JP2013040745A - 冷蔵庫 - Google Patents

冷蔵庫 Download PDF

Info

Publication number
JP2013040745A
JP2013040745A JP2011179461A JP2011179461A JP2013040745A JP 2013040745 A JP2013040745 A JP 2013040745A JP 2011179461 A JP2011179461 A JP 2011179461A JP 2011179461 A JP2011179461 A JP 2011179461A JP 2013040745 A JP2013040745 A JP 2013040745A
Authority
JP
Japan
Prior art keywords
cooler
refrigerator
heat
temperature
defrosting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011179461A
Other languages
English (en)
Other versions
JP5571044B2 (ja
Inventor
Akiyoshi Ohira
昭義 大平
Ryoji Kawai
良二 河井
Yoshiaki Fujiki
義明 藤木
Hirokazu Nakamura
浩和 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2011179461A priority Critical patent/JP5571044B2/ja
Priority to KR1020120087136A priority patent/KR101445924B1/ko
Priority to CN201210285425.2A priority patent/CN102954645B/zh
Publication of JP2013040745A publication Critical patent/JP2013040745A/ja
Application granted granted Critical
Publication of JP5571044B2 publication Critical patent/JP5571044B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • F25D17/045Air flow control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/067Evaporator fan units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • F25D21/004Control mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/053Compression system with heat exchange between particular parts of the system between the storage receiver and another part of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/11Sensor to detect if defrost is necessary

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Defrosting Systems (AREA)

Abstract

【課題】
冷蔵庫を運転したときに発生し外部に排気している熱および外部が有する熱を有効利用して、除霜に要する電力量および除霜時間を低減する。
【解決手段】
冷蔵庫1は、冷蔵室2と冷凍室4、5と、冷蔵室と冷凍室を冷却する冷気を発生する冷却器12および圧縮機24を備えた冷凍サイクルとを有する。さらに、冷却器で発生した冷気を冷蔵室と冷凍室の少なくともいずれかに送風する庫内ファン9と、冷却器の下方に配置された電気ヒータ22と、冷蔵室を流通して温度上昇した空気と、圧縮機で発生する熱や外気の熱を蓄熱した不凍液と、庫内ファンや不凍液を循環させる循環ポンプ51等を制御する制御手段66とを備える。除霜運転時に、制御手段は、ヒータで冷却器を加熱させるまで冷蔵室を流通した空気および圧縮機や外気の熱により冷却器を加熱させる。
【選択図】図3

