WO2012173236A1 - 硬質皮膜被覆部材 - Google Patents

硬質皮膜被覆部材 Download PDF

Info

Publication number
WO2012173236A1
WO2012173236A1 PCT/JP2012/065394 JP2012065394W WO2012173236A1 WO 2012173236 A1 WO2012173236 A1 WO 2012173236A1 JP 2012065394 W JP2012065394 W JP 2012065394W WO 2012173236 A1 WO2012173236 A1 WO 2012173236A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
hardness
total amount
ratio
hard
Prior art date
Application number
PCT/JP2012/065394
Other languages
English (en)
French (fr)
Inventor
山本 兼司
宗政 淳
岩井 善郎
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to EP12799841.7A priority Critical patent/EP2722415B1/en
Priority to CA2831780A priority patent/CA2831780C/en
Priority to BR112013032280-2A priority patent/BR112013032280B1/pt
Priority to US14/119,339 priority patent/US9273387B2/en
Publication of WO2012173236A1 publication Critical patent/WO2012173236A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0664Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/12Coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/506Hardness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a hard film coated member having a hard film coated on the surface.
  • components such as a steam turbine blade, a compressor blade of a jet engine, a compressor screw for gas and liquid compression, an impeller of a turbo compressor, and a fuel injection valve are subjected to erosion caused by solid particles or liquid (fluid).
  • parts (equipment) for stirring, transporting or crushing powder (that is, solid particles) or fluid containing powder are also subject to erosion due to abrasive wear caused by solid particles or liquid (fluid).
  • a hard film is generally formed on the part surface. With respect to such a hard coating, for example, the following documents are disclosed.
  • Patent Document 1 discloses a multilayer film in which soft and ductile composition layers and hard and brittle composition layers are alternately laminated as a film excellent in erosion resistance (erosion resistance). .
  • a multilayer film of TiN / Ti is cited.
  • Patent Document 2 discloses a multilayer film in which Ti 1-x N x films having different amounts of nitrogen are stacked.
  • Patent Document 3 discloses a nitride containing titanium nitride as a main component and containing at least one element of Al, Cr, Zr, and Hf.
  • the chemical composition is Ti (100-x) Mex nitride (provided that at least one element x selected from Me: Al, Cr, Zr and Hf is 2% ⁇ x ⁇ 30% (atomic concentration) (%))) Is disclosed.
  • Patent Document 4 includes a plurality of layers of a metal material and a ceramic material, and erosion caused by particles, erosion caused by water, and a multilayer on the surface of the support for protecting against corrosion caused by these particles and water.
  • An abrasion resistant coating is disclosed.
  • the metallic material comprises one or more elements selected from the group consisting of titanium, zirconium, hafnium and tantalum, and the ceramic material is a nitride of the selected metallic material.
  • Patent Documents 5 to 7 disclose a multilayer film in which a metal layer selected from Ti, Cr, V, Al, Mo, Nb, W, Zr, and Hf and a ceramic layer such as nitride are laminated.
  • Patent Documents 1 and 2 neither TiN nor Ti has sufficiently high erosion resistance, and the erosion resistance is not sufficiently improved even when a multilayer film is formed.
  • the composition of Me corresponding to Al is preferably up to 30 atomic%. However, when the Al content is 30 atomic% or less, the erosion resistance is not improved.
  • up to 52 atomic% Al is disclosed as a comparative example, the film is formed by a dynamic mixing method combining vapor deposition and ion implantation. However, when the film is formed by the dynamic mixing method, the erosion resistance is not improved when the amount of Al exceeds 30 atomic%.
  • Patent Documents 4 to 7 in the case of a multilayer of a metal layer and a ceramic layer, there is a problem that the erosion rate of the metal layer is high because the erosion rate of the metal layer is high. In addition, since the composition of the ceramic layer is not specified, the erosion resistance cannot be improved depending on the composition.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a hard coating member having excellent erosion resistance.
  • the present inventors have determined that the erosion resistance of the film is not determined only by the hardness (H) of the film, but satisfies a certain hardness (H).
  • the value obtained by dividing the hardness (H) by the Young's modulus (E), that is, the ratio (H / E) between the hardness (H) and the Young's modulus (E) (hereinafter, the ratio (H / E) as appropriate) It was found that
  • the hard coating member according to the present invention (hereinafter, appropriately referred to as a member) includes a steam turbine blade, a compressor blade of a jet engine, a compressor screw for gas or liquid compression, an impeller of a turbo compressor, and a fuel injection valve.
  • a hard film covering member comprising a base used in any one selected from the group consisting of: a hard film covering the base, wherein the hard film has a hardness (H measured by a nanoindenter ) And Young's modulus (E), the hardness (H) is 20 GPa or more, and the ratio (H / E) between the hardness (H) and the Young's modulus (E) is 0.06 or more,
  • the hard coating contains at least one of Ti and Cr and Al and N, and the total amount of Ti and Cr in the total amount of elements other than nonmetallic elements in the coating is atomic. In is 0.1 to 0.6, and wherein the amount of Al relative to the total amount of elements other than non-metal elements in the film is 0.4 to 0.7 in atomic ratio.
  • the hard coating member according to the present invention covers a base used in an apparatus for stirring, transporting or pulverizing powder or a fluid containing the powder, and a sliding surface of the base in contact with the powder.
  • a hard coating member having a hard coating wherein the hard coating has a hardness (H) and Young's modulus (E) measured by a nanoindenter, and the hardness (H) is 20 GPa or more, The ratio (H / E) between the hardness (H) and the Young's modulus (E) is 0.06 or more, and the hard coating contains at least one of Ti and Cr, and Al and N.
  • the total amount of Ti and Cr in the total amount of elements other than nonmetallic elements in the film is 0.1 or more and 0.6 or less in atomic ratio, and Al in the total amount of elements other than nonmetallic elements in the film The amount of is 0.4 to 0.7 in atomic ratio And features.
  • the member has a film hardness (H) of 20 GPa or more and a ratio (H / E) of hardness (H) to Young's modulus (E) of 0.06 or more.
  • H hardness
  • E Young's modulus
  • the erosion resistance is improved.
  • the hardness (H) of the film is improved by setting the total amount of Ti and Cr in the film to 0.1 or more in atomic ratio.
  • the ratio (H / E) in the film becomes 0.06 or more by setting the total amount of Ti and Cr in the film to 0.6 or less in atomic ratio.
  • the erosion resistance of the member is improved by setting the amount of Al in the film to 0.4 or more in atomic ratio.
  • the member contains N, a nitride which forms a skeleton of the film is formed by combining with a metal element or a metalloid element.
  • the member contains a predetermined amount of Si as required in the film, so that the film becomes finer, the hardness (H) increases, and the Young's modulus (E) decreases. Further, the member contains a predetermined amount of B and Y as required in the film, so that the Young's modulus (E) is lowered without lowering the hardness (H). Therefore, a ratio (H / E) becomes high because a member contains Si, B, and Y in a predetermined amount in a coat. Further, the member contains a predetermined amount of C as required in the film, so that the film is in the form of carbonitride.
  • the erosion resistance can be improved by further setting the content of Ti, Cr, Al, Si, C, and N in the film to a predetermined amount in the member.
  • the hard film forming member according to the present invention has excellent erosion resistance. Therefore, it can be suitably used as a component member that may cause erosion due to solid particles or fluid, and the erosion resistance of these components is improved.
  • the hard film covering member according to the present invention comprises a base and a hard film covering the base.
  • “Coating the substrate” includes not only coating the entire substrate but also coating a part of the substrate. For example, in the second embodiment to be described later, it is only necessary to cover the sliding surface of the base that comes into contact with the powder. This will be specifically described below.
  • the substrate is selected from the group consisting of a steam turbine blade, a compressor blade of a jet engine, a compressor screw for gas or liquid compression, an impeller of a turbo compressor, and a fuel injection valve. It is what is used. That is, the coating on the member of the present invention is applied to a portion (component) that may cause erosion due to solid particles or fluid, such as a blade used in an aircraft engine compressor, an impeller or blade of a compressor, or the like. It is used as a protective film. Since the hard film covering member of the present invention is excellent in erosion resistance, it is suitable for applications such as a steam turbine blade that receives such erosion. Examples of these materials include titanium alloy, aluminum alloy, stainless steel, and Inconel.
  • the substrate is used in a device for stirring, transporting or pulverizing powder or a fluid containing powder as the second embodiment.
  • Equipment that stirs, transports or crushes powder or fluid containing powder includes, for example, parts of a crusher used when crushing and manufacturing ceramic powder, a cylinder of a slurry pump, a stirring impeller, or a casing for storing them. Is mentioned. These members are in direct contact with the moving powder or fluid containing a high concentration of powder, and the abrasive powder is caused by the powder or fluid moving on the surface of the member. Therefore, a hard film as defined in the present invention is formed. Therefore, the wear resistance can be remarkably improved.
  • one or more intermediate layers may be provided between the hard coating and the substrate defined in the present invention to improve environmental barrier properties.
  • CrN is recommended as the intermediate layer
  • the film thickness is 1 ⁇ m, more preferably 3 ⁇ m or more.
  • the hard film covering member may be composed only of the base body and the hard film in both the first embodiment and the second embodiment, and other layers such as an intermediate layer are provided. May be.
  • the film has a hardness (H) of 20 GPa or more in hardness (H) and Young's modulus (E) measured with a nanoindenter, and a ratio (H / E) between hardness (H) and Young's modulus (E). Is 0.06 or more.
  • the ratio (H / E) is 0.06 or more after the hardness (H) satisfies 20 GPa or more. Therefore, the hardness (H) is set to 20 GPa or more. Preferably it is 25 GPa or more, More preferably, it is 30 GPa or more. The ratio (H / E) is set to 0.06 or more. Preferably it is 0.07 or more. On the other hand, the hardness (H) is preferably 55 GPa or less, and the ratio (H / E) is preferably 0.13 or less.
  • the hardness (H) and ratio (H / E) of the coating are controlled by the components of the coating, the deposition method, and the deposition conditions. Note that the ratio (H / E) value varies depending on the film formation method and film formation conditions even with a film having the same composition. Therefore, in order to improve the erosion resistance, an appropriate film formation method and conditions are set. It is necessary.
  • the film is formed by an arc ion plating (AIP (Arc Ion Placing)) method, a sputtering method, or an HCD (Hollow Cathode Discharge) method. What is important in film formation is the bias voltage applied to the substrate during film formation.
  • the hardness (H) and Young's modulus (E) of the film are measured with a nanoindenter.
  • ENT-1100 manufactured by Elionix Co., Ltd.” is used as an apparatus, and a Belkovic type triangular pyramid indenter is used as an indenter.
  • load load curves at 5 points are measured at 5 loads of 2, 5, 7, 10 and 20 mN, respectively.
  • SAWA et al. H Young's modulus
  • E Young's modulus
  • the film contains at least one of Ti and Cr and Al and N, and the total amount of Ti and Cr in the total amount of elements other than nonmetallic elements in the film is 0.1 to 0.6. And the amount of Al in the total amount of elements other than non-metallic elements in the coating is 0.4 to 0.7 in terms of atomic ratio.
  • the film forming method and film forming conditions are made appropriate, and by defining these elements, the hardness (H) and ratio (H / E) of the film fall within the scope of the present invention.
  • a metal element elements other than Ti, Cr, and Al may be included, and a metalloid element may be further included. Therefore, “the total amount of elements other than non-metallic elements” specifically means “the total amount of metal elements in the film” or “the total amount of metal elements and metalloid elements in the film”.
  • Total amount of Ti and Cr atomic ratio of 0.1 to 0.6
  • Ti and Cr are the total amount of elements other than nonmetallic elements in the film, and it is necessary to add 0.1 or more in atomic ratio.
  • the ratio exceeds 0.6, the ratio (H / E) decreases, so the upper limit is set to 0.6.
  • the upper limit is set to 0.6.
  • Ti and Cr are added singly within the range of 0.6 or less, or are added in combination.
  • Al is the total amount of elements other than nonmetallic elements in the film, and it is necessary to add 0.4 or more by atomic ratio.
  • the erosion resistance is enhanced to some extent if the hardness (H) and the ratio (H / E) are satisfied.
  • the ratio (H / E) is particularly large, and as a result, the erosion resistance is further increased. Therefore, in the present invention, it is essential to add Al to the film. However, in order to obtain the effect, it is necessary to add 0.4 or more by atomic ratio.
  • the Al content is 0.4 or more in atomic ratio. Preferably it is 0.45 or more, More preferably, it is 0.5 or more.
  • the upper limit is set to 0.7. More preferably, it is 0.65 or less.
  • N must be added.
  • the amount of addition may be more than 0, but preferably the proportion of the total element in the film is 0.5 or more, more preferably a metal (or metalloid containing metal) having a stoichiometric composition.
  • the composition of the coating can be measured by EDX analysis using EDX (Energy Dispersive X-Ray spectrometer).
  • the hard coating can be described as follows.
  • the coating is composed of Zr, Hf, V, Nb, Ta, Mo, W, Re, Fe, Ca, S, Cu, Ni, and Si as metallic elements or semi-metallic elements.
  • B, Y may be included.
  • nitrogen is essential as a nonmetallic element, carbon can also be contained as needed. The nitrogen content with respect to the total amount of nitrogen and carbon is preferably 0.5 or more in atomic ratio.
  • Z, Hf, V, Nb, Ta, Mo, W, Re, Fe, Ca, S, Cu, Ni, Si, B, and Y, which are M, may be added alone or in two kinds. The above may be added in combination.
  • the total amount of elements to be M is preferably 0.5 or less in terms of atomic ratio. If it is 0.5 or less, the erosion resistance is easily improved.
  • Si, B, and Y are used as M, Si is 0.15 or less in atomic ratio, B is 0.1 or less in atomic ratio, and Y is 0.05 or less in atomic ratio. It is preferable. The description of each element will be described later. Next, as an example of a preferable composition among the above compositions, two compositions will be described below.
  • the film is composed of (Ti a Cr b Al c Si d B e Y f ) (C x N y ), and when the a, b, c, d, e, f, x, and y are atomic ratios
  • the predetermined element M is one or more elements selected from Zr, Hf, V, Nb, Ta, Mo, W, Re, Fe, Ca, S, Cu, Ni, Si, B, and Y. However, among these, it is preferable to select Si, B, and Y for the reasons described later.
  • the upper limit of each of Ti and Cr is set to 0.6.
  • the total amount is 0.5 or less, and each is 0.5 or less.
  • (C) is the atomic ratio of Al.
  • Al in order to improve erosion resistance, Al needs to be added in a total amount of 0.4 or more in the film. Preferably it is 0.45 or more, More preferably, it is 0.5 or more.
  • the upper limit is set to 0.7. More preferably, it is 0.65 or less.
  • Si: d (0 ⁇ d ⁇ 0.15, a + b + c + d + e + f 1)] (D) is the atomic ratio of Si.
  • H hardness
  • E Young's modulus
  • Si is an optional component and may not be added. However, since the effect is recognized at 0.02 or more, 0.02 or more is preferably added.
  • membrane is accelerated
  • (E) is the atomic ratio of B
  • (f) is the atomic ratio of Y.
  • B and Y are optional components and may not be added, but the Young's modulus (E) is decreased without decreasing the hardness (H) value by adding 0.1 or 0.05 or less respectively. It is possible. Therefore, it is preferable that the upper limit is 0.1 or 0.05, respectively.
  • the compound of the present invention is not only in the form of a nitride, but can also be made into a carbonitride by introducing a gas containing C during film formation.
  • the upper limit of C is preferably set to 0.5. More preferably, it is 0.2 or less.
  • N needs to be added in excess of 0 because it plays a role of forming a nitride that forms the skeleton of the film in the present invention by combining with a metal element or a metalloid element.
  • the addition amount is 0.5 or more with respect to the total amount of N and C, it becomes easier to form a nitride, so 0.5 or more is preferably added. More preferably, it is 0.8 or more.
  • This film has a Ti and Cr content of 0.5 or less, an Al content of 0.5 or more and 0.65 or less, and a Si content of 0.05 or less in the preferred composition (1) described above.
  • the C content is 0.2 or less
  • the N content is 0.8 or more
  • B and Y are not added. That is, the elements of Ti, Cr, Al, Si, C, and N are particularly preferable ranges.
  • B and Y are not added because the ratio (H / E) can be sufficiently increased, but a predetermined amount of B and Y may be added as in the preferred composition (1). . Since others are the same as those of the preferred composition (1) described above, the description thereof is omitted here.
  • the combinations relating to the composition of the coating are (TiCrAl) N and (TiCrAlSi) N.
  • these films may be formed as a single layer or a plurality of layers on the substrate.
  • coatings having different compositions may be laminated while satisfying the provisions of the present invention.
  • a film that satisfies the definition of the present invention may be partially included in a film that deviates from the definition of the present invention.
  • the total thickness of the coating satisfying the provisions of the present invention is preferably more than 5 ⁇ m, and more preferably 10 ⁇ m or more.
  • the film needs to be formed by an arc ion plating method, a sputtering method, or an HCD method.
  • the vacuum deposition method has a lower ionization rate of the film formation particles or the gas used during film formation than the above methods, and cannot form a dense film. Therefore, the vacuum evaporation method is not suitable.
  • film formation using the AIP method will be described as an example of the film formation method. In order to perform the AIP method, for example, the following film forming apparatus can be used.
  • a film forming apparatus 10 includes a chamber 11 having an exhaust port for evacuating, a gas supply port 15 for supplying a film forming gas and a rare gas, and an arc connected to an arc evaporation source 12.
  • a negative bias voltage is applied to the object to be processed through the power supply 13, the support stage 17 on the substrate stage 16 that supports the object to be processed (base 2), and the support base 17 and the chamber 11.
  • Bias power supply 14 is provided.
  • a heater 18, a discharge DC power source 19, a filament heating AC power source 20, a filament 21 and the like are provided.
  • the gas supplied from the gas supply port 15 into the chamber 11 is nitrogen (N 2 ), methane (CH 4 ), or the like in accordance with the film formation component (film composition). And a mixed gas of these and a rare gas such as argon.
  • the substrate 2 is introduced into the film forming apparatus 10 and evacuated to 1 ⁇ 10 ⁇ 3 Pa or less, and then the substrate 2 is heated to 400 ° C. Thereafter, sputter cleaning using Ar ions is performed, nitrogen is introduced into the chamber 11 up to 4 Pa, and arc discharge is performed at a current value of 150 A using various targets to form nitrides on the substrate 2. .
  • methane gas is also introduced in the range of 0.1 to 0.5 Pa.
  • the bias voltage during film formation is in the range of ⁇ 20 to ⁇ 100 V with respect to the ground potential.
  • the metal component composition in the film was analyzed, the hardness of the film and Young's modulus were measured, and the erosion resistance of the film was evaluated. These are described below and the results are shown in Table 1. In the table, those not satisfying the configuration of the present invention and those not satisfying the acceptance criteria are underlined in numerical values and the like.
  • the erosion resistance was evaluated by an erosion test.
  • the erosion test is performed in Japanese Patent No. 3356415 and “Evaluation of Wear Characteristics of DLC Film by Micro Slurry Jet Erosion (MSE) Test” (The Japan Society of Mechanical Engineers, Vol. 75, No. 749 (2009-1) P171-177. ). That is, a jet water stream containing alumina particles was sprayed onto a test piece for a certain period of time, and the erosion depth was measured to evaluate the erosion resistance.
  • MSE Micro Slurry Jet Erosion
  • the particles used were alumina (# 320, the average particle size was 48 ⁇ m), and the concentration of the particles was 1% by mass ratio with respect to water. Jet water flow is directed from the normal direction of the test piece (90 ° from the horizontal plane) to the test piece, sprayed from a position of about 10 mm, and the depth of the crater formed by erosion on the test piece after the test is measured by a surface roughness meter.
  • the test time (adjusted in the range of about 200 to 5000 seconds depending on the erosion rate of the sample. For samples with a high erosion rate, 2000 to 5000 seconds were tested to reduce the measurement error of the crater depth and to improve reliability.
  • the erosion speed ( ⁇ m / min) was calculated from the relationship between the erosion depth and the erosion depth.
  • Table 1 shows the evaluation results of each test material.
  • FIG. 2 shows the relationship between the ratio (H / E) and the erosion speed.
  • No. No. 1 does not contain Al, and since Ti is abundant, the total amount of Ti and Cr defined in the present invention exceeds the upper limit value, so the ratio (H / E) is less than the lower limit value. Moreover, since nitrogen is not contained, hardness (H) became less than a lower limit. Therefore, the erosion resistance was inferior.
  • No. No. 2 does not contain Al, and since Ti is abundant, the total amount of Ti and Cr defined in the present invention exceeds the upper limit value, so the ratio (H / E) is less than the lower limit value. Therefore, the erosion resistance was inferior.
  • No. No. 3 does not contain Al, and since Ti is large, the total amount of Ti and Cr specified in the present invention exceeds the upper limit value, so the ratio (H / E) was less than the lower limit value. Moreover, since Al is not contained, hardness (H) became less than a lower limit. Therefore, the erosion resistance was inferior. In addition, since content of N is lower than the preferable range, hardness (H) became easy to fall. No. No. 4 does not contain Al, and since there is much Cr, the total amount of Ti and Cr specified in the present invention exceeds the upper limit value, so the ratio (H / E) was less than the lower limit value. Moreover, since Al is not contained, hardness (H) became less than a lower limit. Therefore, the erosion resistance was inferior. In addition, since Cr has low hardness, it is necessary to add Al.
  • No. No. 5 did not contain Al, and the total amount of Ti and Cr exceeded the upper limit, so the ratio (H / E) was less than the lower limit, and the erosion resistance was poor.
  • No. No. 6 has a large amount of Ti, so the total amount of Ti and Cr specified in the present invention exceeds the upper limit value, and since the Al amount is less than the lower limit value, the ratio (H / E) becomes less than the lower limit value, resulting in erosion resistance. inferior.
  • No. 7 has a large amount of Ti, so the total amount of Ti and Cr specified in the present invention exceeds the upper limit value, and since the Al amount is less than the lower limit value, the ratio (H / E) becomes less than the lower limit value, thereby improving erosion resistance. inferior. No. In No. 11, since the Al amount exceeded the upper limit, the ratio (H / E) was less than the lower limit, and the erosion resistance was poor.
  • the present invention relates to a steam turbine blade, a compressor blade for a jet engine, a compressor screw for gas and liquid compression, an impeller for a turbo compressor, a fuel injection valve, and a pulverizer component used when pulverizing and producing ceramic powder. It can be applied to parts such as a slurry pump cylinder, a stirring impeller, or a casing for housing them, and improves erosion resistance.
  • Substrate 10 Film-forming device 11
  • Chamber 12 Arc evaporation source 13
  • Arc power source 14 Bias power source 15
  • Gas supply port 16 Substrate stage 17
  • Support base 18 Heater 19
  • Discharge DC power source 20 Filament heating AC power source 21 Filament

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Vapour Deposition (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Prostheses (AREA)

Abstract

 本発明の耐エロージョン性に優れる硬質皮膜被覆部材は、ナノインデンターにより測定した硬さ(H)が20GPa以上で、ヤング率(E)との比率(H/E)が0.06以上であり、TiおよびCrのうちの少なくとも一種とAlとNとを含有し、皮膜中の非金属元素以外の元素の総量に占めるTiとCrの総量が原子比で0.1以上0.6以下であり、かつ、皮膜中の非金属元素以外の元素の総量に占めるAlの量が原子比で0.4以上0.7以下である硬質皮膜を有する。

Description

硬質皮膜被覆部材
 本発明は、硬質皮膜が表面に被覆された硬質皮膜被覆部材に関するものである。
 例えば、スチームタービンブレード、ジェットエンジンの圧縮機ブレード、気体、液体圧縮用のコンプレッサースクリュー、ターボ圧縮機のインペラー、燃料噴射用バルブ等の部品は、固体粒子や液体(流体)等によるエロージョンを受ける。また、粉体(すなわち固体粒子)あるいは粉体を含む流体を撹拌、輸送あるいは粉砕するための部品(機器)も、固体粒子や液体(流体)等によりアブレーシブ摩耗を生じることでエロージョンを受ける。エロージョンからこれらの部品を保護するために、部品表面には硬質皮膜が形成されることが一般的である。このような硬質皮膜に関しては、例えば、以下の文献が開示されている。
 特許文献1には、耐エロージョン性(耐浸食性)に優れる皮膜として、軟質で延性の組成物の層と、硬質で脆性の組成物の層とを交互に積層した多層膜が開示されている。そしてその例として、TiN/Tiの多層膜を挙げている。また、特許文献2には、窒素量の異なるTi1-x膜を積層した多層膜が開示されている。さらに特許文献3には、窒化チタンを主成分とし、Al,Cr,Zr,Hfの少なくとも一つの元素を含有する窒化物が開示されている。具体的には、化学組成がTi(100-x)Mex窒化物(但し、Me:Al,Cr,ZrおよびHfの中から少なくとも一つ選ばれる元素xが2%≦x≦30%(原子濃度(%)))が開示されている。
 また、特許文献4には、金属材料とセラミック材料との複数の層からなり、粒子による浸食や、水による浸食、および、これらの粒子や水による腐食から保護するための支持体表面上の多層耐摩耗性コーティングが開示されている。 また、前記金属材料が、チタン、ジルコニウム、ハフニウムおよびタンタルからなる群から選択された1以上の元素からなり、前記セラミック材料が前記選択された金属材料の窒化物であるコーティングが開示されている。さらに特許文献5~7には、Ti,Cr,V,Al,Mo,Nb,W,Zr,Hfから選ばれる金属層と窒化物等のセラミック層とを積層した多層膜が開示されている。
日本国特開2008-163449号公報 日本国特許第3391981号公報 日本国特開2000-129420号公報 日本国特開平02-175859号公報 加国特許第2327031号明細書 米国特許出願公開第2002/0102400号明細書 米国特許第6617057号明細書
 しかしながら、このような硬質皮膜では、以下に示す問題がある。
 特許文献1、2に関しては、TiNあるいはTiは、共に耐エロージョン性が十分に高いとはいえず、多層膜形成時においてもその耐エロージョン性は十分に向上しない。
 特許文献3に関しては、Alに相当するMeの組成は30原子%までのものが好適とされている。しかし、Alの量が30原子%以下では、耐エロージョン性が向上しない。また比較例としてAlが52原子%のものまでが開示されているが、皮膜は、蒸着とイオン注入とを組み合わせたダイナミックミキシング法で形成されている。しかしながら、ダイナミックミキシング法で皮膜を形成する場合には、Alの量が30原子%を超えた場合、耐エロージョン性が向上しない。特許文献4~7に関しては、金属層とセラミック層との多層の場合には、金属層のエロージョン速度が速いために、全体としてのエロージョン速度が速くなるという問題がある。またセラミック層に関しては、組成を規定していないため、組成によっては、耐エロージョン性の向上は図れない。
 本発明は、前記問題点に鑑みてなされたものであり、耐エロージョン性に優れる硬質皮膜被覆部材を提供することを課題とする。
 本発明らは硬質皮膜の耐エロージョン性について検討を行った結果、皮膜の耐エロージョン性は、皮膜の硬さ(H)だけで決まるのではなく、ある一定以上の硬さ(H)を満たした上で、硬さ(H)をヤング率(E)で割った値、すなわち硬さ(H)とヤング率(E)との比率(H/E)(以下、適宜、比率(H/E)という)によって決まることを見出した。
 すなわち、本発明に係る硬質皮膜被覆部材(以下、適宜、部材という)は、スチームタービンブレード、ジェットエンジンの圧縮機ブレード、気体または液体圧縮用のコンプレッサースクリュー、ターボ圧縮機のインペラー、燃料噴射用バルブからなる群より選択されるいずれかに使用される基体と、前記基体を被覆する硬質皮膜とを備えた硬質皮膜被覆部材であって、前記硬質皮膜は、ナノインデンターにより測定した硬さ(H)とヤング率(E)において、前記硬さ(H)が20GPa以上であり、前記硬さ(H)と前記ヤング率(E)との比率(H/E)が0.06以上であり、前記硬質皮膜は、TiおよびCrのうちの少なくとも一種とAlとNとを含有し、皮膜中の非金属元素以外の元素の総量に占めるTiとCrの総量が原子比で0.1以上0.6以下であり、かつ、皮膜中の非金属元素以外の元素の総量に占めるAlの量が原子比で0.4以上0.7以下であることを特徴とする。
 また、本発明に係る硬質皮膜被覆部材は、粉体あるいは粉体を含む流体を撹拌、輸送あるいは粉砕する機器に使用される基体と、前記基体の前記粉体と接触する摺動面を被覆する硬質皮膜とを備えた硬質皮膜被覆部材であって、前記硬質皮膜は、ナノインデンターにより測定した硬さ(H)とヤング率(E)において、前記硬さ(H)が20GPa以上であり、前記硬さ(H)と前記ヤング率(E)との比率(H/E)が0.06以上であり、前記硬質皮膜は、TiおよびCrのうちの少なくとも一種とAlとNとを含有し、皮膜中の非金属元素以外の元素の総量に占めるTiとCrの総量が原子比で0.1以上0.6以下であり、かつ、皮膜中の非金属元素以外の元素の総量に占めるAlの量が原子比で0.4以上0.7以下であることを特徴とする。
 これらのような構成によれば、部材は、皮膜の硬さ(H)を20GPa以上、かつ硬さ(H)とヤング率(E)との比率(H/E)を0.06以上とすることで、耐エロージョン性が向上する。また部材は、皮膜中のTiとCrの総量を原子比で0.1以上とすることで、皮膜の硬さ(H)が向上する。一方、部材は、皮膜中のTiとCrの総量を原子比で0.6以下とすることで、皮膜中の比率(H/E)が0.06以上となる。さらに部材は、皮膜中のAlの量を原子比で0.4以上とすることで、耐エロージョン性が向上する。また部材は、Nを含有することで、金属元素や半金属元素と結合して、皮膜の骨格をなす窒化物が形成される。
 また、本発明に係る硬質皮膜被覆部材は、前記硬質皮膜において、組成が(TiCrAlSi)(C)からなり、前記a、b、c、d、e、f、x、yが原子比であるときに、
 0≦a≦0.6
 0≦b≦0.6
 0.4≦c≦0.7
 0≦d≦0.15
 0≦e≦0.1
 0≦f≦0.05
 0.1≦a+b≦0.6
 a+b+c+d+e+f=1
 0≦x≦0.5
 0.5≦y≦1
 x+y=1
 を満足することが好ましい。
 このような構成によれば、部材は、皮膜中に必要に応じてSiを所定量含有することで、皮膜が微細化し、硬さ(H)が上昇すると共にヤング率(E)が低下する。また部材は、皮膜中に必要に応じてB,Yを所定量含有することで、硬さ(H)が低下せずに、ヤング率(E)が低下する。よって部材は、皮膜中にSi,B,Yを所定量含有することで、比率(H/E)が高くなる。また部材は、皮膜中に必要に応じてCを所定量含有することで、皮膜が炭窒化物の形態となる。
 また、本発明に係る硬質皮膜被覆部材は、前記硬質皮膜において、組成が(TiCrAlSi)(C)からなり、前記a、b、c、d、x、yが原子比であるときに、
 0≦a≦0.5
 0≦b≦0.5
 0.5≦c≦0.65
 0≦d≦0.05
 0.1≦a+b≦0.6
 a+b+c+d=1
 0≦x≦0.2
 0.8≦y≦1
 x+y=1
 を満足することが好ましい。
 このような構成によれば、部材において、皮膜中のTi,Cr,Al,Si,C,Nの含有量をさらに所定量とすることで、耐エロージョン性の向上を図ることができる。
 本発明に係る硬質皮膜形成部材は、耐エロージョン性に優れたものとなる。そのため、固体粒子あるいは流体によるエロージョンを生じる可能性がある部品の部材として好適に用いることができ、それらの部品の耐エロージョン性が向上する。
本発明に係る硬質皮膜形成部材の硬質皮膜を形成するための成膜装置の一例を示す概略図である。 実施例における、硬さ(H)とヤング率(E)との比率(H/E)と、エロージョン速度との関係を示すグラフである。
 次に、本発明に係る硬質皮膜被覆部材について詳細に説明する。
 本発明に係る硬質皮膜被覆部材は、基体と、基体を被覆する硬質皮膜とを備えたものである。なお、「基体を被覆する」とは、基体の全体を被覆する場合の他、基体の一部を被覆する場合も含む。例えば、後記する第2の実施形態においては、粉体と接触する基体の摺動面に被覆されていればよい。以下、具体的に説明する。
(基体)
 基体は、第1の実施形態として、スチームタービンブレード、ジェットエンジンの圧縮機ブレード、気体または液体圧縮用のコンプレッサースクリュー、ターボ圧縮機のインペラー、燃料噴射用バルブからなる群より選択されるいずれかに使用されるものである。すなわち本発明の部材における皮膜は、例えば、飛行機のエンジンの圧縮機に使用されるブレードや、圧縮機等のインペラーやブレード等、固体粒子あるいは流体によるエロージョンを生じる可能性がある部位(部品)への保護皮膜として利用される。本発明の硬質皮膜被覆部材は耐エロージョン性に優れているため、このようなエロージョンを受けるスチームタービンブレード等の用途に適している。これらの材質としては、一例として、チタン合金、アルミ合金、ステンレス、インコネル等が挙げられる。
 また基体は、第2の実施形態として、粉体あるいは粉体を含む流体を撹拌、輸送あるいは粉砕する機器に使用されるものである。粉体あるいは粉体を含む流体を撹拌、輸送あるいは粉砕する機器とは、例えばセラミックスの粉末を粉砕製造する時に使用される粉砕器の部品やスラリーポンプのシリンダーや撹拌用インペラーあるいはそれらを納めるケーシング等が挙げられる。これらの部材は移動する粉末あるいは粉末を高濃度で含む流体と直接接触しており、部材表面上を移動する粉末や流体によりアブレーシブ摩耗を生じることから、本発明で規定された硬質皮膜を形成することにより耐摩耗性を著しく向上させることが出来る。上記に述べた用途で、特に水分を含む環境下で使用される場合には、本発明で規定される硬質皮膜と基体間に1層以上の中間層を設け、環境遮断性を向上させることが望ましい。中間層は例えばCrNが推奨され、膜厚は1μm、より好ましくは3μm以上である。
 このように硬質皮膜被覆部材は、第1の実施形態、第2の実施形態ともに、基体と硬質皮膜とからのみで構成されていてもよいし、中間層のような他の層が設けられていてもよい。
(硬質皮膜)
 皮膜は、ナノインデンターにより測定した硬さ(H)とヤング率(E)において、硬さ(H)が20GPa以上、硬さ(H)とヤング率(E)との比率(H/E)を0.06以上とする。
 耐エロージョン性を著しく向上させるためには、硬さ(H)が20GPa以上を満たした上で、比率(H/E)を0.06以上とすることが必要である。よって、硬さ(H)は20GPa以上とする。好ましくは25GPa以上、より好ましくは30GPa以上である。また、比率(H/E)は0.06以上とする。好ましくは0.07以上である。一方、硬さ(H)は55GPa以下が好ましく、比率(H/E)は0.13以下が好ましい。
 皮膜の硬さ(H)および比率(H/E)は、皮膜の成分と、成膜方法および成膜条件とにより制御する。なお、同じ組成の皮膜によっても成膜方法および成膜条件により比率(H/E)の値は変化することから、耐エロージョン性を向上させるためには、適切な成膜方法および条件を設定することが必要である。ここでは、後記するように、アークイオンプレーティング(AIP(Arc Ion Plaiting))法、スパッタリング法、あるいは、HCD(Hollow Cathode Discharge)法によって成膜する。なお、成膜において重要なのは、成膜時に基体に負荷するバイアス電圧である。これまでの検討ではバイアスが高い方(負の大きな値)が、耐エロージョン性は高くなるが、応力が大きくなり皮膜が剥離しやすくなる。また、厚膜を付けようとする場合にはバイアスを下げた方が有利である。従って、バイアスの制御範囲としては-20~-100Vが適切である。他の条件(温度、圧力)はほぼ固定である。
 皮膜の硬さ(H)およびヤング率(E)は、ナノインデンターにより測定する。ナノインデンターによる測定の一例としては、装置として「株式会社 エリオニクス製 ENT-1100」を用い、インデンターにはベルコビッチ型の三角錐圧子を使用する。まず、荷重2、5、7、10および20mNの5荷重で各々5点の荷重負荷曲線を測定する。そして、SAWAらにより提案された、装置のコンプライアンスと圧子先端形状を補正する方法(J.Mater. Res. Vol.16 No.11 (2001) 3084)によりデータの補正を行い、皮膜の硬さ(H)とヤング率(E)を求める。その際に、ダイヤモンド圧子のヤング率として1000GPa、ポワソン比として0.22を使用することができる。
 また皮膜は、TiおよびCrのうちの少なくとも一種とAlとNとを含有し、皮膜中の非金属元素以外の元素の総量に占めるTiとCrの総量を原子比で0.1以上0.6以下とし、かつ、皮膜中の非金属元素以外の元素の総量に占めるAlの量を原子比で0.4以上0.7以下とする。前記のとおり、成膜方法および成膜条件を適切にすると共に、これらの元素を規定することで、皮膜の硬さ(H)および比率(H/E)が本発明の範囲となる。なお、金属元素として、Ti,Cr,Al以外の元素を含む場合もあり、さらに半金属元素を含む場合もある。よって、「非金属元素以外の元素の総量」とは、具体的には「皮膜中の金属元素の総量」あるいは「皮膜中の金属元素および半金属元素の総量」をいう。
[TiとCrの総量:原子比で0.1以上0.6以下]
 TiおよびCrは、皮膜の硬さ(H)を向上させるため、皮膜中の非金属元素以外の元素に占める総量で、原子比で0.1以上添加する必要がある。一方、0.6を超えると比率(H/E)が小さくなることから、上限を0.6とする。好ましくは0.5以下である。TiおよびCrに関しては、0.6以下の範囲で単独で添加するか、あるいは複合添加する。
[Alの量:原子比で0.4以上0.7以下]
 Alは、耐エロージョン性を向上させるため、皮膜中の非金属元素以外の元素に占める総量で、原子比で0.4以上添加する必要がある。皮膜の組成に関しては、硬さ(H)および比率(H/E)を満足すれば、耐エロージョン性はある程度高くなる。しかし、窒化物や炭窒化物において皮膜中にAlが含有されている場合には、特に比率(H/E)が大きくなり、結果として耐エロージョン性がより高くなる。よって、本発明においては皮膜中にAlを添加することを必須とする。ただし、その効果を得るためには、原子比で0.4以上添加する必要がある。なお、皮膜の組成によっては、0.4未満では硬さ(H)や、比率(H/E)が低下する場合がある。したがって、Alの含有量は、原子比で0.4以上とする。好ましくは0.45以上、より好ましくは0.5以上である。一方、Alを過度に添加すると硬さ(H)が低下して比率(H/E)が低下することから、上限を0.7とする。より好ましくは0.65以下である。
 その他、Nを必須で添加する必要がある。添加量は0を超えていればよいが、好ましくは皮膜中の全元素に占める比率が0.5以上、より好ましくは金属(あるいは半金属を含有した)窒化物の量論組成である金属と窒素の比率で1付近である0.8以上が好ましい。
 皮膜の組成は、一例として、EDX(Energy Dispersive X-Ray spectrometer:エネルギー分散形X線分析装置)によるEDX分析により測定することができる。
 以上により、硬質皮膜は、以下のように記すことができる。
 皮膜は、組成が(TiCrAl)Nからなり、前記a、b、c、yが原子比であるときに、
 0≦a≦0.6
 0≦b≦0.6
 0.4≦c≦0.7
 0.1≦a+b≦0.6
 a+b+c=1
 y=1
 を満足する。
 皮膜は、金属元素であるTi,Cr,Al以外に、金属元素または半金属元素として、Zr、Hf、V、Nb、Ta、Mo、W、Re、Fe、Ca、S、Cu、Ni、Si、B、Yから選ばれる1種以上を含んでいてもよい。また、非金属元素としては窒素が必須であるが、必要に応じて炭素を含有させることもできる。窒素および炭素の総量に対する窒素の含有量は、原子比で0.5以上であることが好ましい。
 よって、皮膜としては、組成が(TiCrAl)(C)からなり、前記MがZr、Hf、V、Nb、Ta、Mo、W、Re、Fe、Ca、S、Cu、Ni、Si、B、Yから選ばれる1種以上の元素であり、前記a、b、c、d、x、yが原子比であるときに、
 0≦a≦0.6
 0≦b≦0.6
 0.4≦c≦0.7
 0≦d≦0.5
 0.1≦a+b≦0.6
 a+b+c+d=1
 0≦x≦0.5
 0.5≦y≦1
 x+y=1
 を満足するものとすることができる。
 ここで、MであるZr、Hf、V、Nb、Ta、Mo、W、Re、Fe、Ca、S、Cu、Ni、Si,B,Yは、単独で添加してもよいし、2種以上を複合添加してもよい。Mとする元素の総量は、原子比で0.5以下とすることが好ましい。0.5以下であれば、耐エロージョン性が向上しやすくなる。なお、後記するように、MとしてSi,B,Yを用いる場合は、Siは原子比で0.15以下、Bは原子比で0.1以下、Yは原子比で0.05以下とすることが好ましい。なお、各元素の説明については後記する。
 次に、前記の組成のうち、好ましい組成の一例として、2通りの組成を以下に説明する。
<皮膜の好ましい組成(1)>
 皮膜は、組成が(TiCrAlSi)(C)からなり、前記a、b、c、d、e、f、x、yが原子比であるときに、
 0≦a≦0.6
 0≦b≦0.6
 0.4≦c≦0.7
 0≦d≦0.15
 0≦e≦0.1
 0≦f≦0.05
 0.1≦a+b≦0.6
 a+b+c+d+e+f=1
 0≦x≦0.5
 0.5≦y≦1
 x+y=1
 を満足する。
 以下、各元素について説明する。なお、前記のとおり、所定元素Mとして、Zr、Hf、V、Nb、Ta、Mo、W、Re、Fe、Ca、S、Cu、Ni、Si、B、Yから選ばれる1種以上の元素を添加してもよいが、後記する理由により、これらのうちでも、Si,B,Yを選択することが好ましい。
[Ti:a(0≦a≦0.6,0.1≦a+b≦0.6,a+b+c+d+e+f=1)]
[Cr:b(0≦b≦0.6,0.1≦a+b≦0.6,a+b+c+d+e+f=1)]
 (a)は、Tiの原子比、(b)は、Crの原子比である。前記のとおり、TiおよびCrは皮膜の硬さ(H)を向上させるため、皮膜中に占める総量で、0.1以上添加する必要がある。一方、TiとCrの総量で0.6を超えると比率(H/E)が小さくなることから、上限を0.6とする。なお、これによりTiとCrの各々の上限は、0.6とする。好ましくは、総量で0.5以下、各々0.5以下である。
[Al:c(0.4≦c≦0.7,a+b+c+d+e+f=1)]
 (c)は、Alの原子比である。前記のとおり、Alは耐エロージョンを向上させるため、皮膜中に占める総量で、0.4以上添加する必要がある。好ましくは0.45以上、より好ましくは0.5以上である。一方、Alを過度に添加すると硬さ(H)が低下して比率(H/E)が低下することから、上限を0.7とする。より好ましくは0.65以下である。
[Si:d(0≦d≦0.15,a+b+c+d+e+f=1)]
 (d)は、Siの原子比である。Siを添加することで皮膜が微細化し、硬さ(H)が上昇すると共にヤング率(E)が低下する。そのため、結果として大きな値の比率(H/E)とすることができる。Siは任意成分であり、添加しなくてもよいが、0.02以上でその効果が認められることから、0.02以上添加することが好ましい。一方、添加量を0.15以下とすることで皮膜の硬質化が促進されることから、上限を0.15とすることが好ましい。より好ましくは0.1以下、さらに好ましくは0.05以下である。
[B:e(0≦e≦0.1,a+b+c+d+e+f=1)]
[Y:f(0≦f≦0.05,a+b+c+d+e+f=1)]
 (e)は、Bの原子比、(f)は、Yの原子比である。B、Yは任意成分であり、添加しなくてもよいが、各々0.1あるいは0.05以下の添加により硬さ(H)の値を低下させることなく、ヤング率(E)を低下させることが可能である。よって、上限を各々0.1あるいは0.05とすることが好ましい。
[C:x(0≦x≦0.5,x+y=1)]
 (x)は、Cの原子比である。本発明の化合物は窒化物としての形態だけではなく、成膜時にCを含むガスを導入し、炭窒化物とすることも可能である。後記するように、NおよびCの総量に対して、Nは0.5以上添加することが好ましいことから、Cの上限は0.5とすることが好ましい。より好ましくは0.2以下である。
[N:y(0.5≦y≦1,x+y=1)]
 (y)は、Nの原子比である。Nは、金属元素や半金属元素と結合して、本発明における皮膜の骨格をなす窒化物を形成する役割を果たすことから0を超えて添加することが必要である。また、NおよびCの総量に対して、添加量が0.5以上であれば、窒化物をより形成しやすくなるため、0.5以上添加することが好ましい。より好ましくは0.8以上である。
<皮膜の好ましい組成(2)>
 皮膜は、組成が(TiCrAlSi)(C)からなり、前記a、b、c、d、x、yが原子比であるときに、
 0≦a≦0.5
 0≦b≦0.5
 0.5≦c≦0.65
 0≦d≦0.05
 0.1≦a+b≦0.6
 a+b+c+d=1
 0≦x≦0.2
 0.8≦y≦1
 x+y=1
 を満足する。
 この皮膜は、前記した好ましい組成(1)のうち、TiおよびCrの含有量を各々0.5以下、Alの含有量を0.5以上0.65以下、Siの含有量を0.05以下、Cの含有量を0.2以下、Nの含有量を0.8以上、B,Yを無添加としたものである。すなわち、Ti,Cr,Al,Si,C,Nの元素について、特に好ましい範囲としたものである。なお、ここでは、比率(H/E)を十分に大きくすることができることからB,Yを無添加としたが、好ましい組成(1)のように、B,Yを所定量添加してもよい。その他については、前記した好ましい組成(1)と同様であるので、ここでは説明を省略する。
 前記のとおり、Ti,Cr,Al,Nは必須の成分であり、Si,B,Y,Cは任意の成分であることから、皮膜の組成に関する組み合わせは、(TiCrAl)N、(TiCrAlSi)N、(TiCrAlB)N、(TiCrAlY)N、(TiCrAlBY)N、(TiCrAlSiB)N、(TiCrAlSiY)N、(TiCrAlSiBY)N、(TiCrAl)(CN)、(TiCrAlSi)(CN)、(TiCrAlB)(CN)、(TiCrAlY)(CN)、(TiCrAlBY)(CN)、(TiCrAlSiB)(CN)、(TiCrAlSiY)(CN)、(TiCrAlSiBY)(CN)等が挙げられる。より具体的には、例えば、「(Ti0.4Al0.6)N」、「(Ti0.2Cr0.2Al0.55Si0.05)N」等である。
 本発明の部材においては、基体上にこれらの皮膜を単層で形成してもよいし、複数層として形成してもよい。具体的には、本発明の規定を満たしつつ、組成が相互に異なる皮膜を積層しても良い。あるいは、本発明の規定から外れる皮膜中に本発明の規定を満たす皮膜が部分的に含まれても良い。なお、十分な耐エロージョン性を得るために、本発明の規定を満たす皮膜のトータルの厚みが5μm超であることが好ましく、10μm以上であることがより好ましい。
 前記した部材において、皮膜の形成は、アークイオンプレーティング法、スパッタリング法、あるいは、HCD法によって成膜する必要がある。なお、真空蒸着法は前記の各方法に比較して、成膜粒子あるいは成膜時に使用するガスのイオン化率が低く、緻密な被膜を形成する事ができない。よって、真空蒸着法は不適である。
 次に、成膜方法の一例として、AIP法を用いた成膜について説明する。AIP法を行なうには、例えば、以下のような成膜装置を用いることができる。
 図1に示すように、成膜装置10は、真空排気する排気口と、成膜ガスおよび希ガスを供給するガス供給口15とを有するチャンバー11と、アーク式蒸発源12に接続されたアーク電源13と、被処理体(基体2)を支持する基板ステージ16上の支持台17と、この支持台17と前記チャンバー11との間で支持台17を通して被処理体に負のバイアス電圧を印加するバイアス電源14とを備えている。また、ヒータ18、放電用直流電源19、フィラメント加熱用交流電源20、フィラメント21等を備えている。本発明の部材を得るための成膜に際しては、ガス供給口15からチャンバー11内へ供給するガスは、成膜成分(皮膜の組成)に合わせて窒素(N)、メタン(CH)等の成膜ガスと、これらとアルゴン等の希ガスとの混合ガスを使用する。
 そして、成膜方法の一例としては、まず、基体2を成膜装置10に導入し、1×10-3Pa以下に排気した後、400℃まで基体2を加熱する。その後、Arイオンを用いたスパッタクリーニングを実施し、窒素を4Paまでチャンバー11内に導入して、各種ターゲットを用いて150Aの電流値でアーク放電を実施して基体2上に窒化物を形成する。なお、Cを皮膜中に含有させる場合には、0.1~0.5Paの範囲でメタンガスも導入する。また、成膜時のバイアス電圧は接地電位に対して-20~-100Vの範囲とする。
 本発明の実施例および比較例を以下に説明する。なお、本発明はこの実施例に限定されるものではなく、本発明の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
 皮膜の耐エロージョン性を評価するために、アークイオンプレーティング法にて、SUS630基板(鏡面研磨、H900熱処理)上に表1に示す各種の皮膜を約10μm形成した。成膜には、図1に示すようなアーク蒸発源を有するAIP装置(AIP―SS002、神戸製鋼所)を用いた。具体的には以下のとおりである。
 まず、基体を成膜装置に導入し、1×10-3Pa以下に排気した後、400℃まで基体を加熱した。その後、Arイオンを用いたスパッタクリーニングを実施し、窒素を4Paまでチャンバー内に導入して、各種ターゲットを用いて150Aの電流値でアーク放電を実施して基体上に表1に示す窒化物を形成した。なお、Cを皮膜中に含有させる場合には、0.1~0.5Paの範囲でメタンガスも導入した。また、成膜時のバイアス電圧は接地電位に対して-20~-100Vとした。
 成膜終了後、皮膜中の金属成分組成の分析、皮膜の硬さおよびヤング率の測定を行うと共に、皮膜の耐エロージョン性について評価を行った。これらについて以下に説明すると共に、結果を表1に示す。なお、表中、本発明の構成を満たさないもの、および、合格基準を満たさないものには、数値等に下線を引いて示す。
<皮膜組成>
 成膜後の組成については、超硬合金基板における皮膜中の金属元素の成分組成を、EDX分析により測定した。
<硬さ、および、ヤング率>
 皮膜の硬さ(H)、および、ヤング率(E)は、ナノインデンターにより測定した。ナノインデンターによる測定は、装置として「株式会社 エリオニクス製 ENT-1100」を用い、インデンターにはベルコビッチ型の三角錐圧子を使用した。まず、荷重2、5、7、10および20mNの5荷重で各々5点の荷重負荷曲線を測定した。そして、SAWAらにより提案された装置のコンプライアンスと圧子先端形状を補正する方法(J.Mater. Res. Vol.16 No.11 (2001) 3084)によりデータの補正を行い、皮膜の硬さ(H)とヤング率(E)を求めた。その際に、ダイヤモンド圧子のヤング率として1000GPa、ポワソン比として0.22を使用した。
<耐エロージョン性>
 耐エロージョン性は、エロージョン試験により評価した。エロージョン試験は、日本国特許第3356415号および「マイクロスラリージェットエロージョン(MSE)試験によるDLC膜の摩耗特性評価」(日本機械学会論文集(C編)75巻749号(2009-1)P171―177)に記載の方法にて行った。すなわち、アルミナ粒子を含むジェット水流を試験片に一定時間噴射し、そのエロージョン深さを測定して、耐エロージョン性を評価する方法を用いた。
 使用した粒子はアルミナ(#320、平均粒径は48μm)であり、粒子の濃度は水に対する質量比で1%とした。ジェット水流を試験片の法線方向(水平面から90°)から試験片に向けて、約10mmの位置から噴射し、試験後の試験片にエロージョンにより出来たクレーターの深さを表面粗さ計により測定し、試験時間(サンプルのエロージョン速度により200~5000秒程度の範囲で調整した。エロージョンレートの高いサンプルでは2000~5000秒の試験を行いクレーター深さの測定誤差を小さくして、信頼性の高いデータとした。)とエロージョン深さの関係からエロージョン速度(μm/分)を算出した。そして、エロージョン速度が0.1μm/分以下のものを合格、0.1μm/分を超えるものを不合格とした。
 表1に各供試材の評価結果を示す。また、図2に比率(H/E)と、エロージョン速度との関係を示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、No.8~10、12、14~17、19~30、32、33は、本発明の要件を満たすため、耐エロージョン性に優れていた。
 一方、No.1~7、11、13、18、31、34は、以下に述べるとおり、本発明の要件を満たさないため、耐エロージョン性に劣っていた。
 No.1は、Alを含有せず、Tiが多いことから本発明で規定するTiとCrの総量が上限値を超えるため、比率(H/E)が下限値未満となった。また、窒素を含有しないため、硬さ(H)が下限値未満となった。そのため、耐エロージョン性に劣った。No.2は、Alを含有せず、Tiが多いことから本発明で規定するTiとCrの総量が上限値を超えるため、比率(H/E)が下限値未満となった。そのため、耐エロージョン性に劣った。
 No.3は、Alを含有せず、Tiが多いことから本発明で規定するTiとCrの総量が上限値を超えるため、比率(H/E)が下限値未満となった。また、Alを含有しないため、硬さ(H)が下限値未満となった。そのため、耐エロージョン性に劣った。なお、Nの含有量が好ましい範囲よりも低いため、硬さ(H)が低下しやすくなった。No.4は、Alを含有せず、Crが多いことから本発明で規定するTiとCrの総量が上限値を超えるため、比率(H/E)が下限値未満となった。また、Alを含有しないため、硬さ(H)が下限値未満となった。そのため、耐エロージョン性に劣った。なお、Cr単体では硬さが低いため、Alの添加が必要となる。
 No.5は、Alを含有せず、TiとCrの総量が上限値を超えるため、比率(H/E)が下限値未満となり、耐エロージョン性に劣った。No.6は、Tiが多いことから本発明で規定するTiとCrの総量が上限値を超え、またAl量が下限値未満のため、比率(H/E)が下限値未満となり、耐エロージョン性に劣った。
 No.7は、Tiが多いことから本発明で規定するTiとCrの総量が上限値を超え、またAl量が下限値未満のため、比率(H/E)が下限値未満となり、耐エロージョン性に劣った。No.11は、Al量が上限値を超えるため、比率(H/E)が下限値未満となり、耐エロージョン性に劣った。
 No.13は、TiとCrの総量が上限値を超え、またAl量が下限値未満のため、比率(H/E)が下限値未満となり、耐エロージョン性に劣った。No.18は、Al量が上限値を超えるため、比率(H/E)が下限値未満となり、耐エロージョン性に劣った。No.31はCを過剰に含んでいることから、硬さが低くなり、結果として比率(H/E)が下限値未満となり、耐エロージョン性に劣った。No.34は、TiとCrの総量が下限値未満のため、硬さ(H)、および、比率(H/E)が下限値未満となり、耐エロージョン性に劣った。
 また、図2に示すグラフから、比率(H/E)が高くなると、エロージョン速度が遅くなる傾向にあることがわかる。
 以上、本発明について、実施の形態および実施例を示して詳細に説明したが、本発明の趣旨は前記した内容に限定されることなく、その権利範囲は請求の範囲の記載に基づいて広く解釈しなければならない。なお、本発明の内容は、前記した記載に基づいて広く改変・変更等することができることはいうまでもない。
 尚、本出願は、2011年6月17日出願の日本特許出願(特願2011-135401)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明は、スチームタービンブレード、ジェットエンジンの圧縮機ブレード、気体、液体圧縮用のコンプレッサースクリュー、ターボ圧縮機のインペラー、燃料噴射用バルブ、セラミックスの粉末を粉砕製造する時に使用される粉砕器の部品、スラリーポンプのシリンダーや撹拌用インペラーまたはそれらを納めるケーシング等の部品に適用でき、耐エロージョン性を向上させる。
2 基体
10 成膜装置
11 チャンバー
12 アーク式蒸発源
13 アーク電源
14 バイアス電源
15 ガス供給口
16 基板ステージ
17 支持台
18 ヒータ
19 放電用直流電源
20 フィラメント加熱用交流電源
21 フィラメント

Claims (4)

  1.  スチームタービンブレード、ジェットエンジンの圧縮機ブレード、気体または液体圧縮用のコンプレッサースクリュー、ターボ圧縮機のインペラー、燃料噴射用バルブからなる群より選択されるいずれかに使用される基体と、前記基体を被覆する硬質皮膜とを備えた硬質皮膜被覆部材であって、
     前記硬質皮膜は、ナノインデンターにより測定した硬さ(H)とヤング率(E)において、前記硬さ(H)が20GPa以上であり、前記硬さ(H)と前記ヤング率(E)との比率(H/E)が0.06以上であり、
     前記硬質皮膜は、TiおよびCrのうちの少なくとも一種とAlとNとを含有し、皮膜中の非金属元素以外の元素の総量に占めるTiとCrの総量が原子比で0.1以上0.6以下であり、かつ、皮膜中の非金属元素以外の元素の総量に占めるAlの量が原子比で0.4以上0.7以下であることを特徴とする硬質皮膜被覆部材。
  2.  粉体あるいは粉体を含む流体を撹拌、輸送あるいは粉砕する機器に使用される基体と、前記基体の前記粉体と接触する摺動面を被覆する硬質皮膜とを備えた硬質皮膜被覆部材であって、
     前記硬質皮膜は、ナノインデンターにより測定した硬さ(H)とヤング率(E)において、前記硬さ(H)が20GPa以上であり、前記硬さ(H)と前記ヤング率(E)との比率(H/E)が0.06以上であり、
     前記硬質皮膜は、TiおよびCrのうちの少なくとも一種とAlとNとを含有し、皮膜中の非金属元素以外の元素の総量に占めるTiとCrの総量が原子比で0.1以上0.6以下であり、かつ、皮膜中の非金属元素以外の元素の総量に占めるAlの量が原子比で0.4以上0.7以下であることを特徴とする硬質皮膜被覆部材。
  3.  前記硬質皮膜は、組成が(TiCrAlSi)(C)からなり、前記a、b、c、d、e、f、x、yが原子比であるときに、
     0≦a≦0.6
     0≦b≦0.6
     0.4≦c≦0.7
     0≦d≦0.15
     0≦e≦0.1
     0≦f≦0.05
     0.1≦a+b≦0.6
     a+b+c+d+e+f=1
     0≦x≦0.5
     0.5≦y≦1
     x+y=1
     を満足することを特徴とする請求項1または請求項2に記載の硬質皮膜被覆部材。
  4.  前記硬質皮膜は、組成が(TiCrAlSi)(C)からなり、前記a、b、c、d、x、yが原子比であるときに、
     0≦a≦0.5
     0≦b≦0.5
     0.5≦c≦0.65
     0≦d≦0.05
     0.1≦a+b≦0.6
     a+b+c+d=1
     0≦x≦0.2
     0.8≦y≦1
     x+y=1
     を満足することを特徴とする請求項1から請求項3のいずれか一項に記載の硬質皮膜被覆部材。
PCT/JP2012/065394 2011-06-17 2012-06-15 硬質皮膜被覆部材 WO2012173236A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12799841.7A EP2722415B1 (en) 2011-06-17 2012-06-15 Member covered with hard coating film
CA2831780A CA2831780C (en) 2011-06-17 2012-06-15 Member covered with hard coating
BR112013032280-2A BR112013032280B1 (pt) 2011-06-17 2012-06-15 membro coberto com revestimento duro
US14/119,339 US9273387B2 (en) 2011-06-17 2012-06-15 Member covered with hard coating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011135401 2011-06-17
JP2011-135401 2011-06-17

Publications (1)

Publication Number Publication Date
WO2012173236A1 true WO2012173236A1 (ja) 2012-12-20

Family

ID=47357213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065394 WO2012173236A1 (ja) 2011-06-17 2012-06-15 硬質皮膜被覆部材

Country Status (6)

Country Link
US (1) US9273387B2 (ja)
EP (1) EP2722415B1 (ja)
JP (1) JP5140200B2 (ja)
BR (1) BR112013032280B1 (ja)
CA (1) CA2831780C (ja)
WO (1) WO2012173236A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017163972A1 (ja) * 2016-03-25 2017-09-28 株式会社神戸製鋼所 硬質皮膜、硬質皮膜被覆部材及び硬質皮膜の製造方法
JP2018059146A (ja) * 2016-10-04 2018-04-12 株式会社神戸製鋼所 硬質皮膜、硬質皮膜被覆部材及び硬質皮膜の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014238014A (ja) * 2013-06-06 2014-12-18 株式会社Ihi 航空機用ジェットエンジンの圧縮機のブレード及びその表面処理方法
JP6408607B2 (ja) 2014-12-25 2018-10-17 株式会社Ihi エンジン用圧縮機翼
JP2017088937A (ja) * 2015-11-06 2017-05-25 株式会社Ihi 耐食性コーティングを有するエンジン用圧縮機翼およびそのコーティング方法
JP7214120B2 (ja) * 2018-11-27 2023-01-30 株式会社神戸製鋼所 硬質皮膜被覆部材及びその製造方法
JP7214680B2 (ja) * 2020-04-06 2023-01-30 株式会社神戸製鋼所 硬質皮膜および耐土砂摩耗性硬質皮膜被覆部材
LU500365B1 (en) 2021-06-30 2023-01-02 Barco Nv Improvements in light emitting modules
LU500367B1 (en) 2021-06-30 2023-01-06 Barco Nv Improvements in light emitting modules

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161380A (ja) * 1997-08-20 1999-03-05 Kobe Steel Ltd 耐磨耗性多層型硬質皮膜
JP2001277251A (ja) * 2000-03-29 2001-10-09 Bridgestone Corp 成形金型用薄膜及び金型
JP2003071610A (ja) * 2000-12-28 2003-03-12 Kobe Steel Ltd 切削工具用硬質皮膜およびその製造方法並びに硬質皮膜形成用ターゲット
JP2003071611A (ja) * 2001-06-19 2003-03-12 Kobe Steel Ltd 切削工具用硬質皮膜およびその製造方法並びに硬質皮膜形成用ターゲット
JP2004256914A (ja) * 2003-02-07 2004-09-16 Kobe Steel Ltd 硬質皮膜及びその製造方法並びに硬質皮膜形成用ターゲット
JP2008007835A (ja) * 2006-06-30 2008-01-17 Kobe Steel Ltd 硬質皮膜およびその製造方法
JP2008174782A (ja) * 2007-01-17 2008-07-31 Kobe Steel Ltd 成形用冶工具用硬質皮膜被覆部材および成形用冶工具
JP2009293111A (ja) * 2008-06-09 2009-12-17 Kobe Steel Ltd 硬質皮膜層及びその形成方法
JP2010059534A (ja) * 2008-08-07 2010-03-18 Mitsubishi Heavy Ind Ltd 回転機械用の部品及びその製造方法、蒸気タービン並びに圧縮機
JP2010070848A (ja) * 2008-08-19 2010-04-02 Kobe Steel Ltd 窒素含有非晶質炭素系皮膜、非晶質炭素系積層皮膜および摺動部材
JP2012001744A (ja) * 2010-06-14 2012-01-05 Ntn Corp TiAlN膜およびTiAlN膜形成体

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4904542A (en) 1988-10-11 1990-02-27 Midwest Research Technologies, Inc. Multi-layer wear resistant coatings
USRE34173E (en) 1988-10-11 1993-02-02 Midwest Research Technologies, Inc. Multi-layer wear resistant coatings
EP0745699B1 (en) 1995-05-30 2000-05-03 Praxair S.T. Technology, Inc. Method for producing a multilayer coating of a nitride-containing compound
JP2000001768A (ja) * 1998-06-16 2000-01-07 Nippon Coating Center Kk 固体潤滑性を有する複合耐磨耗性硬質皮膜、並びに皮膜付き物品
JP3797807B2 (ja) 1998-10-23 2006-07-19 株式会社荏原エリオット 高温摺動部材用硬質膜
DE69925753T2 (de) 1998-10-23 2006-03-16 Ebara Corp. Gleitkörper und verfahren zu seiner herstellung
CA2327031C (en) 1999-11-29 2007-07-03 Vladimir Gorokhovsky Composite vapour deposited coatings and process therefor
DE60124061T2 (de) * 2000-12-28 2007-04-12 Kabushiki Kaisha Kobe Seiko Sho, Kobe Hartstoffschicht für Schneidwerkzeuge
US7211138B2 (en) 2003-02-07 2007-05-01 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Hard film, method of forming the same and target for hard film formation
US7186092B2 (en) 2004-07-26 2007-03-06 General Electric Company Airfoil having improved impact and erosion resistance and method for preparing same
SE528789C2 (sv) * 2004-09-10 2007-02-13 Sandvik Intellectual Property PVD-belagt skär av hårdmetall samt sätt att tillverka detta
CN101326303B (zh) * 2005-10-18 2012-07-18 西南研究院 抗侵蚀涂层
WO2007074507A1 (ja) * 2005-12-26 2007-07-05 Ibiden Co., Ltd. 粉末の混合方法、攪拌機、及び、ハニカム構造体の製造方法
WO2007122680A1 (ja) 2006-04-13 2007-11-01 Ibiden Co., Ltd. 押出成形機、押出成形方法及びハニカム構造体の製造方法
US20080102296A1 (en) 2006-10-26 2008-05-01 Farshad Ghasripoor Erosion resistant coatings and methods of making
US8129041B2 (en) * 2006-10-26 2012-03-06 General Electric Company Article having a protective coating and methods

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161380A (ja) * 1997-08-20 1999-03-05 Kobe Steel Ltd 耐磨耗性多層型硬質皮膜
JP2001277251A (ja) * 2000-03-29 2001-10-09 Bridgestone Corp 成形金型用薄膜及び金型
JP2003071610A (ja) * 2000-12-28 2003-03-12 Kobe Steel Ltd 切削工具用硬質皮膜およびその製造方法並びに硬質皮膜形成用ターゲット
JP2003071611A (ja) * 2001-06-19 2003-03-12 Kobe Steel Ltd 切削工具用硬質皮膜およびその製造方法並びに硬質皮膜形成用ターゲット
JP2004256914A (ja) * 2003-02-07 2004-09-16 Kobe Steel Ltd 硬質皮膜及びその製造方法並びに硬質皮膜形成用ターゲット
JP2008007835A (ja) * 2006-06-30 2008-01-17 Kobe Steel Ltd 硬質皮膜およびその製造方法
JP2008174782A (ja) * 2007-01-17 2008-07-31 Kobe Steel Ltd 成形用冶工具用硬質皮膜被覆部材および成形用冶工具
JP2009293111A (ja) * 2008-06-09 2009-12-17 Kobe Steel Ltd 硬質皮膜層及びその形成方法
JP2010059534A (ja) * 2008-08-07 2010-03-18 Mitsubishi Heavy Ind Ltd 回転機械用の部品及びその製造方法、蒸気タービン並びに圧縮機
JP2010070848A (ja) * 2008-08-19 2010-04-02 Kobe Steel Ltd 窒素含有非晶質炭素系皮膜、非晶質炭素系積層皮膜および摺動部材
JP2012001744A (ja) * 2010-06-14 2012-01-05 Ntn Corp TiAlN膜およびTiAlN膜形成体

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KENJI YAMAMOTO ET AL.: "AIP-ho de Keisei shita TiCrAlN-kei Tasomaku no Kozo to Sessaku Tokusei", ABSTRACTS OF MEETING OF JAPAN SOCIETY OF POWDER AND POWDER METALLURGY, vol. 2010, 2010, pages 18, XP008171897 *
See also references of EP2722415A4 *
SHIN'ICHI TANIFUJI ET AL.: "Shingata AIP Johatsugen no Hoden Tokusei to Keisei shita Chikkabutsu Himaku no Tokusei", ABSTRACTS OF MEETING OF JAPAN SOCIETY OF POWDER AND POWDER METALLURGY, vol. 2010, 2010, pages 17, XP008171896 *
T.YAMAMOTO ET AL.: "Effects of thermal annealing on phase transformation and microhardness of (TixCryAlz)N films", SURFACE AND COATINGS TECHNOLOGY, vol. 200, no. 1-4, 2005, pages 321 - 325, XP005063522 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017163972A1 (ja) * 2016-03-25 2017-09-28 株式会社神戸製鋼所 硬質皮膜、硬質皮膜被覆部材及び硬質皮膜の製造方法
JP2018059146A (ja) * 2016-10-04 2018-04-12 株式会社神戸製鋼所 硬質皮膜、硬質皮膜被覆部材及び硬質皮膜の製造方法

Also Published As

Publication number Publication date
US20140200132A1 (en) 2014-07-17
BR112013032280A2 (pt) 2016-12-20
CA2831780A1 (en) 2012-12-20
EP2722415A4 (en) 2015-09-09
JP2013019051A (ja) 2013-01-31
CA2831780C (en) 2016-07-12
BR112013032280B1 (pt) 2020-11-03
US9273387B2 (en) 2016-03-01
JP5140200B2 (ja) 2013-02-06
EP2722415A1 (en) 2014-04-23
EP2722415B1 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
JP5140200B2 (ja) 硬質皮膜被覆部材
JP6268530B2 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP5192642B2 (ja) 表面被覆部材及びその製造方法ならびに工具及び工作装置
JP6417959B2 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
US20090214787A1 (en) Erosion Resistant Coatings
JP5597786B1 (ja) 切削工具
WO2019098363A1 (ja) 被覆切削工具
Obeydavi et al. Microstructure, mechanical properties and corrosion performance of Fe44Cr15Mo14Co7C10B5Si5 thin film metallic glass deposited by DC magnetron sputtering
SE529590C2 (sv) Finkorniga sintrade hårdmetaller innehållande en gradientzon
CN107405695A (zh) 硬质包覆层发挥优异的耐崩刀性的表面包覆切削工具
Zhang et al. Microstructure evolution and wear resistance of nitride/aluminide coatings on the surface of Ti-coated 2024 Al alloy during plasma nitriding
JP2020521873A (ja) Pvdボンドコート
SE529431C2 (sv) Belagt hårdmetallskär, sätt att framställa detta samt dess användning för svarvning
JP5234357B2 (ja) 潤滑性に優れる耐摩耗性工具部材
JP5065756B2 (ja) 被覆切削工具
Yin et al. Microstructure, mechanical and tribological behavior of CrHfNbTaTiCxNy high-entropy carbonitride coatings prepared by double glow plasma alloy
JP5038017B2 (ja) 被覆切削工具
JP5065758B2 (ja) 被覆切削工具
EP3109341A1 (en) Hard coating film and method of forming same
CA1302807C (en) Zirconium nitride coated article and method for making same
WO2020166466A1 (ja) 硬質皮膜切削工具
US11033969B2 (en) Cutting tool
EP3842169A1 (en) Cutting tool
JP2023135782A (ja) 被覆切削工具
JP2019171531A (ja) 耐熱亀裂性および耐チッピング性にすぐれた表面被覆切削工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12799841

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2831780

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2012799841

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14119339

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013032280

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013032280

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131216