JP2013194941A - 冷蔵庫 - Google Patents

冷蔵庫 Download PDF

Info

Publication number
JP2013194941A
JP2013194941A JP2012060015A JP2012060015A JP2013194941A JP 2013194941 A JP2013194941 A JP 2013194941A JP 2012060015 A JP2012060015 A JP 2012060015A JP 2012060015 A JP2012060015 A JP 2012060015A JP 2013194941 A JP2013194941 A JP 2013194941A
Authority
JP
Japan
Prior art keywords
storage means
air
temperature
cold storage
chilled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012060015A
Other languages
English (en)
Inventor
Takeshi Uchida
毅 内田
Hiroaki Yokoo
広明 横尾
Maiko Shibata
舞子 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012060015A priority Critical patent/JP2013194941A/ja
Publication of JP2013194941A publication Critical patent/JP2013194941A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

【課題】貯蔵室内の空気及び食品の空間的な均温化及び時間的な恒温化を図り、食品の保存品質を向上することが可能な冷蔵庫を提供する。
【解決手段】複数の貯蔵室のうち、少なくとも1つの貯蔵室の内部に、融点の異なる複数の蓄冷手段1a,1b,1cが設けられている。
【選択図】図2

Description

本発明は、冷蔵庫、特に蓄冷手段を具備する冷蔵庫に関する。
冷蔵庫において、肉や魚などの生鮮食品は冷凍保存するのが一般的であり、冷凍保存した食品は解凍して使用することになるが、この解凍方法によって食品の品質は著しく変化する。すなわち、解凍速度が遅く、最大氷結晶生成帯と呼ばれる−5℃〜−1℃の温度帯を通過する時間が長くなると、解凍中に氷結晶が成長して細胞を破壊し、ドリップが大量に発生して、鮮度だけでなく菌の問題にも発展する。また食品全体を均一に解凍しないと、解凍ムラが発生し、使用に問題をきたすことにもなる。
そこで、急速解凍のために蓄冷材を用いた従来の冷蔵庫として、プラス温度で融解する潜熱蓄冷剤と、解凍室及び潜熱蓄冷剤に冷気を供給する送風機を備えるものが提案されている(例えば特許文献1参照)。
また例えば、急速冷却のために蓄熱材を用いた従来の冷蔵庫として、冷凍室の天面側に温かい食品を冷却するためのスペースを区画して形成し、そのスペースの底面に蓄冷剤を設置するものが提案されている(例えば特許文献2参照)。
特開2011−153720号公報(段落[0028]−[0038]、図3) 特許第4135765号公報(段落[0032]−[0047]、図1−3)
特許文献1に記載の冷蔵庫では、潜熱蓄冷剤が食品の解凍時に凝固して発熱するので、食品の解凍速度が増加し、さらに送風機を併用することにより解凍時間を短縮できるが、潜熱蓄冷剤の融点がプラス温度であるため、解凍初期(食品温度:−18℃付近)において蓄冷剤は固体状態であって相変化が起こらないため、蓄冷剤の有する潜熱による効果は得られず、また食品が設置された解凍室内に冷気を吹き付けるため、食品が乾燥してしまうという課題があった。
特許文献2に記載の冷蔵庫では、蓄冷剤が設置されたスペースに収納された温かい食品は、蓄冷剤の吸熱作用により急速に冷却または冷凍されるので、品質の劣化を抑制することができるとともに、冷凍室内に収納された他の食品の温度上昇を低減することができるが、蓄冷剤は1種類で冷凍室に設置されているため、蓄冷剤の温度が冷凍温度帯の場合には潜熱による効果が得られるが、冷却過程において温度が上昇し融解した後は急冷効果はなく、また蓄冷剤は熱容量が大きいため、凝固させて再利用するのに時間がかかるという課題があった。
本発明は、上述のような課題を解決するためになされたものであり、融点の異なる複数の蓄冷手段を貯蔵室内に設置し、広範囲の温度帯において、貯蔵室内の空気及び食品の空間的な均温化及び時間的な恒温化を図り、食品の保存品質を向上することが可能な冷蔵庫を提供することを目的とする。
本発明に係る冷蔵庫は、断熱筐体内に形成された複数の貯蔵室と、前記複数の貯蔵室の後方に設けられ、冷気を生成する冷却器と、冷蔵庫内の空気を循環させる空気搬送手段と、前記複数の貯蔵室のそれぞれの前面側に設けられた複数の扉と、前記複数の貯蔵室の後方に、前記冷却器によって生成された冷気を通風するための冷却風路とを備えた冷蔵庫であって、前記複数の貯蔵室のうち、少なくとも1つの貯蔵室の内部に、融点の異なる複数の蓄冷手段が設けられたものである。
本発明は、複数の貯蔵室のうち、少なくとも1つの貯蔵室の内部に、融点の異なる複数の蓄冷手段が設けられているため、複数の蓄冷手段が設けられた貯蔵室内の温度が蓄冷手段の融点以上になった場合は吸熱し、蓄冷手段の融点以下になった場合は発熱する。上述したように、複数の蓄冷手段はそれぞれ融点が異なるように構成されているため、複数の蓄冷手段が設けられた貯蔵室内の温度が変化しても、複数の蓄冷手段のうちいずれかにおいて、吸熱または発熱反応が発生する。このため、広範囲の温度帯において、貯蔵室内空気温度が恒温化、すなわち時間的な温度変動が抑制され、保存される食品の恒温化も図ることができるとともに、貯蔵室内が均温化、すなわち空間的な温度分布の不均一性が抑制され、貯蔵室内の全ての位置において、食品の同一品質を確保することが可能となる。
本発明の実施の形態1に係る冷蔵庫の概略構成図(側面断面図)である。 本発明の実施の形態1に係るチルド室の概略構成図である。 本発明の実施の形態1に係る周囲空気温度及び食品温度の温度変動幅に対する食品保存品質の実測データの一例である。 本発明の実施の形態1に係る、蓄冷手段(融点:−2℃)設置有無による庫内空気温度実測データの一例である。 本発明の実施の形態1に係る、冷凍保存環境による食品保存品質の実測データの一例である。 本発明の実施の形態2に係るチルド室の概略構成図である。 本発明の実施の形態3に係るチルド室の概略構成図である。 本発明の実施の形態4に係るチルド室の概略構成図である。 本発明の実施の形態5に係る蓄冷手段の概略構成図である。
[実施の形態1]
図1は、本発明の実施の形態1に係る冷蔵庫1000の概略構成図(側面断面図)である。図1に示すように、冷蔵庫1000は、複数の貯蔵室(冷蔵室100、チルド室200、切替室300、冷凍室400、野菜室500、および製氷室)を備えている。詳細に説明すると、冷蔵庫1000は、上から冷蔵室100と、冷蔵室100の内部においてチルド室天板202によって仕切られたチルド室200と、切替室300と、冷凍室400と、野菜室500と、切替室300と並行に設置された図示しない製氷室とを備えている。また、チルド室200はチルドケース201により外壁が形成されている。
