WO2013001627A1 - 圧入構造および圧入方法 - Google Patents

圧入構造および圧入方法 Download PDF

Info

Publication number
WO2013001627A1
WO2013001627A1 PCT/JP2011/064956 JP2011064956W WO2013001627A1 WO 2013001627 A1 WO2013001627 A1 WO 2013001627A1 JP 2011064956 W JP2011064956 W JP 2011064956W WO 2013001627 A1 WO2013001627 A1 WO 2013001627A1
Authority
WO
WIPO (PCT)
Prior art keywords
press
gear
peripheral surface
fitting
ring gear
Prior art date
Application number
PCT/JP2011/064956
Other languages
English (en)
French (fr)
Inventor
谷口 真
塩入 広行
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201180067666.3A priority Critical patent/CN103380316B/zh
Priority to EP11868801.9A priority patent/EP2728222B1/en
Priority to US13/995,010 priority patent/US9546725B2/en
Priority to PCT/JP2011/064956 priority patent/WO2013001627A1/ja
Priority to JP2011538765A priority patent/JP5333600B2/ja
Priority to KR1020137031616A priority patent/KR101521042B1/ko
Publication of WO2013001627A1 publication Critical patent/WO2013001627A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/17Toothed wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K25/00Uniting components to form integral members, e.g. turbine wheels and shafts, caulks with inserts, with or without shaping of the components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P11/00Connecting or disconnecting metal parts or objects by metal-working techniques not otherwise provided for 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/02Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for connecting objects by press fit or for detaching same
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D65/00Designing, manufacturing, e.g. assembling, facilitating disassembly, or structurally modifying motor vehicles or trailers, not otherwise provided for
    • B62D65/02Joining sub-units or components to, or positioning sub-units or components with respect to, body shell or other sub-units or components
    • B62D65/10Joining sub-units or components to, or positioning sub-units or components with respect to, body shell or other sub-units or components the sub-units or components being engines, clutches or transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/06Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end
    • F16D1/064Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end non-disconnectable
    • F16D1/072Couplings for rigidly connecting two coaxial shafts or other movable machine elements for attachment of a member on a shaft or on a shaft-end non-disconnectable involving plastic deformation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/38Constructional details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/38Constructional details
    • F16H2048/382Methods for manufacturing differential gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/38Constructional details
    • F16H2048/385Constructional details of the ring or crown gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/38Constructional details
    • F16H48/40Constructional details characterised by features of the rotating cases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49462Gear making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49462Gear making
    • Y10T29/49465Gear mounting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/1987Rotary bodies

