WO2012176906A1 - ナノ凹凸構造用樹脂組成物、およびそれを用いた自動車メータカバー用透明部材とカーナビゲーションモニター用透明部材 - Google Patents

ナノ凹凸構造用樹脂組成物、およびそれを用いた自動車メータカバー用透明部材とカーナビゲーションモニター用透明部材 Download PDF

Info

Publication number
WO2012176906A1
WO2012176906A1 PCT/JP2012/066070 JP2012066070W WO2012176906A1 WO 2012176906 A1 WO2012176906 A1 WO 2012176906A1 JP 2012066070 W JP2012066070 W JP 2012066070W WO 2012176906 A1 WO2012176906 A1 WO 2012176906A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
resin composition
meth
acrylate
Prior art date
Application number
PCT/JP2012/066070
Other languages
English (en)
French (fr)
Inventor
雅行 内田
克宏 小嶋
牧野 伸治
祐介 中井
小澤 覚
春生 海野
山本 功
孝之 福井
Original Assignee
三菱レイヨン株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社, 日産自動車株式会社 filed Critical 三菱レイヨン株式会社
Priority to CN201280028734.XA priority Critical patent/CN103597000B/zh
Priority to EP12802394.2A priority patent/EP2725043B1/en
Priority to US14/123,801 priority patent/US9284445B2/en
Publication of WO2012176906A1 publication Critical patent/WO2012176906A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/062Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/12Optical coatings produced by application to, or surface treatment of, optical elements by surface treatment, e.g. by irradiation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]