また、この冷蔵庫1000には、各貯蔵室へ供給する空気を冷却する冷凍サイクル回路と、この冷凍サイクル回路によって冷却された空気を各貯蔵室へ供給するための風路を備えている。
冷凍サイクル回路は、圧縮機1001、圧縮機1001から吐出された冷媒を凝縮させる凝縮器(図示せず)、凝縮器から流出した冷媒を膨張させる絞り装置(図示せず)、および、絞り装置で膨張した冷媒によって各貯蔵室へ供給する空気を冷却する冷却器1002等によって構成されている。圧縮機1001は、例えば、冷蔵庫1000の背面側の下部に配置されている。冷却器1002は、後述する冷却風路1010に設けられている。また、冷却風路1010には、冷却器1002で冷却された空気を各貯蔵室へ送るための(換言すると、冷蔵庫1000内で空気を循環させるための)空気搬送装置1003も設けられている。
この冷凍サイクル回路によって冷却された空気を各貯蔵室へ供給するための風路は、冷却風路1010、戻り風路1020、冷蔵室戻り風路110、および野菜室戻り風路510等から構成されている。冷却風路1010は、冷却器1002にて冷却された空気が、冷蔵室100、チルド室200、切替室300および冷凍室400に搬送される通風路である。この冷却風路1010は、例えば冷蔵庫1000の背面部に形成されている。戻り風路1020は、各室を冷却した空気が、冷却器1002へ搬送される通風路である。冷蔵室戻り風路110は、冷蔵室100およびチルド室200を冷却した空気が、野菜室500に搬送される通風路である。冷蔵室100およびチルド室200を冷却した空気は、野菜室戻り風路510において野菜室500を冷却した空気と混合され、冷却器1002に搬送される。
図2は、本発明の実施の形態1に係るチルド室200の概略構成図である。
図2において、チルド室200はチルドケース201とチルド室天板202とによって構成されている。チルドケース201は、図示しないレール等の案内治具に沿って、冷蔵室扉101側へ引き出すことができる構成となっている。チルドケース201の底面には、例えば、生や解凍用の肉や魚の切り身等の保存食品である、チルド室内保存食品205が設けられている。チルド室天板202は、チルド室200と冷蔵室100とを仕切るものであり、チルド室天板202の下面には、蓄冷手段1a,1b,1cが設けられている。チルド室吹出空気Aは、冷却器1002によって冷却された空気であり、チルド室吹出口203からチルド室200内に流入し、冷蔵室100およびチルド室200を冷却する。冷蔵室・チルド室戻り空気Bは、冷蔵室100及びチルド室200内を循環して冷却された空気であり、チルド室吸込口204から流出し、冷蔵室戻り風路110を経由して野菜室500に搬送される。
蓄冷手段1a,1b,1cは、例えば水や無機塩類、食品添加物等が混合された潜熱の大きい蓄冷剤を、アルミ蒸着フィルム等に漏れなきよう封入し、樹脂や金属ケース内に設置したものである。ここで蓄冷手段1a,1b,1cは、上記混合物の混合比を調整することによって融点の設定が可能であり、本実施の形態1では、チルド室吹出空気Aの温度(例えば−20〜−10℃)からチルド室200の設定温度(例えば−3〜1℃)の範囲内で、蓄冷手段1aの融点が最も低く、蓄冷手段1cの融点が最も高くなるように設定される。また、蓄冷手段1a,1b,1cは、チルド室天板202の下面に、融点の低い蓄冷手段ほど冷蔵室扉101側に配置されるように、冷蔵室扉101側から蓄冷手段1a,1b,1cの順番で、チルド室吹出口203の前方の、チルド室吹出空気Aの通風路に設置されている。
なお、チルド室吹出口203が、本発明の空気吹出口に相当する。
また、チルド室吸込口204が、本発明の空気吸込口に相当する。
次に、図1および図2を用いて動作の一例について説明する。
図1において、冷蔵庫1000の内部では、一般的に冷却器1002で冷却された庫内空気が空気搬送装置1003によって冷却風路1010を経由して各貯蔵室へ搬送される。そして、各貯蔵室を冷却した後の戻り空気が戻り風路1020を経由して再度冷却器1002に戻る周回風路となっている。このとき、冷却器1002で冷却された空気(例えば−30〜−25℃)を分配して各室を冷却し、図示しないダンパの開閉によって冷却空気の流入量を調節することにより、個別の温度設定を行っている。すなわち、最も低温設定となる冷凍室400(例えば−22〜−16℃)の流入ダンパはほぼ全開とし、最も高温設定となる野菜室500(例えば3〜9℃)の流入ダンパはほぼ全閉とし、より温度設定の低い冷蔵室100(例えば0〜6℃)およびチルド室200(例えば−3〜1℃)を冷却した戻り空気で間接冷却するなどして、温度設定を変更している。
チルド室200においては、冷却器1002によって冷却されたチルド室吹出空気Aはチルド室吹出口203を通ってチルド室200に供給され、チルド室200内を循環してチルド室200を冷却した後、チルド室200の下面に形成された図示しない開口部を通り、冷蔵室100を冷却した空気と共に、冷蔵室・チルド室戻り空気Bとしてチルド室吸込口204から冷却風路1010に供給される。
ここで、チルド室200の前面は、冷蔵室扉101を介して、一般的にチルド室200より高温の外気(室内)と、背面は低温の冷却風路1010と面しており、チルド室200を冷却するチルド室吹出空気Aも背面のチルド室吹出口203から供給されるため、チルド室200内は、前面の冷蔵室扉101側ほど高温で、背面の冷却風路1010側ほど低温となり、温度分布に不均一性が発生する。したがって、例えばチルド室の温度を0℃に設定しても、チルド室200の前面側に設置されたチルド室内保存食品205は、プラス温度で保存されて酸化や変色が発生し、背面側に設置された食品205は氷点下で保存され、このとき最大氷結晶生成帯(−5〜−1℃)の範囲内に存在する可能性が高いため、氷結晶が成長して細胞を破壊し、ドリップが大量に発生するなどの品質の低下の原因となる。
そこで、本実施の形態1では、図2のように、チルド室吹出空気Aの温度からチルド室200の設定温度の範囲内で融点を設定された蓄冷手段1a,1b,1cが、融点の低い蓄冷手段ほど冷蔵室扉101側に配置されるように、チルド室天板202の下面に冷蔵室扉101側から蓄冷手段1a,1b,1cの順番で設置される構成とした。このため、それぞれの蓄冷手段の周囲空気温度が融点より高い場合には蓄冷手段1a,1b,1cが融解して空気から吸熱し、逆に空気温度が融点より低い場合には蓄冷手段1a,1b,1cが凝固して空気に発熱する。このため、最も融点が低い蓄冷手段1aの周囲空気温度は低下し、最も融点が高い蓄冷手段1cの周囲空気温度は上昇し、結果的にチルド室200内の空気温度は空間的に平均化されて、温度分布の不均一性が抑制される。
したがって、空気によって冷却されるチルド室内保存食品205は、チルド室200内のどの位置に設置しても、ほぼ同一の温度で保存されることになり、部分的な凍結などを抑制することができ、同一品質を確保することができる。
なお、蓄冷手段1a,1b,1cの融点を、チルド室200の設定温度に近づけて設定することにより(例えば、1a:−1℃、1b:0℃、1c:1℃)、チルド室内保存食品205は設定通りの温度で凍結することなく保存されるので、ドリップを発生させることなく保存品質を向上することが可能となる。