Description

本発明は冷蔵庫に係り、特に冷蔵庫の除霜運転に関する。
従来の冷蔵庫の例が特許文献1に記載されている。この公報に記載の冷却庫では、冷却器に配管接続した吸熱器を非冷凍領域(例えば、冷蔵室や野菜室、機械室)に設けている。そして除霜時には、吸熱器内に充填した不凍液を循環ポンプで循環させ、冷却器の加熱源として利用する。これにより、除霜時の消費電力量を低減している。また、吸熱器内に蓄えた熱源を利用することにより、一般的に使用される電気ヒータ(除霜ヒータ)を省いている。これにより、庫内の温度を一時的に著しく上昇させることなく、従来よりも消費電力量を低減した除霜を実施できると記載されている。
従来の冷蔵庫の他の例が、特許文献2に記載されている。この公報に記載の冷蔵庫では、冷凍サイクルの放熱器や圧縮機モータの排熱を不凍液やオイルに蓄熱し、除霜時にこの蓄熱を利用して従来の電気ヒータ(除霜ヒータ)を使用した場合に比べて消費電力量を低減している。不凍液やオイルへの蓄熱は、ヒートパイプや循環ポンプを介して冷却器に伝えられ、除霜に利用されている。
従来の冷蔵庫のさらに他の例が、特許文献3に記載されている。この公報に記載の冷蔵庫では、一般的に使用される除霜ヒータの他に、冷凍サイクルの運転期間中に圧縮機から発生する排熱を不凍液に貯えて蒸発器に付着した霜の除去に利用している。
特開2009−92371号公報 特開昭59−81479号公報 特開平11−23135号公報
上記特許文献1に記載の冷蔵庫では、少ないエネルギーで霜を加熱(冷却器を加熱)するために非冷凍領域にタンクを設け、タンク内部に充填した不凍液に除霜時に必要なエネルギーを蓄熱している。これにより、除霜において従来使用されてきた電気ヒータを必要とせず、大幅な消費電力量の削減が可能になっている。ここで、非冷凍領域とは、例えば、冷蔵室や野菜室、機械室(圧縮機設置部)である。この公報に記載の冷蔵庫では、霜を解かすのに0℃以上の不凍液を必要としているので、不凍液を充填した吸熱器は少なくとも氷点以上の温度帯に設置する必要がある。
しかしながら、冷蔵室や野菜室の温度は平均5℃程度であり、不凍液に蓄える熱量の確保は容易ではなく、霜を解かすのに必要な熱量を十分得ることが困難である。例えば、不凍液として一般的なブライン(主成分:エチレングリコール)を使用すると、濃度70Wt%(凍結温度約−40℃)、比熱2.891kJ/(kgK)、密度約1110kg/mとし、通常冷却時の着霜量として霜0.1kgを解かすのに要する不凍液の量を見積もると、最低でも約2L必要となる。ここで、不凍液に蓄熱される熱量が霜の融解潜熱に等しいと仮定する。不凍液に蓄熱される熱量は、冷蔵室や野菜室の室温が平均約5℃であるので、霜が解ける温度である0℃との差として温度差5Kと見積もった。
これは、冷蔵庫の庫内収納スペースがそれだけ(約2L)減少することを意味するので、不凍液単独使用による加熱では利便性が低下する。また、除霜に必要な熱源を非冷凍領域に設置したタンク内に蓄熱できないと、冷却器の霜を全て解かすことができなくなる。さらに、冷蔵温度帯と冷凍温度帯を有する冷蔵庫では除霜時間も重要で、除霜時間が長くなると冷凍室の温度上昇が大きくなり、冷凍食品の保存性に悪影響を及ぼすおそれがある。このように、冷蔵庫の除霜においては、必要となる熱量だけでなく循環する不凍液と冷却器(または霜)との伝熱現象も重要になる。例えば、除霜中に不凍液を充填したタンク内の温度が低下すると霜との温度差が小さくなり、霜が融解するまでの時間が長くなる。
なおこの特許文献1では、除霜時に冷却器に成長した霜の冷熱エネルギーを有効利用する場合に、消費電力量まで低減することについては開示がない。また、不凍液を用いた加熱手段だけを使用するので、着霜量が多いと除霜に要する時間が長くなり、その間冷凍運転の停止により冷凍室の温度が上昇するという不具合を発生するおそれがある。したがって、着霜量に応じた除霜運転を実施できない。
霜は主として冷却器に発生するが、冷却器以外の例えば冷却器が収納されている風路表面(固体壁面)あるいは庫内循環ファン近傍にも霜が成長することがある。不凍液を用いた除霜方式では、直接冷却器を加熱することができるので、加熱源(不凍液)と冷却器に付着した霜との伝熱性能は向上する。しかしながら、冷却器から離れた場所の霜については、直接加熱による効果が期待できないので、不十分にならざるを得ない。
特許文献2に記載の冷蔵庫においても特許文献1に記載のものと同様に、冷凍サイクルの放熱器や圧縮機モータからの排熱を不凍液やオイルに蓄熱し、除霜時にこれを利用している。これにより、従来の電気ヒータ(除霜ヒータ)を省いて消費電力量を低減している。しかしながらこの公報に記載の冷蔵庫も上記特許文献1に記載の冷蔵庫と基本構成が同じであるから、上述したように大きなタンクが必要となったり、除霜時間が長くなったりするおそれがある。
また、特許文献3に記載の冷蔵庫では、蒸発器周辺の空気を自然対流で加熱して霜を解かすものであり、必ずしも熱伝達が促進されず除霜に長時間を要するおそれがある。
本発明は、上記従来技術の不具合に鑑みなされたものであり、その目的は、冷蔵庫を運転したときに発生し外部に排気している熱および外部が有する熱を有効利用して、除霜に要する電力量および除霜時間を低減することにある。また本発明の目的は、除霜運転に使用する不凍液が配管の途中で凍結する不具合を回避して、冷蔵庫の信頼性を高めることにある。本発明のさらに他の目的は、不凍液を収容するタンクを大型化することなく、除霜に使用する電力量および除霜時間を低減することにある。
上記目的を達成する本発明の冷蔵庫は、冷蔵室と冷凍室を有し、前記冷蔵室と前記冷凍室を冷却する冷気を発生する冷却器および圧縮機を備えた冷凍サイクルと、前記冷却器で発生した冷気を前記冷蔵室へ導く流路を開閉する第1の開閉手段と、前記冷却器で発生した冷気を前記冷凍室へ導く流路を開閉する第2の開閉手段と、前記冷却器で発生した冷気を前記冷蔵室と前記冷凍室の少なくともいずれかに送風する庫内ファンと、前記冷却器の下方に配置され電気ヒータを有する第1の加熱手段と、前記第1、第2の開閉手段と前記庫内ファンとを含み、前記冷蔵室を流通して温度上昇した空気で前記冷却室を加熱する第2の加熱手段と、前記冷却器に当接して配置され内部を不凍液が流通する配管と不凍液を循環させる循環ポンプと前記圧縮機で発生する熱および外気の熱の少なくともいずれかを不凍液に蓄熱させる機械室ファンとを有する第3の加熱手段と、前記第1、第2の開閉手段と前記庫内ファンと前記循環ポンプと前記機械室ファンと前記第1の加熱手段の動作を制御する制御手段とを備え、除霜運転時に前記制御手段は、前記第1ないし第3の加熱手段の少なくともいずれかを用いて前記冷却器を加熱し、この冷却器部を流通した空気で前記冷蔵室を冷却するようにしたことを特徴とする。
そしてこの特徴において、前記制御手段は除霜運転時に前記第1の加熱手段が稼動する前に前記第2および第3の加熱手段を稼動させることを特徴とする。前記制御手段は、前記第2および第3の加熱手段による加熱後、前記第1の加熱手段を作動させるものでもよく、前記第2の加熱手段は、冷蔵温度帯の庫内空気を前記庫内ファンで庫内循環させた後の空気を用いるものであり、前記第3の加熱手段は,不凍液にプラス温度帯の熱を蓄熱し、前記不凍液を前記冷却器に熱輸送するのがよい。また、前記第3の加熱手段が前記冷却器へ当接する部分の不凍液出口近傍に除霜センサを設け、この除霜センサが検出した温度が除霜開始から予め定めた時間内に氷点を超える所定温度に達しないときに、前記制御手段は、前記第2および第3の加熱手段の加熱に加え前記第1の加熱手段による加熱を作動させるものでもよい。
また、上記特徴において、前記第3の加熱手段が前記冷却器へ当接する部分の不凍液出口近傍に除霜センサを設け、前記制御手段は、前記除霜センサが検出した温度が不凍液の凍結温度を超えるまで前記循環ポンプを作動させないことが望ましく、前記第2の加熱手段は前記冷却器の着霜をこの着霜の外表面側から除霜し、前記第3の加熱手段は前記冷却器の着霜を前記冷却器に接触する面側から除霜することが好ましい。さらに、前記制御手段は、前記第2の加熱手段で前記冷却器に付着した霜を加熱して発生した冷気を前記冷蔵室に導くよう前記第1の開閉手段を作動させるものがよい。
本発明によれば、冷蔵庫の除霜時に、電気(除霜ヒータ)エネルギーと庫内熱エネルギーと庫外熱エネルギーの3種の熱源を利用しているので、冷蔵庫を運転したときに発生し外部に排気している熱および外部の空気が有する熱を有効利用して、除霜に要する電力量および除霜時間を低減できる。また、除霜運転に使用する不凍液が配管の途中で凍結する不具合を回避することにより、冷蔵庫の信頼性が向上する。さらに、不凍液を収容するタンクを大型化することなく、除霜に使用する電力量および除霜時間を低減できる。