Definitions

  • the present invention relates to a press-fitting structure and a press-fitting method for press-fitting an inner peripheral surface of a gear into an outer peripheral surface of an annular part.
  • Patent Document 1 discloses a press-fit structure in which a ring gear is press-fitted to a position where it abuts against a stopper of a flange provided in a differential case.
  • the ring gear is fastened to the differential case by crimping the inlet portion of the press-fitting portion.
  • the tensile stress ⁇ is uniform in the tooth width direction of the ring gear 14 (the depth direction in FIG. 16), it can be dealt with by reviewing the specifications of the ring gear 14.
  • the surface pressure P is increased near the stopper. Therefore, as shown in FIGS. 17 and 18, a large tensile stress ⁇ is generated in the tooth bottom portion 17 at a position near the stopper in the tooth width direction of the ring gear 14.
  • the tensile stress ⁇ remains in the root portion 17 even after the ring gear 14 is fastened to the flange 12. Therefore, the strength of the tooth base of the ring gear 14 is lowered, and the durability of the ring gear 14 is lowered.
  • FIG. 16 is an enlarged schematic view of the vicinity of the press-fitting surface 18 of the ring gear 14 when the ring gear 14 is press-fitted into the flange 12.
  • FIG. 17 is a diagram showing an analysis result regarding the distribution of the tensile stress ⁇ generated in the tooth bottom portion 17 of the ring gear 14.
  • the horizontal axis indicates the position in the tooth width direction of the ring gear 14, and the vertical axis indicates the tooth of the ring gear 14.
  • the position in the circumferential direction of the ring gear 14 at the bottom 17 is shown. Further, FIG.
  • FIG. 18 is a diagram showing an analysis result regarding the distribution of the tensile stress ⁇ generated at the center position in the circumferential direction of the ring gear 14 at the tooth bottom portion 17 of the ring gear 14, and the horizontal axis indicates the position of the ring gear 14 in the tooth width direction.
  • the vertical axis represents the value of the tensile stress ⁇ .
  • an object of the present invention is to provide a press-fitting structure and a press-fitting method capable of improving the durability of a gear press-fitted into an annular part.
  • One aspect of the present invention made to solve the above problem is that one end face in the central axis direction of the gear is formed with respect to a projecting portion formed to project outward from the outer peripheral surface of the annular part in the radial direction of the annular part.
  • a press-fitting structure in which the inner peripheral surface of the gear is press-fitted into the outer peripheral surface of the annular component while abutting, the tooth bottom portion of the gear when the inner peripheral surface of the gear is press-fitted into the outer peripheral surface of the annular component
  • a tensile stress reduction mechanism that reduces the tensile stress generated at the position of at least one of the end faces of the gear.
  • a tensile stress reduction mechanism that reduces the tensile stress generated at the gear tooth bottom portion at the position of at least one end face of the gear when the inner peripheral face of the gear is press-fitted into the outer peripheral face of the annular component.
  • the tensile stress can be reduced in the vicinity of the portion in contact with the protruding portion in the gear tooth bottom. Therefore, after the inner peripheral surface of the gear is press-fitted into the outer peripheral surface of the annular part, a large tensile stress does not remain at the gear bottom, so that the durability of the gear is improved.
  • the tensile stress reduction mechanism is configured such that the press-fitting allowance between the inner peripheral surface of the gear and the outer peripheral surface of the annular component at the position of the one end surface is the other in the central axis direction of the gear. It is preferable that the mechanism be smaller than the press-fitting allowance between the inner peripheral surface of the gear and the outer peripheral surface of the annular component at the position of the end surface.
  • the press-fitting allowance at the position of one end face of the gear is made smaller than the press-fitting allowance at the position of the other end face of the gear, in the vicinity of the portion in contact with the protruding part at the tooth bottom part of the gear, The tensile stress can be reliably reduced. Therefore, it is possible to reliably reduce the tensile stress remaining on the gear bottom after the inner peripheral surface of the gear is press-fitted into the outer peripheral surface of the annular part. Therefore, the durability of the gear is reliably improved.
  • the inner peripheral surface of the gear is formed so that the inner diameter gradually increases as it approaches the one end surface in the central axis direction of the gear.
  • the inner peripheral surface of the gear is formed so that the inner diameter gradually increases as it approaches one end surface. Therefore, the press-fitting allowance between the inner peripheral surface of the gear and the outer peripheral surface of the annular component can be gradually reduced toward the one end surface side. Therefore, the tensile stress generated at the gear tooth bottom can be greatly reduced.
  • the outer peripheral surface of the annular part is formed so that the outer diameter gradually decreases as it approaches the protruding part in the central axis direction of the annular part.
  • the outer peripheral surface of the annular part is formed so that the outer diameter gradually decreases as it approaches the protrusion. Therefore, the press-fitting allowance between the inner peripheral surface of the gear and the outer peripheral surface of the annular component can be gradually reduced toward the one end surface side. Therefore, the tensile stress generated at the gear tooth bottom can be greatly reduced.
  • the inner peripheral surface of the gear is formed between the press-fitted portion with the outer peripheral surface of the annular component, the one end surface, and the press-fitted portion. It is preferable to provide an outer relief shape portion formed so as to be recessed outward in the radial direction.
  • the inner peripheral surface of the gear is formed between the press-fitted portion between one end surface and the outer peripheral surface of the annular component in the central axis direction of the gear so as to be recessed outward in the radial direction of the gear.
  • a formed outer relief shape portion is provided. Therefore, the gear is not press-fitted into the annular part in the vicinity of one end face. Therefore, the tensile stress can be further reduced in the vicinity of the portion in contact with the protruding portion at the gear tooth bottom.
  • the outer peripheral surface of the annular component is formed between the press-fitted portion with the inner peripheral surface of the gear and the protruding portion and the press-fitted portion. It is preferable to include an inner relief shape portion formed so as to be recessed inward in the radial direction.
  • the outer peripheral surface of the annular part includes an inner relief shape part formed between the protruding part and the press-fit part in the central axis direction of the annular part and formed to be recessed inward in the radial direction. . Therefore, the gear is not press-fitted into the annular part in the vicinity of one end face. Therefore, the tensile stress can be further reduced in the vicinity of the portion in contact with the protruding portion at the gear tooth bottom.
  • the tensile stress reduction mechanism is a mechanism provided with a notch formed so as to be recessed inward in the radial direction of the annular part at the protruding portion.
  • the cutout portion formed so as to be recessed inward in the radial direction at the protruding portion is provided, the rigidity in the radial direction of the protruding portion can be reduced. Therefore, the tensile stress can be reliably reduced in the vicinity of the portion in contact with the protruding portion in the gear tooth bottom. Therefore, it is possible to reliably reduce the tensile stress remaining on the gear bottom after the inner peripheral surface of the gear is press-fitted into the outer peripheral surface of the annular part. Therefore, the durability of the gear is surely improved.
  • the gear includes a convex portion formed so as to protrude from the one end surface in the central axis direction of the gear, and the notch portion and the convex portion are fitted to each other. Is preferred.
  • the notch portion formed in the protruding portion and the convex portion formed in the gear are fitted.
  • the fitting portion between the notch portion and the convex portion is a portion that contributes to torque transmission. Therefore, even when torque is transmitted in the fastening structure in which the gear and the annular part are fastened after the inner peripheral face of the gear is press-fitted into the outer peripheral face of the annular part, the strength of the fastening part between the gear and the annular part Can be raised.
  • the gear is a ring gear of a differential device, and the annular part is a flange provided in a differential case of the differential device.
  • This press-fit structure improves the durability of the ring gear in the differential gear in which the ring gear is press-fitted into the flange provided in the differential case.
  • the inner peripheral surface of the gear is press-fitted into the outer peripheral surface of the annular component, and protrudes from the outer peripheral surface of the annular component outward in the radial direction of the annular component.
  • the press-fitting method in which one end face in the central axis direction of the gear is brought into contact with the formed protrusion, when the inner peripheral face of the gear is press-fitted into the outer peripheral face of the annular component, The generated tensile stress is reduced at the position of at least one of the end faces of the gear.
  • the tensile stress generated at the gear bottom when the inner peripheral surface of the gear is press-fitted into the outer peripheral surface of the annular part is reduced at the position of at least one end surface of the gear. Therefore, the tensile stress can be reduced in the vicinity of the portion in contact with the protruding portion in the gear tooth bottom. Therefore, the tensile stress remaining on the gear bottom after the inner peripheral surface of the gear is press-fitted into the outer peripheral surface of the annular part can be reduced, so that the durability of the gear is improved.
  • the press-fitting allowance between the inner peripheral surface of the gear at the position of the one end surface and the outer peripheral surface of the annular part is set to the gear at the position of the other end surface in the central axis direction of the gear. It is preferable to make it smaller than the press-fitting allowance between the inner peripheral surface of this and the outer peripheral surface of the said annular component.
  • the press-fitting allowance at the position of one end face of the gear is made smaller than the press-fitting allowance at the position of the other end face of the gear, in the vicinity of the portion in contact with the protruding part at the tooth bottom part of the gear, The tensile stress can be reliably reduced. Therefore, it is possible to reliably reduce the tensile stress remaining on the gear bottom after the inner peripheral surface of the gear is press-fitted into the outer peripheral surface of the annular part. Therefore, the durability of the gear is reliably improved.
  • the inner peripheral surface of the gear is formed so that the inner diameter gradually increases as it approaches the one end surface in the central axis direction of the gear.
  • the inner peripheral surface of the gear is formed so that the inner diameter gradually increases as it approaches one end surface. Therefore, the press-fitting allowance between the inner peripheral surface of the gear and the outer peripheral surface of the annular component can be gradually reduced toward the one end surface side. Therefore, the tensile stress generated at the gear tooth bottom can be greatly reduced.
  • the outer peripheral surface of the annular component is formed so that the outer diameter gradually decreases as it approaches the protruding portion in the central axis direction of the annular component.
  • the outer peripheral surface of the annular part is formed so that the outer diameter gradually decreases as it approaches the protrusion. Therefore, the press-fitting allowance between the inner peripheral surface of the gear and the outer peripheral surface of the annular component can be gradually reduced toward the one end surface side. Therefore, the tensile stress generated at the gear tooth bottom can be greatly reduced.
  • the inner peripheral surface of the gear is formed between the press-fitted portion with the outer peripheral surface of the annular component, the one end surface, and the press-fitted portion. It is preferable to provide an outer relief shape portion formed so as to be recessed outward in the radial direction.
  • the inner peripheral surface of the gear is formed between the press-fitted portion between one end surface and the outer peripheral surface of the annular part in the central axis direction of the gear so as to be recessed outward in the radial direction of the gear.
  • a formed outer relief shape portion is provided. Therefore, the gear is not press-fitted into the annular part in the vicinity of one end face. Therefore, the tensile stress can be further reduced in the vicinity of the portion in contact with the protruding portion at the gear tooth bottom.
  • the outer peripheral surface of the annular component is formed between the press-fitted portion with the inner peripheral surface of the gear and the protruding portion and the press-fitted portion. It is preferable to include an inner relief shape portion formed so as to be recessed inward in the radial direction.
  • the outer peripheral surface of the annular part is provided between the protruding portion and the press-fitted portion and has an inner relief shape portion formed so as to be recessed inward in the radial direction. It is not press-fitted into the annular part. Therefore, the tensile stress can be further reduced in the vicinity of the portion in contact with the protruding portion at the gear tooth bottom.
  • the protrusion includes a notch formed to be recessed inward in the radial direction of the annular component.
  • the cutout portion formed so as to be recessed inward in the radial direction at the protruding portion is provided, so that the radial rigidity of the protruding portion can be reduced. Therefore, the tensile stress can be reliably reduced in the vicinity of the portion in contact with the protruding portion in the gear tooth bottom. Therefore, it is possible to reliably reduce the tensile stress remaining on the gear bottom after the inner peripheral surface of the gear is press-fitted into the outer peripheral surface of the annular part. Therefore, the durability of the gear is surely improved.
  • the gear includes a convex portion formed so as to protrude from the one end surface in the central axis direction of the gear, and the notch portion and the convex portion are fitted to each other, Is preferred.
  • the notch portion formed in the protruding portion and the convex portion formed in the gear are fitted.
  • the fitting portion between the notch portion and the convex portion is a portion that contributes to torque transmission. Therefore, in the fastening structure in which the gear and the annular part are fastened after the inner peripheral face of the gear is press-fitted into the outer peripheral face of the annular part, the strength of the fastening portion between the gear and the annular part can be increased.
  • the gear is a ring gear of a differential device and the annular part is a flange provided in a differential case of the differential device.
  • the durability of the ring gear is improved in the differential gear in which the ring gear is press-fitted into the flange provided in the differential case.
  • the durability of the gear press-fitted into the annular part can be improved.
  • Example 1 It is a side view which shows schematic structure of a differential subassembly. It is sectional drawing to which the fastening part of the flange of a differential case and a ring gear was expanded. It is a perspective view of the periphery of the inner peripheral part of a ring gear. It is a figure explaining the press injection process which press-fits a ring gear to the flange of a differential case. It is a figure explaining the press injection process which press-fits a ring gear to the flange of a differential case. In Example 1, it is a figure which shows the internal diameter of a ring gear, and the outer diameter of the flange of a differential case.
  • Example 2 it is a figure which shows the outer diameter of the flange of a differential case, and the internal diameter of a ring gear. It is a figure which shows the example which formed the outer side relief shape part in the ring gear in Example 3.
  • FIG. It is a figure which shows when a ring gear is press-fitted in the flange of a differential case in Example 3.
  • FIG. It is a figure which shows when a ring gear is press-fitted in the flange of a differential case in Example 4.
  • Example 5 it is a figure which shows the fastening state of the ring gear and the flange of a differential case. It is a figure which shows the example which formed the notch part in the stopper in Example 6, and formed the convex part in the ring gear.
  • Example 6 it is a figure which shows the fastening state of the ring gear and the flange of a differential case. It is the schematic diagram which expanded the vicinity of the press-fit surface of the ring gear when the ring gear is press-fitted into the differential case. It is a figure which shows the analysis result regarding distribution of the tensile stress which generate
  • Example 1 First, Example 1 will be described.
  • FIG. 1 is a side view showing a schematic configuration of the differential sub-assembly 1.
  • FIG. 2 is an enlarged cross-sectional view of a fastening portion between the flange 12 and the ring gear 14 of the differential case 10.
  • the differential sub-assembly 1 is fastened while being press-fitted into the differential case 10, an annular flange 12 provided on the outer periphery of one end side (left side in FIG. 1) of the differential case 10.
  • an annular ring gear 14 an annular ring gear 14.
  • the flange 12 and the ring gear 14 form a press-fit structure.
  • the differential sub-assembly 1 is an example of the “differential device” in the present invention
  • the flange 12 is an example of the “annular part” in the present invention
  • the ring gear 14 is an example of the “gear” in the present invention.
  • This differential sub assembly 1 is used for a power transmission mechanism of a vehicle.
  • a vehicle it is provided for a transmission, a transfer, a final reduction gear, and the like.
  • the differential sub-assembly 1 allows the power input to the ring gear 14 from a gear (not shown) on the other side to allow a rotational difference between the pair of side gears, while rotating the member (not shown) connected to the pair of pinions. (Shown).
  • the rotating member is, for example, a pair of left and right drive wheels or a pair of front and rear drive axles of the vehicle.
  • the flange 12 includes a stopper 28 on one end side (right side in FIG. 2) in the central axis direction (left-right direction in FIG. 2).
  • the stopper 28 is formed so as to protrude from the outer peripheral surface of the flange 12 to the outer side in the radial direction of the flange 12.
  • the flange 12 includes a caulking portion 24 on the other end side (left side in FIG. 2) in the central axis direction.
  • the stopper 28 is an example of the “projection” in the present invention.
  • the ring gear 14 is constituted by a helical gear, and a plurality of teeth 16 provided on the outer periphery are inclined with respect to the central axis direction of the ring gear 14 (left and right direction in FIG. 1). Is formed.
  • the ring gear 14 is press-fitted into a press-fitting surface 20 formed on the outer peripheral surface of the flange 12 by a press-fitting surface 18 formed on the inner peripheral surface of the ring gear 14. 24.
  • the ring gear 14 may be another gear such as a spur gear in addition to the helical gear.
  • the ring gear 14 includes a first end face 30 on one end side (right side in FIG. 2) in the central axis direction.
  • the first end face 30 is in contact with the stopper 28.
  • the ring gear 14 includes a second end face 32 on the other end side (left side in FIG. 2) in the central axis direction.
  • the ring gear 14 has a notch 26 as a caulking portion caulked by the caulking portion 24 at the inner peripheral edge portion 22 on the other end side (left side in FIG. 2) in the central axis direction.
  • a plurality of notches 26 are provided in the circumferential direction of the ring gear 14 while being spaced apart.
  • the notch 26 is formed in a concave shape when viewed from the central axis direction of the ring gear 14, and the bottom of the concave shape has a radial direction (vertical direction in FIG. 2) and a central axial direction (horizontal direction in FIG. 2). ) Is formed obliquely.
  • FIG. 3 is a perspective view of the periphery of the inner peripheral edge 22 of the ring gear 14.
  • the caulking portion 24 of the flange 12 is pressed against the notch 26 of the ring gear 14 and caulked.
  • the caulking portion 24 of the flange 12 is plastically processed so as to be deformed by being expanded from the inside in the radial direction of the ring gear 14 to the outside (from the lower side to the upper side in FIG. 5).
  • the caulking portion 24 of the flange 12 is pressed against the notch 26 of the ring gear 14 as shown in FIG.
  • the ring gear 14 is caulked to the flange 12.
  • the ring gear 14 is fastened to the flange 12 of the differential case 10.
  • the tensile stress reduction mechanism of the first embodiment adjusts the size of the press-fitting allowance between the press-fitting surface 18 of the ring gear 14 and the press-fitting surface 20 of the flange 12 by adjusting the inner diameter of the ring gear 14.
  • the inner diameter of the ring gear 14 gradually increases from the position of the second end face 32 toward the position of the first end face 30 in the central axis direction of the ring gear 14 (left-right direction in FIG. 6).
  • the ring gear 14 is formed to be large.
  • the first end face 30 is an end face on the side contacting the stopper 28 of the differential case 10 in the central axis direction of the ring gear 14, and the second end face 32 has a notch 26 in the central axis direction of the ring gear 14. It is an end surface on the side to be formed.
  • the outer diameter Df of the flange 12 of the differential case 10 is formed to be constant in the central axis direction of the differential case 10 (left-right direction in FIG. 6).
  • the press-fitting allowance between the press-fitting surface 18 of the ring gear 14 and the press-fitting surface 20 of the flange 12 is gradually decreased as the position of the first end surface 30 is approached from the position of the second end surface 32 in the central axis direction of the ring gear 14. is doing.
  • the tensile stress ⁇ can be reduced at least at the position of the first end face 30 (the portion in contact with the stopper 28) in the tooth bottom portion 17 of the ring gear 14 and in the vicinity thereof. Therefore, no large tensile stress ⁇ remains in the tooth bottom portion 17 of the ring gear 14.
  • the tensile stress ⁇ generated in the tooth bottom portion 17 of the ring gear 14 is at least the first end surface of the ring gear 14. It has a tensile stress reduction mechanism that reduces at 30 positions. Therefore, the tensile stress ⁇ can be reduced in the vicinity of the portion in contact with the stopper 28 in the tooth bottom portion 17 of the ring gear 14. Therefore, since no large tensile stress ⁇ remains in the tooth bottom portion 17 of the ring gear 14, the durability of the ring gear 14 is improved.
  • the press-fitting allowance between the press-fitting surface 18 and the press-fitting surface 20 at the position of the first end face 30 of the ring gear 14 is the press-fitting face at the position of the second end face 32 of the ring gear 14.
  • the press-fitting allowance between 18 and the press-fitting surface 20 is made smaller. Therefore, the tensile stress ⁇ can be reliably reduced in the vicinity of the portion of the tooth bottom portion 17 of the ring gear 14 that contacts the stopper 28. Therefore, the durability of the ring gear 14 is reliably improved.
  • the press-fitting surface 18 of the ring gear 14 is formed so that the inner diameter gradually increases as the first end surface 30 is approached. For this reason, the press-fitting allowance between the press-fitting surface 18 and the press-fitting surface 20 can be gradually reduced toward the first end face 30 side. Therefore, the tensile stress ⁇ can be further reduced, and the durability of the ring gear 14 is further improved.
  • the press-fitting allowance is gradually reduced from the position of the second end face 32 toward the position of the first end face 30 so that the tensile stress ⁇ generated in the tooth bottom portion 17 of the ring gear 14 is uniform in the tooth width direction. It is desirable to do.
  • the press-fitting surface 18 of the ring gear 14 when the press-fitting surface 18 of the ring gear 14 is machined, it may be cut from the first end surface 30 toward the second end surface 32 by a cutting tool, or cut from the second end surface 32 toward the first end surface 30. May be.
  • the cutting direction by a cutting tool is not limited, the press-fit surface 18 of the ring gear 14 can be easily processed.
  • the ring gear 14 is press-fitted into the flange 12 in a direction in which the press-fitting allowance between the press-fitting surface 18 and the press-fitting surface 20 is gradually reduced. It becomes easy.
  • the tooth bottom portion 17 of the first end face 30 of the ring gear 14 is set.
  • the tensile stress ⁇ that can be greatly generated in the center in the circumferential direction of the ring gear 14 can be efficiently reduced. Therefore, the durability of the ring gear 14 can be significantly improved.
  • Example 2 Next, Example 2 will be described.
  • the same components as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and different points are mainly described. Therefore, the tensile stress reduction mechanism of the second embodiment adjusts the press-fitting allowance between the press-fitting surface 18 of the ring gear 14 and the press-fitting surface 20 of the flange 12 by adjusting the outer diameter of the flange 12 of the differential case 10. .
  • the outer diameter of the flange 12 is gradually reduced from the position of the second end 36 toward the first end 34 in the central axis direction of the flange 12.
  • the following mathematical expressions are established for the outer diameter D3 of the first end portion 34 and the outer diameter D4 of the second end portion 36. [Equation 4] D3 ⁇ D4
  • the first end portion 34 is an end portion on the side where the stopper 28 is formed in the center axis direction of the flange 12 on the press-fitting surface 20 (that is, a boundary portion with the stopper 28).
  • the second end portion 36 is an end portion of the press-fitting surface 20 on the side where the caulking portion 24 is formed in the central axis direction of the flange 12.
  • the inner diameter Dr of the ring gear 14 is formed to be constant in the central axis direction of the ring gear 14.
  • the distance between the press-fit surface 18 of the ring gear 14 and the press-fit surface 20 of the flange 12 increases from the position of the second end surface 32 toward the position of the first end surface 30 in the central axis direction of the ring gear 14.
  • the press-fitting allowance is gradually reduced.
  • the press-fitting allowance between the press-fitting surface 18 and the press-fitting surface 20 at the position of the first end surface 30 of the ring gear 14 is changed to the second end surface of the ring gear 14.
  • the press-fitting allowance between the press-fitting surface 18 and the press-fitting surface 20 at the position 32 is made smaller. Therefore, the tensile stress ⁇ can be reliably reduced in the vicinity of the portion of the tooth bottom portion 17 of the ring gear 14 that contacts the stopper 28. Accordingly, since no large tensile stress ⁇ remains in the tooth bottom portion 17 of the ring gear 14, the durability of the ring gear 14 is reliably improved.
  • the press-fitting surface 20 of the flange 12 is formed so that the outer diameter gradually increases as it approaches the first end 34. Therefore, the press-fitting allowance between the press-fitting surface 18 and the press-fitting surface 20 can be gradually reduced toward the first end portion 34 side. Therefore, the tensile stress ⁇ can be further reduced, and the durability of the ring gear 14 is further improved.
  • the outer surface of the press-fitting surface 20 of the flange 12 is gradually increased from the position of the first end 34 toward the position of the second end 36. Therefore, the ring gear 14 press-fitted into the flange 12 from the second end portion 36 side is unlikely to return to the second end portion 36 side of the flange 12. Therefore, the fastening strength between the differential case 10 and the ring gear 14 is improved.
  • the tooth bottom 17 of the first end face 30 of the ring gear 14 is set.
  • Example 3 Next, Example 3 will be described.
  • components equivalent to those in the first embodiment and the second embodiment are denoted by the same reference numerals, description thereof is omitted, and different points are mainly described. Therefore, in the tensile stress reduction mechanism of the third embodiment, an outer relief shape portion 38 is formed on the inner peripheral surface of the ring gear 14 as shown in FIG.
  • the outer relief shape portion 38 is formed between the first end surface 30 and the press-fit surface 18 in the central axis direction of the ring gear 14 on the inner peripheral surface of the ring gear 14.
  • the outer relief portion 38 is formed so that its inner diameter is larger than the inner diameter Dr of the press-fit surface 18 that is a press-fit portion with the press-fit surface 20 of the flange 12.
  • the outer relief shape portion 38 is formed so as to be recessed from the press-fit surface 18 to the outer side in the radial direction of the ring gear 14.
  • the outer diameter Df of the press-fit surface 20 of the flange 12 is formed to be constant in the central axis direction of the differential case 10. As a result, as shown in FIG.
  • the width of the outer relief shape portion 38 in the center axis direction of the ring gear 14 is the portion where the maximum stress value is generated in the stress distribution of the tensile stress ⁇ shown in FIG. 17 (the darkest coating in FIG. 17). It is desirable to correspond to the portion). Thereby, the tensile stress ⁇ acting on the tooth bottom portion 17 of the ring gear 14 can be effectively reduced.
  • the inner peripheral surface of the ring gear 14 includes the outer relief portion 38. Therefore, when the press-fitting surface 18 of the ring gear 14 is press-fitted into the press-fitting surface 20 of the flange 12, the ring gear 14 is not press-fitted into the flange 12 near the first end face 30 (near the stopper 28). Therefore, the tensile stress ⁇ generated near the first end face 30 (near the stopper 28) of the tooth bottom portion 17 of the ring gear 14 can be surely reduced. Therefore, the durability of the ring gear 14 can be improved reliably.
  • Example 4 Next, Example 4 will be described.
  • components equivalent to those in the first to third embodiments are denoted by the same reference numerals, description thereof is omitted, and different points are mainly described. Therefore, in the tensile stress reduction mechanism of the fourth embodiment, the inner relief shape portion 40 is formed on the outer peripheral surface of the flange 12 of the differential case 10 as shown in FIG.
  • the inner relief shape portion 40 is formed on the outer peripheral surface of the flange 12 between the press-fitting surface 20 and the stopper 28 in the central axis direction of the flange 12.
  • the inner relief shape portion 40 has an outer diameter that is smaller than an inner diameter Df of the press-fit surface 20 that is a press-fit portion with the press-fit surface 18 of the ring gear 14. In this way, the inner relief shape portion 40 is formed so as to be recessed from the press-fit surface 20 inward in the radial direction of the flange 12. Further, the inner diameter Dr of the press-fit surface 18 of the ring gear 14 is formed to be constant in the central axis direction of the ring gear 14. Accordingly, as shown in FIG. 11, when the press-fit surface 18 of the ring gear 14 is press-fitted into the press-fit surface 20 of the flange 12, the press-fit surface 18 of the ring gear 14 is not press-fitted into the inner relief shape portion 40.
  • the press-fitting allowance between the inner peripheral surface of the ring gear 14 and the outer peripheral surface of the flange 12 at the position of the first end surface 30 of the ring gear 14 is 0, and the inner peripheral surface of the ring gear 14 at the position of the second end surface 32 of the ring gear 14.
  • the width of the inner relief shape portion 40 in the central axis direction of the flange 12 is a portion where the maximum stress value is generated in the stress distribution of the tensile stress ⁇ shown in FIG. 17 (the darkest coating in FIG. 17). It is desirable to correspond to the portion). Thereby, the tensile stress ⁇ acting on the tooth bottom portion 17 of the ring gear 14 can be effectively reduced.
  • the outer peripheral surface of the flange 12 includes the inner relief shape portion 40. Therefore, when the press-fitting surface 18 of the ring gear 14 is press-fitted into the press-fitting surface 20 of the flange 12, the ring gear 14 is not press-fitted into the flange 12 near the first end face 30 (near the stopper 28). Therefore, the tensile stress ⁇ generated near the first end face 30 (near the stopper 28) of the tooth bottom portion 17 of the ring gear 14 can be surely reduced. Therefore, the durability of the ring gear 14 can be improved reliably.
  • Example 5 a notch 42 is formed in the stopper 28 of the flange 12 of the differential case 10 as shown in FIG.
  • the notch 42 is formed so as to be recessed from the outer peripheral surface 44 of the stopper 28 inward in the radial direction of the flange 12.
  • a total of four notches 42 are formed.
  • the outer diameter of the press-fitting surface 20 of the flange 12 is constant in the central axis direction of the flange 12, and the inner diameter of the press-fitting surface 18 of the ring gear 14 is constant in the central axis direction of the ring gear 14.
  • the number of the notches 42 is not particularly limited, but two or more (that is, a plurality) of the notches 42 are formed and arranged so as to be arranged at equal intervals in the circumferential direction of the flange 12. Is desirable. Thereby, since the balance of the weight of the differential case 10 in the circumferential direction is improved, power transmission of the vehicle can be performed stably.
  • the stopper 28 since the stopper 28 includes the notch 42, the rigidity of the stopper 28 in the radial direction can be reduced. Therefore, the tensile stress ⁇ generated near the first end face 30 (near the stopper 28) of the tooth bottom portion 17 of the ring gear 14 can be reliably reduced. Therefore, after the press-fitting surface 18 of the ring gear 14 is press-fitted into the press-fitting surface 20 of the flange 12, the tooth bottom portion 17 of the ring gear 14 fastened to the flange 12 by caulking with the caulking portion 24 and the notch 26 as shown in FIG. 13. Can be reliably reduced. Therefore, the durability of the ring gear 14 is reliably improved.
  • Example 6 Next, Example 6 will be described.
  • components equivalent to those in the first to fifth embodiments are denoted by the same reference numerals, description thereof is omitted, and different points are mainly described. Therefore, in the tensile stress reduction mechanism of the sixth embodiment, as shown in FIG. 14, a notch 42 is formed in the stopper 28 of the flange 12 of the differential case 10 as in the fifth embodiment.
  • a convex portion 46 is formed on the first end face 30 of the ring gear 14 and is disposed at the same phase as the cutout portion 42 in the circumferential direction of the ring gear 14. As shown in FIG. 14, the convex portion 46 is formed so as to project in a convex shape from the surface of the first end face 30 of the ring gear 14 toward the central axis of the ring gear 14. Then, as shown in FIG. 15, the ring gear 14 is press-fitted into the flange 12 so that the first end face 30 of the ring gear 14 is brought into contact with the stopper 28, and the notch portion 42 and the convex portion 46 are fitted.
  • the notch portion 42 formed in the stopper 28 and the convex portion 46 formed in the ring gear 14 are fitted. Then, the fitting part of the notch part 42 and the convex part 46 becomes a part which contributes to the transmission of torque in the differential sub-assembly 1. Therefore, in the differential subassembly 1 in which the ring gear 14 and the flange 12 are fastened as shown in FIG. 15 after the press-fit surface 18 of the ring gear 14 is press-fitted into the press-fit surface 20 of the flange 12, the ring gear 14 and the flange 12 are fastened. The strength of the part can be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Retarders (AREA)
  • Gears, Cams (AREA)

Abstract

 本願は、環状部品に圧入させるギヤの耐久性を向上させることができる圧入構造および圧入方法を提供すること、を課題とする。そこで、本発明の一態様は、環状のギヤの中心軸方向の一方の端面を環状の環状部品の外周面から前記環状部品の半径方向の外側に突出して形成された突出部に当接させながら、かつ、前記ギヤの内周面を前記環状部品の外周面に圧入させる圧入構造において、前記ギヤの内周面を前記環状部品の外周面に圧入させるときに前記ギヤの歯底部にて発生する引張応力を前記ギヤの少なくとも前記一方の端面の位置にて低減させる引張応力低減機構を有する。

Description

圧入構造および圧入方法
 本発明は、ギヤの内周面を環状部品の外周面に圧入させる圧入構造および圧入方法に関するものである。
 従来、この種の技術として、特許文献1には、リングギヤをデフケースに設けられたフランジのストッパに当接させる位置まで圧入させる圧入構造が開示されている。なお、リングギヤをフランジに圧入させた後は、圧入部の入口部分をかしめてリングギヤをデフケースに締結している。
欧州特許出願公開第0647789号明細書
 しかしながら、特許文献1の圧入構造では、リングギヤの歯底部においてデフケースのストッパ側の部分に大きな引張応力が発生するので、リングギヤの耐久性が低下するおそれがある。
 詳細には、リングギヤ14をデフケース10のフランジ12のストッパに当接する位置まで圧入したとき、図16に示すように、リングギヤ14はその圧入面18に作用する面圧Pにより押し上げられ、リングギヤ14の歯底部17に引張応力δが発生する。
 ここで、この引張応力δがリングギヤ14の歯幅方向(図16の紙面奥行き方向)で均一であれば、リングギヤ14のギヤの諸元を見直すことで対処できる。しかしながら、実際にはフランジ12の剛性がストッパの部分で大きくなるので、面圧Pはストッパ付近にて大きくなってしまう。そのため、図17と図18に示すように、リングギヤ14の歯幅方向におけるストッパ付近の位置にて、歯底部17に大きな引張応力δが発生してしまう。そして、この引張応力δは、リングギヤ14をフランジ12に締結した後も歯底部17に残留する。したがって、リングギヤ14の歯元の強度が低下して、リングギヤ14の耐久性が低下してしまう。
 なお、図16は、リングギヤ14をフランジ12に圧入したときのリングギヤ14の圧入面18の付近を拡大した模式図である。また、図17は、リングギヤ14の歯底部17に発生する引張応力δの分布に関する解析結果を示す図であり、横軸がリングギヤ14の歯幅方向の位置を示し、縦軸がリングギヤ14の歯底部17におけるリングギヤ14の周方向の位置を示している。さらに、図18は、リングギヤ14の歯底部17におけるリングギヤ14の周方向の中央の位置に発生する引張応力δの分布に関する解析結果を示す図であり、横軸がリングギヤ14の歯幅方向の位置を示し、縦軸が引張応力δの値を示している。
 そこで、本発明は、環状部品に圧入されるギヤの耐久性を向上させることができる圧入構造および圧入方法を提供すること、を課題とする。
 上記課題を解決するためになされた本発明の一態様は、環状部品の外周面から前記環状部品の半径方向の外側に突出して形成された突出部に対しギヤの中心軸方向の一方の端面を当接させながら、かつ、前記ギヤの内周面を前記環状部品の外周面に圧入させる圧入構造において、前記ギヤの内周面を前記環状部品の外周面に圧入させるときに前記ギヤの歯底部にて発生する引張応力を前記ギヤの少なくとも前記一方の端面の位置にて低減させる引張応力低減機構を有すること、を特徴とする。
 この圧入構造によれば、ギヤの内周面を環状部品の外周面に圧入させるときにギヤの歯底部にて発生する引張応力をギヤの少なくとも一方の端面の位置にて低減させる引張応力低減機構を有する。そのため、ギヤの歯底部における突出部と当接する部分の付近において、引張応力を低減させることができる。したがって、ギヤの内周面を環状部品の外周面に圧入させた後にギヤの歯底部に大きな引張応力が残留しないので、ギヤの耐久性が向上する。
 上記の圧入構造においては、前記引張応力低減機構は、前記一方の端面の位置における前記ギヤの内周面と前記環状部品の外周面との間の圧入代を、前記ギヤの中心軸方向の他方の端面の位置における前記ギヤの内周面と前記環状部品の外周面との間の圧入代よりも小さくする機構であること、が好ましい。
 この圧入構造によれば、ギヤの一方の端面の位置における圧入代を、ギヤの他方の端面の位置における圧入代よりも小さくするので、ギヤの歯底部における突出部と当接する部分の付近において、引張応力を確実に低減させることができる。そのため、ギヤの内周面を環状部品の外周面に圧入させた後にギヤの歯底部に残留する引張応力を確実に低減できる。したがって、ギヤの耐久性が確実に向上する。
 上記の圧入構造においては、前記ギヤの内周面は、前記ギヤの中心軸方向について前記一方の端面に近づくにつれて内径が徐々に大きくなるように形成されていること、が好ましい。
 この圧入構造によれば、ギヤの内周面は一方の端面に近づくにつれて内径が徐々に大きくなるように形成されている。そのため、ギヤの内周面と環状部品の外周面との間の圧入代を、一方の端面側に向かうに従って徐々に小さくすることができる。したがって、ギヤの歯底部にて発生する引張応力をより大きく低減させることができる。
 上記の圧入構造においては、前記環状部品の外周面は、前記環状部品の中心軸方向について前記突出部に近づくにつれて外径が徐々に小さくなるように形成されていること、が好ましい。
 この圧入構造によれば、環状部品の外周面は突出部に近づくにつれて外径が徐々に小さくなるように形成されている。そのため、ギヤの内周面と環状部品の外周面との間の圧入代を、一方の端面側に向かうに従って徐々に小さくすることができる。したがって、ギヤの歯底部にて発生する引張応力をより大きく低減させることができる。
 上記の圧入構造においては、前記ギヤの内周面は、前記環状部品の外周面との圧入部と、前記一方の端面と前記圧入部との間にて形成され前記圧入部よりも前記ギヤの半径方向の外側に凹むように形成された外側逃げ形状部と、を備えること、が好ましい。
 この圧入構造によれば、ギヤの内周面は、ギヤの中心軸方向について一方の端面と環状部品の外周面との圧入部との間にて形成されギヤの半径方向の外側に凹むように形成された外側逃げ形状部を備える。そのため、ギヤは一方の端面付近で環状部品に圧入されない。したがって、ギヤの歯底部における突出部と当接する部分の付近において、引張応力をより大きく低減させることができる。
 上記の圧入構造においては、前記環状部品の外周面は、前記ギヤの内周面との圧入部と、前記突出部と前記圧入部との間にて形成され前記圧入部よりも前記環状部品の半径方向の内側に凹むように形成された内側逃げ形状部と、を備えること、が好ましい。
 この圧入構造によれば、環状部品の外周面は、環状部品の中心軸方向について突出部と圧入部との間にて形成され半径方向の内側に凹むように形成された内側逃げ形状部を備える。そのため、ギヤは一方の端面付近で環状部品に圧入されない。したがって、ギヤの歯底部における突出部と当接する部分の付近において、引張応力をより大きく低減させることができる。
 上記の圧入構造においては、前記引張応力低減機構は、前記突出部にて前記環状部品の半径方向の内側に凹むように形成された切り欠き部を備える機構であること、が好ましい。
 この圧入構造によれば、突出部にて半径方向の内側に凹むように形成された切り欠き部を備えるので、突出部の半径方向の剛性を低減させることができる。そのため、ギヤの歯底部における突出部と当接する部分の付近において、引張応力を確実に低減させることができる。したがって、ギヤの内周面を環状部品の外周面に圧入させた後にギヤの歯底部に残留する引張応力を確実に低減できる。ゆえに、ギヤの耐久性が確実に向上する。
 上記の圧入構造においては、前記ギヤは、前記一方の端面から前記ギヤの中心軸方向に突出するように形成された凸部を備え、前記切り欠き部と前記凸部とを嵌合させること、が好ましい。
 この圧入構造によれば、突出部に形成された切り欠き部とギヤに形成された凸部とを嵌合させる。これにより、例えば、圧入構造においてトルクの伝達を行う場合に、切り欠き部と凸部との嵌合部分はトルクの伝達に寄与する部分となる。そのため、ギヤの内周面を環状部品の外周面に圧入させた後にギヤと環状部品とを締結した締結構造においてトルクの伝達を行う場合であっても、ギヤと環状部品との締結部分の強度を上昇させることができる。
 上記の圧入構造においては、前記ギヤは差動装置のリングギヤであり、前記環状部品は前記差動装置のデフケースに設けられたフランジであること、が好ましい。
 この圧入構造によれば、リングギヤをデフケースに設けられたフランジに圧入させた差動装置において、リングギヤの耐久性が向上する。
 上記課題を解決するためになされた本発明の他の態様は、ギヤの内周面を環状部品の外周面に圧入させ、前記環状部品の外周面から前記環状部品の半径方向の外側に突出して形成された突出部に対し前記ギヤの中心軸方向の一方の端面を当接させる圧入方法において、前記ギヤの内周面を前記環状部品の外周面に圧入させるときに前記ギヤの歯底部にて発生する引張応力を前記ギヤの少なくとも前記一方の端面の位置にて低減させること、を特徴とする。
 この圧入方法によれば、ギヤの内周面を環状部品の外周面に圧入させるときにギヤの歯底部にて発生する引張応力をギヤの少なくとも一方の端面の位置にて低減させる。そのため、ギヤの歯底部における突出部と当接する部分の付近において、引張応力を低減させることができる。したがって、ギヤの内周面を環状部品の外周面に圧入させた後にギヤの歯底部に残留する引張応力を低減できるので、ギヤの耐久性が向上する。
 上記の圧入方法においては、前記一方の端面の位置における前記ギヤの内周面と前記環状部品の外周面との間の圧入代を、前記ギヤの中心軸方向の他方の端面の位置における前記ギヤの内周面と前記環状部品の外周面との間の圧入代よりも小さくすること、が好ましい。
 この圧入方法によれば、ギヤの一方の端面の位置における圧入代を、ギヤの他方の端面の位置における圧入代よりも小さくするので、ギヤの歯底部における突出部と当接する部分の付近において、引張応力を確実に低減させることができる。そのため、ギヤの内周面を環状部品の外周面に圧入させた後にギヤの歯底部に残留する引張応力を確実に低減できる。したがって、ギヤの耐久性が確実に向上する。
 上記の圧入方法においては、前記ギヤの内周面は、前記ギヤの中心軸方向について前記一方の端面に近づくにつれて内径が徐々に大きくなるように形成されていること、が好ましい。
 この圧入方法によれば、ギヤの内周面は一方の端面に近づくにつれて内径が徐々に大きくなるように形成されている。そのため、ギヤの内周面と環状部品の外周面との間の圧入代を、一方の端面側に向かうに従って徐々に小さくすることができる。したがって、ギヤの歯底部にて発生する引張応力をより大きく低減させることができる。
 上記の圧入方法においては、前記環状部品の外周面は、前記環状部品の中心軸方向について前記突出部に近づくにつれて外径が徐々に小さくなるように形成されていること、が好ましい。
 この圧入方法によれば、環状部品の外周面は突出部に近づくにつれて外径が徐々に小さくなるように形成されている。そのため、ギヤの内周面と環状部品の外周面との間の圧入代を、一方の端面側に向かうに従って徐々に小さくすることができる。したがって、ギヤの歯底部にて発生する引張応力をより大きく低減させることができる。
 上記の圧入方法においては、前記ギヤの内周面は、前記環状部品の外周面との圧入部と、前記一方の端面と前記圧入部との間にて形成され前記圧入部よりも前記ギヤの半径方向の外側に凹むように形成された外側逃げ形状部と、を備えること、が好ましい。
 この圧入方法によれば、ギヤの内周面は、ギヤの中心軸方向について一方の端面と環状部品の外周面との圧入部との間にて形成されギヤの半径方向の外側に凹むように形成された外側逃げ形状部を備える。そのため、ギヤは一方の端面付近で環状部品に圧入されない。したがって、ギヤの歯底部における突出部と当接する部分の付近において、引張応力をより大きく低減させることができる。
 上記の圧入方法においては、前記環状部品の外周面は、前記ギヤの内周面との圧入部と、前記突出部と前記圧入部との間にて形成され前記圧入部よりも前記環状部品の半径方向の内側に凹むように形成された内側逃げ形状部と、を備えること、が好ましい。
 この圧入方法によれば、環状部品の外周面は突出部と圧入部との間にて形成され半径方向の内側に凹むように形成された内側逃げ形状部を備えるので、ギヤは一方の端面付近で環状部品に圧入されない。したがって、ギヤの歯底部における突出部と当接する部分の付近において、引張応力をより大きく低減させることができる。
 上記の圧入方法においては、前記突出部は、前記環状部品の半径方向の内側に凹むように形成された切り欠き部を備えること、が好ましい。
 この圧入方法によれば、突出部にて半径方向の内側に凹むように形成された切り欠き部を備えるので、突出部の半径方向の剛性を低減させることができる。そのため、ギヤの歯底部における突出部と当接する部分の付近において、引張応力を確実に低減させることができる。したがって、ギヤの内周面を環状部品の外周面に圧入させた後にギヤの歯底部に残留する引張応力を確実に低減できる。ゆえに、ギヤの耐久性が確実に向上する。
 上記の圧入方法においては、前記ギヤは、前記一方の端面から前記ギヤの中心軸方向に突出するように形成された凸部を備え、前記切り欠き部と前記凸部とを嵌合させること、が好ましい。
 この圧入方法によれば、突出部に形成された切り欠き部とギヤに形成された凸部とを嵌合させる。これにより、例えば、圧入構造においてトルクの伝達を行う場合に、切り欠き部と凸部との嵌合部分はトルクの伝達に寄与する部分となる。そのため、ギヤの内周面を環状部品の外周面に圧入させた後にギヤと環状部品とを締結した締結構造において、ギヤと環状部品との締結部分の強度を上昇させることができる。
 上記の圧入方法においては、前記ギヤは差動装置のリングギヤであり、前記環状部品は前記差動装置のデフケースに設けられたフランジであること、が好ましい。
 この圧入方法によれば、リングギヤをデフケースに設けられたフランジに圧入させた差動装置において、リングギヤの耐久性が向上する。
 本発明に係る圧入構造および圧入方法によれば、環状部品に圧入されるギヤの耐久性を向上させることができる。
デファレンシャルサブアッシの概略構成を示す側面図である。 デフケースのフランジとリングギヤとの締結部分を拡大した断面図である。 リングギヤの内周縁部の周辺の斜視図である。 リングギヤをデフケースのフランジに圧入する圧入工程について説明した図である。 リングギヤをデフケースのフランジに圧入する圧入工程について説明した図である。 実施例1にてリングギヤの内径とデフケースのフランジの外径とを示す図である。 実施例2にてデフケースのフランジの外径とリングギヤの内径とを示す図である。 実施例3にてリングギヤに外側逃げ形状部を形成した例を示す図である。 実施例3にてリングギヤをデフケースのフランジに圧入したときを示す図である。 実施例4にてデフケースのフランジに内側逃げ形状部を形成した例を示す図である。 実施例4にてリングギヤをデフケースのフランジに圧入したときを示す図である。 実施例5にてストッパに切り欠き部を形成した例を示す図である。 実施例5にてリングギヤとデフケースのフランジとの締結状態を示す図である。 実施例6にてストッパに切り欠き部を形成し、リングギヤに凸部を形成した例を示す図である。 実施例6にてリングギヤとデフケースのフランジとの締結状態を示す図である。 リングギヤをデフケースに圧入したときのリングギヤの圧入面の付近を拡大した模式図である。 リングギヤの歯底部に発生する引張応力の分布に関する解析結果を示す図である。 リングギヤの歯底部におけるリングギヤの周方向の中央の位置に発生する引張応力の分布に関する解析結果を示す図である。
 以下、本発明を具体化した実施の形態について、添付図面を参照しつつ詳細に説明する。ここでは、一例として自動車等の車両のデファレンシャルサブアッシ(差動装置)の構成部品であるデフケースとリングギヤとの圧入構造および圧入方法を例に挙げて説明を行うが、本発明は他の様々な部品の圧入構造および圧入方法に適用できる。
<実施例1>
 まず、実施例1について説明する。
〔デファレンシャルサブアッシの概要〕
 図1は、デファレンシャルサブアッシ1の概略構成を示す側面図である。また、図2は、デフケース10のフランジ12とリングギヤ14との締結部分を拡大した断面図である。図1に示すように、デファレンシャルサブアッシ1は、デフケース10と、デフケース10の一端側(図1の左側)の外周に設けられた円環状のフランジ12と、フランジ12に圧入されつつ締結された円環状のリングギヤ14とを備える。このように、フランジ12とリングギヤ14とにより圧入構造が形成されている。なお、デフケース10の内部には、一対のサイドギヤ(不図示)と一対のピニオン(不図示)とが回転可能に支持された状態で収容されている。なお、デファレンシャルサブアッシ1は本発明における「差動装置」の一例であり、フランジ12は本発明における「環状部品」の一例であり、リングギヤ14は本発明における「ギヤ」の一例である。
 このデファレンシャルサブアッシ1は、車両の動力伝達機構に使用される。例えば、車両において、変速機、トランスファ及び終減速機等に対して設けられる。そして、デファレンシャルサブアッシ1は、相手側のギヤ(不図示)からリングギヤ14に入力される動力を、一対のサイドギヤの回転差を許容しながら、それを一対のピニオンに連結された回転部材(不図示)に伝達する。なお、回転部材は、例えば、車両の左右一対の駆動車輪や前後一対の駆動車軸などである。
 図2に示すように、フランジ12は、その中心軸方向(図2の左右方向)における一方の端部側(図2の右側)に、ストッパ28を備えている。このストッパ28は、フランジ12の外周面からフランジ12の半径方向の外側に突出して形成されている。また、フランジ12は、その中心軸方向における他方の端部側(図2の左側)に、かしめ部24を備えている。なお、ストッパ28は、本発明における「突出部」の一例である。
 リングギヤ14は、図1と図2に示すように、はすば歯車により構成され、外周に設けられた複数の歯16が、リングギヤ14の中心軸方向(図1の左右方向)に対して斜めに形成されている。このリングギヤ14は、その内周面に形成された圧入面18にて、フランジ12の外周面に形成された圧入面20に圧入されていると共に、詳しくは後述するように、フランジ12のかしめ部24によりかしめられている。なお、リングギヤ14は、はすば歯車以外に、平歯車などの他の歯車であってもよい。
 また、リングギヤ14は、その中心軸方向における一方の端部側(図2の右側)に第1端面30を備えている。そして、この第1端面30はストッパ28に当接している。また、リングギヤ14は、その中心軸方向における他方の端部側(図2の左側)に第2端面32を備えている。
 また、リングギヤ14は、図3に示すように、その中心軸方向における他方の端部側(図2の左側)の内周縁部22において、かしめ部24によりかしめられる被かしめ部として、ノッチ26を備えている。ノッチ26は、リングギヤ14の周方向について、間隔を空けつつ複数設けられている。また、ノッチ26は、リングギヤ14の中心軸方向からみたときに凹形状に形成され、この凹形状の底部がリングギヤ14の半径方向(図2の上下方向)および中心軸方向(図2の左右方向)に対し斜めに形成されている。なお、図3はリングギヤ14の内周縁部22の周辺の斜視図である。
〔デフケースとリングギヤとの締結方法〕
 次に、デフケース10とリングギヤ14との締結方法において、圧入工程における圧入方法とかしめ工程におけるかしめ方法について説明する。まず、圧入工程において、図4と図5に示すように、リングギヤ14の第1端面30がストッパ28に当接するまで、リングギヤ14の圧入面18をフランジ12の圧入面20に圧入する。これにより、フランジ12とリングギヤ14との位置決めを行いながら、圧入面18を圧入面20に圧入することができる。このとき、フランジ12のかしめ部24は、圧入面20と平行に延びた状態となっている。
 次に、かしめ工程において、フランジ12のかしめ部24をリングギヤ14のノッチ26に対して押し付けてかしめる。具体的には、フランジ12のかしめ部24をリングギヤ14の半径方向の内側から外側(図5の下側から上側)へ押し拡げて変形させるように塑性加工する。これにより、前記の図2に示すように、フランジ12のかしめ部24をリングギヤ14のノッチ26に押し付けてかしめる。このようにして、リングギヤ14はフランジ12にかしめられる。以上のように、リングギヤ14をデフケース10のフランジ12に締結する。
〔引張応力低減機構の説明〕
 ここで、前記の圧入工程において、リングギヤ14の圧入面18をデフケース10のフランジ12の圧入面20に圧入するときに、リングギヤ14の歯底部17に前記の引張応力δが発生する。そこで、この引張応力δを低減する引張応力低減機構について説明する。
 まず、実施例1の引張応力低減機構は、リングギヤ14の内径を調整することにより、リングギヤ14の圧入面18とフランジ12の圧入面20との間の圧入代の大きさを調整する。具体的には、図6に示すように、リングギヤ14の中心軸方向(図6の左右方向)について、第2端面32の位置から第1端面30の位置に近づくにつれてリングギヤ14の内径が徐々に大きくなるように、リングギヤ14を形成している。これにより、第1端面30の内径D1と第2端面32の内径D2とについて、以下の数式を成立させている。
 [数1]
  D1>D2
 なお、図6に示すように、第1端面30はリングギヤ14の中心軸方向についてデフケース10のストッパ28に当接する側の端面であり、第2端面32はリングギヤ14の中心軸方向についてノッチ26が形成される側の端面である。
 一方、デフケース10のフランジ12の外径Dfは、デフケース10の中心軸方向(図6の左右方向)について一定となるように形成している。以上により、リングギヤ14の中心軸方向について第2端面32の位置から第1端面30の位置に近づくにつれて、リングギヤ14の圧入面18とフランジ12の圧入面20との間の圧入代を徐々に小さくしている。これにより、リングギヤ14の歯底部17における少なくとも第1端面30の位置(ストッパ28と当接する部分)およびその付近において、引張応力δを低減させることができる。そのため、リングギヤ14の歯底部17に大きな引張応力δが残留しない。
 ここで、前記の従来技術のように、リングギヤ14の中心軸方向についてリングギヤ14の内径をD2として一定に形成した場合を考える。そして、この場合において、リングギヤ14をフランジ12に圧入したときに、リングギヤ14の歯底部17におけるリングギヤ14の周方向の中央において、第1端面30の位置に発生する引張応力δ1の値と第2端面32の位置に発生する引張応力δ2の値の比が、以下のように表わされたとする。
  [数2]
 δ1:δ2=X:1
 すると、このとき実施例1では、リングギヤ14の第1端面30の位置での内径D1と第2端面32の位置での内径D2とを以下のように設定することが望ましい。
  [数3]
 D1:D2=X:1
〔本実施例の効果〕
 このように実施例1によれば、リングギヤ14の圧入面18をフランジ12の圧入面20に圧入させるときにリングギヤ14の歯底部17にて発生する引張応力δを、リングギヤ14の少なくとも第1端面30の位置にて低減させる引張応力低減機構を有する。そのため、リングギヤ14の歯底部17におけるストッパ28と当接する部分の付近において、引張応力δを低減させることができる。したがって、リングギヤ14の歯底部17に大きな引張応力δが残留しないので、リングギヤ14の耐久性が向上する。
 そして、引張応力低減機構として、具体的には、リングギヤ14の第1端面30の位置における圧入面18と圧入面20との間の圧入代を、リングギヤ14の第2端面32の位置における圧入面18と圧入面20との間の圧入代よりも小さくしている。そのため、リングギヤ14の歯底部17におけるストッパ28と当接する部分の付近において、引張応力δを確実に低減させることができる。したがって、リングギヤ14の耐久性が確実に向上する。
 そして、リングギヤ14の圧入面18は、第1端面30に近づくにつれて内径が徐々に大きくなるように形成されている。そのため、圧入面18と圧入面20との間の圧入代を、第1端面30側に向かうに従って徐々に小さくすることができる。したがって、引張応力δをより大きく低減させることができ、リングギヤ14の耐久性がさらに向上する。
 なお、リングギヤ14の歯底部17に発生する引張応力δが歯幅方向について均一になるように、第2端面32の位置から第1端面30の位置に向かうに従って、前記の圧入代を徐々に小さくすることが望ましい。
 また、リングギヤ14の圧入面18を加工するときには、切削工具により第1端面30から第2端面32へ向かって切削してもよく、また、第2端面32から第1端面30へ向かって切削してもよい。このように、切削工具による切削方向は限定されないので、リングギヤ14の圧入面18の加工が容易となる。
 また、前記の圧入工程においては、圧入面18と圧入面20との間の圧入代が徐々に小さくなる方向に向かってリングギヤ14をフランジ12に圧入するので、リングギヤ14のフランジ12への圧入が容易となる。
 また、前記の数式3の比で示されるようにリングギヤ14の第1端面30の内径D1と第2端面32の内径D2とを設定すれば、リングギヤ14の第1端面30の歯底部17にてリングギヤ14の周方向の中央に大きく発生しうる引張応力δを効率的に低減できる。そのため、リングギヤ14の耐久性を顕著に向上させることができる。
<実施例2>
 次に、実施例2について説明する。以下の説明では、実施例1と同等の構成要素については、同一の符号を付して説明を省略し、異なった点を中心に述べる。そこで、実施例2の引張応力低減機構は、デフケース10のフランジ12の外径を調整することにより、リングギヤ14の圧入面18とフランジ12の圧入面20との間の圧入代を調整している。具体的には、図7に示すように、フランジ12の中心軸方向について第2端部36の位置から第1端部34に近づくにつれて、フランジ12の外径を徐々に小さくしている。これにより、第1端部34の外径D3と第2端部36の外径D4とについて、以下の数式を成立させている。
 [数4]
  D3<D4
 なお、図7に示すように、第1端部34は、圧入面20においてフランジ12の中心軸方向についてストッパ28が形成される側の端部(すなわち、ストッパ28との境界部分)である。また、第2端部36は、圧入面20においてフランジ12の中心軸方向についてかしめ部24が形成される側の端部である。
 一方、リングギヤ14の内径Drは、リングギヤ14の中心軸方向について一定となるように形成している。以上により、実施例1と同様に、リングギヤ14の中心軸方向について第2端面32の位置から第1端面30の位置に近づくにつれて、リングギヤ14の圧入面18とフランジ12の圧入面20との間の圧入代を徐々に小さくしている。
 なお、前記の引張応力δ1の値と前記の引張応力δ2の値との比が、前記の数式2のように示されるとき、第1端部34の位置の外径D3と第2端部36の位置の外径D4とを以下のように設定することが望ましい。
  [数5]
 D3:D4=1:X
 このように実施例2によれば、前記の実施例1と同様に、リングギヤ14の第1端面30の位置における圧入面18と圧入面20との間の圧入代を、リングギヤ14の第2端面32の位置における圧入面18と圧入面20との間の圧入代よりも小さくしている。そのため、リングギヤ14の歯底部17におけるストッパ28と当接する部分の付近において、引張応力δを確実に低減させることができる。したがって、リングギヤ14の歯底部17に大きな引張応力δが残留しないので、リングギヤ14の耐久性が確実に向上する。
 そして、フランジ12の圧入面20は、第1端部34に近づくにつれて外径が徐々に大きくなるように形成されている。そのため、圧入面18と圧入面20との間の圧入代を、第1端部34側に向かうに従って徐々に小さくすることができる。したがって、引張応力δをより大きく低減させることができ、リングギヤ14の耐久性がさらに向上する。
 また、フランジ12の圧入面20は、第1端部34の位置から第2端部36の位置に向かうに従って外径が徐々に大きく形成されている。そのため、第2端部36側からフランジ12に圧入させたリングギヤ14は、フランジ12の第2端部36側に戻り難い。したがって、デフケース10とリングギヤ14との締結強度が向上する。
 また、前記の数式5の比で示されるようにフランジ12の第1端部34の内径D3と第2端部36の内径D4とを設定すれば、リングギヤ14の第1端面30の歯底部17にてリングギヤ14の周方向の中央に大きく発生しうる引張応力δを効率的に低減できる。そのため、リングギヤ14の耐久性を顕著に向上させることができる。
<実施例3>
 次に、実施例3について説明する。以下の説明では、実施例1や実施例2と同等の構成要素については、同一の符号を付して説明を省略し、異なった点を中心に述べる。そこで、実施例3の引張応力低減機構は、図8に示すように、リングギヤ14の内周面に外側逃げ形状部38を形成している。外側逃げ形状部38は、リングギヤ14の内周面において、リングギヤ14の中心軸方向について第1端面30と圧入面18との間にて形成されてい る。
 そして、外側逃げ形状部38は、その内径がフランジ12の圧入面20との圧入部である圧入面18の内径Drよりも大きく形成されている。このようにして、外側逃げ形状部38は、圧入面18からリングギヤ14の半径方向の外側に凹むように形成されている。また、フランジ12の圧入面20の外径Dfは、デフケース10の中心軸方向について一定となるように形成している。これにより、図9に示すように、リングギヤ14の圧入面18をフランジ12の圧入面20に圧入したときに、外側逃げ形状部38の部分はフランジ12の圧入面20に圧入されないことになる。すなわち、リングギヤ14の第1端面30の位置におけるリングギヤ14の内周面とフランジ12の外周面との間の圧入代は0となり、リングギヤ14の第2端面32の位置におけるリングギヤ14の内周面とフランジ12の外周面との間の圧入代よりも小さくなる。
 なお、リングギヤ14の中心軸方向についての外側逃げ形状部38の幅は、前記の図17に示す引張応力δの応力分布にて最大の応力値が発生している部分(図17の最も濃く塗られた部分)に対応させることが望ましい。これにより、リングギヤ14の歯底部17に作用する引張応力δを効果的に低減することができる。
 このように実施例3によれば、リングギヤ14の内周面は外側逃げ形状部38を備えている。そのため、リングギヤ14の圧入面18をフランジ12の圧入面20に圧入したときに、リングギヤ14は第1端面30付近(ストッパ28付近)ではフランジ12に圧入されない。したがって、リングギヤ14の歯底部17の第1端面30付近(ストッパ28付近)に発生する引張応力δを確実に低減することができる。ゆえに、リングギヤ14の耐久性を確実に向上させることができる。
<実施例4>
 次に、実施例4について説明する。以下の説明では、実施例1~実施例3と同等の構成要素については、同一の符号を付して説明を省略し、異なった点を中心に述べる。そこで、実施例4の引張応力低減機構は、図10に示すように、デフケース10のフランジ12の外周面に内側逃げ形状部40を形成している。内側逃げ形状部40は、フランジ12の外周面において、フランジ12の中心軸方向について圧入面20とストッパ28との間に形成されている。
 そして、内側逃げ形状部40は、その外径がリングギヤ14の圧入面18との圧入部である圧入面20の内径Dfよりも小さく形成されている。このようにして、内側逃げ形状部40は、圧入面20からフランジ12の半径方向の内側に凹むように形成されている。また、リングギヤ14の圧入面18の内径Drは、リングギヤ14の中心軸方向について一定となるように形成されている。これにより、図11に示すように、リングギヤ14の圧入面18をフランジ12の圧入面20に圧入したときに、内側逃げ形状部40の部分はリングギヤ14の圧入面18が圧入されないことになる。すなわち、リングギヤ14の第1端面30の位置におけるリングギヤ14の内周面とフランジ12の外周面との間の圧入代は0となり、リングギヤ14の第2端面32の位置におけるリングギヤ14の内周面とフランジ12の外周面との間の圧入代よりも小さくなる。
 なお、フランジ12の中心軸方向についての内側逃げ形状部40の幅は、前記の図17に示す引張応力δの応力分布にて最大の応力値が発生している部分(図17の最も濃く塗られた部分)に対応させることが望ましい。これにより、リングギヤ14の歯底部17に作用する引張応力δを効果的に低減することができる。
 このように実施例4によれば、フランジ12の外周面は内側逃げ形状部40を備えている。そのため、リングギヤ14の圧入面18をフランジ12の圧入面20に圧入したときに、リングギヤ14は第1端面30付近(ストッパ28付近)ではフランジ12に圧入されない。したがって、リングギヤ14の歯底部17の第1端面30付近(ストッパ28付近)に発生する引張応力δを確実に低減することができる。ゆえに、リングギヤ14の耐久性を確実に向上させることができる。
<実施例5>
 次に、実施例5について説明する。以下の説明では、実施例1~実施例4と同等の構成要素については、同一の符号を付して説明を省略し、異なった点を中心に述べる。そこで、実施例5の引張応力低減機構は、図12に示すように、デフケース10のフランジ12のストッパ28に切り欠き部42を形成している。この切り欠き部42は、ストッパ28の外周面44からフランジ12の半径方向の内側に凹むように形成されている。図12に示す例では、一例として、切り欠き部42は合計4個形成されている。なお、フランジ12の圧入面20の外径はフランジ12の中心軸方向について一定としており、リングギヤ14の圧入面18の内径はリングギヤ14の中心軸方向について一定としている。
 また、切り欠き部42の数は特に限定されないが、切り欠き部42は、2個以上(すなわち、複数)形成し、フランジ12の周方向に等間隔で配置されるように形成しておくことが望ましい。これにより、デフケース10の周方向の重量のバランスが良くなるので、車両の動力伝達を安定して行うことができる。
 このように実施例5によれば、ストッパ28は切り欠き部42を備えているので、ストッパ28の半径方向の剛性を低減させることができる。そのため、リングギヤ14の歯底部17の第1端面30付近(ストッパ28付近)に発生する引張応力δを確実に低減することができる。したがって、リングギヤ14の圧入面18をフランジ12の圧入面20に圧入させた後に、図13に示すようにかしめ部24とノッチ26とでかしめることによりフランジ12に締結したリングギヤ14の歯底部17に残留する引張応力δを確実に低減できる。ゆえに、リングギヤ14の耐久性が確実に向上する。
<実施例6>
 次に、実施例6について説明する。以下の説明では、実施例1~実施例5と同等の構成要素については、同一の符号を付して説明を省略し、異なった点を中心に述べる。そこで、実施例6の引張応力低減機構は、図14に示すように、前記の実施例5と同様に、デフケース10のフランジ12のストッパ28に切り欠き部42を形成している。
 また、リングギヤ14の第1端面30に、リングギヤ14の周方向について切り欠き部42と同じ位相の位置に配置された凸部46を形成している。図14に示すように、凸部46は、リングギヤ14の第1端面30の面からリングギヤ14の中心軸方向に凸形状で突出するように形成されている。そして、図15示すように、リングギヤ14の第1端面30をストッパ28に当接させるようにしてリングギヤ14をフランジ12に圧入させるとともに、切り欠き部42と凸部46とを嵌合させる。
 このように実施例6によれば、ストッパ28に形成された切り欠き部42とリングギヤ14に形成された凸部46とを嵌合させる。すると、切り欠き部42と凸部46との嵌合部分は、デファレンシャルサブアッシ1におけるトルクの伝達に寄与する部分となる。そのため、リングギヤ14の圧入面18をフランジ12の圧入面20に圧入させた後に、図15に示すようにリングギヤ14とフランジ12とを締結したデファレンシャルサブアッシ1において、リングギヤ14とフランジ12との締結部分の強度を上昇させることができる。
<変形例>
 なお、以上の実施例1~実施例6においてはかしめ部24とノッチ26との間でかしめにより締結を行う例を挙げたが、本発明は、これに限定されず、デフケース10のフランジとリングギヤ14との締結を溶接で行う例に対しても適用ができる。
 なお、上記した実施の形態は単なる例示にすぎず、本発明を何ら限定するものではなく、その要旨を逸脱しない範囲内で種々の改良、変形が可能であることはもちろんである。
 1  デファレンシャルサブアッシ
 10 デフケース
 12 フランジ
 14 リングギヤ
 16 歯
 17 歯底部
 18 圧入面
 20 圧入面
 22 内周縁部
 24 かしめ部
 26 ノッチ
 28 ストッパ
 30 第1端面
 32 第2端面
 34 第1端部
 36 第2端部
 38 外側逃げ形状部
 40 内側逃げ形状部
 42 切り欠き部
 44 外周面
 46 凸部

Claims (18)

  1.  環状部品の外周面から前記環状部品の半径方向の外側に突出して形成された突出部に対しギヤの中心軸方向の一方の端面を当接させながら、かつ、前記ギヤの内周面を前記環状部品の外周面に圧入させる圧入構造において、
     前記ギヤの内周面を前記環状部品の外周面に圧入させるときに前記ギヤの歯底部にて発生する引張応力を前記ギヤの少なくとも前記一方の端面の位置にて低減させる引張応力低減機構を有すること、
     を特徴とする圧入構造。
  2.  請求項1の圧入構造において、
     前記引張応力低減機構は、前記一方の端面の位置における前記ギヤの内周面と前記環状部品の外周面との間の圧入代を、前記ギヤの中心軸方向の他方の端面の位置における前記ギヤの内周面と前記環状部品の外周面との間の圧入代よりも小さくする機構であること、
     を特徴とする圧入構造。
  3.  請求項2の圧入構造において、
     前記ギヤの内周面は、前記ギヤの中心軸方向について前記一方の端面に近づくにつれて内径が徐々に大きくなるように形成されていること、
     を特徴とする圧入構造。
  4.  請求項2の圧入構造において、
     前記環状部品の外周面は、前記環状部品の中心軸方向について前記突出部に近づくにつれて外径が徐々に小さくなるように形成されていること、
     を特徴とする圧入構造。
  5.  請求項2の圧入構造において、
     前記ギヤの内周面は、前記環状部品の外周面との圧入部と、前記一方の端面と前記圧入部との間にて形成され前記圧入部よりも前記ギヤの半径方向の外側に凹むように形成された外側逃げ形状部と、を備えること、
     を特徴とする圧入構造。
  6.  請求項2の圧入構造において、
     前記環状部品の外周面は、前記ギヤの内周面との圧入部と、前記突出部と前記圧入部との間にて形成され前記圧入部よりも前記環状部品の半径方向の内側に凹むように形成された内側逃げ形状部と、を備えること、
     を特徴とする圧入構造。
  7.  請求項1の圧入構造において、
     前記引張応力低減機構は、前記突出部にて前記環状部品の半径方向の内側に凹むように形成された切り欠き部を備える機構であること、
     を特徴とする圧入構造。
  8.  請求項7の圧入構造において、
     前記ギヤは、前記一方の端面から前記ギヤの中心軸方向に突出するように形成された凸部を備え、
     前記切り欠き部と前記凸部とを嵌合させること、
     を特徴とする圧入構造。
  9.  請求項1乃至8のいずれか1つの圧入構造において、
     前記ギヤは差動装置のリングギヤであり、
     前記環状部品は前記差動装置のデフケースに設けられたフランジであること、
     を特徴とする圧入構造。
  10.  ギヤの内周面を環状部品の外周面に圧入させ、前記環状部品の外周面から前記環状部品の半径方向の外側に突出して形成された突出部に対し前記ギヤの中心軸方向の一方の端面を当接させる圧入方法において、
     前記ギヤの内周面を前記環状部品の外周面に圧入させるときに前記ギヤの歯底部にて発生する引張応力を前記ギヤの少なくとも前記一方の端面の位置にて低減させること、
     を特徴とする圧入方法。
  11.  請求項10の圧入方法において、
     前記一方の端面の位置における前記ギヤの内周面と前記環状部品の外周面との間の圧入代を、前記ギヤの中心軸方向の他方の端面の位置における前記ギヤの内周面と前記環状部品の外周面との間の圧入代よりも小さくすること、
     を特徴とする圧入方法。
  12.  請求項11の圧入方法において、
     前記ギヤの内周面は、前記ギヤの中心軸方向について前記一方の端面に近づくにつれて内径が徐々に大きくなるように形成されていること、
     を特徴とする圧入方法。
  13.  請求項11の圧入方法において、
     前記環状部品の外周面は、前記環状部品の中心軸方向について前記突出部に近づくにつれて外径が徐々に小さくなるように形成されていること、
     を特徴とする圧入方法。
  14.  請求項11の圧入方法において、
     前記ギヤの内周面は、前記環状部品の外周面との圧入部と、前記一方の端面と前記圧入部との間にて形成され前記圧入部よりも前記ギヤの半径方向の外側に凹むように形成された外側逃げ形状部と、を備えること、
     を特徴とする圧入方法。
  15.  請求項11の圧入方法において、
     前記環状部品の外周面は、前記ギヤの内周面との圧入部と、前記突出部と前記圧入部との間にて形成され前記圧入部よりも前記環状部品の半径方向の内側に凹むように形成された内側逃げ形状部と、を備えること、
     を特徴とする圧入方法。
  16.  請求項10の圧入方法において、
     前記突出部は、前記環状部品の半径方向の内側に凹むように形成された切り欠き部を備えること、
     を特徴とする圧入方法。
  17.  請求項16の圧入方法において、
     前記ギヤは、前記一方の端面から前記ギヤの中心軸方向に突出するように形成された凸部を備え、
     前記切り欠き部と前記凸部とを嵌合させること、
     を特徴とする圧入方法。
  18.  請求項10乃至17のいずれか1つの圧入方法において、
     前記ギヤは差動装置のリングギヤであり、
     前記環状部品は前記差動装置のデフケースに設けられたフランジであること、
     を特徴とする圧入方法。
PCT/JP2011/064956 2011-06-29 2011-06-29 圧入構造および圧入方法 WO2013001627A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201180067666.3A CN103380316B (zh) 2011-06-29 2011-06-29 压力配合结构以及压力配合方法
EP11868801.9A EP2728222B1 (en) 2011-06-29 2011-06-29 Press-fit structure and press-fit method
US13/995,010 US9546725B2 (en) 2011-06-29 2011-06-29 Press-fit structure and press-fit method
PCT/JP2011/064956 WO2013001627A1 (ja) 2011-06-29 2011-06-29 圧入構造および圧入方法
JP2011538765A JP5333600B2 (ja) 2011-06-29 2011-06-29 圧入構造および圧入方法
KR1020137031616A KR101521042B1 (ko) 2011-06-29 2011-06-29 압입 구조 및 압입 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/064956 WO2013001627A1 (ja) 2011-06-29 2011-06-29 圧入構造および圧入方法

Publications (1)

Publication Number Publication Date
WO2013001627A1 true WO2013001627A1 (ja) 2013-01-03

Family

ID=47423569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064956 WO2013001627A1 (ja) 2011-06-29 2011-06-29 圧入構造および圧入方法

Country Status (6)

Country Link
US (1) US9546725B2 (ja)
EP (1) EP2728222B1 (ja)
JP (1) JP5333600B2 (ja)
KR (1) KR101521042B1 (ja)
CN (1) CN103380316B (ja)
WO (1) WO2013001627A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130091863A1 (en) * 2011-10-12 2013-04-18 Jeffrey M. Makulec Planet gear for air turbine starter system
JP2019027473A (ja) * 2017-07-27 2019-02-21 Gknドライブラインジャパン株式会社 デファレンシャル装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102939480B (zh) * 2010-06-04 2015-07-22 丰田自动车株式会社 内啮合齿轮与差速器箱的紧固构造以及使用了所述紧固构造的差动装置
US9097334B2 (en) * 2010-07-07 2015-08-04 Toyota Jidosha Kabushiki Kaisha Method for caulking ring gear, caulking tool used for method for caulking ring gear, and ring gear
JP5870906B2 (ja) * 2012-11-27 2016-03-01 トヨタ自動車株式会社 リングギヤの取付構造
DE102013225984B4 (de) * 2013-12-16 2017-03-23 Schaeffler Technologies AG & Co. KG Hydraulische Spannvorrichtung für einen Zugmitteltrieb
JP6269615B2 (ja) * 2015-08-07 2018-01-31 トヨタ自動車株式会社 車両用ディファレンシャル装置
DE102019203340A1 (de) * 2019-03-12 2020-09-17 Robert Bosch Gmbh Differential- oder Verteilergetriebe
US11719283B2 (en) * 2019-04-09 2023-08-08 Rolls-Royce North American Technologies, Inc. Axially clamping rotating engine components
JP7353827B2 (ja) * 2019-06-28 2023-10-02 武蔵精密工業株式会社 伝動装置
CN110905989A (zh) * 2019-10-09 2020-03-24 重庆神箭汽车传动件有限责任公司 差速器壳体和齿轮总成
CN111022607A (zh) * 2019-10-09 2020-04-17 重庆神箭汽车传动件有限责任公司 差速器齿轮连接结构
KR102152968B1 (ko) 2020-04-26 2020-09-07 박현덕 압입기 및 이를 이용한 대상물 가공방법
AT524211B1 (de) * 2020-11-17 2022-04-15 Miba Sinter Austria Gmbh Verfahren zum Verbinden eines ersten Bauteils mit einem zweiten Bauteil zu einer Baugruppe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136747U (ja) * 1984-08-08 1986-03-07 本田技研工業株式会社 差動装置
JPH0322153U (ja) * 1989-07-13 1991-03-06
EP0647789A1 (fr) * 1993-10-12 1995-04-12 Société Anonyme dite: REGIE NATIONALE DES USINES RENAULT Boîtier de différentiel
JP2003106412A (ja) * 2001-09-28 2003-04-09 Kubota Corp 作業車の差動装置
JP2003294114A (ja) * 2002-04-02 2003-10-15 F C C:Kk ハブ付き回転部材及びその製作方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5575515U (ja) * 1978-11-18 1980-05-24
US4343563A (en) * 1980-05-16 1982-08-10 Caterpillar Tractor Co. Tapered spline and method of manufacturing same
FR2580349B1 (fr) 1985-04-16 1989-11-10 Renault Piece mecanique a deux elements integres
JP3057857B2 (ja) 1991-11-08 2000-07-04 日本鋼管株式会社 高トルクツールジョイント
JPH0742713A (ja) 1993-07-29 1995-02-10 Matsushita Electric Ind Co Ltd 回転軸の固定方法
JPH08152057A (ja) * 1994-11-29 1996-06-11 Nippon Columbia Co Ltd 歯車装置
JP2001235009A (ja) 2000-02-22 2001-08-31 Seiko Epson Corp 歯車装置,歯車,および該歯車装置を備えた記録装置
FR2805482B1 (fr) 2000-02-25 2002-05-03 Renault Piece mecanique de transmission
JP2002188113A (ja) * 2000-12-20 2002-07-05 Hitachi Constr Mach Co Ltd ロードローラ
JP4313014B2 (ja) 2002-09-30 2009-08-12 株式会社ジェイテクト シャフト及びその製造方法
JP2005282817A (ja) 2004-03-30 2005-10-13 Nissan Motor Co Ltd 車両用差動装置のデフケース
GB0601720D0 (en) * 2006-01-27 2006-03-08 Meritor Heavy Vehicle Sys Ltd Differential Gear Assembly And Method
US8480531B2 (en) * 2007-02-02 2013-07-09 Arvinmeritor Technology, Llc Differential assembly with inverted bearing
JP4858513B2 (ja) 2008-08-22 2012-01-18 トヨタ自動車株式会社 差動装置の接合方法、及び接合補助具
WO2011145179A1 (ja) 2010-05-18 2011-11-24 トヨタ自動車株式会社 リングギヤの締結構造
JP5403154B2 (ja) 2010-05-19 2014-01-29 トヨタ自動車株式会社 リングギヤの締結構造
WO2011151921A1 (ja) 2010-06-04 2011-12-08 トヨタ自動車株式会社 リングギヤとデフケースの締結構造及びそれを用いた差動装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136747U (ja) * 1984-08-08 1986-03-07 本田技研工業株式会社 差動装置
JPH0322153U (ja) * 1989-07-13 1991-03-06
EP0647789A1 (fr) * 1993-10-12 1995-04-12 Société Anonyme dite: REGIE NATIONALE DES USINES RENAULT Boîtier de différentiel
JP2003106412A (ja) * 2001-09-28 2003-04-09 Kubota Corp 作業車の差動装置
JP2003294114A (ja) * 2002-04-02 2003-10-15 F C C:Kk ハブ付き回転部材及びその製作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2728222A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130091863A1 (en) * 2011-10-12 2013-04-18 Jeffrey M. Makulec Planet gear for air turbine starter system
US9359957B2 (en) * 2011-10-12 2016-06-07 Hamilton Sundstrand Corporation Planet gear for air turbine starter system
JP2019027473A (ja) * 2017-07-27 2019-02-21 Gknドライブラインジャパン株式会社 デファレンシャル装置

Also Published As

Publication number Publication date
US20130269462A1 (en) 2013-10-17
JPWO2013001627A1 (ja) 2015-02-23
JP5333600B2 (ja) 2013-11-06
EP2728222B1 (en) 2017-04-19
CN103380316A (zh) 2013-10-30
KR101521042B1 (ko) 2015-05-15
CN103380316B (zh) 2015-11-25
EP2728222A1 (en) 2014-05-07
EP2728222A4 (en) 2015-04-22
KR20140013057A (ko) 2014-02-04
US9546725B2 (en) 2017-01-17

Similar Documents

Publication Publication Date Title
JP5333600B2 (ja) 圧入構造および圧入方法
WO2011145189A1 (ja) リングギヤの締結構造
JP5333597B2 (ja) かしめ締結部品、かしめ締結部品の締結方法、かしめ締結部品の製造方法
WO2011145179A1 (ja) リングギヤの締結構造
US7485044B2 (en) Shaft assembly and method of manufacture thereof
CN107676455B (zh) 差动装置
CN209839097U (zh) 人字形齿轮
JP5870906B2 (ja) リングギヤの取付構造
US9169878B2 (en) Torque transmitting assembly and method of producing
JP2014095409A (ja) ギヤの締結構造
JP6430242B2 (ja) 歯車構造体
JP4908458B2 (ja) 動力伝達部品及びその製造方法
JP2020085189A (ja) 軸部材の嵌合構造
JP2006322518A (ja) スナップリングおよびスナップリングの取付構造ならびにトルク伝達装置
US20070107197A1 (en) Method for rotational coupling
JP2010202125A (ja) 駆動車輪用軸受装置、及びこの駆動車輪用軸受装置の製造方法
JP6906352B2 (ja) 減速機
JP6384407B2 (ja) 最終減速装置のダンパ配設構造
JP5958281B2 (ja) ギヤの締結構造
JP2020197238A (ja) 動力伝達装置
JP2012255501A (ja) リングギヤの締結構造
JP2018200081A (ja) ギヤとシャフトの接合方法および接合構造

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2011538765

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11868801

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011868801

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13995010

Country of ref document: US

Ref document number: 2011868801

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137031616

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE