WO2017179500A1 - 冷蔵庫および冷却システム - Google Patents

冷蔵庫および冷却システム Download PDF

Info

Publication number
WO2017179500A1
WO2017179500A1 PCT/JP2017/014494 JP2017014494W WO2017179500A1 WO 2017179500 A1 WO2017179500 A1 WO 2017179500A1 JP 2017014494 W JP2017014494 W JP 2017014494W WO 2017179500 A1 WO2017179500 A1 WO 2017179500A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
compressor
flow path
refrigerator
bypass
Prior art date
Application number
PCT/JP2017/014494
Other languages
English (en)
French (fr)
Inventor
境 寿和
克則 堀井
堀尾 好正
文宣 高見
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2018511986A priority Critical patent/JP6934603B2/ja
Priority to CN201780010076.4A priority patent/CN108603712B/zh
Publication of WO2017179500A1 publication Critical patent/WO2017179500A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating

Definitions

  • the present invention relates to a refrigerator that reduces the output of a defrosting heater and a cooling system that effectively uses heat radiation of a refrigeration cycle.
  • the refrigerator that reduces the output of the defrosting electric heater by using the energy that heats the evaporator by the high pressure refrigerant in the refrigeration cycle flowing into the evaporator due to the pressure difference There is. This is because the high-pressure refrigerant stored in the condenser of the refrigeration cycle is maintained near the outside air temperature even after the compressor is stopped, while the evaporator is in a low temperature state of ⁇ 30 to ⁇ 20 ° C. Energy saving by actively reducing the output of the electric heater for defrosting by increasing the amount flowing into the evaporator due to the pressure difference or increasing the amount of heat flowing in by increasing the enthalpy of the flowing high-pressure refrigerant It aims to make it easier.
  • FIG. 11 is a longitudinal sectional view of a conventional refrigerator
  • FIG. 12 is a configuration diagram of a refrigeration cycle of the conventional refrigerator
  • FIG. 13 is a diagram illustrating control during defrosting of the conventional refrigerator.
  • the refrigerator 111 includes a housing 112, a door 113, legs 114 that support the housing 112, a lower machine room 115 provided in a lower portion of the housing 112, and a refrigeration disposed in an upper portion of the housing 112. It has a chamber 117 and a freezing chamber 118 arranged at the bottom of the housing 112. Further, as components constituting the refrigeration cycle, a compressor 156 housed in the lower machine room 115, an evaporator 120 housed on the back side of the freezer room 118, and a main condenser 121 housed in the lower machine room 115. have.
  • the partition wall 122 that partitions the lower machine chamber 115, a fan 123 that is attached to the partition wall 122 to air-cool the main condenser 121, an evaporating dish 157 installed on the top of the compressor 156, and a bottom plate 125 of the lower machine chamber 115. ing.
  • a plurality of air inlets 126 provided in the bottom plate 125, an air outlet 127 provided on the back side of the lower machine room 115, and a communication air passage 128 that connects the air outlet 127 of the lower machine room 115 and the upper part of the housing 112. have.
  • the lower machine chamber 115 is divided into two chambers by a partition wall 122.
  • the main condenser 121 is housed on the windward side of the fan 123, and the compressor 156 and the evaporating dish 157 are housed on the leeward side.
  • the dew-proof pipe 160 and the dew-proof pipe 160 which are located on the downstream side of the main condenser 121 and are thermally coupled to the outer surface of the casing 112 around the opening of the freezer compartment 118. It has a dryer 137 that is located on the downstream side and dries the circulating refrigerant, and a throttle 144 that couples the dryer 137 and the evaporator 120 and depressurizes the circulating refrigerant. And when defrosting the evaporator 120, it has the two-way valve 161 which obstruct
  • an evaporator fan 150 that supplies cold air generated in the evaporator 120 to the refrigerator compartment 117 and the freezer compartment 118, a freezer compartment damper 151 that blocks cold air supplied to the freezer compartment 118, and cold air supplied to the refrigerator compartment 117.
  • the refrigerator compartment damper 152 which interrupts
  • a duct 153 that supplies cold air to the refrigerator compartment 117, an FCC temperature sensor 154 that detects the temperature of the freezer compartment 118, a PCC temperature sensor 155 that detects the temperature of the refrigerator compartment 117, and a DEF temperature that detects the temperature of the evaporator 120.
  • a sensor 158 is included.
  • the temperature detected by the FCC temperature sensor 154 rises to a predetermined FCC_ON temperature.
  • the temperature detected by the PCC temperature sensor 155 rises to a predetermined PCC_ON temperature, the following operation is performed. That is, the freezer compartment damper 151 is closed, the refrigerator compartment damper 152 is opened, and the compressor 156, the fan 123, and the evaporator fan 150 are driven (this operation is hereinafter referred to as “PC cooling mode”).
  • the main condenser 121 side of the lower machine chamber 115 partitioned by the partition wall 122 becomes negative pressure, and external air is sucked from the plurality of intake ports 126, and the compressor 156
  • the evaporating dish 157 side has a positive pressure, and the air in the lower machine chamber 115 is discharged from the plurality of discharge ports 127 to the outside.
  • the refrigerant discharged from the compressor 156 is condensed while leaving a part of the gas while exchanging heat with the outside air in the main condenser 121 and then supplied to the dewproof pipe 160.
  • the refrigerant passing through the dew-proof pipe 160 dissipates heat through the housing 112 and condenses while warming the opening of the freezer compartment 118.
  • the liquid refrigerant condensed in the dew-proof pipe 160 passes through the two-way valve 161, is dehydrated by the dryer 137, is depressurized by the throttle 144, and exchanges heat with the air in the refrigerator compartment 117 while evaporating in the evaporator 120. While cooling the refrigerator compartment 117, the refrigerant is returned to the compressor 156 as a gaseous refrigerant.
  • the refrigeration is performed.
  • the chamber damper 151 is opened, the refrigerator compartment damper 152 is closed, and the compressor 156, the fan 123, and the evaporator fan 150 are driven.
  • the freezer compartment 118 is heat-exchanged with the inside air of the freezer compartment 118 and the evaporator 120 to cool the freezer compartment 118 (hereinafter, this operation is referred to as “FC cooling mode”).
  • the operation proceeds to a defrosting mode in which the frost of the evaporator 120 is heated and melted.
  • the freezer compartment 118 is cooled for a predetermined time as in the “FC cooling mode”.
  • the refrigerant staying in the dryer 137 and the evaporator 120 is recovered to the main condenser 121 and the dew prevention pipe 160 by closing the two-way valve 161 while operating the compressor 156.
  • the main condenser 121 and the dew-proof pipe 160 are connected to each other through a seal portion such as a valve (not shown) that partitions the high pressure side and the low pressure side inside the compressor 156 by stopping the compressor 156.
  • a seal portion such as a valve (not shown) that partitions the high pressure side and the low pressure side inside the compressor 156 by stopping the compressor 156.
  • the evaporator 120 is heated using the high-pressure refrigerant further heated by the waste heat of the compressor 156.
  • the defrosting heater 162 attached to the evaporator 120 is energized to complete the defrosting.
  • the two-way valve 161 is opened to equalize the pressure in the refrigeration cycle, and normal operation is resumed from the section u.
  • the electric power of the defrost heater can be reduced by heating the evaporator using the high-pressure refrigerant of the refrigeration cycle and the waste heat of the compressor, and energy saving of the refrigerator Can be achieved.
  • FIG. 14 is a diagram showing power consumption reduction of the conventional defrosting heater described in Patent Document 2.
  • a jacket 171 filled with a heat storage agent is provided so as to cover the compressor 170 for refrigerant compression, and a pipe 172 for circulating the heat storage agent is connected to the jacket 171.
  • a circulation pump 173, a heat storage tank 174, and a solenoid valve 175 are sequentially connected to the pipe 172 to form a closed system.
  • a defrosting internal circulation pipe 176 is connected between the circulation pump 173 and the electromagnetic valve 175, and this also forms a closed system.
  • the electromagnetic valve 175 is a three-way switching valve.
  • the electromagnetic valve 175 is opened to connect the heat storage tank 174 and the jacket 171, and the heat storage agent (liquid such as water) is circulated in the pipe 172 by the circulation pump 173.
  • the heat storage agent is heated by the heat generated by the compressor 170 in the jacket 171, and the temperature of the heat storage agent in the heat storage tank 174 gradually increases. Thereby, the waste heat of the compressor 170 is stored in the heat storage tank 174.
  • the compressor 170 is stopped, the electromagnetic valve 175 is opened to the internal circulation pipe 176 side, the circulation pump 173 is operated, and the heat storage agent is circulated in the internal circulation pipe 176. Let defrost. If necessary, the auxiliary heater is energized to maintain the temperature of the heat storage agent.
  • FIG. 15 is a diagram showing a schematic configuration diagram of a refrigeration cycle showing a reduction in power consumption of a conventional defrosting heater described in Patent Document 1.
  • the arrow indicates the refrigerant flow direction (during the cooling cycle operation).
  • a refrigeration cycle comprising a compressor 183, a condenser 184, a capillary tube 185 and two evaporators (F evaporator 180, R evaporator 182), and between the condenser 184 and the capillary tube 185, A differential pressure valve 186 is provided, and an electromagnetic valve 181 is provided between the F evaporator 180 and the R evaporator 182.
  • the solenoid valve 181 is opened, and the refrigerant is circulated while controlling the refrigerant pressure with the differential pressure valve 186.
  • the solenoid valve 181 is closed and the differential pressure valve 186 is closed, so that the residual high-pressure refrigerant gas in the compressor 183 flows backward due to the pressure difference and has a low pressure. It flows into the R evaporator 182. Defrosting is performed using the latent heat of condensation by the refrigerant gas.
  • a compressor that compresses a refrigerant reduces the operating efficiency when the refrigerant suction temperature is high, and thus suppresses a decrease in efficiency by air cooling or water cooling.
  • the recovered high-pressure refrigerant is caused to flow back to the evaporator 120 via the compressor 156 by stopping the compressor 156.
  • the waste heat of the compressor 156 can be recovered using the high-pressure refrigerant and used for heating the evaporator 120, but due to leakage of a seal part such as a valve that partitions the high-pressure side and the low-pressure side inside the compressor 156. Since reverse flow is assumed, it is difficult to adjust the flow rate, the amount of refrigerant flowing into the evaporator 120 is reduced, and the amount of electric power of the defrost heater cannot be sufficiently reduced.
  • the present invention provides a refrigerator capable of suppressing fluctuations in high-pressure pressure and flow path resistance when the recovered high-pressure refrigerant is used for defrosting an evaporator.
  • the refrigerator of the present invention includes a refrigeration cycle having at least a compressor, an evaporator, a main condenser, and a dew-proof pipe, and a flow path switching valve connected to the downstream side of the main condenser, and a downstream side of the flow path switching valve. It has a dew pipe connected and a bypass connected in parallel with the dew pipe. Also, when defrosting the evaporator, the flow path switching valve is fully closed while the compressor is operating, so that the accumulated refrigerant in the evaporator and the dew-proof pipe is recovered, and then the compressor is stopped and the flow is stopped. The high-pressure refrigerant recovered by opening the path switching valve to the bypass side is supplied to the evaporator, and after a predetermined time, the defrost heater is energized.
  • the amount of electric power of the defrost heater can be stably reduced by suppressing fluctuations in high-pressure pressure and flow path resistance.
  • the recovered high-pressure refrigerant when used for defrosting the evaporator, it may be supplied to the evaporator via the bypass circuit, and the bypass circuit and the compressor may be thermally coupled.
  • the waste heat of the compressor is recovered and used for heating of the evaporator, so that the electric power of the defrost heater can be further reduced.
  • the refrigerator of the present invention has a heat exchange part that thermally couples a part of the bypass path and the compressor, opens the flow path switching valve to the bypass side, and supplies the high-pressure refrigerant to the evaporator.
  • the high-pressure refrigerant may be heated using waste heat of the compressor.
  • the waste heat of the compressor is collected and used for heating the evaporator, thereby removing the defrost heater.
  • the amount of electric power can be further reduced, and energy saving of the refrigerator can be achieved.
  • the refrigerator of the present invention can stably reduce the amount of power of the defrost heater by collecting the refrigerant in the refrigeration cycle in the main condenser and using it for heating of the evaporator, Energy saving of the refrigerator can be achieved.
  • the refrigerator of the present invention includes a refrigeration cycle having at least a compressor, an evaporator, a main condenser, and a dew proof pipe, and a flow path switching valve connected to the downstream side of the main condenser, and a downstream of the flow path switching valve.
  • a dew pipe connected to the side and a bypass connected in parallel with the dew pipe.
  • the flow path switching valve is fully closed while the compressor is operating, so that the accumulated refrigerant in the evaporator and the dew-proof pipe is recovered, and then the compressor is stopped and the flow is stopped.
  • the high-pressure refrigerant recovered by opening the path switching valve to the bypass side is supplied to the evaporator, and after a predetermined time, the defrost heater is energized.
  • the amount of electric power of the defrost heater can be stably reduced by suppressing fluctuations in high-pressure pressure and flow path resistance.
  • the recovered high-pressure refrigerant when used for defrosting the evaporator, it may be supplied to the evaporator via the bypass circuit, and the bypass circuit and the compressor may be thermally coupled.
  • the waste heat of the compressor is recovered and used for heating of the evaporator, so that the electric power of the defrost heater can be further reduced.
  • the refrigerator of the present invention has a heat exchange part that thermally couples a part of the bypass path and a sealed container that forms the outer shell of the compressor via a heat conducting member, and opens the flow path switching valve to the bypass side. Then, the evaporator may be defrosted while supplying the high-pressure refrigerant to the evaporator.
  • the waste heat of the compressor is collected and used for heating the evaporator, thereby removing the defrost heater.
  • the amount of electric power can be further reduced, and energy saving of the refrigerator can be achieved.
  • the refrigerator of the present invention has a heat exchange part that penetrates a sealed container forming an outer shell of the compressor and thermally couples a part of the bypass path with the refrigeration oil inside the compressor, and bypasses the flow path switching valve.
  • the evaporator may be defrosted while being opened to the side and supplying high-pressure refrigerant to the evaporator.
  • the waste heat of the compressor is collected and used for heating the evaporator, thereby removing the defrost heater.
  • the refrigerator of the present invention can stably reduce the amount of power of the defrost heater by collecting the refrigerant in the refrigeration cycle in the main condenser and using it for heating of the evaporator, Energy saving of the refrigerator can be achieved.
  • the present invention provides a power-saving cooling system and a refrigerator.
  • the cooling system of the present invention includes a refrigeration cycle including a compressor, a condenser, a decompressor, and an evaporator, and a heat storage material that stores heat radiation during refrigeration cycle operation, and heat of the heat storage material when the refrigeration cycle is stopped. Is heated to the refrigerant in the refrigeration cycle.
  • the heat storage material stores the heat released from the compressor during the refrigeration cycle operation, and when the refrigeration cycle is stopped, the heat of the heat storage material is heated to the refrigerant in the refrigeration cycle, and the refrigerant is supplied to the evaporator. You may supply.
  • the cooling system of the present invention includes a bypass connected in parallel with the throttle from the downstream side of the condenser of the refrigeration cycle, and a flow path that is located downstream of the condenser and switches the flow path to the throttle or bypass.
  • the cooling system of the present invention may supply high-pressure refrigerant to the evaporator and energize the defrost heater after a predetermined time.
  • the heat storage material may be disposed on the upper part of the compressor.
  • the heat dissipating energy of the compressor during the refrigeration cycle operation can be easily stored at a high temperature, so that more heat energy can be supplied to the evaporator via the refrigerant and heated.
  • the electric energy of the defrost heater can be further reduced.
  • the refrigerator of the present invention may be a refrigerator provided with the above cooling system.
  • the cooling system of the present invention can effectively utilize the heat radiation energy during the refrigeration cycle operation when the refrigeration cycle is stopped with a simple structure, and can save energy in the cooling system.
  • FIG. 1 is a longitudinal sectional view of a refrigerator in the first embodiment of the present invention.
  • FIG. 2 is a configuration diagram of the refrigeration cycle of the refrigerator in the first embodiment of the present invention.
  • FIG. 3A is a schematic front view of the heat exchange unit of the refrigerator in the first embodiment of the present invention.
  • FIG. 3B is a schematic cross-sectional view of the heat exchange part of the refrigerator in the first embodiment of the present invention.
  • FIG. 4 is a diagram showing control during defrosting of the refrigerator in the first embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a heat exchange unit of the refrigerator in the second embodiment of the present invention.
  • FIG. 6 is a configuration diagram of the refrigeration cycle of the refrigerator in the third embodiment of the present invention.
  • FIG. 1 is a longitudinal sectional view of a refrigerator in the first embodiment of the present invention.
  • FIG. 2 is a configuration diagram of the refrigeration cycle of the refrigerator in the first embodiment of the present invention.
  • FIG. 3A is a schematic front view
  • FIG. 7 is a diagram illustrating control during defrosting of the refrigerator in the third embodiment of the present invention.
  • FIG. 8 is a longitudinal sectional view of a refrigerator provided with a cooling system according to the fourth embodiment of the present invention.
  • FIG. 9 is a configuration diagram of the refrigeration cycle of the cooling system according to the fourth embodiment of the present invention.
  • FIG. 10 is a diagram illustrating control during defrosting of the refrigerator provided with the cooling system according to the fourth embodiment of the present invention.
  • FIG. 11 is a longitudinal sectional view of a conventional refrigerator.
  • FIG. 12 is a configuration diagram of a refrigeration cycle of a conventional refrigerator.
  • FIG. 13 is a diagram illustrating control during defrosting of a conventional refrigerator.