本発明に係る冷蔵庫の一実施例の正面図である。 図1に示した冷蔵庫の側面縦断面図である。 図1に示した冷蔵庫の側面縦断面図であり、図2とその幅方向位置を変えた図である。 図1に示した冷蔵庫が備える冷却器周辺の図であり、背面側断面図である。 除霜に必要な熱量を説明するグラフである。 除霜に必要な電力量を説明するグラフである。 除霜運転の一実施例のタイムチャートである。 図7に示した除霜運転のフローチャートである。 冷却器における霜の融解状況を説明する図である。 除霜運転の他の実施例のタイムチャートである。 図10に示した除霜運転のフローチャートである。 除霜運転のさらに他の実施例のタイムチャートである。 除霜運転のさらに他の実施例のタイムチャートである。 図13に示した除霜運転のフローチャートである。
初めに、本発明に係る冷蔵庫の主たる特徴を述べる。本発明の冷蔵庫1は、第1に電気エネルギー(除霜ヒータ)、第2に庫内熱エネルギー、第3に庫外熱エネルギーの3種の熱源を用いて除霜する。第1の電気エネルギーによる除霜は、従来から用いている電気ヒータ(例えば、冷却器の下部に設けたガラス管ヒータ)による加熱であるが、その除霜の態様は、以下に詳述するように従来とは異なっている。電気ヒータは、冷却器周囲の空気を加熱し、空気を媒介して間接的に霜を解かす。第2の庫内熱エネルギーによる除霜では、庫内ファンを用いて氷点以上のプラス温度帯に維持された冷蔵室(野菜室含む)の空気を循環して、冷却器に付着した霜を解かす。冷蔵室の庫内熱エネルギーとは、言い換えると、冷蔵室の壁面を伝わって庫外から侵入してくる熱を除霜時の熱源として有効に活用するエネルギーである。第3の庫外熱エネルギーによる除霜では、庫外の熱あるいは機械室に設けた圧縮機や放熱器の熱を、新たに設けたタンク内の蓄熱媒体に蓄熱し、除霜時にその熱を利用する。
前述した特許文献1、2に記述されているように、庫外熱エネルギー単独で除霜すると、除霜時に必要となる熱量を得るには、タンク内に充填する不凍液温度(蓄熱時の温度)を上げるかまたは不凍液の量を増やして、蓄熱量すなわち加熱量を増やすしかない。
ところで、冷蔵庫の除霜は通常1日に1回であるから、不凍液を充填したタンクを庫外に設置すれば、除霜のインターバルの1日間に不凍液を循環させなければ外気温度(例えば30℃)と等しくすることは可能である。しかし、庫外の温度以上に不凍液の温度を高めるためには、圧縮機や放熱器から放熱される熱の再利用(熱回収)が必要となる。なお、第3の庫外熱エネルギー単独での除霜は、不凍液を充填したタンクの設置場所や除霜時間の問題が生じる。本発明ではこれらの不具合を解決するために、除霜手段として第1、第2、第3の手段を有し、これら3種の手段を効率的に組み合わせ、除霜時の消費電力量の低減と同時に、除霜中に霜の冷熱エネルギーを利用する際の投入エネルギーを少なくして冷蔵室を冷却している。
また、不凍液の凍結温度以下に到達する急速冷凍後に除霜運転を行う際には、庫外熱エネルギーを蓄熱した不凍液が凍結温度以下で循環することがないように、冷却器の温度が不凍液の凍結温度以上になってから不凍液を循環させている。したがって、不凍液が凍結温度低下になって生じる、ポンプ動力の増加を抑制でき、消費電力量を低減できる。さらに、比熱の低下による不凍液タンクの大型化も抑制できる。
以下に、本発明に係る冷蔵庫の一実施例を、具体的に図面を用いて説明する。図1は、冷蔵庫1の正面図である。冷蔵庫1は、上方から冷蔵室2、製氷室3、上段冷凍室4、下段冷凍室5、野菜室6を備えて構成されている。冷蔵室2は、左右に分割された形状の冷蔵室扉2a、2bを備え、製氷室3および上段冷凍室4、下段冷凍室5、野菜室6は、それぞれ引き出し式の製氷室扉3a、上段冷凍室扉4a、下段冷凍室扉5a、野菜室扉6aを備えている。以下では、冷蔵室扉2a、2b、製氷室扉3a、上段冷凍室扉4a、下段冷凍室扉5a、野菜室扉6aを、単に扉2a〜6aと称す。
また、冷蔵庫1には、各扉2a〜6aの開閉状態をそれぞれ検出する図示しない扉センサと、扉開放状態と判定された状態が所定時間、例えば、1分間以上継続された場合に使用者に報知する図示しないアラームと、冷蔵室2や冷凍室5の温度設定をする図示しない温度設定器等が備えられている。
図2に、図1に示した冷蔵庫1の側面断面図(同図(a))、および機械室56部分の縦断面図を示す。図2(a)に示すように、冷蔵庫1の庫外と庫内は、発泡断熱材を充填して形成された断熱箱体10により隔てられている。冷蔵庫1の断熱箱体10は、複数の真空断熱材25を実装している。庫内は、上方に配置した断熱仕切壁28により、冷蔵室2と上段冷凍室4及び製氷室3(図1参照)に仕切られている。また、下方に配置した断熱仕切壁29により、下段冷凍室5と野菜室6とに仕切られている。冷蔵室2の扉2a、2bの庫内側には、複数の扉ポケット32が備えられ、冷蔵室2は複数の棚36により縦方向に複数の貯蔵スペースに区画されている。上段冷凍室4と下段冷凍室5の間には、冷凍室前面仕切り40が設けられている。
製氷室3、および上段冷凍室4、下段冷凍室5、野菜室6では、各室3〜6の前方に備えられた扉3a〜6aと一体に収納容器3b〜6bがそれぞれ設けられており、扉3a〜6aの取手部(図示せず)に手を掛けて手前側に引き出すことにより収納容器3b〜6bが引き出せるようになっている。なお、図2では製氷室3が示されていないが、上述したとおり、製氷室3も同様の構成となっている。
下段冷凍室5の略背部には冷却器収納室8が形成されており、この冷却機収納室8内に冷却器7が設けられている。冷却器7の上方には庫内ファン9が設けられている。この庫内ファン9により冷却器7に送風された空気が、冷却器7と熱交換して冷やされ冷気となって、冷蔵庫1の各部に送られる。すなわち、冷蔵室送風ダクト11および上段冷凍室送風ダクト12、下段冷凍室送風ダクト13、図示しない製氷室送風ダクトを介して、冷蔵室2および上段冷凍室4、下段冷凍室5、製氷室3の各室へ冷気が送られる。
冷蔵庫1内の循環空気による冷却の様子を、図3を併用して説明する。図3は、図2(a)と異なる断面位置での冷蔵庫1の側面断面図である。各室2〜5への冷気の送風は、冷蔵室ダンパ(以下Rダンパとも称す)20と冷凍室ダンパ(以下Fダンパとも称す)50の開閉により制御される。具体的には、Rダンパ20が開状態でFダンパ50が閉状態の時には、冷気は冷蔵室送風ダクト11を経て多段に設けられた吹き出し口2cから冷蔵室2に送られる。冷蔵室2の背面側から前面側へ流れた冷気71は、冷蔵室2の冷却を終えた後、冷蔵室2の下部に設けた図示しない冷蔵室戻り口に流入し、その後冷却器7に戻される。
野菜室6の冷却については種々の方法がある。例えば、冷蔵室2を冷却した後に野菜室6に冷気を直接送る方法や、冷却器7で発生した冷気を冷蔵室2を経由しないで野菜室6に単独で送る方法がある。後者の場合には、野菜室6に供給する冷気を制御するために、野菜室6の専用のダンパを必要とする。本実施例では、野菜室6に流入した冷気73を、断熱仕切壁29の下部前方に設けた野菜室戻り口6dから野菜室戻りダクト18を介して、野菜室戻り吐出口18aに導き、冷却器7へ流入させている。
冷凍室3に導かれた冷気72は、上段冷凍室4および下段冷凍室5、製氷室3を順次冷却した後、冷凍室戻り口17から冷却器7に戻される。冷却器7の下部には除霜ヒータ22が設けられている。除霜時に発生したドレン水は樋23に一旦落下した後、ドレン孔27を通じて機械室56に配置した圧縮機24の頭部に設けた蒸発皿21に放出される。機械室56は、冷蔵庫1の背面の最下部であって、断熱箱体10の外側に形成されており、機械室カバー91で覆われている。
図2(b)に、機械室カバー91を取り去った機械室56部分を、背面図で示す。機械室カバー91には機械室56に外気を取り込むための吸入口96と、機械室56内の空気を外部へ放出するための吐出口97が形成されている。これらは、図示を省略したが、鎧板構造になっており、空気以外のものが流通するのを防いでいる。
吸入口92から流入した空気は、図2(b)で矢印で示したように、冷凍サイクルを形成する放熱器92と熱交換した後、機械室ファン68により圧縮機24側へ送風される。圧縮機支持部93で支持された圧縮機24は、回転数の上昇とともに増大する熱を発生する。機械室56に送られた外気は、この圧縮機24が発生した熱を吸収してさらに温度上昇し、その熱を蓄熱タンク52に貯えられた不凍液に蓄熱タンク52の容器壁から伝熱する。その後、機械室カバー91に形成された吐出口97から冷蔵庫1外へ放出される。この一連の外気の流れは、主として機械室ファン68が引き起こす。
図3は、庫外熱エネルギーを利用する構造を説明するための図である。上述したように、機械室56には不凍液57を充填した蓄熱タンク52が設けられている。蓄熱タンク52は、圧縮機24および/または機械室56に設けた放熱器92から放熱される熱を不凍液57に回収するものであるから、機械室56内に設けた方が蓄熱量を増やし易い。蓄熱タンク52を機械室56に設置すると、例えば室温30℃の場合、少なくとも庫外温度である30℃まで蓄熱タンク52内の不凍液57の温度を上昇させることができる。なお、図2(b)に示す圧縮機24と蓄熱タンク52、機械室ファン68の配置は一例に過ぎず、冷蔵庫1の容量等により最適な配置が決定される。
