WO2012172800A1 - 冷蔵庫 - Google Patents

冷蔵庫 Download PDF

Info

Publication number
WO2012172800A1
WO2012172800A1 PCT/JP2012/003876 JP2012003876W WO2012172800A1 WO 2012172800 A1 WO2012172800 A1 WO 2012172800A1 JP 2012003876 W JP2012003876 W JP 2012003876W WO 2012172800 A1 WO2012172800 A1 WO 2012172800A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerator
opening
door
space
independent space
Prior art date
Application number
PCT/JP2012/003876
Other languages
English (en)
French (fr)
Inventor
愼一 堀井
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP12800772.1A priority Critical patent/EP2722622A4/en
Priority to CN201280029789.2A priority patent/CN103635765B/zh
Publication of WO2012172800A1 publication Critical patent/WO2012172800A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/08Parts formed wholly or mainly of plastics materials
    • F25D23/082Strips
    • F25D23/087Sealing strips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/069Cooling space dividing partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/062Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation along the inside of doors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/066Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply
    • F25D2317/0667Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply from the refrigerator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/02Refrigerators including a heater

Definitions

  • the present invention relates to a refrigerator, and more particularly to a structure for preventing condensation on the periphery of the front opening of the refrigerator.
  • a conventional refrigerator 100 will be described.
  • FIG. 9 is a cross-sectional view showing the basic structure of the freezer compartment 125 of the conventional refrigerator 100
  • FIG. 10 is a perspective view showing the configuration of the refrigeration cycle piping of the conventional refrigerator 100
  • FIG. It is a figure which shows the cross-section of the part which the partition wall 113 of 100 and the door 111 connect.
  • a door gasket 112 is provided around the entire periphery of the inner periphery of the door 111.
  • a metal receiving member 114 is provided on the front surface of the partition wall 113. The metal receiving member 114 that forms the receiving surface of the door gasket 112 and the door gasket 112 are brought into close contact with each other to prevent cold air from leaking to the outside.
  • a cooler 115 is installed on the back of the main body 131.
  • the cool air generated by the cooler 115 is blown out from the discharge port 117 on the back side of the freezer compartment 125 by the fan 116 to cool the stored food.
  • the cold air that cools foods circulates as shown by the arrows in FIG. Specifically, the cold air reaches from the back side of the freezer compartment 125 to the front upper part of the storage cases 118 and 119 and passes downward through the space between the inner wall of the door 111 and the front surfaces of the storage cases 118 and 119. . Then, the cool air returns from the return duct 121 to the cooler 115 through the space between the bottom surface of the lower storage case 119 and the bottom wall of the freezer compartment 125.
  • a heat radiating pipe 123 is provided.
  • the heat radiating pipe 123 uses a high-temperature refrigerant pipe in a refrigeration cycle (not shown).
  • the front surface of the partition wall 113 is heated to a high temperature by the heat of the heat radiating pipe 123. Thereby, dew condensation in the metal receiving member 114 of the partition wall 113 can be prevented.
  • the air above the front part of the freezer compartment 125 will also be heated, there exists a subject that cooling efficiency falls.
  • a seal member 124 indicated by a dotted line in FIG. 9 is provided in the space above the front of the storage case 118 near the partition wall 113 to shield the flow of cool air toward the door gasket 112 side.
  • a mechanism has been proposed (see, for example, Patent Document 1).
  • the upper and lower ends of the metal receiving member 114 extend from the surface of securing strength to the inside (rear side) of the storage such as the freezer compartment 125.
  • This extended portion is close to the heat insulating material 113a, but is not in contact with the heat insulating material 113a due to consideration of insertion workability and structural reasons. There is a gap between the extended portion and the heat insulating material 113a.
  • the present invention has been made in view of the above-described problems, and provides a refrigerator in which the surface of a metal receiving member is not easily condensed without deteriorating the efficiency of a cooling system.
  • the refrigerator of the present invention includes an inner box, an outer box, a heat insulating box formed by a heat insulating material filled between the inner box and the outer box, and a storage chamber provided in the heat insulating box. .
  • the partition wall which partitions a storage chamber up and down, the door provided in the opening part of the storage chamber, which can be opened and closed, and the metal receiving member provided in the door side of the partition wall are provided.
  • adhered to a metal receiving member and the opening part independent space independent of the space in a storage chamber are provided in the front opening part of the storage chamber.
  • the opening independent space can suppress the heat leak of the storage chamber. Furthermore, it is possible to suppress condensation by suppressing the cooling of the metal receiving member provided on the door side front portion of the partition wall. Therefore, it is possible to provide a refrigerator in which the surface of the metal receiving member is unlikely to condense without reducing the efficiency of the cooling system.
  • FIG. 1A is a cross-sectional view seen from the side showing the internal structure of the refrigerator according to the first embodiment of the present invention.
  • FIG. 1B is a front view showing a structure viewed from the front of the refrigerator according to the first embodiment of the present invention.
  • FIG. 2 is a front view schematically showing the configuration near the cooling chamber of the refrigerator in the first embodiment of the present invention.
  • FIG. 3 is an exploded perspective view of the refrigerator compartment device for the refrigerator according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing a flow of cold air in the refrigerator compartment in the refrigerator according to the first embodiment of the present invention.
  • FIG. 5A is a perspective view for schematically explaining the arrangement of the heat radiating pipes of the refrigerator in the first embodiment of the present invention.
  • FIG. 5B is a perspective view for schematically explaining the arrangement of the heat radiating pipes of the refrigerator in the first embodiment of the present invention.
  • FIG. 5C is a perspective view for schematically explaining the heat dissipating pipe arrangement of the refrigerator in the second embodiment of the present invention.
  • FIG. 5D is a perspective view for schematically explaining the heat dissipating pipe arrangement of the refrigerator in the second embodiment of the present invention.
  • FIG. 6A is a front view showing the structure of the refrigerator in the third embodiment of the present invention.
  • FIG. 6B is a sectional view seen from the side, showing the internal structure of the refrigerator according to the third embodiment of the present invention.
  • FIG. 7A is a front view showing the structure of the refrigerator in the fourth embodiment of the present invention.
  • FIG. 7B is a cross-sectional view seen from the side, showing the internal structure of the refrigerator according to the fourth embodiment of the present invention.
  • FIG. 7C is a perspective view schematically showing the heat dissipating pipe arrangement of the refrigerator in the fourth embodiment of the present invention.
  • FIG. 7D is a perspective view schematically showing the heat dissipating pipe arrangement of the refrigerator in the fourth embodiment of the present invention.
  • FIG. 8A is a front view showing the structure of the refrigerator in the fifth embodiment of the present invention.
  • FIG. 8B is a sectional view seen from the side, showing the internal structure of the refrigerator according to the fifth embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing a basic structure of a freezer compartment of a conventional refrigerator.
  • FIG. 10 is a perspective view showing a configuration of a refrigeration cycle pipe of a conventional refrigerator.
  • FIG. 11 is a diagram showing a cross-sectional structure of a portion where a partition wall and a door of a conventional refrigerator
  • FIG. 1A is a cross-sectional view seen from the side showing the internal structure of the refrigerator 30 in the first embodiment of the present invention
  • FIG. 1B is a front view showing the structure seen from the front of the refrigerator 30.
  • doors, gaskets, and the like are omitted.
  • the arrow in drawing shows the circulation path
  • the refrigerator 30 includes a heat insulating box 31, a refrigerator compartment 35 and a freezer compartment 37 as storage rooms, a partition wall 41, a refrigerator compartment door 38 and a freezer compartment door 40 as doors, a metal receiving member 42, and a door gasket. 90 and the opening independent space 50.
  • the heat insulation box 31 is formed of an inner box 33, an outer box 32, and a heat insulating material filled between the inner box 33 and the outer box 32.
  • the storage room is provided in the heat insulation box 31.
  • the partition wall 41 partitions the storage chamber up and down.
  • the door is provided at the front opening of the storage chamber and is openable and closable.
  • the metal receiving member 42 is provided on the door side of the partition wall 41.
  • the door gasket 90 is in close contact with the metal receiving member 42.
  • the opening independent space 50 is provided in the front opening of the storage chamber independently of the space in the storage chamber.
  • the opening independent space 50 can suppress the heat leak of the storage chamber, and can suppress the condensation of the metal receiving member 42 provided on the door-side front surface portion of the partition wall 41. .
  • the heat insulation box 31 of the refrigerator 30 is composed of an outer box 32 mainly using a steel plate and an inner box 33 formed of a resin such as ABS.
  • the inside of the heat insulating box 31 is filled with a foam heat insulating material 34 which is a heat insulating material using, for example, hard foam urethane or the like.
  • the inside of the heat insulation box 31 is insulated from the surroundings and divided into a plurality of storage rooms.
  • the refrigerator compartment 35 is arranged at the upper part of the heat insulating box 31 and the freezer compartment 37 is arranged at the lower part.
  • a refrigerating room door 38 is supported at the front opening of the refrigerating room 35, and a freezing room door 40 is pivotally supported at the front opening of the freezing room 37 so that the front opening of each storage room can be opened and closed.
  • the refrigerated room 35 is a storage room that is normally set to 1 ° C. to 5 ° C. with the temperature not frozen as a lower limit for refrigerated storage
  • the freezer room 37 is a storage room that is set to a freezing temperature zone.
  • the freezer compartment 37 is normally set at ⁇ 22 ° C. to ⁇ 15 ° C. for frozen storage, but should be set at a low temperature of, for example, ⁇ 30 ° C. or ⁇ 25 ° C. to improve the frozen storage state. There is also.
  • the refrigerator compartment 35 and the freezer compartment 37 are partitioned vertically by a partition wall 41.
  • a door gasket 90 is provided over the entire periphery of the inner periphery of each of the refrigerator compartment door 38 and the freezer compartment door 40.
  • a frontage sealing member 91 is disposed inside the door gasket 90 on the inner surface of the freezer compartment door 40 so as to be in contact with the wall surface in the storage chamber such as the inner box 33 and the partition wall 41.
  • an opening independent space 50 that is a space independent of both the storage compartment space of the freezing compartment 37 and the outside is provided.
  • the opening independent space 50 is formed at the inner peripheral edge portion of the freezer compartment door 40 so as to surround the frontage seal member 91 when viewed from the front.
  • a cooling chamber 43 for generating cold air is provided on the back surface of the freezing chamber 37, and a cooler 44 is disposed therein.
  • the cooling chamber 43 is insulated from the freezing chamber 37 by a coil cover 45.
  • FIG. 2 is a front view schematically showing a configuration in the vicinity of the cooling chamber 43 of the refrigerator 30 according to the first embodiment of the present invention.
  • a fan 46 for forcibly blowing the generated cold air is disposed above the cooler 44.
  • a defrost heater 47 that defrosts frost and ice adhering to the cooler 44 is provided.
  • the defrost heater 47 is, for example, a glass tube heater made of glass.
  • a double glass tube heater in which glass tubes are formed in a double manner is used as an explosion-proof measure.
  • the coil cover 45 is formed of a resin decorative plate and an inscoil cover formed of a heat insulating material such as a styrene material.
  • the coil cover 45 is provided side by side with the cooler 44, and a cool air return passage 71 that is partitioned from the cooler 44 by a partition member 75 and a back wall of the cooling chamber 43 is formed. Cold air that has passed through the refrigerator compartment return communication port of the partition wall 41 is introduced into the cold air return passage 71.
  • FIG. 3 is an exploded perspective view of the refrigerator compartment duct device 80 of the refrigerator 30 according to the first embodiment of the present invention.
  • the refrigerator compartment duct device 80 is disposed on the back of the refrigerator compartment 35.
  • the refrigerator compartment duct device 80 and the inner box 33 form an air passage for the refrigerator compartment 35.
  • the lower end of the refrigerator compartment duct device 80 is coupled to the partition wall 41, and the refrigerator compartment 35 is refrigerated by circulating the refrigerator compartment discharge cold air from the refrigerator compartment 43 and the return cold air from the refrigerator compartment 35.
  • the belt is controlled.
  • the refrigerator compartment duct device 80 is formed of a refrigerator compartment duct member 81 formed of foamed polystyrene and a resin refrigerator compartment duct decorative plate 86 that covers the front surface of the refrigerator compartment duct member 81.
  • a seal foam member 82 is attached to the seal portion inside the refrigerator compartment duct device 80.
  • FIG. 4 is a diagram showing a flow of cold air in the refrigerator compartment 35 in the refrigerator 30 according to the first embodiment of the present invention.
  • a cold room duct device 80 is attached to the back of the cold room 35.
  • the cold air 11 discharged from the outlet of the refrigerator compartment 35 through the refrigerator compartment air duct 48 circulates in the refrigerator compartment 35.
  • the cold air 12 circulated in the refrigerating chamber 35 returns to the cooler 44 through the refrigerating chamber return duct 51 from a return port provided on the lower back surface of the refrigerating chamber 35.
  • 5A and 5B are perspective views for schematically explaining the arrangement of the heat radiating pipes 49 of the refrigerator 30 in the first embodiment of the present invention.
  • a heat radiating pipe 49 which is a heating unit, is disposed in order to prevent condensation on the outer surface of the storage chamber when the outside air temperature is high.
  • the heat radiating pipe 49 uses a high-temperature refrigerant pipe in a refrigeration cycle (not shown), and heats the metal receiving member 42 to a high temperature by the heat.
  • the heat radiating pipe 49 is fixed in contact with the metal receiving member 42 and the front portion of the outer box 32 on the opening front (periphery portion of the opening) side of the freezer compartment 37.
  • the refrigerator 30 of the present embodiment is also provided with a second heat radiating pipe 93.
  • the second heat radiating pipe 93 is fixed so as to contact the metal receiving member 42 with emphasis. Specifically, the second heat radiating pipe 93 is in contact with the metal receiving member 42 but is not in contact with the front portion of the outer box 32.
  • a part of the cold air generated by the cooler 44 in the cooling chamber 43 is forcibly blown into the freezer compartment 37 in front by the fan 46.
  • the freezer compartment 37 is cooled by the cold air discharged from the discharge port of the coil cover 45.
  • the cold air circulated in the freezer compartment 37 is guided to the lower part of the cooler 44 through a return port opened at the lower part of the coil cover 45, and heat is exchanged by the cooler 44. Then, the fresh cool air repeats circulation by the fan 46 again. Thereby, the inside of the freezer compartment 37 is cooled to an appropriate temperature by control using the freezer compartment temperature sensor.
  • the cold air discharged above the fan 46 is guided from the cold air discharge port of the coil cover 45 to the cold room duct device 80 through the communication hole 18 of the partition wall 41.
  • the refrigerator temperature sensor determines that the internal temperature is equal to or higher than the set temperature, the damper is opened, and cold air is discharged from the outlet of the refrigerator compartment 35 through the refrigerator compartment air duct 48, thereby cooling the room. To do.
  • the cold air circulated in the refrigerator compartment 35 is guided to the return port.
  • the air in the refrigerator compartment 35 and the humid air contained in the stored product passes through the refrigerator compartment return duct 51 of the refrigerator compartment duct device 80, and is formed by the coil cover 45 and the rear wall of the cooling compartment 43. It is introduced into the return passage 71.
  • the air introduced into the cool air return passage 71 is guided from the cool air return port 77 to the lower part of the cooler 44, heat exchange is performed by the cooler 44, and fresh cool air is forcibly blown by the fan 46 again.
  • the cool air is forcibly blown to the refrigerating room air duct 48 communicating with the cooler 44 by the fan 46, and the refrigerating room is passed through the refrigerating room air duct 48 in the refrigerating room duct device 80.
  • Cold air is discharged to 35.
  • the opening and closing of the damper is controlled based on the refrigerator temperature sensor. Thereby, even if the refrigerator compartment 35 exists in the position away from the cooler 44, the room can be controlled to preset temperature.
  • the cooling of the refrigerating chamber 35 is also performed by cold air generated from the side surface or from the upper surface by a discharge opening provided in the refrigerating chamber duct member 81 or the like.
  • the opening independent space 50 formed by the door gasket 90 and the front seal member 91 is a space independent of the storage room space of the freezing room 37 and the outside. Thereby, it can suppress that the front part of the outer case 32 in the opening front side of the metal receiving member 42 and the freezer compartment 37 is directly cooled by the cold air of the freezer compartment 37. Therefore, it is possible to suppress the occurrence of condensation on the metal receiving member 42 and the front portion of the outer box 32 on the opening front side of the freezer compartment 37.
  • the refrigerant circulation of the heat radiating pipe 49 can be switched to the second heat radiating pipe 93 using the switching valve 92.
  • the heat radiating pipe 49 is used when there is a lot of condensation, while it can be switched to the second heat radiating pipe 93 when there is not much condensation.
  • the opening independent space 50 allows the freezer compartment 37 to have a heat quantity that suppresses the occurrence of dew condensation in the front portion of the outer box 32 on the opening front side of the freezer compartment 37 that is relatively less affected by the temperature in the storage compartment. Heat leakage from the front portion of the outer box 32 on the opening front side into the storage chamber can be suppressed.
  • the above-mentioned heat pipe switching function is not essential. Even if it does not have this function, it is possible to effectively suppress the occurrence of condensation on the metal receiving member 42 and the front portion of the outer box 32 on the opening front side of the freezer compartment 37.
  • FIG. 5C and FIG. 5D are perspective views for schematically explaining the heat dissipating pipe arrangement of the refrigerator 20 in the second embodiment of the present invention.
  • the configuration of the refrigerator 20 of the present embodiment is the same as the configuration of the refrigerator 30 described in the first embodiment, the description of the common portions is omitted.
  • the refrigerator 20 includes a bypass pipe 94 in addition to the heat radiating pipe 49.
  • the heat radiating pipe 49 is fixed in contact with the metal receiving member 42 and the front portion of the outer box 32 on the opening front side of the freezer compartment 37.
  • the bypass pipe 94 is not in contact with any of the metal receiving member 42 and the front portion of the outer box 32. Further, the switching of the refrigerant in the heat radiating pipe 49 and the bypass pipe 94 by the switching valve 92 is the same as in the first embodiment.
  • Natural convection occurs in the opening independent space 50 which is an independent space different from the storage room. That is, the air cooled by the cold air discharged from the freezer compartment 37 is lowered in the opening independent space 50.
  • the temperature distribution in the freezer compartment 37 is not uniform.
  • the temperature distribution in the part-independent space 50 is further uneven.
  • the low temperature air in the opening independent space 50 is lowered, the temperature in the vicinity of the metal receiving member 42 is increased, so that the speed at which the metal receiving member 42 is cooled is reduced.
  • the amount of heat required to bring the metal receiving member 42 to a temperature at which no condensation occurs is reduced. That is, the amount of heat of the heat radiating pipe 49 required to bring the metal receiving member 42 to a temperature at which no condensation occurs is reduced.
  • the refrigerant circulation between the bypass pipe 94 that does not pass through the vicinity of the opening front of the storage chamber and the heat radiating pipe 49 is performed using the switching valve 92. Control the temperature by switching.
  • FIG. 6A is a front view showing the structure of the refrigerator 16 according to the third embodiment of the present invention
  • FIG. 6B is a sectional view showing the internal structure of the refrigerator 16 as seen from the side.
  • doors, gaskets, and the like are omitted.
  • the arrow in drawing shows the circulation path
  • the refrigerator 16 has a refrigerating room 35 and a freezing room 37 vertically divided by a partition wall 41.
  • a door gasket 90 is provided over the entire periphery of the inner periphery of the refrigerator compartment door 38 and the freezer compartment door 40.
  • the metal receiving member 42 provided on the front surface side of the outer box 32 and the front surface of the partition wall 41 and the door are brought into close contact with each other so that the cold air is exposed to the outside. Prevents leakage.
  • a frontage sealing member 91 is disposed inside the door gasket 90 on the inner surface of the freezer compartment door 40 so as to be in contact with the wall surface in the storage chamber such as the inner box 33 and the partition wall 41.
  • an opening independent space 50 that is a space independent of both the storage compartment space of the freezing compartment 37 and the outside is provided.
  • the opening independent space 50 is formed so as to surround the front seal member 91 at the inner peripheral edge portion of the freezer compartment door 40 when viewed from the front.
  • the opening independent space 50 of the refrigerator 16 in the present embodiment is separated from the storage room space by a space communication inlet air passage 95 that communicates with the refrigerator compartment 35 and a space communication outlet air passage 96 that communicates with the periphery of the cooling chamber 43. Partially communicated.
  • the space communication inlet air passage 95 and the space communication outlet air passage 96 are spaces that are insulated from the storage room by heat insulating members such as the foam heat insulating material 34 and the partition wall 41. As shown in FIG. 6A, the space communication inlet air passage 95 is provided on both sides of the lower portion of the inner box 33 in the refrigerator compartment 35.
  • a part of the cold air generated by the cooler 44 of the cooling chamber 43 is forcibly blown into the front freezer compartment 37 by the fan 46. Is done.
  • the freezer compartment 37 is cooled by the cold air discharged from the discharge port of the coil cover 45.
  • the cold air circulated in the freezer compartment 37 is guided to the lower part of the cooler 44 through a return port opened at the lower part of the coil cover 45, and heat is exchanged by the cooler 44. Then, fresh cold air is again circulated by the fan 46. Thereby, the inside of the freezer compartment 37 is cooled to an appropriate temperature by control using the freezer compartment temperature sensor.
  • the cold air discharged above the fan 46 is guided from the cold air discharge port of the coil cover 45 to the cold room duct device 80 through the communication hole 18 of the partition wall 41.
  • the damper is opened, cold air is discharged from the discharge port of the cold room 35 through the cold room air duct 48, and the room is cooled. To do.
  • the cold air circulated in the refrigerator compartment 35 is guided while being diverted to the return port and the space communication inlet air passage 95.
  • return cold air There are two types of return cold air.
  • One is a path in which the air that has reached the temperature in the refrigerating chamber 35 passes through the refrigerating chamber return duct 51, passes through the cool air return passage 71, and is led from the cold air return port 77 to the lower portion of the cooler 44.
  • the other is a path that passes through the opening independent space 50 through the space communication inlet air passage 95 and is led from the cold air return port 77 to the lower part of the cooler 44 through the space communication outlet air passage 96.
  • the cool air that has returned to the lower part of the cooler 44 is heat-exchanged in the cooler 44, and fresh cool air is forcibly blown by the fan 46 again.
  • the return cold air from the refrigerator compartment 35 circulates in the opening independent space 50.
  • the metal receiving member 42 from being directly cooled by the cold air in the freezer compartment 37 and to maintain the inside of the opening independent space 50 in a refrigeration temperature zone higher than the freezing temperature zone. Become. For this reason, it is possible to suppress the occurrence of condensation on the metal receiving member 42 and the front portion of the outer box 32 on the opening front side of the freezer compartment 37.
  • the heat leakage into the storage chamber can be achieved by using the temperature control means by switching the heat radiating pipe 49 described with reference to FIGS. 5A to 5D. Can be suppressed.
  • the temperature in the opening independent space can be set as a refrigeration temperature zone, and the ambient temperature of the metal receiving member 42 can be efficiently increased using the cold air in the refrigeration chamber 35.
  • the present invention is not limited to this example. By circulating air in a temperature range higher than the temperature range of the storage chamber into the opening independent space 50, the ambient temperature of the metal receiving member 42 can be increased and condensation can be reduced.
  • FIG. 7A is a front view showing the structure of the refrigerator 60 according to the fourth embodiment of the present invention
  • FIG. 7B is a cross-sectional view showing the internal structure of the refrigerator 60 as seen from the side
  • FIG. 7D is a perspective view schematically showing the heat dissipating pipe arrangement of the refrigerator 60.
  • doors, gaskets, and the like are omitted.
  • the solid line arrow in the drawing indicates the circulation path of the cold air.
  • the refrigerator 60 has a refrigerator compartment 35 and a freezer compartment 37 partitioned vertically by a partition wall 41.
  • a door gasket 90 is provided over the entire periphery of the inner periphery of each of the refrigerator compartment door 38 and the freezer compartment door 40.
  • a frontage sealing member 91 is disposed inside the door gasket 90 on the inner surface of the freezer compartment door 40 so as to be in contact with the wall surface in the storage chamber such as the inner box 33 and the partition wall 41.
  • an opening independent space 50 that is a space independent of both the storage compartment space of the freezing compartment 37 and the outside is provided.
  • the opening independent space 50 is formed so as to surround the frontage sealing member 91 in the peripheral portion inside the freezer compartment door 40 when viewed from the front.
  • a lower heat source member 97 that generates a temperature equal to or higher than the outside air temperature is disposed around the lower side of the opening independent space 50.
  • the opening part independent space 50 is provided in the periphery of the front-surface opening part of a store room, The space where at least any one part of right and left of the opening part independent space 50 connected from the upper side to the lower side. It explains as being.
  • both the left and right sides of the opening independent space 50 may have a space that does not communicate from the upper side to the lower side.
  • the lower-side heat source member 97 conducts heat to a bottom metal member (not shown) having a function of forming a close contact surface of the door gasket 90 in the same manner as the metal receiving member 42 as well as securing the strength of the bottom, thereby making the opening independent. Heat is transferred into the space 50.
  • the heat of the lower heat source member 97 transmitted into the opening independent space 50 warms the air in the opening independent space 50.
  • the warmed air rises by natural convection in the opening independent space 50 (dotted line arrow in FIG. 7A).
  • the warmed air that has risen rises to the vicinity of the metal receiving member 42 in the opening independent space 50. Thereby, it is possible to suppress the occurrence of condensation in the front portion of the outer box 32 on the opening front side of the metal receiving member 42 and the freezer compartment 37.
  • Optimum for the lower heat source member 97 so as to ensure a temperature higher than the temperature necessary for suppressing the occurrence of dew condensation on the metal receiving member 42 and the front portion of the outer box 32 on the opening front side of the freezer compartment 37. Control of the amount of heat.
  • a heat radiating pipe 49 can be used together.
  • the switching valve 92 is used to perform temperature control by switching (or using together) refrigerant circulation between the bottom heat radiating pipe 98 and the heat radiating pipe 49. This prevents condensation on both sides of the surface of the freezing chamber 37 and the metal receiving member 42 while minimizing heat leakage from the both sides of the freezing chamber 37 of the heat radiation pipe 49 and the metal receiving member 42 to the storage chamber. be able to.
  • FIG. 8A is a front view showing the structure of the refrigerator 17 in the fifth embodiment of the present invention
  • FIG. 8B is a sectional view showing the internal structure of the refrigerator 17 as seen from the side.
  • doors, gaskets, and the like are omitted.
  • the arrow in drawing shows the circulation path
  • the refrigerator 17 has a refrigerating room 35 and a freezing room 37 vertically divided by a partition wall 41.
  • a door gasket 90 is provided over the entire periphery of the inner periphery of each of the refrigerator compartment door 38 and the freezer compartment door 40.
  • the metal receiving member 42 provided on the front surface side of the outer box 32 and the front surface of the partition wall 41 and the door are brought into close contact with each other so that the cold air is exposed to the outside. Prevents leakage.
  • a frontage sealing member 91 is disposed inside the door gasket 90 on the inner surface of the freezer compartment door 40 so as to be in contact with the wall surface in the storage chamber such as the inner box 33 and the partition wall 41.
  • an opening independent space 50 that is a space independent of both the storage compartment space of the freezing compartment 37 and the outside is provided.
  • the opening independent space 50 is formed so as to surround the front-end seal member 91 at the inner peripheral edge portion of the freezer compartment door 40 when viewed from the front.
  • the refrigerator 17 of the present embodiment has three or more storage rooms.
  • the refrigerator 17 includes a third storage chamber 13.
  • the freezing chamber 37 and the third storage chamber 13 are vertically partitioned by the second partition wall 99.
  • a door gasket 90 is also provided around the entire periphery of the inner periphery of the third storage chamber door 14. The door gasket 90 causes the metal receiving member 42 provided on the surface side of the outer box 32 and the front surface of the second partition wall 99 and the third storage chamber door 14 to be in close contact with each other, so that cold air leaks to the outside. Is preventing.
  • a part of the cold air generated by the cooler 44 in the cooling chamber 43 is forcibly blown into the freezer compartment 37 in front by the fan 46.
  • the freezer compartment 37 is cooled by the cold air discharged from the discharge port of the coil cover 45.
  • the cold air circulated in the freezer compartment 37 is guided to the lower part of the cooler 44 through a return port opened at the lower part of the coil cover 45, and heat is exchanged by the cooler 44. Then, fresh cold air is again circulated by the fan 46. Thereby, the inside of the freezer compartment 37 is cooled to an appropriate temperature by control using the freezer compartment temperature sensor.
  • the cool air generated by the cooler 44 of the cooling chamber 43 cools the inside of the third storage chamber 13 through the third storage chamber duct 15. Thereafter, the cold air is led to the lower part of the cooler 44 through a return port opened at the lower part of the coil cover 45, heat exchange is performed by the cooler 44, and fresh cold air is circulated again by the fan 46.
  • heating using the heat radiating pipe 49 and switching control of refrigerant circulation between the heat radiating pipe 49 using the switching valve 92 and the other heat radiating pipe are performed. It is also possible.
  • the front door sealing member 91 is provided on the inner surface of the refrigerator door so as to come into contact with the wall surface in the storage chamber, and the opening is independent between the front door sealing member 91 and the door gasket 90. It demonstrated using the example in which the space 50 was formed. In this case, the opening independent space 50 can be realized with a simple configuration, but the present invention is not limited to this example. The opening independent space 50 can be formed between the door gasket 90 and another member, or the opening independent space 50 can be formed using another member.
  • the opening independent space has been described using an example in which the opening independent space is provided in the front opening of the freezing room 37 which is a storage room set in the freezing temperature zone.
  • the effect of suppressing heat leakage from the storage room in the freezing temperature zone can be enhanced, and the occurrence of condensation on the metal receiving member 42 can be suppressed.
  • the present invention is not limited to this example. If it is a storage in a temperature zone where condensation occurs on the surface of the metal receiving member 42 and the outer box 32 provided on the front surface of the partition wall 41, it is possible to reduce condensation by providing the opening independent space 50, Applicable.
  • the example which provided the thermal radiation pipe 49 as a heating part in the vicinity of the opening part independent space 50 was shown. Thereby, the temperature in opening independent space can be raised reliably.
  • the present invention is not limited to this example. Even when the vicinity of the opening independent space 50 is heated using other heating means, the same dew condensation preventing effect can be obtained.
  • the present invention it is possible to provide a refrigerator in which the surface of the metal receiving member is not easily condensed without deteriorating the efficiency of the cooling system. Therefore, the present invention is useful because it can be applied to any refrigerator or the like having a cooling function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Refrigerator Housings (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

 冷蔵庫(30)であって、内箱(33)、外箱(32)、ならびに、内箱(33)および外箱(32)の間に充填された断熱材によって形成された断熱箱体(31)と、断熱箱体(31)に設けられた貯蔵室とを備えている。また、貯蔵室を上下に仕切る仕切壁(41)と、貯蔵室の開口部に設けられ、開閉可能な扉と、仕切壁(41)の扉側に設けられた金属受け部材(42)とを備えている。さらに、金属受け部材(42)に密着する扉ガスケット(90)と、貯蔵室の前面開口部に、貯蔵室内の空間とは独立した開口部独立空間(50)とを備えている。

Description

冷蔵庫
 本発明は、冷蔵庫に関し、特に冷蔵庫の前面開口部周縁の結露を防止する構造に関する。
 従来の冷蔵庫100について説明する。
 図9は、従来の冷蔵庫100の冷凍室125の基本構造を示す断面図であり、図10は、従来の冷蔵庫100の冷凍サイクル配管の構成を示す透視図であり、図11は、従来の冷蔵庫100の仕切壁113と扉111とが接続する部分の断面構造を示す図である。
 図9および図11に示すように、扉111の内面の周縁部分には、全周にわたって扉ガスケット112が設けられている。仕切壁113の前面には、金属受け部材114が設けられている。扉ガスケット112の受け面を形成する金属受け部材114と、扉ガスケット112とを密着させて、冷気が外部に漏れるのを防止している。
 本体131の背部には、冷却器115が設置されている。冷却器115で生成された冷気が、ファン116によって、冷凍室125の背面側の吐出口117から庫内に吹き出され、収納されている食品類が冷却される。
 食品類を冷却する冷気は、図9の矢印に示すように循環する。具体的には、冷気は、冷凍室125の背面側から、収納ケース118,119の前方上部に至り、扉111の内壁と、収納ケース118,119の前面との間の空間を下向けに通る。そして、冷気は、下側の収納ケース119の底面と冷凍室125の底壁との間の空間を通って、リターンダクト121から冷却器115に戻る。
 このような構成において、収納ケース118の前方上部に至った冷気によって、冷凍室125と上部貯蔵室122との間に形成された仕切壁113の前面が冷却される。内外の温度差によって、冷却された仕切壁113の前面が結露することを防止するために、放熱パイプ123が配設されている。この放熱パイプ123は、冷凍サイクル(図示せず)における高温冷媒パイプを利用している。
 放熱パイプ123の熱によって、仕切壁113の前面が高温に加温される。これにより、仕切壁113の金属受け部材114における結露を防止することができる。しかしながら、このような構成においては、冷凍室125の前部上方の空気も加熱されてしまうので、冷却効率が低下するという課題がある。
 この冷却効率の低下を防止するために、仕切壁113近傍の収納ケース118の前方上方の空間部分に、図9に点線で示すシール部材124を設け、扉ガスケット112側への冷気の流れを遮蔽する機構が提案されている(例えば、特許文献1を参照)。
 このような従来の構成では、図11に示すように、金属受け部材114の上下両端部が、強度確保の面から、冷凍室125等の貯蔵庫の内側(後方側)に延出している。この延出部分は、断熱材113aと近接しているが、挿入作業性の考慮や、構造的な理由により、断熱材113aと接触しているわけではない。延出部分と断熱材113aとの間には空隙が生じている。
 このため、放熱パイプ123からの放熱の一部は、金属受け部材114の上下両端部を通じて、冷凍室125等の貯蔵庫の内部に、熱負荷として侵入しやすいので、冷却システムの効率が低下してしまう可能性がある。
特開平10-96584号公報
 本発明は、上述した課題に鑑みてなされたものであり、冷却システムの効率を低下させずに、金属受け部材の表面を結露させにくい冷蔵庫を提供するものである。
 本発明の冷蔵庫は、内箱、外箱、ならびに、内箱および外箱の間に充填された断熱材によって形成された断熱箱体と、断熱箱体に設けられた貯蔵室とを備えている。また、貯蔵室を上下に仕切る仕切壁と、貯蔵室の開口部に設けられ、開閉可能な扉と、仕切壁の扉側に設けられた金属受け部材とを備えている。さらに、金属受け部材に密着する扉ガスケットと、貯蔵室の前面開口部に、貯蔵室内の空間とは独立した開口部独立空間とを備えている。
 このように、貯蔵室の前面開口部に、貯蔵室内の空間とは独立した開口部独立空間を備えることにより、開口部独立空間が貯蔵室の熱リークを抑制することができる。さらに、仕切壁の扉側前面部に設けられた金属受け部材の冷却を抑制して、結露を抑制することができる。よって、冷却システムの効率を低下させずに、金属受け部材の表面を結露させにくい冷蔵庫を提供できる。
図1Aは、本発明の第1の実施の形態における冷蔵庫の内部構造を示す側方から見た断面図である。 図1Bは、本発明の第1の実施の形態における冷蔵庫の正面から見た構造を示す正面図である。 図2は、本発明の第1の実施の形態における冷蔵庫の冷却室付近の構成を模式的に示す正面図である。 図3は、本発明の第1の実施の形態における冷蔵庫の冷蔵室ダクト装置の分解斜視図である。 図4は、本発明の第1の実施の形態に係る冷蔵庫における冷蔵室内の冷気の流れを示す図である。 図5Aは、本発明の第1の実施の形態における冷蔵庫の放熱パイプの配置を模式的に説明するための斜視図である。 図5Bは、本発明の第1の実施の形態における冷蔵庫の放熱パイプの配置を模式的に説明するための斜視図である。 図5Cは、本発明の第2の実施の形態における冷蔵庫の放熱パイプ配置を模式的に説明するための斜視図である。 図5Dは、本発明の第2の実施の形態における冷蔵庫の放熱パイプ配置を模式的に説明するための斜視図である。 図6Aは、本発明の第3の実施の形態における冷蔵庫の構造を示す正面図である。 図6Bは、本発明の第3の実施の形態における冷蔵庫の内部構造を示す、側方から見た断面図である。 図7Aは、本発明の第4の実施の形態における冷蔵庫の構造を示す正面図である。 図7Bは、本発明の第4の実施の形態における冷蔵庫の内部構造を示す、側方から見た断面図である。 図7Cは、本発明の第4の実施の形態における冷蔵庫の放熱パイプ配置を模式的に示す斜視図である。 図7Dは、本発明の第4の実施の形態における冷蔵庫の放熱パイプ配置を模式的に示す斜視図である。 図8Aは、本発明の第5の実施の形態における冷蔵庫の構造を示す正面図である。 図8Bは、本発明の第5の実施の形態における冷蔵庫の内部構造を示す、側方から見た断面図である。 図9は、従来の冷蔵庫の冷凍室の基本構造を示す断面図である。 図10は、従来の冷蔵庫の冷凍サイクル配管の構成を示す透視図である。 図11は、従来の冷蔵庫の仕切壁と扉とが接続する部分の断面構造を示す図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、これらの実施の形態によって、本発明が限定されるものではない。
 (第1の実施の形態)
 本発明の第1の実施の形態における冷蔵庫30について説明する。
 図1Aは、本発明の第1の実施の形態における冷蔵庫30の内部構造を示す側方から見た断面図であり、図1Bは、同冷蔵庫30の正面から見た構造を示す正面図である。なお、図1Bにおいては、扉やガスケット等を省略して記載している。また、図面における矢印は、冷気の循環経路を示している。
 冷蔵庫30は、断熱箱体31と、貯蔵室である冷蔵室35および冷凍室37と、仕切壁41と、扉である冷蔵室扉38および冷凍室扉40と、金属受け部材42と、扉ガスケット90と、開口部独立空間50とを備えている。
 断熱箱体31は、内箱33、外箱32、ならびに、内箱33および外箱32の間に充填された断熱材によって形成されている。
 貯蔵室は、断熱箱体31に設けられている。仕切壁41は、貯蔵室を上下に仕切っている。扉は、貯蔵室の前面開口部に設けられ、開閉可能に設けられている。金属受け部材42は、仕切壁41の扉側に設けられている。
 扉ガスケット90は、金属受け部材42に密着している。開口部独立空間50は、貯蔵室の前面開口部に、貯蔵室内の空間とは独立して設けられている。
 これにより、開口部独立空間50が貯蔵室の熱リークを抑制することができ、仕切壁41の扉側前面部に設けられた金属受け部材42の冷却を抑制して結露を抑制することができる。
 図1Aおよび図1Bに示したように、冷蔵庫30の断熱箱体31は、主に鋼板を用いた外箱32と、ABS等の樹脂で成型された内箱33とで構成されている。
 断熱箱体31の内部には、例えば硬質発泡ウレタン等を用いた断熱材である発泡断熱材34が充填されている。断熱箱体31の内部は、周囲と断熱されているとともに、複数の貯蔵室に区分されている。
 断熱箱体31の上部には冷蔵室35が配置され、下部には冷凍室37が配置されている。
 冷蔵室35の前面開口部には冷蔵室扉38が、また、冷凍室37の前面開口部には冷凍室扉40が、それぞれの貯蔵室の前面開口部を開閉自在に軸支されている。
 冷蔵室35は、冷蔵保存のために、凍らない温度を下限として、通常1℃~5℃に設定される貯蔵室であり、冷凍室37は、冷凍温度帯に設定される貯蔵室である。冷凍室37は、冷凍保存のために、通常-22℃~-15℃に設定されているが、冷凍保存状態の向上のために、例えば-30℃や-25℃の低温に設定されることもある。
 冷蔵室35と冷凍室37とは、仕切壁41によって、上下に区画されている。冷蔵室扉38および冷凍室扉40それぞれの内面の周縁部分には、全周にわたって扉ガスケット90が設けられている。扉ガスケット90によって、外箱32の表面側、および、仕切壁41の前面に設けた金属受け部材42と、扉(冷蔵室扉38および冷凍室扉40)とを密着させて、冷気が外部に漏れるのを防止している。
 また、冷凍室扉40の内面の扉ガスケット90の内側には、内箱33や仕切壁41等の、貯蔵室内の壁面と接触するように、間口シール部材91が配設されている。扉ガスケット90と間口シール部材91との間には、冷凍室37の貯蔵室空間および外部のいずれとも独立した空間である開口部独立空間50が設けられている。開口部独立空間50は、図1Bに示したように、正面からみたときに、冷凍室扉40の内側の周縁部分に、間口シール部材91を囲むように形成されている。
 図1Aに示すように、冷凍室37の背面には、冷気を生成する冷却室43が設けられており、その内部には、冷却器44が配設されている。冷却室43は、コイルカバー45によって、冷凍室37と断熱区画されている。
 図2は、本発明の第1の実施の形態における冷蔵庫30の冷却室43付近の構成を模式的に示す正面図である。
 図2に示したように、冷却器44の上方には、生成された冷気を強制的に送風するファン46が配置されている。冷却器44の下方には、冷却器44に付着した霜や氷を除霜する除霜ヒータ47が設けられている。除霜ヒータ47は、例えばガラス製のガラス管ヒータである。特に、冷媒として炭化水素系の冷媒ガスを用いる場合には、防爆対応として、ガラス管が二重に形成された二重ガラス管ヒータを用いる。
 コイルカバー45は、樹脂製の化粧板と、スチロール材等の断熱材で形成したインスコイルカバーとで形成されている。
 コイルカバー45には、冷却器44の側方に併設され、冷却器44とは、仕切り部材75および冷却室43の背面壁によって仕切られた、冷気戻り通路71が形成されている。冷気戻り通路71には、仕切壁41の冷蔵室帰還連通口を通過した冷気が導入される。
 図3は、本発明の第1の実施の形態における冷蔵庫30の冷蔵室ダクト装置80の分解斜視図である。
 冷蔵室ダクト装置80は、冷蔵室35の背面に配置されている。冷蔵室ダクト装置80と内箱33とによって、冷蔵室35の風路が形成されている。また、冷蔵室ダクト装置80の下端は仕切壁41に結合しており、冷却室43からの冷蔵室吐出冷気と、冷蔵室35からの戻り冷気とを循環させることにより、冷蔵室35を冷蔵温度帯に制御している。
 冷蔵室ダクト装置80は、発泡スチロールで形成された冷蔵室ダクト部材81と、冷蔵室ダクト部材81の前面をカバーする樹脂製の冷蔵室ダクト化粧板86とで形成されている。冷蔵室ダクト装置80内側のシール部には、シールフォーム部材82が取付けられている。
 図4は、本発明の第1の実施の形態に係る冷蔵庫30における冷蔵室35内の冷気の流れを示す図である。
 冷蔵室35の背面には、冷蔵室ダクト装置80が取り付けられている。冷蔵室送風ダクト48を通って、冷蔵室35の吐出口から吐出される冷気11は、冷蔵室35内を循環する。そして、冷蔵室35内を循環した冷気12は、冷蔵室35の下部背面に設けられた戻り口から冷蔵室帰還ダクト51を通って冷却器44へと帰還する。
 図5Aおよび図5Bは、本発明の第1の実施の形態における冷蔵庫30の放熱パイプ49の配置を模式的に説明するための斜視図である。
 図5Aおよび図5Bに示したように、金属受け部材42の近傍には、外気温度が高い時等に貯蔵室外側面が結露することを防止するために、加熱部である放熱パイプ49が配設されている。放熱パイプ49は、冷凍サイクル(図示せず)における高温冷媒パイプを利用しており、その熱によって金属受け部材42を高温に加温している。
 放熱パイプ49は、金属受け部材42および冷凍室37の開口間口(開口部の周縁部分)側にある外箱32の正面部に接触させて固定される。
 また、本実施の形態の冷蔵庫30には、第2の放熱パイプ93も設けられている。第2の放熱パイプ93は、金属受け部材42に重点をおいて接触させるように固定されている。具体的には、第2の放熱パイプ93は、金属受け部材42には接触しているが、外箱32の正面部には接触していない。
 以上のように構成された冷蔵庫30について、その動作および作用を説明する。
 冷却室43の冷却器44で生成された冷気の一部は、ファン46によって前方の冷凍室37内部へ強制的に送風される。冷凍室37は、コイルカバー45の吐出口から吐出された冷気によって冷却される。
 冷凍室37内部を循環した冷気は、コイルカバー45の下部に開口した戻り口を介して冷却器44の下部に導かれ、冷却器44で熱交換される。そして、新鮮な冷気が、再びファン46によって循環を繰返す。これにより、冷凍室37内は、冷凍室温度センサを用いた制御によって、適温に冷却される。
 一方、ファン46の上方に吐出された冷気は、コイルカバー45の冷気吐出口から仕切壁41の連通孔18を経て、冷蔵室ダクト装置80に導かれる。そして、冷蔵室温度センサによって庫内温度が設定温度以上であると判断されたとき、ダンパが開放され、冷蔵室送風ダクト48を通って冷蔵室35の吐出口から冷気が吐出され、室内を冷却する。
 冷蔵室35内を循環した冷気は、戻り口に導かれる。冷蔵室35内の空気や貯蔵物に含まれる湿気を帯びた空気は、冷蔵室ダクト装置80の冷蔵室帰還ダクト51を通って、コイルカバー45と冷却室43の背面壁とで構成される冷気戻り通路71に導入される。冷気戻り通路71に導入された空気は、冷気帰還口77から冷却器44の下部に導かれ、冷却器44で熱交換され、新鮮な冷気が再びファン46によって強制的に送風される。
 このように、本実施の形態の冷蔵庫30においては、ファン46によって冷気を冷却器44に連通する冷蔵室送風ダクト48に強制送風させ、冷蔵室ダクト装置80内の冷蔵室送風ダクト48を通して冷蔵室35に冷気を吐出している。また、冷蔵室温度センサに基づいて、ダンパの開閉を制御している。これにより、冷蔵室35が冷却器44から離れた位置にあっても、その室内を設定温度に制御することができる。
 また、冷蔵室35の冷却は、冷蔵室ダクト部材81に設けられた吐出開口部等によって、側面側からや上面から発生する冷気によっても行われる。
 扉ガスケット90および間口シール部材91によって形成される開口部独立空間50は、冷凍室37の貯蔵室空間、および外部とも独立した空間である。これにより、冷凍室37の冷気によって、金属受け部材42、および、冷凍室37の開口間口側にある外箱32の正面部が直接冷却されることを抑制できる。よって、金属受け部材42、および、冷凍室37の開口間口側にある外箱32の正面部における結露発生を抑制することができる。
 なお、金属受け部材42と比べて、冷凍室37の開口間口にある外箱32の正面部側は、貯蔵室内の冷気の影響を受けにくいので、結露発生を抑制するために必要な熱量が小さい。
 本実施の形態の冷蔵庫30においては、図5Aおよび図5Bに示すように、切替弁92を用いて、放熱パイプ49の冷媒循環を第2の放熱パイプ93に切替えることができる。例えば、結露が多いときには放熱パイプ49を用いる一方、結露が多くないときには、第2の放熱パイプ93に切り替えることができる。これにより、比較的貯蔵室内温度の影響が小さい冷凍室37の開口間口側にある外箱32の正面部における結露発生を抑制する熱量を確保しつつ、開口部独立空間50によって、冷凍室37の開口間口側にある外箱32の正面部からの貯蔵室内への熱リークを抑制することができる。
 なお、上述した放熱パイプの切り替え機能は必須ではない。この機能を有しない場合であっても、金属受け部材42、および、冷凍室37の開口間口側にある外箱32の正面部における結露発生を有効に抑制することができる。
 (第2の実施の形態)
 次に、本発明の第2の実施の形態における冷蔵庫20について説明する。
 図5Cおよび図5Dは、本発明の第2の実施の形態における冷蔵庫20の放熱パイプ配置を模式的に説明するための斜視図である。
 本実施の形態の冷蔵庫20の構成は、第1の実施の形態で説明した冷蔵庫30の構成と共通するので、共通する部分については説明を省略する。
 図5Cおよび図5Dに示したように、冷蔵庫20は、放熱パイプ49に加えて、バイパスパイプ94を備えている。放熱パイプ49は、第1の実施の形態において説明した冷蔵庫30と同様に、金属受け部材42と冷凍室37の開口間口側にある外箱32の正面部とに接触させて固定されている。一方、バイパスパイプ94は、金属受け部材42および外箱32の正面部のいずれにも接触していない。また、切替弁92によって、放熱パイプ49およびバイパスパイプ94の冷媒の切替えが行われることは第1の実施の形態と同様である。
 以上のように構成された冷蔵庫20について、その動作および作用を説明する。
 貯蔵室とは異なる独立空間である開口部独立空間50内においては、自然対流が発生する。つまり、冷凍室37の吐出冷気によって冷却された空気が、開口部独立空間50内において下降する。
 特に、冷凍室37内の冷却を行っていない場合、すなわち、冷凍室37内に冷気が吐出されていない場合には、冷凍室37内の温度分布が均等ではないので、この自然対流によって、開口部独立空間50内の温度分布がさらに不均等となる。開口部独立空間50内の低温空気が下降すると、金属受け部材42付近の温度が上昇するので、金属受け部材42が冷却される速度が緩和される。これにより、金属受け部材42を結露しない温度にするために必要な熱量は減少する。つまり、金属受け部材42を結露しない温度にするために必要な放熱パイプ49の熱量が減少する。
 上述した理由により、本実施の形態においては、図5Cおよび図5Dに示すように、切替弁92を用いて、貯蔵室の開口間口周辺を経由しないバイパスパイプ94と、放熱パイプ49との冷媒循環の切替えによる温度制御を行う。これにより、結露防止の観点からは、外箱32の表面部および金属受け部材42のいずれも加熱する必要がないときには、バイパスパイプ94に切り替えることができる。よって、冷凍室37の開口間口の両側面、および、金属受け部材42からの貯蔵室内への熱リークを効率的に抑制することができる。
 (第3の実施の形態)
 次に、本発明の第3の実施の形態における冷蔵庫16について説明する。
 図6Aは、本発明の第3の実施の形態における冷蔵庫16の構造を示す正面図であり、図6Bは、同冷蔵庫16の内部構造を示す、側方から見た断面図である。なお、図6Aにおいては、扉やガスケット等を省略して記載している。また、図面における矢印は、冷気の循環経路を示している。
 図6Aおよび図6Bに示すように、冷蔵庫16は、仕切壁41によって冷蔵室35と冷凍室37とが上下に区画されている。冷蔵室扉38と冷凍室扉40の内面の周縁部分には、全周にわたって扉ガスケット90が設けられている。扉ガスケット90によって、外箱32の表面側、および、仕切壁41の前面に設けた金属受け部材42と、扉(冷蔵室扉38および冷凍室扉40)とを密着させて、冷気が外部に漏れるのを防止している。
 また、冷凍室扉40の内面の扉ガスケット90の内側には、内箱33や仕切壁41等の、貯蔵室内の壁面と接触するように、間口シール部材91が配設されている。扉ガスケット90と間口シール部材91との間には、冷凍室37の貯蔵室空間および外部のいずれとも独立した空間である開口部独立空間50が設けられている。開口部独立空間50は、図6Aに示したように、正面からみたときに、冷凍室扉40の内側の周縁部分に、間口シール部材91を囲むように形成されている。これらの構成は、第1の実施の形態で説明した冷蔵庫30の構成と共通している。
 本実施の形態における冷蔵庫16の開口部独立空間50は、冷蔵室35と連通する空間連通入口風路95、および、冷却室43の周辺と連通する空間連通出口風路96によって、貯蔵室空間と部分的に連通している。空間連通入口風路95および空間連通出口風路96は、発泡断熱材34や仕切壁41等の断熱部材によって、貯蔵室とは断熱された空間となっている。空間連通入口風路95は、図6Aに示したように、冷蔵室35における内箱33の下部両側に設けられている。
 以上のように構成された冷蔵庫16について、その動作および作用を説明する。
 第1の実施の形態において説明したように、本実施の形態においても、冷却室43の冷却器44で生成された冷気の一部は、ファン46によって前方の冷凍室37内部へ強制的に送風される。冷凍室37は、コイルカバー45の吐出口から吐出した冷気によって冷却される。
 冷凍室37内部を循環した冷気は、コイルカバー45の下部に開口した戻り口を介して冷却器44の下部に導かれ、冷却器44で熱交換される。そして、再び新鮮な冷気が、ファン46によって循環を繰返す。これにより、冷凍室37内は、冷凍室温度センサを用いた制御によって、適温に冷却される。
 一方、ファン46の上方に吐出された冷気は、コイルカバー45の冷気吐出口から仕切壁41の連通孔18を経て、冷蔵室ダクト装置80に導かれる。そして、冷蔵室温度センサによって庫内温度が設定温度以上であると判断されたとき、ダンパが開放され、冷蔵室送風ダクト48を通って冷蔵室35の吐出口から冷気が吐出され、室内を冷却する。
 冷蔵室35内を循環した冷気は、戻り口と空間連通入口風路95とに分流しながら導かれる。戻り冷気の経路としては二種類ある。ひとつは、冷蔵室35内の温度となった空気が、冷蔵室帰還ダクト51を通って冷気戻り通路71を通り、冷気帰還口77から冷却器44の下部に導かれる経路である。もうひとつは、空間連通入口風路95を通って開口部独立空間50を通り、空間連通出口風路96を通じて、冷気帰還口77から冷却器44の下部に導かれる経路である。いずれの経路においても、冷却器44の下部まで戻ってきた冷気は、冷却器44において熱交換され、新鮮な冷気が、再びファン46によって強制的に送風される。
 このように、本実施の形態においては、開口部独立空間50内に冷蔵室35からの戻り冷気が循環する。これにより、冷凍室37の冷気によって、金属受け部材42が直接冷却されることを抑制し、かつ、開口部独立空間50内を、冷凍温度帯よりも高い冷蔵温度帯に維持することが可能となる。このため、金属受け部材42、および、冷凍室37の開口間口側にある外箱32の正面部における結露発生を抑制することができる。
 さらに、第1の実施の形態および第2の実施の形態において、図5A~図5Dを用いて説明した、放熱パイプ49の切替えによる温度制御の手段を併用することにより、貯蔵室内への熱リークを抑制することができる。
 本実施の形態においては、開口部独立空間50内に、冷蔵室35の冷蔵温度帯の冷気を循環させる例を用いて説明した。これにより、開口部独立空間内温度を冷蔵温度帯とすることができ、冷蔵室35の冷気を利用して、金属受け部材42の周辺温度を効率よく上昇させることができる。しかしながら、本発明は、この例に限定されない。貯蔵室の温度帯よりも高い温度帯の空気を開口部独立空間50内に循環させることで、金属受け部材42の周辺温度を上昇させて結露を減少させることができる。
 (第4の実施の形態)
 次に、本発明の第4の実施の形態における冷蔵庫60について説明する。
 図7Aは、本発明の第4の実施の形態における冷蔵庫60の構造を示す正面図であり、図7Bは、同冷蔵庫60の内部構造を示す、側方から見た断面図であり、図7Cおよび図7Dは、同冷蔵庫60の放熱パイプ配置を模式的に示す斜視図である。図7Aにおいては、扉やガスケット等を省略して記載している。また、図面における実線の矢印は、冷気の循環経路を示している。
 図7Aおよび図7Bに示すように、冷蔵庫60は、仕切壁41によって冷蔵室35と冷凍室37とが上下に区画されている。冷蔵室扉38および冷凍室扉40それぞれの内面の周縁部分には、全周にわたって扉ガスケット90が設けられている。扉ガスケット90によって、外箱32の表面側、および、仕切壁41の前面に設けた金属受け部材42と、扉(冷蔵室扉38および冷凍室扉40)とを密着させて、冷気が外部に漏れるのを防止している。
 また、冷凍室扉40の内面の扉ガスケット90の内側には、内箱33や仕切壁41等の、貯蔵室内の壁面と接触するように、間口シール部材91が配設されている。扉ガスケット90と間口シール部材91との間には、冷凍室37の貯蔵室空間および外部のいずれとも独立した空間である開口部独立空間50が設けられている。開口部独立空間50は、図7Aに示したように、正面からみたときに、冷凍室扉40の内側の周縁部分に、間口シール部材91を囲むように形成されている。これらの構成は、第1の実施の形態で説明した冷蔵庫30の構成と共通している。
 本実施の形態の冷蔵庫60は、開口部独立空間50の下辺周辺に、外気温度以上の温度を発熱する下辺熱源部材97を配設している。
 また、本実施の形態において、開口部独立空間50は、貯蔵室の前面開口部の周縁に設けられ、開口部独立空間50の、少なくとも左右いずれか一方の部分が、上辺から下辺まで連通した空間であるとして説明する。
 これにより、開口部独立空間50内で比較的高い温度の空気が上昇し、空間内で比較的低い温度の空気が下降するため、金属受け部材42周辺の温度を効率的に上昇させることができる。しかしながら、本発明はこの例に限定されない。たとえば、開口部独立空間50の左右両方側が、上辺から下辺まで連通しない空間を有していてもよい。
 以上のように構成された冷蔵庫60について、その動作および作用を説明する。
 下辺熱源部材97は、底部の強度確保、および、金属受け部材42と同様に扉ガスケット90の密着面を構成する機能を有する底部金属部材(図示せず)に熱伝導することで、開口部独立空間50内に熱を伝える。
 開口部独立空間50内に伝えられた下辺熱源部材97の熱は、開口部独立空間50内の空気を暖める。暖められた空気は、開口部独立空間50内で自然対流により上昇する(図7Aにおける点線矢印)。上昇した暖められた空気は、開口部独立空間50内の金属受け部材42付近まで上昇する。これにより、金属受け部材42および冷凍室37の開口間口側にある外箱32の正面部における結露発生を抑制することができる。
 下辺熱源部材97に対しては、金属受け部材42、および、冷凍室37の開口間口側にある外箱32の正面部における結露発生を抑制するために必要な温度以上を確保できるように、最適な熱量の制御がなされる。
 また、図5A~図5Dで示した、放熱パイプ49の切替えによる温度制御の手段を併用して用いることで、貯蔵室内への熱リークを抑制することができる。
 さらに、図7Cおよび図7Dに示すように、下辺熱源部材97として、断熱箱体31の底部を構成する底部材に配設された底部放熱パイプ98を用いることにより、放熱の有効利用が可能となる。
 なお、冷凍室37の表面部の両側および金属受け部材42における結露防止が、下辺熱源部材97の熱量だけでは難しい場合には、放熱パイプ49を併用することが可能である。このような場合には、切替弁92を用いて、底部放熱パイプ98と放熱パイプ49との冷媒循環の切替え(または併用)による温度制御を行う。これにより、放熱パイプ49の冷凍室37両側と金属受け部材42からの貯蔵室内への熱リークを最小限に抑制しながら、冷凍室37の表面部の両側および金属受け部材42の結露防止を行うことができる。
 (第5の実施の形態)
 次に、本発明の第5の実施の形態における冷蔵庫17について説明する。
 図8Aは、本発明の第5の実施の形態における冷蔵庫17の構造を示す正面図であり、図8Bは、同冷蔵庫17の内部構造を示す、側方から見た断面図である。なお、図8Aにおいては、扉やガスケット等を省略して記載している。また、図面における矢印は、冷気の循環経路を示している。
 図8Aおよび図8Bに示したように、冷蔵庫17は、仕切壁41によって冷蔵室35と冷凍室37とが上下に区画されている。冷蔵室扉38および冷凍室扉40それぞれの内面の周縁部分には、全周にわたって扉ガスケット90が設けられている。扉ガスケット90によって、外箱32の表面側、および、仕切壁41の前面に設けた金属受け部材42と、扉(冷蔵室扉38および冷凍室扉40)とを密着させて、冷気が外部に漏れるのを防止している。
 また、冷凍室扉40の内面の扉ガスケット90の内側には、内箱33や仕切壁41等の、貯蔵室内の壁面と接触するように、間口シール部材91が配設されている。扉ガスケット90と間口シール部材91との間には、冷凍室37の貯蔵室空間および外部のいずれとも独立した空間である開口部独立空間50が設けられている。開口部独立空間50は、図8Aに示したように、正面からみたときに、冷凍室扉40の内側の周縁部分に、間口シール部材91を囲むように形成されている。これらの構成は、第1の実施の形態で説明した冷蔵庫30の構成と共通している。
 本実施の形態の冷蔵庫17は、三室以上の貯蔵室を有している。図8Aおよび図8Bに示した例においては、冷蔵庫17は、第3の貯蔵室13を備えている。また、第2の仕切壁99によって、冷凍室37と第3の貯蔵室13とが上下に区画されている。第3の貯蔵室扉14の内面の周縁部分にも、全周にわたって扉ガスケット90が設けられている。扉ガスケット90によって、外箱32の表面側、および、第2の仕切壁99の前面に設けた金属受け部材42と、第3の貯蔵室扉14とを密着させて、冷気が外部に漏れるのを防止している。
 以上のように構成された冷蔵庫17について、その動作および作用を説明する。
 冷却室43の冷却器44で生成された冷気の一部は、ファン46によって前方の冷凍室37内部へ強制的に送風される。冷凍室37は、コイルカバー45の吐出口から吐出した冷気によって冷却される。
 冷凍室37内部を循環した冷気は、コイルカバー45の下部に開口した戻り口を介して冷却器44の下部に導かれ、冷却器44で熱交換される。そして、再び新鮮な冷気が、ファン46によって循環を繰返す。これにより、冷凍室37内は、冷凍室温度センサを用いた制御によって、適温に冷却される。
 また、第3の貯蔵室13についても同様に、冷却室43の冷却器44で生成された冷気が、第3の貯蔵室ダクト15を通じて第3の貯蔵室13内を冷却する。その後、冷気は、コイルカバー45の下部に開口した戻り口を介して、冷却器44の下部に導かれ、冷却器44で熱交換されて、再び新鮮な冷気がファン46によって循環を繰返す。
 本実施の形態においても、他の実施の形態と同様に、放熱パイプ49を用いた加熱や、切替弁92を用いた放熱パイプ49と他の放熱パイプとの間の冷媒循環の切り替え制御を行うことも可能である。
 このように、三室以上の貯蔵室を持つ冷蔵庫17においても、金属受け部材42および冷凍室37の開口間口側にある外箱32の正面部における結露発生を抑制することができる。
 なお、各実施の形態においては、冷蔵庫の扉の内面に、貯蔵室内の壁面と接触するように、間口シール部材91が設けられ、間口シール部材91および扉ガスケット90との間に、開口部独立空間50が形成されている例を用いて説明した。この場合、簡易な構成で開口部独立空間50を実現できるが、本発明はこの例に限定されない。扉ガスケット90と、他の部材との間に開口部独立空間50を形成することもできるし、他の部材を用いて、開口部独立空間50を形成することも可能である。
 また、各実施の形態においては、開口部独立空間は、冷凍温度帯に設定された貯蔵室である冷凍室37の前面開口部に設けられている例を用いて説明を行った。この場合、冷凍温度帯の貯蔵室内からの熱リーク抑制効果を高めることができ、金属受け部材42の結露発生を抑制することができる。しかしながら、本発明はこの例に限定されない。仕切壁41の前面に設けられる金属受け部材42および外箱32の表面部に結露が発生する温度帯の貯蔵庫であれば、開口部独立空間50を設けることにより、結露を減少させることができ、適用可能である。
 さらに、各実施の形態においては、開口部独立空間50の近傍に加熱部として放熱パイプ49を設けた例を示した。これにより、開口部独立空間内の温度を確実に上昇させることができる。しかしながら、本発明はこの例に限定されない。他の加熱手段を用いて、開口部独立空間50近傍を加熱しても、同様の結露防止効果を得ることができる。
 以上述べたように、本発明によれば、冷却システムの効率を低下させずに、金属受け部材の表面を結露させにくい冷蔵庫を提供できる。よって、本発明は、冷却機能を備えたあらゆる冷蔵庫等に適用できるので、有用である。
 11,12  冷気
 13  第3の貯蔵室
 14  第3の貯蔵室扉
 15  第3の貯蔵室ダクト
 16,17,20,30,60  冷蔵庫
 18  連通孔
 31  断熱箱体
 32  外箱
 33  内箱
 34  発泡断熱材
 35  冷蔵室
 37  冷凍室
 38  冷蔵室扉
 40  冷凍室扉
 41  仕切壁
 42  金属受け部材
 43  冷却室
 44  冷却器
 45  コイルカバー
 46  ファン
 47  除霜ヒータ
 48  冷蔵室送風ダクト
 49  放熱パイプ
 50  開口部独立空間
 51  冷蔵室帰還ダクト
 71  冷気戻り通路
 75  仕切り部材
 80  冷蔵室ダクト装置
 81  冷蔵室ダクト部材
 82  シールフォーム部材
 86  冷蔵室ダクト化粧板
 90  扉ガスケット
 91  間口シール部材
 92  切替弁
 93  第2の放熱パイプ
 94  バイパスパイプ
 95  空間連通入口風路
 96  空間連通出口風路
 97  下辺熱源部材
 98  底部放熱パイプ
 99  第2の仕切壁

Claims (6)

  1. 内箱、外箱、ならびに、前記内箱および前記外箱の間に充填された断熱材によって形成された断熱箱体と、
    前記断熱箱体に設けられた貯蔵室と、
    前記貯蔵室を上下に仕切る仕切壁と、
    前記貯蔵室の前面開口部に設けられ、開閉可能な扉と、
    前記仕切壁の前記扉側に設けられた金属受け部材と、
    前記金属受け部材に密着する扉ガスケットと、
    前記貯蔵室の前記前面開口部に、前記貯蔵室内の空間とは独立した開口部独立空間とを備えた
    冷蔵庫。
  2. 前記扉の内面に、前記貯蔵室内の壁面と接触するように、間口シール部材が設けられ、
    前記間口シール部材および前記扉ガスケットとの間に、前記開口部独立空間が形成される
    請求項1に記載の冷蔵庫。
  3. 前記開口部独立空間は、前記貯蔵室の前記前面開口部の周縁に設けられ、
    前記開口部独立空間の、少なくとも左右いずれか一方の部分が、上辺から下辺まで連通した空間である
    請求項2に記載の冷蔵庫。
  4. 前記開口部独立空間は、冷凍温度帯に設定された前記貯蔵室の前記前面開口部に設けられる
    請求項2に記載の冷蔵庫。
  5. 前記開口部独立空間内に、前記冷凍温度帯よりも高い温度帯の冷気を循環させる
    請求項4に記載の冷蔵庫。
  6. 前記開口部独立空間の近傍に、加熱部をさらに備えた
    請求項1から請求項5までのいずれか1項に記載の冷蔵庫。
PCT/JP2012/003876 2011-06-17 2012-06-14 冷蔵庫 WO2012172800A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12800772.1A EP2722622A4 (en) 2011-06-17 2012-06-14 FRIDGE
CN201280029789.2A CN103635765B (zh) 2011-06-17 2012-06-14 冷藏库

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-134887 2011-06-17
JP2011134887 2011-06-17

Publications (1)

Publication Number Publication Date
WO2012172800A1 true WO2012172800A1 (ja) 2012-12-20

Family

ID=47356806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003876 WO2012172800A1 (ja) 2011-06-17 2012-06-14 冷蔵庫

Country Status (4)

Country Link
EP (1) EP2722622A4 (ja)
JP (1) JP6028220B2 (ja)
CN (1) CN103635765B (ja)
WO (1) WO2012172800A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10215471B2 (en) 2015-12-28 2019-02-26 Whirlpool Corporation Structural stanchion for a cabinet of an appliance
US10429119B2 (en) 2016-07-06 2019-10-01 Whirlpool Corporation Refrigerated compartment air distribution assembly
CN113531992A (zh) * 2020-04-20 2021-10-22 博西华家用电器有限公司 一种储物盒及冰箱
JP2022073657A (ja) * 2020-11-02 2022-05-17 アクア株式会社 冷蔵庫

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1096584A (ja) 1996-09-20 1998-04-14 Mitsubishi Electric Corp 冷蔵庫の断熱機構
JP2000154968A (ja) * 1998-11-19 2000-06-06 Sharp Corp 冷蔵庫
JP2001041642A (ja) * 1999-07-27 2001-02-16 Matsushita Refrig Co Ltd 冷蔵庫
JP2002022349A (ja) * 2000-07-07 2002-01-23 Toshiba Corp 冷蔵庫扉
JP2002022351A (ja) * 2000-07-07 2002-01-23 Toshiba Corp 冷蔵庫の仕切り構造
JP2011038670A (ja) * 2009-08-07 2011-02-24 Mitsubishi Electric Corp 冷蔵庫

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5458258A (en) * 1977-10-18 1979-05-10 Toshiba Corp Cold storage
JP2744146B2 (ja) * 1991-04-26 1998-04-28 株式会社東芝 セパレート形冷蔵庫
JPH08189753A (ja) * 1995-01-13 1996-07-23 Matsushita Refrig Co Ltd 冷蔵庫
KR100288261B1 (ko) * 1998-06-30 2001-05-02 전주범 냉장고의 이슬맺힘 방지장치
JP2001349663A (ja) * 2000-06-09 2001-12-21 Sanyo Electric Co Ltd 冷蔵庫
JP2002062038A (ja) * 2000-08-24 2002-02-28 Mitsubishi Electric Corp 冷蔵庫用断熱扉体
JP2002364978A (ja) * 2001-06-08 2002-12-18 Matsushita Refrig Co Ltd 冷蔵庫
JP2005315547A (ja) * 2004-04-30 2005-11-10 Toshiba Corp 冷蔵庫
JP2006046750A (ja) * 2004-08-03 2006-02-16 Sharp Corp 冷却庫
KR100951287B1 (ko) * 2008-03-18 2010-04-02 엘지전자 주식회사 구획부재를 구비한 냉장고
JP5434431B2 (ja) * 2009-09-24 2014-03-05 パナソニック株式会社 冷蔵庫
JP5575452B2 (ja) * 2009-10-09 2014-08-20 株式会社東芝 冷蔵庫

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1096584A (ja) 1996-09-20 1998-04-14 Mitsubishi Electric Corp 冷蔵庫の断熱機構
JP2000154968A (ja) * 1998-11-19 2000-06-06 Sharp Corp 冷蔵庫
JP2001041642A (ja) * 1999-07-27 2001-02-16 Matsushita Refrig Co Ltd 冷蔵庫
JP2002022349A (ja) * 2000-07-07 2002-01-23 Toshiba Corp 冷蔵庫扉
JP2002022351A (ja) * 2000-07-07 2002-01-23 Toshiba Corp 冷蔵庫の仕切り構造
JP2011038670A (ja) * 2009-08-07 2011-02-24 Mitsubishi Electric Corp 冷蔵庫

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2722622A4 *

Also Published As

Publication number Publication date
CN103635765A (zh) 2014-03-12
CN103635765B (zh) 2016-01-20
JP2013019662A (ja) 2013-01-31
EP2722622A1 (en) 2014-04-23
EP2722622A4 (en) 2015-05-27
JP6028220B2 (ja) 2016-11-16

Similar Documents

Publication Publication Date Title
KR102627719B1 (ko) 냉장고
JP5617669B2 (ja) 冷蔵庫
JP2010038528A (ja) 冷蔵庫
EP2787312B1 (en) Refrigerator
KR20120022600A (ko) 냉장고
WO2012008092A1 (ja) 冷蔵庫
WO2012172800A1 (ja) 冷蔵庫
JP2012083069A (ja) 冷蔵庫
JP2017020754A (ja) 冷蔵庫
WO2015178027A1 (ja) 冷蔵庫
WO2010016196A1 (ja) 冷蔵庫
WO2012001849A1 (ja) 冷蔵庫
WO2015029410A1 (ja) 冷蔵庫
JP2002364978A (ja) 冷蔵庫
WO2015178025A1 (ja) 冷蔵庫
WO2017163965A1 (ja) 冷蔵庫
JP2008111640A (ja) 冷蔵庫
JPH10292969A (ja) 冷蔵庫
WO2010092625A1 (ja) 冷蔵庫
TW201827774A (zh) 冰箱
JP5909623B2 (ja) 冷蔵庫
JP2006220338A (ja) 冷蔵庫
KR20100060514A (ko) 냉장고
JP2017172849A (ja) 冷蔵庫
JP2017172850A (ja) 冷蔵庫

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800772

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012800772

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE