency range (see FIG. 14), it is difficult to excite vibration or noise due to the resonance frequency. it can.
  • step S311 the PWM modulation unit 411 outputs, to the lens driver 302a, a pulse signal obtained by PWM-modulating the signal input from the resonance suppression calculation unit 410 to drive the VCM 302b.
  • the movement completion determination unit 413 outputs a signal indicating that the movement of the focus lens 301b is completed to the BCPU 220 via the transmission / reception unit 405 and the lens communication unit 311 (step S312).
  • step S313: Yes the LCPU 312 ends the present process.
  • step S313: No the LCPU 312 returns to step S302.
  • step S304 the LCPU 312 does not receive the lens state data request signal for requesting the lens position of the focus lens 301b from the BCPU 220 (step S302: No), and does not receive the Wob drive signal for Wob driving the focus lens 301b ( Step S304: No) A case will be described. In this case, the LCPU 312 proceeds to step S313.
  • the phase compensation operation unit 408 generates the target position signal input from the focus lens target value setting unit 406 every first cycle and the lens position operation unit 404.
  • the drive signal representing the drive amount of the focus lens 301 b by the lens drive unit 302 is calculated based on the sampled target position signal and position signal, and the up sampling unit 409 performs the first sampling.
  • Up-sampling is performed in the second time period which is an integral fraction of the time period, and the resonance suppression calculation unit 410 performs the up-sampling by the up-sampling unit 409 with respect to the drive amount signal.
  • An operation is performed to suppress high-order resonance frequency components of As a result, noise generated by the AF operation at a high frame rate at the time of moving image shooting can be reduced.
  • the parameter changing unit 412 changes the second time period performed by the upsampling unit 409 and the cutoff frequency of the resonance suppression calculation unit 410 based on the instruction signal of the BCPU 220.
  • the high-order resonance frequency can be appropriately changed according to the solid-state fluctuation and temperature fluctuation of the high-order resonance frequency characteristic unique to the interchangeable lens device 3, and different high-order resonance frequency components can be suppressed.
  • the camera system according to the second embodiment of the present invention differs from the above-described camera system in the configuration of the resonance suppression operation unit. Therefore, in the following, after describing the configuration different from that of the above-described first embodiment, the effects of the camera system according to the second embodiment of the present invention will be described.
  • the same parts are denoted by the same reference numerals.
  • FIG. 15 is a block diagram showing a configuration of resonance suppression operation unit 500.
  • the resonance suppression calculation unit 500 is configured by a FIR (Finite Impulse Response) filter that averages the previous signal calculated by the phase compensation calculation unit 408 and the latest signal.
  • the resonance suppression operation unit 500 includes a multiplier 500a, a delay element 500b, a multiplier 500c, and an adder 500d.
  • Multiplier 500a is (0 ⁇ A) predetermined multiple of the input signal X (N) from the up-sampling unit 409 and outputs.
  • the delay element 500 b outputs a value X (N ⁇ 1) which is one sampling period before the output timing of the input signal from the up-sampling unit 409.
  • the multiplier 500c outputs an output signal of the delay element 500b (1 ⁇ A) predetermined multiple to.
  • the adder 500d calculates and outputs the sum of the output signal of the multiplier 500a and the output signal of the multiplier 500c.
  • the output signal of the multiplier 500 a is A 0 X (N)
  • the output signal of the delay element 500 b is X (N-1)
  • the output signal of the multiplier 500c is given by A 1 X (N-1). Therefore, the output signal Y (N) of the resonance suppression operation unit 500 is expressed by the following recurrence formula (9).
  • FIG. 16 is a Bode diagram showing a transfer characteristic to which the calculation result of the second calculation process according to the second embodiment is added.
  • FIG. 17 is a Bode diagram showing the transfer characteristic of the calculation result obtained by the second calculation process on the calculation result of the first calculation process.
  • the curve L71 shows the gain characteristic of the FIR filter operation
  • the curve L72 shows the gain characteristic of the input frequency
  • the curve L81 shows the phase characteristic of the FIR filter operation
  • the curve L82 shows the phase characteristic of the input frequency.
  • the curve L91 shows the gain characteristic of the second arithmetic processing
  • the curve L92 shows the gain characteristic of the first arithmetic processing
  • the curve L101 shows the second characteristic.
  • the phase characteristic of the arithmetic processing is shown
  • the curve L102 shows the phase characteristic of the first arithmetic processing.
  • the transfer characteristic of the FIR filter suppresses the transfer gain to the maximum at the Nyquist frequency f s2 / 2 of the upsampling frequency f s2. Due to the aliasing characteristic, it has a characteristic having a suppression band around the Nyquist frequency of the up-sampling frequency f s2 .
  • the 3 kHz to 20 kHz frequency included in the drive amount of the focus lens by the lens drive unit 302 Output components of the band can be suppressed.
  • the high-order resonance frequency band of the lens driving unit 302 is in the audible frequency range (see FIG. 14), it is difficult to excite vibration or noise due to the resonance frequency. it can.
  • the resonance suppression operation unit 500 is configured by the FIR filter, the processing time of the arithmetic processing performed on the drive amount signal is shortened compared to the IIR filter. It is possible to reduce the noise caused by the AF operation at a high frame rate at the time of moving image shooting.
  • the number of product-sum operation steps is reduced by averaging the drive amount signal sampled the previous cycle by the resonance suppression operation unit 500 and the latest drive amount signal. can do.
  • the LCPU 312 can shorten the arithmetic processing time.
  • the cutoff frequency (f c ) at which the resonance suppression calculation unit cuts off the high-order resonance frequency is 3 kHz, but it can be appropriately changed according to the configuration of the interchangeable lens device. Specifically, by setting the cut-off frequency f c as a cut-off frequency within a half frequency (Nyquist frequency) of the up-sampling frequency, the sampling frequency f s to be performed according to the calculation result of the first calculation processing The driving amount signal component in the high frequency band can be suppressed more than a half frequency (Nyquist frequency).
  • the upsampling frequency is twice as high as the sampling frequency of the phase compensation operation unit, but for example, it is an integral multiple of the sampling frequency of the phase compensation operation unit, specifically three or four times And five times, etc.
  • the phase compensation operation unit performs the operation based on the phase lead and the delay compensation, but performs, for example, proportional operation, time change (differential operation) and integration (integral operation) on the difference. It may be a PID operation to add.
  • the resonance suppression operation unit may be a band pass filter, and various parameters related to the cutoff frequency and the sampling frequency may be changed by the parameter change unit.
  • a plurality of types of filters may be incorporated in the resonance suppression operation unit, and the type of the filter may be changed by the parameter change unit.
  • the parameter change unit may appropriately change the IIR filter and the FIR filter based on the frame rate of the moving image.
  • a digital single-lens reflex camera has been described as a camera system.
  • a compact digital camera or digital video camera integrally formed with a lens and a main body, and a mobile phone or tablet type having a moving image function
  • the present invention can also be applied to electronic devices such as portable devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Structure And Mechanism Of Cameras (AREA)
  • Focusing (AREA)
  • Lens Barrels (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

 カメラシステム1のレンズ制御部312は、レンズ位置検出部307から入力されるレンズ位置信号と本体部2から送信される目標位置信号とをそれぞれ第1の時間周期毎にサンプリングし、このサンプリングしたレンズ位置信号と目標位置信号とに基づいて、駆動量信号を演算する位相補償演算部408と、駆動量信号に対して、第1の時間周期の整数分の1である第2の時間周期でアップサンプリングを行うアップサンプリング部409と、アップサンプリング部409がアップサンプリングした駆動量信号に対して、所定の共振周波数帯域における高次共振周波数成分を抑圧する演算を行う共振抑圧演算部410と、を有する。