通常の冷蔵庫1では、1日に1回除霜運転を実施する。庫外熱エネルギー利用除霜モードである不凍液57を使う冷蔵庫1の運転では、除霜を実施した後でも不凍液57の温度を室温レベルにまで昇温させることが可能である。不凍液57に室温以上の熱量を蓄熱するには、機械室56に設置した圧縮機24や図示しない放熱器からの放熱を積極的に不凍液57に蓄熱させる。例えば、圧縮機24の吐出パイプあるいは圧縮機24から放出される熱を、蓄熱タンク52内の不凍液57と熱交換させて熱回収することにより、不凍液57に蓄熱することができる。また、機械室56に設ける放熱器92には、放熱を促進させるファンが付設されることが多い。そこで、ファンにより送風され放熱器を通過した昇温空気と熱交換可能な場所に、蓄熱タンク52を設置する。
すなわち、パイプ55で蓄熱タンク52と循環ポンプ51を、パイプ53で循環ポンプ51の吐出口と冷却器7を、パイプ52で冷却器7と蓄熱タンク52とを、それぞれ接続する。冷却器7と熱交換した後の不凍液57が、パイプ54内を流れている。蓄熱タンク52内に充填された不凍液57の液面が、パイプ54と蓄熱タンク52の接続位置よりも下にあれば、循環ポンプ51を逆回転させて不凍液循環パイプ58(図4参照)内の不凍液57を回収することもできる。ここで、不凍液循環パイプ58は、冷却器7に直接接触させて設けられている。循環ポンプ51の逆回転により不凍液循環パイプ58内に不凍液57が残らず、冷却運転中の凍結防止や除霜ヒータ22で冷却器7を単独加熱をする際の加熱負荷の低減が可能になる。
図4に、冷蔵庫1の下段冷凍室5の背面側に配置される冷却器7の周辺部を、背面側断面図で示す。冷却器7の上部に除霜センサ41が設置されており、除霜センサ41が検出した温度に基づいて除霜運転に関する制御判定を、制御手段66(図3参照)が実行する。冷却器7の下部には、従来から用いている除霜ヒータ22を配置している。除霜ヒータ22は、電気ヒータを内部に有するガラス管44とガラス管44の周囲に設けた金属の放熱フィン45から構成されている。金属フィン45の代わりに、ガラス管44を二重ガラス管にしてもよい。いずれの除霜ヒータ22も、可燃性冷媒を使用する冷蔵庫1で採用される。庫内で可燃性冷媒が漏れても、外側のガラス管表面温度が可燃性冷媒の発火点温度より低いので、可燃性冷媒の発火を防止できる。ガラス管44の上部には、除霜水滴下防止部43が設けられている。高温に加熱されたガラス管44に除霜水が直接滴下して、急激な温度変化によりガラス管が破損するのを防止する。
冷却器7と不凍液57を熱交換させて冷却器7を加熱するために、冷凍サイクルの冷媒配管とは別に、冷却器7に直接接触するように不凍液循環パイプ58を設けている。そして、この不凍液パイプ58を、冷却器7を構成する各段のフィン間にかしめ加工している。不凍液循環パイプ58内の不凍液52の流れ方向には、上側から下側へあるいは下側から上側へがあるが、本実施例では以下の理由により下側から上側へ流している。
本実施例では、冷却器7に付着した霜が完全に解けた後に、除霜時の信頼性を高めるためさらに除霜ヒータ22単独で冷却器7を加熱している。不凍液循環パイプ58の不凍液流入部を冷却器7の下部に設けているので、冷却器7の下部の温度を上部の温度よりも高くすることができる。すなわち、除霜ヒータ22がONになり、単独加熱に切り替わると、冷却器7では下部から順次上部に向けて温度が上昇し始める。冷却器7の上部に設けた除霜センサ41が所定の温度を検出すると、除霜ヒータ22による加熱が終了する。したがって、除霜ヒータ22が単独加熱に切り替わる前に、冷却器7の下部の温度を高めておけば、消費電力量に大きく影響する除霜ヒータ22による単独加熱時間を短くできる。
このように構成した冷却器7および除霜ヒータ22を用いた除霜運転について、以下に説明する。循環ポンプ51を運転すると、蓄熱タンク52内の不凍液57は配管55、53を経由して冷却器7に設けた不凍液循環パイプ58に流入する。その際、冷却器7に付着した霜と熱交換して霜を解かす。冷却器7で熱交換した不凍液57の温度は低下する。冷却器7を経た不凍液57は蓄熱タンク52に戻され、再び同じ経路を所定時間だけ循環する。
蓄熱タンク52に戻るパイプ54の蓄熱タンク52側の接続部は、不凍液57の液面よりも上の位置に設けている。そのため、循環ポンプ51を逆回転させると循環ポンプ51は不凍液57ではなく空気を送風するので、冷却器7に直接接触している不凍液循環パイプ58内の不凍液57は送風力で蓄熱タンク内52内に押し戻される。これにより、不凍液循環パイプ58内から不凍液57を完全に回収にすることができ、不凍液循環パイプ58内の不凍液57の凍結が防止される。さらに、不凍液循環パイプ58内に不凍液57を残さないので、冷却運転中の凍結防止に加え循環ポンプ51を停止した除霜ヒータ22単独で冷却器7を加熱する時に負荷を低減できる。
以上述べた本発明に係る冷蔵庫1における省エネの様子を図5および図6を用いて説明する。図5は、除霜時に必要な熱量を模式的に示したグラフであり、図6は、除霜時に必要な電力量を示した図である。従来方式では、冷却器7の下部に設けた除霜ヒータ(電気ヒータ)だけから除霜に必要な熱量Qを得て、冷却器7を加熱・除霜していた。したがって、除霜ヒータが加熱する熱量Qeが、除霜に必要な熱量Qに等しい。
これに対して本発明の冷蔵庫1では上述したように、除霜ヒータ22以外の加熱源、すなわち庫内熱エネルギーQinと庫外熱エネルギーQexを利用している。したがって、除霜に用いる熱量Qは、これらの熱源を含んで、Q=Qe’+Qin+Qexとなる。これら3種類の加熱源では、電気ヒータ22による加熱が最も消費電力が大きい。
本発明の冷蔵庫1では、除霜ヒータ22以外に加熱源を有しているので、電気ヒータ22による加熱量Qeをこの加熱量Qeよりも少ない加熱量Qe’とすることができ、除霜に必要な熱量Qがたとえ同じであっても、消費電力量Eは低減可能である。また、庫内熱エネルギーと庫外熱エネルギーを利用した除霜とすることができるので、加熱源と霜との伝熱現象が促進され、除霜に必要な熱量QをQ’に減少させることもできる。これにより、さらに除霜時の消費電力量を低減可能である。
ここで、庫内熱エネルギーQinにより冷却器7を加熱するときは、野菜室6含む冷蔵室2内の空気自体が熱源となる。庫内熱エネルギーQinを得るために必要なエネルギーは、庫内ファン9を稼働させる時のファン動力のみである。庫内ファン9が稼働すると、野菜室6を含む冷蔵室2の空気が冷却器7部に送風されて霜を解かす際の熱源になる。それとともに霜を解かして熱交換して冷気となり、野菜室6を含む冷蔵室2へ戻って冷却源となる。庫外熱エネルギーQexにより冷却器7を加熱するときは、基本的に庫外の空気を熱源としているので、必要な電力は循環ポンプ51を稼働させる時のポンプ動力だけとなる。
従来方式の電力量をEe(=Qe)とすると、上述したように、この電力量値Eeは除霜ヒータにより費やされる電気ヒータの電力量と等しい。一方、本発明の冷蔵庫1では、除霜ヒータ22の電力量は熱量Qe’に相当し、庫内ファン9の電力量は熱量Qinに相当し、循環ポンプ51の電力量は熱量Qexに相当するから、費やされる電力量Ee’は、上記3種の電力量の和に等しくなる。
ここで、除霜ヒータ22による消費電力量は150W程度であるのに対して、庫内ファン9および循環ポンプ51での消費電力量はそれぞれ数W程度であるから、除霜ヒータ22の電力量を削減することが、除霜時の消費電力量の低減に大きく寄与する。したがって、除霜ヒータ22以外の加熱手段により加熱するモードを有している本発明では、除霜ヒータ22で消費される電力量を低減するので、除霜における冷蔵庫1全体の消費電力量をEe’に削減することが可能となる。
次に、図7〜図14を用いて、除霜運転の各種運転モードについて説明する。
[第1モード]
図7および図8は、除霜運転の第1の運転モードについて説明するための図であり、図7は除霜運転のタイムチャート、図8は除霜運転の制御フローチャートである。図7では、冷蔵室ダンパ(Rダンパ)20および冷凍室ダンパ(Fダンパ)50、庫内ファン9、循環ポンプ51、機械室ファン68、除霜ヒータ22を制御手段66が制御したときの、除霜センサ温度Tsおよび冷蔵室温度Tを、各制御機器の動作状態とともに示している。なお制御手段66は、図3に示すように、冷蔵庫1の上部背面側の角部に設けられており、CPU66aや記憶手段66bを有している。
時刻t1は除霜運転開始時であり、時刻t2は除霜ヒータ22の単独加熱に切り替わる時刻であり、時刻t3は除霜運転が終了する時刻である。1日1回、予め定めた時間または圧縮機24の動作時間が所定時間になる(時刻t1)と、冷蔵庫1の除霜運転が開始される(ステップS1)。このとき、除霜センサ41が検出した温度TsはTs=T1である。
ところで、除霜運転が開始される時刻t1よりも前の冷蔵庫1の運転状態は、一般的には冷却運転である。その際、冷蔵室ダンパ(Rダンパ)20を開き冷凍室ダンパ(Fダンパ)50を閉じる冷蔵室冷却運転とするか、冷蔵室ダンパ(Rダンパ)20を閉じ冷凍室ダンパ(Fダンパ)50を開く冷凍室冷却運転をするか、あるいは冷蔵室ダンパ(Rダンパ)20と冷凍室ダンパ(Fダンパ)50の双方を開いて冷蔵室2(野菜室6を含む)と冷凍室4、5の両方とも冷却運転をするのかは、その時の冷蔵庫1内の温度状態により決定される。いずれの状態でも、庫内ファン9はONである。また機械室ファン68は、機械室56に設けたセンサ60が検出した温度に応じて、ONまたはOFFになっており、外気温が高ければ通常ON状態である。
本実施例では、冷蔵室2温度が除霜運転開始の時刻t1前に上昇しているので、冷凍室冷却を実施している。つまり、冷蔵室ダンパ(Rダンパ)20を閉、冷凍室ダンパ(Fダンパ)50を開、庫内ファン9をON、機械室ファン68をONにしている。
制御手段66は、Rダンパ20を開、Fダンパ50を閉、庫内ファン9をON、循環ポンプ51をON、機械室ファン68をON、除霜ヒータ22をOFFに設定する(ステップS2)。すなわち、冷却器7で発生した冷気を冷蔵室2および野菜室6にだけ導き、上下段冷凍室4、5へは導かない。上述したように、除霜運転中は冷却器7が加熱されるので冷却器7が冷凍温度を実現できないおそれがあるからである。
この除霜運転は、庫内ファン9稼働による庫内熱エネルギーと、循環ポンプ稼働51による庫外熱エネルギーを利用した除霜運転である。循環ポンプ51を稼働させると、不凍液循環パイプ58を介して霜が加熱される。その結果、不凍液57の温度が低下する。不凍液循環パイプ58から霜に放熱した分を補うため、機械室ファン68を稼働させて庫外の熱エネルギーの不凍液57への蓄熱を促進させる。蓄熱タンク52には温度センサ60が設けられている。不凍液57の温度を検出して、除霜中の機械室ファン68を制御手段66が制御する。除霜運転中であって外気温度よりも不凍液57の温度が低い場合には、機械室ファン68を稼働させる。
この除霜運転状態時における冷却器7での着霜及び融解状態を、模式的に図9(a)に示す。除霜運転開始時刻t1から除霜ヒータ22による単独加熱に切り替わる時刻t2までの間、庫内ファン9を稼働させて庫内熱エネルギーを利用する除霜では、冷却器7に成長した霜層を主に外側から加熱する。野菜室6を含む冷蔵室2へ循環する循環空気61は霜層内部も通過するが、霜は外側から融解する。一方、循環ポンプ51を稼働させて庫外熱エネルギーを利用する除霜では、冷却器7に設けた不凍液循環パイプ58から霜を加熱する。これにより霜を内側から解かし、融解部分63が形成される。したがって、冷却器7に付着した霜層の外側と内側から融解が生じ、また冷却器7を通過する強制対流によって空気と霜との伝熱が促進され、霜を速く均一に解かすことができる。
図7に戻り、除霜センサ41が検出する温度Tsは冷却器7の温度であるから、除霜運転が始まると不凍液循環パイプ58内の不凍液57等によりその温度TsはTs=T1から霜が解け始めるTs=0℃まで上昇する。ここで、時刻t4からt5までの間は霜が融解している時間で、霜から水に相変化しているので除霜センサ温度TsはほぼTs=0℃=一定となる。この間、庫内ファン9が稼働しているので融解潜熱を循環空気61から奪い、冷却器7を通過した循環空気61が冷却され、循環空気61は野菜室6および冷蔵室2へ導かれて野菜室6および冷蔵室2を冷却する。ここで、庫内ファン9が稼働しているので冷蔵室温度Tは低下する。そして、霜が解けている時刻t4〜t5の間は、安定した冷蔵温度を保つ。
庫内エネルギーと庫外エネルギーを利用した除霜運転を継続した結果、除霜センサ41が検出する温度Tsが氷点温度以上の温度になったら、すなわちTs=T2になったら(ステップS3)、冷却器7に付着した霜が消失したものとして、冷却器7周辺に残ったおそれのある霜を融解させるために、除霜ヒータ22の除霜運転に切替える(ステップS4)。この温度T2は、例えば霜の融解終了直後の温度1℃とする。
すなわち、霜の融解が完了したため、Rダンパ20を閉、Fダンパ50を開、庫内ファン9をOFF、循環ポンプ51をOFF、機械室ファン68をOFF、除霜ヒータ22をONの状態に制御手段66が切替える。除霜センサ温度TsがTs=T2に到達した時点で冷却器7の霜は解けているが、冷却器7以外の周辺部に霜が残っている場合もあるので、信頼性の確保を目的に冷却器7の下部に設置した除霜ヒータ22で単独除霜する。
本実施例では、ヒータ22で単独除霜する場合には、ヒータ22によって加熱された冷却器7周囲の空気の自然対流を促進するため、冷凍室ダンパ(Fダンパ)50を開く。これにより、冷却器7⇒冷凍室ダンパ(Fダンパ)50⇒冷凍室4、5⇒冷凍室戻り口17⇒冷却器7と流れる自然対流による循環流を発生させる。
加熱された空気が冷凍室ダンパ(Fダンパ)50を通過して冷凍室4、5に流入するので、冷凍室4、5の熱負荷は増大する。しかしながら、ヒータ22で単独除霜する時間はあくまでも冷却器7の霜が解けた後の僅かの時間であり、冷凍室4、5に加熱された空気が流入する時間も従来のヒータ単独除霜時間とは比較にならない短い時間であり、トータルでは冷凍室ダンパ(Fダンパ)50を開けた方が効果的に除霜できる。なお、冷凍室4、5側では上記のように循環流を発生させ易いが、冷蔵室2側には循環流を発生させ難いので、冷蔵室ダンパ(Rダンパ)20は閉にする。庫内ファン9はOFFとする。
除霜ヒータ22による加熱では、不凍液循環パイプ58内に不凍液57が残った状態では加熱負荷が増すことになる。そこで、除霜センサ温度TsがTs=T2になった時点で循環ポンプ51を逆回転させる。これにより、不凍液循環パイプ58内の不凍液を蓄熱タンク52に回収できる。除霜終了時の冷却器7の温度は、冷却器7の上部の除霜センサ温度TsがTS=約10℃であるが、除霜ヒータ22に近い冷却器7の下部では40℃近くになっている場合がある。庫外熱エネルギーを利用した後の不凍液57の温度は、霜を解かしたので低下している。除霜センサ温度Tsが蓄熱タンク52に設けた温度センサ60で計測される不凍液57の温度よりも高い場合には、循環ポンプ51を稼働させて冷却器7の熱を回収するのがよい。これにより、除霜運転から通常の冷却運転に戻る際に、圧縮機24を運転する前に冷却器7の温度を下げることができ、再冷却時間を短縮できる。
除霜ヒータ22単独で冷却器7を加熱する時の冷却器7周りの様子を、図9(b)に模式的に示す。この図9(b)は図9(a)と同様の除霜中の冷却器7の図である。この状態では、冷却器7には着霜は見られず、除霜ヒータ22で加熱された冷却器7の下部周辺の空気62が下方から上方に向けて流れている。このとき、冷却器7の上部に向かい温度が上昇し始め、同時に冷却器7の周辺部の壁面も加熱され、霜の解け残りがなくなる。
除霜センサ温度TsがTs=T3になったら(ステップS5)、除霜ヒータ22での単独の除霜運転を終了する(ステップS6)。
除霜運転が終了すると、冷却運転を再開する。そのため、庫内ファンをONにする。除霜運転前と同様、除霜運転終了後の冷蔵庫1の庫内温度に応じて冷却運転の状態は相違するが、本実施例では、冷蔵室4(野菜室6を含む)および冷凍室4、5のいずれをも冷却運転するものとし、冷蔵室ダンパ(Rダンパ)20、冷凍室ダンパ(Fダンパ)50の双方を開き、庫内ファン9をON,機械室ファン68をONにする。
本実施例によれば、電気エネルギーを使用する除霜ヒータ以外の加熱源、すなわち、消費電力量が少ない庫内熱エネルギーと庫外熱エネルギーを加熱源とした除霜ができる。換言すれば、霜の融解潜熱を利用した冷蔵室の冷却を行なう際、従来の除霜ヒータ22を加熱源とせずに、霜を庫内熱エネルギーを利用して冷却器表面側(外側)から、および庫外熱エネルギーを利用して霜の外部表面側(内側)から解かす加熱手段を用いているので、投入エネルギーを少なくして効率的に霜の融解潜熱を利用した冷却が可能になる。
[第2モード]
図10および図1を用いて、本発明に係る除霜運転の第2モードについて説明する。図10は、図7に示したと同様の除霜運転のタイムチャートであり、図11は除霜運転制御のフローチャートである。本モードは、着霜量が多い場合に好適なモードである。上記第1モードと異なるのは、除霜ヒータ22による加熱開始を早めて、庫内ファン9稼働による庫内熱エネルギーと、循環ポンプ51の稼働による庫外熱エネルギーを利用した除霜が終了する前に、除霜ヒータ22をONさせている。着霜量が多い場合、すなわち霜の融解が終了する時刻t5まで時間がかかる場合は、庫内熱エネルギーと庫外熱エネルギーだけでは熱源が不足し、霜が解けるまでに冷凍室4、5の温度が限界温度より上昇する恐れが生じる。そこで第2モードでは、時刻t2に達する前に、除霜ヒータ22を加熱源として作動させ、除霜時間の短縮を図っている。除霜運転の前後の冷蔵庫1内の温度および動作状態は、上記図7の実施例と同じである。
さらに具体的に説明すると、1日1回または圧縮機24の運転時間が所定時間になると、除霜運転モードが開始される(ステップS7)。この時刻が時刻t1である。Rダンパ20を開、Fダンパ50を閉、庫内ファン9をON、循環ポンプ51をON、機械室ファン66をON、除霜ヒータ22をOFFにして(ステップS8)、除霜運転を開始する。霜の融解が完了する時刻t5よりも前の時間中に、冷凍室2の温度TがT=TF2以上になったら(ステップS9)、冷凍室4、5に保存した食品の保存性の悪化が懸念されるので、霜の融解途中ではあるが除霜ヒータをONにする(ステップS10)。ここで、時刻t5は、霜の融解が完了する時刻であり、時刻t6は冷凍室温度TがT=TF2となる時刻である。
除霜センサ温度TsがTs=T2になったら、Rダンパ20を閉、Fダンパ50を開、庫内ファン9をOFF、循環ポンプ51をOFF、機械室ファン66をOFFに切り替え、除霜ヒータ22はON状態を継続する(ステップS12)。除霜センサ温度Tsが氷点以上の温度であるTs=T3になるまで、除霜ヒータ22を単独使用して冷却器7を加熱する。
本除霜運転モードでは、霜の融解潜熱を利用して冷蔵室2を冷却するために、投入エネルギーをできるだけ少なくし、庫内熱エネルギーと庫外熱エネルギーを熱源とした除霜運転(t4〜t5)を実行することにより、霜の融解潜熱を利用した冷蔵室2の冷却を実現している。着霜量が多い場合は、霜が完全に解ける前に除霜ヒータ22を加熱源に追加して、霜が完全に融解する時間(〜t5)を短縮できる。
[第3モード]
本発明に係る除霜運転の他のモードを図12を用いて説明する。図12は、図7、10と同様の除霜運転のタイムチャートである。着霜量が少ない場合に好適な除霜運転モードである。着霜量が少ないと、霜が解ける時間間隔t4〜t5が短い。また、除霜センサ41が検出する温度Tsの上昇が速い。そこで、霜が少ない場合の、除霜開始から霜の融解開始までの温度勾配を予め測定する。そしてこの値を基準値としてこれよりも温度勾配が小さい場合は霜が少ないと判断する。除霜運転の前後の冷蔵庫1内の温度および動作状態は、上記図7の実施例と同じである。
着霜量が少ないと判断されたときには、時刻t1〜t4まで庫内ファン9を稼働して、庫内熱エネルギーによる除霜を実施する。温度勾配がこの基準値より多く、着霜量が少ない状態ではないと判断されたときは、図7に示した第1の除霜運転モードになる。具体的には、着霜量を判断する時刻t7までは第1の除霜運転モードと同じく、Rダンパ20を開、Fダンパ50を閉、庫内ファン9をON、循環ポンプ51をON、機械室ファン68をON、除霜ヒータOFFとして、除霜運転を開始する。ここで除霜運転開始時刻t1は、1日1回の定められた時刻、または圧縮機の動作時間等から定める。
除霜センサ温度Tsがまだ氷点以下である着霜量の判断時刻t7において、除霜センサ温度Tsが予め定めた基準値T7以下であれば、除霜センサ温度Tsが氷点温度になるまで、すなわち霜が融解し始めるまで、循環ポン51をOFFに、機械室ファン66をOFFに切替え、庫内ファンによる冷気の循環だけで冷却器7を加熱する。除霜センサ温度Tsが氷点温度となる時刻t4で、加熱量の不足を補うために、再び循環ポンプ51をON、機械室ファン66をONに切替える。以後は、図7に示した第1の除霜運転モードと同じである。
[第4のモード]
図13および図14を用いて、本発明に係る第4の除霜運転モードについて説明する。図13は、除霜運転のタイムチャートであり、図14は除霜運転の制御フローチャートである。本除霜運転モードは、除霜センサ温度Tsが下限温度T0に達したときに、除霜運転を起動させるモードである。蓄熱タンク52に充填した不凍液57の濃度を調整して、不凍液57の凍結温度が決まる。除霜運転の前後の冷蔵庫1内の温度および動作状態は、上記図7の実施例と同じである。
ところで、不凍液57の凍結温度を下げるためには、不凍液57の濃度を濃くする必要があるが、濃度を濃くすると不凍液の粘度が高くなりすぎ循環ポンプ51の動力が増加する。その結果、庫外熱エネルギーにより蓄えた熱を不凍液循環パイプ58に輸送する際の消費電力量が増加する。さらに比熱が小さくなり、蓄熱タンク52の容量が増大し設置性が悪化する。
また、冷蔵庫1では、急速に冷凍させる場合に急速冷凍運転を実施するが、この急速冷凍運転では通常冷却運転に比べて冷却器7の温度が低下するので、一般的には不凍液57の濃度を高めて不凍液57の凍結防止をしている。このような不凍液57の濃度変化での対応による従来の除霜運転における不具合を解消するため、本第4の除霜運転モードでは、不凍液の濃度を高めることなく配管内の凍結防止を可能にしている。
蓄熱タンク52に充填されている不凍液57の凍結温度以下の所定温度T0で、除霜を開始する(ステップS15)。この温度で循環ポンプ51を稼働させると、配管内で不凍液が凍結する恐れがある。そこで制御手段66は、Rダンパ20を開、Fダンパ50を閉、庫内ファン9をON、循環ポンプ51をOFF、機械室ファン68をOFF、除霜ヒータ22をOFFに切替える(ステップS16)。つまり、図7に示した第1の除霜運転モードとは、循環ポンプ51をOFFにする点だけ相違する。この庫内ファン9による庫内エネルギと機械室ファン68による庫外エネルギの蓄熱だけにより除霜運転をしばらく続ける。そして除霜センサ温度Tsが不凍液52の凍結温度を超える温度T1にまで上昇したら(ステップS17)、循環ポンプ51をONにして不凍液52で冷却器7を加熱する(ステップS18)。その後は図7に示した第1の除霜運転モードと同じである(ステップS20〜ステップS24)。なお、ステップ16の代わりに、除霜運転開始後しばらく庫内ファン9と循環ポンプ51を停止状態にしておき、除霜センサ温度Tsが上昇するのを待つようにしてもよい。
また、図10および図11に示す第2の除霜運転モードにおけると同様に、着霜が多すぎて霜の融解が終了(時刻t5)する前に冷凍室温度がTF2を超えて上昇するような場合には、除霜ヒータ22の加熱開始を早めてONにする。すなわち、冷凍運転が長時間にわたり停止される場合(ステップS19)には、霜の融解を加速させるために、除霜ヒータをONにする(ステップS20)。除霜センサ温度TsがT2に到達したら(ステップS21)、除霜ヒータ22の単独加熱に切替える(ステップS22)。除霜ヒータ22の単独加熱によって除霜センサ温度TsをT3まで高め(ステップS23)、その後除霜運転を終了する(ステップS24)。
以上述べた本発明の各実施例および除霜運転モードによれば、除霜時に冷却器に成長した霜の冷熱エネルギーを有効利用しているので、投入エネルギーが少ない除霜をしながら霜の融解潜熱を利用した冷却も実施可能であり、消費電力量を低減できる。また、従来は不凍液を用いた加熱手段しか有していないので、着霜量が多い場合に冷凍室の温度上昇を抑制することが困難であった。上記各実施例によれば、着霜量に応じた除霜が可能なので、着霜量が少ない場合には除霜時間を短縮できるし、着霜量が多い場合には冷凍室温度の温度上昇を抑制できるとともに不凍液の凍結等の不具合を防止できる。
また、冷蔵庫では、霜は主に冷却器に発生するが、冷却器以外、例えば、冷却器が収納されている風路表面(固体壁面)あるいは庫内循環ファン近傍にも霜が成長する場合がある。従来の不凍液を用いた除霜では、直接冷却器を加熱するので、加熱源である不凍液と冷却器に付着した霜との伝熱は促進されるが、冷却器から離れた場所の霜を確実に解かすことが困難であった。本実施例では、除霜ヒータを主として冷却器から離れた場所の除霜に利用しているので、電力量も僅かで済む上、確実に冷蔵庫各部の着霜を除霜できる。
また、上記実施例に示す冷蔵庫では、除霜ヒータ(電気エネルギー)以外の加熱源、すなわち、消費電力量が少ない庫内熱エネルギーと庫外熱エネルギーを加熱源とした除霜を実施するので省エネルギーとなる。
1…冷蔵庫、2…冷蔵室、2a、2b…扉、2c…吹き出し口、3…製氷室、3a…扉、3b…収納容器、4…上段冷凍室、4a…扉、4b…収納容器、5…下段冷凍室、5a…扉、5b…収納容器、6…野菜室、6a…扉、6b…収納容器、6d…野菜室戻り口、7…冷却器、8…冷却器収納室、9…庫内ファン、10…断熱箱体、11…冷蔵室送風ダクト、12…上段冷凍室送風ダクト、13…下段冷凍室送風ダクト、17…冷凍室戻り口、18…野菜室戻りダクト、18a…野菜室戻り吐出口、20…冷蔵室ダンパ(Rダンパ、第1の開閉手段)、21…蒸発皿、22…除霜ヒータ(第1の加熱手段)、23…樋、24…圧縮機、25…真空断熱材、27…ドレン孔、28、29…断熱仕切壁、32…扉ポケット、36…棚、40…冷凍室前面仕切り、41…除霜センサ、43…除霜水滴下防止部、44…ガラス管、45…金属フィン(放熱フィン)、46…冷蔵室冷気戻り風路、50…冷凍室ダンパ(Fダンパ、第2の開閉手段)、51…循環ポンプ、52…蓄熱タンク、53〜55…パイプ、56…機械室、57…不凍液、58…不凍液循環パイプ、59…霜、60…センサ、61…循環空気、62… 加熱空気、63… 融解部分、66…制御手段、66a…CPU、66b…記憶手段、68…機械室ファン、71〜73…冷気(の流れ)、91…機械室カバー、92…放熱器、93…圧縮機支持部、94…機械室ベース、96…吸入口、97…吐出口。

Claims (9)

  1. 冷蔵室と冷凍室を有し、前記冷蔵室と前記冷凍室を冷却する冷気を発生する冷却器および圧縮機を備えた冷凍サイクルと、前記冷却器で発生した冷気を前記冷蔵室へ導く流路を開閉する第1の開閉手段と、前記冷却器で発生した冷気を前記冷凍室へ導く流路を開閉する第2の開閉手段と、前記冷却器で発生した冷気を前記冷蔵室と前記冷凍室の少なくともいずれかに送風する庫内ファンと、前記冷却器の下方に配置され電気ヒータを有する第1の加熱手段と、前記第1、第2の開閉手段と前記庫内ファンとを含み、冷蔵室を流通して温度上昇した空気で前記冷却室を加熱する第2の加熱手段と、前記冷却器に当接して配置され内部を不凍液が流通する配管と不凍液を循環させる循環ポンプと前記圧縮機で発生する熱および外気の熱の少なくともいずれかを不凍液に蓄熱させる機械室ファンとを有する第3の加熱手段と、前記第1、第2の開閉手段と前記庫内ファンと前記循環ポンプと前記機械室ファンと前記第1の加熱手段の動作を制御する制御手段とを備え、除霜運転時に前記制御手段は、前記第1ないし第3の加熱手段の少なくともいずれかを用いて前記冷却器を加熱し、この冷却器部を流通した空気で前記冷蔵室を冷却するようにしたことを特徴とする冷蔵庫。
  2. 前記制御手段は、除霜運転時に、前記第1の加熱手段が稼動する前に前記第2および第3の加熱手段を稼動させることを特徴とする請求項1に記載の冷蔵庫。
  3. 前記制御手段は、前記第2および第3の加熱手段による加熱後、前記第1の加熱手段を作動させることを特徴とする請求項1または2に記載の冷蔵庫。
  4. 前記第2の加熱手段は、冷蔵温度帯の庫内空気を前記庫内ファンで庫内循環させた後の空気を用いるものであり、前記第3の加熱手段は,不凍液にプラス温度帯の熱を蓄熱し、前記不凍液を前記冷却器に熱輸送するものであることを特徴とする請求項1ないし3の何れか1項に記載の冷蔵庫。
  5. 前記第3の加熱手段が前記冷却器へ当接する部分の不凍液出口近傍に除霜センサを設け、この除霜センサが検出した温度が除霜開始から予め定めた時間内に氷点を超える所定温度に達しないときに、前記制御手段は、前記第2および第3の加熱手段の加熱に加え前記第1の加熱手段による加熱を作動させることを特徴とする請求項1ないし4の何れか1項に記載の冷蔵庫。
  6. 前記第3の加熱手段が前記冷却器へ当接する部分の不凍液出口近傍に除霜センサを設け、前記制御手段は、前記除霜センサが検出した温度が不凍液の凍結温度を超えるまで前記循環ポンプを作動させないことを特徴とする請求項1ないし4の何れか1項に記載の冷蔵庫。
  7. 前記制御手段は、前記除霜センサが検出した温度が不凍液の凍結温度を超えるまで前記循環ポンプを作動させないことを特徴とする請求項5に記載の冷蔵庫。
  8. 前記第2の加熱手段は前記冷却器の着霜をこの着霜の外表面側から除霜し、前記第3の加熱手段は前記冷却器の着霜を前記冷却器に接触する面側から除霜することを特徴とする請求項1ないし7の何れか1項に記載の冷蔵庫。
  9. 前記制御手段は、前記第2の加熱手段で前記冷却器に付着した霜を加熱して発生した冷気を前記冷蔵室に導くよう前記第1の開閉手段を作動させることを特徴とする請求項1ないし8の何れか1項に記載の冷蔵庫。
JP2011179461A 2011-08-19 2011-08-19 冷蔵庫 Expired - Fee Related JP5571044B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011179461A JP5571044B2 (ja) 2011-08-19 2011-08-19 冷蔵庫
KR1020120087136A KR101445924B1 (ko) 2011-08-19 2012-08-09 냉장고
CN201210285425.2A CN102954645B (zh) 2011-08-19 2012-08-10 冰箱