  • FIG. 14 is a configuration diagram of a conventional cooling system.
  • FIG. 15 is a configuration diagram of a conventional cooling system.
  • FIG. 1 is a longitudinal sectional view of a refrigerator according to the first embodiment of the present invention
  • FIG. 2 is a configuration diagram of the refrigeration cycle of the refrigerator according to the first embodiment of the present invention
  • FIG. 3A is a schematic front view of the heat exchange section of the refrigerator in the first embodiment of the present invention
  • FIG. 3B is a schematic cross-sectional view of the heat exchange section of the refrigerator in the first embodiment of the present invention
  • FIG. It is the figure which showed control at the time of defrosting of the refrigerator in the 1st Embodiment of invention.
  • the refrigerator 11 includes a housing 12, a door 13, a leg 14 that supports the housing 12, a lower machine room 15 provided at a lower portion of the housing 12, and a housing 12.
  • casing 12 are provided.
  • a compressor 19 housed in the upper machine chamber 16, an evaporator 20 housed on the back side of the freezer room 18, and a main condenser 21 housed in the lower machine chamber 15. have.
  • the partition wall 22 that partitions the lower machine room 15, a fan 23 that is attached to the partition wall 22 and cools the main condenser 21, an evaporating dish 24 installed on the leeward side of the partition wall 22, and a bottom plate 25 of the lower machine room 15. ing.
  • the compressor 19 is a variable speed compressor and uses six stages of rotation speed selected from 20 to 80 rps. This is because the refrigerating capacity is adjusted by switching the rotational speed of the compressor 19 to six stages from low speed to high speed while avoiding resonance of piping and the like.
  • the compressor 19 operates at a low speed at the time of start-up, and increases as the operation time for cooling the refrigerator compartment 17 or the freezer compartment 18 becomes longer. This is because the most efficient low speed is mainly used, and an appropriate relatively high rotational speed is used against an increase in load of the refrigerator compartment 17 or the freezer compartment 18 due to high outside air temperature, door opening / closing, or the like. .
  • the rotation speed of the compressor 19 is controlled independently of the cooling operation mode of the refrigerator 11, but the rotation speed at the start of the “PC cooling mode” with a high evaporation temperature and a relatively large refrigerating capacity is set to “FC cooling”. It may be set lower than “mode”. Further, the refrigeration capacity may be adjusted while decelerating the compressor 19 as the temperature of the refrigerator compartment 17 or the freezer compartment 18 decreases.
  • a plurality of air intakes 26 provided in the bottom plate 25, an exhaust port 27 provided on the back side of the lower machine room 15, and a communication air passage 28 connecting the exhaust port 27 of the lower machine room 15 and the upper machine room 16 are provided.
  • the lower machine chamber 15 is divided into two chambers by a partition wall 22, and a main condenser 21 is housed on the windward side of the fan 23 and an evaporating dish 24 is housed on the leeward side.
  • a dryer 38 that is located downstream of the main condenser 21 and dries the circulating refrigerant, and a flow path switching valve that is located downstream of the dryer 38 and controls the flow of the refrigerant. 40.
  • the dew-proof pipe 41 located on the downstream side of the flow path switching valve 40 and thermally coupled to the outer surface of the housing 12 around the opening of the freezer compartment 18, and the dew-proof pipe 41 and the evaporator 20 are connected.
  • a diaphragm 42 is provided.
  • a bypass 43 that connects the evaporator 20 and the downstream side of the flow path switching valve 40 in parallel with the dew proof pipe 41, and a heat exchange unit 44 that is thermally coupled to the compressor 19 in the path of the bypass 43 are provided.
  • the heat exchanging unit 44 is installed on the surface of the sealed container 70 that forms the outline of the compressor 19, and thermally conductive butyl rubber 71 that thermally couples the bypass 43 and the sealed container 70, the sealed container It consists of an aluminum foil tape 72 fixed to 70.
  • the thermally conductive butyl rubber 71 has a thermal conductivity of 2.1 W / mK, a thickness of 1 mm, and a width of 10 mm, and is installed so as to sandwich the bypass 43 that goes around the upper and lower centers of the sealed container 70 substantially. Thereby, a sufficient amount of heat exchange between the bypass 43 and the sealed container 70 can be ensured, and the high-pressure refrigerant passing through the bypass 43 can be heated by the heat exchanging unit 44 to be almost in a gaseous state.
  • the same effect can be expected even if the bypass 43 and the sealed container 70 are thermally coupled using a metal having high thermal conductivity such as solder or solder instead of the thermally conductive butyl rubber 71. Rust prevention treatment of the heat coupling part is required.
  • the thermally conductive butyl rubber 71 is used, there is an advantage that the sealed container 70 can be used after being rust-proofed, and an effect of suppressing the vibration of the compressor 19 from being transmitted to the bypass 43 can be expected.
  • the sealed container 70 has a mass ratio of about 40% of the compressor 19 and is estimated to hold about 40% of the waste heat that the compressor 19 stores sensible heat.
  • the flow path switching valve 40 can control the opening and closing of the flow of the single refrigerant for each of the dew prevention pipe 41 and the bypass 43.
  • the flow path switching valve 40 keeps the flow path from the main condenser 21 to the dew-proof pipe 41 and the flow path from the main condenser 21 to the bypass 43 closed. Open and close the channel only at times.
  • an evaporator fan 30 that supplies cold air generated in the evaporator 20 to the refrigerator compartment 17 and the freezer compartment 18, a freezer damper 31 that blocks cold air supplied to the freezer compartment 18, and cold air supplied to the refrigerator compartment 17.
  • the refrigerator compartment damper 32 which interrupts
  • a duct 33 that supplies cold air to the refrigerator compartment 17, an FCC temperature sensor 34 that detects the temperature of the freezer compartment 18, a PCC temperature sensor 35 that detects the temperature of the refrigerator compartment 17, and a DEF temperature that detects the temperature of the evaporator 20.
  • a sensor 36 is provided.
  • the duct 33 is formed along a wall surface where the refrigerator compartment 17 and the upper machine room 16 are adjacent to each other, and a part of the cold air passing through the duct 33 is discharged from the vicinity of the center of the refrigerator compartment, and most of the cold air is in the upper machine. After passing through the wall 16 while cooling the adjacent wall surface, it is discharged from the upper part of the refrigerator compartment 17.
  • the main condenser 21 side of the lower machine chamber 15 partitioned by the partition wall 22 has a negative pressure, and external air is sucked from the plurality of intake ports 26, and the evaporating dish 24 side is It becomes a positive pressure and the air in the lower machine chamber 15 is discharged to the outside through the plurality of discharge ports 27.
  • the refrigerant discharged from the compressor 19 is condensed while leaving a part of the gas while exchanging heat with the outside air in the main condenser 21. Then, the moisture is removed by the dryer 38, and the refrigerant is prevented via the flow path switching valve 40. Supplied to the dew pipe 41.
  • the refrigerant that has passed through the dew-proof pipe 41 radiates and condenses through the housing 12 while warming the opening of the freezer compartment 18, and is then decompressed by the throttle 42 and evaporated in the evaporator 20 while being stored in the refrigerator compartment 17. While cooling the refrigerator compartment 17 by exchanging heat with the internal air, the refrigerant is returned to the compressor 19 as a gaseous refrigerant.
  • the freezing The chamber damper 31 is opened, the refrigerator compartment damper 32 is closed, and the compressor 19, the fan 23, and the evaporator fan 30 are driven. Thereafter, by operating the refrigeration cycle in the same manner as PC cooling, the freezer compartment 18 is heat-exchanged with the inside air of the freezer compartment 18 and the evaporator 20 to cool the freezer compartment 18 (this operation is hereinafter referred to as “FC cooling mode”). .
  • the state “open / close” of the flow path switching valve 40 indicates that the flow path from the main condenser 21 to the dew proof pipe 41 is opened and the flow path from the main condenser 21 to the bypass 43 is closed. means. Further, the state “closed / opened” of the flow path switching valve 40 means that the flow path from the main condenser 21 to the dew prevention pipe 41 is closed and the flow path from the main condenser 21 to the bypass 43 is opened. To do. The state “closed / closed” of the flow path switching valve 40 means that the flow path from the main condenser 21 to the dew prevention pipe 41 is closed and the flow path from the main condenser 21 to the bypass 43 is closed.
  • the operation proceeds to a defrosting mode in which the frost on the evaporator 20 is heated and melted.
  • a defrosting mode in which the frost on the evaporator 20 is heated and melted.
  • the freezer compartment 18 is cooled for a predetermined time as in the “FC cooling mode”.
  • the flow path switching valve 40 is fully closed while the compressor 19 is in operation, thereby blocking the flow path from the main condenser 21 to the dew prevention pipe 41 and the bypass 43 together. 41, the evaporator 20, and the refrigerant staying in the bypass 43 are recovered to the main condenser 21.
  • the compressor 19 is stopped, and the flow path switching valve 40 is switched to open the flow path from the main condenser 21 to the bypass 43, thereby collecting the main condenser 21 via the bypass 43.
  • the high-pressure refrigerant thus supplied is supplied to the evaporator 20.
  • the high-pressure refrigerant is heated by the waste heat of the stopped compressor 19 in the heat exchanging section 44 provided in the bypass 43, and the dryness increases. This is because when the high-pressure refrigerant is recovered by the main condenser 21 in the section b, most of the heat is released to the outside air and condensed. Accordingly, in comparison with the case where the high-pressure refrigerant is supplied to the evaporator 20 without being heated by the heat exchanging unit 44 in the section c, the amount of heat due to the latent heat of condensation is evaporated in addition to the sensible heat of the high-pressure refrigerant maintained at the outside air temperature. Can be added to the vessel 20.
  • the defrosting heater (not shown) attached to the evaporator 20 is energized to complete the defrosting. Completion of defrosting is determined by the DEF temperature sensor 36 reaching a predetermined temperature. Then, in the section e, the flow path switching valve 40 is switched to close the flow path from the main condenser 21 to the bypass 43, and the flow path from the main condenser 21 to the dew prevention pipe 41 is opened so that the inside of the refrigeration cycle. The normal operation is resumed from the section f.
  • the refrigerant that stays in the evaporator 20 and the dew-proof pipe 41 during the defrosting is collected in the main condenser 21 and thermally coupled to the compressor 19.
  • the electric energy of the defrost heater (not shown) can be reduced, and energy saving of the refrigerator can be achieved. Can be planned.
  • the heat exchanging unit 44 is thermally coupled via the heat conductive butyl rubber 71 and the aluminum foil tape 72 which are heat conducting members, the waste heat stored in the sensible heat of the compressor 19 can be effectively used. Furthermore, the electric energy of a defrost heater (not shown) can be reduced efficiently, and the energy saving of a refrigerator can be achieved.
  • the main condenser 21 is a forced air cooling type condenser, but a dew-proof pipe that is thermally coupled to the side surface or the back surface of the housing 12 may be used. Unlike the dew-proof pipe that is thermally coupled to the periphery of the opening of the refrigerator compartment 17 and the freezer compartment 18, the dew-proof pipe that is thermally coupled to the side surface and back surface of the housing 12 is maintained near the outside air temperature even when the compressor 19 is stopped. Therefore, the same effect can be expected even if the main condenser 21 is used.
  • the flow path switching valve 40 and the evaporator 20 are connected by the bypass 43.
  • the flow rate of the high-pressure refrigerant supplied to the evaporator 20 at the time of defrosting is too fast and a flow noise is generated.
  • a flow path resistance for adjusting the flow rate may be connected in series with the bypass 43.
  • the main condensation is performed when the compressor 19 is stopped by supplying the high-pressure refrigerant directly to the evaporator 20 without passing through the dew-proof pipe 41 and the throttle 42 at the time of defrosting.
  • the temperature of the high-pressure refrigerant was prevented from lowering due to the influence of the dew prevention pipe 41 that is lower in temperature than the vessel 21.
  • the high-pressure refrigerant may flow backward from the evaporator 20 to the dew-proof pipe 41 through the throttle 42.
  • a check valve or a two-way valve that prevents backflow may be provided in the path from the outlet 41 to the inlet of the evaporator 20.
  • FIG. 5 is a schematic diagram of the heat exchange part of the refrigerator in the second embodiment of the present invention.
  • the present embodiment will be described with reference to the drawings.
  • the same components as those in the first embodiment will be denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the compressor 19 is installed in a sealed container 90 that forms an outer shell, a piston 91 that forms a compression mechanism, a cylinder 92 and a shaft 93, and a motor that drives the compression mechanism via the shaft 93. And a refrigerating machine oil 95 used for lubricating the compression mechanism.
  • a part of the bypass 43 penetrates the sealed container 90 and is installed in the refrigerating machine oil 95 staying in the lower part of the sealed container 90 to form a heat exchange unit 96 that is thermally coupled to the compressor 19.
  • the refrigerant that stays in the evaporator 20 and the dew prevention pipe 41 during the defrosting is collected in the main condenser 21 and thermally coupled to the compressor 19.
  • the electric energy of the defrost heater (not shown) can be reduced, and energy saving of the refrigerator can be achieved. (See FIG. 2).
  • a part of the bypass 43 penetrates the sealed container 90 and is installed in the refrigerating machine oil 95 that stays in the lower part of the sealed container 90 to form a heat exchange unit 96 that is thermally coupled to the compressor 19.
  • a sufficient amount of heat exchange between the bypass 43 and the sealed container 90 can be ensured without impairing heat radiation from the surface of the sealed container 90, and further energy saving of the refrigerator can be achieved.
  • FIG. 6 is a cycle configuration diagram of the refrigerator according to the third embodiment of the present invention
  • FIG. 7 is a diagram illustrating control during defrosting of the refrigerator according to the third embodiment of the present invention.
  • the components constituting the refrigeration cycle of the refrigerator in the present embodiment are located on the downstream side of the main condenser 21 and are located on the downstream side of the dryer 38 for drying the circulating refrigerant and control the flow of the refrigerant.
  • a flow path switching valve 46 is provided.
  • a dew-proof pipe 41 located downstream of the flow path switching valve 46 and thermally coupled to the outer surface of the housing 12 (see FIG. 1) around the opening of the freezer compartment 18 (see FIG. 1),
  • a throttle 42 for connecting the dew pipe 41 and the evaporator 20 is provided.
  • the dew pipe 47 there are a bypass 43 connecting the downstream side of the flow path switching valve 46 and the evaporator 20, and a heat exchanging portion 44 that is thermally coupled to the compressor 19 in the path of the bypass 43.
  • the flow path switching valve 46 can control the opening and closing of the flow of the single refrigerant for each of the dew prevention pipe 41, the second dew prevention pipe 47 and the bypass 43.
  • the flow path switching valve 46 opens and closes the flow path from the main condenser 21 to the dew prevention pipe 41 or the second dew prevention pipe 47.
  • the flow path from the main condenser 21 to the bypass 43 is kept closed, and the flow path to the bypass 43 is opened and closed only in the defrosting mode.
  • the second dew-proof pipe 47 is thermally coupled to the back surface of the housing 12, and during normal operation such as the “PC cooling mode” and the “FC cooling mode”, the dew-proof pipe 41 and the throttle The refrigerant is circulated while switching the path of 42 and the path of the second dew-proof pipe 47 and the second throttle 48. Since the dew-proof pipe 41 is thermally coupled to the outer surface of the housing 12 around the opening of the freezer compartment 18 that is the lowest temperature on the outer surface of the refrigerator 11, the dew-proof pipe 41 is used when the outside air is at high humidity. Although it is necessary to use it constantly, the rate of heat intrusion into the refrigerator 11 is higher than that of the second dew-proof pipe 47, which increases the heat load of the refrigerator 11. Therefore, when the outside air is in a low humidity, the use frequency of the dew proof pipe 41 can be lowered, and the second dew proof pipe 47 can be used instead to suppress the heat load.
  • the dew-proof pipe 41 and the second dew-proofing are set as one section every predetermined time from the time when the compressor 19 is started according to the humidity of the outside air in the section.
  • the use ratio of the pipe 47 is varied. For example, when the outside air has a relative humidity of 50%, the dew-proof pipe 41 is used during the first 60% of the interval, and the second dew-proof pipe 47 is used during the second 40%.
  • the refrigeration cycle is operated while switching the flow path switching valve 46.
  • the state “open / close closed” of the flow path switching valve 46 opens the flow path from the main condenser 21 to the dew prevention pipe 41, and flows from the main condenser 21 to the second dew prevention pipe 47. This means that the passage and the flow path from the main condenser 21 to the bypass 43 are closed.
  • the state “closed open / close” of the flow path switching valve 46 closes the flow path from the main condenser 21 to the dew-proof pipe 41 and opens the flow path from the main condenser 21 to the second dew-proof pipe 47. This means that the flow path from the main condenser 21 to the bypass 43 is closed.
  • the state “closed / open” of the flow path switching valve 46 closes the flow path from the main condenser 21 to the dew prevention pipe 41 and the flow path from the main condenser 21 to the second dew prevention pipe 47, This means that the flow path from the main condenser 21 to the bypass 43 is opened.
  • the state “closed / closed” of the flow path switching valve 46 indicates that the flow path from the main condenser 21 to the dew prevention pipe 41, the flow path from the main condenser 21 to the second dew prevention pipe 47, and the main condenser 21. This means that all of the flow path from to the bypass 43 is closed.
  • the operation proceeds to a defrosting mode in which the frost on the evaporator 20 is heated and melted.
  • a defrosting mode in which the frost on the evaporator 20 is heated and melted.
  • the freezer compartment 18 is cooled for a predetermined time as in the “FC cooling mode”.
  • the flow path from the main condenser 21 to the dew-proof pipe 41, the second dew-proof pipe 47 and the bypass 43 is closed by fully closing the flow-path switching valve 46 while operating the compressor 19.
  • the compressor 19 is stopped, and the flow path switching valve 46 is switched to open the flow path from the main condenser 21 to the bypass 43, thereby collecting the main condenser 21 via the bypass 43.
  • the high-pressure refrigerant thus supplied is supplied to the evaporator 20.