また、本実施の形態1では、チルド室200を冷却するチルド室吹出空気Aの流入量は、チルド室200の温度設定に応じて、図示しないダンパの開閉によって制御されている。つまり、チルド室200内の空気温度は、チルド室吹出空気Aの流入時は低下し、停止時(ダンパの閉鎖時)は上昇する変動を繰り返すことになる。このとき、チルド室内保存食品205は、空気に吸熱されて冷却されるので、空気と同様に食品温度も変動する。チルド温度帯においては、食品は凍結点以下であっても過冷却状態であれば凍結せずに保存されるが、温度変動が大きい場合には過冷却が解除され、このとき最大氷結晶生成帯(−5℃〜−1℃)の範囲内に存在する可能性が高くなる。このため、氷結晶が成長して細胞を破壊し、ドリップが大量に発生する、または部分的な凍結や酸化・変色が発生するなど、温度分布の不均一性と同様に品質低下の原因となる。
これに対して本実施の形態1では、図2のように、チルド室200の設定温度同等の融点を有する蓄冷手段1a,1b,1cが、チルド室天板202の下面、すなわちチルド室200の天面に設置されている場合には、チルド室200の空気温度が蓄冷手段の融点より高い場合に、蓄冷手段1a,1b,1cが融解して空気から吸熱し、逆に空気温度が融点より低い場合には、蓄冷手段1a,1b,1cが凝固して空気に発熱する。このため、空気温度が蓄冷手段1a,1b,1cの融点を中心に平均化され、温度分布の不均一性が抑制される効果に加えて、それぞれの位置における時間的な温度変動も抑制される。
したがって、空気によって冷却されるチルド室内保存食品205の温度変動も抑制され、保存品質の向上を図ることができる。特に、チルド室200の設定温度、および蓄冷手段1a,1b,1cの融点を−3〜0℃の範囲に設定することにより(例えば、1a:−3℃、1b:−2℃、1c:−1℃)、チルド室200の空気温度および食品温度が融点を中心に平均化されるので(例えば−2±1℃以内)、過冷却状態を維持したまま未凍結での保存が可能となるため、ドリップを発生させることなく、酸化も抑制した高品質な保存が可能となる。
図3は、本発明の実施の形態1に係る周囲空気温度及び食品温度の温度変動幅に対する食品保存品質の実測データの一例である。図3(a)は、周囲空気温度及び食品温度の温度変動幅に対する食品保存前後の重量変化(ドリップ量)、図3(b)は、周囲空気温度及び食品温度の温度変動幅に対する食品保存前後の色差の変化(Δa*)であり、赤みの退化を示したものである。なお、この実測データは、−2℃〜0℃環境下にマグロを2週間保存した場合のものである。
図3(a)において、11aは空気温度変動幅に対する食品の重量変化であり、11bは食品温度変動幅に対する食品の重量変化である。図3(b)において、12aは空気温度変動幅に対する食品の色差であり、12bは食品温度変動幅に対する食品の色差である。
図3(a)及び図3(b)に示されるように、空気及び食品の温度変動幅が大きくなるほど、重量及び色差の変化が大きくなる傾向が示されている。つまり、未凍結状態で保存されていた空気温度変動幅が約2℃のサンプルは、凍結が見られた空気温度変動幅が4℃以上のサンプルに対し、平均値として重量変化が約40%(2.24→1.32mg/g)、色差が約45%(−2.92→−1.63)抑制されたという結果が得られている。
図4は、蓄冷手段(融点:−2℃)設置有無による庫内空気温度履歴の実測データの一例である。図4(a)は蓄冷手段を設置せず、庫内空気温度を強制的に−2±5℃で変動させた場合の庫内空気温度履歴を示す図である。図4(b)は蓄冷手段を設置し、庫内空気温度を強制的に−2±5℃で変動させた場合の庫内空気温度履歴及び蓄冷手段温度履歴を示す図である。図4(c)は蓄冷手段を設置し、庫内空気温度を強制的に5±5℃で変動させた場合の庫内空気温度履歴及び蓄冷手段温度履歴を示す図である。
変動周期としては、図4(a)〜図4(c)の全ての場合において、30分で10℃上昇、30分間高温維持、30分で10℃低下、30分間低温維持を繰り返している。
図4(a)において、13aは蓄冷手段なしのときの庫内空気温度履歴である。図4(b)、図4(c)において、13bは蓄冷手段上面設置のときの庫内空気温度履歴、13cは蓄冷手段下面設置のときの庫内空気温度履歴、14は蓄冷手段の温度履歴である。
図4(a)に示されるように、蓄冷手段なしのときの庫内空気温度履歴13aは、強制的に与えた−2±5℃の温度変動の通りに変化している。また、図4(b)に示されるように、蓄冷手段上面設置のときの庫内空気温度履歴13bは、空気温度が上昇した場合には蓄冷手段が空気から吸熱し、空気温度が低下した場合には蓄冷手段が空気へ発熱している。つまり、周囲空気温度が蓄冷手段の融点に近づき(空間的な温度不均一性の抑制効果)、強制的な温度変動を抑制している(時間的な温度変動の抑制効果)ことが示されている。
図4(b)に示されるように、蓄冷手段の設置位置によって空気温度変動の抑制効果に差異があり、蓄冷手段上面設置のときの庫内空気温度履歴13bでは約50%抑制されているのに対し、蓄冷手段下面設置のときの庫内空気温度履歴13cでは25%程度に留まっている。つまり、蓄冷手段の設置位置としては、図2のように、対象空間の上面に蓄冷手段を設置するほうが、対象空間の下面に設置する冷気は密度が大きく下方に落ちるために蓄冷手段の影響が表れやすく、より温度の高い冷蔵室のある上面を遮断したほうが断熱効果も得られやすい、等の理由により、後述する図6のように、対象空間の下面に蓄冷手段を設置するよりも温度変動抑制効果が大きいことが分かる。
なお、図4(c)において、蓄冷手段の融点が温度変動範囲から外れている、すなわち蓄冷手段において相変化が発生していない場合においても、±5℃の強制温度変動に対し、蓄冷手段上面設置のときの庫内空気温度履歴13bでは20%、蓄冷手段下面設置のときの庫内空気温度履歴13cでは15%程度抑制されている。つまり、庫内空気温度を強制的に−2±5℃で変動させた場合(図4(b))(蓄冷手段に相変化が起こっている場合)と比較すると、蓄冷手段の蓄冷手段温度履歴14の変動も大きく、常に液相状態に存在している。このため、庫内空気温度を強制的に5±5℃で変動させた場合(図4(c))には、空気温度変動の抑制効果は小さいが、蓄冷手段の熱容量が大きいために空気温度変動を抑制する効果はある。このため、図2に示したチルド室天板202の下面に設置された蓄冷手段1a,1b,1cにおいて、蓄冷手段の融点とチルド室200の設定温度が異なり、例えばチルド室吹出空気Aの温度と同等の融点を有する蓄冷手段であっても、空気温度の空間的分布の不均一性および時間的変動を抑制する効果は得られる。
また、本実施の形態1に係る冷蔵庫1000は、図2のように、チルド室天板202の下面であって、チルド室吹出口203の前方のチルド室吹出空気Aが通過する位置に、蓄冷手段1a,1b,1cを設置している。このため、蓄冷手段1a,1b,1cとチルド室吹出空気Aとの熱交換が促進される。したがって、さらに空気変動幅を小さくすることができるだけでなく、より早い温度変動に対しても抑制効果を得ることができるという効果がある。
なお、蓄冷手段1a,1b,1cの融点を、チルド室吹出空気Aの温度と同等か若干高く、例えばチルド室吹出空気Aの温度を−20〜−10℃と設定した場合に、融点を−10〜−5℃の範囲に設定しておけば、チルド室吹出空気Aの温度変動を抑制することができる。このため、結果的にチルド室200の空気温度の、空間的分布の不均一性および時間的変動を抑制し、食品の保存品質を向上させることができる。
また、本実施の形態1では図2のように、チルド室200における構成を説明しているが、これらの構成を切替室300等の他の貯蔵室の内部に適用して、食品の保存に用いてもよい。切替室300(例えば−18〜−5℃)においても、蓄冷手段1a,1b,1cの融点を設定温度範囲内に設定することにより、空気温度の空間的分布の不均一性、時間的変動および食品温度の変動が抑制されるという効果が得られる。チルド室200における構成を切替室300に適用した場合は、温度変動抑制による保存品質への効果として、酸化や露付き、乾燥の抑制などの効果がある。
ここで、上述した露付きに関する実際のデータとして、−7℃設定で牛肉を2週間保存した場合、変動幅±3℃→±1℃により、100g当たりの露付き量が60%以上低減し(4.9g→1.7g)、同様に−18℃設定で牛肉を1ヶ月保存した場合においても、変動幅±5℃→±2℃により、100g当たりの露付き量が半減し(0.30g→0.14g)、着霜も抑制されたという結果が得られている。
なお、切替室300は温度設定範囲が広いが、図4(c)で示したように、蓄冷手段の融点が設定温度範囲から外れていても若干の温度変動抑制効果は得られるので、蓄冷手段1aの融点を冷凍温度設定時の吹出空気温度に設定し(例えば−25〜−20℃)、蓄冷手段1bの融点を冷凍温度帯に設定し(例えば−18〜−15℃)、蓄冷手段1cの融点をソフト冷凍温度帯に設定することにより(例えば−12〜−5℃)、全ての設定温度帯において温度変動抑制効果が得られ、また特に変動を抑制したい温度帯に合わせて蓄冷手段の融点を設定すれば、より大きな効果が得られる。
図5は、各空気条件下に牛肉を1ヶ月間冷凍保存した際の、食品保存品質の実測データの一例である。図5(a)は保存前後の重量変化を示したものである。図5(b)は解凍前後のドリップ量を示したものである。図5(c)は保存前後の色差(Δa*)であり、赤みの退化を示したものである。
図5(a)中の15a〜15cは食品の重量変化であり、図5(b)中の16a〜16cはドリップ量であり、図5(c)の17a〜17cは食品の色差である。添え字のaは−15±2℃環境、添え字のbは−18±3℃環境、添え字のcは実際の冷凍室と同様に、デフロスト運転を含む−18±3℃環境にて、食品が保存されたことを示している。
図5(a)から図5(c)に示されるように、−15±2℃環境で保存された食品は、温度変動抑制により乾燥や酸化が抑制されるため、−18±3℃環境で保存された食品と同等以上の品質が確保されていることが示されている。したがって、例えば、切替室の温度を若干高めの冷凍温度:−15℃に設定し、蓄冷手段の融点を1a:−18℃、1b:−15℃、1c:−12℃とした場合、−15℃において温度変動が抑制され(例えば−15±2℃以内)、−18℃で保存した場合と同等の品質を確保することができるので、設定温度を高くした分(この場合は3℃≒約2%)の省エネ効果も得ることができる。
[実施の形態2]
図6は、本発明の実施の形態2に係るチルド室200の概略構成図である。
図6において、実施の形態1と同一の箇所については説明を割愛するが、本実施の形態2では、蓄冷手段1a,1b,1cが融点の低い蓄冷手段ほど冷蔵室扉101側に配置されるように、チルドケース201の下面に冷蔵室扉101側から蓄冷手段1a,1b,1cの順番で、チルド室吸込口204の風上の、冷蔵室・チルド室戻り空気Bの通風路に設置されている。
次に、図6を用いて動作の一例について説明する。動作についても、実施の形態1と同一の箇所については説明を割愛する。
上述したように、チルド室200においては、前面の冷蔵室扉101側ほど高温で、背面の冷却風路1010側ほど低温となり、温度分布に不均一性が発生し、チルド室内保存食品205の品質の低下の原因となるが、本実施の形態2では、図6のように、チルド室吹出空気Aの温度からチルド室200の設定温度の範囲内で融点が設定された蓄冷手段1a,1b,1cを、融点の低い蓄冷手段ほど冷蔵室扉101側に配置されるように、チルドケース201の下面に、冷蔵室扉101側から蓄冷手段1a,1b,1cの順番で設置するような構成とした。
以上のように、本実施の形態2に係る冷蔵庫1000は、上述のように、チルドケース201の下面に蓄冷手段1a,1b,1cを設置する構成としたため、蓄冷手段1a,1b,1cの周囲空気温度が蓄冷手段1a,1b,1cの融点より高い場合には、蓄冷手段1a,1b,1cが融解して空気から吸熱し、逆に蓄冷手段1a,1b,1cの周囲空気温度が蓄冷手段1a,1b,1cの融点より低い場合には、蓄冷手段1a,1b,1cが凝固して空気に発熱する。したがって、最も融点が低い蓄冷手段1aの周囲空気温度は低下し、最も融点が高い蓄冷手段1cの周囲空気温度は上昇し、結果的にチルド室200内の空気温度は空間的に平均化されて、温度分布の不均一性が抑制される。そして、蓄冷手段1a,1b,1cのそれぞれの位置において、空気温度が蓄冷手段の融点を中心に平均化されるので、温度分布の不均一性が抑制される効果に加えて、それぞれの位置における時間的な温度変動も抑制される。したがって、空気によって冷却されるチルド室内保存食品205の温度変動も抑制され、実施の形態1と同様に、保存品質の向上を図ることができる。なお、空気温度変動抑制の寄与度は、上述したように、蓄冷手段1a,1b,1cをチルド室200の上面に設置した場合の半分程度である。
また、本実施の形態2に係る冷蔵庫1000は、図6に示されているように、チルド室内保存食品205はチルドケース201の上に直接設置され、蓄冷手段1a,1b,1cは空気を介さずにチルド室内保存食品205と接触することになる。このため、食品温度が接触する蓄冷手段の融点より高い場合には、蓄冷手段1a,1b,1cが融解してチルド室内保存食品205から吸熱し、逆に食品温度が融点より低い場合には、蓄冷手段1a,1b,1cが凝固してチルド室内保存食品205に発熱し、チルド室内保存食品205と蓄冷手段1a,1b,1cの間で直接熱交換が行われる。したがって、チルド室内保存食品205に対する温度変動抑制効果を向上することができ、特に温度変動に対する時間応答性が向上するので、チルド室内保存食品205の時間的温度変動抑制への寄与が期待できる。
また、本実施の形態2に係る冷蔵庫1000は、図6のように、蓄冷手段1a,1b,1cを、チルドケース201の下面において、チルド室吸込口204の風上の、冷蔵室・チルド室戻り空気Bが通過する位置に設置する構成とした。このため、蓄冷手段1a,1b,1cと、チルド室200の空気温度とほぼ同一の冷蔵室・チルド室戻り空気Bとの熱交換が促進されるため、さらに空気変動幅を小さくすることができるだけでなく、より早い温度変動に対しても抑制効果を得ることができるという効果がある。
なお、本実施の形態2では、蓄冷手段1a,1b,1cの融点を、冷蔵室・チルド室戻り空気Bと同等か若干高くすることが望ましい。例えば、冷蔵室・チルド室戻り空気B:−3〜1℃に対して、蓄冷手段1a,1b,1cの融点を−1〜1℃の範囲に設定しておけばよい。このように蓄冷手段1a,1b,1cの融点を設定すれば、蓄冷手段1a,1b,1cには、比較的高温のチルド室内保存食品205が設置されるため、食品からの吸熱により蓄冷手段1a,1b,1cが融解した場合においても、冷蔵室・チルド室戻り空気Bによって短時間で凝固されるので、再度チルド室内保存食品205からの吸熱効果を得ることが可能となる。
また、図6では、蓄冷手段1a,1b,1cは、チルドケース201の下面外側に設置されているが、チルドケース201の下面内側に設置して、チルド室内保存食品205を載せるためのプレートを設置してもよい。いずれの場合も、蓄冷手段1a,1b,1cは、チルド室200内空気およびチルド室内保存食品205に対しては、プレート1枚分を介して接触していることになるので、同様の効果が得られる。
[実施の形態3]
図7は、本発明の実施の形態3に係るチルド室200の概略構成図である。
図7において、実施の形態1および2と同一の箇所については説明を割愛するが、本実施の形態3では、チルド室200の内部をチルド室上側空間200aとチルド室下側空間200bとに分割する仕切りトレイ2が設置されている。チルド室上側空間内保存食品205aは仕切りトレイ2の上に設置され、チルド室下側空間内保存食品205bはチルドケース201の底面に設置されて保管される。仕切りトレイ2の表面と裏面には、チルド室吹出空気Aの温度からチルド室200の設定温度の範囲内で設定された、それぞれ融点の異なる蓄冷手段が設置されている。例えば表面(図7では上面)には比較的低い融点を有する蓄冷手段1a、裏面(図7では下面)にはチルド室200の設定温度同等である高い融点を有する蓄冷手段1cが設置されている。
なお、仕切りトレイ2は着脱可能な構成とし、上面と下面を交換することが可能であり、また図示しないレールなどに設置され、仕切りトレイ2が前後方向(冷蔵室扉101方向)へ可動な構造とするのが望ましい。
次に、図7を用いて動作の一例について説明する。動作についても、実施の形態1および2と同一の箇所については説明を割愛する。
チルド室200内においては、実施の形態1で説明したように、前後方向に対して、前面の冷蔵室扉101側ほど高温で、背面の冷却風路1010側ほど低温となる温度分布の不均一性が発生するが、チルド室吹出口203から供給されるチルド室吹出空気Aは、既存のチルド室200内空気よりも低温で密度が大きいため、徐々にチルド室200の下側に滞留し、最終的には上下方向に対しても温度分布の不均一性が発生する。したがって、例えばチルド室の温度を0℃に設定しても、チルド室200の上側、例えば他の食品の上に積み上げられて設置されたチルド室内保存食品205は、プラス温度で保存されて酸化や変色が発生し、下側に設置された食品205は氷点下で保存され、このとき最大氷結晶生成帯(−5〜−1℃)の範囲内に存在する可能性が高いため、氷結晶が成長して細胞を破壊し、ドリップが大量に発生するなどの品質の低下の原因となる。
そこで本実施の形態3に係る冷蔵庫1000では、図7のように、チルド室200の内部を仕切りトレイ2でチルド室上側空間200aとチルド室下側空間200bとに分割する構成としている。そして、チルド室上側空間200aに面する仕切りトレイ2の上面に比較的融点の低い蓄冷手段1aを設け、チルド室下側空間200bに面する仕切りトレイ2の下面に比較的融点の高い蓄冷手段1cを設ける構成とした。これにより、それぞれの蓄冷手段の周囲空気温度が融点より高い場合には蓄冷手段1a,1cが融解して空気から吸熱し、逆に空気温度が融点より低い場合には蓄冷手段1a,1cが凝固して空気に発熱する。このため、融点が低い蓄冷手段1aが設置されているチルド室上側空間200aの空気温度は低下し、融点が高い蓄冷手段1cが設置されているチルド室下側空間200bの空気温度は上昇し、結果的にチルド室200内の空気温度は空間的に平均化されて、上下方向に対する温度分布の不均一性が抑制される。したがって、空気によって冷却されるチルド室上側空間内保存食品205aおよびチルド室下側空間内保存食品205bは、ほぼ同一の温度で保存されることになり、部分的な凍結などを防ぐことができ、同一品質を確保することができる。なお、蓄冷手段1a、1cの融点を、チルド室200の設定温度に近づけて設定することにより(例えば、1a:−1℃、1c:1℃)、チルド室上側空間内保存食品205aおよびチルド室下側空間内保存食品205bは設定通りの温度で凍結することなく保存されるので、ドリップを発生させることなく保存品質を向上することが可能となる。
また、このとき、蓄冷手段1a、1cのそれぞれの位置において、空気温度が蓄冷手段の融点を中心に平均化されるので、温度分布の不均一性が抑制される効果に加えて、それぞれの位置における時間的な温度変動も抑制される。したがって、空気によって冷却されるチルド室上側空間内保存食品205aおよびチルド室下側空間内保存食品205bの温度変動も抑制され、実施の形態1および2と同様に、保存品質の向上を図ることができる。但し、空気温度変動抑制の寄与度としては、図4(b)に示されているように、チルド室下側空間200bに対して上側に設置されている蓄冷手段1cのほうが大きく、チルド室上側空間200aに対して下側に設置されている蓄冷手段1aの寄与度は、蓄冷手段1cの半分程度である。
また、本実施の形態3に係る冷蔵庫1000は、図7に示されているように、チルド室上側空間200aにおいては、チルド室上側空間内保存食品205aは、蓄冷手段1aと空気を介さずに直接接触することになる。このため、食品温度が接触する蓄冷手段の融点より高い場合には、蓄冷手段1aが融解してチルド室上側空間内保存食品205aから吸熱し、逆に食品温度が融点より低い場合には、蓄冷手段1aが凝固してチルド室上側空間内保存食品205aに発熱し、チルド室上側空間内保存食品205aと蓄冷手段1aの間で直接熱交換が行われる。このため、チルド室上側空間内保存食品205aに対する温度変動抑制効果を向上することができ、特に温度変動に対する時間応答性が向上するので、チルド室上側空間内保存食品205aの時間的温度変動抑制への寄与が期待できる。
なお、本実施の形態3では、図7に示されるように、チルド室上側空間200aに面する仕切りトレイ2の上面に比較的融点の低い蓄冷手段1aを設け、チルド室下側空間200bに面する仕切りトレイ2の下面に比較的融点の高い蓄冷手段1cを設けたことにより、上下方向に対する温度分布の不均一性を抑制しているがこれに限定されない。例えば、チルド室上側空間200aに面する仕切りトレイ2の上面に融点の高い(例えばチルド室200の設定温度)蓄冷手段1cを設け、チルド室下側空間200bに面する仕切りトレイ2の下面に融点の低い(例えばチルド室吹出空気Aと同等の温度)蓄冷手段1aを設けてもよい。この場合、チルド室上側空間200aでは、チルド室200の設定温度同等の温度が維持され、チルド室下側空間200bでは、チルド室吹出空気Aの温度に向かって低下するため、温度の異なる保存空間を形成することが可能となる。したがって、チルド室200の設定温度にて保存したいチルド室上側空間内保存食品205aはチルド室上側空間200aに設置し、急激に冷却したいチルド室下側空間内保存食品205bはチルド室下側空間200bに設置するなど、用途に応じて保存空間を選定することが可能であり、またそれぞれの保存空間において時間的温度変動が抑制されるため、食品の保存品質を向上させることが可能となる。
また、本実施の形態3では、図7に示されるように、仕切りトレイ2で、チルド室200の内部をチルド室上側空間200a及びチルド室下側空間200bの上下方向に分割しているが、分割方向は上下方向に限定するものではなく他方向でもよい。例えば、チルド室200の内部を前後方向に分割し、冷蔵室扉101に近く、比較的高温となる前面側の空間に面した仕切りトレイ2(この場合、トレイではなく壁となる)の表面には比較的低い融点を有する蓄冷手段1aを設置し、冷却風路1010に近く、比較的低温となる背面側の空間に面した仕切りトレイ2の裏面には比較的高い融点を有する蓄冷手段1cを設置してもよい。このようにチルド室200の内部を前後方向に分割することにより、融点が低い蓄冷手段1aが設置されている前面側空間の空気温度は低下し、融点が高い蓄冷手段1cが設置されている背面側空間の空気温度は上昇し、結果的にチルド室200内の空気温度は空間的に平均化されて、前後方向に対する温度分布の不均一性が抑制されるという効果が得られる。
また、本実施の形態3では、図7に示されるように、チルド室200の内部を、仕切りトレイ2でチルド室上側空間200a及びチルド室下側空間200bの2個の空間に分割しているが、分割数は2個に限定するものではなく3個以上でもよい。3個以上の空間に分割した場合でも、その空間の温度に適した融点を有する蓄冷手段を設置することにより、空間的温度分布の不均一性および時間的温度変動が抑制されて食品の保存品質を向上させることが可能となり、また各空間に用途に応じて食品を保存することにより、整理性が向上するという効果が得られる。
[実施の形態4]
図8は、本発明の実施の形態4に係るチルド室200の概略構成図である。
図8において、実施の形態2と同一の箇所については説明を割愛するが、本実施の形態4では、チルドケース201の下面に設置された蓄冷手段1a,1b,1cの上に、アルミニウムやステンレスなどの金属、または高熱伝導性樹脂などの熱伝導率の高い材料で形成された熱伝導性プレート3を設置し、熱伝導性プレート3を介してチルド室200内空気やチルド室内保存食品205と、蓄冷手段1a,1b,1cを接触させている。なお、熱伝導性プレート3を構成する材料の熱伝導率は、例えば、10W/m・K以上が好ましい。
次に、図8を用いて動作の一例について説明する。動作についても、実施の形態2と同一の箇所については説明を割愛する。
本実施の形態4では、実施の形態2と同様に、チルドケース201の下面に、融点の低い蓄冷手段ほど冷蔵室扉101側に配置されるように、冷蔵室扉101側から蓄冷手段1a,1b,1cの順番で設置することにより、チルド室200内の空気温度は空間的に平均化されて、温度分布の不均一性が抑制され、また蓄冷手段1a,1b,1cのそれぞれの位置において、空気温度が蓄冷手段の融点を中心に平均化され、時間的な温度変動も抑制される。このため、空気によって冷却されるチルド室内保存食品205の温度変動も抑制されて、保存品質の向上を図ることができる。
このとき、本実施の形態4では、図8に示されているように、蓄冷手段1a,1b,1cは、熱伝導性プレート3を介してチルド室200内空気やチルド室内保存食品205と接触しており、熱伝導性プレート3上では、面方向への熱伝導が速くなるため、空間的な温度分布の不均一性がさらに改善され、また通常の樹脂プレートと比較して、蓄冷手段1a,1b,1cと、チルド室200内空気やチルド室内保存食品205との熱交換が促進される。このため、空間的な温度分布の不均一性および時間的温度変動の抑制効果を、さらに向上することができる。
特にチルド室内保存食品205に対しては、蓄冷手段1a,1b,1cが熱伝導性プレート3を介して接触することになるため、チルド室内保存食品205と蓄冷手段1a,1b,1cの間で直接熱交換が行われるので、チルド室内保存食品205に対する温度変動抑制効果を向上することができ、特に温度変動に対する時間応答性が向上するので、チルド室内保存食品205の時間的温度変動抑制への寄与が期待できる。
図8では、熱伝導性プレート3は、実施の形態2で説明したように、チルドケース201の下面に設置された蓄冷手段1a,1b,1cの上に設置されているが、実施の形態1で説明した、チルド室天板202の下面に設置された蓄冷手段1a,1b,1cの下や、実施の形態3で説明した、チルド室200内を分割する仕切りトレイ2の上面に設置された蓄冷手段1aの上や、仕切りトレイ2の下面に設置された蓄冷手段1cの下に設置してもよい。どの場合においても、蓄冷手段1a,1b,1cは、チルド室200内空気に対して、熱伝導性プレート3を介して面しているので、同様の効果が得られる。
[実施の形態5]
図9は、本発明の実施の形態5に係る蓄冷手段の概略構成図である。
図9において、蓄冷剤1は実施の形態1から実施の形態4で説明した蓄冷手段1a,1b,1cと同様に、例えば水や無機塩類、食品添加物等が混合され、その混合比を調整することにより、融点を変更することが可能な潜熱の大きい蓄冷剤である。本実施の形態5では、アルミニウムやステンレスなどの金属、または高熱伝導性樹脂などの熱伝導率の高い材料で形成された熱伝導性ケース4の中に、蓄冷剤1が充填されている。なお、図9(a)の蓄冷剤1が液相時の場合は、熱伝導性ケース4の内壁と所定の空隙5を設けて蓄冷剤が充填されている。また、図9(b)の蓄冷剤1が固相時の場合は、熱伝導性ケース4内部全体に蓄冷剤1が充満するようになっている。
次に、図9を用いて動作の一例について説明する。
実施の形態1から実施の形態4で説明した蓄冷手段1a,1b,1cを、図9で示した、熱伝導性ケース4内に充填された蓄冷剤1に置き換えたとき、熱伝導性ケース4の表面上における熱伝導、および熱伝導性ケース4を介しての蓄冷剤1とチルド室200内空気との熱交換が促進されるので、空間的温度分布の不均一性および時間的温度変動の抑制効果を、さらに向上することが可能となる。
ここで、チルド室200の空気温度が蓄冷剤1の融点より高い場合には、蓄冷剤1は融解して空気から吸熱し、逆に空気温度が蓄冷剤1の融点より低い場合には、蓄冷剤1は凝固して空気に発熱するという、液相と固相の相変化を繰り返す。この相変化において、液相から固相に変化する場合には、蓄冷剤1が膨張する。このため、蓄冷剤1を液相状態で熱伝導性ケース4内に充満させた場合、蓄冷剤1の凝固時に熱伝導性ケース4が破損してしまう可能性がある。
そこで本実施の形態5では、図9のように、図9(b)の固相時に蓄冷剤1が充満するように、図9(a)の液相時には膨張率を考慮した空隙5を設けて、より詳しくは、熱伝導性ケース4内容積の5〜10%の空隙5を確保して、蓄冷剤1を充填するのがよい。蓄冷剤1が固相時に充満するように充填することで、蓄冷剤1と熱伝導性ケース4の内壁との接触面積が最大となり、蓄冷剤1の性能を確実に引き出すことが可能となる。
1 蓄冷剤、1a 蓄冷手段(融点:低)、1b 蓄冷手段(融点:中)、1c 蓄冷手段(融点:高)、2 仕切りトレイ、3 熱伝導性プレート、4 熱伝導性ケース、5 空隙、11a 空気温度変動幅に対する食品の重量変化、11b 食品温度変動幅に対する食品の重量変化、12a 空気温度変動幅に対する食品の色差、12b 食品温度変動幅に対する食品の色差、13a 蓄冷手段なしのときの庫内空気温度履歴、13b 蓄冷手段上面設置のときの庫内空気温度履歴、13c 蓄冷手段下面設置のときの庫内空気温度履歴、14 蓄冷手段温度履歴、15a −15±2℃保存における食品の重量変化、15b −18±3℃保存における食品の重量変化、15c −18±3℃(デフロストあり)保存における食品の重量変化、16a −15±2℃保存における食品のドリップ量、16b −18±3℃保存における食品のドリップ量、16c −18±3℃(デフロストあり)保存における食品のドリップ量、17a −15±2℃保存における食品の色差、17b −18±3℃保存における食品の色差、17c −18±3℃(デフロストあり)保存における食品の色差、100 冷蔵室、101 冷蔵室扉、110 冷蔵室戻り風路、200 チルド室、200a チルド室上側空間、200b チルド室下側空間、201 チルドケース、202 チルド室天板、203 チルド室吹出口、204 チルド室吸込口、205 チルド室内保存食品、205a チルド室上側空間内保存食品、205b チルド室下側空間内保存食品、300 切替室、400 冷凍室、500 野菜室、510 野菜室戻り風路、1000 冷蔵庫、1001 圧縮機、1002 冷却器、1003 空気搬送装置、1010 冷却風路、1020 戻り風路、A チルド室吹出空気、B 冷蔵室・チルド室戻り空気。

Claims (10)

  1. 断熱筐体内に形成された複数の貯蔵室と、
    前記複数の貯蔵室の後方に設けられ、冷気を生成する冷却器と、
    冷蔵庫内の空気を循環させる空気搬送手段と、
    前記複数の貯蔵室のそれぞれの前面側に設けられた複数の扉と、
    前記複数の貯蔵室の後方に、前記冷却器によって生成された冷気を通風するための冷却風路とを備えた冷蔵庫であって、
    前記複数の貯蔵室のうち、少なくとも1つの貯蔵室の内部に、融点の異なる複数の蓄冷手段が設けられた
    ことを特徴とする冷蔵庫。
  2. 前記複数の蓄冷手段は、
    前記複数の蓄冷手段が設けられた貯蔵室の扉側から該貯蔵室の背面側に向かって、融点の低い蓄冷手段から順に配置された
    ことを特徴とする請求項1に記載の冷蔵庫。
  3. 前記複数の蓄冷手段が設けられた貯蔵室の内部に、前記冷却器により冷却された空気が供給される空気吹出口が設けられ、
    前記複数の蓄冷手段は、
    該貯蔵室内側上面近傍、且つ前記空気吹出口の風下側に配置される
    ことを特徴とする請求項1又は2に記載の冷蔵庫。
  4. 前記複数の蓄冷手段が設けられた貯蔵室の内部に、該貯蔵室内の空気が排出されて前記冷却器に搬送されるための空気吸込口が設けられ、
    前記複数の蓄冷手段は、
    該貯蔵室内側下面、且つ前記空気吸込口の風上側に配置される
    ことを特徴とする請求項1又は2に記載の冷蔵庫。
  5. 前記複数の蓄冷手段が設けられた貯蔵室の内部に、該貯蔵室の内部を複数の空間に分割する仕切りトレイが設けられ、
    前記仕切りトレイの表面及び裏面には、
    前記複数の蓄冷手段の少なくともいずれかがそれぞれ設置される
    ことを特徴とする請求項1に記載の冷蔵庫。
  6. 前記複数の蓄冷手段の貯蔵室内空間側表面に、
    金属又は高熱伝導性樹脂からなる良熱伝導材料によって形成された熱伝導性プレートが設置された
    ことを特徴とする請求項1乃至5のいずれかに記載の冷蔵庫。
  7. 前記複数の蓄冷手段は、
    金属又は高熱伝導性樹脂からなる良熱伝導材料によって形成されている熱伝導性ケース内に、空隙を設けて蓄冷剤が充填されている
    ことを特徴とする請求項1乃至6のいずれかに記載の冷蔵庫。
  8. 前記複数の蓄冷手段の融点は、
    前記冷却風路から前記複数の蓄冷手段が設けられる貯蔵室の内部に供給される冷却空気温度以上、該貯蔵室の設定温度以下の範囲内である
    ことを特徴とする請求項1乃至7のいずれかに記載の冷蔵庫。
  9. 前記複数の蓄冷手段が設けられる貯蔵室はチルド室であり、
    前記複数の蓄冷手段の融点は、−5乃至1℃の範囲内である
    ことを特徴とする請求項1乃至8のいずれかに記載の冷蔵庫。
  10. 前記複数の蓄冷手段が設けられる貯蔵室は切替室であり、
    前記複数の蓄冷手段の融点は、−18乃至−5℃の範囲内である
    ことを特徴とする請求項1乃至8のいずれかに記載の冷蔵庫。
JP2012060015A 2012-03-16 2012-03-16 冷蔵庫 Pending JP2013194941A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012060015A JP2013194941A (ja) 2012-03-16 2012-03-16 冷蔵庫

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012060015A JP2013194941A (ja) 2012-03-16 2012-03-16 冷蔵庫

Publications (1)

Publication Number Publication Date
JP2013194941A true JP2013194941A (ja) 2013-09-30

Family

ID=49394140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012060015A Pending JP2013194941A (ja) 2012-03-16 2012-03-16 冷蔵庫

Country Status (1)

Country Link
JP (1) JP2013194941A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015072327A1 (ja) * 2013-11-12 2015-05-21 シャープ株式会社 蓄熱材容器およびそれを用いた保冷庫
JP2015222128A (ja) * 2014-05-22 2015-12-10 パナソニックIpマネジメント株式会社 冷蔵庫
CN107477951A (zh) * 2017-09-06 2017-12-15 合肥美的电冰箱有限公司 带风门的多温区制冷结构、及其控制方法
CN107560279A (zh) * 2017-09-06 2018-01-09 合肥美的电冰箱有限公司 多温区的制冷结构、及其控制方法
CN108518909A (zh) * 2015-05-21 2018-09-11 青岛海尔股份有限公司 冰箱

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949888U (ja) * 1982-09-24 1984-04-02 シャープ株式会社 冷凍庫の急冷トレイ
JPH02143074A (ja) * 1988-11-25 1990-06-01 Matsushita Refrig Co Ltd 蓄冷型保冷庫
JP2002337537A (ja) * 2000-05-26 2002-11-27 Denso Corp 車両用空調装置
JP2004212022A (ja) * 2003-01-09 2004-07-29 Sanyo Electric Co Ltd 冷蔵庫
JP2009192109A (ja) * 2008-02-12 2009-08-27 Mitsubishi Electric Corp 冷蔵庫
JP2010025533A (ja) * 2008-06-17 2010-02-04 Panasonic Corp 冷蔵庫
JP2010043779A (ja) * 2008-08-12 2010-02-25 Mitsubishi Electric Corp 蓄冷パネルおよびこれを備えた冷凍・冷蔵装置
JP3170690U (ja) * 2011-04-26 2011-09-29 株式会社Sts研究所 蓄熱材
JP2012007759A (ja) * 2010-06-22 2012-01-12 Hitachi Appliances Inc 冷蔵庫
JP2012021691A (ja) * 2010-07-14 2012-02-02 Hitachi Appliances Inc 冷蔵庫

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949888U (ja) * 1982-09-24 1984-04-02 シャープ株式会社 冷凍庫の急冷トレイ
JPH02143074A (ja) * 1988-11-25 1990-06-01 Matsushita Refrig Co Ltd 蓄冷型保冷庫
JP2002337537A (ja) * 2000-05-26 2002-11-27 Denso Corp 車両用空調装置
JP2004212022A (ja) * 2003-01-09 2004-07-29 Sanyo Electric Co Ltd 冷蔵庫
JP2009192109A (ja) * 2008-02-12 2009-08-27 Mitsubishi Electric Corp 冷蔵庫
JP2010025533A (ja) * 2008-06-17 2010-02-04 Panasonic Corp 冷蔵庫
JP2010043779A (ja) * 2008-08-12 2010-02-25 Mitsubishi Electric Corp 蓄冷パネルおよびこれを備えた冷凍・冷蔵装置
JP2012007759A (ja) * 2010-06-22 2012-01-12 Hitachi Appliances Inc 冷蔵庫
JP2012021691A (ja) * 2010-07-14 2012-02-02 Hitachi Appliances Inc 冷蔵庫
JP3170690U (ja) * 2011-04-26 2011-09-29 株式会社Sts研究所 蓄熱材

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015072327A1 (ja) * 2013-11-12 2015-05-21 シャープ株式会社 蓄熱材容器およびそれを用いた保冷庫
JP2015222128A (ja) * 2014-05-22 2015-12-10 パナソニックIpマネジメント株式会社 冷蔵庫
CN108518909A (zh) * 2015-05-21 2018-09-11 青岛海尔股份有限公司 冰箱
CN108518909B (zh) * 2015-05-21 2020-09-29 青岛海尔股份有限公司 冰箱
CN107477951A (zh) * 2017-09-06 2017-12-15 合肥美的电冰箱有限公司 带风门的多温区制冷结构、及其控制方法
CN107560279A (zh) * 2017-09-06 2018-01-09 合肥美的电冰箱有限公司 多温区的制冷结构、及其控制方法
WO2019047564A1 (zh) * 2017-09-06 2019-03-14 合肥美的电冰箱有限公司 带风门的多温区制冷结构、及其控制方法
CN107560279B (zh) * 2017-09-06 2020-10-09 合肥美的电冰箱有限公司 多温区的制冷结构、及其控制方法

Similar Documents

Publication Publication Date Title
KR101306536B1 (ko) 냉장고
WO2012157263A1 (ja) 冷蔵庫
JP2013194941A (ja) 冷蔵庫
JP2013040745A (ja) 冷蔵庫
CN107763932B (zh) 冰箱
WO2018189777A1 (ja) 冷蔵庫
JP2012007760A (ja) 冷蔵庫
JP2006226635A (ja) 冷蔵庫
JP2010281511A (ja) 冷蔵庫
JP2009250476A (ja) 冷蔵庫
JP2011017472A (ja) 冷蔵庫
JP2010127544A (ja) 冷蔵庫
JPH1163785A (ja) 冷蔵庫
JP2008082580A (ja) 冷凍庫
JP2008057919A (ja) 冷蔵庫
JP6028220B2 (ja) 冷蔵庫
JP2015038391A (ja) 冷蔵庫
JP2014062669A (ja) 冷蔵庫
WO2022172317A1 (ja) 冷蔵庫
WO2017163965A1 (ja) 冷蔵庫
TWI747106B (zh) 冰箱
JP2008304165A (ja) 冷蔵庫
JP2012063026A (ja) 冷蔵庫
JPH0415477A (ja) 解凍室付冷蔵庫
JP2010236746A (ja) 冷気循環式冷蔵庫

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140624