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011179461A JP5571044B2 (ja) 2011-08-19 2011-08-19 冷蔵庫

Publications (2)

Publication Number Publication Date
JP2013040745A true JP2013040745A (ja) 2013-02-28
JP5571044B2 JP5571044B2 (ja) 2014-08-13

Family

ID=47763783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011179461A Expired - Fee Related JP5571044B2 (ja) 2011-08-19 2011-08-19 冷蔵庫

Country Status (3)

Country Link
JP (1) JP5571044B2 (ja)
KR (1) KR101445924B1 (ja)
CN (1) CN102954645B (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206474A (ja) * 2014-04-17 2015-11-19 日立アプライアンス株式会社 冷蔵庫
CN106813440A (zh) * 2015-11-27 2017-06-09 日立空调·家用电器株式会社 冰箱
CN112033071A (zh) * 2020-08-17 2020-12-04 珠海格力电器股份有限公司 一种冰箱及其化霜方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6026966B2 (ja) * 2013-06-28 2016-11-16 アクア株式会社 冷蔵庫
CN103851865A (zh) * 2014-01-08 2014-06-11 杭州凡米林电子科技有限公司 储冷式多功能电冰箱结构
JP5744265B1 (ja) * 2014-02-28 2015-07-08 シャープ株式会社 冷蔵庫
US10288338B2 (en) 2015-08-28 2019-05-14 Samsung Electronics Co., Ltd. Refrigerator
KR102508224B1 (ko) * 2015-08-28 2023-03-09 삼성전자주식회사 냉장고
CN105674670B (zh) * 2016-02-04 2018-07-13 青岛海尔股份有限公司 冰箱
WO2017179500A1 (ja) * 2016-04-13 2017-10-19 パナソニックIpマネジメント株式会社 冷蔵庫および冷却システム
DE102017206488A1 (de) * 2017-04-18 2018-10-18 BSH Hausgeräte GmbH Kältegerät und Betriebsverfahren dafür
CN106989560A (zh) * 2017-04-24 2017-07-28 青岛海尔股份有限公司 冰箱及冰箱门封的除露方法
CN107606844B (zh) * 2017-08-18 2022-01-25 海尔智家股份有限公司 冰箱
CN110094918B (zh) * 2018-01-31 2021-10-26 日立环球生活方案株式会社 冰箱
CN109028723A (zh) * 2018-07-12 2018-12-18 方碧水 一种冰箱冷藏室的防冻装置
KR20200065251A (ko) * 2018-11-30 2020-06-09 삼성전자주식회사 냉장고 및 그 제어방법
KR102166433B1 (ko) * 2019-01-14 2020-10-15 엘지전자 주식회사 냉장고 및 냉장고의 압축기 제어 방법
JP7191715B2 (ja) * 2019-02-18 2022-12-19 日立グローバルライフソリューションズ株式会社 冷蔵庫
KR20220018178A (ko) * 2020-08-06 2022-02-15 엘지전자 주식회사 냉장고 및 그의 운전 제어방법
CN113883800B (zh) * 2021-10-28 2023-03-14 澳柯玛股份有限公司 一种双系统制冷冰箱的制冷除霜控制方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55149147U (ja) * 1979-04-12 1980-10-27
JPS5981479A (ja) * 1982-10-30 1984-05-11 鈴木 樹雄 排熱を液体に蓄熱し、霜取り用の熱源として利用する冷蔵庫及び冷凍庫
JPH02101367A (ja) * 1988-10-07 1990-04-13 Hoshizaki Electric Co Ltd 恒温多湿冷蔵庫の運転制御方法
JPH1123135A (ja) * 1997-06-30 1999-01-26 Daewoo Electron Co Ltd 除霜装置を具える冷蔵庫
JP2002373031A (ja) * 2001-06-18 2002-12-26 Hitachi Ltd 凍結時の液冷システム制御法
JP2003083667A (ja) * 2001-09-06 2003-03-19 Mitsubishi Electric Corp 冷凍冷蔵庫の制御装置
JP2003322454A (ja) * 2002-04-26 2003-11-14 Hitachi Home & Life Solutions Inc 冷蔵庫
JP2005037010A (ja) * 2003-07-16 2005-02-10 Mitsubishi Electric Corp 冷蔵庫、冷蔵庫の運転方法
JP2009092371A (ja) * 2007-09-20 2009-04-30 Sharp Corp 冷却庫
JP2009293897A (ja) * 2008-06-09 2009-12-17 Hitachi Appliances Inc 冷蔵庫

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55149147U (ja) * 1979-04-12 1980-10-27
JPS5981479A (ja) * 1982-10-30 1984-05-11 鈴木 樹雄 排熱を液体に蓄熱し、霜取り用の熱源として利用する冷蔵庫及び冷凍庫
JPH02101367A (ja) * 1988-10-07 1990-04-13 Hoshizaki Electric Co Ltd 恒温多湿冷蔵庫の運転制御方法
JPH1123135A (ja) * 1997-06-30 1999-01-26 Daewoo Electron Co Ltd 除霜装置を具える冷蔵庫
JP2002373031A (ja) * 2001-06-18 2002-12-26 Hitachi Ltd 凍結時の液冷システム制御法
JP2003083667A (ja) * 2001-09-06 2003-03-19 Mitsubishi Electric Corp 冷凍冷蔵庫の制御装置
JP2003322454A (ja) * 2002-04-26 2003-11-14 Hitachi Home & Life Solutions Inc 冷蔵庫
JP2005037010A (ja) * 2003-07-16 2005-02-10 Mitsubishi Electric Corp 冷蔵庫、冷蔵庫の運転方法
JP2009092371A (ja) * 2007-09-20 2009-04-30 Sharp Corp 冷却庫
JP2009293897A (ja) * 2008-06-09 2009-12-17 Hitachi Appliances Inc 冷蔵庫

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015206474A (ja) * 2014-04-17 2015-11-19 日立アプライアンス株式会社 冷蔵庫
CN106813440A (zh) * 2015-11-27 2017-06-09 日立空调·家用电器株式会社 冰箱
CN106813440B (zh) * 2015-11-27 2019-10-29 日立环球生活方案株式会社 冰箱
CN112033071A (zh) * 2020-08-17 2020-12-04 珠海格力电器股份有限公司 一种冰箱及其化霜方法

Also Published As

Publication number Publication date
KR20130020571A (ko) 2013-02-27
CN102954645B (zh) 2014-12-17
KR101445924B1 (ko) 2014-09-29
JP5571044B2 (ja) 2014-08-13
CN102954645A (zh) 2013-03-06

Similar Documents

Publication Publication Date Title
JP5571044B2 (ja) 冷蔵庫
JP5017340B2 (ja) 冷蔵庫
AU2013242698B2 (en) Refrigerator and working method thereof
JP5260416B2 (ja) 冷蔵庫
JP2012007760A (ja) 冷蔵庫
JP2013061089A (ja) 冷蔵庫
JP2006226635A (ja) 冷蔵庫
JP2011038715A (ja) 冷蔵庫
CN105020965A (zh) 冰箱
JP2018071874A (ja) 冷蔵庫
JP6360717B2 (ja) 冷蔵庫
JP2019138510A (ja) 冷蔵庫
JP2009092371A (ja) 冷却庫
KR20200105610A (ko) 냉장고의 제어 방법
JP4982537B2 (ja) 冷蔵庫
US12038220B2 (en) Refrigerator and deep freezing compartment defrost operation
JP2009014313A (ja) 冷蔵庫
JP2012047362A (ja) 冷蔵庫
KR20160090690A (ko) 냉장고 및 이의 제어방법
JP2015143579A (ja) 冷蔵庫
JP6492291B2 (ja) 冷蔵庫
JP6186187B2 (ja) 冷蔵庫
JP2012063026A (ja) 冷蔵庫
JP5376796B2 (ja) 冷蔵庫
JP6017886B2 (ja) 冷蔵庫

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140502

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140625

R150 Certificate of patent or registration of utility model

Ref document number: 5571044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees