WO2015178025A1 - 冷蔵庫 - Google Patents

冷蔵庫 Download PDF

Info

Publication number
WO2015178025A1
WO2015178025A1 PCT/JP2015/002554 JP2015002554W WO2015178025A1 WO 2015178025 A1 WO2015178025 A1 WO 2015178025A1 JP 2015002554 W JP2015002554 W JP 2015002554W WO 2015178025 A1 WO2015178025 A1 WO 2015178025A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
cooler
room
refrigerator
temperature
Prior art date
Application number
PCT/JP2015/002554
Other languages
English (en)
French (fr)
Inventor
亜有子 宮坂
克則 堀井
堀尾 好正
淳宏 大島
偉 呉
超 呉
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201590000613.3U priority Critical patent/CN206440058U/zh
Priority to DE212015000137.7U priority patent/DE212015000137U1/de
Publication of WO2015178025A1 publication Critical patent/WO2015178025A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/067Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by air ducts
    • F25D2317/0671Inlet ducts

Definitions

  • the present invention relates to the structure of the return air passage for the refrigerator compartment of the refrigerator.
  • the cool air discharged from the cooler to the refrigerating room is one in which the cool air is discharged from the upper part of the refrigerating room duct arranged on the back of the refrigerating room and returned to the cooler from the suction port provided at one of the lower parts of the refrigerating room duct.
  • Patent Document 1 Japanese Patent Document 1
  • the suction port provided in one of the lower portions of the refrigerator compartment duct is directly visible to the user, and thus has a problem that the design is inferior.
  • This invention provides the refrigerator which can improve the designability and can raise the design freedom of a high temperature suction inlet part, maintaining the cooling performance of a refrigerator compartment.
  • the refrigerator of the present invention includes a cooler that generates cold air, a blower that forcibly circulates the cold air generated by the cooler, a cooling chamber that houses the cooler and the blower, and a low-temperature storage room that includes a cooling chamber on the back surface. And a high-temperature storage room whose temperature is set higher than that of the low-temperature storage room, and a storage case provided at the lower part of the high-temperature storage room.
  • the refrigerator of the present invention includes a low-temperature suction air passage that introduces cold air from the low-temperature storage chamber to the cooling chamber, and a high-temperature suction air passage that introduces cold air from the high-temperature storage chamber to the cooling chamber.
  • the high temperature suction inlet part located in the high temperature storage room of a high temperature suction air path is arrange
  • FIG. 1 is a longitudinal sectional view of a refrigerator in the first embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view of the cooling chamber of the refrigerator in the first embodiment of the present invention.
  • FIG. 3 is a front air path diagram of the cooling chamber of the refrigerator in the first embodiment of the present invention.
  • FIG. 4 is a detailed longitudinal sectional view of the cooling chamber of the refrigerator in the first embodiment of the present invention.
  • FIG. 5 is a schematic longitudinal sectional view of the refrigerator in the second embodiment of the present invention.
  • FIG. 6 is a schematic longitudinal sectional view of the refrigerator in the second embodiment of the present invention.
  • FIG. 7 is a front view of a refrigerator compartment duct arranged on the back of the refrigerator compartment of the refrigerator in the second embodiment of the present invention.
  • FIG. 8 is a schematic perspective view showing a cold air discharge air path to the switching room of the refrigerator in the second embodiment of the present invention.
  • FIG. 9 is a schematic cross-sectional view showing the switching chamber and the cold air discharge air passage of the refrigerator in the second embodiment of the present invention.
  • FIG. 10 is an exploded configuration diagram of a heat insulating partition wall between the switching room and the freezing room of the refrigerator in the second embodiment of the present invention.
  • FIG. 11 is a schematic cross-sectional view showing a cold air suction air passage around the cooler of the refrigerator in the second embodiment of the present invention.
  • FIG. 12 is a schematic front view showing a cold air suction air path around the refrigerator cooler in the second embodiment of the present invention.
  • FIG. 13 is a schematic front view showing a cooler for a refrigerator and a cool air suction air passage from the refrigerator compartment according to the second embodiment of the present invention.
  • FIG. 14 is a schematic side view showing the cooler of the refrigerator and the cool air suction air passage from the refrigerator compartment according to the second embodiment of the present invention.
  • FIG. 1 is a longitudinal sectional view of a refrigerator in the first embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view of the cooling chamber in the first embodiment of the present invention.
  • FIG. 3 is a front air path diagram of the cooling chamber of the refrigerator in the first embodiment of the present invention.
  • FIG. 4 is a detailed longitudinal sectional view of the cooling chamber of the refrigerator in the first embodiment of the present invention.
  • a heat insulating box 31 of a refrigerator 30 is mainly composed of an outer box 32 using a steel plate and an inner box 33 formed of a resin such as ABS. Filled with a foam insulation material 34 such as foamed urethane, is insulated from the surroundings and divided into a plurality of storage rooms.
  • the plurality of storage rooms of the refrigerator 30 has a refrigerating room 35 at the top, a switching room 36 at the bottom, and a freezing room 37 between the refrigerating room 35 and the switching room 36.
  • a refrigerator compartment door 35a is opened at the front opening of the refrigerator compartment 35, a switching compartment door 36a is opened at the front opening of the switching compartment 36, and a freezer compartment door 37a is opened and closed at the front opening of the freezing compartment 37. It is supported freely.
  • the refrigerator compartment 35 is normally set at 1 ° C. to 5 ° C. at the lower limit of the temperature at which it does not freeze for refrigerated storage, and the freezer compartment 37 is set at a freezing temperature zone, and is usually at ⁇ 22 ° C. to ⁇ 15 ° C. for frozen storage. Although it is set, it may be set at a low temperature such as ⁇ 30 ° C. or ⁇ 25 ° C. in order to improve the frozen storage state.
  • the switching chamber 36 can be set to -18 to 8 ° C. Note that the temperature switching of the switching chamber 36 is not limited to the above, and the temperature fluctuation range such as ⁇ 3 to 4 ° C. can be appropriately set depending on the application.
  • the switching chamber 36 and the freezer compartment 37 are vertically partitioned by a first partition wall 71 that is a partition wall, and the refrigerator compartment 35 and the freezer compartment 37 are vertically partitioned by a second partition wall 72 that is a partition wall.
  • the cooling chamber 43 is insulated from the freezing chamber 37 by vertical partition walls 45a and 45b.
  • a cooling chamber 43 for generating cold air is provided on the back of the freezer chamber 37, and a fin and tube type cold air is generated inside as a representative, and a cooler 44 using aluminum or copper as a material is provided. It is arranged.
  • the cooler 44 includes a refrigerant tube 201 in which a refrigerant flows and a plurality of plate fins 202 arranged at predetermined intervals.
  • the refrigerant tube 201 has a single tube made of aluminum or aluminum alloy in a meandering shape so that a straight pipe portion and a curved pipe portion are continuous, and there are a plurality in a row (left and right) direction and a step (up and down) direction. It is a bent serpentine tube, and forms one refrigerant flow path without using a connecting pipe that forms a curved pipe portion. And the straight pipe part of the refrigerant
  • the long hole 203 has a rectangular portion and a circular arc portion, and is formed in a long hole shape in which the circular arc portions are continuously formed on both short sides of the rectangular portion.
  • the arc part is provided with an edge-formed arc part collar (not shown) for tightly fixing to the straight pipe part of the refrigerant tube 201, and substantially perpendicular to both ends in the longitudinal direction of the rectangular part.
  • An edge-shaped rectangular collar (not shown) is provided.
  • the cooler 44 is installed such that the rectangular portion collar (not shown) is inclined downward toward the back of the refrigerator.
  • a blower 46 that forcibly blows the generated cold air is disposed above the cooler 44, and a defrost heater 47 that defrosts frost and ice adhering to the cooler 44 is disposed below the cooler 44.
  • a drain pan 48 for receiving defrosted water generated at the time of defrosting, a drain tube 49 penetrating from the deepest part to the outside of the cabinet are configured at the lower part, and an evaporating dish 50 is configured outside the warehouse on the downstream side. .
  • the defrost heater 47 is specifically a glass tube heater 59 made of glass, and in particular, when the refrigerant is a hydrocarbon-based refrigerant gas, a double glass tube heater in which glass tubes are formed in a double manner for explosion protection is used. It has been adopted.
  • a heater cover 60 that covers the glass tube heater 59 is disposed above the glass tube heater 59, and water drops dripped from the cooler 44 during defrosting directly fall on the surface of the glass tube that has become hot due to defrosting.
  • the size is equal to or greater than the glass tube diameter and width so that no sound is generated.
  • isobutane which is a flammable refrigerant with a low global warming potential
  • isobutane has a specific gravity approximately twice that of air at normal temperature and atmospheric pressure (at a specific gravity of 2.04 and a temperature of 300 K).
  • the refrigerant charge amount can be reduced as compared with the conventional case, the cost is low, and the leakage amount when the flammable refrigerant leaks is reduced, thereby improving the safety.
  • isobutane is used as the refrigerant, and the maximum temperature on the surface of the glass tube, which is the outline of the glass tube heater 59 during defrosting, is regulated as an explosion-proof measure. Therefore, in order to reduce the temperature of the glass tube surface, a double glass tube heater in which the glass tube is formed in a double manner is employed. In addition, as a means for reducing the temperature on the surface of the glass tube, a member (for example, an aluminum fin) having high heat dissipation can be wound around the surface of the glass tube. At this time, the outer dimensions of the glass tube heater 59 can be reduced by using a single glass tube.
  • a pipe heater in close contact with the cooler 44 may be used in combination.
  • the defrosting of the cooler 44 is efficiently performed by direct heat transfer from the pipe heater, and the frost adhering to the drain pan 48 and the blower 46 around the cooler 44 can be melted by the glass tube heater 59. Therefore, the defrosting time can be shortened, and an increase in the internal temperature during energy saving and defrosting time can be suppressed.
  • the capacity of the glass tube heater 59 can be reduced by optimizing the mutual heater capacity. If the heater capacity is lowered, the outer temperature of the glass tube heater 59 at the time of defrosting can also be lowered, so that red heat at the time of defrosting can also be suppressed.
  • the drain pan 48 constitutes a part of the bottom surface and the back surface of the cooling chamber 43.
  • the bottom surface is configured so that the connection portion with the drain tube 49 is the lowest in order to collect the defrost water in the drain tube 49, and is farthest from the defrost heater 47 in the connection portion with the drain tube 49 (see FIG. 2).
  • Distance L The back surface rises to a height that exceeds the height at which the amount of water stored in the drain pan 48 can be secured, and the angle formed between the bottom surface and the back surface is a gently curved surface.
  • the vertical partition walls 45 a and 45 b are composed of a front partition wall 45 a that forms the outer shell of the freezing chamber 37 and a rear partition wall 45 b that forms the outer shell of the cooling chamber 43.
  • a space between the front partition wall 45a and the rear partition wall 45b is a distribution air passage 51 that branches cold air toward each storage chamber.
  • the front partition wall 45 a has a freezer compartment discharge port 52 at the upper side, and communicates the distribution air passage 51 and the freezer compartment 37.
  • a freezer compartment suction air passage 53 projecting toward the freezer compartment 37 is provided below, and the return cold air from the freezer compartment 37 is introduced into the cooler chamber 43 through an inlet 53 a provided in front of the freezer compartment intake air passage 53.
  • the distribution air passage 51 is connected to a switching chamber discharge air passage (not shown) via a switching chamber damper (see the switching chamber damper 80 in FIG. 5) provided in the first partition wall 71.
  • the switching chamber 36 is communicated. Further, it is connected to the refrigerating room discharge air passage 85 through a refrigerating compartment damper (see the refrigerating compartment damper 42 in FIG. 5) provided in the second partition wall 72, and the distribution air passage 51 and the refrigerating compartment 35 are communicated with each other. Yes.
  • the rear partition wall 45 b includes a blower 46 on the upper side, and has a rib 55 that partitions the freezer compartment suction air passage 53 and the cooling chamber 43 on the lower side.
  • a region surrounded by the rib 55 and the drain pan 48 in the freezer compartment suction air passage 53 is a freezer compartment suction port 56, and the freezer compartment suction air passage 53 and the cooling chamber 43 communicate with each other.
  • the area of the freezer compartment suction port 56 is configured to be larger than the area of the entrance 53a.
  • the distance L between the defrost heater 47 and the drain tube 49 is configured to be larger than the height H of the freezer compartment inlet 56 in the same longitudinal section. (FIG. 2).
  • the distance B between the back surface of the cooling chamber 43 and the defrosting heater 47 is also configured to be larger than the height H of the freezing chamber suction port 56 (FIG. 2).
  • the bottom surface of the freezer compartment suction air passage 53 is constituted by a part of the drain pan 48 and the bottom surface of the cooling chamber 43.
  • the drain pan 48 starts from the lower end of the inlet 53a, passes through the lower end of the freezing chamber suction port 56, tilts downward to the drain tube 49, and then gently turns upward to connect to the back of the cooling chamber 43.
  • a refrigerating room suction air passage 87 is disposed on the back of the cooler 44.
  • the refrigerating room suction air passage 87 passes through the second partition wall 72 and communicates the refrigerating room 35 and the cooling room 43, and cold air that has cooled the refrigerating room 35 flows therethrough.
  • the refrigerating room suction air passage 87 includes a refrigerating room suction port 88 communicating with the cooling room 43 below.
  • a switching room suction port 89 is also provided along with the refrigerating room suction port 88.
  • the switching chamber suction port 89 communicates with the switching chamber 36 via a switching chamber suction air passage 90 provided in the first partition wall 71.
  • refrigerator compartment suction air passage 87 communicating with the refrigerator compartment suction port 88 and the switching chamber suction air passage 90 communicating with the switching chamber suction port 89 are configured as independent suction air passages.
  • refrigerator compartment suction port 88 and the switching chamber suction port 89 are provided in the vicinity of the lower end of the cooler 44 and are configured at a position higher than the freezer compartment suction port 56.
  • the upper ends of the refrigerator compartment suction port 88 and the switching chamber suction port 89 are disposed above the lower end of the cooler 44.
  • the width dimension of the plurality of high-temperature suction ports including the refrigerating room suction port 88 and the switching chamber suction port 89 provided therein is arranged substantially the same as the width dimension of the cooler 44.