Description

カメラ装置、交換レンズ装置、カメラ本体部およびフォーカス制御方法
 本発明は、所定の視野領域を撮像して光電変換を行うことによって画像データを生成するカメラ装置、レンズ交換可能なカメラ装置、交換レンズ装置、カメラ本体部およびフォーカス制御方法に関する。
 近年、デジタルカメラ等の撮像装置として、静止画撮影だけでなく、動画撮影と同時録音も可能なものが実用化されている。動画撮影においては、ハイビジョンテレビ装置での動画再生に合わせてフレームレートを最大で60fpsとする装置が存在している。動きのある被写体の撮影に対しては、動画のフレームレートを高速化、例えば120fpsとすることにより、撮影された動画像の不自然な変化を抑圧して高画質で撮影することができる。
 ところで、焦点を調整するオートフォーカス(以下、「AF」という)機構を備えた交換レンズ装置は、動画のフレームレートに同期して、AF機構内のフォーカスレンズを被写体の焦点深度内で光軸方向に沿って往復動作し、各フレームレートでの取得画像より空間的な輝度変化から得られるコントラスト評価値(以下、「AF評価値」という)に基づいて、被写体への焦点位置を探索して合焦位置へ追従するAF動作のウォブリング(以下、「Wob」という)駆動を行っている。このため、AF機構は、動画のフレームレートの高速化に合わせて、フォーカスレンズをWob駆動させた場合、Wob駆動の周期が短縮することによって、レンズ駆動時の慣性力が増加し、駆動時の振動やフォーカスレンズを支持する支持部材の反作用の振動が増加するため、レンズ駆動時に生じる駆動音が大きくなる。この結果、動画撮影時に、AF駆動による駆動音がノイズとして集音マイクに拾われるという問題があった。
 そこで、AF機構において、Wob駆動の高速化と、Wob駆動時の振動や騒音を低減するため、ヴォイスコイルモータ(以下、「VCM」という)等のモータを、フォーカスレンズを駆動させる駆動部として採用したものが知られている(たとえば特許文献1を参照)。この技術によれば、動画撮影時でのWob駆動時において、フォーカスレンズ移動制御時の最高速度を抑えることによって、フォーカスレンズ駆動部の急激な加速度変化を抑えることで、振動や騒音を抑圧している。
特開2006-65176号公報
 しかしながら、上述した技術では、フォーカスレンズ駆動部が、フォーカスレンズや駆動部材の弾性特性により、振動を強調する固有の共振周波数を有する。このため、交換レンズ装置内のレンズ制御部が駆動部に供給する供給電流に含まれる周波数成分の中に、駆動部の共振周波数が含まれる場合、駆動振幅が増幅してしまい、AF動作時に駆動音が大きくなってしまう。
 また、動画撮影時のフォーカスレンズ移動速度を抑えているため、フレームレートを高速化する場合、フレームレートに同期したフォーカスレンズのWob駆動制御の対応が困難になり、高速フレームレート化とAF動作時の駆動音の低減とを両立できない問題があった。
 本発明は、上記に鑑みてなされたものであって、動画撮影時における高速フレームレートでのAF動作によって生じる騒音の低減を実現することができるレンズ装置、交換レンズ装置、カメラ本体部およびフォーカス制御方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明にかかるカメラ装置は、光電変換を行うことによって画像データを生成する撮像素子を有するカメラ装置であって、前記撮像素子の撮像面に結像される被写体の焦点位置を調整するフォーカスレンズと、前記フォーカスレンズを当該カメラ装置の光軸方向に沿って進退可能に駆動するレンズ駆動部と、前記光軸上における前記フォーカスレンズのレンズ位置を検出するレンズ位置検出部と、前記レンズ駆動部を制御するレンズ制御部と、当該カメラ装置の撮影時における撮影動作を制御する制御部と、を備え、前記レンズ制御部は、前記レンズ位置検出部が検出した前記レンズ位置を示すレンズ位置信号と前記制御部から送信される前記フォーカスレンズの前記光軸上における目標位置信号とをそれぞれ第1の時間周期毎にサンプリングし、該サンプリングした前記レンズ位置信号と前記目標位置信号とに基づいて、前記フォーカスレンズの駆動量出力を演算する駆動量演算部と、前記駆動量演算部によって得られた前記駆動量出力に対して、前記第1の時間周期の整数分の1である第2の時間周期でアップサンプリングを行うアップサンプリング部と、前記駆動量出力を前記第2の時間周期でサンプリングした結果に対して、所定の共振周波数帯域における高次共振周波数成分を抑圧する演算を行う共振抑圧演算部と、を有することを特徴とする。
 また、本発明にかかるカメラ装置は、上記発明において、前記共振抑圧演算部は、前記第2の時間周期の逆数となるサンプリング周波数の2分の1以下に前記高次共振周波数成分を遮断する遮断周波数を設けており、かつ該遮断周波数より低周波域を通過させる特性を有するデジタルフィルタ演算処理を行うことを特徴とする。
 また、本発明にかかるカメラ装置は、上記発明において、前記共振抑圧演算部は、前記駆動量出力を、前記第2の時間周期でサンプリングした時点の演算値に対して1次ローパスフィルタ特性での1次のIIRフィルタ形成となるデジタルフィルタ演算処理を行うことによって得ることを特徴とする。
 また、本発明にかかるカメラ装置は、上記発明において、前記共振抑圧演算部は、FIRフィルタ形式のデジタルフィルタであり、前記フォーカスレンズの前記駆動量出力を、前記第2の時間周期でサンプリングした時点での演算値と1周期前にサンプリングした演算とを平均演算することによって得ることを特徴とする。
 また、本発明にかかるカメラ装置は、上記発明において、前記レンズ制御部は、前記制御部から送信される指示信号に基づいて、前記共振周波数帯域を遮断する遮断周波数帯域の設定値を変更するパラメータ変更部をさらに有することを特徴とする。
 また、本発明にかかるカメラ装置は、上記発明において、前記駆動量演算部は、前記レンズ位置信号と前記目標位置信号との差分に基づいて、前記レンズ駆動部による前記駆動量出力を調整する制御量を演算するフィードバック演算部と、前記フォーカスレンズが移動しているとき、前記目標位置信号に基づいて前記レンズ駆動部による前記駆動量を演算するフィードフォワード演算部と、前記フィードバック演算部が演算した前記制御量と前記フィードフォワード演算部が演算した前記駆動量とを加算した前記駆動量出力を出力する加算器と、を有することを特徴とする。
 また、本発明にかかるカメラ装置は、上記発明において、前記フィードフォワード演算部は、前記フォーカスレンズが一定位置で待機しているとき、前記目標位置信号に対する演算を停止することを特徴とする。
 また、本発明にかかるカメラ装置は、上記発明において、前記レンズ駆動部は、リニアモータを有することを特徴とする。
 また、本発明にかかるカメラ装置は、上記発明において、前記レンズ駆動部に存在する共振周波数帯域は、可聴周波数域に存在することを特徴とする。
 また、本発明にかかる交換レンズ装置は、光電変換を行うことによって画像データを生成する撮像素子を有するレンズ交換式のカメラ本体部に着脱自在に装着される交換レンズ装置であって、前記撮像素子の撮像面に結像される被写体の焦点位置を調整するフォーカスレンズと、前記フォーカスレンズを当該交換レンズ装置の光軸に沿って進退可能に駆動するレンズ駆動部と、前記光軸上における前記フォーカスレンズのレンズ位置を検出する位置検出部と、前記レンズ駆動部を制御するレンズ制御部と、を備え、前記レンズ制御部は、前記位置検出部が検出した前記レンズ位置を示すレンズ位置信号と前記カメラ本体部から送信される前記フォーカスレンズの前記光軸上における目標位置信号とをそれぞれ第1の時間周期毎にサンプリングし、該サンプリングした前記レンズ位置信号と前記目標位置信号とに基づいて、前記レンズ駆動部による前記フォーカスレンズの駆動量出力を演算する駆動量演算部と、前記駆動量演算部によって得られた前記駆動量出力に対して、前記第1の時間周期の整数分の1である第2の時間周期でアップサンプリングを行うアップサンプリング部と、前記駆動量出力を前記第2の時間周期でサンプリングした結果に対して、所定の共振周波数帯域における高次共振周波数成分を抑圧する演算を行う共振抑圧演算部と、を有することを特徴とする。
 また、本発明にかかる交換レンズ装置は、上記発明において、前記共振抑圧演算部は、前記第2の時間周期の逆数となるサンプリング周波数の2分の1以下に前記高次共振周波数成分を遮断する遮断周波数を設けており、かつ該遮断周波数より低周波域を通過させる特性を有するデジタルフィルタ演算処理を行うことを特徴とする。
 また、本発明にかかる交換レンズ装置は、上記発明において、前記共振抑圧演算部は、前記駆動量出力を、前記第2の時間周期でサンプリングした時点の演算値に対して1次ローパスフィルタ特性での1次のIIRフィルタ形成となるデジタルフィルタ演算処理を行うことによって得ることを特徴とする。
 また、本発明にかかる交換レンズ装置は、上記発明において、前記共振抑圧演算部は、FIRフィルタ形式のデジタルフィルタであり、前記フォーカスレンズの前記駆動量出力を、前記第2の時間周期でサンプリングした時点での演算値と1周期前にサンプリングした演算とを平均演算することによって得ることを特徴とする。
 また、本発明にかかる交換レンズ装置は、上記発明において、前記レンズ制御部は、前記制御部から送信される指示信号に基づいて、前記共振周波数帯域を遮断する遮断周波数帯域の設定値を変更するパラメータ変更部をさらに有することを特徴とする。
 また、本発明にかかる交換レンズ装置は、上記発明において、前記駆動量演算部は、前記レンズ位置信号と前記目標位置信号との差分に基づいて、前記レンズ駆動部による前記駆動量出力を調整する制御量を演算するフィードバック演算部と、前記フォーカスレンズが移動しているとき、前記目標位置信号に基づいて前記レンズ駆動部による前記駆動量を演算するフィードフォワード演算部と、前記フィードバック演算部が演算した前記制御量と前記フィードフォワード演算部が演算した前記駆動量とを加算した前記駆動量出力を出力する加算器と、を有することを特徴とする。
 また、本発明にかかる交換レンズ装置は、上記発明において、前記フィードフォワード演算部は、前記フォーカスレンズが一定位置で待機しているとき、前記目標位置信号に対する演算を停止することを特徴とする。
 また、本発明にかかる交換レンズ装置は、上記発明において、前記レンズ駆動部は、リニアモータを有することを特徴とする。
 また、本発明にかかる交換レンズ装置は、上記発明において、前記レンズ駆動部に存在する共振周波数帯域は、可聴周波数域に存在することを特徴とする。
 また、本発明にかかるカメラ本体部は、光電変換を行うことによって画像データを生成する撮像素子の撮像面に結像される被写体の焦点位置を調整するフォーカスレンズを有する交換レンズ装置を着脱可能なカメラ本体部であって、前記撮像素子を駆動制御して画像信号を取得するとともに、前記交換レンズ装置への制御量を演算する制御部と、静止画撮影または動画撮影のどちらか一方を選択する撮影条件選択部と、前記制御部の演算結果に基づいて、前記制御部から出力された制御信号を前記交換レンズ装置に送信するとともに、前記交換レンズ装置から出力された制御信号を受信する本体通信部と、を備え、前記制御部は、前記交換レンズ内の前記フォーカスレンズを移動させる目標位置と、該目標位置を中心に往復移動させる往復移動量と、往復移動周期とを含む制御量を演算して前記本体通信部に出力するとともに、前記本体通信部を介して前記交換レンズ装置から現在の前記フォーカスレンズの光軸上におけるレンズ位置を示すレンズ位置情報を取得することを特徴とする。
 また、本発明にかかるカメラ本体部は、上記発明において、前記制御部は、当該カメラ本体部の動画撮影時において、前記撮像素子が生成する前記画像データのフレームレートに同期して、前記本体通信部を介して前記交換レンズ装置から前記レンズ位置情報を取得するとともに、前記制御量を演算して前記交換レンズ装置に出力することを特徴とする。
 また、本発明にかかるカメラ本体部は、上記発明において、前記制御部は、前記本体通信部を介して前記交換レンズ装置の共振周波数帯域を遮断する遮断周波数帯域の設定を変更するための制御信号を前記交換レンズ装置へ送信することを特徴とする。
 また、本発明にかかるフォーカス制御方法は、光電変換を行うことによって画像データを生成する撮像部を有するカメラ本体部と、前記カメラ本体部に着脱自在に装着可能であり、前記撮像素子の撮像面に結像される被写体の焦点位置を調整するフォーカスレンズおよび前記フォーカスレンズを光軸に沿って進退可能に移動させるレンズ駆動部を有する交換レンズ装置と、を備えたカメラシステムが実行するフォーカス制御方法であって、前記光軸上における前記フォーカスレンズのレンズ位置を検出する位置検出ステップと、前記位置検出ステップが検出した前記レンズ位置を示すレンズ位置信号と前記カメラ本体部から送信される前記フォーカスレンズの前記光軸上における目標位置信号とをそれぞれ第1の時間周期毎にサンプリングし、該サンプリングした前記レンズ位置信号と前記目標位置信号とに基づいて、前記レンズ駆動部による前記フォーカスレンズの駆動量を示す駆動量出力を演算する駆動量演算ステップと、前記駆動量演算ステップが演算した前記駆動量信号に対して、前記第1の時間周期の整数分の1である第2の時間周期でアップサンプリングを行うアップサンプリングステップと、前記アップサンプリングステップがアップサンプリングした前記駆動量出力に対して、所定の共振周波数帯域における高次共振周波数成分を抑圧する演算を行う共振抑圧演算ステップと、を含むことを特徴とする。
 本発明によれば、駆動量演算部が、第1の周期毎に目標位置信号とレンジ位置信号とをサンプリングし、サンプリングした目標位置信号および位置信号とに基づいてレンズ駆動部によるフォーカスレンズの駆動量を示す駆動量信号を演算する。演算した結果を、アップサンプリング部が第1の時間周期の整数分の1である第2の時間周期でアップサンプリングを実施し、共振抑圧演算部が、アップサンプリング部によってアップサンプリングされた駆動量信号に対して、アップサンプリングされた第2の周期毎に、所定の抑圧周波数帯域の出力を減衰させてフォーカスレンズ駆動部の高次共振周波数成分出力を抑圧する演算を行う。この結果、動画撮影時における高速フレームレートでのAF動作、つまりWob駆動によって生じる高次共振周波数が励起する騒音の低減を行うことができるという効果を奏する。
図1は、本発明の実施の形態1にかかる交換レンズ装置が装着されるカメラシステムの模式的な構成図である。 図2は、本発明の実施の形態1にかかる交換レンズ装置が装着されるカメラシステムの構成を示すブロック図である。 図3は、図2に示すレンズ位置検出部およびレンズ制御部の詳細な構成を示すブロック図である。 図4は、図3に示す共振抑圧演算部の構成を示すブロック図である。 図5は、本発明の実施の形態1にかかるカメラシステムが行う処理の概要を示すフローチャートである。 図6は、図5に示す動画AF処理の概要を示すフローチャートである。 図7は、本発明の実施の形態1にかかるカメラシステムが行う動画AF動作の一例を説明するための模式図である。 図8は、制御部の動画AF処理時における各部の処理のタイミングを示すタイミングチャートである。 図9は、レンズ制御部が行う処理の概要を示すフローチャートである。 図10は、レンズ制御部の動画AF処理時における各部の処理のタイミングを示すタイミングチャートである。 図11は、位相補償演算部の処理結果の伝達特性のボード線図である。 図12は、第2の演算結果の伝達特性のボード線図である。 図13は、第1の演算結果に対して、第2の演算処理を行った結果の伝達特性のボード線図である。 図14は、レンズ駆動部の伝達特性のボード線図である。 図15は、本発明の実施の形態2にかかる共振抑圧演算部の構成を示すブロック図である。 図16は、本発明の実施の形態2にかかる第2の演算処理の演算結果を加算した伝達特性のボード線図である。 図17は、第1の演算処理の演算結果に対して、第2の演算処理が演算した演算結果の伝達特性のボード線図である。
 以下に、図面を参照して、本発明を実施するための形態(以下、「実施の形態」という)について説明する。なお、この実施の形態によって本発明が限定されるものではない。また、図面の記載において、同一の部分には同一の符号を付して説明する。
(実施の形態1)
 図1は、本発明の実施の形態1にかかる交換レンズ装置が装着されるカメラシステムの模式的な構成図である。図2は、本発明の実施の形態1にかかる交換レンズ装置が装着されるカメラシステムの構成を示すブロック図である。なお、図1および図2においては、左側を前方側とし、右側を後方側として説明する。
 図1および図2に示すカメラシステム1は、本体部2と、本体部2に装着自在な交換レンズ装置3と、を備える。交換レンズ装置3は、交換レンズ装置3の後方側に設けられた後方側レンズマウント31を、本体部2の前方側に設けられた本体側マウントリング21に結合することにより、本体部2に装着される。これにより、本体部2および交換レンズ装置3は、一体的に接続される。なお、上述した本体側マウントリング21は、たとえばバヨネットタイプであればよい。
 本体部2は、シャッタ201、シャッタ駆動部202と、撮像素子203と、撮像素子駆動部204と、信号処理部205と、A/D変換部206と、ストロボ207と、ストロボ駆動部208と、音声入出力部209と、音声信号処理部210と、画像処理部211と、入力部212と、表示部213と、表示駆動部214と、FROM215と、SDRAM216と、記録媒体217と、電源部218と、本体通信部219と、制御部220(以下、「BCPU220」という)と、を備える。
 シャッタ201は、開閉動作を行うことにより、撮像素子203の状態を露光状態または遮光状態に設定する露光動作を行う。シャッタ駆動部202は、ステッピングモータ等を用いて構成され、制御部220から入力される指示信号に応じてシャッタ201を駆動する。
 撮像素子203は、CCD(Charge Coupled Device)またはCMOS(Complementary Metal Oxide Semiconductor)等を用いて構成される。撮像素子203は、交換レンズ装置3が集光した光を受光して、各画素に光電変換を行い、順次電気信号を転送することによって、2次元の画像データを生成する。撮像素子駆動部204は、所定の撮像タイミングで撮像素子203の露光および電気信号の転送動作を実施する。撮像素子駆動部204は、電気信号の転送動作時に、撮像素子203の各画素で光電変換された電荷量出力または電圧出力のアナログ信号の画像データを信号処理部205に順次転送出力させる。
 信号処理部205は、撮像素子203から転送される各画素の画像データに対して、アナログ信号処理を施してA/D変換部206に出力する。具体的には、信号処理部205は、画像データに対して、フィルタリングやバイアスオフセットキャンセル等のノイズ低減処理および画素出力の増幅処理等を行う。
 A/D変換部206は、信号処理部205で処理された各画素の画像データに対して、順次A/D変換を行うことにより、撮像素子203で検出された水平方向および垂直方向を組み合わせた2次元のデジタル化された画像データ(RAWデータ)を生成し、制御部220に出力する。
 ストロボ207は、キセノンランプまたはLED等によって構成される。ストロボ207は、シャッタ201の露光動作と同期して所定の視野領域に向けて発光する。ストロボ駆動部208は、制御部220の制御のもと、ストロボ207を発光させる。
 音声入出力部209は、音声入力部209aと、音声出力部209bとを有する。音声入力部209aは、マイク等を用いて構成される。音声出力部209bは、スピーカ等を用いて構成される。音声入力部209aは、音声情報の取得を行う。音声出力部209bは、取得された音声情報の再生出力を行う。音声信号処理部210は、音声入力部209aから入力された音声データ(アナログ信号)に対して、所定の信号処理を行い、A/D変換を行うことによりデジタルの音声データを生成し、この生成した音声データを制御部(BCPU)220に出力し、音声を録音する動作を行う。また、音声信号処理部210は、音声の再生を行う場合、BCPU220から入力される音声データに対して、D/A変換を行うことによりアナログの音声データを生成し、この生成した音声データを音声入出力部209に含まれる音声出力部209bに出力し、録音データの再生出力を行う。
 画像処理部211は、画像データに対して各種の画像処理を施す。具体的には、画像処理部211は、画像データに対して、撮像素子の暗電流出力による出力オフセットを補正するオプティカルブラック減算処理、RGB出力混合比を調整して、被写体の色温度補正を行うホワイトバランス調整処理、画像データの同時化処理、RGB情報の三原色出力から輝度-色差-色相成分に変換するカラーマトリクス演算処理、γ補正処理、色再現処理およびエッジ強調処理等を含む画像処理を行う。
 画像処理部211は、焦点検出領域内の画像データから、空間周波数における高周波成分(コントラスト)に対し、空間ハイパスフィルタ演算処理により抽出して、所定の空間周波数スペクトラムからAF評価値を算出する算出処理を行う。なお、画像処理部211は、画像データを所定の方式、たとえば静止画であれば、JPEG(Joint Photographic Experts Group)方式を行う。また、画像処理部211は、連続した動画撮影データであれば、MotionJPEG方式またはデータ圧縮率がより高いMP4(H.264)方式等に従って圧縮し、圧縮した画像データを記録媒体217に記録させる。
 入力部212は、カメラシステム1の電源状態をオン状態またはオフ状態に切換える電源スイッチ(図示せず)と、静止画撮影の指示を与える静止画レリーズ信号の入力を受け付けるレリーズスイッチ212aと、カメラシステム1に設定された各種撮影モードを切換える撮影モード切換スイッチ(図示せず)と、動画撮影の指示を与える動画レリーズ信号の入力を受け付ける動画スイッチ212bと、を有する。レリーズスイッチ212aは、外部からの押圧により進退可能であり、半押しされた場合に撮影準備動作を指示するファーストレリーズ信号の入力を受け付ける一方、全押しされた場合に静止画撮影を指示するセカンドレリーズ信号の入力を受け付ける。
 表示部213は、液晶または有機EL(Electro Luminescence)等からなる表示パネルを用いて構成される。表示駆動部214は、撮影した画像データを表示部213に表示させる。表示駆動部214は、シャッタースピード、絞り値、感度等、撮影日時等を含む各種撮影情報を表示部213に表示させる。
 FROM215は、不揮発性メモリを用いて構成される。FROM215は、カメラシステム1を動作させるための各種プログラム、プログラムの実行中に使用される各種データおよび画像処理部211による画像処理の動作に必要な各種パラメータ等を記憶する。
 SDRAM216は、揮発性メモリを用いて構成される。SDRAM216は、制御部220の処理中の情報を一時的に記憶する。たとえば、SDRAM216は、静止画を連続して撮影したとき、または動画の撮影時には、デジタル化された画像データを一時的に記憶することによって、画像処理部211での信号処理および記録媒体217へのデータ転送を滞りなく実行させる。
 記録媒体217は、本体部2の外部から装着されるメモリカード等を用いて構成される。記録媒体217は、メモリI/F(図示せず)を介して本体部2に着脱自在に装着される。記録媒体217は、画像データが記録される一方、記録した画像データが読み出される。
 電源部218は、本体部2に含まれるBCPU220および電子制御や駆動を行う各構成部に接続され、各構成部に電源供給を行う。電源部218は、本体通信部219を介して、交換レンズ装置3を構成する各部に電源を供給する。電源部218は、本体部2に装着されたバッテリ(非図示)の電圧出力を、所定の直流電圧の平滑化および昇圧等を行い、本体部2内の各構成部に電源を供給する。
 本体通信部219は、本体部2に装着される交換レンズ装置3とのコマンド通信と電源供給を行うための通信インターフェースである。
 BCPU220は、CPU(Central Processing Unit)等を用いて構成される。BCPU220は、入力部212からの指示信号に応じて、カメラシステム1を構成する各部に対応する指示やデータの転送等を行ってカメラシステムの動作を統括的に制御する。BCPU220は、本体通信部219を介して交換レンズ装置3を駆動する駆動信号および交換レンズ装置3のレンズ状態を要求する要求信号等を送信する。BCPU220は、撮像素子203が生成する画像データのフレームレート、たとえば動画撮影条件としてフレームレートが120fpsに設定されている場合、このフレームレートに同期して、120分の1秒周期で、交換レンズ装置3を駆動する駆動信号を送信する。
 外部通信部221は、本体部2に対して装着される電子ビューファインダ(EVF)およびインターネットを介してパーソナルコンピュータ等の外部処理装置(図示せず)と双方向に通信する通信部等を本体部2に接続するインターフェースとして機能する。
 つぎに、交換レンズ装置3の構成について説明する。交換レンズ装置3は、光学系301と、レンズ駆動部302と、絞り機構303と、絞り駆動部304と、フォーカスリング305と、ズームリング306と、レンズ位置検出部307と、ズーム位置検出部308と、レンズEEPROM309と、レンズRAM310と、レンズ通信部311と、レンズ制御部312と、を備える。
 光学系301は、撮像素子203上の撮像面に像を形成する3群構成のレンズ群で構成される。具体的には、光学系301は、前方側から後方側の順に、第1群レンズである前群レンズ301aと、第2群レンズであるフォーカスレンズ301bと、第3群レンズである後群レンズ301cとを用いて構成される。
 前群レンズ301aは、たとえば2枚のレンズを用いて構成され、負屈折力を有する。フォーカスレンズ301bは、一または複数のレンズを用いて構成され、正屈折力を有する。フォーカスレンズ301bは、レンズ枠301dによって支持され、フォーカシング時(AF時)に光軸O方向に沿って駆動される。後群レンズ301cは、たとえば3枚のレンズを用いて構成され、正屈折力を有する。前群レンズ301a、フォーカスレンズ301bおよび後群レンズ301cは、ズーミング時に光軸O方向に沿って駆動される。
 レンズ駆動部302は、フォーカシング時にレンズ枠301dを光軸O方向に沿って駆動することにより、フォーカスレンズ301bを光軸O方向のフォーカシング位置に向けて移動させる。レンズ駆動部302は、動画撮影時のフォーカシング動作を行う場合、フォーカスレンズ301bを光軸O方向に沿って、往復移動させてWob駆動を行う。ここで、Wob駆動とは、カメラシステム1が動画撮影を行う場合において、交換レンズ装置3のフォーカスレンズ301bを、動画撮影時のフレームレートに同期した周期で、カメラシステム1の合焦位置を中心に行う微小往復駆動のことである。レンズ駆動部302は、ヴォイスコイルモータ(以下、「VCM」という)またはリニアモータおよびレンズ駆動ドライバ等を用いて構成される。
 絞り機構303は、複数の絞り羽(図示せず)の開閉動作によって、光透過面積を可変させ、光学系301が集光する光の入射量を制限することにより露出の調整を行う。絞り駆動部304は、ステッピングモータおよびモータドライバ等を用いて構成され、絞り機構303を駆動する。
 フォーカスリング305は、カメラシステム1がマニュアルフォーカスモード(以下、「MFモード」という)に設定されている状態で、撮影者によって操作された場合、フォーカスレンズ301bの位置を光軸O方向に沿って移動させて交換レンズ装置3の焦点位置を調整する。フォーカスリング305は、交換レンズ装置3のレンズ鏡筒の周囲に設けられる回転可能なリングである。
 ズームリング306は、撮影者によって操作された場合、後群レンズ301cの位置を光軸O方向に沿って移動させて交換レンズ装置3の画角(焦点距離)を変更する。ズームリング306は、交換レンズ装置3のレンズ鏡筒の周囲に設けられる回転可能なリングである。
 レンズ位置検出部307は、レンズ駆動部302によって駆動されたフォーカスレンズ301bの位置を検出する。レンズ位置検出部307は、フォトインタラプタ等を用いて構成される。
 ズーム位置検出部308は、ズームリング306によって駆動された後群レンズ301cの位置を検出する。ズーム位置検出部308は、リニアエンコーダセンサや、可変抵抗素子などのポテンショメータ等によって構成される。ズーム位置検出部308は、リニアエンコーダセンサまたはポテンショメータによって得られたアナログ出力電圧をA/D変換回路によってデジタルに変換し、この変換したデジタルな信号に基づいて、ズーム位置を検出する。
 レンズEEPROM309は、光学系301の位置および動きを決定するための制御用プログラム、光学系301のレンズ特性および各種パラメータを含むレンズデータを記憶する。レンズEEPROM309は、不揮発性メモリを用いて構成される。
 レンズRAM310は、レンズ制御部312の処理中の情報を一時的に記憶している。レンズRAM310は、揮発メモリを用いて構成される。
 レンズ通信部311は、交換レンズ装置3が本体部2に装着されたときに、本体部2の本体通信部219と通信を行うための通信インターフェースである。また、レンズ通信部311および本体通信部219を介して本体2の電源部218から、交換レンズ装置3に含まれる各構成へ電源が供給される。
 レンズ制御部312は、CPU等を用いて構成される。レンズ制御部312(以下、「LCPU312」という。)は、交換レンズ装置3の動作を制御する。具体的には、LCPU312は、レンズ駆動部302を駆動させて交換レンズ装置3のフォーカシングを行うとともに、絞り駆動部304を駆動させて絞り値の変更を行う。LCPU312は、交換レンズ装置3が本体部2に装着されることで電気的にBCPU220に接続され、BCPU220からの駆動信号および指示信号に従って制御される。ここで、駆動信号とは、フォーカスレンズ301bを光軸Oに沿って移動させる目標位置と、この目標位置を中心にフォーカスレンズ301bを往復移動させる往復移動量と、往復移動周期とを含む。
 ここで、上述したレンズ位置検出部307およびLCPU312の詳細な構成について説明する。図3は、レンズ位置検出部307およびLCPU312の詳細な構成を示すブロック図である。
 図3に示すように、レンズ位置検出部307は、フォトインタラプタ307aと、増幅回路307bと、帯域制限回路307cと、を有する。
 フォトインタラプタ307aは、反射部材(図示せず)と、フォトリフレクタ(図示せず)と、を有する。反射部材およびフォトリフレクタは、レンズ枠301dおよび交換レンズ装置3の鏡筒内に対向した状態でそれぞれ設けられる。フォトリフレクタからの光は、反射部材で反射され、再度、フォトリフレクタに入射する。これにより、フォトインタラプタ307aは、レンズ位置に応じて、受光される光量変化に対し、光電変換から電圧出力に変換することにより、レンズ枠301dの位置を検出し、この検出結果に応じた位置信号(アナログ信号)を増幅回路307bへ出力する。
 増幅回路307bは、フォトインタラプタ307aから入力される位置信号を増幅して帯域制限回路307cへ出力する。なお、本実施の形態では、レンズ位置検出部307は、フォトインタラプタ307aとフォトリフレクタとの組み合わせとしているが、フォトリフレクタの代わりに、一定間隔で着磁された磁気スケールを用いてもよい。さらに、本実施の形態では、フォトインタラプタの代わりに、ホールセンサやMRセンサ(磁気抵抗素子)等の磁気センサを用いてもよい。
 帯域制限回路307cは、LCPU312のA/D変換部402に接続される。帯域制限回路307cは、増幅回路307bから入力される位置信号に所定の帯域制限を施すことによって特定の周波数成分を取り出し、この取り出した周波数成分の位置信号をA_POS信号として出力する。ここで、周波数の帯域制限は、後述するLCPU312がA/D変換し、サンプルホールドする第1の周期T1の逆数の2分の1となる周波数以下に帯域制限する。
 LCPU312は、動作クロック生成部400と、サンプリング同期生成部401と、A/D変換部402と、サンプルホールド部403と、レンズ位置演算部404と、送受信部405と、フォーカスレンズ目標値設定部406と、減算器407と、位相補償演算部408と、アップサンプリング部409と、共振抑圧演算部410と、PWM変調部411と、を有する。
 動作クロック生成部400は、LCPU312の各部が演算する際に参照する基準クロックを生成する。なお、動作クロック生成部400は、BCPU220のクロックに同期して基準クロックを生成してもよい。なお、LCPU312内でフォーカスレンズ301bを制御する際に参照する第1の周期T1および第2の周期T2は、動作クロック生成部400のクロック周波数を分周する形で生成される。なお、第1の周期T1および第2の周期T2については後述する。
 サンプリング同期生成部401は、LCPU312内でフォーカスレンズ301bを制御する際にLCPU312の各部が演算する際に参照する第1の周期T1および第2の周期T2を生成する。
 A/D変換部402は、帯域制限回路307cから入力される位置信号(A_POS)に対して、A/D変換を行ってサンプルホールド部403へ出力する。
 サンプルホールド部403は、A/D変換部402から入力される位置信号の波形を整形してレンズ位置演算部404へ出力する。具体的には、サンプルホールド部403は、A/D変換部402から入力される位置信号に対して、所定のタイミング(サンプリング周期T1)でサンプリングし、このサンプリングした位置信号をレンズ位置演算部404で演算処理し、次のサンプリング周期の時間まで演算結果をホールドする。
 レンズ位置演算部404は、サンプルホールド部403から入力される位置信号に基づいて、光軸Oにおけるフォーカスレンズ301bのレンズ位置を演算し、この演算結果として得られるD_POS信号を減算器407へ出力する。
 送受信部405は、レンズ通信部311を介してBCPU220から送られてくる指示信号をフォーカスレンズ目標値設定部406に送信する。また、送受信部405は、移動完了判定部413の判定結果を示す信号を、レンズ通信部311を介してBCPU220へ出力する。
 フォーカスレンズ目標値設定部406は、BCPU220からの駆動信号に基づいて、フォーカスレンズ301bを駆動する位置までの目標位置を示す目標位置信号を設定し、この設定した目標位置信号(T_Pos)を減算器407へ出力する。
 減算器407は、フォーカスレンズ目標値設定部406から入力される目標位置信号(T_Pos)とレンズ位置演算部404から入力されるレンズ位置信号(D_Pos)との差分(目標値からの偏差量)を演算し、この演算によって得られる信号(dev)を位相補償演算部408へ出力する。
 位相補償演算部408は、フォーカスレンズ目標値設定部406から入力される目標位置信号(T_Pos)および減算器407から得られる信号(dev)から位相補償演算部408により演算処理を行って、この演算を行った信号(drv1)をアップサンプリング部409へ第1の時間周期T1毎に出力する。具体的には、位相補償演算部408は、レンズ駆動部302を目標位置に追従制御するため、第1の時間周期(T1)毎に、フォーカスレンズ目標値設定部406から入力される目標位置信号(T_Pos)と、減算器407の出力信号(dev)とに基づいて、レンズ駆動部302によるフォーカスレンズ301bの駆動量(drv1)を演算し、この演算を行った信号をアップサンプリング部409へ出力する。位相補償演算部408は、FB(Feedback)演算部408aと、FF(Feedforward)演算部408bと、加算器408cとによって構成される。
 FB演算部408aは、減算器407の出力信号(dev)に基づいて、レンズ駆動部302によるフォーカスレンズ301bの駆動量となるフィードバック制御による追従制御量を演算し、この演算によって得られる信号(FB_out)を加算器408cへ出力する。具体的には、FB演算部408aは、減算器407から出力される信号(dev)に対し、位相進み補償フィルタ演算および位相遅れ補償フィルタ演算をそれぞれ行い、位相進み補償フィルタ演算によりレンズ位置フィードバック制御での制御安定(位相余裕)の確保と、位相遅れ補償によりWob駆動時の駆動周波数の追従性能を得るために、Wob駆動時の駆動周波数でのフィードバック制御系の閉ループゲイン増加を行う。
 FF演算部408bは、フォーカスレンズ301bが移動しているとき、フォーカスレンズ目標値設定部406から入力される目標位置信号(T_pos)に基づいて、レンズ駆動部302によるフォーカスレンズ301bの駆動量を演算し、この演算によって得られる信号(FF_out)を加算器408cへ出力する。具体的には、FF演算部408bは、第1の時間周期(T1)毎に、フォーカスレンズ目標値設定部406から入力される目標位置信号(FF_out)に基づき、フォーカスレンズ駆動部の伝達特性の逆特性となる演算後、レンズ駆動部302によるフォーカスレンズ301bの駆動量を演算し、この演算によって得られる信号(FF_out)を加算器408cへ出力する。さらに、FF演算部408bは、フォーカスレンズ301bが光軸O上で保持動作しているとき、フォーカスレンズ目標値設定部406から入力される目標位置信号に対する演算を停止する。
 加算器408cは、FB演算部408aの出力信号(FB_out)と、FF演算部408bの出力信号(FF_out)とを加算し、その加算結果(drv1)をアップサンプリング部409へ出力する。
 アップサンプリング部409は、位相補償演算部408から入力される信号(drv1)に対して、第1の時間周期(T1)の1/2である第2の時間周期(T2)でアップサンプリングを行って共振抑圧演算部410への入力信号とする。換言すると、アップサンプリング部409は、位相補償演算部408から入力される信号に対してサンプリング周波数の2倍のサンプリング周波数でサンプリング処理を実行して共振抑圧演算部410へ出力する。
 共振抑圧演算部410は、ローパスフィルタ形式となるデジタルフィルタ演算によって構成される。共振抑圧演算部410は、アップサンプリング部409がアップサンプリングした信号に対して、交換レンズ装置3固有の共振周波数帯域の高次共振周波数成分を抑圧する演算を行って、PWM変調部411へ出力する。具体的には、共振抑圧演算部410は、アップサンプリング部409から入力される信号に対して、所定の周波数以下の周波数帯域を遮断するローパスフィルタ演算処理を施してPWM変調部411へ出力する。ここで、所定の周波数以下の周波数帯域とは、信号に含まれる高次共振周波数帯域の可聴周波数域である。また、共振抑圧演算部410は、高次共振周波数を遮断する遮断周波数(fc)が第2の時間周期(T2)の逆数であるサンプリング周波数の2分の1(f/2=1/2T2)以下である低域通過特性を有するデジタルフィルタ演算処理を行う。
 図4は、共振抑圧演算部410のデジタルフィルタ演算の構成を示すブロック図である。図4に示すように、共振抑圧演算部410は、位相補償演算部408の演算出力信号(drv1)での、第2の時間周期T2であるアップサンプリングした最新の信号(X(N))と、1サンプリング前の信号(X(N-1))と、共振抑圧演算部410で1サンプリング前の演算結果Y(N-1)とをそれぞれ、所定の係数A、A1およびB1で重み付け(積算)したものを加算して、演算出力Y(N)を得る3項の積和演算構成による一次のIIR(Infinite Impulse Response)フィルタによって構成される。共振抑圧演算部410は、乗算器410aと、入力遅延部410bと、乗算器410cと、加算器410dと、加算器410e、出力遅延部410fと、乗算器410gと、によって構成される。
 乗算器410aは、アップサンプリング部409からの入力信号X(N)を所定倍(A0倍)して出力する。入力遅延部410bは、アップサンプリング部409からの入力信号X(N)の出力タイミングを1サンプリング周期分前の入力データを出力する。乗算器410cは、入力遅延部410bの出力信号X(N-1)を所定倍(A1倍)して出力する。加算器410dは、乗算器410cの出力信号と乗算器410gの出力信号との和を計算して出力する。加算器410eは、乗算器410aの出力信号と加算器410dの出力信号との和を計算して出力する。出力遅延部410fは、加算器410gの出力信号Y(N)の1サンプリング前の値Y(N-1)を出力する。加算器410gは、出力遅延部410fの出力信号Y(N-1)を所定倍(B1倍)して出力する。
 アップサンプリング部409からの入力信号をX(N)とすると、乗算器410aの出力信号はA0X(N)、入力遅延部410bの出力信号はX(N-1)、乗算器410cの出力信号はA1X(N-1)で与えられる。また、加算器410eの出力信号をY(N)とすると、出力遅延部410fの出力信号はY(N-1)、乗算器410gの出力信号はB1Y(N-1)で与えられる。したがって、共振抑圧演算部410の出力信号Y(N)は、以下の漸化式(1)で表される。
 Y(N)=A0・X(N)+A1・X(N―1)+B1・Y(N―1)                              ・・・(1)
 式(1)の係数A0、A1およびB1は、たとえば以下の式(2)および(3)で定義される。
 A0=A1=1/(1+fs2/fc)/π   ・・・・(2)
 B1=(fs2-π・fc)/(fs2+π・fc)   ・・・(3)
 ここで、fcは、共振抑圧演算部410の遮断周波数であり、fs2は、アップサンプリング部409のアップサンプリング周波数である。なお、N=0のとき、Y(0)=X(0)=0となる。
 なお、1次ローパスフィルタとしての共振抑圧演算部410の伝達特性としての連続時間系でのラプラス変換による伝達関数をG2(s)とおくと、以下の式(4)が成り立つ。
 G2(s)=2πfc/(s+2πfc)   ・・・(4)
ここで、πは円周率である。
 したがって、(4)式での伝達関数から、サンプリング周波数fs2でのデジタルフィルタ特性は、双一次変換(5)式によって、離散化したラプラス変換の伝達関数(z関数)として表される。
 S=2・fs2・(1-z-1)/(1+ z-1)   ・・・(5)
 式(5)のz-1の1サンプリング遅延の伝達特性は、以下の式(6)で定義される。
 z-1=exp(-s/fs2)   ・・・(6)
 PWM変調部411は、共振抑圧演算部410から入力される信号に応じて、レンズ駆動ドライバ302aに対して、PWM変調によってスイッチングパルス時間幅に変換したパルス信号を出力する。
 パラメータ変更部412は、レンズ通信部311および送受信部405を介してBCPU220から送信される指示信号に基づいて、レンズEEPROM309が記憶する各種パラメータを参照して、アップサンプリング部409が行う第2の時間周期と、交換レンズ装置3の共振周波数帯域を遮断する遮断周波数帯域の設定値を変更する。
 移動完了判定部413は、フォーカスレンズ301bの移動が完了したことを示す信号を、送受信部405へ出力する。この信号は、レンズ通信部311を介してBCPU220へ出力される。
 つぎに、本実施の形態1にかかるカメラシステム1が行う動作について説明する。図5は、本実施の形態1にかかるカメラシステム1が行う処理の概要を示すフローチャートである。
 図5に示すように、BCPU220は、本体通信部219を介して交換レンズ装置3からレンズデータを取得する(ステップS101)。具体的には、BCPU220は、LCPU312にレンズデータ要求信号を送信し、LCPU312から送信されたレンズデータを取得する。レンズデータは、フォーカスレンズ301bの動作パラメータと光学データとを含む。動作パラメータは、フォーカスレンズ301bの最高動作速度情報およびWob駆動情報等である。光学データは、分光透過率情報、歪補正情報および色収差情報等である。
 続いて、BCPU220は、LCPU312とレンズ情報を確認する同期通信を開始する(ステップS102)。具体的には、BCPU220は、LCPU312に同期周期毎にフォーカスレンズ301bのレンズ位置を含むレンズ状態データを要求するレンズ状態データ要求信号を送信し、LCPU312から送信されたレンズ状態データを取得する。
 その後、BCPU220は、撮像素子駆動部204を駆動することにより、撮像素子203を同期周期毎に動作させて画像データを取得し、取得した画像データに対して画像処理部211でライブビュー画像表示用の画像処理を施して表示部213にライブビュー画像を表示させる(ステップS103)。
 続いて、BCPU220は、動画スイッチ212bが操作されることにより、動画スイッチ212bがオン状態である場合(ステップS104:Yes)、BCPU220は、動画撮影を開始する(ステップS105)。具体的には、BCPU220は、撮像素子駆動部204を駆動することにより、撮像素子203を同期周期毎に動作させて、撮像素子203から連続的に出力される画像データに対し、画像処理部211で画像処理を順次施してSDRAM216または記録媒体217への記憶を開始する。
 その後、BCPU220は、動画撮影中にピントを自動的に合わせる動画AF処理を実行する(ステップS106)。なお、動画AF処理の詳細については後述する。また、BCPU220は、動画AF処理と並行して測光および露出値の算出処理等の撮影に必要な他の動作も実行する。
 続いて、BCPU220は、撮像素子駆動部204により撮像素子203の動作を停止させて動画撮影を終了し(ステップS107)、ステップS103へ戻る。
 ステップS104において、動画スイッチ212bがオン状態でなく(ステップS104:No)、レリーズスイッチ212aがオン状態である場合(ステップS108:Yes)、BCPU220は、撮像素子203から出力される画像データに対し、画像処理部211で画像処理を施して記録媒体217へ記録する静止画撮影処理を実行する(ステップS109)。その後、BCPU220は、ステップS103へ戻る。
 ステップS108において、レリーズスイッチ212aがオン状態でなく(ステップS108:No)、カメラシステム1の電源がオフ状態である場合(ステップS110:Yes)、カメラシステム1は、本処理を終了する。一方、カメラシステム1の電源がオフ状態でない場合(ステップS110:No)、カメラシステム1は、ステップS103へ戻る。
 つぎに、図5のステップS106の動画AF処理について説明する。図6は、動画AF処理の概要を示すフローチャートである。
 図6に示すように、BCPU220は、フォーカスレンズ301bのレンズ位置の初期化を行う(ステップS201)。具体的には、BCPU220は、フォーカスレンズ301bを初期位置に駆動させるレンズ駆動信号をLCPU312に送信する。ここで、初期位置とは、フォーカスレンズ301bの可動範囲における中央の位置である。
 続いて、BCPU220は、フォーカスレンズ301bを駆動して合焦させる合焦位置への移動方向を判断する(ステップS202)。具体的には、BCPU220は、フォーカスレンズ301bを現在の位置から所定方向、たとえば至近方向に駆動させる駆動信号をLCPU312に送信するとともに、同期周期毎に算出したAF評価値とLCPU312から送信されたフォーカスレンズ301bのレンズ位置とに基づいて合焦位置への移動方向を判断する。
 図7は、カメラシステム1が行う動画AF動作の一例を説明するための模式図である。なお、図7においては、縦軸がAF評価値を示し、横軸がフォーカスレンズ301bのレンズ位置を示す。また、図7においては、左側が無限方向を示し、右側が至近方向を示す。また、CD1~CD14は、フォーカスレンズ301bの位置に応じて順次取得されるAF評価値を示す。また、LP1~LP14は、BCPU220が撮像素子203での撮像動作実行毎にLCPU312から取得するフォーカスレンズ301bのレンズ位置を示す。
 図7に示すように、BCPU220は、フォーカスレンズ301bの至近方向への駆動開始から同期周期4周期分(LD1)の方向判断用のレンズ駆動LD1の範囲でAF評価値CD1~CD4とフォーカスレンズ301bのレンズ位置LP1~LP4とを取得し、最小二乗法等でAF評価値が増加傾向であるか否かを判断する。BCPU220は、AF評価値が増加傾向であれば至近方向を合焦する移動方向であると判断する一方、AF評価値が減少傾向であれば無限方向を合焦する移動方向であると判断する。なお、図7では、至近方向に合焦位置があるものとして考える。
 ステップS202の後、BCPU220は、フォーカスレンズ301bを合焦させる合焦位置への移動方向と判断した方向へ向け合焦位置のスキャン駆動を開始させる(ステップS203)。具体的には、BCPU220は、合焦位置へフォーカスレンズ301bを駆動させる駆動信号をLCPU312へ送信するとともに、AF評価値を算出してAF評価値のピークを検出する。
 続いて、BCPU220は、撮像素子駆動部204を駆動することにより、撮像素子203に撮像動作を同期周期毎に実行させ、画像処理部211によりAF評価値を算出させて時系列的にSDRAM216に記憶する(ステップS204)。
 その後、BCPU220は、撮像素子203の撮像動作毎にフォーカスレンズ301bのレンズ位置を取得し、画像処理部211に算出させたAF評価値に対応付けてSDRAM216に記憶する(ステップS205)。
 続いて、BCPU220は、SDRAM216に記憶されたAF評価値に基づいて、AF評価値のピーク越え判断を行う(ステップS206)。具体的には、図7に示すように、BCPU220は、ステップS202の方向判断後のレンズ位置LP4を基準に、フォーカスレンズ301bの至近方向へ向けてAF評価値のピークを検出するレンズ駆動LD2の駆動開始から同期周期毎に取得したAF評価値が増加から減少に転じるAF評価値CD14が検出された時点をAF評価値のピーク越えと判断する。この際、BCPU220は、AF評価値のピーク越えを判断した時点でAF評価値の最大(極大)値(CD13)、およびその前後の時点における値(CD12,CD14)と、これらのAF評価値それぞれを取得した時点でのレンズ位置(LP13、LP12およびLP14)とを対応付けて合焦位置算出用のデータとしてSDRAM216に記憶する。
 その後、ステップS206のAF評価値のピーク越え判定でAF評価値のピーク越えがあるとBCPU220が判断した場合(ステップS207:Yes)、カメラシステム1は、後述するステップS208へ移行する。一方、ステップS206のAF評価値のピーク越え判定でAF評価値のピーク越えがないとBCPU220が判定した場合(ステップS207:No)、カメラシステム1は、ステップS204へ戻る。
 ステップS208において、BCPU220は、AF評価値のピークを検出するフォーカスレンズ301bのスキャン駆動を停止する(ステップS208)。具体的には、BCPU220は、AF評価値のピークを検出した時点で、フォーカスレンズ301bの駆動停止信号をLCPU312に送信する。
 続いて、BCPU220は、SDRAM216に記録された合焦位置算出用のデータに基づいて、カメラシステム1の合焦位置を算出する(ステップS209)。具体的には、BCPU220は、3点間補償演算でカメラシステム1の合焦位置(図7のLPmaxを参照)を算出する。さらに、BCPU220は、フォーカスレンズ301bをWob駆動する際の振動中心を合焦位置(図7のLPmax)に設定し、この設定した合焦位置の前後(CD12~CD14)をWob駆動による駆動範囲(図7のE1)として設定する。なお、合焦位置の算出方法は、上述した3点間補償演算に限定されるものでなく、たとえば2次関数近似演算等の他の方法で算出してもよい。
 その後、BCPU220は、フォーカスレンズ301bにWob駆動を開始させる(ステップS210)。具体的には、BCPU220は、LCPU312に駆動信号を送信する。
 続いて、BCPU220は、動画スイッチ212bがオフ状態であるか否かを判断する(ステップS211)。動画スイッチ212bがオフ状態でないとBCPU220が判断した場合(ステップS211:No)、BCPU220は、フォーカスレンズ301bにWob駆動を指示する(ステップS212)。具体的には、BCPU220は、駆動信号を送信するとともに、Wob駆動を行うためのWobパラメータをLCPU312に送信する。ここで、Wobパラメータとは、Wob駆動の振幅(図7のE1)および振動中心図7のLPmax)から目標値までの移動量等を含むパラメータである。
 ステップS213~ステップS216は、上述したステップS204~ステップS207それぞれに対応する。
 ここで、ステップS213~ステップS216のBCPU220の動画AF処理時における各部の処理のタイミングについて説明する。図8は、BCPU220の動画AF処理時における各部の処理のタイミングを示すタイミングチャートである。
 図8(b)に示すように、BCPU220は、フレーム周期信号(垂直同期信号VD)を周期的に生成する(たとえばタイミングt1)。
 また、図8(a)に示すように、BCPU220は、フレーム周期信号に同期させて撮像素子駆動部204の駆動および撮像素子203の露光を制御することにより、撮像素子203に画像データを生成させる(たとえばタイミングt2)。
 続いて、図8(c)に示すように、BCPU220は、フレーム周期信号に基づいて、本体-レンズ同期通信を行い、駆動信号をレンズ装置3に送信する(たとえばタイミングt3)。この際、BCPU220は、交換レンズ装置3からフォーカスレンズ301bのレンズ位置情報を取得する。
 その後、図8(d)に示すように、LCPU312は、駆動信号に基づいて、フォーカスレンズ301bのWob駆動、たとえば無限側に向けてフォーカスレンズ301bを移動(たとえばタイミングt4)または至近側に向けてフォーカスレンズ301bを移動(タイミングt5)させる。なお、LCPU312の詳細な動作について後述する。
 続いて、図8(e)に示すように、BCPU220は、取得した画像データに基づいて、AF評価値(AF1)を算出してSDRAM216に記憶する(たとえばタイミングt4)。
 このように、カメラシステム1は、BCPU220が生成するフレーム周期信号に基づいて、各部が駆動することにより、動画AF処理時のWob駆動が行われる。これにより、被写体を常にピントを合わせながら動画撮影を行うことができる。
 図6に戻り、ステップS217以降の説明を続ける。ステップS217においてBCPU220は、SDRAM216に記憶された合焦位置算出用のデータに基づいて、カメラシステム1の合焦位置を算出する。その後、カメラシステム1は、ステップS211へ戻る。
 ステップS211において、動画スイッチ212bがオフ状態であるとBCPU220が判断した場合(ステップS211:Yes)について説明する。この場合、BCPU220は、フォーカスレンズ301bのWob駆動を停止させる(ステップS218)。具体的には、BCPU220は、フォーカスレンズ301bのWob駆動を停止させる駆動停止信号をLCPU312へ送信する。ステップS218の後、カメラシステム1は、図5に示したメインルーチンへ戻る。
 つぎに、交換レンズ装置3のLCPU312が行う動作について説明する。図9は、交換レンズ装置3のLCPU312が行う処理の概要を示すフローチャートである。図10は、LCPU312の動画AF処理時における各部の処理のタイミングを示すタイミングチャートである。
 図9に示すように、LCPU312は、BCPU220から入力される駆動信号に基づいて、レンズ駆動部302を駆動することにより、フォーカスレンズ301bのレンズ位置を初期位置に移動させる(ステップS301)。
 続いて、LCPU312は、BCPU220からフォーカスレンズ301bのレンズ状態を要求するレンズ状態要求信号を受信した場合(ステップS302:Yes)、フォーカスレンズ301bのレンズ位置をBCPU220に送信する(ステップS303)。具体的には、LCPU312のレンズ位置演算部404は、A/D変換部402およびサンプルホールド部403を介してレンズ位置検出部307から入力されるレンズ位置信号に基づいて、フォーカスレンズ301bのレンズ位置を演算し、この演算結果を示すレンズ位置信号をBCPU220へ送信する。その後、LCPU312は、ステップS302へ戻る。
 ステップS302において、LCPU312は、BCPU220からフォーカスレンズ301bのレンズ状態を要求するレンズ状態要求信号を受信せず(ステップS302:No)、フォーカスレンズ301bをWob駆動するWob駆動信号を受信した場合(ステップS304:Yes)、フォーカスレンズ目標値設定部406は、レンズ通信部311および送受信部405を介して受信したWob駆動信号に基づいて、フォーカスレンズ301bの目標位置を示す目標位置信号を設定し、設定した目標位置信号を減算器407へ出力する(ステップS305)。
 続いて、レンズ位置演算部404は、サンプリング開始クロックに従って、フォーカスレンズ301bのレンズ位置を演算する(ステップS306)。具体的には、図3に示すように、レンズ位置演算部404は、第1の周期(T1)に従って、A/D変換部402およびサンプルホールド部403を介してレンズ位置検出部307から出力されるレンズ位置信号に基づいて、フォーカスレンズ301bのレンズ位置を演算し(以下、「ADC処理」という)、演算結果として得られるフォーカスレンズ位置を示すレンズ位置信号を減算器407へ出力する。
 その後、減算器407は、フォーカスレンズ目標値設定部406から入力される目標値と、レンズ位置演算部404から入力されるレンズ位置信号との差分を演算し、この演算によって得られる信号を位相補償演算部408へ出力する(ステップS307)。
 続いて、位相補償演算部408は、減算器407から入力される信号に基づいて、フォーカスレンズ301bを目標位置に追従制御する際にレンズ駆動部302によるフォーカスレンズ301bの駆動量を演算する(ステップS308)。具体的には、位相補償演算部408のFB演算部408aは、減算器407から入力される差分に基づいて、レンズ駆動部302によるフォーカスレンズ301bの駆動量を調整する制御量を演算し、この演算によって得られる信号を加算器408cへ出力する。位相補償演算部408のFF演算部408bは、フォーカスレンズ目標値設定部406から入力される目標値信号に基づいて、レンズ駆動部302によるフォーカスレンズ301bの駆動量を演算し、演算によって得られる信号を加算器408cへ出力する。加算器408cは、FB演算部408aから入力される信号と、FF演算部408bから入力される信号との和を計算してアップサンプリング部409へ出力する。
 ここで、位相補償演算部408の伝達特性について説明する。入力信号の周波数をf(Hz)とした場合において、サンプリング周波数をfs=1/T1(Hz)とし、位相補償演算部408の周波数の伝達特性をG(f)とすると、サンプリング定理により、入力周波数成分に対する操作量(駆動量)は、f<fs/2(ナイキスト周波数)の周波数帯域でしか正しく演算出力できない。
 これに対し、入力信号の周波数がfs/2<f<fsであるとき、以下の式(7)が成り立つ。
 G(f)=G(fs/2-(f-(fs/2))   ・・・(7)
この式(7)は、入力信号の周波数の伝達特性が、ナイキスト周波数を対称軸として、周波数の伝達特性がナイキスト周波数以下で折り返す特性(以下、「エリアジング特性」という)を有していることを示している。
 また、入力信号の周波数がfs<f<1.5fsである場合、以下の式(8)が成り立つ。
 G(f)=G(f-fs)   ・・・(8)
この式(8)は、入力信号の周波数の伝達特性が、サンプリング周波数だけシフトした周波数の伝達特性と等しくなることを示している。
 図11は、位相補償演算部408の処理結果の伝達特性を示すボード線図である。具体的には、図11(a)がゲインの周波数特性を示すボード線図であり、図11(b)が位相の周波数特性を示すボード線図である。なお図11においては、サンプリング周波数(fs)を12kHzとして考える。
 図11に示すように、位相補償演算部408の伝達特性は、f<fs/2の周波数帯域で追従させる周波数帯域のゲインを増加させるため、100Hz以下を位相遅れ補償特性でゲインを増加させる。さらに、位相補償演算部408の伝達特性は、開ループ特性のゲイン交差周波数(速応性)を200Hz~300Hz付近とし、このゲイン交差周波数の制御安定性(位相余裕)を確保するため、位相進み補償によって進相演算を行う。しかしながら、レンズ駆動部302の高次共振周波数が、fs/2よりも高周波領域に存在する場合、位相補償演算部408は、エリアジング特性により、位相補償演算部408のFB演算部408aで制御できない周波数領域に対して、フォーカスレンズ操作量を出力する伝達のゲインが折り返して大きくして出力する。このため、LCPU312は、式(5)に示すエリアジング特性による伝達ゲイン増加を相殺するため、後述する第2の演算処理(ステップS309~ステップS310)を行う。
 図9に戻り、ステップS309以降の説明を続ける。ステップS309において、アップサンプリング部409は、位相補償演算部408から入力される信号に対して、位相補償演算部408が行う周期T1の整数倍となるアップサンプリングクロック(T2=1/2fs)毎に従って(図10を参照)、アップサンプリング処理(以下「UpSamp」という)を行い、この結果を共振抑圧演算部410へ出力する。
 続いて、共振抑圧演算部410は、アップサンプリング部409から入力される信号に対して、高次共振周波数成分を抑圧する演算処理を行い、演算結果をPWM変調部411へ出力する(ステップS310)。具体的には、共振抑圧演算部410は、ローパスフィルタ処理(以下、「LPF処理」という)を行うことによって、信号に含まれる高次共振周波数付近の出力を抑圧する。
 ローパスフィルタ特性の伝達特性は、アップサンプリング周波数fs2(Hz)のナイキスト周波数であるfs2/2(Hz)でゲインが折り返すエリアジング特性を有する。このため、第2の演算処理による出力抑圧周波数範囲は、fc(Hz)~fc+(fs2/2)(Hz)となる。すなわち、本実施の形態1では、アップサンプリング部409のアップサンプリング周波数fs2と、遮断周波数fcとを設定することにより、第2の演算結果による出力抑圧周波数範囲を設定することができる。さらに、第2の演算処理は、レンズ位置演算部404、フォーカスレンズ目標値設定部406および位相補償演算部408を含む演算結果(以下、「第1の演算処理」という)が更新された場合、更新された第1の演算処理結果に基づいて第2の演算処理を行うことにより、レンズ駆動部302を駆動する操作量を演算する一方、第1の演算処理結果が更新されていない場合、前回参照した第1の演算処理結果に基づいて、第2の演算処理を行うことにより、レンズ駆動部302を駆動する操作量を演算する。
 図12は、第2の演算結果の伝達特性を示すボード線図である。図13は、第1の演算処理に対して、第2の演算処理を行った結果の伝達特性を示すボード線図である。図14は、レンズ駆動部302の伝達特性を示すボード線図である。図12(a)において、曲線L11がIIRフィルタ演算のゲイン特性を示し、曲線L12が入力周波数のゲイン特性を示し、図12(b)において、曲線L21がIIRフィルタ演算の位相特性を示し、曲線L22が入力周波数の位相特性を示す。また、図13(a)において、曲線L31が第2の演算処理のゲイン特性を示し、曲線L32が第1の演算結果のゲイン特性を示し、図13(b)において、曲線L41が第2の演算処理の位相特性を示し、曲線L42が第1の演算結果の位相特性を示す。また、図14(a)において、曲線L51がレンズ駆動部302のイメージゲインを示し、曲線L52がレンズ駆動部302のゲインを示し、図14(b)において、曲線L61がレンズ駆動部302のイメージ位相を示し、曲線L62がレンズ駆動部302の位相を示す。また、図12および図13においては、アップサンプリング周波数を24kHzとして考える。
 図12~図14に示すように、第1の演算処理の演算結果(図11を参照)に、第2の演算処理(図12を参照)の演算結果を加算することにより、レンズ駆動部302によるフォーカスレンズ301bを駆動させる駆動量信号に含まれる3kHz~20kHzの周波数帯域の出力成分を抑圧することができる。このように、レンズ駆動部302の高次共振周波数帯域が、可聴周波数域(図14を参照)に存在している場合であっても、共振周波数による振動や騒音を励起しにくく抑圧することができる。
 図9に戻り、ステップS311以降の説明を続ける。ステップS311において、PWM変調部411は、共振抑圧演算部410から入力される信号に対してPWM変調したパルス信号をレンズ駆動ドライバ302aへ出力してVCM302bを駆動する。
 続いて、移動完了判定部413は、送受信部405およびレンズ通信部311を介してフォーカスレンズ301bの移動が完了したことを示す信号をBCPU220へ出力する(ステップS312)。
 その後、LCPU312は、電源がオフ状態である場合(ステップS313:Yes)、LCPU312は、本処理を終了する。一方、LCPU312は、電源がオフ状態でない場合(ステップS313:No)、LCPU312は、ステップS302へ戻る。
 ステップS304において、LCPU312が、BCPU220からフォーカスレンズ301bのレンズ位置を要求するレンズ状態データ要求信号を受信せず(ステップS302:No)、フォーカスレンズ301bをWob駆動するWob駆動信号を受信していない(ステップS304:No)場合について説明する。この場合、LCPU312は、ステップS313へ移行する。
 以上説明した本発明の実施の形態1によれば、位相補償演算部408が、第1の周期毎に、フォーカスレンズ目標値設定部406から入力される目標位置信号と、レンズ位置演算部404から入力される位置信号とをサンプリングし、サンプリングした目標位置信号および位置信号とに基づいてレンズ駆動部302によるフォーカスレンズ301bの駆動量を示す駆動量信号を演算し、アップサンプリング部409が第1の時間周期の整数分の1である第2の時間周期でアップサンプリングを行い、共振抑圧演算部410がアップサンプリング部409によってアップサンプリングされた駆動量信号に対して、交換レンズ装置3固有の共振周波数の高次共振周波数成分を抑圧する演算を行う。この結果、動画撮影時における高速フレームレートでのAF動作によって生じる騒音の低減を行うことができる。
 さらに、本発明の実施の形態1によれば、パラメータ変更部412がBCPU220の指示信号に基づいて、アップサンプリング部409が行う第2の時間周期および共振抑圧演算部410の遮断周波数を変更する。この結果、高次共振周波数が交換レンズ装置3固有の高次共振周波数特性の固体変動や温度変動に応じて、適宜変更することができ、異なる高次共振周波数成分を抑圧することができる。
(実施の形態2)
 つぎに、本発明の実施の形態2について説明する。本発明の実施の形態2にかかるカメラシステムは、上述した共振抑圧演算部の構成が上述したカメラシステムと異なる。このため、以下においては、上述した実施の形態1と異なる構成を説明後、本発明の実施の形態2にかかるカメラシステムの効果について説明する。なお、図面の記載において、同一の部分には同一の符号を付している。
 図15は、共振抑圧演算部500の構成を示すブロック図である。図15に示すように、共振抑圧演算部500は、位相補償演算部408が演算した前回の信号と最新の信号とを平均するFIR(Finite Impulse Response)フィルタによって構成される。共振抑圧演算部500は、乗算器500aと、遅延素子500bと、乗算器500cと、加算器500dとによって構成される。
 乗算器500aは、アップサンプリング部409からの入力信号X(N)を所定倍(A0倍)して出力する。遅延素子500bは、アップサンプリング部409からの入力信号の出力タイミングを1サンプリング周期前の値X(N-1)を出力する。乗算器500cは、遅延素子500bの出力信号を所定倍(A1倍)して出力する。加算器500dは、乗算器500aの出力信号と乗算器500cの出力信号との和を計算して出力する。
 アップサンプリング部409からの入力信号をX(N)、加算器500dの出力信号をY(N)とすると、乗算器500aの出力信号はA0X(N)、遅延素子500bの出力信号はX(N-1)、乗算器500cの出力信号はA1X(N-1)で与えられる。したがって、共振抑圧演算部500の出力信号Y(N)は、以下の漸化式(9)で表される。
 Y(N)=A0・X(N)+A1・X(N―1)   ・・・(9)
 式(9)の係数A0およびA1は、1サンプリング前入力と現在の入力の加算平均演算では、以下の式(10)で定義される。
 A0=A1=0.5   ・・・(10)
 図16は、本実施の形態2にかかる第2の演算処理の演算結果を加算した伝達特性を示すボード線図である。図17は、第1の演算処理の演算結果に対して、第2の演算処理が演算した演算結果の伝達特性を示すボード線図である。図16(a)において、曲線L71がFIRフィルタ演算のゲイン特性を示し、曲線L72が入力周波数のゲイン特性を示し、図16(b)において、曲線L81がFIRフィルタ演算の位相特性を示し、曲線L82が入力周波数の位相特性を示す。また、図17(a)において、曲線L91が第2の演算処理のゲイン特性を示し、曲線L92が第1の演算処理のゲイン特性を示し、図17(b)において、曲線L101が第2の演算処理の位相特性を示し、曲線L102が第1の演算処理の位相特性を示す。
 図16および図17に示すように、FIRフィルタの伝達特性は、アップサンプリング周波数をfs2(Hz)とした場合、アップサンプリング周波数fs2のナイキスト周波数fs2/2で伝達ゲインを最大に抑圧し、エリアジング特性により、アップサンプリング周波数fs2のナイキスト周波数付近に対して抑圧帯域を持つ特性を有する。これにより、第1の演算処理の演算結果(図11を参照)に、第2の演算処理の演算結果を加算することにより、レンズ駆動部302によるフォーカスレンズの駆動量に含まれる3kHz~20kHz周波数帯域の出力成分を抑圧することができる。このように、レンズ駆動部302の高次共振周波数帯域が、可聴周波数域(図14を参照)に存在している場合であっても、共振周波数による振動や騒音を励起しにくく抑圧することができる。
 以上説明した本発明の実施の形態2によれば、共振抑圧演算部500をFIRフィルタによって構成しているので、駆動量信号に対して行う演算処理の処理時間をIIRフィルタに比して短縮することができるとともに、動画撮影時における高速フレームレートでのAF動作によって生じる騒音の低減を行うことができる。
 さらに、本発明の実施の形態2によれば、共振抑圧演算部500が1周期前にサンプリングした駆動量信号と最新の駆動量信号とを平均化することにより、積和演算ステップの数を削減することができる。この結果、LCPU312は、演算処理時間を短縮することができる。
(その他の実施の形態)
 また、上述した実施の形態では、共振抑圧演算部が高次共振周波数を遮断する遮断周波数(fc)を3kHzとしていたが、交換レンズ装置の構成に応じて適宜変更することができる。具体的には、遮断周波数fcをアップサンプリング周波数の2分の1周波数(ナイキスト周波数)以内の周波数を遮断周波数とすることにより、第1の演算処理の演算結果で実施するサンプリング周波数fsの2分の1周波数(ナイキスト周波数)よりも高周波帯域の駆動量信号成分を抑圧することができる。
 また、上述した実施の形態では、位相補償演算部のサンプリング周波数の2倍のアップサンプリング周波数で行っていたが、たとえば位相補償演算部のサンプリング周波数の整数倍、具体的には3倍、4倍および5倍等であってもよい。
 また、上述した実施の形態では、位相補償演算部は、位相進み、および遅れ補償による演算を行っていたが、たとえば差分に対する比例演算、時間変化(微分演算)および積算(積分演算)それぞれを行って加算するPID演算であってもよい。
 また、本発明の実施の形態では、共振抑圧演算部をバンドパスフィルタとし、遮断周波数およびサンプリング周波数等に関する各種のパラメータをパラメータ変更部によって変更するようにしてもよい。
 また、本発明の実施の形態では、共振抑圧演算部に複数種類のフィルタを内蔵させ、パラメータ変更部によってフィルタの種別を変更させるようにしてもよい。たとえば、パラメータ変更部は、動画のフレームレートに基づいて、IIRフィルタとFIRフィルタとを適宜変更するようにしてもよい。
 また、上述した実施の形態では、カメラシステムとしてデジタル一眼レフカメラを説明したが、たとえばレンズと本体部が一体に形成されたコンパクトデジタルカメラやデジタルビデオカメラ、および動画機能を有する携帯電話やタブレット型携帯機器等の電子機器にも適用することができる。
 1        カメラシステム
 2        本体部
 3        交換レンズ装置
 201      シャッタ
 202      シャッタ駆動部
 203      撮像素子
 204      撮像素子駆動部
 205      信号処理部
 206,402  A/D変換部
 209      音声入出力部
 210      音声信号処理部
 211      画像処理部
 212      入力部
 212a     レリーズスイッチ
 212b     動画スイッチ
 213      表示部
 214      表示駆動部
 219      本体通信部
 220      制御部
 301      光学系
 301b     フォーカスレンズ
 302      レンズ駆動部
 307      レンズ位置検出部
 311      レンズ通信部
 312      レンズ制御部
 400      動作クロック生成部
 401      サンプリング同期生成部
 403      サンプルホールド部
 404      レンズ位置演算部
 405      送受信部
 406      フォーカスレンズ目標値設定部
 407      減算器
 408      位相補償演算部
 408a     FB演算部
 408b     FF演算部
 408c     加算器
 409      アップサンプリング部
 410,500  共振抑圧演算部
 411      PWM変調部

Claims (22)

  1.  光電変換を行うことによって画像データを生成する撮像素子を有するカメラ装置であって、
     前記撮像素子の撮像面に結像される被写体の焦点位置を調整するフォーカスレンズと、
     前記フォーカスレンズを当該カメラ装置の光軸方向に沿って進退可能に駆動するレンズ駆動部と、
     前記光軸上における前記フォーカスレンズのレンズ位置を検出するレンズ位置検出部と、
     前記レンズ駆動部を制御するレンズ制御部と、
     当該カメラ装置の撮影時における撮影動作を制御する制御部と、
     を備え、
     前記レンズ制御部は、
     前記レンズ位置検出部が検出した前記レンズ位置を示すレンズ位置信号と前記制御部から送信される前記フォーカスレンズの前記光軸上における目標位置信号とをそれぞれ第1の時間周期毎にサンプリングし、該サンプリングした前記レンズ位置信号と前記目標位置信号とに基づいて、前記フォーカスレンズの駆動量出力を演算する駆動量演算部と、
     前記駆動量演算部によって得られた前記駆動量出力に対して、前記第1の時間周期の整数分の1である第2の時間周期でアップサンプリングを行うアップサンプリング部と、
     前記駆動量出力を前記第2の時間周期でサンプリングした結果に対して、所定の共振周波数帯域における高次共振周波数成分を抑圧する演算を行う共振抑圧演算部と、
     を有することを特徴とするカメラ装置。
  2.  前記共振抑圧演算部は、前記第2の時間周期の逆数となるサンプリング周波数の2分の1以下に前記高次共振周波数成分を遮断する遮断周波数を設けており、かつ該遮断周波数より低周波域を通過させる特性を有するデジタルフィルタ演算処理を行うことを特徴とする請求項1に記載のカメラ装置。
  3.  前記共振抑圧演算部は、前記駆動量出力を、前記第2の時間周期でサンプリングした時点の演算値に対して1次ローパスフィルタ特性での1次のIIRフィルタ形成となるデジタルフィルタ演算処理を行うことによって得ることを特徴とする請求項2に記載のカメラ装置。
  4.  前記共振抑圧演算部は、FIRフィルタ形式のデジタルフィルタであり、
     前記フォーカスレンズの前記駆動量出力を、前記第2の時間周期でサンプリングした時点での演算値と1周期前にサンプリングした演算とを平均演算することによって得ることを特徴とする請求項2に記載のカメラ装置。
  5.  前記レンズ制御部は、
     前記制御部から送信される指示信号に基づいて、前記共振周波数帯域を遮断する遮断周波数帯域の設定値を変更するパラメータ変更部をさらに有することを特徴とする請求項2~4のいずれか一つに記載のカメラ装置。
  6.  前記駆動量演算部は、
     前記レンズ位置信号と前記目標位置信号との差分に基づいて、前記レンズ駆動部による前記駆動量出力を調整する制御量を演算するフィードバック演算部と、
     前記フォーカスレンズが移動しているとき、前記目標位置信号に基づいて前記レンズ駆動部による前記駆動量を演算するフィードフォワード演算部と、
     前記フィードバック演算部が演算した前記制御量と前記フィードフォワード演算部が演算した前記駆動量とを加算した前記駆動量出力を出力する加算器と、
     を有することを特徴とする請求項2~5のいずれか一つに記載のカメラ装置。
  7.  前記フィードフォワード演算部は、前記フォーカスレンズが一定位置で待機しているとき、前記目標位置信号に対する演算を停止することを特徴とする請求項6に記載のカメラ装置。
  8.  前記レンズ駆動部は、リニアモータを有することを特徴とする請求項1~7のいずれか一つに記載のカメラ装置。
  9.  前記レンズ駆動部に存在する共振周波数帯域は、可聴周波数域に存在することを特徴とする請求項8に記載のカメラ装置。
  10.  光電変換を行うことによって画像データを生成する撮像素子を有するレンズ交換式のカメラ本体部に着脱自在に装着される交換レンズ装置であって、
     前記撮像素子の撮像面に結像される被写体の焦点位置を調整するフォーカスレンズと、
     前記フォーカスレンズを当該交換レンズ装置の光軸に沿って進退可能に駆動するレンズ駆動部と、
     前記光軸上における前記フォーカスレンズのレンズ位置を検出する位置検出部と、
     前記レンズ駆動部を制御するレンズ制御部と、
     を備え、
     前記レンズ制御部は、
     前記位置検出部が検出した前記レンズ位置を示すレンズ位置信号と前記カメラ本体部から送信される前記フォーカスレンズの前記光軸上における目標位置信号とをそれぞれ第1の時間周期毎にサンプリングし、該サンプリングした前記レンズ位置信号と前記目標位置信号とに基づいて、前記レンズ駆動部による前記フォーカスレンズの駆動量出力を演算する駆動量演算部と、
     前記駆動量演算部によって得られた前記駆動量出力に対して、前記第1の時間周期の整数分の1である第2の時間周期でアップサンプリングを行うアップサンプリング部と、
     前記駆動量出力を前記第2の時間周期でサンプリングした結果に対して、所定の共振周波数帯域における高次共振周波数成分を抑圧する演算を行う共振抑圧演算部と、
     を有することを特徴とする交換レンズ装置。
  11.  前記共振抑圧演算部は、前記第2の時間周期の逆数となるサンプリング周波数の2分の1以下に前記高次共振周波数成分を遮断する遮断周波数を設けており、かつ該遮断周波数より低周波域を通過させる特性を有するデジタルフィルタ演算処理を行うことを特徴とする請求項10に記載の交換レンズ装置。
  12.  前記共振抑圧演算部は、前記駆動量出力を、前記第2の時間周期でサンプリングした時点の演算値に対して1次ローパスフィルタ特性での1次のIIRフィルタ形成となるデジタルフィルタ演算処理を行うことによって得ることを特徴とする請求項11に記載の交換レンズ装置。
  13.  前記共振抑圧演算部は、FIRフィルタ形式のデジタルフィルタであり、
     前記フォーカスレンズの前記駆動量出力を、前記第2の時間周期でサンプリングした時点での演算値と1周期前にサンプリングした演算とを平均演算することによって得ることを特徴とする請求項11に記載の交換レンズ装置。
  14.  前記レンズ制御部は、
     前記制御部から送信される指示信号に基づいて、前記共振周波数帯域を遮断する遮断周波数帯域の設定値を変更するパラメータ変更部をさらに有することを特徴とする請求項11~13のいずれか一つに記載の交換レンズ装置。
  15.  前記駆動量演算部は、
     前記レンズ位置信号と前記目標位置信号との差分に基づいて、前記レンズ駆動部による前記駆動量出力を調整する制御量を演算するフィードバック演算部と、
     前記フォーカスレンズが移動しているとき、前記目標位置信号に基づいて前記レンズ駆動部による前記駆動量を演算するフィードフォワード演算部と、
     前記フィードバック演算部が演算した前記制御量と前記フィードフォワード演算部が演算した前記駆動量とを加算した前記駆動量出力を出力する加算器と、
     を有することを特徴とする請求項10~14のいずれか一つに記載の交換レンズ装置。
  16.  前記フィードフォワード演算部は、前記フォーカスレンズが一定位置で待機しているとき、前記目標位置信号に対する演算を停止することを特徴とする請求項15に記載の交換レンズ装置。
  17.  前記レンズ駆動部は、リニアモータを有することを特徴とする請求項10~16のいずれか一つに記載の交換レンズ装置。
  18.  前記レンズ駆動部に存在する共振周波数帯域は、可聴周波数域に存在することを特徴とする請求項17に記載の交換レンズ装置。
  19.  光電変換を行うことによって画像データを生成する撮像素子の撮像面に結像される被写体の焦点位置を調整するフォーカスレンズを有する交換レンズ装置を着脱可能なカメラ本体部であって、
     前記撮像素子を駆動制御して画像信号を取得するとともに、前記交換レンズ装置への制御量を演算する制御部と、
     静止画撮影または動画撮影のどちらか一方を選択する撮影条件選択部と、
     前記制御部の演算結果に基づいて、前記制御部から出力された制御信号を前記交換レンズ装置に送信するとともに、前記交換レンズ装置から出力された制御信号を受信する本体通信部と、
     を備え、
     前記制御部は、
     前記交換レンズ内の前記フォーカスレンズを移動させる目標位置と、該目標位置を中心に往復移動させる往復移動量と、往復移動周期とを含む制御量を演算して前記本体通信部に出力するとともに、前記本体通信部を介して前記交換レンズ装置から現在の前記フォーカスレンズの光軸上におけるレンズ位置を示すレンズ位置情報を取得することを特徴とするカメラ本体部。
  20.  前記制御部は、
     当該カメラ本体部の動画撮影時において、前記撮像素子が生成する前記画像データのフレームレートに同期して、前記本体通信部を介して前記交換レンズ装置から前記レンズ位置情報を取得するとともに、前記制御量を演算して前記交換レンズ装置に出力することを特徴とする請求項19に記載のカメラ本体部。
  21.  前記制御部は、
     前記本体通信部を介して前記交換レンズ装置の共振周波数帯域を遮断する遮断周波数帯域の設定を変更するための制御信号を前記交換レンズ装置へ送信することを特徴とする請求項20に記載のカメラ本体部。
  22.  光電変換を行うことによって画像データを生成する撮像部を有するカメラ本体部と、前記カメラ本体部に着脱自在に装着可能であり、前記撮像素子の撮像面に結像される被写体の焦点位置を調整するフォーカスレンズおよび前記フォーカスレンズを光軸に沿って進退可能に移動させるレンズ駆動部を有する交換レンズ装置と、を備えたカメラシステムが実行するフォーカス制御方法であって、
     前記光軸上における前記フォーカスレンズのレンズ位置を検出する位置検出ステップと、
     前記位置検出ステップが検出した前記レンズ位置を示すレンズ位置信号と前記カメラ本体部から送信される前記フォーカスレンズの前記光軸上における目標位置信号とをそれぞれ第1の時間周期毎にサンプリングし、該サンプリングした前記レンズ位置信号と前記目標位置信号とに基づいて、前記レンズ駆動部による前記フォーカスレンズの駆動量を示す駆動量出力を演算する駆動量演算ステップと、
     前記駆動量演算ステップが演算した前記駆動量信号に対して、前記第1の時間周期の整数分の1である第2の時間周期でアップサンプリングを行うアップサンプリングステップと、
     前記アップサンプリングステップがアップサンプリングした前記駆動量出力に対して、所定の共振周波数帯域における高次共振周波数成分を抑圧する演算を行う共振抑圧演算ステップと、
     を含むことを特徴とするフォーカス制御方法。
PCT/JP2012/054988 2011-06-29 2012-02-28 カメラ装置、交換レンズ装置、カメラ本体部およびフォーカス制御方法 WO2013001853A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013522484A JP5393930B2 (ja) 2011-06-29 2012-02-28 カメラ装置、交換レンズ装置、カメラ本体部およびフォーカス制御方法
US14/129,861 US8953090B2 (en) 2011-06-29 2012-02-28 Camera device, interchangeable lens device, camera main body, and focus control method
EP12805257.8A EP2713206B1 (en) 2011-06-29 2012-02-28 Camera device, replacement lens device, camera main body, and focus control method
CN201280031704.4A CN103635856B (zh) 2011-06-29 2012-02-28 照相机装置、更换镜头装置、照相机主体部及对焦控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-144902 2011-06-29
JP2011144902 2011-06-29

Publications (1)

Publication Number Publication Date
WO2013001853A1 true WO2013001853A1 (ja) 2013-01-03

Family

ID=47423766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054988 WO2013001853A1 (ja) 2011-06-29 2012-02-28 カメラ装置、交換レンズ装置、カメラ本体部およびフォーカス制御方法

Country Status (5)

Country Link
US (1) US8953090B2 (ja)
EP (1) EP2713206B1 (ja)
JP (1) JP5393930B2 (ja)
CN (1) CN103635856B (ja)
WO (1) WO2013001853A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068492A1 (ja) * 2013-11-08 2015-05-14 富士フイルム株式会社 カメラシステム、カメラ本体、交換レンズ及び通信方法
JP2018074336A (ja) * 2016-10-27 2018-05-10 キヤノン株式会社 撮像装置、アクセサリ装置および制御プログラム
US10021288B2 (en) 2016-04-15 2018-07-10 Canon Kabushiki Kaisha Drive control apparatus for a lens apparatus, lens apparatus including the same, and image pickup apparatus including the same
JPWO2020157839A1 (ja) * 2019-01-29 2021-11-25 ギガフォトン株式会社 レーザ装置の波長制御方法及び電子デバイスの製造方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6374645B2 (ja) * 2013-09-09 2018-08-15 オリンパス株式会社 光学機器および光学機器の制御方法
KR101932545B1 (ko) * 2014-04-29 2019-03-15 한화테크윈 주식회사 이미지처리프로세서를 포함한 영상처리장치
CN104459931B (zh) * 2014-12-18 2017-03-08 福建福光股份有限公司 高分辨率同步对焦摄像镜头及其控制方法
CN106161911A (zh) * 2015-03-24 2016-11-23 联想(北京)有限公司 一种信息处理方法及电子设备
US10824050B2 (en) * 2015-08-07 2020-11-03 Analog Devices Global Unlimited Company Method of controlling a motor driven system, apparatus for controlling a motor driven system and a motor driven system controlled in accordance with the disclosed method
WO2017110261A1 (ja) * 2015-12-22 2017-06-29 富士フイルム株式会社 撮像装置、合焦制御方法、及び合焦制御プログラム
JP6706819B2 (ja) * 2016-02-15 2020-06-10 パナソニックIpマネジメント株式会社 ズーム機構を備えた撮像装置及び交換レンズ
JP2017151208A (ja) * 2016-02-23 2017-08-31 オリンパス株式会社 レンズ制御装置およびレンズ制御方法
JP6851726B2 (ja) * 2016-04-04 2021-03-31 キヤノン株式会社 制御装置、撮像装置、制御方法、プログラム、および、記憶媒体
TWI802537B (zh) * 2017-04-14 2023-05-21 光芒光學股份有限公司 變焦鏡頭
JP6399498B1 (ja) * 2017-06-28 2018-10-03 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 制御装置、撮像システム、移動体、制御方法、及びプログラム
CN108777763B (zh) * 2018-06-20 2020-08-28 维沃移动通信有限公司 一种拍照方法及终端设备
CN109862243B (zh) * 2019-01-31 2020-10-09 维沃移动通信有限公司 终端设备及终端设备的控制方法
TWI746390B (zh) * 2020-04-16 2021-11-11 宏達國際電子股份有限公司 無線信號收發裝置
US20220066126A1 (en) * 2020-08-28 2022-03-03 Zebra Technologies Corporation Autofocus optical arrangements and assemblies including voice coil motors
US11303800B1 (en) * 2021-07-13 2022-04-12 Shenzhen GOODIX Technology Co., Ltd. Real-time disparity upsampling for phase detection autofocus in digital imaging systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006065176A (ja) 2004-08-30 2006-03-09 Canon Inc 撮影装置
JP2010107725A (ja) * 2008-10-30 2010-05-13 Olympus Imaging Corp 撮影装置
JP2011024248A (ja) * 2008-04-17 2011-02-03 Panasonic Corp 交換レンズ、カメラボディ、カメラシステム
WO2011048752A1 (ja) * 2009-10-22 2011-04-28 パナソニック株式会社 フォーカスシステム、交換レンズ及び撮像装置
JP2011118021A (ja) * 2009-12-01 2011-06-16 Canon Inc 撮像装置及びその制御方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2766019B2 (ja) * 1990-01-24 1998-06-18 株式会社日立製作所 ビデオカメラのオートフォーカス装置
JP2001133861A (ja) * 1999-11-10 2001-05-18 Canon Inc カメラシステム及びカメラ用アクセサリ
JP4525089B2 (ja) * 2004-01-27 2010-08-18 フジノン株式会社 オートフォーカスシステム
US20060132624A1 (en) * 2004-12-21 2006-06-22 Casio Computer Co., Ltd. Electronic camera with noise reduction unit
JP4715200B2 (ja) * 2004-12-27 2011-07-06 株式会社ニコン 電子カメラ
JP2006259113A (ja) * 2005-03-16 2006-09-28 Konica Minolta Photo Imaging Inc レンズ交換式デジタルカメラ
JP2008015274A (ja) * 2006-07-06 2008-01-24 Olympus Imaging Corp デジタルカメラ
WO2009119091A1 (ja) * 2008-03-28 2009-10-01 パナソニック株式会社 カメラシステム
WO2009139186A1 (ja) * 2008-05-16 2009-11-19 パナソニック株式会社 カメラシステム
US8243188B2 (en) * 2008-10-30 2012-08-14 Olympus Imaging Corp. Imaging apparatus
JP5538918B2 (ja) * 2010-01-19 2014-07-02 キヤノン株式会社 音声信号処理装置、音声信号処理システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006065176A (ja) 2004-08-30 2006-03-09 Canon Inc 撮影装置
JP2011024248A (ja) * 2008-04-17 2011-02-03 Panasonic Corp 交換レンズ、カメラボディ、カメラシステム
JP2010107725A (ja) * 2008-10-30 2010-05-13 Olympus Imaging Corp 撮影装置
WO2011048752A1 (ja) * 2009-10-22 2011-04-28 パナソニック株式会社 フォーカスシステム、交換レンズ及び撮像装置
JP2011118021A (ja) * 2009-12-01 2011-06-16 Canon Inc 撮像装置及びその制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2713206A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068492A1 (ja) * 2013-11-08 2015-05-14 富士フイルム株式会社 カメラシステム、カメラ本体、交換レンズ及び通信方法
US9699363B2 (en) 2013-11-08 2017-07-04 Fujifilm Corporation Camera system, camera body, interchangeable lens, and communication method
US10021288B2 (en) 2016-04-15 2018-07-10 Canon Kabushiki Kaisha Drive control apparatus for a lens apparatus, lens apparatus including the same, and image pickup apparatus including the same
JP2018074336A (ja) * 2016-10-27 2018-05-10 キヤノン株式会社 撮像装置、アクセサリ装置および制御プログラム
JPWO2020157839A1 (ja) * 2019-01-29 2021-11-25 ギガフォトン株式会社 レーザ装置の波長制御方法及び電子デバイスの製造方法
JP7325452B2 (ja) 2019-01-29 2023-08-14 ギガフォトン株式会社 レーザ装置の波長制御方法及び電子デバイスの製造方法

Also Published As

Publication number Publication date
CN103635856B (zh) 2015-06-17
EP2713206B1 (en) 2016-04-20
EP2713206A4 (en) 2014-12-03
JPWO2013001853A1 (ja) 2015-02-23
JP5393930B2 (ja) 2014-01-22
EP2713206A1 (en) 2014-04-02
US8953090B2 (en) 2015-02-10
CN103635856A (zh) 2014-03-12
US20140247384A1 (en) 2014-09-04

Similar Documents

Publication Publication Date Title
JP5393930B2 (ja) カメラ装置、交換レンズ装置、カメラ本体部およびフォーカス制御方法
JP5919543B2 (ja) デジタルカメラ
US8947579B2 (en) Imaging apparatus, imaging system, and imaging apparatus control method and program for setting a range of lens positions
KR101575626B1 (ko) 디지털 카메라 및 그 제어방법
JP5171433B2 (ja) 撮像装置、およびレンズ装置
JP2012247578A (ja) 変換アダプタ、カメラシステム、撮像方法およびプログラム
JP2012109952A (ja) 撮像装置及びカメラボディ
KR101462323B1 (ko) 촬상 장치 및 촬상 방법
JP2011013645A (ja) 撮像装置
JP2007057974A (ja) 撮影装置
JP2007225897A (ja) 合焦位置決定装置及び方法
JP2013257486A (ja) 光学装置、撮像装置、および光学装置の制御方法
JP2005303933A (ja) 撮像装置
JP2007094023A (ja) フォーカスレンズの焦点調整方法、及び撮像装置
JP6300570B2 (ja) 撮像装置、撮像装置の制御方法、プログラム、および、記憶媒体
JP2017215350A (ja) 像ブレ補正装置、光学機器、撮像装置および制御方法
KR100650955B1 (ko) 자동 초점 조절 방법 및 장치
WO2023286301A1 (ja) フォーカス制御装置とフォーカス制御方法および撮像装置
JP2010204303A (ja) 撮像装置
JP2005258220A (ja) 撮影装置
JP2007249238A (ja) 撮像装置、自動合焦方法及び合焦の手順を記録した記録媒体
JP2006154524A (ja) 撮像装置、および合焦位置探索方法
JP2015127721A (ja) 焦点検出装置および撮像装置
KR20100068717A (ko) 촬영 장치에서의 오토포커스 방법 및 장치
JP2012249127A (ja) 撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12805257

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013522484

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012805257

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14129861

Country of ref document: US