  • the high-pressure refrigerant is heated by the waste heat of the stopped compressor 19 in the heat exchanging section 44 provided in the bypass 43, and the dryness increases. This is because when the high-pressure refrigerant is recovered by the main condenser 21 in the section b2, the heat is radiated to the outside air and most of the refrigerant is condensed. Therefore, compared to the case where the high-pressure refrigerant is supplied to the evaporator 20 without being heated by the heat exchanging unit 44 in the section c2, the amount of heat due to the latent heat of condensation is evaporated in addition to the sensible heat of the high-pressure refrigerant maintained at the outside air temperature. Can be added to the vessel 20.
  • the defrosting heater (not shown) attached to the evaporator 20 is energized to complete the defrosting. Completion of defrosting is determined by the DEF temperature sensor 36 (see FIG. 1) reaching a predetermined temperature. Then, in the section e2, the flow path switching valve 46 is switched to close the flow path from the main condenser 21 to the bypass 43, and the flow path from the main condenser 21 to the dew prevention pipe 41 is opened so that the inside of the refrigeration cycle. The normal operation is resumed from the section f2.
  • the refrigerator in the present embodiment can suppress the heat load by using the dew-proof pipe 41 and the second dew-proof pipe 47 while switching between them during normal operation.
  • the main condenser 21 is a forced air-cooled condenser, but a dew-proof pipe that is thermally coupled to the side surface or the back surface of the housing 12 may be used. Unlike the dew-proof pipe that is thermally coupled to the periphery of the opening of the refrigerator compartment 17 and the freezer compartment 18, the dew-proof pipe that is thermally coupled to the side surface and back surface of the housing 12 is maintained near the outside air temperature even when the compressor 19 is stopped. Therefore, the same effect can be expected even if the main condenser 21 is used.
  • the flow path switching valve 46 and the evaporator 20 are connected by the bypass 43.
  • the flow rate of the high-pressure refrigerant supplied to the evaporator 20 at the time of defrosting is too fast and a flow noise is generated.
  • a flow path resistance for adjusting the flow rate may be connected in series with the bypass 43.
  • the main condensation is performed when the compressor 19 is stopped by supplying the high-pressure refrigerant directly to the evaporator 20 without passing through the dew-proof pipe 41 and the throttle 42 at the time of defrosting.
  • the temperature of the high-pressure refrigerant was prevented from lowering due to the influence of the dew prevention pipe 41 that is lower in temperature than the vessel 21.
  • the high-pressure refrigerant may flow backward from the evaporator 20 to the dew-proof pipe 41 through the throttle 42.
  • a check valve or a two-way valve that prevents backflow may be provided in the path from the outlet 41 to the inlet of the evaporator 20.
  • FIG. 8 is a longitudinal sectional view of a refrigerator provided with a cooling system according to the fourth embodiment of the present invention
  • FIG. 9 is a configuration diagram of a refrigeration cycle of the cooling system according to the fourth embodiment of the present invention
  • FIG. It is the figure which showed the control at the time of defrosting of the refrigerator provided with the cooling system in embodiment of this.
  • the refrigerator 11 is provided with a housing 12, a door 13, a leg 14 that supports the housing 12, a lower machine room 15 provided at a lower portion of the housing 12, and an upper portion of the housing 12. And a freezer compartment 18 disposed at the lower part of the casing 12.
  • the compressor 19 housed in the upper machine room 16, the evaporator 20 housed on the back side of the freezer room 18, and the main condenser housed in the lower machine room 15. 21.
  • a latent heat type heat storage material 29 having a melting point higher than the condensation temperature during operation of the refrigeration cycle 39 and phase change is provided above the compressor 19 in the upper machine room 16.
  • the partition wall 22 that partitions the lower machine room 15, a fan 23 that is attached to the partition wall 22 and cools the main condenser 21, an evaporating dish 24 installed on the leeward side of the partition wall 22, and a bottom plate 25 of the lower machine room 15. ing.
  • a defrost heater 45 that melts frost on the evaporator 20 is provided below the evaporator 20.
  • the compressor 19 is a variable speed compressor and uses six stages of rotation speed selected from 20 to 80 rps. This is because the refrigerating capacity is adjusted by switching the rotational speed of the compressor 19 to six stages from low speed to high speed while avoiding resonance of piping and the like.
  • the compressor 19 operates at a low speed at the time of start-up, and increases as the operation time for cooling the refrigerator compartment 17 or the freezer compartment 18 becomes longer. This is because the most efficient low speed is mainly used, and an appropriate relatively high rotational speed is used against an increase in load of the refrigerator compartment 17 or the freezer compartment 18 due to high outside air temperature, door opening / closing, or the like. .
  • the rotation speed of the compressor 19 is controlled independently of the cooling operation mode of the refrigerator 11, but the rotation speed at the start of the “PC cooling mode” with a high evaporation temperature and a relatively large refrigerating capacity is set to “FC cooling”. It may be set lower than “mode”. Further, the refrigeration capacity may be adjusted while decelerating the compressor 19 as the temperature of the refrigerator compartment 17 or the freezer compartment 18 decreases.
  • a plurality of air intakes 26 provided in the bottom plate 25, an exhaust port 27 provided on the back side of the lower machine room 15, and a communication air passage 28 connecting the exhaust port 27 of the lower machine room 15 and the upper machine room 16 are provided.
  • the lower machine chamber 15 is divided into two chambers by a partition wall 22, and a main condenser 21 is housed on the windward side of the fan 23 and an evaporating dish 24 is housed on the leeward side.
  • the components constituting the refrigeration cycle 39 are located downstream of the main condenser 21, a dryer 38 that dries the circulating refrigerant, and a flow path switching valve that is located downstream of the dryer 38 and controls the flow of the refrigerant. 40. Further, a dew proof pipe 41 that is located on the downstream side of the flow path switching valve 40 and is thermally coupled to the outer surface of the casing 12 around the opening of the freezer compartment 18, and a throttle that connects the dew proof pipe 41 and the evaporator 20. 42.
  • bypass 43 connecting the downstream side of the flow path switching valve 40 and the evaporator 20, and a heat exchanging portion 44 that is thermally coupled to the heat storage material 29 in the path of the bypass 43.
  • the flow path switching valve 40 can control the opening and closing of the single refrigerant flow respectively in the dew proof pipe 41 and the bypass 43.
  • the flow path switching valve 40 keeps the flow path from the main condenser 21 to the dew-proof pipe 41 and the flow path from the main condenser 21 to the bypass 43 closed. Open and close the channel only at times.
  • the bypass 43 is installed in the heat insulating wall of the main body casing of the refrigerator 11.
  • an evaporator fan 30 that supplies cold air generated in the evaporator 20 to the refrigerator compartment 17 and the freezer compartment 18, a freezer damper 31 that blocks cold air supplied to the freezer compartment 18, and cold air supplied to the refrigerator compartment 17
  • the refrigerator compartment damper 32 to be shut off, the duct 33 for supplying cold air to the refrigerator compartment 17, the FCC temperature sensor 34 for detecting the temperature of the freezer compartment 18, the PCC temperature sensor 35 for detecting the temperature of the refrigerator compartment 17, and the temperature of the evaporator 20 are set. It has a DEF temperature sensor 36 for detection.
  • the duct 33 is formed along a wall surface where the refrigerator compartment 17 and the upper machine room 16 are adjacent to each other, and a part of the cold air passing through the duct 33 is discharged from the vicinity of the center of the refrigerator compartment, and most of the cold air is in the upper machine. After passing through the wall 16 while cooling the adjacent wall surface, it is discharged from the upper part of the refrigerator compartment 17.
  • the main condenser 21 side of the lower machine chamber 15 partitioned by the partition wall 22 has a negative pressure, and external air is sucked from the plurality of intake ports 26, and the evaporating dish 24 side is It becomes a positive pressure and the air in the lower machine chamber 15 is discharged to the outside through the plurality of discharge ports 27.
  • the refrigerant discharged from the compressor 19 is condensed while leaving a part of the gas while exchanging heat with the outside air in the main condenser 21. Then, the moisture is removed by the dryer 38, and the refrigerant is prevented via the flow path switching valve 40. Supplied to the dew pipe 41.
  • the refrigerant that has passed through the dew-proof pipe 41 radiates and condenses through the housing 12 while warming the opening of the freezer compartment 18, and is then decompressed by the throttle 42 and evaporated in the evaporator 20 while being stored in the refrigerator compartment 17. While cooling the refrigerator compartment 17 by exchanging heat with the internal air, the refrigerant is returned to the compressor 19 as a gaseous refrigerant.
  • the freezing The chamber damper 31 is opened, the refrigerator compartment damper 32 is closed, and the compressor 19, the fan 23, and the evaporator fan 30 are driven. Thereafter, by operating the refrigeration cycle 39 in the same manner as the PC cooling, the freezer compartment 18 is heat-exchanged with the evaporator 20 to cool the freezer compartment 18 (hereinafter, this operation is referred to as “FC cooling mode”). ).
  • the state “open / close” of the flow path switching valve 40 indicates that the flow path from the main condenser 21 to the dew proof pipe 41 is opened and the flow path from the main condenser 21 to the bypass 43 is closed. means. Further, the state “closed / opened” of the flow path switching valve 40 means that the flow path from the main condenser 21 to the dew prevention pipe 41 is closed and the flow path from the main condenser 21 to the bypass 43 is opened. To do. The state “closed / closed” of the flow path switching valve 40 means that the flow path from the main condenser 21 to the dew prevention pipe 41 is closed and the flow path from the main condenser 21 to the bypass 43 is closed.
  • the operation proceeds to a defrosting mode in which the frost on the evaporator 20 is heated and melted.
  • a defrosting mode in which the frost on the evaporator 20 is heated and melted.
  • the freezer compartment 18 is cooled for a predetermined time as in the “FC cooling mode”.
  • the flow path switching valve 40 is fully closed while the compressor 19 is in operation, thereby blocking the flow path from the main condenser 21 to the dew prevention pipe 41 and the bypass 43 together. 41, the evaporator 20, and the refrigerant staying in the bypass 43 are recovered to the main condenser 21.
  • the compressor 19 is stopped, and the flow path switching valve 40 is switched to open the flow path from the main condenser 21 to the bypass 43, thereby collecting the main condenser 21 via the bypass 43.
  • the high-pressure refrigerant thus supplied is supplied to the evaporator 20.
  • the high-pressure refrigerant is heated by the heat exchanger 44 provided in the bypass 43 due to a large temperature difference with the heat storage material 29 that stores the waste heat of the compressor 19 that becomes higher than the condensation temperature during the operation of the refrigeration cycle 39.
  • the dryness increases. This is because when the high-pressure refrigerant is recovered by the main condenser 21 in the section b, most of the heat is released to the outside air and condensed.
  • the amount of heat due to the latent heat of condensation is evaporated in addition to the sensible heat of the high-pressure refrigerant maintained at the outside air temperature. Can be added to the vessel 20.
  • the defrosting heater 45 attached to the evaporator 20 is energized to complete the defrosting. Completion of defrosting is determined by the DEF temperature sensor 36 reaching a predetermined temperature.
  • the flow path switching valve 40 is switched to close the flow path from the main condenser 21 to the bypass 43, and the flow path from the main condenser 21 to the dew prevention pipe 41 is opened to refrigerating cycle 39.
  • the inside is equalized and normal operation is resumed from section f.
  • the cooling system includes the refrigeration cycle 39 including the compressor 19, the condenser, the throttle 42, and the evaporator 20, the heat storage material 29 that stores heat radiation during the refrigeration cycle operation,
  • the heat of the heat storage material 29 is heated to the refrigerant in the refrigeration cycle when the refrigeration cycle is stopped, and the heat radiation energy of the refrigeration cycle can be effectively utilized with the simple structure when the refrigeration cycle is stopped, thereby saving energy in the cooling system.
  • the heat storage material 29 stores heat released from the compressor 19 during the refrigeration cycle operation, and heats the heat of the heat storage material 29 to the refrigerant in the refrigeration cycle when the refrigeration cycle is stopped, and the refrigerant heated in the evaporator 20 It is supplied, and the heat radiation energy of the refrigeration cycle can be effectively utilized for defrosting the evaporator 20 when the refrigeration cycle is stopped with a simple structure, and the amount of electric power of the defrost heater 45 can be reduced.
  • the refrigerator 11 provided with the cooling system in this Embodiment collect
  • the amount of electric power of the defrost heater 45 is reduced by supplying the high-pressure refrigerant to the evaporator 20 via the bypass 43 having the heat exchanging portion 44 that is thermally coupled to the heat storage material 29 and heating the evaporator 20. Can save energy in the refrigerator.
  • the high-pressure refrigerant is supplied to the evaporator 20, and the defrost heater 45 is energized after a predetermined time, so that the electric energy of the defrost heater 45 can be reduced and the defrost reliability of the evaporator 20. Can be increased.
  • the heat storage material 29 is arrange
  • the heat storage material 29 is, for example, a latent heat type that changes phase, but a sensible heat type that does not change phase may be used.
  • a liquid such as water, an improvement in heat exchange with the bypass 43 can be expected.
  • the refrigerator of the present invention includes a refrigeration cycle having at least a compressor, an evaporator, a main condenser, and a dew prevention pipe, and a flow path switching valve connected to the downstream side of the main condenser, It has a dew-proof pipe connected to the downstream side of the path switching valve and a bypass connected in parallel with the dew-proof pipe. Also, when defrosting the evaporator, the flow path switching valve is fully closed while the compressor is operating, so that the accumulated refrigerant in the evaporator and the dew-proof pipe is recovered, and then the compressor is stopped and the flow is stopped. The high-pressure refrigerant recovered by opening the path switching valve to the bypass side is supplied to the evaporator, and after a predetermined time, the defrost heater is energized.
  • the refrigerator of the present invention has a flow path resistance connected between the bypass outlet and the dewproof pipe outlet, and opens the flow path switching valve to the bypass side while supplying high-pressure refrigerant to the evaporator.
  • the pressure in the bypass may be maintained at a higher pressure than in the dew-proof pipe.
  • the flow amount of the defrost heater is stably controlled by suppressing fluctuations in flow path resistance and high pressure. It is possible to reduce the energy consumption of the refrigerator.
  • the refrigerator of the present invention has a heat exchange part that thermally couples a part of the bypass path and the compressor, opens the flow path switching valve to the bypass side, and supplies the high-pressure refrigerant to the evaporator.
  • the high-pressure refrigerant may be heated using waste heat of the compressor.
  • the waste heat of the compressor is collected and used for heating the evaporator, thereby removing the defrost heater.
  • the amount of electric power can be further reduced, and energy saving of the refrigerator can be achieved.
  • a refrigeration cycle having at least a compressor, an evaporator, a main condenser, and a dew proof pipe, and a flow path switching valve connected to the downstream side of the main condenser, and a downstream side of the flow path switching valve It has a dew pipe connected, and a bypass connected in parallel with the dew pipe, and when defrosting the evaporator, by fully closing the flow path switching valve during operation of the compressor, After collecting the refrigerant staying in the evaporator and the dew-proof pipe, the compressor is stopped, the flow path switching valve is opened to the bypass side, and the recovered high-pressure refrigerant is supplied to the evaporator.
  • a refrigerator characterized by energizing the defrost heater after a predetermined time.
  • a heat exchanging part that thermally couples a part of the bypass and a sealed container forming the outer shell of the compressor through a heat conducting member, and opens the flow path switching valve to the bypass side.
  • the refrigerator according to any one of appendix 1 or appendix 2, wherein the evaporator is defrosted while supplying high-pressure refrigerant to the evaporator.
  • a heat exchange part that penetrates through a sealed container forming an outer shell of the compressor and thermally couples a part of the bypass with refrigeration oil inside the compressor, and the flow path switching valve is The refrigerator according to any one of appendix 1 or appendix 2, wherein the evaporator is defrosted while being opened to a bypass side and supplying high-pressure refrigerant to the evaporator.
  • a refrigeration cycle including a compressor, a condenser, a throttle, and an evaporator, and a heat storage material that stores heat radiation during the refrigeration cycle operation, and the heat of the heat storage material when the refrigeration cycle is stopped.
  • the heat storage material stores heat released from the compressor during the refrigeration cycle operation, and heats the heat storage material to the refrigerant in the refrigeration cycle when the refrigeration cycle is stopped.
  • a bypass connected in parallel to the throttle from the condenser downstream side to the evaporator of the refrigeration cycle, and a switch located downstream of the condenser and switching the flow path to the throttle or the bypass
  • a switch located downstream of the condenser and switching the flow path to the throttle or the bypass
  • Appendix 6 A refrigerator including the cooling system according to any one of Appendix 1 to Appendix 5.
  • the refrigerator according to the present invention collects the refrigerant staying in the evaporator and the dew-proof pipe in the main condenser, and the high-pressure refrigerant in the refrigeration cycle flows into the evaporator due to the pressure difference to add the evaporator. Since the output of the electric heater for defrosting can be reduced using the energy to warm, it can be applied to other refrigeration application products such as commercial refrigerators.
  • the refrigerator according to the present invention recovers and flows in the waste heat of the stored compressor when the high-pressure refrigerant in the refrigeration cycle flows into the evaporator due to a pressure difference, thereby heating and removing the evaporator. Since the output of the electric heater for frost can be reduced, it can be applied to other freezing and refrigeration applied products such as commercial refrigerators.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Defrosting Systems (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

少なくとも圧縮機(19)、蒸発器(20)、主凝縮器(21)、防露パイプ(41)を有する冷凍サイクルを備える。また、主凝縮器(21)の下流側に接続した流路切換バルブ(40)と、流路切換バルブ(40)の下流側に接続した防露パイプ(41)と、防露パイプ(41)と並列に接続したバイパス(43)を有する。さらに、蒸発器(20)を除霜する際に、圧縮機(19)を運転中に流路切換バルブ(40)を全閉する。こうすることで、蒸発器(20)及び防露パイプ(41)内の滞留冷媒を回収した後、圧縮機(19)を停止するとともに流路切換バルブ(40)をバイパス(43)側に開放して回収した高圧冷媒を蒸発器(20)に供給し、その所定時間後、除霜ヒータに通電する。

Description

冷蔵庫および冷却システム
 本発明は、除霜用ヒータの出力を削減する冷蔵庫および冷凍サイクルの放熱を有効に活用する冷却システムに関するものである。
 省エネルギーの観点から、家庭用冷蔵庫においては、冷凍サイクル内の高圧冷媒が圧力差により蒸発器に流入して蒸発器を加温するエネルギーを利用して、除霜用電気ヒータの出力を削減する冷蔵庫がある。これは、圧縮機が停止した後でも冷凍サイクルの凝縮器内部に貯留する高圧冷媒が外気温度付近に維持される一方、蒸発器が-30~-20℃の低温状態にあるため、高圧冷媒が圧力差により蒸発器に流入する量を増大させたり、流入する高圧冷媒のエンタルピーを増大させて流入する熱量を増大させたりすることで、除霜用電気ヒータの出力を積極的に削減して省エネルギー化を図るものである。
 以下、図面を参照しながら従来の冷蔵庫を説明する。
 図11は従来の冷蔵庫の縦断面図、図12は従来の冷蔵庫の冷凍サイクル構成図、図13は従来の冷蔵庫の除霜時の制御を示した図である。
 図11および図12において、冷蔵庫111は、筐体112、扉113、筐体112を支える脚114、筐体112の下部に設けられた下部機械室115、筐体112の上部に配置された冷蔵室117、および筐体112の下部に配置された冷凍室118を有している。また、冷凍サイクルを構成する部品として、下部機械室115に収められた圧縮機156、冷凍室118の背面側に収められた蒸発器120、および下部機械室115内に収められた主凝縮器121を有している。また、下部機械室115を仕切る隔壁122、隔壁122に取り付けられ主凝縮器121を空冷するファン123、圧縮機156の上部に設置された蒸発皿157、および下部機械室115の底板125を有している。
 また、底板125に設けられた複数の吸気口126、下部機械室115の背面側に設けられた排出口127、および下部機械室115の排出口127と筐体112の上部を繋ぐ連通風路128を有している。ここで、下部機械室115は隔壁122によって2室に分けられ、ファン123の風上側に主凝縮器121を収め、風下側に圧縮機156と蒸発皿157を収めている。
 また、冷凍サイクルを構成する部品として、主凝縮器121の下流側に位置し、冷凍室118の開口部周辺の筐体112の外表面と熱結合された防露パイプ160、防露パイプ160の下流側に位置し、循環する冷媒を乾燥するドライヤ137、およびドライヤ137と蒸発器120を結合し、循環する冷媒を減圧する絞り144を有している。そして、蒸発器120を除霜する際に、防露パイプ160の出口を閉塞する二方弁161と、蒸発器120を加熱する除霜ヒータ162を有している。
 また、蒸発器120で発生する冷気を冷蔵室117と冷凍室118に供給する蒸発器ファン150、冷凍室118に供給される冷気を遮断する冷凍室ダンパー151、および冷蔵室117に供給される冷気を遮断する冷蔵室ダンパー152を有している。また、冷蔵室117に冷気を供給するダクト153、冷凍室118の温度を検知するFCC温度センサ154、冷蔵室117の温度を検知するPCC温度センサ155、および蒸発器120の温度を検知するDEF温度センサ158を有している。
 以上のように構成された従来の冷蔵庫について以下にその動作を説明する。
 ファン123、圧縮機156、蒸発器ファン150をともに停止している冷却停止状態(以下、この動作を「OFFモード」という)において、FCC温度センサ154の検知する温度が所定値のFCC_ON温度まで上昇するか、あるいは、PCC温度センサ155の検知する温度が所定値のPCC_ON温度まで上昇すると、以下の動作が成される。すねわち、冷凍室ダンパー151を閉とし、冷蔵室ダンパー152を開として、圧縮機156とファン123、蒸発器ファン150を駆動する(以下、この動作を「PC冷却モード」という)。
 「PC冷却モード」においては、ファン123の駆動によって、隔壁122で仕切られた下部機械室115の主凝縮器121側が負圧となり複数の吸気口126から外部の空気を吸引し、圧縮機156と蒸発皿157側が正圧となり下部機械室115内の空気を複数の排出口127から外部へ排出する。
 一方、圧縮機156から吐出された冷媒は、主凝縮器121で外気と熱交換しながら一部の気体を残して凝縮した後、防露パイプ160へ供給される。防露パイプ160を通過する冷媒は冷凍室118の開口部を暖めながら、筐体112を介して放熱して凝縮する。防露パイプ160で凝縮した液冷媒は、二方弁161を通過した後ドライヤ137で水分除去され、絞り144で減圧されて蒸発器120で蒸発しながら冷蔵室117の庫内空気と熱交換して冷蔵室117を冷却しながら、気体冷媒として圧縮機156に還流する。
 「PC冷却モード」中に、FCC温度センサ154の検知する温度が所定値のFCC_OFF温度まで下降上昇するとともに、PCC温度センサ155の検知する温度が所定値のPCC_OFF温度まで下降すると、「OFFモード」に遷移する。
 また、「PC冷却モード中」に、FCC温度センサ154の検知する温度が所定値のFCC_OFF温度より高い温度を示すとともに、PCC温度センサ155の検知する温度が所定値のPCC_OFF温度まで下降すると、冷凍室ダンパー151を開とし、冷蔵室ダンパー152を閉として、圧縮機156とファン123、蒸発器ファン150を駆動する。以下、PC冷却と同様に冷凍サイクルを稼動させることにより、冷凍室118の庫内空気と蒸発器120を熱交換して冷凍室118を冷却する(以下、この動作を「FC冷却モード」という)。
 「FC冷却モード」中に、FCC温度センサ154の検知する温度が所定値のFCC_OFF温度まで下降するとともに、PCC温度センサ155の検知する温度が所定値のPCC_ON温度以上を示すと、「PC冷却モード」に遷移する。
 また、「FC冷却モード」中に、FCC温度センサ154の検知する温度が所定値のFCC_OFF温度まで下降するとともに、PCC温度センサ155の検知する温度が所定値のPCC_ON温度より低い温度を示すと、「OFFモード」に遷移する。
 ここで、図13に基づいて従来の冷蔵庫の除霜時の制御について説明する。
 圧縮機156の積算運転時間が所定時間に達すると、蒸発器120の着霜を加温して融解する除霜モードに移行する。除霜モードの区間pにおいて、まず、冷凍室118の温度上昇を抑制するために、「FC冷却モード」と同様に冷凍室118を所定時間冷却する。次に、区間qにおいて、圧縮機156を運転しながら二方弁161を閉塞することによって、ドライヤ137及び蒸発器120に滞留する冷媒を主凝縮器121と防露パイプ160へ回収する。そして、区間rにおいて、圧縮機156を停止することで圧縮機156内部の高圧側と低圧側を仕切るバルブ(図示せず)などのシール部を介して、主凝縮器121と防露パイプ160に回収された高圧冷媒を蒸発器120に逆流させることで、圧縮機156の廃熱でさらに加熱された高圧冷媒を利用して蒸発器120を加温する。その後、区間sにおいて、蒸発器120に取り付けられた除霜ヒータ162に通電して除霜を完了する。そして、区間tにおいて、二方弁161を開放して冷凍サイクル内を均圧して、区間uから通常運転を再開する。
 以上のように説明した動作によって、冷凍サイクルの高圧冷媒及び圧縮機の廃熱を利用して蒸発器を加温することにより、除霜ヒータの電力量を削減することができ、冷蔵庫の省エネルギー化を図ることができる。
 また、従来の冷蔵庫の除霜時の消費電力量削減の技術としては、水などの液体に圧縮機の廃熱を蓄熱し、除霜時に冷却用の配管とは別系統の配管で、ポンプを用いて庫内を循環させ、蒸発器の除霜を行うものがある(例えば特許文献2参照)。図14は特許文献2に記載された従来の除霜用ヒータの消費電力量削減を示す図である。
 図14において、冷媒圧縮用の圧縮機170を覆うように蓄熱剤が満たされるジャケット171が設けられ、ジャケット171には蓄熱剤を循環させるための配管172が接続されている。配管172には循環ポンプ173と、蓄熱タンク174と、電磁弁175とが順次接続されて閉じた系を形成している。循環ポンプ173と電磁弁175との間に霜取り用の庫内循環配管176が接続されており、こちらも閉じた系を形成している。
 なお蓄熱タンク174には補助ヒータ177が設けられている。また電磁弁175には三方切換弁が用いられている。
 冷蔵庫の冷却運転中は、電磁弁175を開き蓄熱タンク174とジャケット171を連通させ、循環ポンプ173により蓄熱剤(水等の液体)を配管172中に循環させる。蓄熱剤はジャケット171において圧縮機170の発熱により加熱され、蓄熱タンク174内の蓄熱剤も次第に昇温する。これにより圧縮機170の廃熱を蓄熱タンク174に蓄熱する。冷蔵庫が除霜運転に切換った際に圧縮機170が停止し、電磁弁175を庫内循環配管176側に開き、循環ポンプ173を作動させて、蓄熱剤を庫内循環配管176内に循環させ霜取りを行う。必要に応じて補助ヒータに通電し蓄熱剤の温度を保つようにする。
 また、従来の冷蔵庫の除霜用ヒータの消費電力量削減の技術として、冷却用冷媒を圧縮機側から逆流させるものもある(例えば特許文献1参照)。図15は特許文献1に記載された従来の除霜用ヒータの消費電力削減を示す冷凍サイクルの概略構成図を示す図である。矢印は、冷媒流れ方向(冷却サイクル運転時)を示す。
 図15において、圧縮機183、凝縮器184、キャピラリチューブ185と二つの蒸発器(F蒸発器180、R蒸発器182)で構成された冷凍サイクルであり、凝縮器184とキャピラリチューブ185の間には差圧弁186が設けられ、F蒸発器180とR蒸発器182の間には電磁弁181が設けられている。
 通常の冷却運転中には、電磁弁181は開放され、差圧弁186にて冷媒圧力を制御しながら、冷媒を循環させている。
 除霜運転時(圧縮機停止)には、電磁弁181は閉じられており、かつ差圧弁186が閉じられることにより、圧縮機183内の残留高圧冷媒ガスが、圧力差により逆流して低圧のR蒸発器182内へ流入する。この冷媒ガスによる凝縮潜熱を利用し除霜を行う。
 また、一般的に冷媒を圧縮する圧縮機は冷媒の吸入温度が高くなると運転効率が下がるため、空冷や水冷により効率の低下を抑制している。
特開平4-194564号公報 特開2000-304415号公報
 しかしながら、特許文献1に開示された従来の冷蔵庫の構成では、主凝縮器121と防露パイプ160に回収された高圧冷媒を蒸発器120の除霜に利用する際に、冷凍室118の開口部周辺と熱結合された防露パイプ160の温度が低下して、ほぼ外気温度で維持される主凝縮器121内の高圧冷媒が防露パイプ160内部で凝縮する。この結果、高圧圧力が低下して蒸発器120に流入する冷媒量が減少し、除霜ヒータの電力量を十分削減することができない原因となる。
 従って、回収された高圧冷媒を蒸発器120の除霜に利用する際に、高圧圧力を維持することが課題であった。
 また、従来の冷蔵庫の構成では、圧縮機156を停止することで圧縮機156を介して、回収された高圧冷媒を蒸発器120に逆流させる。このことにより、高圧冷媒を用いて圧縮機156の廃熱を回収して蒸発器120の加温に利用できる反面、圧縮機156内部の高圧側と低圧側を仕切るバルブなどのシール部の漏れによる逆流を想定しているため、流量を調整することが困難であり蒸発器120に流入する冷媒量が減少し、除霜ヒータの電力量を十分削減することができない原因となる。
 従って、回収された高圧冷媒を蒸発器120の除霜に利用する際に、高圧冷媒が蒸発器120に流入する際の流路抵抗を維持することが課題であった。
 本発明は、回収された高圧冷媒を蒸発器の除霜に利用する際に、高圧圧力や流路抵抗の変動を抑制することができる冷蔵庫を提供する。
 本発明の冷蔵庫は、少なくとも圧縮機、蒸発器、主凝縮器、防露パイプを有する冷凍サイクルを備え、主凝縮器の下流側に接続した流路切換バルブと、流路切換バルブの下流側に接続した防露パイプと、防露パイプと並列に接続したバイパスを有する。また、蒸発器を除霜する際に、圧縮機を運転中に流路切換バルブを全閉することで、蒸発器及び防露パイプ内の滞留冷媒を回収した後、圧縮機を停止するとともに流路切換バルブをバイパス側に開放して回収した高圧冷媒を蒸発器に供給し、その所定時間後、除霜ヒータに通電するものである。
 これによって、回収された高圧冷媒を蒸発器の除霜に利用する際に、高圧圧力や流路抵抗の変動を抑制することで、除霜ヒータの電力量を安定して削減することができる。
 また、本発明の冷蔵庫は、回収された高圧冷媒を蒸発器の除霜に利用する際に、バイパス回路を介して蒸発器に供給するとともに、バイパス回路と圧縮機を熱結合してもよい。
 これによって、高圧冷媒を蒸発器に供給する際に圧縮機の廃熱を回収して蒸発器の加温に利用することで、除霜ヒータの電力量をさらに削減することができる。
 また、本発明の冷蔵庫は、バイパス経路の一部と圧縮機を熱結合する熱交換部を有し、流路切換バルブをバイパス側に開放して高圧冷媒を蒸発器に供給しながら蒸発器を除霜する際に、圧縮機の廃熱を利用して高圧冷媒を加温してもよい。
 これによって、冷凍サイクル内の冷媒を主凝縮器に回収して蒸発器の加温に利用する際に、圧縮機の廃熱を回収して蒸発器の加温に利用することで、除霜ヒータの電力量をさらに削減することができ、冷蔵庫の省エネルギー化を図ることができる。
 このように、本発明の冷蔵庫は、冷凍サイクル内の冷媒を主凝縮器に回収して蒸発器の加温に利用することで、除霜ヒータの電力量を安定的に削減することができ、冷蔵庫の省エネルギー化を図ることができる。
 また、本発明の冷蔵庫は、少なくとも圧縮機、蒸発器、主凝縮器、防露パイプを有する冷凍サイクルを備え、主凝縮器の下流側に接続した流路切換バルブと、流路切換バルブの下流側に接続した防露パイプと、防露パイプと並列に接続したバイパスを有する。また、蒸発器を除霜する際に、圧縮機を運転中に流路切換バルブを全閉することで、蒸発器及び防露パイプ内の滞留冷媒を回収した後、圧縮機を停止するとともに流路切換バルブをバイパス側に開放して回収した高圧冷媒を蒸発器に供給し、その所定時間後、除霜ヒータに通電するものである。
 これによって、回収された高圧冷媒を蒸発器の除霜に利用する際に、高圧圧力や流路抵抗の変動を抑制することで、除霜ヒータの電力量を安定して削減することができる。
 また、本発明の冷蔵庫は、回収された高圧冷媒を蒸発器の除霜に利用する際に、バイパス回路を介して蒸発器に供給するとともに、バイパス回路と圧縮機を熱結合してもよい。
 これによって、高圧冷媒を蒸発器に供給する際に圧縮機の廃熱を回収して蒸発器の加温に利用することで、除霜ヒータの電力量をさらに削減することができる。
 また、本発明の冷蔵庫は、バイパス経路の一部と圧縮機の外郭を形成する密閉容器とを熱伝導部材を介して熱結合する熱交換部を有し、流路切換バルブをバイパス側に開放して高圧冷媒を蒸発器に供給しながら蒸発器を除霜してもよい。
 これによって、冷凍サイクル内の冷媒を主凝縮器に回収して蒸発器の加温に利用する際に、圧縮機の廃熱を回収して蒸発器の加温に利用することで、除霜ヒータの電力量をさらに削減することができ、冷蔵庫の省エネルギー化を図ることができる。
 また、本発明の冷蔵庫は、圧縮機の外郭を形成する密閉容器を貫通してバイパス経路の一部を圧縮機内部の冷凍機油と熱結合する熱交換部を有し、流路切換バルブをバイパス側に開放して高圧冷媒を蒸発器に供給しながら蒸発器を除霜してもよい。
 これによって、冷凍サイクル内の冷媒を主凝縮器に回収して蒸発器の加温に利用する際に、圧縮機の廃熱を回収して蒸発器の加温に利用することで、除霜ヒータの電力量をさらに削減することができるとともに、通常冷却運転時に圧縮機表面からの放熱を阻害することがなく、さらに冷蔵庫の省エネルギー化を図ることができる。
 このように、本発明の冷蔵庫は、冷凍サイクル内の冷媒を主凝縮器に回収して蒸発器の加温に利用することで、除霜ヒータの電力量を安定的に削減することができ、冷蔵庫の省エネルギー化を図ることができる。
 なお、従来の特許文献2の構成では、冷蔵庫の冷却運転中(冷凍サイクル運転中)の圧縮機170の廃熱を蓄えることで多くの熱量を除霜に利用できる。しかし、冷凍サイクルと別の新たな系統の蓄熱剤の循環サイクルを構成するため、循環ポンプ173や配管172、庫内循環配管176などの設置スペースが必要となり、冷蔵庫の庫内容量が減少することが課題であった。また、従来の特許文献2の構成では、冷凍サイクル内の高圧冷媒を除霜に利用するため新たにスペースは必要ないが、冷凍サイクル運転中の廃熱を除霜に利用できない上、高圧冷媒ガスを圧縮機183内の本来逆流を防止するための高低圧を仕切る弁を介して逆流させるため、流量の調整が困難で流入する高圧冷媒ガスの減少が考えられ、除霜ヒータの電力量を十分に削減することができないことが課題であった。
 本発明は、省電力な冷却システムおよび冷蔵庫を提供する。
 本発明の冷却システムは、圧縮機と凝縮器と減圧器と蒸発器とを備えた冷凍サイクルと、冷凍サイクル運転時の放熱を蓄熱する蓄熱材と、を備え、冷凍サイクル停止時に蓄熱材の熱を冷凍サイクル内の冷媒に加温するものである。
 これによって、簡素な構造で冷凍サイクル停止時に冷凍サイクルの放熱を有効に活用でき、例えば除霜ヒータの電力量を削減することができる。
 また、本発明の冷却システムは、蓄熱材が冷凍サイクル運転時の圧縮機からの放熱を蓄熱し、冷凍サイクル停止時に蓄熱材の熱を冷凍サイクル内の冷媒に加温して蒸発器に冷媒を供給してもよい。
 これによって、簡素な構造で冷凍サイクル停止時に冷凍サイクルの放熱エネルギーを蒸発器の除霜に有効活用でき、除霜ヒータの電力量を削減することができる。
 また、本発明の冷却システムは、冷凍サイクルの凝縮器の下流側から蒸発器へ絞りと並列に接続されたバイパスと、凝縮器の下流側に位置し、絞りあるいはバイパスへ流路を切り替える流路切換バルブと、冷凍サイクル運転中の廃熱を蓄える蓄熱材と、バイパスの一部と蓄熱材が熱結合する熱交換部を有する。また、蒸発器を除霜する際に、圧縮機を停止するとともに流路切換バルブをバイパス側に開放して、凝縮器に滞留する高圧冷媒を熱交換部で蓄熱材によって加温して蒸発器に供給してもよい。
 これによって、庫内容量を減らすことなく蓄えられた冷凍サイクル運転中の放熱エネルギーを、冷媒を介して蒸発器へ供給することができ、除霜ヒータの電力量を削減することができる。
 また、本発明の冷却システムは、蒸発器に高圧冷媒を供給して所定時間後、除霜ヒータに通電してもよい。
 これによって、除霜ヒータの電力量を削減することができるとともに、蒸発器の除霜信頼性を高めることができる。
 また、本発明の冷却システムは、蓄熱材を圧縮機上部に配置してもよい。
 これによって、冷凍サイクル運転中の圧縮機の放熱エネルギーを容易に、かつ高い温度で蓄えることができるため、より多くの熱エネルギーを、冷媒を介して蒸発器へ供給して加温することができ、除霜ヒータの電力量をさらに削減することができる。
 また、本発明の冷蔵庫は、上記冷却システムを備えた冷蔵庫としてもよい。
 これによって、簡素な構造で冷凍サイクル停止時に冷凍サイクルの放熱エネルギーを有効に活用でき、冷蔵庫の省エネを図ることができる。
 このように、本発明の冷却システムは、冷凍サイクル運転時の放熱エネルギーを、簡素な構造で冷凍サイクル停止時に有効に活用でき、冷却システムの省エネを図ることができる。
図1は、本発明の第1の実施の形態における冷蔵庫の縦断面図である。 図2は、本発明の第1の実施の形態における冷蔵庫の冷凍サイクル構成図である。 図3Aは、本発明の第1の実施の形態における冷蔵庫の熱交換部の正面模式図である。 図3Bは、本発明の第1の実施の形態における冷蔵庫の熱交換部の断面模式図である。 図4は、本発明の第1の実施の形態における冷蔵庫の除霜時の制御を示した図である。 図5は、本発明の第2の実施の形態における冷蔵庫の熱交換部の模式図である。 図6は、本発明の第3の実施の形態における冷蔵庫の冷凍サイクル構成図である。 図7は、本発明の第3の実施の形態における冷蔵庫の除霜時の制御を示した図である。 図8は、本発明の第4の実施の形態における冷却システムを備えた冷蔵庫の縦断面図である。 図9は、本発明の第4の実施の形態における冷却システムの冷凍サイクル構成図である。 図10は、本発明の第4の実施の形態における冷却システムを備えた冷蔵庫の除霜時の制御を示した図である。 図11は、従来の冷蔵庫の縦断面図である。 図12は、従来の冷蔵庫の冷凍サイクル構成図である。 図13は、従来の冷蔵庫の除霜時の制御を示した図である。 図14は、従来の冷却システムの構成図である。 図15は、従来の冷却システムの構成図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。
 (第1の実施の形態)
 図1は本発明の第1の実施の形態における冷蔵庫の縦断面図、図2は本発明の第1の実施の形態における冷蔵庫の冷凍サイクル構成図である。図3Aは本発明の第1の実施の形態における冷蔵庫の熱交換部の正面模式図、図3Bは本発明の第1の実施の形態における冷蔵庫の熱交換部の断面模式図、図4は本発明の第1の実施の形態における冷蔵庫の除霜時の制御を示した図である。
 図1から図3A、図3Bに示すように、冷蔵庫11は、筐体12、扉13、筐体12を支える脚14、筐体12の下部に設けられた下部機械室15、筐体12の上部に設けられた上部機械室16、筐体12の上部に配置された冷蔵室17、および筐体12の下部に配置された冷凍室18を有する。また、冷凍サイクルを構成する部品として、上部機械室16に収められた圧縮機19、冷凍室18の背面側に収められた蒸発器20、および下部機械室15内に収められた主凝縮器21を有している。また、下部機械室15を仕切る隔壁22、隔壁22に取り付けられ主凝縮器21を空冷するファン23、隔壁22の風下側に設置された蒸発皿24、および下部機械室15の底板25を有している。
 ここで、圧縮機19は可変速圧縮機であり、20~80rpsから選択された6段階の回転数を使用する。これは、配管などの共振を避けながら、圧縮機19の回転数を低速~高速の6段階に切り換えて冷凍能力を調整するためである。圧縮機19は、起動時は低速で運転し、冷蔵室17あるいは冷凍室18を冷却するための運転時間が長くなるに従って増速する。これは、最も高効率な低速を主として使用するとともに、高外気温や扉開閉などによる冷蔵室17あるいは冷凍室18の負荷の増大に対して、適切な比較的高い回転数を使用するためである。このとき、冷蔵庫11の冷却運転モードとは独立に、圧縮機19の回転数を制御するが、蒸発温度が高く比較的冷凍能力が大きい「PC冷却モード」の起動時の回転数を「FC冷却モード」よりも低く設定してもよい。また、冷蔵室17あるいは冷凍室18の温度低下に伴って、圧縮機19を減速しながら冷凍能力を調整してもよい。
 また、底板25に設けられた複数の吸気口26、下部機械室15の背面側に設けられた排出口27、および下部機械室15の排出口27と上部機械室16を繋ぐ連通風路28を有している。ここで、下部機械室15は隔壁22によって2室に分けられ、ファン23の風上側に主凝縮器21、風下側に蒸発皿24を収めている。
 また、冷凍サイクルを構成する部品として、主凝縮器21の下流側に位置し、循環する冷媒を乾燥するドライヤ38と、ドライヤ38の下流側に位置し、冷媒の流れを制御する流路切換バルブ40を有している。また、流路切換バルブ40の下流側に位置し、冷凍室18の開口部周辺の筐体12の外表面と熱結合された防露パイプ41、および防露パイプ41と蒸発器20を接続する絞り42を有している。さらに、防露パイプ41と並列に流路切換バルブ40の下流側と蒸発器20を接続するバイパス43と、バイパス43の経路内で圧縮機19と熱結合する熱交換部44を有している。
 図3A、図3Bに示すように、熱交換部44は圧縮機19の外郭を形成する密閉容器70の表面に設置され、バイパス43と密閉容器70を熱結合する熱伝導性ブチルゴム71、密閉容器70に固定するアルミ箔テープ72からなる。熱伝導性ブチルゴム71は熱伝導率2.1W/mK、厚さ1mm、幅10mmであり、密閉容器70の上下中央付近をほぼ一周するバイパス43を挟むように設置される。これによって、バイパス43と密閉容器70の熱交換量を十分確保することができ、バイパス43内部を通過する高圧冷媒が熱交換部44で加温されて、ほぼ気体の状態とすることができる。
 なお、熱伝導性ブチルゴム71に替えて、ハンダやロー材などの熱伝導率の高い金属を用いてバイパス43と密閉容器70を熱結合しても同様の効果が期待できるが、密閉容器70および熱結合部の防錆処理が必要となる。熱伝導性ブチルゴム71を用いた場合は、密閉容器70に防錆塗装をした上に使用できる利点があるとともに、圧縮機19の振動がバイパス43に伝達することを抑制する効果も期待できる。また、密閉容器70は圧縮機19の40%程度の質量割合があり、圧縮機19が顕熱蓄熱する廃熱の40%程度を保持していると推定されるとともに、圧縮機19内部の冷媒(図示せず)や冷凍機油(図示せず)を介して、圧縮機19内部の機構部品などが蓄える廃熱と熱結合されているので、熱交換部44を密閉容器70の表面に形成すれば圧縮機19が顕熱蓄熱する廃熱を有効利用することができる。
 また、流路切換バルブ40は、防露パイプ41とバイパス43それぞれ単独の冷媒の流れを開閉制御することができる。通常、流路切換バルブ40は主凝縮器21から防露パイプ41への流路を開、主凝縮器21からバイパス43への流路を閉の状態を維持しており、後に説明する除霜時のみ流路の開閉を行う。
 また、蒸発器20で発生する冷気を冷蔵室17と冷凍室18に供給する蒸発器ファン30、冷凍室18に供給される冷気を遮断する冷凍室ダンパー31、および冷蔵室17に供給される冷気を遮断する冷蔵室ダンパー32を有している。また、冷蔵室17に冷気を供給するダクト33、冷凍室18の温度を検知するFCC温度センサ34、冷蔵室17の温度を検知するPCC温度センサ35、および蒸発器20の温度を検知するDEF温度センサ36を有している。ここで、ダクト33は冷蔵室17と上部機械室16が隣接する壁面に沿って形成され、ダクト33を通過する冷気の一部を冷蔵室の中央付近から排出するとともに、冷気の多くは上部機械室16が隣接する壁面を冷却しながら通過した後に冷蔵室17の上部から排出する。
 以上のように構成された本実施の形態における冷蔵庫について以下にその動作を説明するが、従来例と同一構成については、その詳細な説明は省略する。
 ファン23、圧縮機19、蒸発器ファン30をともに停止している冷却停止状態(以下、この動作を「OFFモード」という)において、FCC温度センサ34の検知する温度が所定値のFCC_ON温度まで上昇するか、あるいは、PCC温度センサ35の検知する温度が所定値のPCC_ON温度まで上昇すると、以下の動作が成される。すなわち、冷凍室ダンパー31を閉とし、冷蔵室ダンパー32を開として、圧縮機19とファン23、蒸発器ファン30を駆動する(以下、この動作を「PC冷却モード」という)。
 「PC冷却モード」においては、ファン23の駆動によって、隔壁22で仕切られた下部機械室15の主凝縮器21側が負圧となり複数の吸気口26から外部の空気を吸引し、蒸発皿24側が正圧となり下部機械室15内の空気を複数の排出口27から外部へ排出する。
 一方、圧縮機19から吐出された冷媒は、主凝縮器21で外気と熱交換しながら一部の気体を残して凝縮した後、ドライヤ38で水分除去され、流路切換バルブ40を介して防露パイプ41へ供給される。防露パイプ41を通過した冷媒は冷凍室18の開口部を暖めながら、筐体12を介して放熱して凝縮した後、絞り42で減圧されて蒸発器20で蒸発しながら冷蔵室17の庫内空気と熱交換して冷蔵室17を冷却しながら、気体冷媒として圧縮機19に還流する。
 「PC冷却モード」中に、FCC温度センサ34の検知する温度が所定値のFCC_OFF温度まで下降上昇するとともに、PCC温度センサ35の検知する温度が所定値のPCC_OFF温度まで下降すると、「OFFモード」に遷移する。
 また、「PC冷却モード」中に、FCC温度センサ34の検知する温度が所定値のFCC_OFF温度より高い温度を示すとともに、PCC温度センサ35の検知する温度が所定値のPCC_OFF温度まで下降すると、冷凍室ダンパー31を開とし、冷蔵室ダンパー32を閉として、圧縮機19とファン23、蒸発器ファン30を駆動する。以下、PC冷却と同様に冷凍サイクルを稼動させることにより、冷凍室18の庫内空気と蒸発器20を熱交換して冷凍室18を冷却する(以下、この動作を「FC冷却モード」という)。
 「FC冷却モード」中に、FCC温度センサ34の検知する温度が所定値のFCC_OFF温度まで下降するとともに、PCC温度センサ35の検知する温度が所定値のPCC_ON温度以上を示すと、「PC冷却モード」に遷移する。
 また、「FC冷却モード」中に、FCC温度センサ34の検知する温度が所定値のFCC_OFF温度まで下降するとともに、PCC温度センサ35の検知する温度が所定値のPCC_ON温度より低い温度を示すと、「OFFモード」に遷移する。
 ここで、本実施の形態の冷蔵庫の除霜時の制御について説明する。
 図4において、流路切換バルブ40の状態「開閉」は、主凝縮器21から防露パイプ41への流路を開放して、主凝縮器21からバイパス43への流路を閉塞することを意味する。また、流路切換バルブ40の状態「閉開」は、主凝縮器21から防露パイプ41への流路を閉塞して、主凝縮器21からバイパス43への流路を開放することを意味する。流路切換バルブ40の状態「閉閉」は、主凝縮器21から防露パイプ41への流路を閉塞して、主凝縮器21からバイパス43への流路を閉塞することを意味する。
 圧縮機19の積算運転時間が所定時間に達すると、蒸発器20の着霜を加温して融解する除霜モードに移行する。除霜モードの区間aにおいて、まず、冷凍室18の温度上昇を抑制するために、「FC冷却モード」と同様に冷凍室18を所定時間冷却する。次に、区間bにおいて、圧縮機19を運転しながら流路切換バルブ40を全閉することによって、主凝縮器21から防露パイプ41とバイパス43への流路を共に閉塞して防露パイプ41と蒸発器20、及びバイパス43に滞留する冷媒を主凝縮器21へ回収する。そして、区間cにおいて、圧縮機19を停止するとともに、流路切換バルブ40を切換えて主凝縮器21からバイパス43への流路を開放することで、バイパス43を介して主凝縮器21に回収された高圧冷媒を蒸発器20に供給する。
 このとき、バイパス43に設けられた熱交換部44で高圧冷媒が停止中の圧縮機19の廃熱によって加温されて、乾き度が増大する。これは、区間bにおいて高圧冷媒が主凝縮器21に回収される際に外気に放熱して大部分が凝縮するためである。従って、区間cにおいて高圧冷媒が熱交換部44で加温されずに蒸発器20に供給される場合に比べて、外気温度に維持された高圧冷媒の顕熱に加えて凝縮潜熱による熱量を蒸発器20に加えることができる。次に、区間dにおいて、蒸発器20に取り付けられた除霜ヒータ(図示せず)に通電して除霜を完了する。除霜の完了はDEF温度センサ36が所定温度に達したことで判断する。そして、区間eにおいて、流路切換バルブ40を切換えて主凝縮器21からバイパス43への流路を閉塞するとともに、主凝縮器21から防露パイプ41への流路を開放して冷凍サイクル内を均圧し、区間fから通常運転を再開する。
 以上のように、本実施の形態における冷蔵庫は、除霜の際に蒸発器20及び防露パイプ41に滞留する冷媒を主凝縮器21に回収し、圧縮機19と熱結合する熱交換部44を有するバイパス43を介して蒸発器20に高圧冷媒を供給して蒸発器20を加温することにより、除霜ヒータ(図示せず)の電力量を削減することができ、冷蔵庫の省エネルギー化を図ることができる。
 また、熱交換部44は熱伝導部材である熱伝導性ブチルゴム71、アルミ箔テープ72を介して熱結合しているので、圧縮機19の顕熱蓄熱する廃熱を有効利用することができ、さらに効率的に除霜ヒータ(図示せず)の電力量を削減することができ、冷蔵庫の省エネルギー化を図ることができる。
 なお、本実施の形態における冷蔵庫では、主凝縮器21は強制空冷タイプの凝縮器としたが、筐体12の側面や背面に熱結合される防露パイプを用いてもよい。冷蔵室17や冷凍室18の開口部周辺と熱結合される防露パイプと異なり、筐体12の側面や背面に熱結合される防露パイプは圧縮機19が停止中でも外気温度近傍に維持されるので、主凝縮器21として利用しても同様の効果が期待できる。
 なお、本実施の形態における冷蔵庫では、流路切換バルブ40と蒸発器20をバイパス43で接続したが、除霜の際に蒸発器20へ供給する高圧冷媒の流速が早すぎて流動音が発生する場合、流速を調整するための流路抵抗をバイパス43と直列に接続してもよい。
 なお、本実施の形態における冷蔵庫では、除霜の際に高圧冷媒を防露パイプ41と絞り42を経由せずに蒸発器20へ直接供給することで、圧縮機19が停止した際に主凝縮器21よりも低温となる防露パイプ41の影響で高圧冷媒の温度が低下することを回避した。しかし、除霜の進行により蒸発器20の温度が防露パイプ41よりも高くなると、絞り42を介して高圧冷媒が蒸発器20から防露パイプ41へ逆流する可能性があるので、防露パイプ41の出口から蒸発器20の入口の経路内に逆流を防止する逆止弁や二方弁を設けてもよい。
 (第2の実施の形態)
 図5は本発明の第2の実施の形態における冷蔵庫の熱交換部の模式図である。以下、本実施の形態について、図面を参照しながら説明するが、第1の実施の形態と同一構成については同一符号を付して、その詳細な説明は省略する。
 図5において、圧縮機19は外郭を形成する密閉容器90、密閉容器90の内部に設置され、圧縮機構を形成するピストン91、シリンダ92とシャフト93、シャフト93を介して圧縮機構を駆動するモータ部94、および圧縮機構の潤滑に利用される冷凍機油95からなる。ここで、バイパス43の一部は密閉容器90を貫通するとともに、密閉容器90の下部に滞留する冷凍機油95内に設置されて、圧縮機19と熱結合する熱交換部96を形成する。
 これによって、バイパス43と密閉容器90の熱交換量を十分確保することができ、バイパス43内部を通過する高圧冷媒が熱交換部96で加温されて、ほぼ気体の状態とすることができる。また、密閉容器90の表面からの放熱を損なうことなく、バイパス43と密閉容器90の熱交結合を実現したので、通常冷却運転時に圧縮機19の放熱が損なわれて温度上昇し、圧縮機19の効率低下を招くことがない。
 以上のように、本実施の形態における冷蔵庫は、除霜の際に蒸発器20及び防露パイプ41に滞留する冷媒を主凝縮器21に回収し、圧縮機19と熱結合する熱交換部96を有するバイパス43を介して蒸発器20に高圧冷媒を供給して蒸発器20を加温することにより、除霜ヒータ(図示せず)の電力量を削減することができ、冷蔵庫の省エネルギー化を図ることができる(図2参照)。
 特に、バイパス43の一部は密閉容器90を貫通するとともに、密閉容器90の下部に滞留する冷凍機油95内に設置されて、圧縮機19と熱結合する熱交換部96を形成しているので、密閉容器90の表面からの放熱を損なうことなく、バイパス43と密閉容器90の熱交換量を十分確保することができ、さらに冷蔵庫の省エネルギー化を図ることができる。
 (第3の実施の形態)
 図6は本発明の第3の実施の形態における冷蔵庫のサイクル構成図、図7は本発明の第3の実施の形態における冷蔵庫の除霜時の制御を示した図である。以下、本実施の形態について、図面を参照しながら説明するが、第1の実施の形態および第2の実施の形態と同一構成については同一符号を付して、その詳細な説明は省略する。
 本実施の形態における冷蔵庫の冷凍サイクルを構成する部品として、主凝縮器21の下流側に位置し、循環する冷媒を乾燥するドライヤ38と、ドライヤ38の下流側に位置し、冷媒の流れを制御する流路切換バルブ46を有している。また、流路切換バルブ46の下流側に位置し、冷凍室18(図1参照)の開口部周辺の筐体12(図1参照)の外表面と熱結合された防露パイプ41と、防露パイプ41と蒸発器20を接続する絞り42を有している。また、防露パイプ41及び絞り42と並列に流路切換バルブ46の下流側と蒸発器20を接続する第二の防露パイプ47及び第二の絞り48、防露パイプ41及び第二の防露パイプ47と並列に流路切換バルブ46の下流側と蒸発器20を接続するバイパス43、およびバイパス43の経路内で圧縮機19と熱結合する熱交換部44を有している。
 また、流路切換バルブ46は、防露パイプ41、第二の防露パイプ47及びバイパス43それぞれ単独の冷媒の流れを開閉制御することができる。「PC冷却モード」や「FC冷却モード」、「OFFモード」においては、流路切換バルブ46は主凝縮器21から防露パイプ41あるいは第二の防露パイプ47への流路を開閉するとともに、主凝縮器21からバイパス43への流路を閉の状態を維持しており、除霜モードにおいてのみバイパス43への流路の開閉を行う。
 ここで、第二の防露パイプ47は、筐体12の背面と熱結合されるものであり、「PC冷却モード」や「FC冷却モード」などの通常運転中に、防露パイプ41及び絞り42の経路と第二の防露パイプ47および第二の絞り48の経路を切換えながら冷媒を流通させるものである。防露パイプ41は、冷蔵庫11の外表面で最も低温となる冷凍室18の開口部周辺の筐体12の外表面と熱結合しているため、外気が高湿度の場合は防露パイプ41を常時使用する必要があるが、第二の防露パイプ47に比べて冷蔵庫11の庫内に熱侵入する割合が高く、冷蔵庫11の熱負荷量を増大させる要因となる。そこで、外気が低湿度の場合は防露パイプ41の使用頻度を下げて、代わりに第二の防露パイプ47を利用することで熱負荷量を抑制することができる。
 以上のように構成された本実施の形態における冷蔵庫について以下にその動作を説明する。
 「PC冷却モード」および「FC冷却モード」においては、圧縮機19が起動した時刻から所定時間毎に1つの区間として、その区間の外気の湿度に応じて防露パイプ41と第二の防露パイプ47の使用割合を可変する。例えば、外気が相対湿度50%の場合、その区間の前半の60%の時間では防露パイプ41を使用して、後半の40%の時間では第二の防露パイプ47を使用するように、流路切換バルブ46を切換えながら冷凍サイクルを動作させる。
 「OFFモード」においては、常に防露パイプ41の流路を開放するように流路切換バルブ46の状態を固定する。
 ここで、本実施の形態における冷蔵庫の除霜時の制御について説明する。
 図7において、流路切換バルブ46の状態「開閉閉」は、主凝縮器21から防露パイプ41への流路を開放して、主凝縮器21から第二の防露パイプ47への流路、および主凝縮器21からバイパス43への流路を閉塞することを意味する。また、流路切換バルブ46の状態「閉開閉」は、主凝縮器21から防露パイプ41への流路を閉塞して、主凝縮器21から第二の防露パイプ47への流路を開放して、主凝縮器21からバイパス43への流路を閉塞することを意味する。
 流路切換バルブ46の状態「閉閉開」は、主凝縮器21から防露パイプ41への流路、および主凝縮器21から第二の防露パイプ47への流路を閉塞して、主凝縮器21からバイパス43への流路を開放することを意味する。流路切換バルブ46の状態「閉閉閉」は、主凝縮器21から防露パイプ41への流路、主凝縮器21から第二の防露パイプ47への流路、および主凝縮器21からバイパス43への流路の全てを閉塞することを意味する。
 圧縮機19の積算運転時間が所定時間に達すると、蒸発器20の着霜を加温して融解する除霜モードに移行する。除霜モードの区間a2において、まず、冷凍室18の温度上昇を抑制するために、「FC冷却モード」と同様に冷凍室18を所定時間冷却する。次に、区間b2において、圧縮機19を運転しながら流路切換バルブ46を全閉することによって、主凝縮器21から防露パイプ41、第二の防露パイプ47及びバイパス43への流路を共に閉塞して防露パイプ41、第二の防露パイプ47、バイパス43及び蒸発器20に滞留する冷媒を主凝縮器21へ回収する。そして、区間c2において、圧縮機19を停止するとともに、流路切換バルブ46を切換えて主凝縮器21からバイパス43への流路を開放することで、バイパス43を介して主凝縮器21に回収された高圧冷媒を蒸発器20に供給する。
 このとき、バイパス43に設けられた熱交換部44で高圧冷媒が停止中の圧縮機19の廃熱によって加温されて、乾き度が増大する。これは、区間b2において高圧冷媒が主凝縮器21に回収される際に外気に放熱して大部分が凝縮するためである。従って、区間c2において高圧冷媒が熱交換部44で加温されずに蒸発器20に供給される場合に比べて、外気温度に維持された高圧冷媒の顕熱に加えて凝縮潜熱による熱量を蒸発器20に加えることができる。
 次に、区間d2において、蒸発器20に取り付けられた除霜ヒータ(図示せず)に通電して除霜を完了する。除霜の完了はDEF温度センサ36(図1参照)が所定温度に達したことで判断する。そして、区間e2において、流路切換バルブ46を切換えて主凝縮器21からバイパス43への流路を閉塞するとともに、主凝縮器21から防露パイプ41への流路を開放して冷凍サイクル内を均圧し、区間f2から通常運転を再開する。
 以上のように、本実施の形態における冷蔵庫は、通常運転中に防露パイプ41と第二の防露パイプ47を切換えながら使用することで、熱負荷量を抑制することができる。さらに、除霜の際に防露パイプ41、第二の防露パイプ47及び蒸発器20に滞留する冷媒を主凝縮器21に回収し、圧縮機19と熱結合する熱交換部44を有するバイパス43を介して蒸発器20に高圧冷媒を供給して蒸発器20を加温することにより、除霜ヒータ(図示せず)の電力量を削減することができ、冷蔵庫の省エネルギー化を図ることができる。
 なお、第1の実施の形態における冷蔵庫では、主凝縮器21は強制空冷タイプの凝縮器としたが、筐体12の側面や背面に熱結合される防露パイプを用いてもよい。冷蔵室17や冷凍室18の開口部周辺と熱結合される防露パイプと異なり、筐体12の側面や背面に熱結合される防露パイプは圧縮機19が停止中でも外気温度近傍に維持されるので、主凝縮器21として利用しても同様の効果が期待できる。
 なお、本実施の形態における冷蔵庫では、流路切換バルブ46と蒸発器20をバイパス43で接続したが、除霜の際に蒸発器20へ供給する高圧冷媒の流速が早すぎて流動音が発生する場合、流速を調整するための流路抵抗をバイパス43と直列に接続してもよい。
 なお、本実施の形態における冷蔵庫では、除霜の際に高圧冷媒を防露パイプ41と絞り42を経由せずに蒸発器20へ直接供給することで、圧縮機19が停止した際に主凝縮器21よりも低温となる防露パイプ41の影響で高圧冷媒の温度が低下することを回避した。しかし、除霜の進行により蒸発器20の温度が防露パイプ41よりも高くなると、絞り42を介して高圧冷媒が蒸発器20から防露パイプ41へ逆流する可能性があるので、防露パイプ41の出口から蒸発器20の入口の経路内に逆流を防止する逆止弁や二方弁を設けてもよい。
 (第4の実施の形態)
 次に、本発明の第4の実施の形態について、図面を参照しながら説明するが、従来例と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。
 図8は本発明の第4の実施の形態における冷却システムを備えた冷蔵庫の縦断面図、図9は本発明の第4の実施の形態における冷却システムの冷凍サイクル構成図、図10は第4の実施の形態における冷却システムを備えた冷蔵庫の除霜時の制御を示した図である。
 図8および図9に示すように、冷蔵庫11は、筐体12、扉13、筐体12を支える脚14、筐体12の下部に設けられた下部機械室15、筐体12の上部に設けられた上部機械室16、筐体12の上部に配置された冷蔵室17、および筐体12の下部に配置された冷凍室18を有している。また、冷凍サイクル39を構成する部品として、上部機械室16に収められた圧縮機19、冷凍室18の背面側に収められた蒸発器20、および下部機械室15内に収められた主凝縮器21を有している。また、上部機械室16内の圧縮機19の上方に、例えば冷凍サイクル39運転中の凝縮温度よりも高い融点を有し相変化する潜熱型の蓄熱材29が設けられている。また、下部機械室15を仕切る隔壁22、隔壁22に取り付けられ主凝縮器21を空冷するファン23、隔壁22の風下側に設置された蒸発皿24、および下部機械室15の底板25を有している。また、蒸発器20の下方には蒸発器20の着霜を融解する除霜ヒータ45が備えられている。
 ここで、圧縮機19は可変速圧縮機であり、20~80rpsから選択された6段階の回転数を使用する。これは、配管などの共振を避けながら、圧縮機19の回転数を低速~高速の6段階に切り換えて冷凍能力を調整するためである。圧縮機19は、起動時は低速で運転し、冷蔵室17あるいは冷凍室18を冷却するための運転時間が長くなるに従って増速する。これは、最も高効率な低速を主として使用するとともに、高外気温や扉開閉などによる冷蔵室17あるいは冷凍室18の負荷の増大に対して、適切な比較的高い回転数を使用するためである。このとき、冷蔵庫11の冷却運転モードとは独立に、圧縮機19の回転数を制御するが、蒸発温度が高く比較的冷凍能力が大きい「PC冷却モード」の起動時の回転数を「FC冷却モード」よりも低く設定してもよい。また、冷蔵室17あるいは冷凍室18の温度低下に伴って、圧縮機19を減速しながら冷凍能力を調整してもよい。
 また、底板25に設けられた複数の吸気口26、下部機械室15の背面側に設けられた排出口27、下部機械室15の排出口27と上部機械室16を繋ぐ連通風路28を有している。ここで、下部機械室15は隔壁22によって2室に分けられ、ファン23の風上側に主凝縮器21、風下側に蒸発皿24を収めている。
 また、冷凍サイクル39を構成する部品として、主凝縮器21の下流側に位置し、循環する冷媒を乾燥するドライヤ38、ドライヤ38の下流側に位置し、冷媒の流れを制御する流路切換バルブ40を有している。また、流路切換バルブ40の下流側に位置し、冷凍室18の開口部周辺の筐体12の外表面と熱結合された防露パイプ41、防露パイプ41と蒸発器20を接続する絞り42を有している。さらに、防露パイプ41と並列に流路切換バルブ40の下流側と蒸発器20を接続するバイパス43、バイパス43の経路内で蓄熱材29と熱結合する熱交換部44を有している。ここで、流路切換バルブ40は、防露パイプ41とバイパス43それぞれ単独の冷媒の流れを開閉制御することができる。通常、流路切換バルブ40は主凝縮器21から防露パイプ41への流路を開、主凝縮器21からバイパス43への流路を閉の状態を維持しており、後に説明する除霜時のみ流路の開閉を行う。なお、バイパス43は冷蔵庫11の本体筐体の断熱壁内の設置されている。
 また、蒸発器20で発生する冷気を冷蔵室17と冷凍室18に供給する蒸発器ファン30、冷凍室18に供給される冷気を遮断する冷凍室ダンパー31、冷蔵室17に供給される冷気を遮断する冷蔵室ダンパー32、冷蔵室17に冷気を供給するダクト33、冷凍室18の温度を検知するFCC温度センサ34、冷蔵室17の温度を検知するPCC温度センサ35、蒸発器20の温度を検知するDEF温度センサ36を有している。ここで、ダクト33は冷蔵室17と上部機械室16が隣接する壁面に沿って形成され、ダクト33を通過する冷気の一部を冷蔵室の中央付近から排出するとともに、冷気の多くは上部機械室16が隣接する壁面を冷却しながら通過した後に冷蔵室17の上部から排出する。
 以上のように構成された第4の実施の形態の冷蔵庫について以下にその動作を説明する。
 ファン23、圧縮機19、蒸発器ファン30をともに停止している冷却停止状態(以下、この動作を「OFFモード」という)において、FCC温度センサ34の検知する温度が所定値のFCC_ON温度まで上昇するか、あるいは、PCC温度センサ35の検知する温度が所定値のPCC_ON温度まで上昇すると、以下の動作が成される。すなわち、冷凍室ダンパー31を閉とし、冷蔵室ダンパー32を開として、圧縮機19とファン23、蒸発器ファン30を駆動する(以下、この動作を「PC冷却モード」という)。
 「PC冷却モード」においては、ファン23の駆動によって、隔壁22で仕切られた下部機械室15の主凝縮器21側が負圧となり複数の吸気口26から外部の空気を吸引し、蒸発皿24側が正圧となり下部機械室15内の空気を複数の排出口27から外部へ排出する。
 一方、圧縮機19から吐出された冷媒は、主凝縮器21で外気と熱交換しながら一部の気体を残して凝縮した後、ドライヤ38で水分除去され、流路切換バルブ40を介して防露パイプ41へ供給される。防露パイプ41を通過した冷媒は冷凍室18の開口部を温めながら、筐体12を介して放熱して凝縮した後、絞り42で減圧されて蒸発器20で蒸発しながら冷蔵室17の庫内空気と熱交換して冷蔵室17を冷却しながら、気体冷媒として圧縮機19に還流する。
 「PC冷却モード」中に、FCC温度センサ34の検知する温度が所定値のFCC_OFF温度まで下降上昇するとともに、PCC温度センサ35の検知する温度が所定値のPCC_OFF温度まで下降すると、「OFFモード」に遷移する。
 また、「PC冷却モード」中に、FCC温度センサ34の検知する温度が所定値のFCC_OFF温度より高い温度を示すとともに、PCC温度センサ35の検知する温度が所定値のPCC_OFF温度まで下降すると、冷凍室ダンパー31を開とし、冷蔵室ダンパー32を閉として、圧縮機19とファン23、蒸発器ファン30を駆動する。以下、PC冷却と同様に冷凍サイクル39を稼動させることにより、冷凍室18の庫内空気と蒸発器20を熱交換して冷凍室18を冷却する(以下、この動作を「FC冷却モード」という)。
 「FC冷却モード」中に、FCC温度センサ34の検知する温度が所定値のFCC_OFF温度まで下降するとともに、PCC温度センサ35の検知する温度が所定値のPCC_ON温度以上を示すと、「PC冷却モード」に遷移する。
 また、「FC冷却モード」中に、FCC温度センサ34の検知する温度が所定値のFCC_OFF温度まで下降するとともに、PCC温度センサ35の検知する温度が所定値のPCC_ON温度より低い温度を示すと、「OFFモード」に遷移する。
 前述のように冷凍サイクル39が運転中、すなわち「PC冷却モード」中および「FC冷却モード」中に、運転によって冷媒の凝縮温度より高温となる圧縮機19の廃熱を圧縮機19の上方に設置した蓄熱材29に蓄える。
 ここで、本実施の形態における冷蔵庫の除霜時の制御について説明する。
 図10において、流路切換バルブ40の状態「開閉」は、主凝縮器21から防露パイプ41への流路を開放して、主凝縮器21からバイパス43への流路を閉塞することを意味する。また、流路切換バルブ40の状態「閉開」は、主凝縮器21から防露パイプ41への流路を閉塞して、主凝縮器21からバイパス43への流路を開放することを意味する。流路切換バルブ40の状態「閉閉」は、主凝縮器21から防露パイプ41への流路を閉塞して、主凝縮器21からバイパス43への流路を閉塞することを意味する。
 圧縮機19の積算運転時間が所定時間に達すると、蒸発器20の着霜を加温して融解する除霜モードに移行する。除霜モードの区間aにおいて、まず、冷凍室18の温度上昇を抑制するために、「FC冷却モード」と同様に冷凍室18を所定時間冷却する。次に、区間bにおいて、圧縮機19を運転しながら流路切換バルブ40を全閉することによって、主凝縮器21から防露パイプ41とバイパス43への流路を共に閉塞して防露パイプ41と蒸発器20、及びバイパス43に滞留する冷媒を主凝縮器21へ回収する。そして、区間cにおいて、圧縮機19を停止するとともに、流路切換バルブ40を切換えて主凝縮器21からバイパス43への流路を開放することで、バイパス43を介して主凝縮器21に回収された高圧冷媒を蒸発器20に供給する。このとき、バイパス43に設けられた熱交換部44で高圧冷媒が冷凍サイクル39運転中に凝縮温度より高温となる圧縮機19の廃熱を蓄えた蓄熱材29との大きな温度差によって加温されて、乾き度が増大する。これは、区間bにおいて高圧冷媒が主凝縮器21に回収される際に外気に放熱して大部分が凝縮するためである。従って、区間cにおいて高圧冷媒が熱交換部44で加温されずに蒸発器20に供給される場合に比べて、外気温度に維持された高圧冷媒の顕熱に加えて凝縮潜熱による熱量を蒸発器20に加えることができる。次に、区間dにおいて、蒸発器20に取り付けられた除霜ヒータ45に通電して除霜を完了する。除霜の完了はDEF温度センサ36が所定温度に達したことで判断する。そして、区間eにおいて、流路切換バルブ40を切換えて主凝縮器21からバイパス43への流路を閉塞するとともに、主凝縮器21から防露パイプ41への流路を開放して冷凍サイクル39内を均圧し、区間fから通常運転を再開する。
 以上のように、本実施の形態における冷却システムは、圧縮機19と凝縮器と絞り42と蒸発器20とを備えた冷凍サイクル39と、冷凍サイクル運転時の放熱を蓄熱する蓄熱材29と、を備え、冷凍サイクル停止時に蓄熱材29の熱を冷凍サイクル内の冷媒に加温するものであり、簡素な構造で冷凍サイクル停止時に冷凍サイクルの放熱エネルギーを有効に活用でき、冷却システムの省エネを図ることができる。
 また、蓄熱材29は冷凍サイクル運転時の圧縮機19からの放熱を蓄熱し、冷凍サイクル停止時に蓄熱材29の熱を冷凍サイクル内の冷媒に加温して蒸発器20に加温した冷媒を供給するものであり、簡素な構造で冷凍サイクル停止時に冷凍サイクルの放熱エネルギーを蒸発器20の除霜に有効活用でき、除霜ヒータ45の電力量を削減することができる。
 また、本実施の形態における冷却システムを備えた冷蔵庫11は、除霜の際に蒸発器20及び防露パイプ41に滞留する冷媒を主凝縮器21に回収し、圧縮機19の廃熱を蓄えた蓄熱材29と熱結合する熱交換部44を有するバイパス43を介して蒸発器20に高圧冷媒を供給して蒸発器20を加温することにより、除霜ヒータ45の電力量を削減することができ、冷蔵庫の省エネルギー化を図ることができる。
 また、蒸発器20に高圧冷媒を供給して所定時間後、除霜ヒータ45に通電するものであり、除霜ヒータ45の電力量を削減することができるとともに、蒸発器20の除霜信頼性を高めることができる。
 また、蓄熱材29は圧縮機19の上部に配置されたものであり、冷凍サイクル運転中の圧縮機19の放熱エネルギーを容易に、かつ高い温度で蓄えることができるため、より多くの熱エネルギーを、冷媒を介して蒸発器20へ供給して加温することができ、除霜ヒータ45の電力量をさらに削減することができる。
 なお、本実施の形態では、蓄熱材29を例えば相変化する潜熱型としたが、相変化しない顕熱型を用いてもよい。例えば、水のような液体を用いることで、バイパス43との熱交換性の向上が期待できる。
 以上、説明したように、本発明の冷蔵庫は、少なくとも圧縮機、蒸発器、主凝縮器、防露パイプを有する冷凍サイクルを備え、主凝縮器の下流側に接続した流路切換バルブと、流路切換バルブの下流側に接続した防露パイプと、防露パイプと並列に接続したバイパスを有している。また、蒸発器を除霜する際に、圧縮機を運転中に流路切換バルブを全閉することで、蒸発器及び防露パイプ内の滞留冷媒を回収した後、圧縮機を停止するとともに流路切換バルブをバイパス側に開放して回収した高圧冷媒を蒸発器に供給し、その所定時間後、除霜ヒータに通電する。
 これによって、冷凍サイクル内の冷媒を主凝縮器に回収して蒸発器の加温に利用する際に、流路抵抗の変動を抑制することで、除霜ヒータの電力量を安定的に削減することができ、冷蔵庫の省エネルギー化を図ることができる。
 また、本発明の冷蔵庫は、バイパス出口と防露パイプ出口の間に接続された流路抵抗を有し、流路切換バルブをバイパス側に開放して高圧冷媒を蒸発器に供給しながら蒸発器を除霜する際に、バイパス内の圧力を防露パイプ内よりも高い圧力に維持してもよい。
 これによって、冷凍サイクル内の冷媒を主凝縮器に回収して蒸発器の加温に利用する際に、流路抵抗と高圧圧力の変動を抑制することで、除霜ヒータの電力量を安定的に削減することができ、冷蔵庫の省エネルギー化を図ることができる。
 また、本発明の冷蔵庫は、バイパス経路の一部と圧縮機を熱結合する熱交換部を有し、流路切換バルブをバイパス側に開放して高圧冷媒を蒸発器に供給しながら蒸発器を除霜する際に、圧縮機の廃熱を利用して前記高圧冷媒を加温してもよい。
 これによって、冷凍サイクル内の冷媒を主凝縮器に回収して蒸発器の加温に利用する際に、圧縮機の廃熱を回収して蒸発器の加温に利用することで、除霜ヒータの電力量をさらに削減することができ、冷蔵庫の省エネルギー化を図ることができる。
 (課題を解決するための手段に関する付記その1)
 〔付記1〕少なくとも圧縮機、蒸発器、主凝縮器、防露パイプを有する冷凍サイクルを備え、前記主凝縮器の下流側に接続した流路切換バルブと、前記流路切換バルブの下流側に接続した防露パイプと、前記防露パイプと並列に接続したバイパスを有し、前記蒸発器を除霜する際に、前記圧縮機を運転中に前記流路切換バルブを全閉することで、前記蒸発器及び前記防露パイプ内の滞留冷媒を回収した後、前記圧縮機を停止するとともに前記流路切換バルブを前記バイパス側に開放して回収した高圧冷媒を前記蒸発器に供給し、その所定時間後、除霜ヒータに通電することを特徴とする冷蔵庫。
 〔付記2〕前記バイパスの出口と前記防露パイプの出口の間に接続された流路抵抗を有し、前記流路切換バルブを前記バイパス側に開放して高圧冷媒を前記蒸発器に供給しながら前記蒸発器を除霜する際に、前記バイパス内の圧力を前記防露パイプ内よりも高い圧力に維持することを特徴とする付記1に記載の冷蔵庫。
 〔付記3〕前記バイパスの一部と前記圧縮機の外郭を形成する密閉容器とを熱伝導部材を介して熱結合する熱交換部を有し、前記流路切換バルブを前記バイパス側に開放して高圧冷媒を前記蒸発器に供給しながら前記蒸発器を除霜することを特徴とする付記1または付記2のいずれかに記載の冷蔵庫。
 〔付記4〕前記圧縮機の外郭を形成する密閉容器を貫通して前記バイパスの一部を前記圧縮機の内部の冷凍機油と熱結合する熱交換部を有し、前記流路切換バルブを前記バイパス側に開放して高圧冷媒を前記蒸発器に供給しながら前記蒸発器を除霜することを特徴とする付記1または付記2のいずれかに記載の冷蔵庫。
 (課題を解決するための手段に関する付記その2)
 〔付記1〕圧縮機と凝縮器と絞りと蒸発器とを備えた冷凍サイクルと、前記冷凍サイクル運転時の放熱を蓄熱する蓄熱材と、を備え、前記冷凍サイクル停止時に前記蓄熱材の熱を前記冷凍サイクル内の冷媒に加温する冷却システム。
 〔付記2〕前記蓄熱材は前記冷凍サイクル運転時の圧縮機からの放熱を蓄熱し、前記冷凍サイクル停止時に前記蓄熱材の熱を前記冷凍サイクル内の冷媒に加温して前記蒸発器に前記冷媒を供給する付記1に記載の冷却システム。
 〔付記3〕前記冷凍サイクルの前記凝縮器の下流側から前記蒸発器へ前記絞りと並列に接続されたバイパスと、前記凝縮器の下流側に位置し、前記絞りあるいは前記バイパスへ流路を切り替える流路切換バルブと、前記冷凍サイクル運転中の廃熱を蓄える蓄熱材と、前記バイパスの一部と前記蓄熱材が熱結合する熱交換部を有し、前記蒸発器を除霜する際に、前記圧縮機を停止するとともに前記流路切換バルブをバイパス側に開放して、前記凝縮器に滞留する高圧冷媒を前記熱交換部で前記蓄熱材によって加温して前記蒸発器に供給する付記2に記載の冷却システム。
 〔付記4〕前記蒸発器に高圧冷媒を供給して所定時間後、除霜ヒータに通電する付記3に記載の冷却システム。
 〔付記5〕前記蓄熱材は前記圧縮機上部に配置された付記1から付記4のいずれかに記載の冷却システム。
 〔付記6〕付記1から付記5のいずれかに記載の冷却システムを備えた冷蔵庫。
 以上のように、本発明にかかる冷蔵庫は、蒸発器及び防露パイプに滞留する冷媒を主凝縮器に回収し、冷凍サイクル内の高圧冷媒が圧力差により蒸発器に流入して蒸発器を加温するエネルギーを利用して、除霜用電気ヒータの出力を削減することができるので、業務用冷蔵庫など他の冷凍冷蔵応用商品にも適用できる。
 また、本発明にかかる冷蔵庫は、冷凍サイクル内の高圧冷媒が圧力差により蒸発器に流入する際に、蓄えた圧縮機の廃熱を回収して流入することで蒸発器を加温し、除霜用電気ヒータの出力を削減することができるので、業務用冷蔵庫など他の冷凍冷蔵応用商品にも適用できる。
 11,111  冷蔵庫
 12,112  筐体
 15,115  下部機械室
 16  上部機械室
 19,156,170,183  圧縮機
 20,120,180,182  蒸発器
 21,121  主凝縮器
 29  蓄熱材
 30,150  蒸発器ファン
 31,151  冷凍室ダンパー
 32,152  冷蔵室ダンパー
 33,153  ダクト
 34,154  FCC温度センサ
 35,155  PCC温度センサ
 39  冷凍サイクル
 40  流路切換バルブ
 41,160  防露パイプ
 42,144  絞り
 43  バイパス
 44  熱交換部
 45,162  除霜ヒータ
 46  流路切換バルブ
 47  第二の防露パイプ
 48  第二の絞り
 70  密閉容器
 71  熱伝導性ブチルゴム
 72  アルミ箔テープ
 90  密閉容器
 96  熱交換部

Claims (3)

  1. 少なくとも圧縮機、蒸発器、主凝縮器、防露パイプを有する冷凍サイクルを備え、前記主凝縮器の下流側に接続した流路切換バルブと、前記流路切換バルブの下流側に接続した防露パイプと、前記防露パイプと並列に接続したバイパスを有し、前記蒸発器を除霜する際に、前記圧縮機を運転中に前記流路切換バルブを全閉することで、前記蒸発器及び前記防露パイプ内の滞留冷媒を回収した後、前記圧縮機を停止するとともに前記流路切換バルブを前記バイパス側に開放して回収した高圧冷媒を蒸発器に供給し、その所定時間後、除霜ヒータに通電することを特徴とする冷蔵庫。
  2. 前記バイパスの出口と前記防露パイプの出口の間に接続された流路抵抗を有し、前記流路切換バルブを前記バイパス側に開放して高圧冷媒を前記蒸発器に供給しながら前記蒸発器を除霜する際に、前記バイパス内の圧力を前記防露パイプ内よりも高い圧力に維持することを特徴とする請求項1に記載の冷蔵庫。
  3. 前記バイパスの一部と前記圧縮機を熱結合する熱交換部を有し、前記流路切換バルブを前記バイパス側に開放して高圧冷媒を前記蒸発器に供給しながら前記蒸発器を除霜する際に、前記圧縮機の廃熱を利用して前記高圧冷媒を加温することを特徴とする請求項1または2のいずれか一項に記載の冷蔵庫。
PCT/JP2017/014494 2016-04-13 2017-04-07 冷蔵庫および冷却システム WO2017179500A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018511986A JP6934603B2 (ja) 2016-04-13 2017-04-07 冷蔵庫および冷却システム
CN201780010076.4A CN108603712B (zh) 2016-04-13 2017-04-07 冷藏库和冷却系统

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016-080184 2016-04-13
JP2016080184 2016-04-13
JP2016196907 2016-10-05
JP2016-196907 2016-10-05
JP2016-223183 2016-11-16
JP2016223183 2016-11-16

Publications (1)

Publication Number Publication Date
WO2017179500A1 true WO2017179500A1 (ja) 2017-10-19

Family

ID=60042480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014494 WO2017179500A1 (ja) 2016-04-13 2017-04-07 冷蔵庫および冷却システム

Country Status (3)

Country Link
JP (1) JP6934603B2 (ja)
CN (1) CN108603712B (ja)
WO (1) WO2017179500A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108050752A (zh) * 2017-12-05 2018-05-18 澳柯玛股份有限公司 一种制冷系统
CN108168168A (zh) * 2017-12-29 2018-06-15 青岛海尔股份有限公司 冰箱
CN108278824A (zh) * 2017-12-29 2018-07-13 青岛海尔股份有限公司 冰箱
WO2019107066A1 (ja) * 2017-11-30 2019-06-06 パナソニックIpマネジメント株式会社 冷蔵庫
WO2019156021A1 (ja) * 2018-02-07 2019-08-15 パナソニックIpマネジメント株式会社 冷蔵庫
JP2019138495A (ja) * 2018-02-07 2019-08-22 パナソニックIpマネジメント株式会社 冷蔵庫
US10495368B2 (en) * 2017-02-21 2019-12-03 Panasonic Corporation Refrigerator and operation method of the same
JP2020091091A (ja) * 2018-12-07 2020-06-11 アクア株式会社 サクションパイプの作製方法及び冷蔵庫

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113631876B (zh) * 2019-07-22 2023-10-27 株式会社前川制作所 除霜系统
CN112393477A (zh) * 2020-11-27 2021-02-23 珠海格力电器股份有限公司 化霜控制方法及采用该化霜控制方法的制冷设备
CN115031462A (zh) * 2022-05-16 2022-09-09 长虹美菱股份有限公司 一种冰箱制冷系统及其化霜方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137065U (ja) * 1979-03-20 1980-09-30
JPS58142658U (ja) * 1982-10-25 1983-09-26 株式会社 東洋製作所 冷凍装置
JPS5976972U (ja) * 1982-11-15 1984-05-24 株式会社東芝 冷蔵庫
JPS63169457A (ja) * 1987-01-07 1988-07-13 松下電器産業株式会社 ヒ−トポンプ式空気調和機
JPH08189753A (ja) * 1995-01-13 1996-07-23 Matsushita Refrig Co Ltd 冷蔵庫
JP2003083667A (ja) * 2001-09-06 2003-03-19 Mitsubishi Electric Corp 冷凍冷蔵庫の制御装置
JP2012042140A (ja) * 2010-08-20 2012-03-01 Hitachi Appliances Inc 冷蔵庫

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04194564A (ja) * 1990-11-27 1992-07-14 Sharp Corp 冷凍冷蔵庫
CN103547872B (zh) * 2011-05-18 2015-12-23 松下电器产业株式会社 冷藏库
JP5571044B2 (ja) * 2011-08-19 2014-08-13 日立アプライアンス株式会社 冷蔵庫
JP5417397B2 (ja) * 2011-09-12 2014-02-12 日立アプライアンス株式会社 冷蔵庫
CN105241160A (zh) * 2015-05-11 2016-01-13 北京工业大学 一种用于风冷冰箱的蓄热化霜系统和方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137065U (ja) * 1979-03-20 1980-09-30
JPS58142658U (ja) * 1982-10-25 1983-09-26 株式会社 東洋製作所 冷凍装置
JPS5976972U (ja) * 1982-11-15 1984-05-24 株式会社東芝 冷蔵庫
JPS63169457A (ja) * 1987-01-07 1988-07-13 松下電器産業株式会社 ヒ−トポンプ式空気調和機
JPH08189753A (ja) * 1995-01-13 1996-07-23 Matsushita Refrig Co Ltd 冷蔵庫
JP2003083667A (ja) * 2001-09-06 2003-03-19 Mitsubishi Electric Corp 冷凍冷蔵庫の制御装置
JP2012042140A (ja) * 2010-08-20 2012-03-01 Hitachi Appliances Inc 冷蔵庫

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10495368B2 (en) * 2017-02-21 2019-12-03 Panasonic Corporation Refrigerator and operation method of the same
JP2019100585A (ja) * 2017-11-30 2019-06-24 パナソニックIpマネジメント株式会社 冷蔵庫
WO2019107066A1 (ja) * 2017-11-30 2019-06-06 パナソニックIpマネジメント株式会社 冷蔵庫
CN108050752A (zh) * 2017-12-05 2018-05-18 澳柯玛股份有限公司 一种制冷系统
CN108278824B (zh) * 2017-12-29 2021-04-23 海尔智家股份有限公司 冰箱
CN108278824A (zh) * 2017-12-29 2018-07-13 青岛海尔股份有限公司 冰箱
CN108168168A (zh) * 2017-12-29 2018-06-15 青岛海尔股份有限公司 冰箱
CN108168168B (zh) * 2017-12-29 2021-07-23 海尔智家股份有限公司 冰箱
WO2019156021A1 (ja) * 2018-02-07 2019-08-15 パナソニックIpマネジメント株式会社 冷蔵庫
JP2019138495A (ja) * 2018-02-07 2019-08-22 パナソニックIpマネジメント株式会社 冷蔵庫
JP6998509B2 (ja) 2018-02-07 2022-01-18 パナソニックIpマネジメント株式会社 冷蔵庫
JP2020091091A (ja) * 2018-12-07 2020-06-11 アクア株式会社 サクションパイプの作製方法及び冷蔵庫
JP7245494B2 (ja) 2018-12-07 2023-03-24 アクア株式会社 サクションパイプの作製方法及び冷蔵庫

Also Published As

Publication number Publication date
CN108603712A (zh) 2018-09-28
JP6934603B2 (ja) 2021-09-15
CN108603712B (zh) 2020-07-28
JPWO2017179500A1 (ja) 2019-02-21

Similar Documents

Publication Publication Date Title
WO2017179500A1 (ja) 冷蔵庫および冷却システム
CN108458534B (zh) 冰箱及其运行方法
JP6074596B2 (ja) 冷蔵庫
KR101155497B1 (ko) 히트펌프식 급탕장치
WO2019107066A1 (ja) 冷蔵庫
JP6177605B2 (ja) 冷蔵庫
JP2012017920A (ja) 冷蔵庫
JP6101926B2 (ja) 冷蔵庫
JP2007309585A (ja) 冷凍装置
JP4654539B2 (ja) 冷蔵庫
JP6846599B2 (ja) 冷蔵庫
JP2017026210A (ja) 冷蔵庫
JP6197176B2 (ja) 冷蔵庫
CN114659322A (zh) 风冷冰箱
WO2018147113A1 (ja) 冷蔵庫
JP2019074233A (ja) 冷蔵庫
JP5475033B2 (ja) 冷凍装置
JP2015094536A (ja) 冷蔵庫
JP6543811B2 (ja) 冷蔵庫
JP6340586B2 (ja) 冷蔵庫
CN112856889B (zh) 冰箱及其控制方法
WO2019073749A1 (ja) 冷蔵庫
JP4286106B2 (ja) 冷凍冷蔵庫
JP2018004170A (ja) 冷蔵庫
JP5176874B2 (ja) 冷凍装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018511986

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17782316

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17782316

Country of ref document: EP

Kind code of ref document: A1