Definitions

  • the present invention relates to a resin composition for a nano uneven structure suitable for forming a nano uneven structure, and a transparent member for an automobile meter cover and a transparent member for a car navigation monitor using the resin composition.
  • a film (antireflection film) with a nano-concave structure formed on a substrate has a continuously changing cross-sectional area when cut in the film surface direction, and the refractive index gradually increases from the air to the substrate. Therefore, it becomes an effective antireflection means. Moreover, this antireflection film exhibits excellent optical performance that cannot be replaced by other methods.
  • An antireflection film having a nano-concave structure on the surface is used at an interface in contact with air, and therefore, mainly requires antifouling properties and scratch resistance.
  • the nano concavo-convex structure tends to be inferior in antifouling property and scratch resistance as compared with a molded body such as a hard coat having a smooth surface made of the same resin composition.
  • Patent Document 1 Although the nano uneven structure obtained from a highly hydrophilic resin composition as described in Patent Document 1 is excellent in antifouling properties, it is required to further improve various properties such as scratch resistance and weather resistance.
  • a method of blending a lubricant such as a silicone compound with a resin composition is known.
  • the lubricant was likely to bleed out and the contact angle was likely to increase.
  • the antifouling property particularly the fingerprint wiping property, was liable to deteriorate.
  • the blending amount of the lubricant may be reduced.
  • the blending amount of the lubricant is small, sufficient scratch resistance cannot be obtained.
  • a method for improving the weather resistance a method of blending an ultraviolet absorber or a light stabilizer with a resin composition is known.
  • a weather resistance test or the like is performed on a nano-concave structure obtained from a resin composition containing a UV absorber or a light stabilizer, the UV absorber or the light stabilizer tends to bleed out and the contact angle increases. It was easy. As a result, the antifouling property, particularly the fingerprint wiping property, was liable to deteriorate.
  • the present invention has been made in view of the above circumstances, and has a resin composition for a nano uneven structure that can form a nano uneven structure having excellent antifouling properties, scratch resistance and low reflectivity, and excellent weather resistance. And providing a transparent member for a car meter cover and a transparent member for a car navigation monitor using the same.
  • the present inventors have used a specific monomer component, a lubricant that achieves both improved scratch resistance and antifouling properties, water repellency by weather resistance tests, and antifouling properties.
  • a specific monomer component a lubricant that achieves both improved scratch resistance and antifouling properties, water repellency by weather resistance tests, and antifouling properties.
  • an internal mold release agent By selecting an internal mold release agent and blending with a specific monomer component in a balanced manner, it has excellent antifouling properties, especially fingerprint wiping properties, scratch resistance and low reflection properties, and excellent weather resistance.
  • the inventors have found that a concavo-convex structure can be formed, and have completed the present invention.
  • the resin composition for nano uneven structure of the present invention contains 50 to 95 parts by mass of a tetrafunctional (meth) acrylate monomer (A) having four radical polymerizable functional groups in one molecule, in one molecule.
  • a polymerization reactive monomer component containing 15 parts by mass or less of (meth) acrylate monomer (C) and 0.01 to 10 parts per 100 parts by mass of the polymerization reactive monomer component. It contains an active energy ray polymerization initiator (D) in an amount of 0.01, 3 to 3 parts by weight of a release agent (E), and 0.01 to 3 parts by weight of a lubricant (F). To do. Further, it is preferable to further contain 0.01 to 5 parts by mass of an ultraviolet absorber and / or a light stabilizer (G) with respect to 100 parts by mass of the polymerization reactive monomer component.
  • the tetrafunctional (meth) acrylate monomer (A) is pentaerythritol tetra (meth) acrylate, an ethoxy modified product of pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, ditrimethylolpropane tetra (meth). It is preferably at least one compound selected from the group consisting of an ethoxy-modified product of acrylate and a condensation reaction product of trimethylolethane / acrylic acid / succinic anhydride.
  • the polyalkylene glycol structure of the bifunctional (meth) acrylate monomer (B) is preferably a polyethylene glycol structure.
  • the release agent (E) is preferably at least one polyoxyethylene alkyl phosphate compound represented by the following general formula (I).
  • R 1 represents an alkyl group
  • m represents a number from 1 to 20
  • n represents a number from 1 to 3.
  • the lubricant (F) is a compound having a polyether-modified polydimethylsiloxane skeleton.
  • the transparent member for automobile meter covers of the present invention has a nano uneven structure formed using the resin composition for nano uneven structure.
  • the transparent member for a car navigation monitor according to the present invention has a nano uneven structure formed using the resin composition for nano uneven structure.
  • the composition further contains at least one component (G) selected from the group consisting of 0.01 to 5 parts by mass of an ultraviolet absorber and a light stabilizer with respect to 100 parts by mass of the polymerization-reactive monomer component.
  • the tetrafunctional (meth) acrylate monomer (A) is pentaerythritol tetra (meth) acrylate, an ethoxy modified product of pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, ditrimethylolpropanetetra
  • the nano uneven structure according to (1) or (2) which is at least one compound selected from the group consisting of ethoxy-modified products of (meth) acrylate and condensation reaction products of trimethylolethane / acrylic acid / succinic anhydride.
  • Resin composition (4) The nano-concave structure resin composition according to any one of (1) to (3), wherein the polyalkylene glycol structure of the bifunctional (meth) acrylate monomer (B) is a polyethylene glycol structure, (5)
  • the release agent (E) is any one of (1) to (4), which is at least one polyoxyethylene alkyl phosphate compound represented by the following general formula (I):
  • a resin composition for a nano uneven structure capable of forming a nano uneven structure having excellent antifouling properties, scratch resistance and low reflectivity, and excellent weather resistance, and an automobile using the same
  • a transparent member for a meter cover and a transparent member for a car navigation monitor can be provided.
  • (meth) acrylate means “acrylate and / or methacrylate”.
  • active energy ray means an energy ray such as electron beam, ultraviolet ray, visible ray, or infrared ray.
  • the resin composition for nano concavo-convex structure of the present invention is a resin composition that cures by irradiating an active energy ray and undergoes a polymerization reaction.
  • the resin composition of the present invention comprises a polymerization-reactive monomer component, an active energy ray polymerization initiator (D), a release agent (E), a lubricant (F), and optionally an ultraviolet absorber and a light stabilizer.
  • each component will be described.
  • the polymerization reactive monomer component includes a tetrafunctional (meth) acrylate monomer (A), a bifunctional (meth) acrylate monomer (B), and a monofunctional (meth) acrylate monomer (C).
  • the tetrafunctional (meth) acrylate monomer (A) (hereinafter sometimes referred to as “monomer (A)”) is the main component of the resin composition, and has good mechanical properties (particularly scratch resistance) of the cured product. Play a role in maintaining.
  • the monomer (A) has four radical polymerizable functional groups in one molecule. Thereby, the molecular weight between the crosslinking points of the cured product of the resin composition is reduced, the elastic modulus and hardness of the cured product are increased, and a cured product having excellent scratch resistance is obtained.
  • the monomer (A) it is preferable to use a hydrocarbon compound in which four acryloyloxy groups are bonded. Such a compound can be obtained, for example, by reacting four (meth) acrylic compounds with a hydrocarbon compound in which four hydroxyl groups are bonded. Further, as the monomer (A), it is also preferable to use an ethoxy modified product in which an ethoxy structure is introduced between the acryloyloxy group and the hydrocarbon group in the hydrocarbon compound in which the four acryloyloxy groups are bonded.
  • the monomer (A) examples include pentaerythritol tetra (meth) acrylate, ethoxy modified product of pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, and ethoxy modification of ditrimethylolpropane tetra (meth) acrylate.
  • a condensation reaction product of trimethylolethane / acrylic acid / succinic anhydride examples include pentaerythritol tetra (meth) acrylate, ethoxy modified product of pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, and ethoxy modification of ditrimethylolpropane tetra (meth) acrylate.
  • a condensation reaction product of trimethylolethane / acrylic acid / succinic anhydride
  • the monomer (A) a commercially available product can be used.
  • NK Ester ATM-4E or NK Ester A-TMMT manufactured by Shin-Nakamura Chemical Co., Ltd., TAS manufactured by Osaka Organic Chemical Co., Ltd., or manufactured by Daicel Cytec Co., Ltd. EBECRYL40 or the like is preferable. If these are used, it is easy to balance scratch resistance and antifouling properties, particularly fingerprint wiping properties.
  • a monomer (A) may be used individually by 1 type, and may use 2 or more types together.
  • the content of the monomer (A) is 50 to 95 parts by mass when the total content of all monomers in the polymerization-reactive monomer component is 100 parts by mass, from the viewpoint of water resistance and chemical resistance.
  • the amount is preferably 60 to 90 parts by mass, more preferably 65 to 85 parts by mass. If content of a monomer (A) is more than the said lower limit, the elasticity modulus, hardness, and scratch resistance of the hardened
  • the bifunctional (meth) acrylate monomer (B) plays a role of hydrophilizing the surface of the nano uneven structure, and provides antifouling properties to the nano uneven structure.
  • the monomer (B) has two radical polymerizable functional groups in one molecule of the monomer (B).
  • the monomer (B) has a polyalkylene glycol structure, and the total number of repeating units of the polyalkylene glycol structure present in one molecule of the monomer (B) is 4 to 25, preferably 9 to 23, more preferably Is 10-20.
  • the polyalkylene glycol structure a polyethylene glycol structure is particularly preferable from the viewpoint of hydrophilization.
  • the polyalkylene glycol structure means a structure having two or more repeating units of an alkylene glycol structure.
  • the polyethylene glycol structure means a structure having two or more repeating units of the ethylene glycol structure.
  • the monomer (B) di (meth) acrylates having a long-chain polyethylene glycol structure are preferable, and polyethylene glycol diacrylate is particularly preferable.
  • the monomer (B) tridecaethylene oxide diacrylate, tetradecaethylene oxide diacrylate, tricosaethylene oxide diacrylate, or the like is preferable.
  • the monomer (B) a commercially available product can be used. For example, “Aronix” series M240 or M260 manufactured by Toagosei Co., Ltd .; or “NK Ester” series A-400, A- manufactured by Shin-Nakamura Chemical Co., Ltd. 600 or A-1000.
  • a monomer (B) may be used individually by 1 type, and may use 2 or more types together.
  • the content of the monomer (B) is 5 to 35 parts by mass, preferably 10 to 30 parts by mass, more preferably 100 parts by mass of the total content of all monomers in the polymerization reactive monomer component. Is 15 to 25 parts by mass. If content of a monomer (B) is more than the said lower limit, the surface of the hardened
  • the monofunctional (meth) acrylate monomer (C) (hereinafter sometimes referred to as “monomer (C)”) has a role in improving the handling properties and polymerization reactivity of the resin composition, and the transparent substrate described later. Plays a role in improving adhesion.
  • the monomer (C) is a monofunctional monomer having one radical polymerizable functional group per molecule and copolymerizable with the monomer (A) and the monomer (B).
  • the monomer (A) As the main component that greatly affects the physical properties of the resin composition of the present invention. Since this monomer (A) tends to have a high viscosity, the handling property of the resin composition may be lowered. In such a case, it may be diluted with a low-viscosity monofunctional monomer or bifunctional monomer in order to improve handling. However, in the case of a bifunctional monomer, when one radical polymerizable functional group reacts, the reactivity of the remaining radical polymerizable functional group tends to decrease. Therefore, a monofunctional monomer is suitable for improving the polymerization reactivity of the entire resin composition, and when the monomer (A) having a high viscosity is used, it is preferable to use the monomer (C) in combination.
  • the resin composition is generally cured on a transparent base material and integrated with the transparent base material.
  • the monomers (C) if a low molecular weight monofunctional monomer is used, the adhesion between the transparent substrate and the cured product of the resin composition tends to be better.
  • the monomer (C) may be appropriately selected depending on the material of the transparent substrate. In order to improve the adhesion to the transparent substrate, in particular, alkyl (meth) acrylate or hydroxyalkyl ( (Meth) acrylate is preferred.
  • viscosity modifiers such as acryloylmorpholine, acryloyl isocyanate, or the like can also be used.
  • methyl acrylate, ethyl acrylate, or methyl methacrylate is particularly preferable as the monomer (C).
  • a monomer (C) may be used individually by 1 type, and may use 2 or more types together.
  • the content of the monomer (C) is 15 parts by mass or less, preferably 5 to 15 parts by mass, when the total content of all monomers in the polymerization-reactive monomer component is 100 parts by mass.
  • the amount is preferably 10 to 12 parts by mass. If content of a monomer (C) is below the said upper limit, sclerosis
  • the residual amount of unreacted monomer (C) after curing is reduced, and the unreacted monomer (C) acts as a plasticizer to lower the elastic modulus of the cured product, or to reduce the scratch resistance. Can prevent problems.
  • the active energy ray polymerization initiator (D) is a compound that generates a radical that is cleaved by irradiating active energy rays to initiate a polymerization reaction. From the viewpoint of apparatus cost and productivity, it is common to use ultraviolet rays as active energy rays.
  • the active energy ray polymerization initiator (D) is not particularly limited. Specific examples thereof include benzophenone, 4,4-bis (diethylamino) benzophenone, 2,4,6-trimethylbenzophenone, methyl orthobenzoylbenzoate, 4-phenylbenzophenone, t-butylanthraquinone, 2-ethylanthraquinone; 2,4 Thioxanthones such as diethylthioxanthone, isopropylthioxanthone, or 2,4-dichlorothioxanthone; diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 1-hydroxycyclohexyl-phenyl Ketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, or 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butano Benzophen
  • An active energy ray polymerization initiator (D) may be used individually by 1 type, and may use 2 or more types together.
  • two or more types having different absorption wavelengths are preferably used in combination, and 1-hydroxy-cyclohexyl-phenyl-ketone and 2,4,6-trimethylbenzoyl-diphenylphosphine oxide are used in combination, or 1-hydroxy-cyclohexyl-phenyl It is more preferable to use a ketone and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide in combination.
  • a persulfate such as potassium persulfate or ammonium persulfate, a peroxide such as benzoyl peroxide, or a thermal polymerization initiator such as an azo initiator may be used in combination.
  • the content of the active energy ray polymerization initiator (D) is 0.01 to 10 parts by weight, preferably 0.1 to 5 parts by weight, more preferably 0.8 parts per 100 parts by weight of the polymerization reactive monomer component. 2 to 3 parts by mass. If content of an active energy ray polymerization initiator (D) is more than the said lower limit, sclerosis
  • examples of the mold release agent (E) include a phosphate ester compound, and at least one polyoxyethylene alkyl phosphate ester compound represented by the following general formula (I) (in terms of suppressing an increase in contact angle) ( Hereinafter, “compound (I)” is particularly preferable.
  • R 1 is an alkyl group.
  • R 1 is preferably an alkyl group having 3 to 18 carbon atoms.
  • m represents an average added mole number of ethylene oxide, represents an integer of 1 to 20, and preferably 1 to 10.
  • n represents an integer of 1 to 3.
  • Compound (I) may be any of a monoester, a diester, or a triester. Moreover, when it is a diester body or a triester body, each polyoxyethylene alkyl residue may mutually differ.
  • the release property of the cured product of the resin composition from the stamper becomes good, which is suitable for forming a nano uneven structure. Moreover, since the load at the time of mold release is very low, a nano uneven structure with few defects can be obtained with high productivity. Further, the resin composition has an effect of suppressing water repellency in a weather resistance test and can form a nano uneven structure having excellent durability.
  • the compound (I) commercially available products can be used.
  • TDP-10 TDP manufactured by Nikko Chemicals Co., Ltd. -8, TDP-6, TDP-2, DDP-10, DDP-8, DDP-6, DDP-4, DDP-2, TLP-4, TCP-5, or DLP-10.
  • the content of the release agent (E) is 0.01 to 3 parts by weight, preferably 0.05 to 1 part by weight, more preferably 0.1 to 0 parts by weight based on 100 parts by weight of the polymerization reactive monomer component. .5 parts by mass. If the content of the release agent (E) is equal to or higher than the above lower limit value, it is possible to prevent the resin remaining on the stamper (demolding failure) due to a decrease in the releasability from the stamper and to suppress water repellency (bad weather resistance). It is possible to prevent the deterioration of the antifouling property in the initial stage and the weather resistance test.
  • the content of the release agent (E) is less than or equal to the above upper limit value, the resin remaining on the stamper due to a decrease in adhesion to the transparent substrate described later while maintaining the original performance of the cured product of the resin composition (Release failure) can be prevented.
  • the weather resistance of the cured product can be maintained well.
  • the lubricant (F) plays a role of improving the scratch resistance.
  • a compound having a polyether-modified polydimethylsiloxane skeleton is preferable, and a reactive compound having an acrylic group or the like may be used.
  • the lubricant (F) may be a block copolymer or a graft copolymer.
  • a commercially available product can be used, and examples thereof include BYK-378, BYK-333, BYK-331, BYK-377, BYK-3500, and BYK-3510 manufactured by BYK Japan.
  • the lubricant (F) one type may be used alone, or two or more types may be used in combination.
  • the content of the lubricant (F) is 0.01 to 3 parts by weight, preferably 0.05 to 2 parts by weight, more preferably 0.1 to 1.0 parts by weight with respect to 100 parts by weight of the polymerization reactive monomer component. Part by mass. If content of a lubricant (F) is more than the said lower limit, it can suppress that the abrasion resistance of the hardened
  • the resin composition of the present invention preferably contains an ultraviolet absorber and / or a light stabilizer (G) (hereinafter, these may be collectively referred to as “component (G)”). That is, the component (G) is preferably at least one component selected from the group consisting of an ultraviolet absorber and a light stabilizer.
  • the component (G) plays a role of imparting weather resistance such as suppression of yellowish color and suppression of increase in haze.
  • Examples of the ultraviolet absorber include benzophenone-based ultraviolet absorbers, benzotriazole-based ultraviolet absorbers, and benzoate-based ultraviolet absorbers.
  • As the ultraviolet absorber specifically, 2- [4,6-bis (2,4-dimethylphenyl) -s-triazin-2-yl] -5- [3- (dodecyloxy) -2-hydroxypropoxy ] Phenol or 2-hydroxy-4-methoxybenzophenone.
  • Examples of commercially available UV absorbers include “Tinuvin” series 400, 479, or 109 manufactured by Ciba Specialty Chemicals; or “Viosorb” series 110 manufactured by Kyodo Pharmaceutical.
  • examples of the light stabilizer include hindered amine light stabilizers.
  • the light stabilizer examples include bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate or methyl 1,2,2,6,6-pentamethyl-4-piperidyl sebacate. Can be mentioned.
  • Examples of commercially available light stabilizers include “Tinuvin” series 152 or 292 manufactured by Ciba Specialty Chemicals.
  • the content of the component (G) is 0.01 to 5 parts by mass, preferably 0.01 to 3 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the polymerization reactive monomer component. Particularly preferred is 0.01 to 0.5 parts by mass. If content of (G) component is more than the said lower limit, while being able to suppress yellowing of the hardened
  • the content of the component (G) is less than or equal to the above upper limit, the curability of the resin composition, the scratch resistance of the cured product, the antifouling property in the initial and weather resistance tests, especially the fingerprint wiping It is possible to effectively prevent a decrease in sex.
  • the resin composition of the present invention is optionally made of a plasticizer, an antistatic agent, a flame retardant, a flame retardant aid, a polymerization inhibitor, a filler, a silane coupling agent, a colorant, a reinforcing agent, an inorganic filler, or an impact resistance.
  • a known additive such as a property modifier may be contained.
  • the viscosity measured with a rotary B-type viscometer at 25 ° C. is preferably 10 Pa ⁇ s or less, more preferably 5 Pa. ⁇ S or less, particularly preferably 2 Pa ⁇ s or less.
  • the range of the viscosity with a rotary B-type viscometer at 25 ° C. is preferably 50 mPa ⁇ s to 10 Pa ⁇ s, more preferably 100 mPa ⁇ s to 5 Pa ⁇ s, and particularly preferably 200 mPa ⁇ s to 2 Pa ⁇ s.
  • the resin composition when the resin composition is poured into the stamper, it can be preheated to lower the viscosity.
  • the viscosity of the resin composition can be adjusted by adjusting the type and content of the monomer (A), the monomer (B), and the monomer (C). Specifically, when a large amount of a monomer containing a functional group having a molecular interaction such as a hydrogen bond or a chemical structure is used, the viscosity of the resin composition tends to increase. Further, when a large amount of low molecular weight monomer having no intermolecular interaction is used, the viscosity of the resin composition tends to be low.
  • the resin composition is cured on a transparent substrate, which will be described later, and integrated with the transparent substrate.