  • the opening area of the refrigerator compartment suction port 88 in a temperature range higher than that of the switching chamber is set to be larger than the opening area of the switching chamber suction port 89.
  • the switching chamber suction port 89 is disposed at the side end portion on the far side in the width direction with respect to the connection portion of the refrigeration chamber suction air passage 87 corresponding to the refrigeration chamber suction port 88 with the refrigeration chamber 35.
  • switching room suction port 89 and the refrigerating room suction port 88 to be provided may be provided side by side so as to wrap in the horizontal direction and the vertical direction.
  • a part of the cold air generated by the cooler 44 in the cooling chamber 43 is forcibly blown forward by the blower 46 in the distribution air passage 51.
  • the freezer compartment 37 is cooled by the cold air discharged from the freezer compartment outlet 52, and the cold air is below the cooler 44 from the freezer compartment inlet 56 through the freezer inlet air passage 53 provided at the lower part of the vertical partition wall 45. Then, heat is exchanged in the cooler 44, and fresh cold air is circulated again by the blower 46. As a result, the freezer compartment 37 is cooled to an appropriate temperature under the control of a freezer sensor (not shown).
  • the cold air discharged upward in the distribution air passage 51 is discharged to the refrigerating chamber 35 through the refrigerating chamber discharge air passage 85 in the second partition wall 72. Further, the cool air discharged into the distribution air passage 51 circulates in the first partition wall 71 and flows into the switching chamber 36 into the switching chamber 36.
  • the cold air circulated through the refrigerating room 35 and the switching room 36 becomes air having moisture contained in air or stored items, and the refrigerating room 35 passes through the refrigerating room suction air passage 87 and is cooled from the refrigerating room suction port 88.
  • the heat is exchanged with the cooler 44 by being guided to a lower portion of the cooler 44, and fresh cool air is forcibly blown again by the blower.
  • the switching chamber 36 passes through the switching chamber suction air passage 90 and is led from the switching chamber suction port 89 to the lower portion of the cooler 44 to exchange heat with the cooler 44, so that fresh cold air is forced again by the blower. Be blown.
  • the room can be cooled to the set temperature by forcibly circulating cool air by the blower 46.
  • a switching chamber damper for adjusting the amount of cool air is provided in the air passage of the switching chamber discharge air passage 86 for introducing the cold air into the switching chamber 36.
  • the temperature in the switching chamber 36 can be precisely controlled by the switching chamber damper (see the switching chamber damper 80 in FIG. 5).
  • the inside temperature can be suppressed, and the inside of the cabinet can be maintained at an appropriate temperature.
  • the switching chamber 36 is basically one that can be set to ⁇ 18 to 8 ° C.
  • the switching of the temperature zone of the switching chamber 36 is not limited to this, and may be ⁇ 3 to 4 ° C.
  • the temperature fluctuation range can be appropriately set depending on the application, and it is possible to achieve both usability and energy saving.
  • the defrost heater 47 can heat the inside of the cooling chamber 43, the inside of the refrigeration room suction air path 87, and the inside of the switching room suction air path 90 with heater heat at the time of defrosting, it improves or prevents dew condensation and freezing. Can improve reliability.
  • the cooling room 43 contains the return cold air from the freezing room 37, Three flows of high-temperature return cold air from the switching chamber 36 will flow simultaneously.
  • the return cold air from the freezer compartment 37 passes through the freezer compartment suction air passage 53 from the entrance 53a and enters the cooling compartment 43 from the freezer compartment inlet 56.
  • the high-temperature return cold air from the refrigerating room 35 passes through the refrigerating room suction air passage 87 and enters the cooling room 43 from the refrigerating room suction port 88.
  • the high-temperature return cold air from the switching chamber 36 passes through the switching chamber suction air passage 90 and enters the cooling chamber 43 from the switching chamber suction port 89.
  • the freezer compartment suction port 56 is provided on the front surface of the cooling chamber 43
  • the refrigerator compartment suction port 88 is provided on the back surface of the cooling chamber 43
  • the freezer compartment suction port 56 is located below the refrigerator compartment suction port 88
  • a freezer compartment inlet 56 is located below the entrance 53a. From this, the freezing chamber return cold air flows downward into the cooling chamber 43 along the drain pan 48 constituting the bottom surface of the freezing chamber suction air passage 53.
  • a defrost heater 47 for melting frost and ice is provided above the drain pan 48, but the distance L between the defrost heater 47 and the drain pan 48 is higher than the height H of the freezer compartment suction port 56, The distance B from the back surface of the cooling chamber 43 is increased.
  • the freezing chamber return cold air easily flows under the defrosting heater 47 having a large space, and then flows as it is along the bottom surface of the cooling chamber 43 according to the shape of the drain pan 48 and flows upward on the back surface of the cooling chamber 43.
  • the pressure loss can be kept small.
  • the cooling capacity can be further improved.
  • the freezer compartment suction port 56 is further downward, so that the distance that the freezer return cold air passes through the cooler 44 is increased. By increasing the exchange amount, the cooling capacity can be further improved.
  • the shape of the drain pan 48 constituting the bottom surface of the cooling chamber 43 is inclined downward from the freezer compartment suction port 56 to the drain tube 49. Accordingly, the cold air returning from the freezer compartment can flow along the drain pan 48 and then rise along the back surface. For this reason, in the front of the high temperature inlet 58, the speed of the freezing room return cold air is upward, and can smoothly merge with the high temperature return cold air, thereby increasing the air volume and improving the cooling capacity.
  • the freezer compartment suction port 56 is provided with a freezer compartment suction air passage 53 on the upstream side, and the inlet 53 a of the freezer compartment suction air passage 53 is positioned above the freezer compartment suction port 56.
  • the freezer return cool air at the freezer inlet 56 flows downward into the cooler chamber 43, so that it easily flows along the drain pan 48 and suppresses interference with the low temperature return cool air while further reducing the pressure loss. be able to.
  • the area of the inlet 53 a of the freezer compartment suction air passage 53 is smaller than the area of the freezer compartment inlet 56, pressure loss at the freezer compartment inlet 56 can be further reduced.
  • the high-temperature suction port on the back side of the cooler which is the inflow portion of the return cold air from the refrigerating room 35 and the switching room 36, is arranged substantially the same as the width dimension of the cooler.
  • the switching room 36 also has the actual condition of preserving and storing PET bottles other than vegetables, and the number of times the doors of the refrigerating room 35 and the switching room 36 are opened and closed within a day is increasing compared to 10 years ago. Therefore, since the amount of heat exchange between the high-temperature return cold air circulating through the high-temperature storage chambers of the refrigerating chamber 35 and the switching chamber 36 and the cooler as described above increases, the time for cooling the interior can be reduced. The amount of frost formation on the cooler 44 due to the shortening of the cooling operation time can also be reduced.
  • the high temperature storage chamber is not only easy to infiltrate the moisture of the outside air due to the large number of times of opening and closing the door, but also because the temperature is high and the absolute humidity held in the air is high, the amount of frost adhering to the cooler 44 also increases. .
  • By reducing the amount of frost formation on the cooler 44 it is possible to extend the defrost cycle of the cooler 44, and to reduce the number of power inputs to the defrost heater 47 and to cool the inside of the cabinet after the inside temperature rises due to defrosting.
  • the required power input of the cooler 44 can be reduced, and further energy saving can be performed.
  • the heat exchange area in the cooler 44 can be increased is to increase the area to be frosted on the cooler 44, it is possible to suppress deterioration of the cooling capacity during frost formation. As a result, it is possible to extend the time (defrost cycle) until the defrosting is required after the refrigerator is operated, and the storage after the defrosting heater 47 power input is reduced and the internal temperature rises due to the defrosting. The power input of the cooler 44 required for internal cooling can be reduced, and further energy saving can be performed.
  • the refrigeration chamber suction port upper end 88 a and the switching chamber suction port upper end 89 a which are the respective suction ports installed in the rear surface of the cooling chamber 43 are positioned above the cooler lower end 44 b which is the lower end of the cooler 44. It is.
  • the cooling chamber 43 the return cold air from the refrigerating chamber 35 and the switching chamber 36 flows above the freezer return cold air from the freezing chamber 37. For this reason, the freezing room return cold air having a large backward speed and the return cold air from the refrigerating room 35 and the switching chamber 36 having a large forward speed are shifted in the vertical direction, suppressing mutual interference and increasing the amount of air circulating in the warehouse. Therefore, the cooling capacity can be further improved.
  • the cooler lower end 44b is disposed between the refrigerator compartment suction port upper end 88a and the switching chamber suction port upper end 89a, and the refrigerator compartment suction port lower end 88b and the switching chamber suction port lower end 89b.
  • the air flow resistance of the refrigeration room suction air passage 87 is increased, and the circulation air volume is reduced, so that the cooling capacity is lowered.
  • the refrigeration chamber suction port upper end 88a and the switching chamber suction port upper end 89a are located above the cooler 44, the air path resistance decreases and the circulation air volume increases, but it returns to the cooler 44 and the cold air easily flows and adheres.
  • the refrigeration room suction air passage 87 may be blocked by frost.
  • the cooler lower end 44b is disposed between the refrigeration chamber suction port upper end 88a and the switching chamber suction port upper end 89a, and the refrigeration chamber suction port lower end 88b and the switching chamber suction port lower end 89b.
  • the cooling capacity and the frosting resistance are satisfied.
  • the cooling room suction port upper end 88a and the switching chamber suction port upper end 89a are arranged between the lowermost pipe of the cooler 44 and the pipe one stage higher than the lowermost stage, thereby providing both cooling capacity and frosting resistance. We are trying to optimize.
  • the long holes 203 of the plate fins 202 and the rectangular collar (not shown) are installed in the cooler 44 so as to incline downward toward the back of the refrigerator.
  • the merged cold air mainly enters the vertically upward component from the back side of the cooler 44, and a part of the cold air flows along the plate fin 202 and the rectangular collar (not shown) of the cooler 44.
  • the cooling capacity can be improved.
  • the opening area of the refrigerator compartment suction port 88 is set larger than the opening area of the switching chamber suction port 89.
  • the temperature of the switching chamber 36 has an optimum storage temperature depending on the vegetables to be stored. It is preferable to store separately about 1 to 2 ° C. for leaf vegetables and about 8 to 9 ° C. for real vegetables.
  • the temperature of the refrigerator compartment 35 is set lower than that of the switching chamber 36. Therefore, as in this embodiment, by setting the opening area of the refrigerator compartment suction port 88 larger than that of the switching chamber inlet port 89, the circulation for cooling the refrigerator compartment to a temperature lower than the switching chamber temperature. Air volume and cold air volume can be secured.
  • the switching chamber suction port 89 is arranged at the side end portion on the side far in the width direction with respect to the connection portion between the refrigerator compartment 35 and the refrigerator compartment suction air passage 87.
  • the return cold air of the refrigerating room corresponding to the refrigerating room 35 cooled to a temperature lower than the switching room temperature is transferred to the cooler 44 in a state where the wind speed is higher than the switching room return cold air in the refrigerating room suction air passage 87. And circulate. Furthermore, the wind speed with the shortest air path distance between the connection between the refrigerator compartment 35 and the refrigerator compartment suction air passage 87 and the cooler 44 has the fastest wind speed.
  • the switching chamber suction port 89 is disposed on the side of the air passage where the distance in the air passage is long with respect to the connection portion between the refrigerating compartment 35 and the refrigerating compartment suction air passage 87.
  • the return cold air flowing from the switching chamber 36 to the cooler 44 can be less affected by the circulating wind speed at which the return cold air from the refrigerator compartment flows into the cooler 44, thereby suppressing mutual interference such as backflow and heat exchange efficiency. Can be secured.
  • the switching chamber suction port 89 is disposed side by side with the refrigeration chamber suction port 88 in the horizontal direction and the vertical direction.
  • the parts can be reduced in size when the refrigerating room suction air passage 87 and the switching room suction air passage 90 are formed, the cost can be reduced.
  • the refrigeration chamber suction air passage 87, the refrigeration chamber suction port 88, the switching chamber suction air passage 90, and the switching chamber suction port 89 it is possible to reduce the material cost and mold cost to be created, and in the manufacturing process. The number of man-hours can be reduced.
  • the refrigeration chamber suction air passage 87, the refrigeration chamber suction port 88, and the switching chamber suction port 89 are configured as a single part, and management by reducing the number of parts in addition to the reduction of material cost and mold cost. Costs have also been reduced. As a result, the cost of the product as a whole can be reduced, leading to a reduction in the selling price, and the selling rate can be improved.
  • the switching chamber suction port 89 and the refrigeration chamber suction port 88 are disposed on the back surface of the cooler 44, the ineffective space can be reduced, and the internal volume increases and the usability can be improved.
  • the refrigerator 30 needs to cool the freezer compartment 37 having the largest temperature difference from the outside air temperature among the three storage rooms, so the refrigerator air discharge path 85 is closed with an open / close valve (not shown). Therefore, it is necessary to circulate cold air only in the freezer compartment 37.
  • the cool air discharged from the blower 46 circulates only in the freezer compartment 37, only the return cool air from the freezer compartment 37 flows into the cooler chamber 43.
  • the freezing room return cold air passes through the freezing room suction air passage 53 from the entrance 53a and enters the cooling room 43 through the freezing room suction port 56, as in the case where the cold air circulates in all the storage rooms. It passes under the heater 47 and enters the cooler 44 along the drain pan 48 from the back surface. Therefore, the freezer return cold air can flow diagonally in the cooler 44, and the heat exchange distance can be increased, so that the heat exchange amount can be increased and the cooling capacity can be improved.
  • the suction port installed in front of the cooling chamber 43 is only the freezing chamber suction port 56, the width of the freezing chamber suction port 56 can be expanded to the same as the width of the cooler 44. Therefore, even when the cold air is circulating only in the freezer compartment 37, the entire cooler 44 can be used, and the cooling capacity can be further improved.
  • the freezer compartment inlet is larger than the inlet 53a of the freezer compartment inlet air passage 53, the pressure loss can be suppressed and the air volume can be further increased.
  • the cooling capacity can be improved both when the entire refrigerator is cooled and when the cooling is mainly performed in the freezer compartment.
  • a low-temperature cooler 44 is generally disposed on the back of the refrigerator 30, a large amount of heat enters through the heat insulating wall on the back.
  • the high temperature suction air path is comprised between the cooling chamber 43 and the heat insulation wall, the amount of heat entering through the heat insulation wall on the back surface of the refrigerator 30 can be reduced.
  • the cold air cooled by the cooler 44 spreads around it by heat transfer.
  • the return cold air flows from the refrigerating room 35 and the switching room 36 through the refrigerating room suction air passage 87 and the switching room suction air passage 90 installed on the rear surface of the cooler 44, Since the leaked cold air is absorbed and returned to the cooling chamber 43 again, the leakage of the cold air to the outside of the refrigerator 30 can be suppressed and the power consumption can be reduced.
  • FIG. 5 is a schematic longitudinal sectional view of a refrigerator in the second embodiment of the present invention.
  • FIG. 6 is a schematic longitudinal sectional view of a refrigerator in the second embodiment of the present invention.
  • FIG. 7 is a front view of a refrigerator compartment duct arranged on the rear side of the refrigerator compartment of the refrigerator in the second embodiment of the present invention.
  • FIG. 8 is a schematic perspective view showing a cold air discharge air passage to the switching chamber of the refrigerator in the second embodiment of the present invention.
  • FIG. 9 is a schematic cross-sectional view showing the switching chamber and the cold air discharge air passage of the refrigerator in the second embodiment of the present invention.
  • FIG. 10 is an exploded configuration diagram of a heat insulating partition wall between the switching room and the freezing room of the refrigerator in the second embodiment of the present invention.
  • FIG. 11 is a schematic cross-sectional view showing a cold air suction air passage around the cooler of the refrigerator in the second embodiment of the present invention.
  • FIG. 12 is a schematic front view showing a cold air suction air passage around the cooler of the refrigerator in the second embodiment of the present invention.
  • FIG. 13 is a schematic front view showing a cooler of the refrigerator and a cool air suction air passage from the refrigerator compartment according to the second embodiment of the present invention.
  • FIG. 14 is a schematic side view showing the cooler of the refrigerator and the cool air suction air passage from the refrigerator compartment according to the second embodiment of the present invention.
  • the refrigerator 30 has a heat insulating box 31 formed from an outer box 32, an inner box 33, and a foam heat insulating material 34 filled between the outer box 32 and the inner box 33. It is partitioned by a wall 72. The uppermost part is provided with a refrigerator compartment 35, a freezing room 37 below the second partition wall 72, and a lowermost part below the first partition wall 71 is provided with a switching chamber 36 capable of switching the storage temperature from freezing to vegetables.
  • an ice making room 38 and an upper freezing room are provided, and a lower freezing room 40 is provided in the lower part thereof.
  • a rotary refrigerating room door 35a On the front face of the refrigerating room 35, there is a rotary refrigerating room door 35a, a switching room 36, an ice making room 38, an upper freezing room (not shown), and on the front side of the lower freezing room 40, a drawer type switching room door 36a. , An ice making chamber door 38a, an upper freezer compartment door (not shown), and a lower freezer compartment door 40a.
  • a chilled case 41 set at a temperature slightly lower than that of the refrigerator compartment is provided at the lower part of the refrigerator compartment 35, and can be pulled back and forth.
  • the refrigerator compartment duct cover 81 provided on the back of the refrigerator compartment 35 forms a refrigerator compartment discharge air passage 85 on the rear side, has a plurality of discharge ports 82 on the upper side, and communicates with the refrigerator compartment suction air passage 87 on the lower side.
  • a chamber suction inlet 83 is provided.
  • the refrigerator compartment suction inlet 83 is disposed on the back surface of the chilled case 41, and the cold air discharged into the refrigerator compartment 35 cools the inside, and flows into a gap formed between the chilled case 41 and the second partition wall 72, The refrigerator compartment suction inlet 83 passes through the refrigerator compartment suction air passage 87 and returns to the cooling chamber 43.
  • the chilled case 41 is cooled to a temperature of about 0 to 3 ° C. lower than that of the refrigerator compartment 35, and a chilled case suction inlet portion 84 for returning the cold air from the chilled case 41 to the cooling chamber 43 is provided on the rear surface of the chilled case 41. It is arranged side by side with the refrigerator compartment suction inlet 83.
  • the cool air from the cooling chamber 43 to the switching chamber 36 flows from the distribution air passage 51 to the switching chamber discharge air passage (not shown) via the switching chamber damper 80 provided in the first partition wall 71 and is switched to the switching chamber. 36.
  • the switching chamber damper device 92 (FIGS. 8 and 9) having the switching chamber damper 80 therein includes a switching chamber damper device front plate 93, a switching chamber damper device rear plate 94, and a heat insulating material provided therebetween (for example, foaming).
  • the switching chamber damper 80 is inserted into a space (air channel) provided inside the heat insulating material (for example, the foam heat insulating material 34).
  • the switching chamber damper device 92 When the switching chamber damper device 92 is attached to the first partition wall 71 in advance, the first partition wall 71 is incorporated in the heat insulation box 31 and the heat insulation box 31 is filled with the foam insulation 34. The wall 71 is filled at the same time.
  • the downstream side of the switching chamber damper 80 provided in the switching chamber damper device 92 is branched into a plurality of parts, and cool air is blown from the plurality of switching chamber discharge ports 96a, 96b to the switching chamber 36.
  • the switching chamber discharge port 96a is arranged so that cool air is discharged from above the switching chamber 36 into the switching chamber case 97.
  • the switching chamber discharge port 96b is disposed so that cold air is discharged from the rear of the switching chamber 36 into the lower portion 98 of the switching chamber case. Thereby, the temperature nonuniformity in the switching chamber 36 can be reduced, and a predetermined temperature distribution can be maintained.
  • the first partition wall 71 has a heat insulating material 75 corresponding to the drain pan 48 and a switching chamber return duct cover 76 between the first partition wall upper plate 73 and the first partition wall lower plate 74 in advance.
  • the first partition wall 71 is incorporated in the heat insulating box 31 and the first partition wall 71 is simultaneously filled when the heat insulating box 31 is filled with the foam heat insulating material 34.
  • the cool air returning from the switching chamber 36 to the cooling chamber 43 is a space formed between the switching chamber return duct cover 76 and the first partition wall lower plate 74, and the heat insulating material 75 and the first partition wall corresponding to the drain pan 48.
  • 71 passes through the space formed between the rear surfaces of 71 (between the heat insulating material 75, the first partition wall lower plate 74, and the first partition wall upper plate 73) and returns to the cooling chamber 43.
  • the cool air returning from the switching chamber 36 to the cooling chamber 43 passes through the lower part and the rear part of the drain pan 48 from the switching chamber return duct cover 76 provided on the top surface of the switching chamber 36 and passes through the switching chamber suction port on the rear surface of the cooling chamber 43. 89 returns to the cooler 44 (see FIG. 11).
  • the refrigerator compartment suction port 88 provided in the back surface of the cooling chamber 43 which returns to the cooling chamber 43 via the refrigerator compartment suction air path 87 from the refrigerator compartment 35 is arrange
  • a portion adjacent to the switching chamber suction port 89 from the switching chamber 36 to the cooling chamber 43 is provided with a stepped portion, and a switching chamber suction port 89 is provided below the stepped portion.
  • the refrigerator compartment suction air path 87 is comprised by the plate-shaped cover formed in another member between the cooler 44 and the inner box 33 of the heat insulation box 31, and upper part is made into a refrigerator compartment.
  • the lower part is connected to the connection part 91, and the lower part is comprised as the refrigerator compartment suction inlet 88.
  • the width dimension of the refrigerator compartment connection part 91 is narrower than the width dimension of the refrigerator compartment suction port 88, and the depth dimension of the refrigerator compartment connection part 91 is set wider than the depth dimension of the refrigerator compartment suction inlet 88.
  • the refrigerating room connecting portion 91 and the switching room suction port 89 arranged adjacent to the refrigerating room suction port 88 are arranged to face each other.
  • the switching chamber damper device 92 having the switching chamber damper 80 therein includes a switching chamber damper device front plate 93, a switching chamber damper device rear plate 94, and a heat insulating material (for example, a foam heat insulating material 34) provided therebetween.
  • a switching chamber damper 80 is inserted into a space (air passage) provided inside the material (for example, the foam heat insulating material 34).
  • a damper apparatus can be arrange
  • the downstream side of the switching chamber damper 80 provided in the switching chamber damper device 92 is branched into a plurality of parts, and cool air is blown from the plurality of switching chamber discharge ports 96a, 96b to the switching chamber 36.
  • the switching chamber discharge port 96a is arranged so that cool air is discharged from above the switching chamber 36 into the switching chamber case 97.
  • the switching chamber discharge port 96b is disposed so that cold air is discharged from the rear of the switching chamber 36 into the lower portion 98 of the switching chamber case. Thereby, the temperature nonuniformity in the switching chamber 36 can be reduced, and a predetermined temperature distribution can be maintained.
  • the cool air returning from the switching chamber 36 to the cooling chamber 43 is formed by the space formed between the switching chamber return duct cover 76 and the first partition wall lower plate 74, and the heat insulating material 75 and the first partition wall corresponding to the drain pan 48. It returns to the cooling chamber 43 through the space formed on the back surface of 71. That is, the return cold air passes from the inside of the switching chamber return duct cover 76 provided on the top surface of the switching chamber 36 through the lower and rear portions of the drain pan 48 and returns to the cooler 44 from the switching chamber suction port 89 on the back surface of the cooling chamber 43. Thereby, the front surface of the cooling chamber 43 can be used as a return cold air suction port of the freezing chamber 37 over the entire width, and the cooling capacity of the freezing chamber 37 can be enhanced.
  • the refrigerator compartment suction port 88 provided in the back surface of the cooling chamber 43 which returns to the cooling chamber 43 via the refrigerator compartment suction air path 87 from the refrigerator compartment 35 is arrange
  • a portion adjacent to the switching chamber suction port 89 from the switching chamber 36 to the cooling chamber 43 is provided with a stepped portion, and a switching chamber suction port 89 is provided below the stepped portion.
  • the refrigerator compartment suction inlet 83 is provided in the back of the chilled case 41 below the refrigerator compartment duct cover 81 provided in the back of the refrigerator compartment 35, the refrigerator compartment suction inlet 83 is hidden behind the chilled case 41. As a result, the design can be improved. Furthermore, the design freedom of the refrigerator compartment suction inlet part 83 increases, and the design property of the refrigerator compartment duct cover 81 whole can also be improved.
  • the chilled case 41 is cooled to a temperature of about 0 to 3 ° C. lower than that of the refrigerator compartment 35, and a chilled case suction inlet portion 84 for returning the cold air from the chilled case 41 to the cooling chamber 43 is provided on the rear surface of the chilled case 41. It is arranged side by side with the refrigerator compartment suction inlet 83. As a result, the chilled case suction inlet 84 is also hidden behind the chilled case 41, and the design including the chilled case suction inlet 84 can be improved. Thereby, the designability of the whole inside of the refrigerator compartment 35 can be improved.
  • the present invention is a refrigerator, a cooler that generates cold air, a blower that forcibly circulates the cold air generated by the cooler, a cooling chamber that houses the cooler and the blower, A low temperature storage room having a cooling chamber on the back surface, a high temperature storage room having a temperature setting higher than that of the low temperature storage room, and a storage case provided at a lower part of the high temperature storage room are provided.
  • the refrigerator of the present invention includes a low-temperature suction air passage that introduces cold air from the low-temperature storage chamber to the cooling chamber, and a high-temperature suction air passage that introduces cold air from the high-temperature storage chamber to the cooling chamber.
  • the high temperature suction inlet part located in the high temperature storage room of a high temperature suction air path is arrange
  • the high temperature suction inlet portion is hidden behind the storage case provided at the lower portion of the high temperature storage chamber, so that the design can be improved and the design flexibility of the high temperature suction inlet portion can be increased.
  • the storage case has a lower temperature setting than the high temperature storage chamber, and the storage case suction inlet for introducing cold air from the storage case to the cooling chamber is disposed on the back surface of the storage case.
  • the storage case suction inlet is also hidden behind the storage case, and the design including the storage case suction inlet can be improved.
  • the high temperature suction inlet portion and the storage case suction inlet portion are arranged side by side.
  • This design can further enhance the design of the high temperature storage room.
  • the configuration of the refrigerator according to the present invention can improve the heat exchange amount of the cooler without increasing the pressure loss of the air passage. It is applicable to a cooling device that circulates heat to exchange heat.
  • Refrigerator 31 Heat insulation box 32 Outer box 33 Inner box 34 Foam insulation 35 Refrigerating room (first high temperature storage room) 35a Refrigeration room door 36 Switching room (second high temperature storage room) 36a Switching room door 37 Freezer room (low temperature storage room) 37a Freezing room door 38 Ice making room 38a Ice making room door 40 Lower freezing room 40a Lower freezing room door 41 Chilled case (storage case) 42 Refrigerating chamber damper 43 Cooling chamber 44b Cooler lower end 45a, 45b Vertical partition wall 46 Blower 47 Defrost heater 48 Drain pan (bottom of cooling chamber) 49 Drain tube 50 Evaporating dish 53 Freezer compartment suction air passage 53a Inlet 56 Freezer compartment inlet (low temperature inlet) 59 glass tube heater 60 heater cover 71 first partition wall 72 second partition wall 73 first partition wall upper plate 74 first partition wall lower plate 75 heat insulating material 76 switching chamber return duct cover 80 switching chamber damper 81 refrigeration chamber duct cover 82 Discharge port 83 Refrigerating room suction inlet section 84 Chilled case su

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

冷蔵庫であって、冷却器と、送風機と、冷却室と、冷凍室と、冷蔵室と、冷蔵室の下部に備えたチルドケース(41)と、冷蔵室から冷却室へ冷気を導入する冷蔵室ダクトカバー(81)とを備える。また、冷蔵庫は、冷蔵室ダクトカバー(81)の冷蔵室吸込入口部(83)がチルドケース(41)の背面に配置されている。

Description

冷蔵庫
 本発明は冷蔵庫の冷蔵室戻り風路の構造に関するものである。
 従来より、冷却器から冷蔵室に吐出する冷気は、冷蔵室背面に配置した冷蔵室ダクトの上部から冷気を吐出し、冷蔵室ダクトの下部の一方に設けた吸込口から冷却器に戻すものがある(例えば、特許文献1参照)。
 しかしながら、上記従来の構成では、冷蔵室ダクトの下部の一方に設けた吸込口が、使用者から直接目に入るため、意匠性に劣るという課題を有していた。
特開平10-288444号公報
 本発明は、冷蔵室の冷却性能を維持しながら、意匠性の向上と高温吸込入口部の設計自由度を高めることができる冷蔵庫を提供する。
 本発明の冷蔵庫は、冷気を生成する冷却器と、冷却器で生成された冷気を強制的に循環させる送風機と、冷却器および送風機とを収める冷却室と、冷却室を背面に備える低温貯蔵室と、低温貯蔵室より温度設定の高い高温貯蔵室と、高温貯蔵室の下部に備えた貯蔵ケースと、を備えている。また、本発明の冷蔵庫は、低温貯蔵室から冷却室へ冷気を導入する低温吸込風路と、高温貯蔵室から冷却室へ冷気を導入する高温吸込風路と、を備えている。また、本発明の冷蔵庫は、高温吸込風路の高温貯蔵室に位置する高温吸込入口部が、貯蔵ケースの背面に配置されている。
図1は、本発明の第1の実施の形態における冷蔵庫の縦断面図である。 図2は、本発明の第1の実施の形態における冷蔵庫の冷却室の縦断面図である。 図3は、本発明の第1の実施の形態における冷蔵庫の冷却室の正面風路図である。 図4は、本発明の第1の実施の形態における冷蔵庫の冷却室の詳細縦断面図である。 図5は、本発明の第2の実施の形態における冷蔵庫の概略縦断面図である。 図6は、本発明の第2の実施の形態における冷蔵庫の概略縦断面図である。 図7は、本発明の第2の実施の形態における冷蔵庫の冷蔵室背面に配置した冷蔵室ダクトの正面図である。 図8は、本発明の第2の実施の形態における冷蔵庫の切替室への冷気吐出風路を示す概略斜視図である。 図9は、本発明の第2の実施の形態における冷蔵庫の切替室と冷気吐出風路を示す概略断面図である。 図10は、本発明の第2の実施の形態における冷蔵庫の切替室と冷凍室との断熱仕切壁の分解構成図である。 図11は、本発明の第2の実施の形態における冷蔵庫の冷却器周辺の冷気吸込風路を示す断面概略図である。 図12は、本発明の第2の実施の形態における冷蔵庫の冷却器周辺の冷気吸込風路を示す正面概略図である。 図13は、本発明の第2の実施の形態における冷蔵庫の冷却器と冷蔵室からの冷気吸込風路を示す正面概略図である。 図14は、本発明の第2の実施の形態における冷蔵庫の冷却器と冷蔵室からの冷気吸込風路を示す側面概略図である。
 以下、本発明の実施の形態について、図面を参照しながら説明するが、先に説明した実施の形態と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。
 (第1の実施の形態)
 図1は、本発明の第1の実施の形態における冷蔵庫の縦断面図である。図2は、本発明の第1の実施の形態における冷却室の縦断面図である。図3は本発明の第1の実施の形態における冷蔵庫の冷却室の正面風路図である。図4は本発明の第1の実施の形態における冷蔵庫の冷却室の詳細縦断面図である。
 図1から図4において、冷蔵庫30の断熱箱体31は主に鋼板を用いた外箱32とABSなどの樹脂で成型された内箱33とで構成され、その内部には断熱材として例えば硬質発泡ウレタンなどの発泡断熱材34が充填されて、周囲と断熱され、複数の貯蔵室に区分されている。
 冷蔵庫30の複数の貯蔵室は、最上部に冷蔵室35、最下部に切替室36、そして冷蔵室35と切替室36の間に冷凍室37が配置されている。
 冷蔵室35の前面開口部には冷蔵室ドア35a、切替室36の前面開口部には切替室ドア36a、冷凍室37の前面開口部には冷凍室ドア37aが、それぞれの前面開口部を開閉自在に支持されている。
 冷蔵室35は冷蔵保存のために凍らない温度を下限に通常1℃~5℃とし、冷凍室37は冷凍温度帯に設定されており、冷凍保存のために通常-22℃~-15℃で設定されているが、冷凍保存状態の向上のために、例えば-30℃や-25℃の低温で設定されることもある。また、切替室36は、-18~8℃まで設定することができる。なお、切替室36の温度切替は、前述に限定されるものではなく、-3~4℃など、適宜、温度変動幅は用途により設定することができる。
 また、仕切壁である第一区画壁71によって切替室36と冷凍室37とは上下に区画され、仕切壁である第二区画壁72によって冷蔵室35と冷凍室37とは上下に区画されている。
 次に冷却室の構成について説明する。
 冷却室43は縦区画壁45a、45bによって冷凍室37と断熱区画されている。冷凍室37の背面には冷気を生成する冷却室43が設けられ、内部には代表的なものとしてフィンアンドチューブ式の冷気を生成し、材質としては、アルミや銅が用いられる冷却器44が配設されている。
 冷却器44は、内部を冷媒が流動する冷媒チューブ201と、所定間隔毎に配置された複数のプレートフィン202を備えている。
 冷媒チューブ201は、アルミニウム製あるいはアルミニウム合金製の一本の管体を、直管部と曲管部が連続し、列(左右)方向および段(上下)方向において複数となるように蛇行状に曲げ加工されたサーペンタインチューブであり、曲管部を形成する接続管を用いることなく一本の冷媒流路を形成している。そして、プレートフィン202に形成された長孔203を冷媒チューブ201の曲管部が貫通することにより、冷媒チューブ201の直管部がプレートフィン202と密着した構成となっている。
 長孔203は、矩形部と円弧部とを有し、該矩形部の両側短辺に円弧部がそれぞれ連続して形成された長穴状に形成されている。また、円弧部には、冷媒チューブ201の直管部と密着固定するための縁立成形された円弧部カラー(図示しない)が設けられており、矩形部長手方向の両端にも、略垂直に縁立成形された矩形部カラー(図示しない)が設けられている。この矩形部カラー(図示しない)が、冷蔵庫背面に向かって下方に傾斜するように、冷却器44が設置されている。
 冷却器44の上方には、生成された冷気を強制的に送風する送風機46が配置され、冷却器44の下方には、冷却器44に付着した霜や氷を除霜する除霜ヒータ47が設けられている。さらにその下部には除霜時に生じる除霜水を受けるためのドレンパン48、その最深部から庫外に貫通したドレンチューブ49が構成され、その下流側の庫外に蒸発皿50が構成されている。
 除霜ヒータ47は、具体的にはガラス製のガラス管ヒータ59であり、特に冷媒が炭化水素系冷媒ガスである場合、防爆対応としてガラス管が2重に形成された2重ガラス管ヒータが採用されている。ガラス管ヒータ59の上方には、ガラス管ヒータ59を覆うヒータカバー60が配置され、除霜時に冷却器44から滴下した水滴が除霜によって高温になったガラス管表面に直接落ちることで、ジュージューといった音が発生しないようにガラス管径および幅と同等以上の寸法としている。
 ここで、近年の冷凍サイクルの冷媒としては、地球環境保全の観点から地球温暖化係数が小さい可燃性冷媒であるイソブタンが使用されている。この炭化水素であるイソブタンは空気と比較して常温、大気圧下で約2倍の比重である(比重2.04、温度300Kにおいて)。これにより従来に比して冷媒充填量を低減でき、低コストであると共に、可燃性冷媒が万が一に漏洩した場合の漏洩量が少なくなり安全性をより向上できる。
 本実施の形態では、冷媒にイソブタンを用いており、防爆対応として除霜時のガラス管ヒータ59の外郭であるガラス管表面の最大温度を規制している。そのため、ガラス管表面の温度を低減させるため、ガラス管を2重に形成された2重ガラス管ヒータを採用しているのである。このほか、ガラス管表面の温度を低減させる手段としては、ガラス管表面に放熱性の高い部材(例えばアルミフィン)を巻きつけることも出来る。このとき、ガラス管を1重とすることで、ガラス管ヒータ59の外形寸法を小さく出来る。
 また、除霜時の効率を向上させる手段としては、ガラス管ヒータ59に加えて、冷却器44に密着したパイプヒータを併用しても良い。この場合、パイプヒータからの直接の伝熱によって冷却器44の除霜は効率的に行われると共に、冷却器44の周囲のドレンパン48や送風機46に付着した霜をガラス管ヒータ59で溶かすことが出来るため、除霜時間の短縮が図れ、省エネや除霜時間における庫内温度の上昇を抑制することが出来る。
 なお、ガラス管ヒータ59とパイプヒータを組み合わせた場合、お互いのヒータ容量を適正化することで、ガラス管ヒータ59の容量を低くすることが可能となる。ヒータ容量を低くすると除霜時のガラス管ヒータ59の外郭の温度も低くすることが出来るため、除霜時の赤熱も抑制できる。
 ドレンパン48は冷却室43の底面および背面の一部を構成している。底面は、除霜水をドレンチューブ49に集めるためにドレンチューブ49との接続部が最も低くなるよう構成されており、ドレンチューブ49との接続部において除霜ヒータ47から最も離れる(図2の距離L)ことになる。背面はドレンパン48の貯水量が確保できる高さを超える高さまで立ち上がっており、底面と背面とのなす角は緩やかな曲面で構成される。
 次に、風路構成について説明する。
 縦区画壁45a、45bは、冷凍室37の外殻をなす前区画壁45aと冷却室43の外殻をなす後区画壁45bとから構成される。前区画壁45aと後区画壁45bとの間の空間は各貯蔵室に向けて冷気を分岐させる分配風路51である。
 前区画壁45aは、上方に冷凍室吐出口52を有し、分配風路51と冷凍室37とを連通している。下方には冷凍室37側へ突出した冷凍室吸込風路53を有し、冷凍室吸込風路53前面に設けられた入り口53aから冷却室43へ冷凍室37の戻り冷気を導入する。
 分配風路51は、第一区画壁71内に設けられた切替室ダンパ(図5の切替室ダンパ80参照)を介して切替室吐出風路(図示しない)に接続し、分配風路51と切替室36とを連通している。また第二区画壁72内に設けられた冷蔵室ダンパ(図5の冷蔵室ダンパ42参照)を介して冷蔵室吐出風路85に接続し、分配風路51と冷蔵室35とを連通している。
 後区画壁45bは上方に送風機46を備え、下方には冷凍室吸込風路53と冷却室43とを区画するリブ55を有する。冷凍室吸込風路53をリブ55とドレンパン48とにより囲まれた領域が冷凍室吸込口56であり、冷凍室吸込風路53と冷却室43とを連通する。
 なお、冷凍室吸込口56の面積は、入り口53aの面積よりも大きくなるように構成される。また、ドレンチューブ49の中心を通る縦断面において、除霜ヒータ47とドレンチューブ49との距離Lは、同じ縦断面での冷凍室吸込口56の高さHよりも大きくなるように構成される(図2)。また、冷却室43背面と除霜ヒータ47との距離Bも、冷凍室吸込口56の高さHより大きくなるように構成される(図2)。
 冷凍室吸込風路53の底面は、ドレンパン48の一部により冷却室43の底面と続きで構成される。ドレンパン48は入り口53aの下端より始まり冷凍室吸込口56下端を通りドレンチューブ49まで下向きに傾斜し、その後緩やかに上向きに転じ冷却室43の背面へと繋がる形状を有する。
 冷却器44の背面に冷蔵室吸込風路87が配置されている。冷蔵室吸込風路87は第二区画壁72を通り冷蔵室35と冷却室43とを連通しており、冷蔵室35を冷却した冷気が流れている。冷蔵室吸込風路87は下方に冷却室43と連通する冷蔵室吸込口88を備える。
 また、冷却器44の背面には、冷蔵室吸込口88と併設して切替室吸込口89も有している。切替室吸込口89は第一区画壁71内に設けられた切替室吸込風路90を介して切替室36と連通している。
 そして、冷蔵室吸込口88に連通する冷蔵室吸込風路87と、切替室吸込口89に連通する切替室吸込風路90はそれぞれ独立した吸込風路として構成されている。
 また、冷蔵室吸込口88および切替室吸込口89は、冷却器44の下端近傍に設けられ、冷凍室吸込口56よりも高い位置に構成される。
 また、冷蔵室吸込口88および切替室吸込口89の上端は、冷却器44の下端より上方に配置している。
 また、併設した冷蔵室吸込口88と切替室吸込口89とを合わせた複数の高温吸込口の幅寸法を冷却器44の幅寸法と略同一に配置している。
 また、切替室より高い温度帯の冷蔵室吸込口88の開口面積は、切替室吸込口89の開口面積より大きく設定している。
 また、切替室吸込口89は、冷蔵室吸込口88に対応する冷蔵室吸込風路87の冷蔵室35との接続部に対して幅方向で遠い側の側端部に配置している。
 なお、併設する切替室吸込口89と冷蔵室吸込口88とは水平方向および垂直方向でラップするように併設して配置してもよい。
 以上のように構成された冷蔵庫について、以下その動作、作用を説明する。
 まず、冷却運転時について説明する。
 冷却室43の冷却器44で生成された冷気の一部は送風機46によって分配風路51内前方へ強制的に送風される。冷凍室37は冷凍室吐出口52から吐出された冷気によって冷却され、冷気は縦区画壁45の下部に設けられた冷凍室吸込風路53を介して冷凍室吸込口56より冷却器44の下部に導かれ、冷却器44で熱交換されて、再び新鮮な冷気が送風機46によって循環を繰返す。これによって冷凍室37は冷凍室センサー(図示しない)の制御で適温に冷却される。
 また分配風路51内上方に吐出された冷気は第二区画壁72内の冷蔵室吐出風路85を経て冷蔵室35に吐出される。また、切替室36へは、分配風路51内に吐出された冷気が第一区画壁71内を循環し、切替室36内に流入する。冷蔵室35および切替室36を循環した冷気は、空気や貯蔵物に含まれる湿気を帯びた空気となって、冷蔵室35からは冷蔵室吸込風路87を通り冷蔵室吸込口88から冷却器44の下部に導かれて冷却器44と熱交換して、新鮮な冷気が再び送風機によって強制的に送風される。同様に、切替室36からは切替室吸込風路90を通り切替室吸込口89から冷却器44の下部に導かれて冷却器44と熱交換して、新鮮な冷気が再び送風機によって強制的に送風される。
 これによって、冷蔵室35や切替室36は、冷却器44から離れた位置にあっても、送風機46によって冷気を強制的に循環させることで室内を設定温度に冷却することができる。
 ここで、切替室36へ冷気を導入する切替室吐出風路86の風路内には冷気量を調整する切替室ダンパ(図5の切替室ダンパ80参照)を設けている。これにより、切替室ダンパ(図5の切替室ダンパ80参照)によって、切替室36内の温度を緻密に制御できるため、例えば、夏場や買い物後の食品収納時の過度な扉開閉時においても庫内の温度変動を抑制し、庫内を適温に維持することが出来る。
 なお、切替室36は、-18~8℃まで設定することができるものを基本とするが、切替室36の温度帯の切替は、これに限定されるものではなく、-3~4℃など、適宜、温度変動幅は用途により設定することができるものであり、使い勝手と省エネを両立することができる。
 また除霜ヒータ47は、除霜時に、ヒータ熱で冷却室43内および冷蔵室吸込風路87内および切替室吸込風路90内を加熱できるので、結露や凍結を改善し、または、防止することができ、信頼性を高めることができる。
 ここで、吸込み風路構成について詳細を説明する。
 送風機46から吐出された冷気が、冷蔵室35、切替室36、冷凍室37の全ての貯蔵室を循環しているとき、冷却室43には冷凍室37からの戻り冷気と、冷蔵室35と切替室36からの高温戻り冷気の3つの流れが同時に流れ込むことになる。
 即ち、冷凍室37からの戻り冷気は、入り口53aから冷凍室吸込風路53を通り、冷凍室吸込口56から冷却室43へ入る。また、冷蔵室35からの高温戻り冷気は、冷蔵室吸込風路87を通り、冷蔵室吸込口88から冷却室43へ入る。また、切替室36からの高温戻り冷気は、切替室吸込風路90を通り、切替室吸込口89から冷却室43へ入る。
 本実施の形態では、冷凍室吸込口56は冷却室43前面に、冷蔵室吸込口88は冷却室43背面に設けられ、冷凍室吸込口56は冷蔵室吸込口88よりも下方に位置し、入り口53aより冷凍室吸込口56が下方にある。このことから、冷凍室戻り冷気は、冷凍室吸込風路53の底面を構成するドレンパン48に沿って下向きに冷却室43に流れ込む。また、ドレンパン48の上方には、霜や氷を溶かすための除霜ヒータ47を備えているが、冷凍室吸込口56の高さHよりも除霜ヒータ47とドレンパン48との距離Lや、冷却室43の背面との距離Bを大きくしている。このため、冷凍室戻り冷気は空間の広い除霜ヒータ47の下へ流れ込みやすく、その後はそのまま冷却室43の底面を流れドレンパン48の形状に従って方向転換し、冷却室43の背面を上向きに流れる際も、圧力損失を小さく抑えることができる。
 これによって、後向きの速度が大きい冷凍室戻り冷気と前向きの速度が大きい高温戻り冷気は、上下方向にずれるため、相互干渉を抑制し庫内を循環する風量を大きくすることができる。よって、より冷却能力を向上することができる。また、最も冷やす必要がある冷凍室37のみに冷気が循環している際も、冷凍室吸込口56がより下方にあることで、冷凍室戻り冷気が冷却器44を通過する距離が長くなり熱交換量を増やすことで、更なる冷却能力を向上させることができる。
 前述の冷凍室戻り冷気と、冷却室43の背面に設置された冷蔵室吸込口88および切替室吸込口89から出てきた高温戻り冷気は、冷却室43の背面で合流するが、高温戻り冷気は上向きの冷凍室戻り冷気に押され、スムーズに上向きに方向転換し、冷凍室戻り冷気と一緒に冷却器44へ突入することができる。従って、冷凍室戻り冷気と高温戻り冷気の2つの流れが正面衝突しお互いに邪魔することがないため、2つの流れの風量を増やすことで冷却器44の熱交換量を増加させ、冷却能力を向上させることができるのである。
 なお、冷却室43の底面を構成するドレンパン48の形状を、冷凍室吸込口56からドレンチューブ49にかけて下方に傾斜した形状を有するようにした。これにより、冷凍室戻り冷気は、ドレンパン48沿って下方へ流れた後背面に沿って上昇させることができる。このため、高温吸込口58前方において冷凍室戻り冷気の速度が上向きとなり、高温戻り冷気とスムーズに合流でき、より風量を増やし冷却能力を向上させることができる。
 また、冷凍室吸込口56は上流側に冷凍室吸込風路53を備え、冷凍室吸込風路53の入り口53aは冷凍室吸込口56よりも上方に位置させている。これにより、冷凍室吸込口56での冷凍室戻り冷気は下向きに冷却室43に流れ込むため、よりドレンパン48に沿って流れ易くなり、より圧力損失を小さくしたまま低温戻り冷気との干渉を抑制することができる。さらに、冷凍室吸込風路53の入り口53aの面積は冷凍室吸込口56の面積よりも小さいことにより、さらに冷凍室吸込口56での圧力損失を低減することができる。
 また、冷蔵室35および切替室36からの戻り冷気の流入部分である、冷却器背面の高温吸込口を、冷却器の幅寸法と略同一に配置している。これによって、冷蔵庫内を循環する戻り冷気の中で、冷却器44と温度差の大きい冷蔵室戻り冷気と切替室戻り冷気は、冷却器44との熱交換を冷却器幅と略同一寸法で行えるため、冷却器44での熱交換面積を大きく取ることができると共に、冷凍サイクル効率の向上によって省エネを図ることができる。
 更に、冷蔵庫の使用状態の中で、冷蔵室35と切替室36の扉開閉回数は多い。特に近年では切替室36に、野菜以外のペットボトルを冷却保存する実態もあり、1日の内で冷蔵室35や切替室36の扉開閉回数は10年前に対して上昇傾向にある。よって、前述のように冷蔵室35や切替室36の高温貯蔵室を循環する高温戻り冷気と冷却器との熱交換量が大きくなることは、庫内を冷却する時間を減らすことができるため、冷却運転時間の短縮による冷却器44への着霜量も減らすことができる。特に、高温貯蔵室は扉開閉回数が多いことで外気の水分が侵入し易いだけで無く、温度が高いため空気中に保持する絶対湿度も高いため冷却器44への霜の付着量も多くなる。冷却器44への着霜量を減らすことで、冷却器44の除霜周期を延ばす事が可能となり、除霜ヒータ47の電源入力回数低減と除霜による庫内温度上昇後の庫内冷却に要する冷却器44の電源入力低減が図れ、更なる省エネを行うことができる。
 更に、冷却器44での熱交換面積を大きく取ることができることは、冷却器44に着霜させる面積を大きくすることであるため、着霜時の冷却能力の劣化も抑制することができる。これによって、冷蔵庫を運転した後、除霜を必要とするまでの時間(除霜周期)を延ばす事が可能となり、除霜ヒータ47の電源入力回数低減と除霜による庫内温度上昇後の庫内冷却に要する冷却器44の電源入力低減が図れ、更なる省エネを行うことができる。
 また、冷却室43の背面に併設設置された各々の吸込口である冷蔵室吸込口上端88aと切替室吸込口上端89aが、冷却器44の下端である冷却器下端44bよりも上方に位置してある。
 これによって、冷却室43内において、冷蔵室35および切替室36からの戻り冷気は、冷凍室37からの冷凍室戻り冷気の上方を流れる。このため、後向きの速度が大きい冷凍室戻り冷気と前向きの速度が大きい冷蔵室35および切替室36からの戻り冷気は、上下方向にずれ、相互干渉を抑制し庫内を循環する風量を大きくすることができるため、より冷却能力を向上することができる。
 また、ドア開閉時に侵入した空気中の水分や、庫内に投入された食品に付着している水分、さらに庫内に保存されている野菜からの水分等で冷却器44には、霜が付着する。この霜が成長を遂げると冷却器44と循環冷気との間で熱交換効率が低下し庫内を十分に冷却できず、最終的に不冷もしくは鈍冷状態となる。よって、冷蔵庫では、冷却器44に付着した霜を定期的に除霜する必要がある。これに対し、本実施の形態では、冷蔵室吸込口上端88aと切替室吸込口上端89a、冷蔵室吸込口下端88bと切替室吸込口下端89bの間に、冷却器下端44bを配設するようにした。これにより、水分量の大きい高温戻り冷気によって冷却器背面下部に付着した霜が成長しても冷却器底面側へと高温戻り冷気が流れるため耐着霜性能が向上する。よって、着霜時の冷却能力の劣化も抑制することができる。
 なお、冷蔵室吸込口上端88aと切替室吸込口上端89aを冷却器44の下方とした場合、冷蔵室吸込風路87の風路抵抗が増加し循環風量が低下するため冷却能力が低下する。一方、冷蔵室吸込口上端88aと切替室吸込口上端89aを冷却器44の上方とした場合、風路抵抗が減少し循環風量が増加するが、冷却器44へ戻り冷気が流れやすくなり付着する霜によって、冷蔵室吸込風路87が閉塞する可能性がある。そのため、本実施の形態のように、冷蔵室吸込口上端88aと切替室吸込口上端89a、冷蔵室吸込口下端88bと切替室吸込口下端89bの間に、冷却器下端44bを配設することで、冷却能力と着霜耐力の両方を満足する構成としている。特に、冷却器44の最下段のパイプと最下段よりも1段上のパイプの間に冷蔵室吸込口上端88aと切替室吸込口上端89aを配置することで冷却能力と着霜耐力の両方で最適化を図っている。
 なお、冷却室43において、プレートフィン202の長孔203および矩形部カラー(図示しない)が冷蔵庫背面に向かって下方に傾斜するように冷却器44に設置されるようにした。これにより、合流した冷気は、冷却器44の背面側より鉛直上向き成分を主として突入し、突入した冷気の一部は、冷却器44のプレートフィン202および矩形部カラー(図示しない)に沿って流れ、冷却器44の前面へと誘導される。これにより、冷気が冷却器44全体を通過することで熱交換量を増加させることができるため、冷却能力を向上することができる。
 また、本実施の形態では、冷蔵室吸込口88の開口面積を切替室吸込口89の開口面積に対して大きく設定している。切替室36の温度は、収納する野菜によって最適な貯蔵温度があり、葉野菜については約1~2℃、実野菜については約8~9℃程度と分けて貯蔵することが好ましいが、一般的に、冷蔵室35の温度は切替室36に対して低く設定される。そのため、本実施の形態のように、冷蔵室吸込口88を切替室吸込口89に対して、開口面積を大きく設定することで、冷蔵室内を切替室温度よりも低温度に冷却するための循環する風量および冷気量を確保できる。
 また、切替室吸込口89を、冷蔵室35と冷蔵室吸込風路87の接続部に対して幅方向で遠い側の側端部に配置している。
 これによって、切替室温度よりも低温度に冷却される冷蔵室35に対応する冷蔵室の戻り冷気は、冷蔵室吸込風路87内で切替室戻り冷気よりも風速が高い状態で冷却器44へと循環する。更に、冷蔵室35と冷蔵室吸込風路87の接続部と冷却器44との風路内距離が短い風路が最も風速が早い。本実施の形態では、冷蔵室35と冷蔵室吸込風路87の接続部に対して、風路内距離が長い風路側に切替室吸込口89を配設している。これにより、切替室36から冷却器44へ流入する戻り冷気は、冷蔵室戻り冷気が冷却器44へと流入する循環風速の影響を受けにくく出来るため、逆流等の相互干渉を抑制し熱交換効率の確保が図れる。
 また、本実施の形態では、切替室吸込口89が冷蔵室吸込口88に対して、水平方向および垂直方向で併設して配置している。
 これによって、冷却器背面に流入する戻り冷気は、冷却器全幅で熱交換することが可能であるため、熱交換効率が上がり冷凍サイクル効率が上がるため省エネになる。また、冷蔵室吸込風路87と切替室吸込風路90を形成するに際して部品の小型化が出来るため、コストダウンが出来る。特に、冷蔵室吸込風路87、冷蔵室吸込口88、切替室吸込風路90、切替室吸込口89を一体構成することで、作成する材料費と金型費を削減できると共に、製造工程での工数も削減できる。本実施の形態では、冷蔵室吸込風路87、冷蔵室吸込口88、切替室吸込口89を一体部品で構成しており、材料費、金型費の低減に加えて、部品点数減による管理費用も低減している。これによって、製品全体としてのコストダウンを図れ、販売価格の低下にも繋がり、販売率の向上を図ることが出来る。
 なお、切替室吸込口89と冷蔵室吸込口88を冷却器44の背面に配設しているため、無効空間を低減することができ、庫内容積の増加となり使い勝手の向上を図れる。
 なお、冷蔵庫30は3つの貯蔵室の中で外気温との温度差が大きい冷凍室37を最も冷やす必要があるため、冷蔵室吐出風路85を開閉弁(図示せず)で閉じるなどすることで、冷凍室37のみに冷気を循環させる必要がある。送風機46から吐出された冷気が冷凍室37のみを循環しているとき、冷却室43には冷凍室37からの戻り冷気のみが流れ込むことになる。
 このときも冷凍室戻り冷気は、全貯蔵室に冷気が循環しているときと同様に、入り口53aから冷凍室吸込風路53を通り、冷凍室吸込口56から冷却室43へ入り、除霜ヒータ47の下を通りドレンパン48に沿って背面から冷却器44へ突入する。従って、冷凍室戻り冷気は冷却器44内を対角線上に流れることができ、熱交換距離を長く取ることができるため、熱交換量を増加し冷却能力を向上させることができる。
 さらに、冷却室43の前面に設置された吸込口は冷凍室吸込口56のみであるため冷凍室吸込口56の幅を冷却器44の幅と同じまで広げることができる。従って、冷凍室37のみに冷気が循環しているときでも、冷却器44全体を使うことができ、冷却能力を更に向上させることができる。
 また、冷凍室吸込口は冷凍室吸込風路53の入り口53aよりも大きいため、ここでの圧力損失も抑制することができ、さらに風量を増加させることができる。
 以上のように、冷蔵庫全体を冷却する場合も、冷凍室を中心に冷却する場合においても、冷却能力の向上が図れる。
 また、一般的に冷蔵庫30の背面には低温の冷却器44が配置されているため背面の断熱壁を介して侵入する熱が多い。これに対して、冷却室43と断熱壁の間に高温吸込風路を構成しているため、冷蔵庫30の背面の断熱壁を介して侵入する熱量を低減することができる。
 更に、冷却器44によって冷却された冷気は、熱伝達によってその周辺に広がる。これに対して、冷却器44の背面に設置された冷蔵室吸込風路87および切替室吸込風路90の中を冷蔵室35や切替室36からの戻り冷気が流れる際に、冷却器44から漏れ出した冷気を吸収し、再び冷却室43へ帰還させるため、冷蔵庫30の外への冷気漏れを抑制し、消費電力量を低減することができる。
 (第2の実施の形態)
 図5は本発明の第2の実施の形態における冷蔵庫の概略縦断面図である。図6は本発明の第2の実施の形態における冷蔵庫の概略縦断面図である。図7は本発明の第2の実施の形態における冷蔵庫の冷蔵室背面に配置した冷蔵室ダクトの正面図である。図8は本発明の第2の実施の形態における冷蔵庫の切替室への冷気吐出風路を示す概略斜視図である。図9は本発明の第2の実施の形態における冷蔵庫の切替室と冷気吐出風路を示す概略断面図である。図10は本発明の第2の実施の形態における冷蔵庫の切替室と冷凍室との断熱仕切壁の分解構成図である。図11は本発明の第2の実施の形態における冷蔵庫の冷却器周辺の冷気吸込風路を示す断面概略図である。図12は本発明の第2の実施の形態における冷蔵庫の冷却器周辺の冷気吸込風路を示す正面概略図である。図13は本発明の第2の実施の形態における冷蔵庫の冷却器と冷蔵室からの冷気吸込風路を示す正面概略図である。図14は本発明の第2の実施の形態における冷蔵庫の冷却器と冷蔵室からの冷気吸込風路を示す側面概略図である。
 なお、第1の実施の形態と同一構成については同一符号を付して詳細な説明を省略する。なお、第1の実施の形態の技術思想については本実施の形態でも適用可能である。
 図5、6において、冷蔵庫30は、外箱32と内箱33とその間に充填される発泡断熱材34から形成された断熱箱体31を有し、内部を第一区画壁71と第二区画壁72にて区画されている。最上部は冷蔵室35、第二区画壁72の下方に冷凍室37、第一区画壁71の下方の最下部は冷凍から野菜までの保存温度を切替可能な切替室36を備えている。
 また、冷凍室37内には、製氷室38と上部冷凍室(図示しない)が併設され、その下部に下部冷凍室40を備えている。
 また、冷蔵室35の前面には回転式の冷蔵室ドア35a、切替室36、製氷室38、上部冷凍室(図示しない)、下部冷凍室40の前面には、それぞれ引出式の切替室ドア36a、製氷室ドア38a、上部冷凍室ドア(図示しない)、下部冷凍室ドア40aを備えている。
 また、冷蔵室35の下部には冷蔵室より若干低い温度に設定されたチルドケース41を備え、前後に引き出し可能となっている。
 冷蔵室35の背面に備えた冷蔵室ダクトカバー81は後方に冷蔵室吐出風路85を形成するもので、上方に複数の吐出口82を備え、下方に冷蔵室吸込風路87に連通する冷蔵室吸込入口部83を備える。
 冷蔵室吸込入口部83は、チルドケース41の背面に配置し、冷蔵室35に吐出された冷気は内部を冷却し、チルドケース41と第二区画壁72との間に形成した隙間に流れ、冷蔵室吸込入口部83から冷蔵室吸込風路87を通り冷却室43に戻る。
 また、チルドケース41は冷蔵室35より低い0~3℃程度の温度に冷却され、チルドケース41から冷却室43へ冷気を戻すためのチルドケース吸込入口部84は、チルドケース41の背面に、冷蔵室吸込入口部83と併設して配置している。
 また、冷却室43から切替室36への冷気は、分配風路51から第一区画壁71内に設けられた切替室ダンパ80を介して切替室吐出風路(図示しない)に流通し切替室36に流入する。
 ここで、切替室ダンパ80を内部に有する切替室ダンパ装置92(図8、9)は、切替室ダンパ装置前板93と切替室ダンパ装置後板94とその間に備えた断熱材(例えば、発泡断熱材34)とを備え、断熱材(例えば、発泡断熱材34)の内部に設けた空間(風路)に切替室ダンパ80が挿入されている。
 そして、切替室ダンパ装置92は第一区画壁71に予め取り付けた状態で、第一区画壁71を断熱箱体31に組み込み、断熱箱体31に発泡断熱材34を充填する際に第一区画壁71にも同時に充填するものである。
 また、切替室ダンパ装置92内に備えた切替室ダンパ80の下流側を複数に分岐し、複数の切替室吐出口96a、96bから切替室36へ冷気を送風する。切替室吐出口96aは切替室36の上方から切替室ケース上97内に向けて冷気が吐出されるように配設されている。切替室吐出口96bは切替室36の後方から切替室ケース下98内に向けて冷気が吐出されるように配設されている。これにより、切替室36内の温度ムラを低減でき、所定の温度分布に保つことができる。
 また、第一区画壁71は、第一区画壁上板73と第一区画壁下板74との間でドレンパン48に対応する断熱材75と、切替室戻りダクトカバー76を予め取り付けた状態で、第一区画壁71を断熱箱体31に組み込み、断熱箱体31に発泡断熱材34を充填する際に第一区画壁71にも同時に充填するものである。
 そして、切替室36から冷却室43へ戻る冷気は、切替室戻りダクトカバー76と第一区画壁下板74との間に形成した空間、およびドレンパン48に対応する断熱材75と第一区画壁71の背面で形成した空間(断熱材75と第一区画壁下板74と第一区画壁上板73との間)を通り冷却室43に戻る。
 すなわち、切替室36から冷却室43へ戻る冷気は、切替室36の天面に備えた切替室戻りダクトカバー76内からドレンパン48の下部、後部を通り、冷却室43の背面の切替室吸込口89から冷却器44に戻る(図11参照)。
 また、冷蔵室35から冷蔵室吸込風路87を経由して冷却室43へ戻る、冷却室43の背面に備えた冷蔵室吸込口88は、冷却器44のほぼ全幅に対応して配置され、切替室36から冷却室43への切替室吸込口89に隣接する部分は段差部を設け、段差部の下方に併設して切替室吸込口89を設けている。
 また、図13に示すように、冷蔵室吸込風路87は、冷却器44と断熱箱体31の内箱33との間に別部材で形成した板状のカバーで構成され、上部を冷蔵室接続部91に接続され、下部を冷蔵室吸込口88として構成している。
 そして、冷蔵室接続部91の幅寸法は冷蔵室吸込口88の幅寸法より狭く、冷蔵室接続部91の奥行寸法は冷蔵室吸込口88の奥行寸法より広く設定している。
 また、冷却室43の背面左右方向で、冷蔵室接続部91と冷蔵室吸込口88に隣接して配置した切替室吸込口89とは対向して配置している。
 上記構成において、以下、その作用、効果を説明する。
 切替室ダンパ80を内部に有する切替室ダンパ装置92は、切替室ダンパ装置前板93と切替室ダンパ装置後板94とその間に備えた断熱材(例えば、発泡断熱材34)とを備え、断熱材(例えば、発泡断熱材34)の内部に設けた空間(風路)に切替室ダンパ80が挿入されている。そして、切替室ダンパ装置92は第一区画壁71に予め取り付けた状態で、第一区画壁71を断熱箱体31に組み込み、断熱箱体31に発泡断熱材34を充填する際に第一区画壁71にも同時に充填する。これにより、ダンパ装置を断熱区画壁に事前に配置することができ、冷蔵庫の組み立て作業性を高めることができる。したがって、組立工程での無理な作業も必要なく、確実に切替室ダンパ装置92を所定の位置に配置することができる。
 また、切替室ダンパ装置92内に備えた切替室ダンパ80の下流側を複数に分岐し、複数の切替室吐出口96a、96bから切替室36へ冷気を送風する。切替室吐出口96aは切替室36の上方から切替室ケース上97内に向けて冷気が吐出されるように配設されている。切替室吐出口96bは切替室36の後方から切替室ケース下98内に向けて冷気が吐出されるように配設されている。これにより、切替室36内の温度ムラを低減でき、所定の温度分布に保つことができる。
 また、切替室36から冷却室43へ戻る冷気は、切替室戻りダクトカバー76と第一区画壁下板74との間に形成した空間、およびドレンパン48に対応する断熱材75と第一区画壁71の背面で形成した空間を通り冷却室43に戻る。すなわち、戻り冷気は、切替室36の天面に備えた切替室戻りダクトカバー76内からドレンパン48の下部、後部を通り、冷却室43の背面の切替室吸込口89から冷却器44に戻る。これにより、冷却室43の前面は、全幅に亘って冷凍室37の戻り冷気の吸込口として利用でき、冷凍室37の冷却能力を高めることができる。
 また、冷蔵室35から冷蔵室吸込風路87を経由して冷却室43へ戻る、冷却室43の背面に備えた冷蔵室吸込口88は、冷却器44のほぼ全幅に対応して配置され、切替室36から冷却室43への切替室吸込口89に隣接する部分は段差部を設け、段差部の下方に併設して切替室吸込口89を設けている。これにより、冷蔵室35からの戻り冷気を効率よく冷却器44に戻しながら、切替室36からの戻り冷気も効率よく冷却器44に戻すことができる。
 また、冷蔵室35の背面に備えた冷蔵室ダクトカバー81の下方でチルドケース41の背面に冷蔵室吸込入口部83を備えているので、冷蔵室吸込入口部83がチルドケース41の背面に隠れることになり、意匠性の向上を図ることができる。さらに、冷蔵室吸込入口部83の設計自由度が高まり、冷蔵室ダクトカバー81全体の意匠性も高めることができる。
 また、チルドケース41は冷蔵室35より低い0~3℃程度の温度に冷却され、チルドケース41から冷却室43へ冷気を戻すためのチルドケース吸込入口部84は、チルドケース41の背面に、冷蔵室吸込入口部83と併設して配置している。これにより、チルドケース吸込入口部84もチルドケース41の背面に隠れることになり、チルドケース吸込入口部84も含めた意匠性の向上を図ることができる。これにより、冷蔵室35内全体の意匠性を高めることができる。
 以上に説明したように、本発明は、冷蔵庫であって、冷気を生成する冷却器と、冷却器で生成された冷気を強制的に循環させる送風機と、冷却器および送風機を収める冷却室と、冷却室を背面に備える低温貯蔵室と、低温貯蔵室より温度設定の高い高温貯蔵室と、高温貯蔵室の下部に備えた貯蔵ケースと、を備えている。また、本発明の冷蔵庫は、低温貯蔵室から冷却室へ冷気を導入する低温吸込風路と、高温貯蔵室から冷却室へ冷気を導入する高温吸込風路と、を備えている。また、本発明の冷蔵庫は、高温吸込風路の高温貯蔵室に位置する高温吸込入口部が、貯蔵ケースの背面に配置されている。
 このように、本発明は、高温吸込入口部は高温貯蔵室の下部に備えた貯蔵ケースの背面に隠れることになり、意匠性の向上と高温吸込入口部の設計自由度高めることができる。
 また、本発明は、貯蔵ケースは高温貯蔵室より温度設定が低く、貯蔵ケースから冷却室へ冷気を導入する貯蔵ケース吸込入口部は、貯蔵ケースの背面に配置されているものである。
 この構成により、貯蔵ケース吸込入口部も貯蔵ケースの背面に隠れることになり、貯蔵ケース吸込入口部も含めた意匠性の向上を図ることができる。
 また、本発明は、高温吸込入口部と貯蔵ケース吸込入口部とは併設して配置されているものである。
 この構成により、さらに高温貯蔵室内の意匠性を高めることができる。
 以上のように、本発明にかかる冷蔵庫の構成は、風路の圧力損失を大きくすることなく冷却器の熱交換量を向上させることができるため、家庭用又は業務用冷蔵庫など、強制的に風を循環させて熱交換を行っている冷却機器に対して適用可能である。
 30 冷蔵庫
 31 断熱箱体
 32 外箱
 33 内箱
 34 発泡断熱材
 35 冷蔵室(第一高温貯蔵室)
 35a 冷蔵室ドア
 36 切替室(第二高温貯蔵室)
 36a 切替室ドア
 37 冷凍室(低温貯蔵室)
 37a 冷凍室ドア
 38 製氷室
 38a 製氷室ドア
 40 下部冷凍室
 40a 下部冷凍室ドア
 41 チルドケース(貯蔵ケース)
 42 冷蔵室ダンパ
 43 冷却室
 44 冷却器
 44b 冷却器下端
 45a,45b 縦区画壁
 46 送風機
 47 除霜ヒータ
 48 ドレンパン(冷却室底面)
 49 ドレンチューブ
 50 蒸発皿
 53 冷凍室吸込風路
 53a 入り口
 56 冷凍室吸込口(低温吸込口)
 59 ガラス管ヒータ
 60 ヒータカバー
 71 第一区画壁
 72 第二区画壁
 73 第一区画壁上板
 74 第一区画壁下板
 75 断熱材
 76 切替室戻りダクトカバー
 80 切替室ダンパ
 81 冷蔵室ダクトカバー
 82 吐出口
 83 冷蔵室吸込入口部
 84 チルドケース吸込入口部
 85 冷蔵室吐出風路
 87 冷蔵室吸込風路(高温吸込風路)
 88 冷蔵室吸込口(第1高温吸込口)
 88a 冷蔵室吸込口上端(第1高温吸込口上端)
 89 切替室吸込口(第2高温吸込口)
 89a 切替室吸込口上端(第2高温吸込口上端)
 90 切替室吸込風路(高温吸込風路)
 91 冷蔵室接続部(第1高温貯蔵室接続部)
 92 切替室ダンパ装置
 93 切替室ダンパ装置前板
 94 切替室ダンパ装置後板
 96a,96b 切替室吐出口
 97 切替室ケース上
 98 切替室ケース下
 201 冷媒チューブ
 202 プレートフィン
 203 長孔

Claims (3)

  1. 冷気を生成する冷却器と、
    前記冷却器で生成された前記冷気を強制的に循環させる送風機と、
    前記冷却器および前記送風機を収める冷却室と、
    前記冷却室を背面に備える低温貯蔵室と、
    前記低温貯蔵室より温度設定の高い高温貯蔵室と、
    前記高温貯蔵室の下部に備えた貯蔵ケースと、
    前記低温貯蔵室から前記冷却室へ冷気を導入する低温吸込風路と、
    前記高温貯蔵室から前記冷却室へ冷気を導入する高温吸込風路と、を備え、
    前記高温吸込風路の前記高温貯蔵室に位置する高温吸込入口部が、前記貯蔵ケースの背面に配置されている、
    冷蔵庫。
  2. 前記貯蔵ケースは前記高温貯蔵室より温度設定が低く、
    前記貯蔵ケースから前記冷却室へ冷気を導入する貯蔵ケース吸込入口部は、前記貯蔵ケースの背面に配置されている、
    請求項1に記載の冷蔵庫。
  3. 前記高温吸込入口部と前記貯蔵ケース吸込入口部とは併設して配置されている、
    請求項1または2に記載の冷蔵庫。
PCT/JP2015/002554 2014-05-22 2015-05-21 冷蔵庫 WO2015178025A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201590000613.3U CN206440058U (zh) 2014-05-22 2015-05-21 冷藏库
DE212015000137.7U DE212015000137U1 (de) 2014-05-22 2015-05-21 Kühlschrank

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-105868 2014-05-22
JP2014105868A JP6405525B2 (ja) 2014-05-22 2014-05-22 冷蔵庫

Publications (1)

Publication Number Publication Date
WO2015178025A1 true WO2015178025A1 (ja) 2015-11-26

Family

ID=54553706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002554 WO2015178025A1 (ja) 2014-05-22 2015-05-21 冷蔵庫

Country Status (3)

Country Link
JP (1) JP6405525B2 (ja)
DE (1) DE212015000137U1 (ja)
WO (1) WO2015178025A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131150A1 (ja) * 2019-12-24 2021-07-01 日立グローバルライフソリューションズ株式会社 冷蔵庫

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6446663B2 (ja) * 2014-05-22 2019-01-09 パナソニックIpマネジメント株式会社 冷蔵庫

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3394557A (en) * 1967-04-11 1968-07-30 Gen Motors Corp Refrigerator with high humidity subcompartment
JPH0571848A (ja) * 1991-09-12 1993-03-23 Matsushita Refrig Co Ltd 冷凍冷蔵庫
KR20010076101A (ko) * 2000-01-25 2001-08-11 윤종용 냉장고
JP2002213857A (ja) * 2001-01-19 2002-07-31 Fujitsu General Ltd 冷蔵庫
JP2009192112A (ja) * 2008-02-13 2009-08-27 Sharp Corp 冷蔵庫
JP2013072617A (ja) * 2011-09-29 2013-04-22 Panasonic Corp 冷蔵庫
JP2014040967A (ja) * 2012-08-23 2014-03-06 Hitachi Appliances Inc 冷蔵庫
JP2014059115A (ja) * 2012-09-19 2014-04-03 Panasonic Corp 冷蔵庫

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1243705B (de) * 1959-09-09 1967-07-06 Philco Ford Corp Kuehlschrank
JPH10288444A (ja) 1997-04-15 1998-10-27 Matsushita Refrig Co Ltd 冷蔵庫
TW418309B (en) * 1998-02-20 2001-01-11 Matsushita Refrigeration Refrigerator
JP2000241062A (ja) * 1999-02-22 2000-09-08 Sharp Corp 冷蔵庫
JP2003050074A (ja) * 2001-08-07 2003-02-21 Fujitsu General Ltd 電気冷蔵庫
JP2003090664A (ja) * 2001-09-20 2003-03-28 Fujitsu General Ltd 冷蔵庫
JP4630849B2 (ja) * 2006-06-29 2011-02-09 株式会社東芝 冷蔵庫
JP5265237B2 (ja) * 2008-04-16 2013-08-14 シャープ株式会社 冷蔵庫
JP5990766B2 (ja) * 2011-09-09 2016-09-14 パナソニックIpマネジメント株式会社 冷蔵庫
JP2013194941A (ja) * 2012-03-16 2013-09-30 Mitsubishi Electric Corp 冷蔵庫
JP2014062669A (ja) * 2012-09-20 2014-04-10 Mitsubishi Electric Corp 冷蔵庫
JP6349549B2 (ja) * 2013-12-25 2018-07-04 パナソニックIpマネジメント株式会社 冷蔵庫

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3394557A (en) * 1967-04-11 1968-07-30 Gen Motors Corp Refrigerator with high humidity subcompartment
JPH0571848A (ja) * 1991-09-12 1993-03-23 Matsushita Refrig Co Ltd 冷凍冷蔵庫
KR20010076101A (ko) * 2000-01-25 2001-08-11 윤종용 냉장고
JP2002213857A (ja) * 2001-01-19 2002-07-31 Fujitsu General Ltd 冷蔵庫
JP2009192112A (ja) * 2008-02-13 2009-08-27 Sharp Corp 冷蔵庫
JP2013072617A (ja) * 2011-09-29 2013-04-22 Panasonic Corp 冷蔵庫
JP2014040967A (ja) * 2012-08-23 2014-03-06 Hitachi Appliances Inc 冷蔵庫
JP2014059115A (ja) * 2012-09-19 2014-04-03 Panasonic Corp 冷蔵庫

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131150A1 (ja) * 2019-12-24 2021-07-01 日立グローバルライフソリューションズ株式会社 冷蔵庫
JP2021101136A (ja) * 2019-12-24 2021-07-08 日立グローバルライフソリューションズ株式会社 冷蔵庫
JP7364459B2 (ja) 2019-12-24 2023-10-18 日立グローバルライフソリューションズ株式会社 冷蔵庫

Also Published As

Publication number Publication date
JP2015222128A (ja) 2015-12-10
DE212015000137U1 (de) 2017-01-05
JP6405525B2 (ja) 2018-10-17

Similar Documents

Publication Publication Date Title
US9328951B2 (en) Refrigerator
CN1316216C (zh) 冰箱及其冷却空气通道结构
US8099975B2 (en) Icemaker for a refrigerator
WO2016129907A1 (ko) 냉장고
KR101708302B1 (ko) 냉장고
CN104641190B (zh) 冷藏库
KR20120022600A (ko) 냉장고
JP5617669B2 (ja) 冷蔵庫
JP5625561B2 (ja) 冷蔵庫
WO2015178027A1 (ja) 冷蔵庫
JP6023986B2 (ja) 冷蔵庫
JP6028220B2 (ja) 冷蔵庫
JP6145643B2 (ja) 冷蔵庫
WO2015178025A1 (ja) 冷蔵庫
WO2017163965A1 (ja) 冷蔵庫
WO2015178026A1 (ja) 冷蔵庫
JP2011133151A (ja) 冷蔵庫
KR20170026054A (ko) 냉장고
JP6145642B2 (ja) 冷蔵庫
JP6071427B2 (ja) 冷蔵庫
JP6145639B2 (ja) 冷蔵庫
JP6145640B2 (ja) 冷蔵庫
KR20110078656A (ko) 냉장고
JP2017172850A (ja) 冷蔵庫
CN108366680A (zh) 冷藏销售器具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15795579

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 212015000137

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15795579

Country of ref document: EP

Kind code of ref document: A1