  • the refractive indexes of the cured product and the transparent substrate are different, reflection occurs at the interface between the cured product and the transparent substrate, and the reflectance tends to increase. From this, when using the resin composition of this invention for an optical use, it is preferable to adjust the refractive index of a resin composition according to the refractive index of the transparent base material to be used, and to make a refractive index difference small.
  • the resin composition of the present invention described above includes a polymerization reactive monomer component including the monomer (A), the monomer (B) and the monomer (C), an active energy ray polymerization initiator (D), and a release agent.
  • (E) and the lubricant (F) are contained in a specific amount, so that a nano-concave structure having excellent antifouling properties, particularly fingerprint wiping properties, scratch resistance and low reflectivity, and excellent weather resistance Can be formed.
  • the resin composition of the present invention can be polymerized and cured to be used as a molded product, and such a molded product is extremely useful as a nano uneven structure having a nano uneven structure on the surface.
  • the resin composition of the present invention is optimal as a resin composition used when a nano uneven structure is transferred by a transfer method using a stamper in which an inverted structure of the nano uneven structure is formed.
  • a transfer method using a stamper in which an inverted structure of the nano uneven structure is formed.
  • the nano uneven structure obtained by the present invention is a structure having a transparent substrate and a cured product layer laminated on the transparent substrate, and the cured product layer is a cured product of the resin composition of the present invention.
  • the cured product layer has a nano uneven structure on the surface thereof.
  • FIG. 1 is a cross-sectional view schematically showing one embodiment of a nano uneven structure obtained by the present invention.
  • a cured product layer 12 made of a cured product of the resin composition of the present invention is laminated on a transparent substrate 11 described later.
  • the surface of the cured product layer 12 has a nano uneven structure in which the surface exhibits functions such as surface reflection prevention.
  • convex portions 13 and concave portions 14 are formed at equal intervals on the surface of the cured product layer 12.
  • the interval between adjacent convex portions 13 or concave portions 14 of the nano uneven structure (in FIG. 1, the interval w1 between the center points (top portions) 13a of adjacent convex portions 13) is visible.
  • the size must be less than the wavelength of light.
  • “visible light” refers to light having a wavelength of 380 to 780 nm. If this interval w1 is 380 nm or less, scattering of visible light can be suppressed. Further, from the viewpoint of suppressing an increase in the minimum reflectance and the reflectance at a specific wavelength, the height of the convex portion 13 or the depth of the concave portion 14 (in FIG.
  • the vertical distance d1) to the center point (top) 13a is preferably 60 nm or more, and more preferably 90 nm or more.
  • the nano uneven structure obtained by the present invention can be suitably used for optical applications such as an antireflection film.
  • a protrusion structure (convex portion 13) having an aspect ratio (d1 / w1 value) of 1.2 or more is preferable because it can exhibit high antireflection performance. .
  • the shape of the convex portion of the nano uneven structure is not particularly limited, and examples thereof include a conical shape or a pyramid shape as shown in FIG. 1 and a bell shape as shown in FIG. Moreover, the shape of the convex part of a nano uneven
  • the cured product (nano-concave structure) formed from the resin composition of the present invention is excellent in antifouling properties. Further, since a lubricant is used, it is excellent in scratch resistance. In particular, if the distance between adjacent convex portions of the nano-concave structure is equal to or less than the wavelength of visible light (380 nm), the antireflection property is excellent, so that it can be suitably used for an antireflection article. Moreover, if the height of the convex portion is 60 nm or more, the antireflection property is more excellent. Furthermore, the weather resistance is also excellent.
  • the nano uneven structure obtained by the present invention is not limited to the embodiment shown in FIG. 1 or 2, and the nano uneven structure may be formed on one side of the cured product of the resin composition of the present invention. And it may be formed on the entire surface of the cured product. Moreover, the nano uneven structure may be formed in the whole cured
  • Examples of the manufacturing method of the nano concavo-convex structure include, for example, (1) a method of injection molding or press molding using a stamper in which an inverted structure of the nano concavo-convex structure is formed, and (2) a resin between the stamper and the transparent substrate.
  • a method of arranging the composition and curing the resin composition by irradiation with active energy rays to transfer the uneven shape of the stamper, and then peeling the stamper, or (3) transferring the uneven shape of the stamper to the resin composition For example, a method of peeling the stamper and then irradiating an active energy ray to cure the resin composition may be used.
  • the method (2) is particularly preferable from the viewpoint of the transferability of the nano uneven structure or the degree of freedom of the surface composition.
  • the method (2) is particularly suitable when a belt-shaped or roll-shaped stamper capable of continuous production is used, and is a method excellent in productivity.
  • the transparent substrate is not particularly limited as long as it is a molded body that transmits light.
  • the material constituting the transparent substrate include synthetic polymers such as methyl methacrylate (co) polymer, polycarbonate, styrene (co) polymer, or methyl methacrylate-styrene copolymer, cellulose diacetate, cellulose triacetate, Or semi-synthetic polymer such as cellulose acetate butyrate, polyester such as polyethylene terephthalate, polyamide, polyimide, polyether sulfone, polysulfone, polyethylene, polypropylene, polymethylpentene, polyvinyl chloride, polyvinyl acetal, polyether ketone, polyurethane Or glass.
  • the shape and manufacturing method of the transparent substrate are not particularly limited.
  • an injection molded body, an extrusion molded body, or a cast molded body can be used.
  • the shape may be a sheet or a film.
  • the surface of the transparent substrate may be subjected to coating or corona treatment for the purpose of improving properties such as adhesion, antistatic properties, scratch resistance, or weather resistance.
  • the method for forming the nano uneven structure on the stamper is not particularly limited. Specific examples thereof include an electron beam lithography method and a laser beam interference method.
  • a mold having a nano concavo-convex structure can be obtained by coating a suitable photoresist film on a suitable support substrate, exposing to light such as ultraviolet laser, electron beam, or X-ray, and developing. This mold can be used as a stamper as it is, but the support substrate is selectively etched by dry etching through the photoresist layer, and the resist layer is removed to form a nano uneven structure directly on the support substrate itself. It is also possible.
  • anodized porous alumina can be used as a stamper.
  • a pore structure having an interval of 20 to 200 nm formed by anodizing aluminum with oxalic acid, sulfuric acid, or phosphoric acid as an electrolyte at a predetermined voltage may be used as a stamper.
  • the oxide film is once removed and then anodized again, whereby extremely highly regular pores can be formed in a self-organized manner.
  • an anodizing process and a hole diameter expanding process are combined to form a nano-concave structure having a triangular or bell-shaped cross section instead of a rectangular cross section.
  • a replica mold may be produced from an original mold having a nano uneven structure by electroforming or the like and used as a stamper.
  • the shape of the stamper itself is not particularly limited, and may be, for example, a flat plate shape, a belt shape, or a roll shape.
  • a belt shape or a roll shape is used, the nano uneven structure can be continuously transferred, and the productivity can be further increased.
  • Polymerization / curing conditions As a polymerization and curing method by irradiation with active energy rays, polymerization and curing by irradiation with ultraviolet rays are preferable.
  • the lamp that irradiates ultraviolet rays include a high-pressure mercury lamp, a metal halide lamp, and a fusion lamp.
  • the integrated light quantity is preferably 100 to 6000 mJ / cm 2, and more preferably 400 to 4000 mJ / cm 2. If the integrated light quantity is not less than the above lower limit value, the resin composition can be sufficiently cured, and a decrease in scratch resistance due to insufficient curing can be prevented. On the other hand, if the integrated light quantity is equal to or less than the above upper limit, coloring of the cured product and deterioration of the transparent substrate can be prevented.
  • the irradiation intensity is not particularly limited, but it is preferable to suppress the output to such an extent that the transparent substrate is not deteriorated.
  • the nano uneven structure obtained by polymerization and curing in this way has the nano uneven structure of the stamper transferred onto the surface in a relationship between the key and the keyhole.
  • the nano-concave structure made of a cured product of the resin composition of the present invention has good antifouling properties and high scratch resistance, and can exhibit excellent antireflection performance by continuous change in refractive index, and weather resistance. Also excellent in properties. Therefore, the nano uneven structure obtained by the present invention is particularly suitable as an antireflection article such as an antireflection film (including an antireflection film) or a three-dimensional antireflection body.
  • an image display device such as a liquid crystal display device, a plasma display panel, an electroluminescence display, or a cathode tube display device, a lens, a show window, an automobile meter cover, a car
  • the nano uneven structure is attached to an object such as a navigation monitor, a touch panel, a head-up display, a mirror display, an audio display, an in-meter display, or a spectacle lens.
  • the nano uneven structure may be manufactured in advance using a transparent substrate having a shape corresponding thereto, and this may be applied to a predetermined portion of the target article. .
  • the target article is an image display device
  • a nano uneven structure may be attached to the front plate, or the front plate itself may be composed of the nano uneven structure. it can.
  • the nano-concave structure may be used for optical applications such as optical waveguides, relief holograms, solar cells, lenses, polarized light separation elements, or organic electroluminescence light extraction rate improving members, and cell culture. It can also be used for sheet applications.
  • the transparent member for automobile meter covers and the transparent member for car navigation monitors of the present invention have a nano uneven structure formed using the resin composition of the present invention. Since these transparent members are excellent in antireflection performance, the visibility is high. In addition, it has excellent antifouling properties and high scratch resistance, and is excellent in weather resistance.
  • Another aspect of the present invention is a tetrafunctional (meth) having four radical polymerizable functional groups in one molecule when the total content of all monomers in the polymerization reactive monomer component is 100 parts by mass.
  • a total of 50 to 95 parts by mass of the acrylate monomer (A), two radical polymerizable functional groups and a polyalkylene glycol structure in one molecule, and the repeating unit of the alkylene glycol structure existing in one molecule is The bifunctional (meth) acrylate monomer (B) that is 4 to 25 can be copolymerized with 5 to 35 parts by mass, and the tetrafunctional (meth) acrylate monomer (A) and the bifunctional (meth) acrylate monomer (B).
  • R 1 , m, and n have the same meaning as described above.
  • tetrafunctional (meta) having 4 radical polymerizable functional groups in one molecule when the total content of all monomers in the polymerization-reactive monomer component is 100 parts by mass, tetrafunctional (meta) having 4 radical polymerizable functional groups in one molecule. ) 50 to 95 parts by mass of the acrylate monomer (A), the total of repeating units of the alkylene glycol structure having two radical polymerizable functional groups and a polyalkylene glycol structure in one molecule and existing in one molecule Can be copolymerized with 5 to 35 parts by mass of a bifunctional (meth) acrylate monomer (B) having a molecular weight of 4 to 25 and the tetrafunctional (meth) acrylate monomer (A) and the bifunctional (meth) acrylate monomer (B).
  • the active energy ray polymerization initiator (D) is Benzophenone, 4,4-bis (diethylamino) benzophenone, 2,4,6-trimethylbenzophenone, methyl orthobenzoylbenzoate, 4-phenylbenzophenone, t-butylanthraquinone, 2-ethy Luanthraquinone, 2,4-diethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 1-hydroxycyclohexyl Phenylketone, 2-methyl-2-morpholino (4-
  • R 1 , m, and n have the same meaning as described above.
  • tetrafunctional (meta) having 4 radical polymerizable functional groups in one molecule when the total content of all monomers in the polymerization-reactive monomer component is 100 parts by mass, tetrafunctional (meta) having 4 radical polymerizable functional groups in one molecule. ) 50 to 95 parts by mass of the acrylate monomer (A), the total of repeating units of the alkylene glycol structure having two radical polymerizable functional groups and a polyalkylene glycol structure in one molecule and existing in one molecule Can be copolymerized with 5 to 35 parts by mass of a bifunctional (meth) acrylate monomer (B) having a molecular weight of 4 to 25 and the tetrafunctional (meth) acrylate monomer (A) and the bifunctional (meth) acrylate monomer (B).
  • R 1 , m, and n have the same meaning as described above.
  • the stamper was manufactured as follows.
  • the obtained anodized porous alumina was washed with deionized water, and water on the surface was removed by air blow. Then, the surface antifouling coating agent (“Daikin”, “OPTOOL DSX”) was added with a solid content of 0.1.
  • a stamper was obtained by immersing in a solution diluted with a diluent (“HD-ZV”, manufactured by Harves Co., Ltd.) so as to be in mass% for 10 minutes and air-drying for 20 hours.
  • a nano-concave structure consisting of tapered concavities (pores) having a substantially conical shape in which the interval between adjacent pores is 100 nm and the depth of the pores is 180 nm is obtained. It was formed on the surface.
  • Example 1 Preparation of resin composition
  • a substantially conical nano uneven structure having an interval of 100 nm between adjacent protrusions or recesses and a height of 180 nm is formed on the surface. It was.
  • the vertical cross section of the nano concavo-convex structure was subjected to Pt vapor deposition (platinum vapor deposition) for 10 minutes, and the distance between adjacent convex portions or concave portions and the height of the convex portions were measured using the same apparatus and conditions as in the case of the stamper. Specifically, 10 points were measured for each, and the average value was taken as the measured value.
  • Pt vapor deposition platinum vapor deposition
  • the obtained nano uneven structure was subjected to the following evaluations (1) to (7).
  • an acrylic plate manufactured by Mitsubishi Rayon Co., “Acrylite L”, thickness 2.0 mm
  • an adhesive (“Sumilon Co.,“ RA-600 ”).
  • the results are shown in Table 1.
  • the surface of the test sample on the side where the nano uneven structure is formed is referred to as “front surface”
  • the surface of the test sample on the side where the nano uneven structure is not formed is referred to as “back surface”.
  • the surface of the test sample was subjected to a cross-cut peel test according to JIS K5600-5-6 and evaluated according to the following evaluation criteria.
  • a pseudo fingerprint solution is attached to the surface of a test sample by the method described in JP-A-2006-147149 cited in Patent Document 1 (preparing and using pseudo fingerprint component 1). After that, a nell cloth in which water is soaked into a 20 mm square indenter is attached to a reciprocating wear tester (“HEIDON Type: 30S” manufactured by Shinto Kagaku Co., Ltd.) under the conditions of a load of 100 g, a stroke of 40 mm, and 10 reciprocations. The surface of the test sample was wiped off. Next, the test sample was placed on a black paper so that the back surface thereof was in contact, the appearance was visually observed from the surface of the test sample, and the following evaluation criteria were evaluated. A: Dirt is not visually recognized. B: Some fingerprints are visually confirmed. C: The fingerprint spreads and is hardly wiped off.
  • the water contact angle of the surface of the test sample was measured using a contact angle measuring device (“DM-501” manufactured by Kyowa Interface Science Co., Ltd.) and evaluated according to the following evaluation criteria.
  • Examples 2 to 6, Comparative Examples 1 to 10 Except having mixed each component according to the compounding composition shown in Table 1 or 2, the resin composition was prepared like Example 1, and the nano uneven structure was manufactured and evaluated. The results are shown in Table 1 or 2.
  • the nano concavo-convex structure of the stamper is transferred to the surface of the nano concavo-convex structure obtained in each example and comparative example, and the interval between adjacent convex portions or concave portions is 100 nm, and the height of the convex portions is approximately 180 nm. A conical nano-concave structure was formed.
  • Irg. 819 Bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (manufactured by Ciba Specialty Chemicals, “IRGCURE819”) -Dar.
  • 1173 2-hydroxy-2-methyl-1-phenylpropan-1-one (Ciba Specialty Chemicals, “DAROCURE1173”) -Dar.
  • TPO 2,4,6-trimethylbenzoyl-diphenylphosphine oxide (Ciba Specialty Chemicals, “DAROCUR TPO”) INT1856: Polyoxyethylene alkyl phosphate ester compound (manufactured by Accel Corp., “Mold with INT-1856”)
  • TLP4 Polyoxyethylene alkyl phosphate ester compound (Nikko Chemical Co., “NIKKOL TLP-4”)
  • BYK378 Lubricant (BIC Chemie Japan, “BYK-378”)
  • BYK333 Lubricant (BIC Chemie Japan, “BYK-333”)
  • BYK3500 Lubricant (BIC Chemie Japan, “BYK-3500”)
  • TV400 UV absorber (Ciba Specialty Chemicals, “Chinubin 400”)
  • TV479 UV absorber (Ciba Specialty Chemicals, "Chinubin 479")
  • Viosorb 110 UV absorber (“Viosorb 110” manufactured by Kyo
  • the nano uneven structures obtained in Examples 1 to 6 have good adhesion, scratch resistance, antifouling properties, water resistance and low reflection, and weather resistance. Similar results were obtained after the test.
  • the polymerization-reactive monomer component does not contain the monomer (C), but contains the monomer (A) and the monomer (B) in a well-balanced manner, and includes a polymerization initiator (D) and a release agent. Since it contained a predetermined amount of (E) and lubricant (F), it had good adhesion.
  • the nano concavo-convex structure obtained in Comparative Example 1 had a high water contact angle because the polymerization reactive monomer component was composed only of the monomer (A), and did not exhibit antifouling properties. Moreover, since the resin composition did not contain the lubricant (F), good scratch resistance could not be obtained. In the nano uneven structure obtained in Comparative Example 2, the polymerization reactive monomer component in the resin composition did not contain the monomer (B), so the water contact angle was high and the antifouling property was not expressed. Moreover, since the resin composition did not contain the lubricant (F), good scratch resistance could not be obtained.
  • the nano-concave structure obtained in Comparative Example 3 has a high content of the monomer (B) in the polymerization-reactive monomer component, and thus exhibits antifouling properties, but is inferior in water resistance and exhibits optical performance by wiping with water. I lost it. Moreover, since the polymerization reactive monomer component did not contain the monomer (C), the adhesion was also poor. Furthermore, since the resin composition did not contain the lubricant (F), good scratch resistance could not be obtained.
  • the nano uneven structure obtained in Comparative Example 4 has a high content of the monomer (C) in the polymerization-reactive monomer component, and the resin composition does not contain the lubricant (F). It was not obtained.
  • the nano uneven structure obtained in Comparative Example 5 did not have good scratch resistance because the resin composition did not contain the lubricant (F).
  • the resin composition does not contain the release agent (E) and the content of the ultraviolet absorber is relatively large, the water contact angle becomes high, and the antifouling property is exhibited in the initial and weather resistance tests. I did not.
  • the nano concavo-convex structure obtained in Comparative Example 6 did not have scratch resistance because the resin composition did not contain a lubricant (F).
  • the nano-concave structure obtained in Comparative Example 7 has a high content of the lubricant (F) in the resin composition, so that the initial adhesion is lowered, and the water contact angle is increased by the weather resistance test, thereby preventing the antifouling. I lost my sex.
  • the nano-concave structure obtained in Comparative Example 8 has a large content of the release agent (E) in the resin composition, so that the surface becomes uneven and the appearance deteriorates, and the reflectance increases after the weather resistance test. . Moreover, since the resin composition did not contain the lubricant (F), good scratch resistance could not be obtained.
  • the nano uneven structure obtained in Comparative Example 9 has good initial performance, the water contact angle is increased by the weather resistance test because the resin composition does not contain the release agent (E). The antifouling property deteriorated.
  • the polymerization-reactive monomer component does not contain the monomer (A), and the resin composition does not contain the lubricant (F), but the polymerization-reactive monomer component is a hexafunctional monomer. Since this included DPHA (dipentaerythritol hexaacrylate), scratch resistance equivalent to that of each example was obtained.
  • the content of the monomer (B) in the polymerization-reactive monomer component was large, it also had water resistance.
  • the nano concavo-convex structure obtained by curing the resin composition for nano concavo-convex structure of the present invention achieves both good fingerprint wiping and high scratch resistance while maintaining excellent optical performance as a nano concavo-convex structure. And excellent weather resistance. Therefore, it can be used for optical applications such as various display panels, lenses, show windows, automobile meter covers, car navigation systems, or spectacle lenses and solar cell light extraction rate improving members that may be used outdoors. It is extremely useful industrially. It can also be used for mirrors and window materials that have poor visibility due to water droplets.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

 本発明は、4官能(メタ)アクリレートモノマー(A)を50~95質量部、ポリアルキレングリコール構造の繰り返し単位の合計が4~25の2官能(メタ)アクリレートモノマー(B)を5~35質量部、前記モノマー(A)、(B)と共重合可能な単官能(メタ)アクリレートモノマー(C)を15質量部以下含む重合反応性モノマー成分100質量部に対して、0.01~10質量部の活性エネルギー線重合開始剤(D)、0.01~3質量部の離型剤(E)、0.01~3質量部の滑剤(F)を含有するナノ凹凸構造用樹脂組成物、及び前記樹脂組成物を用いた自動車メータカバー用透明部材とカーナビゲーションモニター用透明部材に関する。本発明によれば、優れた防汚性、耐擦傷性及び低反射性を有し、かつ耐候性に優れたナノ凹凸構造体を形成できるナノ凹凸構造用樹脂組成物、並びにそれを用いた自動車メータカバー用透明部材とカーナビゲーションモニター用透明部材を提供することができる。

Description

ナノ凹凸構造用樹脂組成物、およびそれを用いた自動車メータカバー用透明部材とカーナビゲーションモニター用透明部材
 本発明は、ナノ凹凸構造を成形するのに好適なナノ凹凸構造用樹脂組成物、及びそれを用いた自動車メータカバー用透明部材とカーナビゲーションモニター用透明部材に関する。
 本願は2011年6月24日に日本に出願された、特願2011-140359号に基づき優先権を主張し、その内容をここに援用する。
 各種ディスプレイ、レンズ、ショーウィンドー、又は自動車用部品(メータカバーやカーナビゲーションモニターなど)等の空気と接する界面(表面)では、太陽光や照明等が表面で反射することによる視認性の低下が問題となっていた。反射を低減する方法としては、フィルム表面での反射光と、フィルムと基材の界面での反射光とが干渉によって打ち消し合うように、屈折率の異なる数層のフィルムを積層する方法が知られている。これらのフィルムは、通常、スパッタリング、蒸着、又はコーティング等の方法で製造される。しかし、このような方法でフィルムの積層数を増やしても、反射率及び反射率の波長依存性の低下には限界があった。また、製造コスト削減の観点から積層数を減らすために、より低い屈折率の材料が求められている。
 材料の屈折率を下げるためには、何らかの方法で材料中に空気を導入することが有効である。そのような方法の一つとして、例えば、フィルムの表面にナノ凹凸構造体を形成する方法が知られている。ナノ凹凸構造体が基材上に形成されたフィルム(反射防止膜)は、膜面方向に切断した時の断面積が連続的に変化し、空気から基材まで徐々に屈折率が増大していくので有効な反射防止の手段となる。また、この反射防止膜は、他の方法では置き換えられない優れた光学性能を示す。
 ナノ凹凸構造体を表面に有する反射防止膜は、空気と接する界面で使用されるので、主に防汚性と耐擦傷性が求められる。しかし、ナノ凹凸構造体は、同じ樹脂組成物から成る表面が平滑なハードコート等の成形体に比べて防汚性や耐擦傷性に劣る傾向にあった。
 反射防止膜の汚れとしては、油汚れ、指紋、ワックス、埃、又は塵など様々なものがあり、反射防止膜の防汚性には、これらの汚れが付着しにくい特性と、汚れが付着しても除去しやすい特性がある。
 反射防止膜に防汚性を付与する方法としては、親水性の高い樹脂組成物を使用して膜を親水化し、膜に付着した汚れを水で浮かせて拭き取る方法が知られている(例えば特許文献1参照)。
国際公開第2008/096872号パンフレット
 特許文献1に記載のように親水性の高い樹脂組成物から得たナノ凹凸構造体は、防汚性に優れるものの、耐擦傷性や耐候性等の各特性のさらなる向上が求められる。
 耐擦傷性を発現させる方法としては、樹脂組成物にシリコーン系化合物等の滑剤を配合する方法が知られている。
 しかし、滑剤を配合した樹脂組成物から得られたナノ凹凸構造体に耐候性試験等を行うと、滑剤がブリードアウトしやすく、接触角が上昇しやすかった。その結果、防汚性、特に指紋拭き取り性が低下しやすかった。滑剤のブリードアウトを防ぐには、滑剤の配合量を減らせばよいが、滑剤の配合量が少量の場合には十分な耐擦傷性が得られない。
 一方、耐候性を向上させる方法としては、樹脂組成物に紫外線吸収剤や光安定剤を配合する方法が知られている。
 しかし、紫外線吸収剤や光安定剤を配合した樹脂組成物から得られたナノ凹凸構造体に耐候性試験等を行うと、紫外線吸収剤や光安定剤がブリードアウトしやすく、接触角が上昇しやすかった。その結果、防汚性、特に指紋拭き取り性が低下しやすかった。
 このように、これまでにナノ凹凸構造体を形成するための樹脂組成物が提案されているが、耐候性等の耐久性を十分に満足するものではなかった。また、防汚性、特に指紋拭き取り性、耐擦傷性及び低反射性を有し、かつ耐候性に優れたナノ凹凸構造体を得ることは必ずしも容易ではなかった。
 本発明は上記事情に鑑みてなされたもので、優れた防汚性、耐擦傷性及び低反射性を有し、かつ耐候性に優れたナノ凹凸構造体を形成できるナノ凹凸構造用樹脂組成物、及びそれを用いた自動車メータカバー用透明部材とカーナビゲーションモニター用透明部材の提供を課題とする。
 本発明者らは鋭意検討した結果、特定のモノマー成分を用い、耐擦傷性の向上と防汚性を両立させる滑剤や、耐候性試験による撥水化を抑制し、防汚性を維持するための内部離型剤を選定し、特定のモノマー成分にバランスよく配合することで、優れた防汚性、特に指紋拭き取り性、耐擦傷性及び低反射性を有し、かつ耐候性に優れたナノ凹凸構造体を形成できることを見出し、本発明を完成するに至った。
 すなわち、本発明のナノ凹凸構造用樹脂組成物は、1分子中に4個のラジカル重合性官能基を有する4官能(メタ)アクリレートモノマー(A)を50~95質量部と、1分子中に2個のラジカル重合性官能基及びポリアルキレングリコール構造を有し、1分子中に存在する前記アルキレングリコール構造の繰り返し単位の合計が4~25である2官能(メタ)アクリレートモノマー(B)を5~35質量部と、前記4官能(メタ)アクリレートモノマー(A)及び2官能(メタ)アクリレートモノマー(B)と共重合可能で、1分子中に1個のラジカル重合性官能基を有する単官能(メタ)アクリレートモノマー(C)を15質量部以下含む重合反応性モノマー成分と、前記重合反応性モノマー成分100質量部に対して、0.01~10質量部の活性エネルギー線重合開始剤(D)と、0.01~3質量部の離型剤(E)と、0.01~3質量部の滑剤(F)とを含有することを特徴とする。
 また、前記重合反応性モノマー成分100質量部に対して、0.01~5質量部の紫外線吸収剤及び/又は光安定剤(G)をさらに含有することが好ましい。
 さらに、前記4官能(メタ)アクリレートモノマー(A)が、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートのエトキシ変性物、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレートのエトキシ変性物、及びトリメチロールエタン・アクリル酸・無水コハク酸の縮合反応物よりなる群から選ばれる少なくとも1種の化合物であることが好ましい。
 また、前記2官能(メタ)アクリレートモノマー(B)のポリアルキレングリコール構造が、ポリエチレングリコール構造であることが好ましい。
 さらに、前記離型剤(E)が、下記一般式(I)で表される少なくとも1種のポリオキシエチレンアルキルリン酸エステル化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000002
 式(I)中、Rはアルキル基を示し、mは1~20の数を示し、nは1~3の数を示す。
 さらに、前記滑剤(F)が、ポリエーテル変性されたポリジメチルシロキサン骨格を有する化合物であることが好ましい。
 また、本発明の自動車メータカバー用透明部材は、前記ナノ凹凸構造用樹脂組成物を用いて形成されたナノ凹凸構造体を有することを特徴とする。
 また、本発明のカーナビゲーションモニター用透明部材は、前記ナノ凹凸構造用樹脂組成物を用いて形成されたナノ凹凸構造体を有することを特徴とする。
 すなわち、本発明は以下に関する。
(1)重合反応性モノマー成分中の全モノマーの含有量の合計を100質量部としたときに、1分子中に4個のラジカル重合性官能基を有する4官能(メタ)アクリレートモノマー(A)を50~95質量部と、1分子中に2個のラジカル重合性官能基及びポリアルキレングリコール構造を有し、1分子中に存在する前記アルキレングリコール構造の繰り返し単位の合計が4~25である2官能(メタ)アクリレートモノマー(B)を5~35質量部と、前記4官能(メタ)アクリレートモノマー(A)及び2官能(メタ)アクリレートモノマー(B)と共重合可能で、1分子中に1個のラジカル重合性官能基を有する単官能(メタ)アクリレートモノマー(C)を15質量部以下含む重合反応性モノマー成分と、前記重合反応性モノマー成分100質量部に対して、0.01~10質量部の活性エネルギー線重合開始剤(D)と、0.01~3質量部の離型剤(E)と、0.01~3質量部の滑剤(F)とを含有する、ナノ凹凸構造用樹脂組成物、
(2)前記重合反応性モノマー成分100質量部に対して、0.01~5質量部の紫外線吸収剤及び光安定剤からなる群から選択される少なくとも一種の成分(G)をさらに含有する、(1)に記載のナノ凹凸構造用樹脂組成物、
(3)前記4官能(メタ)アクリレートモノマー(A)が、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートのエトキシ変性物、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレートのエトキシ変性物、及びトリメチロールエタン・アクリル酸・無水コハク酸の縮合反応物よりなる群から選ばれる少なくとも1種の化合物である、(1)又は(2)に記載のナノ凹凸構造用樹脂組成物、
(4)前記2官能(メタ)アクリレートモノマー(B)のポリアルキレングリコール構造が、ポリエチレングリコール構造である、(1)~(3)のいずれか一項に記載のナノ凹凸構造用樹脂組成物、
(5)前記離型剤(E)が、下記一般式(I)で表される少なくとも1種のポリオキシエチレンアルキルリン酸エステル化合物である、(1)~(4)のいずれか一項に記載のナノ凹凸構造用樹脂組成物、
Figure JPOXMLDOC01-appb-C000003
 式(I)中、Rはアルキル基を示し、mは1~20の整数を示し、nは1~3の整数を示す。
(6)前記滑剤(F)が、ポリエーテル変性されたポリジメチルシロキサン骨格を有する化合物である、(1)~(5)のいずれか一項に記載のナノ凹凸構造用樹脂組成物、
(7)(1)~(6)のいずれか一項に記載のナノ凹凸構造用樹脂組成物を用いて形成されたナノ凹凸構造体を有する、自動車メータカバー用透明部材、及び
(8)(1)~(6)のいずれか一項に記載のナノ凹凸構造用樹脂組成物を用いて形成されたナノ凹凸構造体を有する、カーナビゲーションモニター用透明部材。
 本発明によれば、優れた防汚性、耐擦傷性及び低反射性を有し、かつ耐候性に優れたナノ凹凸構造体を形成できるナノ凹凸構造用樹脂組成物、及びそれを用いた自動車メータカバー用透明部材とカーナビゲーションモニター用透明部材を提供できる。
本発明のナノ凹凸構造用樹脂組成物を用いて形成されたナノ構造体の一例を模式的に示す断面図である。 本発明のナノ凹凸構造用樹脂組成物を用いて形成されたナノ構造体の他の例を模式的に示す断面図である。
 以下、本発明を詳細に説明する。
 本発明において、「(メタ)アクリレート」は「アクリレート及び/又はメタクリレート」を意味する。
 また、「活性エネルギー線」とは、電子線、紫外線、可視光線、又は赤外線等のエネルギー線を意味する。
[ナノ凹凸構造用樹脂組成物]
 本発明のナノ凹凸構造用樹脂組成物(以下、単に「樹脂組成物」という場合がある)は、活性エネルギー線を照射することで重合反応が進行し、硬化する樹脂組成物である。
 本発明の樹脂組成物は、重合反応性モノマー成分と、活性エネルギー線重合開始剤(D)と、離型剤(E)と、滑剤(F)と、所望により紫外線吸収剤及び光安定剤からなる群から選択される少なくとも一種の成分(G)とを含有する。
 以下、各成分について説明する。
<重合反応性モノマー成分>
 重合反応性モノマー成分は、4官能(メタ)アクリレートモノマー(A)と、2官能(メタ)アクリレートモノマー(B)と、単官能(メタ)アクリレートモノマー(C)とを含む。
(4官能(メタ)アクリレートモノマー(A))
 4官能(メタ)アクリレートモノマー(A)(以下、「モノマー(A)」という場合がある。)は、樹脂組成物の主成分であり、硬化物の機械特性(特に耐擦傷性)を良好に維持する役割を果たす。
 モノマー(A)は、ラジカル重合性官能基を1分子中に4個有する。これにより、樹脂組成物の硬化物の架橋点間分子量が小さくなり、硬化物の弾性率や硬度が高くなり、耐擦傷性に優れた硬化物が得られる。
 モノマー(A)としては、4つのアクリロイルオキシ基が結合した炭化水素化合物を用いることが好ましい。このような化合物は、例えば4つの水酸基が結合した炭化水素化合物に対して、4つの(メタ)アクリル系化合物を反応させることにより得られる。
 また、モノマー(A)としては、前記4つのアクリロイルオキシ基が結合した炭化水素化合物において、アクリロイルオキシ基と炭化水素基の間にエトキシ構造を導入したエトキシ変性物を用いることも好ましい。
 モノマー(A)の具体例としては、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートのエトキシ変性物、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレートのエトキシ変性物、又はトリメチロールエタン・アクリル酸・無水コハク酸の縮合反応物などが挙げられる。
 モノマー(A)としては市販品を用いることができ、例えば新中村化学工業社製のNKエステルATM-4E若しくはNKエステルA-TMMT、大阪有機化学工業社製のTAS、又はダイセル・サイテック社製のEBECRYL40等が好適である。これらを使用すれば、耐擦傷性と防汚性、特に指紋拭き取り性のバランスが取りやすい。
 モノマー(A)は1種を単独で用いてもよく、2種以上を併用してもよい。
 モノマー(A)の含有量は、重合反応性モノマー成分中の全モノマーの含有量の合計を100質量部としたときに、50~95質量部であり、耐水性や耐薬品性の観点から、好ましくは60~90質量部、より好ましくは65~85質量部である。モノマー(A)の含有量が上記下限値以上であれば、樹脂組成物の硬化物の弾性率、硬度、及び耐擦傷性が向上する。一方、モノマー(A)の含有量が上記上限値以下であれば、硬化物の弾性率が高くなりすぎることを抑制でき、スタンパから剥離する際のひび割れの発生を防止できる。加えて、硬化物が硬くかつ脆くなりすぎることを抑制でき、耐擦傷性に優れたナノ凹凸構造体を形成できる。
(2官能(メタ)アクリレートモノマー(B))
 2官能(メタ)アクリレートモノマー(B)(以下、「モノマー(B)」という場合がある。)は、ナノ凹凸構造体の表面を親水化する役割を果たし、ナノ凹凸構造体に防汚性を付与する。
 モノマー(B)は、ラジカル重合性官能基をモノマー(B)の1分子中に2個有する。また、モノマー(B)はポリアルキレングリコール構造を有し、モノマー(B)の1分子中に存在するポリアルキレングリコール構造の繰り返し単位の合計は4~25であり、好ましくは9~23、より好ましくは10~20である。繰り返し単位の合計が上記下限値以上であれば、親水性、及び防汚性が向上する。一方、繰り返し単位の合計が上記上限値以下であれば、モノマー(A)との相溶性が向上する。
 ポリアルキレングリコール構造としては、親水化の点から、ポリエチレングリコール構造が特に好ましい。
 ポリアルキレングリコール構造とは、アルキレングリコール構造の繰返し単位が2個以上ある構造を意味する。
 ポリエチレングリコール構造とは、エチレングリコール構造の繰返し単位が2個以上ある構造を意味する。
 モノマー(B)としては、長鎖ポリエチレングリコール構造を有するジ(メタ)アクリレート類が好ましく、特にポリエチレングリコールジアクリレートが好ましい。
 モノマー(B)としては、トリデカエチレンオキシドジアクリレート、テトラデカエチレンオキシドジアクリレート、又はトリコサエチレンオキシドジアクリレートなどが好ましい。
 モノマー(B)としては市販品を用いることができ、例えば東亞合成社製の「アロニックス」シリーズのM240、若しくはM260;又は新中村化学工業社製の「NKエステル」シリーズのA-400、A-600、若しくはA-1000等が挙げられる。
 モノマー(B)は1種を単独で用いてもよく、2種以上を併用してもよい。
 モノマー(B)の含有量は、重合反応性モノマー成分中の全モノマーの含有量の合計を100質量部としたときに、5~35質量部であり、好ましくは10~30質量部、より好ましくは15~25質量部である。モノマー(B)の含有量が上記下限値以上であれば、樹脂組成物の硬化物の表面を十分に親水化でき、防汚性が向上する。一方、モノマー(B)の含有量が上記上限値以下であれば、硬化物の表面の弾性率、耐擦傷性が向上する。
 加えて、硬化物の耐水性が向上するので、水拭きしても良好な光学性能を発揮するナノ凹凸構造体を形成できる。
(単官能(メタ)アクリレートモノマー(C))
 単官能(メタ)アクリレートモノマー(C)(以下、「モノマー(C)」という場合がある。)は、樹脂組成物のハンドリング性や重合反応性を向上させる役割や、後述する透明基材との密着性向上の役割を果たす。
 モノマー(C)は、ラジカル重合性官能基を1分子中に1個有し、前記モノマー(A)及びモノマー(B)と共重合可能な単官能モノマーである。
 ところで、本発明の樹脂組成物の物性を大きく左右するのは、主成分となるモノマー(A)である。このモノマー(A)は粘度が高い傾向にあるので、樹脂組成物のハンドリング性が低下する場合がある。そのような場合には、ハンドリング性を改良するために低粘度の単官能モノマーや2官能モノマーで希釈すればよい。ただし、2官能モノマーは1つのラジカル重合性官能基が反応すると、残りのラジカル重合性官能基の反応性が低下しやすい。従って、樹脂組成物全体での重合反応性を向上させるには、単官能モノマーが適しており、粘度の高いモノマー(A)を用いる場合には、モノマー(C)を併用するのが好ましい。
 また、樹脂組成物は透明基材上で硬化させ、透明基材と一体化させて用いることが一般的である。ここで、モノマー(C)の中でも特に低分子量の単官能モノマーを用いれば、透明基材と樹脂組成物の硬化物との密着性がより良好となる傾向にある。
 モノマー(C)としては、透明基材の材質によって適宜最適なものを選択すればよいが、透明基材との密着性を向上させるためには、特に、アルキル(メタ)アクリレート、又はヒドロキシアルキル(メタ)アクリレートが好適である。また、アクリロイルモルホリン等の粘度調整剤、又はアクリロイルイソシアネート等も使用できる。また、透明基材としてアクリル系フィルムを使用する場合は、モノマー(C)としてはメチルアクリレート、エチルアクリレート、又はメチルメタクリレートが特に好ましい。
 モノマー(C)は1種を単独で用いてもよく、2種以上を併用してもよい。
 モノマー(C)の含有量は、重合反応性モノマー成分中の全モノマーの含有量の合計を100質量部としたときに、15質量部以下であり、好ましくは5~15質量部であり、より好ましくは10~12質量部である。
 モノマー(C)の含有量が上記上限値以下であれば、樹脂組成物の硬化性が向上する。また、硬化後の未反応のモノマー(C)の残存量を低減し、未反応のモノマー(C)が可塑剤として作用して硬化物の弾性率を低くしたり、耐擦傷性を低下させたりする問題を防止できる。
<活性エネルギー線重合開始剤(D)>
 活性エネルギー線重合開始剤(D)は、活性エネルギー線を照射することで開裂し、重合反応を開始させるラジカルを発生する化合物である。
 装置コストや生産性の観点から、活性エネルギー線として紫外線を用いるのが一般的である。
 活性エネルギー線重合開始剤(D)としては特に限定されない。その具体例としては、ベンゾフェノン、4,4-ビス(ジエチルアミノ)ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、メチルオルソベンゾイルベンゾエート、4-フェニルベンゾフェノン、t-ブチルアントラキノン、2-エチルアントラキノン;2,4-ジエチルチオキサントン、イソプロピルチオキサントン、若しくは2,4-ジクロロチオキサントン等のチオキサントン類;ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、1-ヒドロキシシクロヘキシル-フェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、若しくは2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン等のアセトフェノン類;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、若しくはベンゾインイソブチルエーテル等のベンゾインエーテル類;2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド、若しくはビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド等のアシルホスフィンオキサイド類;又はメチルベンゾイルホルメート、1,7-ビスアクリジニルヘプタン、若しくは9-フェニルアクリジンなどが挙げられる。
 活性エネルギー線重合開始剤(D)は1種を単独で用いてもよく、2種以上を併用してもよい。特に、吸収波長の異なる2種以上を併用することが好ましく、1-ヒドロキシ-シクロヘキシル-フェニル-ケトンと2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキサイドとを併用、又は1-ヒドロキシ-シクロヘキシル-フェニル-ケトンとビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイドとを併用することがより好ましい。
 また所望により、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩、ベンゾイルパーオキシドなどの過酸化物、又はアゾ系開始剤などの熱重合開始剤を併用してもよい。
 活性エネルギー線重合開始剤(D)の含有量は、重合反応性モノマー成分100質量部に対して0.01~10質量部であり、好ましくは0.1~5質量部、より好ましくは0.2~3質量部である。活性エネルギー線重合開始剤(D)の含有量が上記下限値以上であれば、樹脂組成物の硬化性が向上し、硬化物の機械特性(特に耐擦傷性)が向上する。
 一方、活性エネルギー線重合開始剤(D)の含有量が上記上限値以下であれば、硬化物内の活性エネルギー線重合開始剤(D)の残存に起因する硬化物の弾性率や耐擦傷性の低下を抑制できるとともに、着色も防止できる。
<離型剤(E)>
 離型剤(E)としては、リン酸エステル化合物が挙げられ、接触角の上昇を抑制する点で、下記一般式(I)で表される少なくとも1種のポリオキシエチレンアルキルリン酸エステル化合物(以下、「化合物(I)」という。)が特に好ましい。
Figure JPOXMLDOC01-appb-C000004
 式(I)中、Rはアルキル基である。Rとしては、炭素数3~18のアルキル基が好ましい。
 また、式(I)中、mはエチレンオキサイドの平均付加モル数を示し、1~20の整数を示し、1~10が好ましい。一方、nは1~3の整数を示す。
 化合物(I)は、モノエステル体、ジエステル体、又はトリエステル体の何れであってもよい。また、ジエステル体又はトリエステル体である場合、それぞれのポリオキシエチレンアルキル残基が相互に異なっていてもよい。
 離型剤(E)として化合物(I)を用いると、樹脂組成物の硬化物のスタンパからの離型性が良好となり、ナノ凹凸構造体の形成に好適である。また、離型時の負荷が極めて低いので、欠陥の少ないナノ凹凸構造体が高い生産性で得られる。さらに、耐候性試験における撥水化を抑制する効果があり、優れた耐久性を示すナノ凹凸構造体を形成できる樹脂組成物となる。
 化合物(I)としては市販品を用いることができ、例えば城北化学工業社製のJP-506H;アクセル社製の「モールドウイズ」シリーズのINT-1856;又は日光ケミカルズ社製のTDP-10、TDP-8、TDP-6、TDP-2、DDP-10、DDP-8、DDP-6、DDP-4、DDP-2、TLP-4、TCP-5、若しくはDLP-10が挙げられる。
 これらは、1種を単独で用いてもよく、2種以上を併用してもよい。
 離型剤(E)の含有量は、重合反応性モノマー成分100質量部に対して0.01~3質量部であり、好ましくは0.05~1質量部、より好ましくは0.1~0.5質量部である。離型剤(E)の含有量が上記下限値以上であれば、スタンパからの離型性低下によるスタンパへの樹脂残り(離型不良)を防止できるとともに、撥水化(耐候不良)を抑制でき、初期及び耐候性試験での防汚性の低下を防止できる。一方、離型剤(E)の含有量が上記上限値以下であれば、樹脂組成物の硬化物本来の性能の維持しつつ、後述する透明基材との密着性低下によるスタンパへの樹脂残り(離型不良)を防止できる。加えて、ナノ凹凸構造体の使用時における透明基材と硬化物との剥離を防止できるとともに、斑や外観不良の発生を抑制できる。さらに、硬化物の耐候性を良好に維持できる。
<滑剤(F)>
 滑剤(F)は、耐擦傷性を向上させる役割を果たす。
 滑剤(F)としては、ポリエーテル変性されたポリジメチルシロキサン骨格を有する化合物が好ましく、またアクリル基などを有した反応性の化合物であってもよい。滑剤(F)としては、ブロック共重合体でもグラフト共重合体でもよい。
 滑剤(F)としては市販品を用いることができ、例えばビックケミー・ジャパン社製のBYK-378、BYK-333、BYK-331、BYK-377、BYK-3500、又はBYK-3510等が挙げられる。
 滑剤(F)は1種を単独で用いてもよく、2種以上を併用してもよい。
 滑剤(F)の含有量は、重合反応性モノマー成分100質量部に対して0.01~3質量部であり、好ましくは0.05~2質量部、より好ましくは0.1~1.0質量部である。滑剤(F)の含有量が上記下限値以上であれば、樹脂組成物の硬化物の耐擦傷性が低下するのを抑制できる。一方、滑剤(F)の含有量が上記上限値以下であれば、硬化物と後述する透明基材との密着性が低下するのを抑制でき、斑や外観不良が発生しにくくなり、かつ耐候性試験による撥水化を防止できる。
 滑剤(F)と、滑剤(F)以外の成分との相溶性が悪い場合には、硬化物の色ムラやヘイズの上昇などを引き起こすことがある。
<紫外線吸収剤及び/又は光安定剤(G)>
 本発明の樹脂組成物は、紫外線吸収剤及び/又は光安定剤(G)(以下、これらを総称して「(G)成分」という場合がある。)を含有するのが好ましい。すなわち(G)成分は、紫外線吸収剤及び光安定剤からなる群から選択される少なくとも1種の成分が好ましい。
 (G)成分は、黄帯色の抑制やヘイズの上昇抑制等の耐候性を付与する役割を果たす。
 紫外線吸収剤としては、例えばベンゾフェノン系の紫外線吸収剤、ベンゾトリアゾール系の紫外線吸収剤、又はベンゾエート系の紫外線吸収剤等が挙げられる。
 紫外線吸収剤としては、具体的には2-[4,6-ビス(2,4-ジメチルフェニル)-s-トリアジン-2-イル]-5-[3-(ドデシルオキシ)-2-ヒドロキシプロポキシ]フェノール、又は2-ヒドロキシ-4-メトキシベンゾフェノンが挙げられる。
 紫外線吸収剤の市販品としては、例えばチバ・スペシャルティ・ケミカルズ社製の「チヌビン」シリーズの400、479、若しくは109;又は共同薬品社製の「Viosorb」シリーズの110等が挙げられる。
 一方、光安定剤としては、例えばヒンダードアミン系の光安定剤等が挙げられる。
 光安定剤としては、具体的にはビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、又はメチル1,2,2,6,6-ペンタメチル-4-ピペリジルセバケートが挙げられる。
 光安定剤の市販品としては、チバ・スペシャルティ・ケミカルズ社製の「チヌビン」シリーズの152、又は292等が挙げられる。
 (G)成分は1種を単独で用いてもよく、2種以上を併用してもよい。
 (G)成分の含有量は、重合反応性モノマー成分100質量部に対して0.01~5質量部であり、好ましくは0.01~3質量部、より好ましくは0.01~1質量部、特に好ましくは0.01~0.5質量部である。(G)成分の含有量が上記下限値以上であれば、樹脂組成物の硬化物が黄着色するのを抑制できるとともに、ヘイズ上昇を抑制するなどして耐候性が向上する。一方、(G)成分の含有量が上記上限値以下であれば、樹脂組成物の硬化性の低下、硬化物の耐擦傷性の低下、初期及び耐候性試験での防汚性、特に指紋拭き取り性の低下を効果的に防止できる。
<その他の添加剤>
 本発明の樹脂組成物は、所望により、可塑剤、帯電防止剤、難燃剤、難燃助剤、重合禁止剤、充填剤、シランカップリング剤、着色剤、強化剤、無機フィラー、又は耐衝撃性改質剤等の公知の添加剤を含有してもよい。
<樹脂組成物の物性>
(粘度)
 樹脂組成物は、ナノ凹凸構造体を形成させるスタンパへ流し込むことを考慮すると、25℃における回転式B型粘度計で測定される粘度が、10Pa・s以下であることが好ましく、より好ましくは5Pa・s以下、特に好ましくは2Pa・s以下である。
 25℃における回転式B型粘度計での粘度の範囲は、50mPa・s~10Pa・sが好ましく、100mPa・s~5Pa・sがより好ましく、200mPa・s~2Pa・sが特に好ましい。
 また、樹脂組成物はスタンパへ流し込む際に、予め加温して粘度を下げることが可能である。
 樹脂組成物の粘度は、モノマー(A)、モノマー(B)、及びモノマー(C)の種類や含有量を調節することで調整できる。具体的には、水素結合などの分子間相互作用を有する官能基や化学構造を含むモノマーを多量に用いると、樹脂組成物の粘度は高くなる傾向にある。また、分子間相互作用のない低分子量のモノマーを多量に用いると、樹脂組成物の粘度は低くなる傾向にある。
(屈折率)
 樹脂組成物は、後述する透明基材上で硬化させ、透明基材と一体化させて用いることが一般的である。しかし、硬化物と透明基材との屈折率が異なる場合、硬化物と透明基材との界面で反射が起こり、反射率が上昇しやすくなる。このことから、本発明の樹脂組成物を光学用途に用いる場合、使用する透明基材の屈折率に合わせて樹脂組成物の屈折率を調整し、屈折率差を小さくすることが好ましい。
 以上説明した本発明の樹脂組成物は、上述したモノマー(A)、モノマー(B)及びモノマー(C)を含む重合反応性モノマー成分と、活性エネルギー線重合開始剤(D)と、離型剤(E)と、滑剤(F)とを特定量含有するので、優れた防汚性、特に指紋拭き取り性、耐擦傷性及び低反射性を有し、かつ耐候性に優れたナノ凹凸構造体を形成できる。
 本発明の樹脂組成物は、重合及び硬化させて成形品として使用でき、そのような成形品は、特にナノ凹凸構造を表面に有するナノ凹凸構造体として極めて有用である。
 また、本発明の樹脂組成物は、ナノ凹凸構造の反転構造が形成されたスタンパを用いた転写法によりナノ凹凸構造を転写する際に用いる樹脂組成物として最適である。
 以下、本発明により得られるナノ凹凸構造体の一例について、詳しく説明する。
[ナノ凹凸構造体]
 本発明により得られるナノ凹凸構造体は、透明基材と、前記透明基材上に積層された硬化物層とを有する構造体であって、前記硬化物層は本発明の樹脂組成物の硬化物を含み、前記硬化物層はその表面にナノ凹凸構造を有する。
 図1は、本発明により得られるナノ凹凸構造体の一実施形態を模式的に示す断面図である。
 この例のナノ凹凸構造体10は、後述する透明基材11の上に本発明の樹脂組成物の硬化物からなる硬化物層12が積層されている。硬化物層12の表面には、表面が表面反射防止等の機能を発現するナノ凹凸構造を有する。具体的には、硬化物層12の表面に凸部13及び凹部14が等間隔で形成されている。
 良好な反射防止性能を発現するためには、ナノ凹凸構造の隣り合う凸部13又は凹部14の間隔(図1では、隣り合う凸部13の中心点(頂部)13aの間隔w1)が、可視光の波長以下のサイズである必要がある。ここで「可視光」とは、波長が380~780nmの光を指す。この間隔w1が380nm以下であれば、可視光の散乱を抑制できる。
 また、最低反射率や特定波長の反射率の上昇を抑制する観点から、凸部13の高さ又は凹部14の深さ(図1では、凹部14の中心点(底点)14aから凸部13の中心点(頂部)13aまでの垂直距離d1)が、60nm以上であることが好ましく、90nm以上がより好ましい。
 この場合、本発明により得られるナノ凹凸構造体を反射防止膜などの光学用途に好適に使用できる。光学用途に好適なナノ凹凸構造体としては、アスペクト比(d1/w1の値)1.2以上となるような突起構造(凸部13)が、高い反射防止性能を発現することができるため好ましい。
 ナノ凹凸構造の凸部の形状は特に限定されず、例えば図1に示すように円錐状又は角錐状や、図2に示すように釣鐘状などが挙げられる。
 また、ナノ凹凸構造の凸部の形状はこれらに限定されず、硬化物層12の膜面で切断した時の断面積の占有率が連続的に増大するような構造であればよい。さらに、より微細な凸部が合一してナノ凹凸構造を形成していてもよい。すなわち、図1、又は2に示す形状以外であっても、空気から材料表面まで連続的に屈折率を増大し、低反射率と低波長依存性を両立させた反射防止性能を示すような形状であればよい。
 本発明の樹脂組成物から形成される硬化物(ナノ凹凸構造体)は、防汚性に優れる。また、滑剤を用いているので耐擦傷性に優れる。
 特に、ナノ凹凸構造の隣り合う凸部同士の距離が可視光の波長(380nm)以下であれば、反射防止性に優れるので、反射防止物品に好適に使用できる。また、凸部の高さが60nm以上であれば反射防止性により優れる。さらに、耐候性にも優れる。
 本発明により得られるナノ凹凸構造体は、図1、又は2に示す実施形態に限定されるものではなく、ナノ凹凸構造は本発明の樹脂組成物の硬化物の片面に形成されていてもよいし、硬化物の全面に形成されていてもよい。また、ナノ凹凸構造は硬化物の全体に形成されていてもよいし、硬化物の一部に形成されていてもよい。
<製造方法>
 ナノ凹凸構造体の製造方法としては、例えば、(1)ナノ凹凸構造の反転構造が形成されたスタンパを用いて射出成形やプレス成形する方法、(2)スタンパと透明基材との間に樹脂組成物を配し、活性エネルギー線の照射により樹脂組成物を硬化して、スタンパの凹凸形状を転写し、その後スタンパを剥離する方法、又は(3)樹脂組成物にスタンパの凹凸形状を転写してからスタンパを剥離し、その後で活性エネルギー線を照射して樹脂組成物を硬化する方法などが挙げられる。
 これらの中でも、ナノ凹凸構造の転写性、又は表面組成の自由度の点から、(2)の方法が特に好ましい。(2)の方法は、連続生産が可能なベルト状やロール状のスタンパを用いる場合に特に好適であり、生産性に優れた方法である。
(透明基材)
 透明基材は、光を透過する成形体であれば特に限定されない。透明基材を構成する材料としては、例えば、メチルメタクリレート(共)重合体、ポリカーボネート、スチレン(共)重合体、若しくはメチルメタクリレート-スチレン共重合体等の合成高分子、セルロースジアセテート、セルローストリアセテート、若しくはセルロースアセテートブチレート等の半合成高分子、ポリエチレンテレフタラート等のポリエステル、ポリアミド、ポリイミド、ポリエーテルスルフォン、ポリスルフォン、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビニル、ポリビニルアセタール、ポリエーテルケトン、ポリウレタン、又はガラス等が挙げられる。
 透明基材の形状や製造方法は、特に限定されない。例えば、射出成形体、押し出し成形体、又はキャスト成形体を使用できる。また形状は、シート状でもフィルム状でもよい。さらに、密着性、帯電防止性、耐擦傷性、又は耐候性等の特性の改良を目的として、透明基材の表面に、コーティングやコロナ処理が施されていてもよい。
(スタンパ)
 スタンパにナノ凹凸構造を形成する方法は、特に限定されない。その具体例としては、電子ビームリソグラフィー法、又はレーザー光干渉法が挙げられる。例えば、適当な支持基板上に適当なフォトレジスト膜を塗布し、紫外線レーザー、電子線、又はX線等の光で露光し、現像することによってナノ凹凸構造を有する型が得られる。この型をそのままスタンパとして使用することもできるが、フォトレジスト層を介して支持基板をドライエッチングにより選択的にエッチングして、レジスト層を除去することで支持基板そのものに直接ナノ凹凸構造を形成することも可能である。
 また、陽極酸化ポーラスアルミナをスタンパとして利用することも可能である。例えば、アルミニウムをシュウ酸、硫酸、又はリン酸等を電解液として所定の電圧にて陽極酸化することにより形成される20~200nm間隔の細孔構造をスタンパとして利用してもよい。この方法によれば、高純度アルミニウムを定電圧で長時間陽極酸化した後、一旦酸化皮膜を除去し、再び陽極酸化することで非常に高規則性の細孔が自己組織化的に形成できる。さらに、二回目に陽極酸化する工程で、陽極酸化処理と孔径拡大処理を組み合わせることで、断面が矩形でなく三角形や釣鐘型であるナノ凹凸構造も形成可能となる。
 さらに、ナノ凹凸構造を有する原型から電鋳法等で複製型を作製し、これをスタンパとして使用してもよい。
 スタンパそのものの形状は特に限定されず、例えば、平板状、ベルト状、又はロール状のいずれでもよい。特に、ベルト状やロール状にすれば、連続的にナノ凹凸構造を転写でき、生産性をより高めることができる。
(重合・硬化条件)
 活性エネルギー線照射による重合及び硬化方法としては、紫外線照射による重合及び硬化が好ましい。紫外線を照射するランプとしては、例えば、高圧水銀灯、メタルハライドランプ、又はフュージョンランプが挙げられる。
 紫外線の照射量は、樹脂組成物中の重合開始剤の吸収波長や含有量に応じて決定すればよい。通常、その積算光量は、100~6000mJ/cm2が好ましく、400~4000mJ/cm2がより好ましい。積算光量が上記下限値以上であれば、樹脂組成物を十分に硬化させることができ、硬化不足による耐擦傷性低下を防止できる。一方、積算光量が上記上限値以下であれば、硬化物の着色や透明基材の劣化を防止できる。
 照射強度も特に制限されないが、透明基材の劣化等を招かない程度の出力に抑えることが好ましい。
 このようにして重合及び硬化して得られるナノ凹凸構造体は、その表面にスタンパのナノ凹凸構造が鍵と鍵穴の関係で転写される。
 本発明の樹脂組成物の硬化物からなるナノ凹凸構造体は、良好な防汚性と高い耐擦傷性を兼ね備えるとともに、連続的な屈折率の変化によって優れた反射防止性能を発現でき、かつ耐候性にも優れている。従って、本発明により得られるナノ凹凸構造体は、反射防止膜(反射防止フィルムを含む)、又は立体形状の反射防止体等の反射防止物品として特に好適である。
 ナノ凹凸構造体を反射防止膜として使用する場合は、例えば、液晶表示装置、プラズマディスプレイパネル、エレクトロルミネッセンスディスプレイ、或いは陰極管表示装置等の画像表示装置、レンズ、ショーウィンドー、自動車メータカバー、カーナビゲーションモニター、タッチパネル、ヘッドアップディスプレイ、ミラーディスプレイ、オーディオディスプレイ、メータ内ディスプレイ、又は眼鏡レンズ等の対象物に、ナノ凹凸構造体を貼り付けて使用する。
 ナノ凹凸構造体を貼り付ける部分が立体形状である場合は、あらかじめそれに応じた形状の透明基材を用いてナノ凹凸構造体を製造しておき、これを対象物品の所定部分に貼り付ければよい。
 また、対象物品が画像表示装置である場合は、その表面に限らず、その前面板に対してナノ凹凸構造体を貼り付けてもよいし、前面板そのものをナノ凹凸構造体から構成することもできる。
 また、ナノ凹凸構造体は、上述した用途以外にも、例えば、光導波路、レリーフホログラム、太陽電池、レンズ、偏光分離素子、又は有機エレクトロルミネッセンスの光取り出し率向上部材などの光学用途や、細胞培養シートの用途にも適用できる。
[自動車メータカバー用透明部材・カーナビゲーションモニター用透明部材]
 本発明の自動車メータカバー用透明部材及びカーナビゲーションモニター用透明部材は、本発明の樹脂組成物を用いて形成されたナノ凹凸構造体を有する。これら透明部材は反射防止性能に優れるため、視認性が高い。また、良好な防汚性と高い耐擦傷性を兼ね備えるとともに、耐候性にも優れる。
 本発明の別の側面は、重合反応性モノマー成分中の全モノマーの含有量の合計を100質量部としたときに、1分子中に4個のラジカル重合性官能基を有する4官能(メタ)アクリレートモノマー(A)を50~95質量部と、1分子中に2個のラジカル重合性官能基及びポリアルキレングリコール構造を有し、1分子中に存在する前記アルキレングリコール構造の繰り返し単位の合計が4~25である2官能(メタ)アクリレートモノマー(B)を5~35質量部と、前記4官能(メタ)アクリレートモノマー(A)及び2官能(メタ)アクリレートモノマー(B)と共重合可能で、1分子中に1個のラジカル重合性官能基を有する単官能(メタ)アクリレートモノマー(C)を5~15質量部含む重合反応性モノマー成分と、前記重合反応性モノマー成分100質量部に対して、0.01~10質量部の活性エネルギー線重合開始剤(D)と、0.01~3質量部の離型剤(E)と、0.01~3質量部の滑剤(F)とを含有する、ナノ凹凸構造用樹脂組成物であって、前記4官能(メタ)アクリレートモノマー(A)が、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートのエトキシ変性物、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレートのエトキシ変性物、及びトリメチロールエタン・アクリル酸・無水コハク酸の縮合反応物からなる群から選ばれる少なくとも1種の化合物であり、前記2官能(メタ)アクリレートモノマー(B)が、ポリエチレングリコールジアクリレートであり、前記単官能(メタ)アクリレートモノマー(C)が、アルキル(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アクリロイルモルホリン、アクリロイルイソシアネート、メチルアクリレート、エチルアクリレート、及びメチルメタクリレートからなる群から選ばれる少なくとも1種の化合物であり、前記活性エネルギー線重合開始剤(D)が、ベンゾフェノン、4,4-ビス(ジエチルアミノ)ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、メチルオルソベンゾイルベンゾエート、4-フェニルベンゾフェノン、t-ブチルアントラキノン、2-エチルアントラキノン、2,4-ジエチルチオキサントン、イソプロピルチオキサントン、2,4-ジクロロチオキサントン、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、1-ヒドロキシシクロヘキシル-フェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、メチルベンゾイルホルメート、1,7-ビスアクリジニルヘプタン、及び9-フェニルアクリジンからなる群から選ばれる少なくとも1種の化合物であり、前記離型剤(E)が、下記一般式(I)で表される少なくとも1種のポリオキシエチレンアルキルリン酸エステル化合物であり、前記滑剤(F)が、ポリエーテル変性されたポリジメチルシロキサン骨格を有する化合物である、前記組成物に関する。
Figure JPOXMLDOC01-appb-C000005
 式(I)中、R、m、及びnは前記と同じ意味を有する。
 本発明のまた別の側面は、重合反応性モノマー成分中の全モノマーの含有量の合計を100質量部としたときに、1分子中に4個のラジカル重合性官能基を有する4官能(メタ)アクリレートモノマー(A)を50~95質量部と、1分子中に2個のラジカル重合性官能基及びポリアルキレングリコール構造を有し、1分子中に存在する前記アルキレングリコール構造の繰り返し単位の合計が4~25である2官能(メタ)アクリレートモノマー(B)を5~35質量部と、前記4官能(メタ)アクリレートモノマー(A)及び2官能(メタ)アクリレートモノマー(B)と共重合可能で、1分子中に1個のラジカル重合性官能基を有する単官能(メタ)アクリレートモノマー(C)を5~15質量部含む重合反応性モノマー成分と、前記重合反応性モノマー成分100質量部に対して、0.01~10質量部の活性エネルギー線重合開始剤(D)と、0.01~3質量部の離型剤(E)と、0.01~3質量部の滑剤(F)と、前記重合反応性モノマー成分100質量部に対して、0.01~5質量部の紫外線吸収剤及び/又は光安定剤(G)とを含有する、ナノ凹凸構造用樹脂組成物であって、前記4官能(メタ)アクリレートモノマー(A)が、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートのエトキシ変性物、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレートのエトキシ変性物、及びトリメチロールエタン・アクリル酸・無水コハク酸の縮合反応物からなる群から選ばれる少なくとも1種の化合物であり、前記2官能(メタ)アクリレートモノマー(B)が、ポリエチレングリコールジアクリレートであり、前記単官能(メタ)アクリレートモノマー(C)が、アルキル(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アクリロイルモルホリン、アクリロイルイソシアネート、メチルアクリレート、エチルアクリレート、及びメチルメタクリレートからなる群から選ばれる少なくとも1種の化合物であり、前記活性エネルギー線重合開始剤(D)が、ベンゾフェノン、4,4-ビス(ジエチルアミノ)ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、メチルオルソベンゾイルベンゾエート、4-フェニルベンゾフェノン、t-ブチルアントラキノン、2-エチルアントラキノン、2,4-ジエチルチオキサントン、イソプロピルチオキサントン、2,4-ジクロロチオキサントン、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、1-ヒドロキシシクロヘキシル-フェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、メチルベンゾイルホルメート、1,7-ビスアクリジニルヘプタン、及び9-フェニルアクリジンからなる群から選ばれる少なくとも1種の化合物であり、前記離型剤(E)が、下記一般式(I)で表される少なくとも1種のポリオキシエチレンアルキルリン酸エステル化合物であり、前記滑剤(F)が、ポリエーテル変性されたポリジメチルシロキサン骨格を有する化合物であり、前記紫外線吸収剤(G)が、ベンゾフェノン系の紫外線吸収剤、ベンゾトリアゾール系の紫外線吸収剤、及びベンゾエート系の紫外線吸収剤からなる群から選ばれる少なくとも1種の紫外線吸収剤であり、前記光安定剤(G)が、ヒンダードアミン系の光安定剤である、前記組成物に関する。
Figure JPOXMLDOC01-appb-C000006
 式(I)中、R、m、及びnは前記と同じ意味を有する。
 本発明のまた別の側面は、重合反応性モノマー成分中の全モノマーの含有量の合計を100質量部としたときに、1分子中に4個のラジカル重合性官能基を有する4官能(メタ)アクリレートモノマー(A)を50~95質量部と、1分子中に2個のラジカル重合性官能基及びポリアルキレングリコール構造を有し、1分子中に存在する前記アルキレングリコール構造の繰り返し単位の合計が4~25である2官能(メタ)アクリレートモノマー(B)を5~35質量部と、前記4官能(メタ)アクリレートモノマー(A)及び2官能(メタ)アクリレートモノマー(B)と共重合可能で、1分子中に1個のラジカル重合性官能基を有する単官能(メタ)アクリレートモノマー(C)を5~15質量部含む重合反応性モノマー成分と、前記重合反応性モノマー成分100質量部に対して、0.01~10質量部の活性エネルギー線重合開始剤(D)と、0.01~3質量部の離型剤(E)と、0.01~3質量部の滑剤(F)と、前記重合反応性モノマー成分100質量部に対して、0.01~5質量部の紫外線吸収剤及び/又は光安定剤(G)とを含有する、ナノ凹凸構造用樹脂組成物であって、前記4官能(メタ)アクリレートモノマー(A)が、ペンタエリスリトールテトラアクリレート、トリメチロールエタン・アクリル酸・無水コハク酸の縮合反応物、及びエトキシ化ペンタエリスリトールテトラアクリレートからなる群から選ばれる少なくとも1種の化合物であり、前記2官能(メタ)アクリレートモノマー(B)が、ポリエチレングリコールジアクリレートであり、前記単官能(メタ)アクリレートモノマー(C)が、ヒドロキシエチルアクリレート、メチルメタクリレート、及びメチルアクリレートからなる群から選ばれる少なくとも1種の化合物であり、前記活性エネルギー線重合開始剤(D)が、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、及び2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキサイドからなる群から選ばれる少なくとも1種の化合物であり、前記離型剤(E)が、下記一般式(I)で表される少なくとも1種のポリオキシエチレンアルキルリン酸エステル化合物であり、前記光安定剤(G)がヒンダードアミン系光安定剤である、前記組成物に関する。
Figure JPOXMLDOC01-appb-C000007
 式(I)中、R、m、及びnは前記と同じ意味を有する。
 以下、本発明について実施例を挙げて具体的に説明する。ただし、本発明はこれらに限定されるものではない。
 スタンパは、以下のようにして製造した。
[スタンパの製造]
 純度99.99%のアルミニウム板を、羽布研磨及び過塩素酸/エタノール混合溶液(1/4体積比)中で電解研磨し鏡面化した。
(a)工程:
 このアルミニウム板について、0.3Mシュウ酸水溶液中で、直流40V、温度16℃の条件で30分間陽極酸化を行った。
(b)工程:
 酸化皮膜が形成されたアルミニウム板を、6質量%リン酸/1.8質量%クロム酸混合水溶液に6時間浸漬して、酸化皮膜を除去した。
(c)工程:
 このアルミニウム板について、0.3Mシュウ酸水溶液中、直流40V、温度16℃の条件で30秒間陽極酸化を行った。
(d)工程:
 酸化皮膜が形成されたアルミニウム板を、32℃の5質量%リン酸に8分間浸漬して、細孔径拡大処理を行った。
(e)工程:
 前記(c)工程及び(d)工程を合計で5回繰り返し、周期100nm、深さ180nmの略円錐形状の細孔を有する陽極酸化ポーラスアルミナを得た。
 得られた陽極酸化ポーラスアルミナを脱イオン水で洗浄し、表面の水分をエアーブローで除去した後、これを、表面防汚コーティング剤(ダイキン社製、「オプツールDSX」)を固形分0.1質量%になるように希釈剤(ハーベス社製、「HD-ZV」)で希釈した溶液に10分間浸漬し、20時間風乾してスタンパを得た。
 得られたスタンパの細孔を下記の方法により測定した結果、隣り合う細孔の間隔が100nm、細孔の深さが180nmの略円錐形状のテーパー状凹部(細孔)からなるナノ凹凸構造を表面に形成していた。
スタンパの細孔の測定;
 陽極酸化ポーラスアルミナからなるスタンパの一部の縦断面を1分間Pt蒸着(白金蒸着)し、電界放出形走査電子顕微鏡(日本電子社製、「JSM-7400F」)により加速電圧3.00kVで観察し、隣り合う細孔の間隔(周期)及び細孔の深さを測定した。具体的にはそれぞれ10点ずつ測定し、その平均値を測定値とした。
[実施例1]
(樹脂組成物の調製)
 モノマー(A)としてエトキシ化ペンタエリスリトールテトラアクリレート(新中村化学工業社製、「NKエステルATM-4E」)80質量部、モノマー(B)としてポリエチレングリコールジアクリレート(新中村化学工業社製、「NKエステルA-600」)20質量部、活性エネルギー線重合開始剤(D)として1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(チバ・スペシャルティ・ケミカルズ社製、「IRGACURE184」)0.5質量部、及び2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキサイド(チバ・スペシャルティ・ケミカルズ社製、「DAROCUR TPO」)0.5質量部、離型剤(E)としてポリオキシエチレンアルキルリン酸エステル化合物(日光ケミカル社製、「NIKKOL TLP-4」)0.1質量部、滑剤(F)としてポリエーテル変性ポリジメチルシロキサン(ビックケミー・ジャパン社製、「BYK-378」)0.5質量部、(G)成分として紫外線吸収剤(チバ・スペシャルティ・ケミカルズ社製、「チヌビン400」)0.1質量部、及びヒンダードアミン系光安定剤(チバ・スペシャルティ・ケミカルズ社製、「チヌビン292」)0.1質量部を混合し、樹脂組成物を調製した。
(ナノ凹凸構造体の製造)
 スタンパの細孔が形成された表面上に得られた樹脂組成物を数滴垂らし、その上に厚さ100μmのアクリルフィルム(三菱レイヨン社製、「HBS010」)で押し広げながら被覆した。その後、フィルム側から高圧水銀灯を用いて1200mJ/cm2のエネルギーで紫外線を照射して硬化させた。ついで、フィルムとスタンパを剥離して、フィルム状のナノ凹凸構造体を得た。
 得られたナノ凹凸構造体の凹凸を下記の方法により測定した結果、隣り合う凸部若しくは凹部の間隔が100nm、凸部の高さが180nmの略円錐形状のナノ凹凸構造を表面に形成していた。
ナノ凹凸構造体の凹凸の測定;
 ナノ凹凸構造体の縦断面を10分間Pt蒸着(白金蒸着)し、スタンパの場合と同じ装置及び条件にて、隣り合う凸部又は凹部の間隔、及び凸部の高さを測定した。具体的にはそれぞれ10点ずつ測定し、その平均値を測定値とした。
(評価)
 得られたナノ凹凸構造体について、下記の(1)~(7)の評価を行った。評価の際は、粘着剤(スミロン社製、「RA-600」)を用いて、ナノ凹凸構造体のアクリルフィルム側をアクリル板(三菱レイヨン社製、「アクリライトL」、厚さ2.0mm)に貼り付け、これをテストサンプルとして使用した。結果を表1に示す。
 ここで、ナノ凹凸構造が形成されている側のテストサンプルの面を「表面」、ナノ凹凸構造が形成されていない側のテストサンプルの面を「裏面」とする。
(1)反射率の測定
 テストサンプルの表面側から、分光光度計(日立製作所社製、「U-4100」)を用いて、入射角5°の条件で波長380nm~780nmの間の相対反射率を測定し、視感度反射率である550nmの反射率を求め、以下の評価基準にて評価した。
 A:反射率が4.5%以下。
 C:反射率が4.5%を超える。
(2)密着性の評価
 テストサンプルの表面について、JIS K5600-5-6に準じて碁盤目剥離試験を行い、以下の評価基準にて評価した。
 A:剥離部分が5%未満。
 B:剥離部分が5%以上、35%未満。
 C:剥離部分が35%以上。
(3)耐擦傷性の評価(スチールウール擦傷試験)
 磨耗試験機(HEIDON社製、「Type:30S」)を用いて、2cm四方のスチールウール(#0000)に50gの荷重をかけ、往復距離30mm、ヘッドスピード30mm/s、10往復の条件で、テストサンプルの表面を擦傷した。ついで、黒い紙の上にテストサンプルをその裏面が接するように配置し、テストサンプルの表面から外観を目視にて観察し、以下の評価基準にて評価した。
 A:0~10本の傷が確認される。
 B:11~20本の傷が確認される。
 C:無数(21本以上)の傷が確認される。
(4)防汚性の評価
 前記特許文献1が引用する特開2006-147149号公報に記載の方法(疑似指紋成分1を調製して使用)にて、疑似指紋液をテストサンプルの表面に付着させた後、往復磨耗試験機(新東科学社製「HEIDON Type:30S」)に、20mm角の圧子に水を滲み込ませたネル布を取り付け、荷重100g、ストローク40mm、10往復の条件でテストサンプルの表面を拭き取った。ついで、黒い紙の上にテストサンプルをその裏面が接するように配置し、テストサンプルの表面から外観を目視にて観察し、以下の評価基準にて評価した。
 A:汚れが目視では分からない。
 B:目視で若干の指紋が確認される。
 C:指紋がのび広がるだけで、ほとんど拭き取られてない。
(5)耐水性の評価
 クリーニングクロス(東レ社製、「トレシー」)に水道水を十分染込ませたものを水滴が滴り落ちなくなる程度まで絞り、これでテストサンプルを拭き取った時の外観を目視にて観察し、以下の評価基準にて評価した。
 A:良好な反射防止性能を維持している。
 B:わずかに白く靄がかかっている。
 C:明らかに白濁している。
(6)水接触角の判定
 テストサンプルの表面について、接触角測定装置(協和界面科学社製、「DM-501」)を用いて水接触角を測定し、以下の評価基準にて評価した。
 A:水接触角が25°未満。
 B:水接触角が25°以上、35°未満。
 C:水接触角が35°以上。
(7)耐候性試験
 サンシャインウェザオメーター(スガ試験機社製)を用いて、ブラックパネル温度83℃、槽内湿度50%、降雨なしの条件で、テストサンプルの耐候性試験を行った。300時間経過後、上記(1)~(6)の評価を行った。
[実施例2~6、比較例1~10]
 表1、又は2に示す配合組成に従って各成分を混合した以外は、実施例1と同様にして樹脂組成物を調製し、ナノ凹凸構造体を製造し、評価した。結果を表1、又は2に示す。
 各実施例及び比較例で得られたナノ凹凸構造体の表面には、スタンパのナノ凹凸構造が転写されており、隣り合う凸部若しくは凹部の間隔が100nm、凸部の高さが180nmの略円錐形状のナノ凹凸構造が形成されていた。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表1、及び2中の略号等は下記の通りである。
・モノマー(A):4官能(メタ)アクリレートモノマー(A)
・モノマー(B):2官能(メタ)アクリレートモノマー(B)
・モノマー(C):単官能(メタ)アクリレートモノマー(C)
・重合開始剤(D):活性エネルギー線重合開始剤(D)
・(G)成分:紫外線吸収剤及び/又は光安定剤(G)
・A-TMMT:ペンタエリスリトールテトラアクリレート(新中村化学工業社製、「NKエステルA-TMMT」)
・TAS:トリメチロールエタン・アクリル酸・無水コハク酸の縮合反応物(大阪有機化学工業社製、「TAS」)
・ATM-4E:エトキシ化ペンタエリスリトールテトラアクリレート(新中村化学工業社製、「NKエステルATM-4E」)
・A-400:ポリエチレングリコールジアクリレート(新中村化学工業社製、「NKエステルA-400」)
・A-600:ポリエチレングリコールジアクリレート(新中村化学工業社製、「NKエステルA-600」)
・M260:ポリエチレングリコールジアクリレート(東亜合成社製、「アロニックスM260」)
・HEA:ヒドロキシエチルアクリレート
・MMA:メチルメタクリレート
・MA:メチルアクリレート
・DPHA:ジペンタエリスリトールヘキサアクリレート
・C6DA:1,6-ヘキサンジオールジアクリレート
・Irg.184:1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(チバ・スペシャルティ・ケミカルズ社製、「IRGACURE184」)
・Irg.819:ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド(チバ・スペシャルティ・ケミカルズ社製、「IRGCURE819」)
・Dar.1173:2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン(チバ・スペシャルティ・ケミカルズ社製、「DAROCURE1173」)
・Dar.TPO:2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキサイド(チバ・スペシャルティ・ケミカルズ社製、「DAROCUR TPO」)
・INT1856:ポリオキシエチレンアルキルリン酸エステル化合物(アクセル社製、「モールドウイズINT-1856」)
・TLP4:ポリオキシエチレンアルキルリン酸エステル化合物(日光ケミカル社製、「NIKKOL TLP-4」)
・BYK378:滑剤(ビックケミー・ジャパン社製、「BYK-378」)
・BYK333:滑剤(ビックケミー・ジャパン社製、「BYK-333」)
・BYK3500:滑剤(ビックケミー・ジャパン社製、「BYK-3500」)
・TV400:紫外線吸収剤(チバ・スペシャルティ・ケミカルズ社製、「チヌビン400」)
・TV479:紫外線吸収剤(チバ・スペシャルティ・ケミカルズ社製、「チヌビン479」)
・Viosorb110:紫外線吸収剤(共同薬品社製、「Viosorb110」)
・TV292:ヒンダードアミン系光安定剤(チバ・スペシャルティ・ケミカルズ社製、「チヌビン292」)
 表1の結果から明らかなように、実施例1~6で得られたナノ凹凸構造体は、良好な密着性、耐擦傷性、防汚性、耐水性と低反射を有し、かつ耐候性試験後も同様の結果が得られた。
 なお、実施例1の場合、重合反応性モノマー成分はモノマー(C)を含有していないが、モノマー(A)及びモノマー(B)をバランスよく含み、かつ重合開始剤(D)、離型剤(E)及び滑剤(F)を所定量含有するので、良好な密着性を有していた。
 一方、比較例1で得られたナノ凹凸構造体は、重合反応性モノマー成分がモノマー(A)のみで構成されているため、水接触角が高くなり、防汚性が発現しなかった。また、樹脂組成物が滑剤(F)を含有しないため、良好な耐擦傷性が得られなかった。
 比較例2で得られたナノ凹凸構造体は、樹脂組成物中の重合反応性モノマー成分がモノマー(B)を含有しないため、水接触角が高くなり、防汚性が発現しなかった。また、樹脂組成物が滑剤(F)を含まないため、良好な耐擦傷性が得られなかった。
 比較例3で得られたナノ凹凸構造体は、重合反応性モノマー成分中のモノマー(B)の含有量が多いため、防汚性は発現するものの、耐水性に劣り、水拭きによって光学性能を損なってしまった。また、重合反応性モノマー成分がモノマー(C)を含まないため、密着性も悪かった。さらに、樹脂組成物が滑剤(F)を含まないため、良好な耐擦傷性が得られなかった。
 比較例4で得られたナノ凹凸構造体は、重合反応性モノマー成分中のモノマー(C)の含有量が多く、かつ樹脂組成物が滑剤(F)を含有しないため、良好な耐擦傷性が得られなかった。また耐水性に劣り、水拭きによって光学性能を損なってしまった。
 比較例5で得られたナノ凹凸構造体は、樹脂組成物が滑剤(F)を含まないため、良好な耐擦傷性が得られなかった。また、樹脂組成物が離型剤(E)を含んでおらず、かつ、紫外線吸収剤の含有量が比較的多いので、水接触角が高くなり、初期及び耐候性試験において防汚性が発現しなかった。
 比較例6で得られたナノ凹凸構造体は、樹脂組成物が滑剤(F)を含まないため、耐擦傷性が得られなかった。
 比較例7で得られたナノ凹凸構造体は、樹脂組成物中の滑剤(F)の含有量が多いので初期の密着性が低下し、また耐候性試験によって水接触角が上昇し、防汚性を損ねた。
 比較例8で得られたナノ凹凸構造体は、樹脂組成物中の離型剤(E)の含有量が多いので表面が斑になり外観不良を起こし、かつ耐候性試験後に反射率が上昇した。また樹脂組成物が滑剤(F)を含まないため、良好な耐擦傷性が得られなかった。
 比較例9で得られたナノ凹凸構造体は、良好な初期性能を有しているが、樹脂組成物が離型剤(E)を含んでいないので、耐候性試験によって水接触角が上昇し、防汚性が悪化した。
 比較例10で得られたナノ凹凸構造体は、重合反応性モノマー成分がモノマー(A)を含まず、かつ樹脂組成物が滑剤(F)を含有しないが、重合反応性モノマー成分が6官能モノマーであるDPHA(ジペンタエリスリトールヘキサアクリレート)を含んでいたため、各実施例と同等の耐擦傷性が得られた。加えて、重合反応性モノマー成分中のモノマー(B)の含有量が多いものの、耐水性も有していた。しかし、DPHAは、基材との密着性が低く、密着性向上成分であるモノマー(C)を含むにもかかわらず、得られたナノ凹凸構造体は、基材フィルムとの初期密着性が不良であり、商品として使用するには不向きであった。
 なお、比較例1~4、10は、初期評価で良好な性能が得られず実用性に乏しいものでであったため、耐候性試験は行わなかった。
 本発明のナノ凹凸構造用樹脂組成物を硬化させて得られるナノ凹凸構造体は、ナノ凹凸構造体としての優れた光学性能を維持しながら、良好な指紋拭き取り性と高い耐擦傷性を両立し、かつ耐候性に優れる。従って、屋外で使用される可能性のある各種ディスプレイパネル、レンズ、ショーウィンドー、自動車メータカバー、カーナビゲーションシステム、又は眼鏡レンズや太陽電池の光取り出し率向上部材などの光学用途に利用可能であり、工業的に極めて有用である。また、水滴が付着することで視認性が悪くなる鏡や窓材などにも利用可能である。
 10:ナノ凹凸構造体、
 11:透明基材、
 12:硬化物層、
 13:凸部、
 13a:凸部の頂点、
 14:凹部、
 14a:凹部の底点、
 w1:隣り合う凸部の間隔、
 d1:凹部の底点から凸部の頂点までの垂直距離。

Claims (8)

  1.  重合反応性モノマー成分中の全モノマーの含有量の合計を100質量部としたときに、1分子中に4個のラジカル重合性官能基を有する4官能(メタ)アクリレートモノマー(A)を50~95質量部と、1分子中に2個のラジカル重合性官能基及びポリアルキレングリコール構造を有し、1分子中に存在する前記アルキレングリコール構造の繰り返し単位の合計が4~25である2官能(メタ)アクリレートモノマー(B)を5~35質量部と、前記4官能(メタ)アクリレートモノマー(A)及び2官能(メタ)アクリレートモノマー(B)と共重合可能で、1分子中に1個のラジカル重合性官能基を有する単官能(メタ)アクリレートモノマー(C)を15質量部以下含む重合反応性モノマー成分と、
     前記重合反応性モノマー成分100質量部に対して、0.01~10質量部の活性エネルギー線重合開始剤(D)と、0.01~3質量部の離型剤(E)と、0.01~3質量部の滑剤(F)とを含有する、ナノ凹凸構造用樹脂組成物。
  2.  前記重合反応性モノマー成分100質量部に対して、0.01~5質量部の紫外線吸収剤及び光安定剤からなる群から選択される少なくとも一種の成分(G)をさらに含有する、請求項1に記載のナノ凹凸構造用樹脂組成物。
  3.  前記4官能(メタ)アクリレートモノマー(A)が、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートのエトキシ変性物、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレートのエトキシ変性物、及びトリメチロールエタン・アクリル酸・無水コハク酸の縮合反応物よりなる群から選ばれる少なくとも1種の化合物である、請求項1又は2に記載のナノ凹凸構造用樹脂組成物。
  4.  前記2官能(メタ)アクリレートモノマー(B)のポリアルキレングリコール構造が、ポリエチレングリコール構造である、請求項1~3のいずれか一項に記載のナノ凹凸構造用樹脂組成物。
  5.  前記離型剤(E)が、下記一般式(I)で表される少なくとも1種のポリオキシエチレンアルキルリン酸エステル化合物である、請求項1~4のいずれか一項に記載のナノ凹凸構造用樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
     式(I)中、Rはアルキル基を示し、mは1~20の整数を示し、nは1~3の整数を示す。
  6.  前記滑剤(F)が、ポリエーテル変性されたポリジメチルシロキサン骨格を有する化合物である、請求項1~5のいずれか一項に記載のナノ凹凸構造用樹脂組成物。
  7.  請求項1~6のいずれか一項に記載のナノ凹凸構造用樹脂組成物を用いて形成されたナノ凹凸構造体を有する、自動車メータカバー用透明部材。
  8.  請求項1~6のいずれか一項に記載のナノ凹凸構造用樹脂組成物を用いて形成されたナノ凹凸構造体を有する、カーナビゲーションモニター用透明部材。
PCT/JP2012/066070 2011-06-24 2012-06-22 ナノ凹凸構造用樹脂組成物、およびそれを用いた自動車メータカバー用透明部材とカーナビゲーションモニター用透明部材 WO2012176906A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280028734.XA CN103597000B (zh) 2011-06-24 2012-06-22 纳米凹凸结构用树脂组合物、以及使用其的汽车仪表罩用透明构件和汽车导航监测仪用透明构件
EP12802394.2A EP2725043B1 (en) 2011-06-24 2012-06-22 Resin composition for nano concave-convex structure, transparent member for monitor of vehicle navigation device and transparent member for cover of vehicle meter using same composition
US14/123,801 US9284445B2 (en) 2011-06-24 2012-06-22 Resin composition for nano concave-convex structure, transparent member for monitor of vehicle navigation device and transparent member for cover of vehicle meter using same composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-140359 2011-06-24
JP2011140359A JP5744641B2 (ja) 2011-06-24 2011-06-24 ナノ凹凸構造用樹脂組成物、およびそれを用いた自動車メータカバー用透明部材とカーナビゲーション用透明部材

Publications (1)

Publication Number Publication Date
WO2012176906A1 true WO2012176906A1 (ja) 2012-12-27

Family

ID=47422733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066070 WO2012176906A1 (ja) 2011-06-24 2012-06-22 ナノ凹凸構造用樹脂組成物、およびそれを用いた自動車メータカバー用透明部材とカーナビゲーションモニター用透明部材

Country Status (5)

Country Link
US (1) US9284445B2 (ja)
EP (1) EP2725043B1 (ja)
JP (1) JP5744641B2 (ja)
CN (1) CN103597000B (ja)
WO (1) WO2012176906A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119425A1 (ja) * 2013-01-31 2014-08-07 三洋化成工業株式会社 光学部品用活性エネルギー線硬化性組成物、硬化物及びその硬化物を用いた光学レンズ、光学レンズ用シートまたはフィルム
JP2014159154A (ja) * 2013-01-23 2014-09-04 Dexerials Corp 親水性積層体、及びその製造方法、防汚用積層体、物品、及びその製造方法、並びに防汚方法
JP5629033B1 (ja) * 2013-01-23 2014-11-19 デクセリアルズ株式会社 親水性積層体、及びその製造方法、防汚用積層体、物品、及びその製造方法、並びに防汚方法
JP2015064432A (ja) * 2013-09-24 2015-04-09 大日本印刷株式会社 反射防止物品

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5959243B2 (ja) * 2012-03-14 2016-08-02 アイカ工業株式会社 無溶剤型紫外線硬化型樹脂組成物
CN104246975B (zh) 2012-04-27 2018-03-30 日产化学工业株式会社 具有低脱模力性的压印材料
JP6121792B2 (ja) * 2013-05-13 2017-04-26 三洋化成工業株式会社 活性エネルギー線硬化性樹脂組成物
JP6149004B2 (ja) 2013-08-13 2017-06-14 富士フイルム株式会社 硬化性樹脂組成物、光学部品およびレンズ
JP6941316B2 (ja) * 2016-02-12 2021-09-29 凸版印刷株式会社 化粧シート及びその製造方法
US20200071560A1 (en) * 2017-03-21 2020-03-05 Sharp Kabushiki Kaisha Antifouling film
CN110703365A (zh) * 2019-10-18 2020-01-17 浙江水晶光电科技股份有限公司 光学镜片及其制备方法
CN110922807B (zh) * 2019-12-03 2021-10-22 上海大学 一种改性纳米氧化锌及其在光固化涂料中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316468A (ja) * 1994-05-20 1995-12-05 Mitsubishi Rayon Co Ltd 光ディスク用コーティング材および光ディスク
JP2006147149A (ja) 2001-09-19 2006-06-08 Tdk Corp 光情報媒体の試験方法
WO2008096872A1 (ja) * 2007-02-09 2008-08-14 Mitsubishi Rayon Co., Ltd. 透明成形体およびこれを用いた反射防止物品
JP2009286953A (ja) * 2008-05-30 2009-12-10 Omron Corp 光学部品製造用樹脂組成物およびその利用
JP2011221492A (ja) * 2010-03-26 2011-11-04 Dainippon Printing Co Ltd プリズムシート、光学部材用活性エネルギー線硬化性樹脂組成物、面光源装置及び液晶表示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3933302B2 (ja) * 1997-05-30 2007-06-20 三井化学株式会社 新規な燐酸エステル及び該化合物からなる離型剤
CN1290886C (zh) * 2002-03-18 2006-12-20 大日本印刷株式会社 树脂组合物和光学元件
JP2005352121A (ja) * 2004-06-10 2005-12-22 Asahi Kasei Corp 反射防止膜
US20070217008A1 (en) * 2006-03-17 2007-09-20 Wang Jian J Polarizer films and methods of making the same
KR101457254B1 (ko) * 2007-09-28 2014-10-31 아사히 가라스 가부시키가이샤 광경화성 조성물, 미세 패턴 형성체의 제조 방법 및 광학 소자
CN101687954B (zh) * 2008-04-28 2013-01-09 三菱化学株式会社 活性能量线固化性树脂组合物、固化膜、层积体、光记录介质和固化膜的制造方法
JP2010000719A (ja) * 2008-06-20 2010-01-07 Mitsubishi Rayon Co Ltd フィルム状レプリカモールド、その製造方法および微細凹凸構造を有するフィルム製品の製造方法
JP4846867B2 (ja) * 2010-03-31 2011-12-28 三菱レイヨン株式会社 積層体及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316468A (ja) * 1994-05-20 1995-12-05 Mitsubishi Rayon Co Ltd 光ディスク用コーティング材および光ディスク
JP2006147149A (ja) 2001-09-19 2006-06-08 Tdk Corp 光情報媒体の試験方法
WO2008096872A1 (ja) * 2007-02-09 2008-08-14 Mitsubishi Rayon Co., Ltd. 透明成形体およびこれを用いた反射防止物品
JP2009286953A (ja) * 2008-05-30 2009-12-10 Omron Corp 光学部品製造用樹脂組成物およびその利用
JP2011221492A (ja) * 2010-03-26 2011-11-04 Dainippon Printing Co Ltd プリズムシート、光学部材用活性エネルギー線硬化性樹脂組成物、面光源装置及び液晶表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2725043A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014159154A (ja) * 2013-01-23 2014-09-04 Dexerials Corp 親水性積層体、及びその製造方法、防汚用積層体、物品、及びその製造方法、並びに防汚方法
JP5629033B1 (ja) * 2013-01-23 2014-11-19 デクセリアルズ株式会社 親水性積層体、及びその製造方法、防汚用積層体、物品、及びその製造方法、並びに防汚方法
JP2015003519A (ja) * 2013-01-23 2015-01-08 デクセリアルズ株式会社 親水性積層体、及びその製造方法、防汚用積層体、物品、及びその製造方法、並びに防汚方法
US10252302B2 (en) 2013-01-23 2019-04-09 Dexerials Corporation Hydrophilic laminate and method for manufacturing the same, antifouling laminate, product and method for manufacturing the same, and antifouling method
WO2014119425A1 (ja) * 2013-01-31 2014-08-07 三洋化成工業株式会社 光学部品用活性エネルギー線硬化性組成物、硬化物及びその硬化物を用いた光学レンズ、光学レンズ用シートまたはフィルム
CN104918966A (zh) * 2013-01-31 2015-09-16 三洋化成工业株式会社 光学部件用活性能量射线固化性组合物、固化物和使用该固化物的光学透镜、光学透镜用片或者膜
JPWO2014119425A1 (ja) * 2013-01-31 2017-01-26 三洋化成工業株式会社 光学部品用活性エネルギー線硬化性組成物、硬化物及びその硬化物を用いた光学レンズ、光学レンズ用シートまたはフィルム
US10189929B2 (en) 2013-01-31 2019-01-29 Sanyo Chemical Industries, Ltd. Active-energy-ray-curable composition for optical members, cured article, and optical lens and sheet or film for optical lenses each produced using said cured article
JP2015064432A (ja) * 2013-09-24 2015-04-09 大日本印刷株式会社 反射防止物品

Also Published As

Publication number Publication date
US9284445B2 (en) 2016-03-15
JP2013008825A (ja) 2013-01-10
EP2725043B1 (en) 2016-02-24
CN103597000A (zh) 2014-02-19
EP2725043A4 (en) 2015-03-18
CN103597000B (zh) 2016-03-30
US20140120313A1 (en) 2014-05-01
EP2725043A1 (en) 2014-04-30
JP5744641B2 (ja) 2015-07-08

Similar Documents

Publication Publication Date Title
JP5744641B2 (ja) ナノ凹凸構造用樹脂組成物、およびそれを用いた自動車メータカバー用透明部材とカーナビゲーション用透明部材
JP4796659B2 (ja) 透明成形体およびこれを用いた反射防止物品
JP5260790B2 (ja) 活性エネルギー線硬化性樹脂組成物、微細凹凸構造体及び微細凹凸構造体の製造方法
JP5954329B2 (ja) 物品および活性エネルギー線硬化性樹脂組成物
JP5958338B2 (ja) 微細凹凸構造体、撥水性物品、モールド、及び微細凹凸構造体の製造方法
TWI433882B (zh) 活性能量線硬化性樹脂組成物與使用該組成物之奈米凹凸構造體及其製造方法、以及具備奈米凹凸構造體的撥水性物品
JP2014005341A (ja) 微細凹凸構造を表面に有する物品
TW201305257A (zh) 表面具有微細凹凸結構的物品及具備該物品的視訊顯示裝置
JP2013029828A (ja) 光透過性成形体及びそれを用いた反射防止物品
JP5876977B2 (ja) 活性エネルギー線硬化性樹脂組成物、及びそれを用いたナノ凹凸構造体とその製造方法、及びナノ凹凸構造体を備えた撥水性物品
JP2016183252A (ja) 活性エネルギー線硬化性樹脂組成物及び物品
JP2012224709A (ja) 活性エネルギー線硬化性樹脂組成物、及びそれを用いたナノ凹凸構造体と撥水性物品
JP2013241503A (ja) 多官能ウレタン(メタ)アクリレート、活性エネルギー線硬化性樹脂組成物及び微細凹凸構造を表面に有する物品
JP2014077040A (ja) 活性エネルギー線硬化性組成物、およびそれを用いた微細凹凸構造体
JP2014016453A (ja) 微細凹凸構造体を備えた物品及び活性エネルギー線硬化樹脂組成物
JP5879939B2 (ja) 微細凹凸構造体、ディスプレイ及び微細凹凸構造体の製造方法
JP2014076556A (ja) 微細凹凸構造を有する物品およびその製造方法
JP2013033136A (ja) 微細凹凸構造体、およびこれを有する反射防止物品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280028734.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802394

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14123801

Country of ref document: US

Ref document number: 2012802394

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE