WO2019156021A1 - 冷蔵庫 - Google Patents

冷蔵庫 Download PDF

Info

Publication number
WO2019156021A1
WO2019156021A1 PCT/JP2019/003840 JP2019003840W WO2019156021A1 WO 2019156021 A1 WO2019156021 A1 WO 2019156021A1 JP 2019003840 W JP2019003840 W JP 2019003840W WO 2019156021 A1 WO2019156021 A1 WO 2019156021A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
refrigerant
defrosting
evaporator
flow path
Prior art date
Application number
PCT/JP2019/003840
Other languages
English (en)
French (fr)
Inventor
境 寿和
克則 堀井
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018019716A external-priority patent/JP6998509B2/ja
Priority claimed from JP2018019717A external-priority patent/JP2019138496A/ja
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019156021A1 publication Critical patent/WO2019156021A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating

Definitions

  • This disclosure relates to refrigerators.
  • Refrigerators having a defrosting function for melting frost adhering to an evaporator are known.
  • the defrosting function is generally realized by energizing a defrosting heater provided below the evaporator and operating the defrosting heater.
  • Patent Document 1 has a path that connects an outlet of a compressor and a defrost pipe disposed in an evaporator, and a high-temperature refrigerant discharged from the compressor is supplied to the defrost pipe to evaporate.
  • a refrigerator is disclosed in which the vessel is defrosted. In the refrigerator of Patent Document 1, the heat of the compressor is used for defrosting.
  • Patent Document 1 At the time of defrosting, the flow path of the refrigerant is switched to the defrosting pipe by the three-way valve. However, since the flow rate of the refrigerant flowing through the three-way valve is high, sound is generated in the three-way valve. Users near the refrigerator feel this sound uncomfortable.
  • an object of the present disclosure is to provide a refrigerator that suppresses the generation of unpleasant sounds while using the heat of the compressor for defrosting.
  • a refrigerator provided by the present disclosure is provided on the downstream side of a compressor, a first condenser, a second condenser, an evaporator, and the first condenser.
  • At least a flow path switching device a refrigeration cycle in which refrigerant is supplied from the compressor to the first condenser, a storage chamber to which cold air generated in the evaporator is supplied, and the vicinity of the storage chamber, And it has the cool storage provided in the downstream of the said evaporator, and a control apparatus.
  • the refrigeration cycle includes a cooling path for supplying the refrigerant to the evaporator to generate the cold air, a defrost for heating the refrigerant and supplying the heated refrigerant to the evaporator for defrosting Branching into the path downstream of the first condenser.
  • the control device controls the flow path switching device to switch the flow path of the refrigerant to the cooling path or the defrosting path.
  • the refrigerant passes through the second condenser and is supplied to the evaporator.
  • the refrigerant flowing through the defrosting path is heated by exchanging heat with the path through which the refrigerant is supplied from the compressor to the first condenser.
  • the defrost path the refrigerant discharged from the evaporator returns to the suction side of the compressor after being evaporated in the regenerator.
  • the heat of the compressor is used for defrosting. Furthermore, the generation of sounds that the user feels uncomfortable is suppressed.
  • FIG. 1 is a diagram illustrating a vertical cross section of the refrigerator according to the first embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a refrigeration cycle of the refrigerator according to the first embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating the operation of the refrigerator in the defrosting mode according to the first embodiment of the present disclosure.
  • FIG. 4 is a flowchart illustrating a process executed by the refrigerator according to the first and second embodiments of the present disclosure.
  • FIG. 5 is a diagram illustrating a vertical cross section of the refrigerator according to the second embodiment of the present disclosure.
  • FIG. 6 is a diagram illustrating a refrigeration cycle of the refrigerator according to the second embodiment of the present disclosure.
  • FIG. 7 is a diagram illustrating an operation of the refrigerator in the defrosting mode according to the second embodiment of the present disclosure.
  • FIG. 1 is a diagram illustrating a vertical cross section of the refrigerator 100 according to the first embodiment of the present disclosure.
  • the refrigerator 100 includes a refrigerating room 101, a freezing room 102 provided in the lower part of the refrigerating room 101, a first machine room 103 provided in the upper part of the refrigerator 100, and a second machine provided in the lower part of the refrigerator 100.
  • a chamber 104 is provided.
  • the refrigerator 100 includes a compressor 105 housed in the first machine room 103, an evaporator 106 housed in the back of the freezer room 102, and a second machine room as components constituting the refrigeration cycle.
  • a first condenser 107 is accommodated in 104.
  • the second machine room 104 is divided into two sections by a partition wall 108.
  • the partition wall 108 is provided with a fan 109 for air-cooling the first condenser 107.
  • the first condenser 107 is accommodated on the windward side of the fan 109.
  • the evaporating dish 110 is accommodated on the leeward side of the fan 109.
  • the freezer compartment 102 accommodates a cooling fan 111 that supplies cold air generated by the evaporator 106 to the refrigerator compartment 101 and the freezer compartment 102, and a freezer compartment damper 112 that blocks the cold air supplied to the freezer compartment 102.
  • the refrigerator compartment 101 accommodates a duct 113 for supplying cold air to the refrigerator compartment 101 and a refrigerator compartment damper 114 for blocking the cold air supplied to the refrigerator compartment 101.
  • the freezer compartment 102 also houses a temperature sensor 115 for detecting the temperature of the evaporator 106.
  • a regenerator 116 is embedded in the upper wall of the freezer compartment 102, that is, the partition wall between the freezer compartment 102 and the refrigerator compartment 101.
  • the regenerator 116 includes a regenerator (not shown) having a melting point of ⁇ 21 ° C. to ⁇ 31 ° C. and an evaporation mechanism (not shown).
  • the condensed refrigerant that is, the refrigerant supplied to the evaporation mechanism of the regenerator 116 is vaporized (evaporated) by the evaporation mechanism. As the refrigerant evaporates, the regenerator 116 stores cooling energy in the regenerator.
  • the refrigerator 100 accommodates a defrost heater 200 and components that constitute the refrigeration cycle described in FIG. 2.
  • the refrigerant discharged from the compressor 105 exchanges heat with the outside air in the first condenser 107, and condenses leaving some gas.
  • the refrigerant that has passed through the first condenser 107 is dehydrated by the driver 201 and flows into the flow path switching valve 202.
  • the refrigerant flowing into the flow path switching valve 202 is in a state where liquid-phase refrigerant and gas-phase refrigerant are mixed.
  • the flow path switching valve 202 branches the refrigerant flow path into a cooling path and a defrosting path on the downstream side of the first condenser 107.
  • the cooling path is a path for supplying the refrigerant to the evaporator 106 in order to generate cold air.
  • the defrosting path is a path through which the evaporator 106 is defrosted by heating the refrigerant and supplying the heated refrigerant to the evaporator 106.
  • the cooling path is a path through which the refrigerant flows from the flow path switching valve 202 to the second condenser 203.
  • the second condenser 203 is passed through at least one of a door of the refrigerator 100, that is, a door provided in the refrigerator compartment 101 and a door provided in the freezer compartment 102.
  • the refrigerant passing through the second condenser 203 heats the outside of the refrigerator 100 by radiating heat to the outside, and prevents condensation from occurring at the door of the refrigerator 100.
  • the refrigerant liquefied after passing through the second condenser 203 is decompressed by the first throttle 204 and evaporated by the evaporator 106.
  • a two-way valve 205 is provided between the second condenser 203 and the first throttle 204.
  • the refrigerant that has passed through the evaporator 106 returns to the compressor 105 via the first suction pipe 206.
  • the defrosting path is a path through which the refrigerant flows from the flow path switching valve 202 to the second throttle 207.
  • the refrigerant in the defrosting path is decompressed by the second throttle 207.
  • the refrigerant that has passed through the second throttle 207 exchanges heat with the path through which the refrigerant is supplied from the compressor 105 to the first condenser 107 in the first heat exchange unit 208.
  • the refrigerant that has passed through the second throttle 207 is heated and vaporized.
  • the heated refrigerant is supplied to the evaporator 106.
  • the refrigerant supplied to the evaporator 106 heats the evaporator 106, whereby defrosting of the evaporator 106 is realized.
  • a pipe through which the refrigerant discharged from the second throttle 207 flows and a part of the pipe through which the refrigerant is supplied from the compressor 105 to the first condenser 107 are soldered, for example, about 1 m to 2 m.
  • the 1st heat exchange part 208 is formed.
  • the sensible heat of the casing is used for heating the refrigerant in the defrosting path.
  • the refrigerant in the defrosting path passes through the first condenser 107.
  • a part of the refrigerant is liquefied, that is, the volume of the refrigerant is reduced. Therefore, the flow rate of the refrigerant flowing through the flow path switching valve 202 becomes slow. That is, the high-speed gas-phase refrigerant discharged from the compressor 105 is not directly supplied to the flow path switching valve 202. Therefore, in the flow path switching valve 202, the generation of sounds that make the user feel uncomfortable is suppressed.
  • the vapor phase refrigerant flowing through the second suction pipe 210 is heated in the second heat exchange unit 211, so that dew condensation in the second suction pipe 210 is suppressed in the vicinity of the compressor 105 exposed to the outside air. .
  • the regenerator 116 stores the cooling energy in the regenerator. The cooling energy is used for cooling the freezer compartment 102 after the defrosting is completed.
  • the regenerator 116 is provided on the upper wall of the freezer compartment 102 in order to suppress the solidification of the regenerator of the regenerator 116.
  • the freezer compartment 102 is changed from ⁇ 22 ° C. to ⁇ 25 ° C.
  • the upper wall of the freezer compartment 102 is about 5 ° C. to 10 ° C. higher than the center temperature of the freezer compartment 102. Therefore, by embedding the regenerator 116 in the upper wall of the freezer compartment 102, the regenerator of the regenerator 116 is suppressed from solidifying even when the temperature of the freezer compartment 102 is set to a lower temperature.
  • the place which embeds the cool storage device 116 is not restricted to the wall of the upper part of the freezer compartment 102, but may be another place near the freezer compartment 102. .
  • the regenerator 116 may be embedded in another storage room different from the freezing room 102, for example, in the vicinity of the refrigerating room 101.
  • FIG. 3 shows that time elapses from left to right.
  • “ON” of the compressor 105 indicates that the compressor 105 is operating. Further, “OFF” of the compressor 105 indicates that the compressor 105 is stopped.
  • “Cooling” of the flow path switching valve 202 indicates that the flow path from the flow path switching valve 202 to the cooling path is opened and the flow path from the flow path switching valve 202 to the defrost path is closed. Further, “defrosting” of the flow path switching valve 202 means that the flow path from the flow path switching valve 202 to the defrost path is opened and the flow path from the flow path switching valve 202 to the cooling path is closed. Show. In addition, “fully closed” of the flow path switching valve 202 means that both the flow path from the flow path switching valve 202 to the cooling path and the flow path from the flow path switching valve 202 to the defrost path are closed. Indicates.
  • “Open” of the two-way valve 205 indicates that the two-way valve 205 is opened.
  • the “closed” of the two-way valve 205 indicates that the two-way valve 205 is closed.
  • “ON” of the cooling fan 111 indicates that the cooling fan 111 is operating. Further, “OFF” of the cooling fan 111 indicates that the cooling fan 111 is stopped.
  • “Open” of the freezer compartment damper 112 indicates that the freezer compartment damper 112 is open.
  • “closure” of the freezer damper 112 indicates that the freezer damper 112 is closed.
  • “Open” of the refrigerator compartment damper 114 indicates that the refrigerator compartment damper 114 is opened. Further, “blocking” of the refrigerator compartment damper 114 indicates that the refrigerator compartment damper 114 is closed.
  • “ON” of the defrost heater 200 indicates that the defrost heater is energized and defrosting by the defrost heater is being performed.
  • “OFF” of the defrost heater 200 indicates that energization to the defrost heater is stopped and defrosting by the defrost heater is not performed.
  • Timing T1 is a timing at which the accumulated operation time of the compressor 105 reaches a predetermined time.
  • the refrigerator 100 shifts from the normal cooling mode to the defrosting mode. Since it is assumed that the temperature of the freezer compartment 102 rises due to defrosting, the refrigerator 100 opens the freezer compartment damper 112 for a while. Thereby, the temperature of the freezer compartment 102 is lowered before defrosting is started.
  • the state of the flow path switching valve 202 is switched from “cooling” to “defrosting”.
  • the refrigerant flow path is switched from the cooling path to the defrosting path, whereby the heated refrigerant is supplied to the evaporator 106.
  • defrosting of the evaporator 106 is started. Defrosting by the defrosting path is performed on the upper side of the evaporator 106. The defrosting on the lower side of the evaporator 106 is performed by a defrosting heater 200 described later.
  • the state of the two-way valve 205 is switched from “open” to “closed”.
  • defrosting is started in a state where the generation of cool air by the evaporator 106 is stopped. Thereby, the efficiency of defrosting improves.
  • the state of the freezer damper 112 is switched from “open” to “closed”, and the state of the refrigerator compartment damper 114 is switched from “closed” to “open”. This is because the refrigerant remaining in the pipe of the evaporator 106 is evaporated and returned to the compressor 105 by heating the evaporator 106 from the air side while circulating the air inside the refrigerator compartment 101.
  • the state of the cooling fan 111 is switched from “ON” to “OFF”, and the state of the refrigerator compartment damper 114 is switched from “open” to “closed”.
  • the reason for closing the refrigerator compartment damper 114 and stopping the cooling fan 111 is that the refrigerant remaining in the piping of the evaporator 106 evaporates, and the temperature of the evaporator 106 approaches the air temperature of the refrigerator compartment 101 to perform heat exchange. Because it becomes difficult.
  • the state of the freezer damper 112 is switched from “closed” to “open”, and the state of the defrost heater 200 is switched from “OFF” to “ON”.
  • the defrosting of the lower side of the evaporator 106 is started by starting energization to the defrosting heater 200.
  • Timing T5 is a timing at which the temperature detected by the temperature sensor 115 reaches a predetermined temperature, and is a timing at which the refrigerator 100 determines that the defrosting of the evaporator 106 has been completed.
  • the state of the flow path switching valve 202 is switched from “defrost” to “cooling”, and the state of the defrost heater 200 is switched from “ON” to “OFF”.
  • the state of the flow path switching valve 202 is switched from “defrosting” to “cooling” while the state of the two-way valve 205 is “closed”. This is to suppress the generation of a sound that the user feels uncomfortable by suppressing the flow rate of the refrigerant passing through the flow path switching valve 202.
  • the state of the two-way valve 205 is switched from “closed” to “open”, the state of the cooling fan 111 is switched from “OFF” to “ON”, and the state of the refrigerator compartment damper 114 is “closed”. To "open”.
  • the refrigerator 100 shifts from the defrost mode to the cooling mode.
  • the refrigerator 100 shifts from the defrosting mode to the cooling mode while the compressor 105 is operating.
  • the compressor 105 stops immediately after the refrigerator 100 shifts from the defrost mode to the cooling mode the high-pressure refrigerant flows into the regenerator 116 and the cooling energy stored in the regenerator 116 is lost.
  • the refrigerator 100 can prevent high-pressure refrigerant from flowing into the regenerator 116 by shifting from the defrost mode to the cooling mode while the compressor 105 is operated.
  • Each step shown in the flowchart of FIG. 4 is realized by a central processing unit (CPU) (not shown) of the refrigerator 100 executing a control program stored in a memory (not shown) such as a ROM of the refrigerator 100. Is done.
  • a control controller (referred to as a control device) including a CPU and a memory is accommodated in the top surface of the refrigerator 100.
  • step S401 the control device determines whether or not to perform defrosting. In the present embodiment, the control device determines to perform defrosting when the accumulated operation time of the compressor 105 reaches a predetermined time. If the control device determines to perform defrosting, the process proceeds to step S402.
  • step S402 the control device switches the refrigerant flow path from the cooling path to the defrost path.
  • the control device controls the flow path switching valve 202 so as to switch the refrigerant flow path from the cooling path to the defrosting path.
  • the refrigerant heated by the first heat exchanging unit 208 is supplied to the evaporator 106 by switching the refrigerant flow path to the defrosting path. Thereby, the evaporator 106 is defrosted. Note that defrosting by the defrosting path is mainly performed on the upper side of the evaporator 106.
  • step S403 the control device operates the defrost heater 200.
  • the control device energizes the defrost heater 200 to operate the defrost heater 200.
  • the evaporator 106 is defrosted. Note that the defrosting by the defrosting heater 200 is mainly performed on the lower side of the evaporator 106.
  • step S404 the control device determines whether or not the defrosting is completed.
  • the control device determines that defrosting has been completed when the temperature detected by temperature sensor 115 reaches a predetermined temperature. If the control device determines that defrosting is complete, the process proceeds to step S405.
  • step S405 the control device switches the refrigerant flow path from the defrost path to the cooling path, and stops the operation of the defrost heater 200.
  • the control device controls the flow path switching valve 202 so as to switch the refrigerant flow path from the defrost path to the cooling path. Further, the control device stops energization to the defrost heater 200 and stops the operation of the defrost heater 200.
  • each step shown in the flowchart of FIG. 4 is realized by one CPU.
  • the configuration shown in the flowchart of FIG. 4 may be realized by cooperation of a plurality of CPUs.
  • the operation at each timing described in FIG. 3 is also realized by the CPU of the refrigerator 100 executing a control program stored in a memory such as a ROM of the refrigerator 100.
  • the refrigerant flowing through the defrosting path is heated by the high-temperature refrigerant discharged from the compressor 105 in the first heat exchange unit 208.
  • the heat of the compressor 105 is utilized for defrosting. Therefore, the time for which the defrost heater 200 is energized is shortened. Therefore, the power consumption of the refrigerator 100 at the time of defrosting is reduced.
  • the refrigerant discharged from the compressor 105 is not directly supplied to the flow path switching valve 202. Therefore, in the flow path switching valve 202, the generation of sounds that make the user feel uncomfortable is suppressed.
  • the refrigerator according to the present embodiment is also expressed as follows.
  • a refrigeration cycle that is composed of at least a compressor, a first condenser, a second condenser, a pressure reducing mechanism, and an evaporator, and in which a refrigerant circulates;
  • a storage chamber cooled by the refrigerant;
  • a flow path switching device disposed downstream of the first condenser and upstream of the second condenser;
  • a defrosting flow path communicating the flow path switching device and the evaporator; Heat that is disposed between the discharge side of the compressor and the first condenser in the refrigeration cycle and that exchanges heat between the refrigerant discharged from the compressor and the refrigerant flowing through the defrosting channel.
  • An exchange A regenerator provided between the evaporator and the suction side of the compressor; A defrosting operation mode for melting frost formation of the evaporator, a cooling operation mode for cooling the storage chamber, and a refrigerator including a control device for controlling the flow path switching device,
  • the control device executes the defrosting operation mode
  • the refrigerant discharged from the compressor includes the heat exchange unit, the first condenser, the heat exchange unit, the evaporator, Flows in the order of the regenerator, sucked into the compressor
  • the control device executes the cooling operation mode
  • the refrigerant discharged from the compressor is supplied from the heat exchange unit, the first condenser, the second condenser, and the evaporator.
  • a refrigerator that flows in sequence and is sucked into the compressor.
  • FIG. 5 is a diagram illustrating a vertical cross section of the refrigerator 100A according to the second embodiment of the present disclosure.
  • Refrigerator 100 ⁇ / b> A of the present embodiment has a heat accumulator 117 instead of the regenerator 116.
  • Other configurations in FIG. 5 are the same as those of the refrigerator 100 of the first embodiment, the same reference numerals are given to the same configurations, and the detailed description of the first embodiment is used.
  • a heat accumulator 117 composed of a heat storage agent (not shown) and an evaporation mechanism (not shown) is embedded in the wall surface of the first machine room 103. Details of the heat accumulator 117 will be described later.
  • the refrigerant discharged from the compressor 105 exchanges heat with the outside air in the first condenser 107, and condenses leaving some gas.
  • the refrigerant that has passed through the first condenser 107 is dehydrated by the driver 201 and flows into the flow path switching valve 202.
  • the refrigerant flowing into the flow path switching valve 202 is in a state where liquid-phase refrigerant and gas-phase refrigerant are mixed.
  • the flow path switching valve 202 branches the refrigerant flow path into a cooling path and a defrosting path on the downstream side of the first condenser 107.
  • the cooling path is a path for supplying the refrigerant to the evaporator 106 in order to generate cold air.
  • the defrosting path is a path through which the evaporator 106 is defrosted by heating the refrigerant and supplying the heated refrigerant to the evaporator 106.
  • the cooling path is a path through which the refrigerant flows from the flow path switching valve 202 to the second condenser 203.
  • the second condenser 203 is passed by at least one of a door of the refrigerator 100A, that is, a door provided in the refrigerator compartment 101 and a door provided in the freezer compartment 102.
  • the refrigerant passing through the second condenser 203 radiates heat to the outside to warm the door of the refrigerator 100A and prevent condensation from occurring at the door of the refrigerator 100A.
  • the refrigerant liquefied after passing through the second condenser 203 is decompressed by the first throttle 204 and evaporated by the evaporator 106.
  • a two-way valve 205 is provided between the second condenser 203 and the first throttle 204.
  • the refrigerant that has passed through the evaporator 106 returns to the compressor 105 via the first suction pipe 206.
  • the defrosting path is a path through which the refrigerant flows from the flow path switching valve 202 to the second throttle 207.
  • the refrigerant in the defrosting path is decompressed by the second throttle 207.
  • the refrigerant that has passed through the second throttle 207 exchanges heat with the path through which the refrigerant is supplied from the compressor 105 to the first condenser 107 in the first heat exchange unit 208.
  • the refrigerant that has passed through the second throttle 207 is heated and vaporized.
  • the heated refrigerant is supplied to the evaporator 106.
  • the refrigerant supplied to the evaporator 106 heats the evaporator 106, whereby defrosting of the evaporator 106 is realized.
  • a pipe through which the refrigerant discharged from the second throttle 207 flows and a part of the pipe through which the refrigerant is supplied from the compressor 105 to the first condenser 107 are soldered, for example, about 1 m to 2 m.
  • the 1st heat exchange part 208 is formed.
  • the sensible heat of the casing is used for heating the refrigerant in the defrosting path.
  • the refrigerant in the defrosting path passes through the first condenser 107.
  • a part of the refrigerant is liquefied, that is, the volume of the refrigerant is reduced. Therefore, the flow rate of the refrigerant flowing through the flow path switching valve 202 becomes slow. That is, the high-speed gas-phase refrigerant discharged from the compressor 105 is not directly supplied to the flow path switching valve 202 as it is. Therefore, in the flow path switching valve 202, the generation of sounds that make the user feel uncomfortable is suppressed.
  • the heat storage agent of the heat storage device 117 will be described in detail.
  • the heat storage agent of the heat storage device 117 stores heat generated from the compressor 105.
  • the heat stored in the heat storage agent of the heat storage device 117 can offset the cooling energy generated when the refrigerant evaporates by the evaporation mechanism of the heat storage device 117.
  • By offsetting the cooling energy generated when the refrigerant evaporates by the evaporation mechanism of the heat accumulator 117 it is possible to prevent dew condensation from occurring around the heat accumulator 117, the second suction pipe 210, and the compressor 105.
  • a paraffin-based heat storage agent is used as the heat storage agent of the heat storage device 117, but other types of heat storage agents may be used as appropriate.
  • the heat storage device 117 Since the heat storage agent of the heat storage device 117 stores heat generated from the compressor 105, the heat storage device 117 is desirably provided in the vicinity of the compressor 105. In the present embodiment, it has been described that the heat accumulator 117 is provided on the wall surface of the first machine chamber 103 in which the compressor 105 is accommodated, but any other place can be used as long as it is suitable for storing heat generated from the compressor 105. A heat accumulator 117 may be provided at this location.
  • a first heat storage agent having a low melting point for example, a melting point of 4 to 10 ° C.
  • a second heat storage agent having a high melting point for example, a melting point of 26 to 32 ° C. It may be used.
  • the cooling energy generated from the evaporation mechanism of the heat storage device 117 is configured to exchange heat in the order of the first heat storage agent and the second heat storage agent. If only the first heat storage agent having a low melting point is used, condensation may occur in the second suction pipe 210 when the environment in which the refrigerator 100 is placed is high temperature and high humidity.
  • the temperature of the refrigerant can be increased from about 26 to 32 ° C. For this reason, it is possible to prevent dew condensation from occurring in the second suction pipe 210.
  • FIG. 7 shows that the passage of time progresses from left to right.
  • “ON” of the compressor 105 indicates that the compressor 105 is operating. Further, “OFF” of the compressor 105 indicates that the compressor 105 is stopped.
  • “Cooling” of the flow path switching valve 202 indicates that the flow path from the flow path switching valve 202 to the cooling path is opened and the flow path from the flow path switching valve 202 to the defrost path is closed. Further, “defrosting” of the flow path switching valve 202 means that the flow path from the flow path switching valve 202 to the defrost path is opened and the flow path from the flow path switching valve 202 to the cooling path is closed. Show. In addition, “fully closed” of the flow path switching valve 202 means that both the flow path from the flow path switching valve 202 to the cooling path and the flow path from the flow path switching valve 202 to the defrost path are closed. Indicates.
  • “Open” of the two-way valve 205 indicates that the two-way valve 205 is opened.
  • the “closed” of the two-way valve 205 indicates that the two-way valve 205 is closed.
  • “ON” of the cooling fan 111 indicates that the cooling fan 111 is operating. Further, “OFF” of the cooling fan 111 indicates that the cooling fan 111 is stopped.
  • “Open” of the freezer compartment damper 112 indicates that the freezer compartment damper 112 is open.
  • “closure” of the freezer damper 112 indicates that the freezer damper 112 is closed.
  • “Open” of the refrigerator compartment damper 114 indicates that the refrigerator compartment damper 114 is opened. Further, “blocking” of the refrigerator compartment damper 114 indicates that the refrigerator compartment damper 114 is closed.
  • “ON” of the defrost heater 200 indicates that the defrost heater is energized and defrosting by the defrost heater is being performed.
  • “OFF” of the defrost heater 200 indicates that energization to the defrost heater is stopped and defrosting by the defrost heater is not performed.
  • Timing T1 is a timing at which the accumulated operation time of the compressor 105 reaches a predetermined time.
  • the refrigerator 100 shifts from the normal cooling mode to the defrosting mode. Since it is assumed that the temperature of the freezer compartment 102 rises due to defrosting, the refrigerator 100 opens the freezer compartment damper 112 for a while. Thereby, the temperature of the freezer compartment 102 is lowered before defrosting is started.
  • the state of the flow path switching valve 202 is switched from “cooling” to “defrosting”.
  • the refrigerant flow path is switched from the cooling path to the defrosting path, whereby the heated refrigerant is supplied to the evaporator 106.
  • defrosting of the evaporator 106 is started. Defrosting by the defrosting path is performed on the upper side of the evaporator 106. The defrosting on the lower side of the evaporator 106 is performed by a defrosting heater 200 described later.
  • the state of the two-way valve 205 is switched from “open” to “closed”.
  • defrosting is started in a state where the generation of cool air by the evaporator 106 is stopped. Thereby, the efficiency of defrosting improves.
  • the state of the freezer damper 112 is switched from “open” to “closed”, and the state of the refrigerator compartment damper 114 is switched from “closed” to “open”. This is because the refrigerant remaining in the pipe of the evaporator 106 is evaporated and returned to the compressor 105 by heating the evaporator 106 from the air side while circulating the air inside the refrigerator compartment 101.
  • the state of the cooling fan 111 is switched from “ON” to “OFF”, and the state of the refrigerator compartment damper 114 is switched from “open” to “closed”.
  • the reason for closing the refrigerator compartment damper 114 and stopping the cooling fan 111 is that the refrigerant remaining in the piping of the evaporator 106 evaporates, and the temperature of the evaporator 106 approaches the air temperature of the refrigerator compartment 101 to perform heat exchange. Because it becomes difficult.
  • the state of the freezer damper 112 is switched from “closed” to “open”, and the state of the defrost heater 200 is switched from “OFF” to “ON”.
  • the defrosting of the lower side of the evaporator 106 is started by starting energization to the defrosting heater 200.
  • the state of the compressor 105 is switched from “ON” to “OFF”, and the state of the two-way valve 205 is switched from “closed” to “open”.
  • the high-pressure refrigerant remaining in the first condenser 107 can be caused to flow into the evaporator 106 due to a pressure difference. That is, the defrosting on the upper side of the evaporator 106 after the timing T5 can be realized with the compressor 105 stopped. Power consumption can be reduced by the amount that the compressor 105 is stopped.
  • Timing T6 is a timing at which the temperature detected by the temperature sensor 115 reaches a predetermined temperature, and is a timing at which the refrigerator 100 determines that the defrosting of the evaporator 106 has been completed.
  • the state of the flow path switching valve 202 is switched from “defrost” to “cooling”, and the state of the defrost heater 200 is switched from “ON” to “OFF”.
  • the state of the compressor 105 is switched from “OFF” to “ON”, the state of the cooling fan 111 is switched from “OFF” to “ON”, and the state of the refrigerator compartment damper 114 is “blocked”. To “open”.
  • the refrigerator 100A shifts from the defrosting mode to the cooling mode.
  • the refrigerator 100A switches the refrigerant flow path from the defrosting path to the cooling path in a state where the compressor 105 is stopped, and operates the compressor 105 after switching the refrigerant flow path. Thereby, when the refrigerant flow path is switched from the defrost path to the cooling path, it is possible to suppress the generation of noise in the flow path switching valve 202.
  • each step shown in the flowchart of FIG. 4 is realized by a CPU (not shown) of the refrigerator 100A executing a control program stored in a memory (not shown) such as a ROM of the refrigerator 100A.
  • a controller (not shown) including a CPU and a memory is provided on the top surface of the refrigerator 100A.
  • the process executed by the refrigerator 100A of the present embodiment is the same as the process executed by the refrigerator 100 of the first embodiment, the same reference numerals are given to the same components, and the detailed description thereof is the same as that of the first embodiment. Incorporate things. 7 is also realized by the CPU of the refrigerator 100A executing a control program stored in a memory such as a ROM of the refrigerator 100A.
  • the refrigerant flowing through the defrosting path is heated by the high-temperature refrigerant discharged from the compressor 105 in the first heat exchange unit 208.
  • the heat of the compressor 105 is utilized for defrosting. Therefore, the time for which the defrost heater 200 is energized is shortened. Therefore, the power consumption of the refrigerator 100 at the time of defrosting is reduced.
  • the refrigerant discharged from the compressor 105 is not directly supplied to the flow path switching valve 202. Therefore, in the flow path switching valve 202, the generation of sounds that make the user feel uncomfortable is suppressed.
  • the refrigerator according to the present embodiment is also expressed as follows.
  • a refrigeration cycle including at least a compressor, a first condenser, a second condenser, a decompression mechanism, and an evaporator, in which a refrigerant circulates;
  • a storage chamber cooled by the refrigerant;
  • a flow path switching device disposed downstream of the first condenser and upstream of the second condenser;
  • a defrosting flow path communicating the flow path switching device and the evaporator; Heat that is disposed between the discharge side of the compressor and the first condenser in the refrigeration cycle and that exchanges heat between the refrigerant discharged from the compressor and the refrigerant flowing through the defrosting channel.
  • An exchange A heat accumulator provided between the evaporator and the suction side of the compressor; A defrosting operation mode for melting frost formation of the evaporator, a cooling operation mode for cooling the storage chamber, and a refrigerator including a control device for controlling the flow path switching device,
  • the control device executes the defrosting operation mode
  • the refrigerant discharged from the compressor includes the heat exchange unit, the first condenser, the heat exchange unit, the evaporator, Flows in the order of the regenerator, sucked into the compressor
  • the control device executes the cooling operation mode
  • the refrigerant discharged from the compressor flows in the order of the heat exchange unit, the first condenser, the second condenser, and the evaporator.
  • a refrigerator that flows and is sucked into the compressor.
  • This disclosure is applied to household refrigerators and freezers, commercial refrigerators and freezers, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Defrosting Systems (AREA)

Abstract

本発明に係る冷蔵庫は、圧縮機、第1の凝縮器、第2の凝縮器、蒸発器、および、流路切替装置を備える冷凍サイクルと、貯蔵室と、蓄冷器と、制御装置と、を有する。冷凍サイクルは、冷却経路と除霜経路とに、第1の凝縮器の下流側で分岐している。制御装置は、冷媒の流路を冷却経路または除霜経路に切り替える。冷却経路において、冷媒は、第2の凝縮器を通過したうえで蒸発器に供給される。除霜経路を流れる冷媒は、圧縮機から第1の凝縮器に冷媒が供給される経路と熱交換することで加熱される。除霜経路において蒸発器から吐出された冷媒は、蓄冷器において蒸発されたうえで圧縮機の吸入側に供給される。

Description

冷蔵庫
 本開示は冷蔵庫に関する。
 蒸発器に付着した霜を融解する除霜機能を備える冷蔵庫が知られている。除霜機能は、蒸発器の下方に設けられた除霜ヒータが通電され、除霜ヒータが動作することにより実現されることが一般的である。一方、特許文献1には、圧縮機の出口と蒸発器に配設される除霜パイプとを接続する経路を有し、圧縮機から吐出される高温の冷媒が除霜パイプに供給されて蒸発器が除霜される冷蔵庫が開示されている。特許文献1の冷蔵庫においては、圧縮機の熱が除霜に利用される。
特開昭58-024774号公報
 特許文献1の構成では、除霜時において、三方弁により冷媒の流路が除霜パイプに切り換わる。しかし、三方弁を流れる冷媒の流速が速いため、三方弁において音が発生する。冷蔵庫の近くのユーザは、この音を不快に感じる。
 そこで本開示は、圧縮機の熱を除霜に利用しつつ、ユーザが不快に感じる音の発生を抑制する冷蔵庫を提供することを目的とする。
 上述した課題を解決するために、本開示が提供する冷蔵庫は、圧縮機、第1の凝縮器、第2の凝縮器、蒸発器、および、前記第1の凝縮器の下流側に設けられた流路切替装置を少なくとも備え、前記圧縮機から前記第1の凝縮器に冷媒が供給される冷凍サイクルと、前記蒸発器において生成された冷気が供給される貯蔵室と、前記貯蔵室の近傍、かつ、前記蒸発器の下流側に設けられた蓄冷器と、制御装置と、を有する。前記冷凍サイクルは、前記冷気を生成するために前記冷媒を前記蒸発器に供給する冷却経路と、前記冷媒を加熱し、加熱された前記冷媒を前記蒸発器に供給して除霜を行う除霜経路とに、前記第1の凝縮器の下流側で分岐している。前記制御装置は、前記流路切替装置を制御して、前記冷媒の流路を前記冷却経路または前記除霜経路に切り替える。前記冷却経路において、前記冷媒は、前記第2の凝縮器を通過したうえで前記蒸発器に供給される。前記除霜経路を流れる前記冷媒は、前記圧縮機から前記第1の凝縮器に冷媒が供給される経路と熱交換することで加熱される。前記除霜経路において、前記蒸発器から吐出された前記冷媒は、前記蓄冷器において蒸発されたうえで前記圧縮機の吸入側に戻る。
 本開示によれば、圧縮機の熱が除霜に利用される。さらに、ユーザが不快に感じる音の発生が抑制される。
図1は、本開示の実施の形態1の冷蔵庫の縦断面を示す図である。 図2は、本開示の実施の形態1の冷蔵庫の冷凍サイクルを示す図である。 図3は、本開示の実施の形態1の除霜モードにおける冷蔵庫の動作を示す図である。 図4は、本開示の実施の形態1および2の冷蔵庫が実行する処理を示すフローチャートである。 図5は、本開示の実施の形態2の冷蔵庫の縦断面を示す図である。 図6は、本開示の実施の形態2の冷蔵庫の冷凍サイクルを示す図である。 図7は、本開示の実施の形態2の除霜モードにおける冷蔵庫の動作を示す図である。
 以下、本開示の実施の形態について、図面を用いて説明する。なお、以下の実施の形態は請求の範囲に係る開示を限定するものでなく、また、実施の形態で説明されている特徴の組み合わせの全てが開示の解決手段に必須のものとは限らない。
 (実施の形態1)
 図1は、本開示の実施の形態1の冷蔵庫100の縦断面を示す図である。冷蔵庫100は、冷蔵室101、冷蔵室101の下部に設けられた冷凍室102、冷蔵庫100の上部に設けられた第1の機械室103、および、冷蔵庫100の下部に設けられた第2の機械室104を有する。また、冷蔵庫100は、冷凍サイクルを構成する部品として、第1の機械室103に収容されている圧縮機105、冷凍室102の背面に収容されている蒸発器106、および、第2の機械室104に収容されている第1の凝縮器107を有する。
 第2の機械室104は、隔壁108によって2つの区画に分割されている。隔壁108には、第1の凝縮器107を空冷するファン109が設けられている。第1の凝縮器107は、ファン109の風上側に収容されている。蒸発皿110は、ファン109の風下側に収容されている。
 冷凍室102には、蒸発器106が生成する冷気を冷蔵室101と冷凍室102に供給する冷却ファン111、および、冷凍室102に供給される冷気を遮断するための冷凍室ダンパー112が収容されている。また、冷蔵室101には、冷蔵室101に冷気を供給するダクト113、および、冷蔵室101に供給される冷気を遮断するための冷蔵室ダンパー114が収容されている。また、冷凍室102には、蒸発器106の温度を検出するための温度センサ115が収容されている。
 また、冷凍室102の上部の壁、すなわち、冷凍室102と冷蔵室101との間の仕切り壁には、蓄冷器116が埋設されている。蓄冷器116は、融点が-21℃から-31℃の蓄冷剤(図示せず)と、蒸発機構(図示せず)とにより構成される。後述の除霜経路において、凝縮した冷媒、すなわち、蓄冷器116の蒸発機構に供給された冷媒は、蒸発機構により気化(蒸発)する。冷媒が気化することにより、蓄冷器116は、蓄冷剤に冷却エネルギーを貯留する。
 なお、図1で説明した構成の他に、冷蔵庫100は、除霜ヒータ200と、図2で説明する冷凍サイクルを構成する部品とを収容している。
 次に、図2を用いて、冷蔵庫100の冷凍サイクルについて説明する。圧縮機105から吐出された冷媒は、第1の凝縮器107で外気と熱交換を行い、一部の気体を残して凝縮する。第1の凝縮器107を通過した冷媒は、ドライバ201によって水分が除去され、流路切り換えバルブ202に流入する。流路切り換えバルブ202に流入する冷媒は、液相冷媒と気相冷媒とが混在する状態である。流路切り換えバルブ202によって、冷媒の流路は、第1の凝縮器107の下流側において、冷却経路と除霜経路とに分岐する。冷却経路は、冷気を生成するために冷媒を蒸発器106に供給する経路である。一方、除霜経路は、冷媒を加熱し、加熱した冷媒を蒸発器106に供給することにより蒸発器106が除霜される経路である。
 まず、冷却経路について説明する。冷却経路は、流路切り換えバルブ202から第2の凝縮器203に冷媒が流れる経路である。第2の凝縮器203は、冷蔵庫100の扉、すなわち、冷蔵室101に設けられた扉と冷凍室102に設けられた扉との少なくとも1つに這わされている。第2の凝縮器203を通過する冷媒は、外部に放熱することで冷蔵庫100の扉を温め、冷蔵庫100の扉で結露が発生することを防止する。第2の凝縮器203を通過して液化した冷媒は、第1の絞り204によって減圧され、蒸発器106で蒸発する。冷媒が蒸発器106で蒸発することにより、冷気が生成される。生成された冷気は、冷蔵室101と冷凍室102の冷却に利用される。なお、第2の凝縮器203と第1の絞り204との間には、二方弁205が設けられている。蒸発器106を通過した冷媒は、第1の吸入管206を介して圧縮機105に戻る。
 次に、除霜経路について説明する。除霜経路は、流路切り換えバルブ202から第2の絞り207に冷媒が流れる経路である。除霜経路における冷媒は、第2の絞り207によって減圧される。第2の絞り207を通過した冷媒は、第1の熱交換部208において、圧縮機105から第1の凝縮器107に冷媒が供給される経路と熱交換する。これにより、第2の絞り207を通過した冷媒は、加熱され、気化する。そして、加熱された冷媒は、蒸発器106に供給される。蒸発器106に供給された冷媒が蒸発器106を加熱することで、蒸発器106の除霜が実現される。
 なお、第2の絞り207から吐出された冷媒が流れる配管と、圧縮機105から第1の凝縮器107に冷媒が供給される配管の一部とが、例えば、1mから2m程度はんだ付けされることにより、第1の熱交換部208が形成される。また、第1の熱交換部208が冷蔵庫100の筐体の外壁面に形成されることにより、除霜経路における冷媒の加熱に、筐体の顕熱が利用される。
 また、除霜経路における冷媒は、第1の凝縮器107を通過する。これにより、冷媒の一部が液化、すなわち、冷媒の体積が減少する。したがって、流路切り換えバルブ202を流れる冷媒の流速は遅くなる。つまり、圧縮機105から吐出された、流速が速い気相冷媒は、流路切り換えバルブ202に直接供給されない。したがって、流路切り換えバルブ202において、ユーザが不快に感じる音の発生が抑制される。
 除霜経路について引き続き説明する。蒸発器106を加熱しながら凝縮した冷媒は、第3の絞り209によって再度減圧され、蓄冷器116の蒸発機構によって蒸発する。蓄冷器116を通過した冷媒は、第2の吸入管210を介して圧縮機105に戻る。第2の吸入管210を流れる冷媒は、第2の熱交換部211において、第1の熱交換部208の下流側かつ蒸発器106の上流側にあたる蒸発経路の一部と熱交換することにより、加熱される。第2の吸入管210を流れる気相冷媒が第2の熱交換部211において加熱されることにより、外気に曝される圧縮機105の近傍において、第2の吸入管210の結露が抑制される。なお、冷媒が蓄冷器116の蒸発機構によって気化することにより、蓄冷器116は冷却エネルギーを蓄冷剤に貯留する。冷却エネルギーは除霜完了後に、冷凍室102の冷却に利用される。
 本実施の形態では、蓄冷器116の蓄冷剤の凝固を抑制するために、蓄冷器116は、冷凍室102の上部の壁に設けられている。一般的に冷凍室102の温度設定をより低温に設定すると、冷凍室102は-22℃から-25℃になる。一方、冷凍室102の上部の壁は冷凍室102の中心の温度よりも5℃から10℃程度高い。したがって、蓄冷器116を冷凍室102の上部の壁に埋設することで、冷凍室102の温度設定をより低温に設定した場合であっても、蓄冷器116の蓄冷剤が凝固することが抑制される。なお、蓄冷器116の蓄冷剤が凝固することを防止できれば、蓄冷器116を埋設する場所は、冷凍室102の上部の壁に限らず、冷凍室102の近傍の他の場所であっても良い。また、蓄冷器116は、冷凍室102とは異なる他の貯蔵室、例えば冷蔵室101の近傍に埋設しても良い。
 次に、図3を用いて、本開示の実施の形態1の蒸発器106の除霜を行う除霜モードにおける、冷蔵庫100の動作を説明する。図3は、左から右に進むにつれて時間が経過することを示す。
 圧縮機105の「ON」は、圧縮機105が動作していることを示す。また、圧縮機105の「OFF」は、圧縮機105が停止していることを示す。
 流路切り換えバルブ202の「冷却」は、流路切り換えバルブ202から冷却経路への流路が開放され、流路切り換えバルブ202から除霜経路への流路が閉塞されていることを示す。また、流路切り換えバルブ202の「除霜」は、流路切り換えバルブ202から除霜経路への流路が開放され、流路切り換えバルブ202から冷却経路への流路が閉塞されていることを示す。また、流路切り換えバルブ202の「全閉」は、流路切り換えバルブ202から冷却経路への流路、及び、流路切り換えバルブ202から除霜経路への流路の両方が閉塞されていることを示す。
 二方弁205の「開放」は、二方弁205が開放されていることを示す。また、二方弁205の「閉塞」は、二方弁205が閉塞されていることを示す。
 冷却ファン111の「ON」は、冷却ファン111が動作していることを示す。また、冷却ファン111の「OFF」は、冷却ファン111が停止していることを示す。
 冷凍室ダンパー112の「開放」は、冷凍室ダンパー112が開放されていることを示す。また、冷凍室ダンパー112の「閉塞」は、冷凍室ダンパー112が閉塞されていることを示す。
 冷蔵室ダンパー114の「開放」は、冷蔵室ダンパー114が開放されていることを示す。また、冷蔵室ダンパー114の「閉塞」は、冷蔵室ダンパー114が閉塞されていることを示す。
 除霜ヒータ200の「ON」は、除霜ヒータが通電され、除霜ヒータによる除霜が行われていることを示す。一方、除霜ヒータ200の「OFF」は、除霜ヒータへの通電が停止し、除霜ヒータによる除霜が行われていないことを示す。
 タイミングT1は、圧縮機105の運転時間の累積が所定時間に達したタイミングである。タイミングT1において、冷蔵庫100は、通常の冷却モードから除霜モードに移行する。除霜によって冷凍室102の温度が上昇することが想定されるため、冷蔵庫100は、冷凍室ダンパー112をしばらくの間開放する。これにより、除霜を開始する前に冷凍室102の温度を低下させる。
 次にタイミングT2において、流路切り換えバルブ202の状態が「冷却」から「除霜」に切り換わる。タイミングT2において冷媒の流路が冷却経路から除霜経路に切り換わることで、加熱された冷媒が蒸発器106に供給される。これにより、蒸発器106の除霜が開始される。除霜経路による除霜は、蒸発器106の上側で行われる。蒸発器106の下側の除霜は、後述する除霜ヒータ200によって行われる。
 また、タイミングT2において、二方弁205の状態が「開放」から「閉塞」に切り換わる。タイミングT2において二方弁205を閉塞することで、蒸発器106による冷気の生成が停止した状態で除霜が開始される。これにより、除霜の効率が向上する。
 また、タイミングT2において、冷凍室ダンパー112の状態が「開放」から「閉塞」に切り換わり、冷蔵室ダンパー114の状態が「閉塞」から「開放」に切り換わる。これは、冷蔵室101の内部の空気を循環させながら蒸発器106を空気側からも加熱することで、蒸発器106の配管に残留する冷媒を蒸発させて圧縮機105に戻すためである。
 次にタイミングT3において、冷却ファン111の状態が「ON」から「OFF」に切り換わり、冷蔵室ダンパー114の状態が「開放」から「閉塞」に切り換わる。冷蔵室ダンパー114を閉塞し、かつ、冷却ファン111を停止するのは、蒸発器106の配管に残留する冷媒が蒸発し、蒸発器106の温度が冷蔵室101の空気温度に近づいて熱交換が困難になるからである。
 次にタイミングT4において、冷凍室ダンパー112の状態が「閉塞」から「開放」に切り換わり、除霜ヒータ200の状態が「OFF」から「ON」に切り換わる。除霜ヒータ200への通電が開始されることで、蒸発器106の下側の除霜が開始される。
 タイミングT5は、温度センサ115が検知する温度が所定の温度に達したタイミングであり、蒸発器106の除霜が完了したと冷蔵庫100が判断するタイミングである。タイミングT5において、流路切り換えバルブ202の状態が「除霜」から「冷却」に切り換わり、除霜ヒータ200の状態が「ON」から「OFF」に切り換わる。タイミングT5において、二方弁205の状態を「閉塞」にしたまま、流路切り換えバルブ202の状態は「除霜」から「冷却」に切り換わる。これは、流路切り換えバルブ202を通過する冷媒の流速を抑えることにより、ユーザが不快に感じる音の発生を抑制するためである。
 次にタイミングT6において、二方弁205の状態が「閉塞」から「開放」に切り換わり、冷却ファン111の状態が「OFF」から「ON」に切り換わり、冷蔵室ダンパー114の状態が「閉塞」から「開放」に切り換わる。タイミングT6において、冷蔵庫100は除霜モードから冷却モードに移行する。
 図3に示す通り、冷蔵庫100は、圧縮機105が動作したまま、除霜モードから冷却モードに移行する。冷蔵庫100が除霜モードから冷却モードに移行した直後に圧縮機105が停止した場合、高圧の冷媒が蓄冷器116に流入し、蓄冷器116に貯留した冷却エネルギーが失われてしまう。冷蔵庫100は、圧縮機105を動作させたまま除霜モードから冷却モードに移行することで、高圧の冷媒が蓄冷器116に流入することを防止できる。
 次に、冷蔵庫100が実行する処理を、図4のフローチャートに示す。図4のフローチャートに示す各ステップは、冷蔵庫100の中央演算処理装置(CPU)(図示せず)が冷蔵庫100のROM等のメモリ(図示せず)に格納された制御プログラムを実行することによって実現される。なお、CPUやメモリで構成される制御コントローラ(制御装置と称する)が冷蔵庫100の天面に収容されている。
 ステップS401において、制御装置は、除霜を行うか否かを判定する。本実施形態では、制御装置は、圧縮機105の運転時間の累積が所定時間に達した場合に、除霜を行うと判定する。制御装置が除霜を実行すると判定した場合、処理はステップS402に進む。
 次にステップS402において、制御装置は、冷媒の流路を冷却経路から除霜経路に切り換える。制御装置は、冷媒の流路を冷却経路から除霜経路に切り換えるように、流路切り換えバルブ202を制御する。冷媒の流路が除霜経路に切り換わることにより、第1の熱交換部208で加熱された冷媒は、蒸発器106に供給される。これにより、蒸発器106が除霜される。なお、除霜経路による除霜は、蒸発器106の上側を主として行われる。
 次に、ステップS403において、制御装置は、除霜ヒータ200を動作させる。制御装置は、除霜ヒータ200を通電させて、除霜ヒータ200を動作させる。これにより、蒸発器106が除霜される。なお、除霜ヒータ200による除霜は、蒸発器106の下側を主として行われる。
 次に、ステップS404において、制御装置は、除霜が完了したか否かを判定する。本実施の形態では、制御装置は、温度センサ115が検知する温度が所定の温度に達した場合に、除霜が完了したと判定する。制御装置が除霜が完了したと判定した場合、処理はステップS405に進む。
 次に、ステップS405において、制御装置は、冷媒の流路を除霜経路から冷却経路に切り替え、除霜ヒータ200の動作を停止する。制御装置は、冷媒の流路を除霜経路から冷却経路に切り換えるように、流路切り換えバルブ202を制御する。また、制御装置は、除霜ヒータ200への通電を停止して、除霜ヒータ200の動作を停止させる。
 本実施の形態では、1つのCPUにより図4のフローチャートに示す各ステップが実現される。しかし、複数のCPUが協働することにより、図4のフローチャートに示す各ステップが実現される構成であってもよい。また、図3で説明した各タイミングの動作も、冷蔵庫100のCPUが冷蔵庫100のROM等のメモリに格納された制御プログラムを実行することによって実現される。
 本実施の形態によれば、除霜経路を流れる冷媒が、第1の熱交換部208において、圧縮機105から吐出された高温の冷媒によって加熱される。これにより、圧縮機105の熱が、除霜に利用される。したがって、除霜ヒータ200が通電される時間が短縮される。したがって、除霜時の冷蔵庫100の消費電力が低減される。また、圧縮機105から吐出された冷媒は、流路切り換えバルブ202に直接供給されない。したがって、流路切り換えバルブ202において、ユーザが不快に感じる音の発生が抑制される。
 本実施の形態に係る冷蔵庫は、以下のようにも表現される。
 少なくとも圧縮機、第1の凝縮器、第2の凝縮器、減圧機構、蒸発器から構成されており、冷媒が循環する冷凍サイクルと、
 前記冷媒によって冷却される貯蔵室と、
 前記第1の凝縮器の下流側、かつ、前記第2の凝縮器の上流側に配設されている流路切換装置と、
 前記流路切換装置と前記蒸発器とを連通する除霜流路と、
 前記冷凍サイクルの前記圧縮機の吐出側と前記第1の凝縮器との間に配設され、前記圧縮機から吐出された前記冷媒と前記除霜流路を流れる前記冷媒とが熱交換する熱交換部と、
 前記蒸発器と前記圧縮機の吸入側との間に設けられた蓄冷器と、
 前記蒸発器の着霜を溶かす除霜運転モードと、前記貯蔵室を冷却する冷却運転モードと、を有し、前記流路切替装置を制御する制御装置とを備えた冷蔵庫であって、
 前記制御装置が、前記除霜運転モードを実行した場合には、前記圧縮機から吐出された前記冷媒は、前記熱交換部、前記第1の凝縮器、前記熱交換部、前記蒸発器、前記蓄冷器の順に流れ、前記圧縮機に吸入され、
 前記制御装置が、前記冷却運転モードを実行した場合には、前記圧縮機から吐出された前記冷媒は、前記熱交換部、前記第1の凝縮器、前記第2の凝縮器、前記蒸発器の順に流れ、前記圧縮機に吸入される、冷蔵庫。
 (実施の形態2)
 図5は、本開示の実施の形態2の冷蔵庫100Aの縦断面を示す図である。本実施の形態の冷蔵庫100Aは、蓄冷器116の代わりに、蓄熱器117を有する。図5における他の構成は、実施の形態1の冷蔵庫100と同じであり、同一の構成に同一の符号を付して、詳細な説明は実施の形態1のものを援用する。
 図5に示されるように、第1の機械室103の壁面には、蓄熱剤(図示せず)と蒸発機構(図示せず)とにより構成される蓄熱器117が埋設されている。蓄熱器117の詳細については後述する。
 次に図6を用いて、冷蔵庫100Aの冷凍サイクルについて説明する。圧縮機105から吐出された冷媒は、第1の凝縮器107で外気と熱交換を行い、一部の気体を残して凝縮する。第1の凝縮器107を通過した冷媒は、ドライバ201によって水分が除去され、流路切り換えバルブ202に流入する。流路切り換えバルブ202に流入する冷媒は、液相冷媒と気相冷媒とが混在する状態である。流路切り換えバルブ202によって、冷媒の流路は、第1の凝縮器107の下流側において、冷却経路と除霜経路とに分岐する。冷却経路は、冷気を生成するために冷媒を蒸発器106に供給する経路である。一方、除霜経路は、冷媒を加熱し、加熱した冷媒を蒸発器106に供給することにより蒸発器106が除霜される経路である。
 まず、冷却経路について説明する。冷却経路は、流路切り換えバルブ202から第2の凝縮器203に冷媒が流れる経路である。第2の凝縮器203は、冷蔵庫100Aの扉、すなわち、冷蔵室101に設けられた扉と冷凍室102に設けられた扉との少なくとも一つに這わされている。第2の凝縮器203を通過する冷媒は、外部に放熱することで冷蔵庫100Aの扉を温め、冷蔵庫100Aの扉で結露が発生することを防止する。第2の凝縮器203を通過して液化した冷媒は、第1の絞り204によって減圧され、蒸発器106で蒸発する。冷媒が蒸発器106で蒸発することにより、冷気が生成される。生成された冷気は、冷蔵室101と冷凍室102の冷却に利用される。なお、第2の凝縮器203と第1の絞り204との間には、二方弁205が設けられている。蒸発器106を通過した冷媒は、第1の吸入管206を介して圧縮機105に戻る。
 次に、除霜経路について説明する。除霜経路は、流路切り換えバルブ202から第2の絞り207に冷媒が流れる経路である。除霜経路における冷媒は、第2の絞り207によって減圧される。第2の絞り207を通過した冷媒は、第1の熱交換部208において、圧縮機105から第1の凝縮器107に冷媒が供給される経路と熱交換する。これにより、第2の絞り207を通過した冷媒は、加熱され、気化する。そして、加熱された冷媒は、蒸発器106に供給される。蒸発器106に供給された冷媒が蒸発器106を加熱することで、蒸発器106の除霜が実現される。
 なお、第2の絞り207から吐出された冷媒が流れる配管と、圧縮機105から第1の凝縮器107に冷媒が供給される配管の一部とが、例えば、1mから2m程度はんだ付けされることにより、第1の熱交換部208が形成される。また、第1の熱交換部208が冷蔵庫100の筐体の外壁面に形成されることにより、除霜経路における冷媒の加熱に、筐体の顕熱が利用される。
 また、除霜経路における冷媒は、第1の凝縮器107を通過する。これにより、冷媒の一部が液化、すなわち、冷媒の体積が減少する。したがって、流路切り換えバルブ202を流れる冷媒の流速は遅くなる。つまり、圧縮機105から吐出された、流速が速い気相冷媒は、そのまま流路切り換えバルブ202に直接供給されない。したがって、流路切り換えバルブ202において、ユーザが不快に感じる音の発生が抑制される。
 除霜経路について引き続き説明する。蒸発器106を加熱しながら凝縮した冷媒は、第3の絞り209によって再度減圧され、蓄熱器117の蒸発機構によって蒸発する。蓄熱器117を通過した冷媒は、第2の吸入管210を介して圧縮機105に戻る。
 蓄熱器117の蓄熱剤について詳しく説明する。蓄熱器117の蓄熱剤は、圧縮機105から生じる熱を蓄熱する。蓄熱器117の蓄熱剤に蓄えられた熱によって、冷媒が蓄熱器117の蒸発機構によって蒸発する際に発生する冷却エネルギーを相殺できる。冷媒が蓄熱器117の蒸発機構によって蒸発する際に発生する冷却エネルギーを相殺することで、蓄熱器117、第2の吸入管210、および、圧縮機105の周囲で結露が発生することを防止できる。なお、本実施形態では、蓄熱器117の蓄熱剤としてパラフィン系の蓄熱剤を用いることを想定しているが、他の種類の蓄熱剤を適宜用いても良い。
 蓄熱器117の蓄熱剤は圧縮機105から生じる熱を蓄熱するため、蓄熱器117は、圧縮機105の近傍に設けることが望ましい。本実施形態では、圧縮機105が収容される第1の機械室103の壁面に蓄熱器117を設けると説明したが、圧縮機105から生じる熱を蓄熱するために適した場所であれば、他の場所に蓄熱器117を設けても良い。
 また、蓄熱器117の蓄熱剤として、融点が低い、例えば融点が4から10℃の第1の蓄熱剤と、融点が高い、例えば融点が26から32℃の第2の蓄熱剤とを組み合わせて用いても良い。この場合、蓄熱器117の蒸発機構から発生する冷却エネルギーが、第1の蓄熱剤、第2の蓄熱剤の順番に熱交換するように構成されることが望ましい。もし、融点が低い第1の蓄熱剤だけを用いると、冷蔵庫100が置かれる環境が高温・高湿度である場合に、第2の吸入管210において結露が発生するおそれがある。融点が低い第1の蓄熱剤、融点が高い第2の蓄熱剤の順番で熱交換することで、冷媒の温度を26から32℃程度まで上昇させることができる。このため、第2の吸入管210において結露が発生することを防止できる。
 次に図7を用いて、蒸発器106の除霜を行う除霜モードにおける、冷蔵庫100Aの動作を説明する。図7は、左から右に進むにつれて時間の経過が進むことを示す。
 圧縮機105の「ON」は、圧縮機105が動作していることを示す。また、圧縮機105の「OFF」は、圧縮機105が停止していることを示す。
 流路切り換えバルブ202の「冷却」は、流路切り換えバルブ202から冷却経路への流路が開放され、流路切り換えバルブ202から除霜経路への流路が閉塞されていることを示す。また、流路切り換えバルブ202の「除霜」は、流路切り換えバルブ202から除霜経路への流路が開放され、流路切り換えバルブ202から冷却経路への流路が閉塞されていることを示す。また、流路切り換えバルブ202の「全閉」は、流路切り換えバルブ202から冷却経路への流路、及び、流路切り換えバルブ202から除霜経路への流路の両方が閉塞されていることを示す。
 二方弁205の「開放」は、二方弁205が開放されていることを示す。また、二方弁205の「閉塞」は、二方弁205が閉塞されていることを示す。
 冷却ファン111の「ON」は、冷却ファン111が動作していることを示す。また、冷却ファン111の「OFF」は、冷却ファン111が停止していることを示す。
 冷凍室ダンパー112の「開放」は、冷凍室ダンパー112が開放されていることを示す。また、冷凍室ダンパー112の「閉塞」は、冷凍室ダンパー112が閉塞されていることを示す。
 冷蔵室ダンパー114の「開放」は、冷蔵室ダンパー114が開放されていることを示す。また、冷蔵室ダンパー114の「閉塞」は、冷蔵室ダンパー114が閉塞されていることを示す。
 除霜ヒータ200の「ON」は、除霜ヒータが通電され、除霜ヒータによる除霜が行われていることを示す。一方、除霜ヒータ200の「OFF」は、除霜ヒータへの通電が停止し、除霜ヒータによる除霜が行われていないことを示す。
 タイミングT1は、圧縮機105の運転時間の累積が所定時間に達したタイミングである。タイミングT1において、冷蔵庫100は、通常の冷却モードから除霜モードに移行する。除霜によって冷凍室102の温度が上昇することが想定されるため、冷蔵庫100は、冷凍室ダンパー112をしばらくの間開放する。これにより、除霜を開始する前に冷凍室102の温度を低下させる。
 次にタイミングT2において、流路切り換えバルブ202の状態が「冷却」から「除霜」に切り換わる。タイミングT2において冷媒の流路が冷却経路から除霜経路に切り換わることで、加熱された冷媒が蒸発器106に供給される。これにより、蒸発器106の除霜が開始される。除霜経路による除霜は、蒸発器106の上側で行われる。蒸発器106の下側の除霜は、後述する除霜ヒータ200によって行われる。
 また、タイミングT2において、二方弁205の状態が「開放」から「閉塞」に切り換わる。タイミングT2において二方弁205を閉塞することで、蒸発器106による冷気の生成が停止した状態で除霜が開始される。これにより、除霜の効率が向上する。
 また、タイミングT2において、冷凍室ダンパー112の状態が「開放」から「閉塞」に切り換わり、冷蔵室ダンパー114の状態が「閉塞」から「開放」に切り換わる。これは、冷蔵室101の内部の空気を循環させながら蒸発器106を空気側からも加熱することで、蒸発器106の配管に残留する冷媒を蒸発させて圧縮機105に戻すためである。
 次にタイミングT3において、冷却ファン111の状態が「ON」から「OFF」に切り換わり、冷蔵室ダンパー114の状態が「開放」から「閉塞」に切り換わる。冷蔵室ダンパー114を閉塞し、かつ、冷却ファン111を停止するのは、蒸発器106の配管に残留する冷媒が蒸発し、蒸発器106の温度が冷蔵室101の空気温度に近づいて熱交換が困難になるからである。
 次にタイミングT4において、冷凍室ダンパー112の状態が「閉塞」から「開放」に切り換わり、除霜ヒータ200の状態が「OFF」から「ON」に切り換わる。除霜ヒータ200への通電が開始されることで、蒸発器106の下側の除霜が開始される。
 次にタイミングT5において、圧縮機105の状態が「ON」から「OFF」に切り換わり、二方弁205の状態が「閉塞」から「開放」に切り換わる。これにより、第1の凝縮器107に残留している高圧の冷媒を圧力差によって蒸発器106に流入させることができる。即ち、タイミングT5以降の蒸発器106の上側の除霜は、圧縮機105を停止させた状態で実現できる。圧縮機105を停止させた分だけ消費電力を低減できる。
 タイミングT6は、温度センサ115が検知する温度が所定の温度に達したタイミングであり、蒸発器106の除霜が完了したと冷蔵庫100が判断するタイミングである。タイミングT6において、流路切り換えバルブ202の状態が「除霜」から「冷却」に切り換わり、除霜ヒータ200の状態が「ON」から「OFF」に切り換わる。
 次にタイミングT7において、圧縮機105の状態が「OFF」から「ON」に切り換わり、冷却ファン111の状態が「OFF」から「ON」に切り換わり、冷蔵室ダンパー114の状態が「閉塞」から「開放」に切り換わる。タイミングT7において、冷蔵庫100Aは除霜モードから冷却モードに移行する。冷蔵庫100Aは、圧縮機105を停止した状態で冷媒の流路を除霜経路から冷却経路に切り換え、冷媒の流路を切り換えた後に圧縮機105を動作させる。これにより、冷媒の流路を除霜経路から冷却経路に切り換える際に、流路切り換えバルブ202において音が発生することを抑制できる。
 次に、冷蔵庫100Aが実行する処理を、図4のフローチャートに示す。図4のフローチャートに示す各ステップは、冷蔵庫100AのCPU(図示せず)が冷蔵庫100AのROM等のメモリ(図示せず)に格納された制御プログラムを実行することによって実現される。なお、CPUやメモリで構成される制御コントローラ(図示せず)が、冷蔵庫100Aの天面に設けられている。本実施の形態の冷蔵庫100Aが実行する処理は、実施の形態1の冷蔵庫100が実行する処理と同じであり、同一の構成に同一の符号を付して、詳細な説明は実施の形態1のものを援用する。また、図7で説明した各タイミングの動作も、冷蔵庫100AのCPUが冷蔵庫100AのROM等のメモリに格納された制御プログラムを実行することによって実現される。
 本実施の形態によれば、除霜経路を流れる冷媒が、第1の熱交換部208において圧縮機105から吐出された高温の冷媒によって加熱される。これにより、圧縮機105の熱が、除霜に利用される。したがって、除霜ヒータ200が通電される時間が短縮される。したがって、除霜時の冷蔵庫100の消費電力が低減される。また、圧縮機105から吐出された冷媒は、流路切り換えバルブ202に直接供給されない。したがって、流路切り換えバルブ202において、ユーザが不快に感じる音の発生が抑制される。
 本実施の形態に係る冷蔵庫は、以下のようにも表現される。
 少なくとも、圧縮機、第1の凝縮器、第2の凝縮器、減圧機構、および、蒸発器から構成されており、冷媒が循環する冷凍サイクルと、
 前記冷媒によって冷却される貯蔵室と、
 前記第1の凝縮器の下流側、かつ、前記第2の凝縮器の上流側に配設されている流路切換装置と、
 前記流路切換装置と前記蒸発器とを連通する除霜流路と、
 前記冷凍サイクルの前記圧縮機の吐出側と前記第1の凝縮器との間に配設され、前記圧縮機から吐出された前記冷媒と前記除霜流路を流れる前記冷媒とが熱交換する熱交換部と、
 前記蒸発器と前記圧縮機の吸入側との間に設けられた蓄熱器と、
 前記蒸発器の着霜を溶かす除霜運転モードと、前記貯蔵室を冷却する冷却運転モードと、を有し、前記流路切替装置を制御する制御装置とを備えた冷蔵庫であって、
 前記制御装置が、前記除霜運転モードを実行した場合には、前記圧縮機から吐出された前記冷媒は、前記熱交換部、前記第1の凝縮器、前記熱交換部、前記蒸発器、前記蓄熱器の順に流れ、前記圧縮機に吸入され、
 前記制御装置が、前記冷却運転モードを実行した場合には、前記圧縮機から吐出された冷媒は、前記熱交換部、前記第1の凝縮器、前記第2の凝縮器、前記蒸発器の順に流れ、前記圧縮機に吸入される、冷蔵庫。
 本開示は、家庭用の冷蔵庫および冷凍庫、業務用の冷蔵庫および冷凍庫等に適用される。
 100,100A 冷蔵庫
 101 冷蔵室
 102 冷凍室
 103 第1の機械室
 104 第2の機械室
 105 圧縮機
 106 蒸発器
 107 第1の凝縮器
 108 隔壁
 109 ファン
 110 蒸発皿
 111 冷却ファン
 112 冷凍室ダンパー
 113 ダクト
 114 冷蔵室ダンパー
 115 温度センサ
 116 蓄冷器
 117 蓄熱器
 200 除霜ヒータ
 201 ドライバ
 202 流路切り換えバルブ
 203 第2の凝縮器
 204 第1の絞り
 205 二方弁
 206 第1の吸入管
 207 第2の絞り
 208 第1の熱交換部
 209 第3の絞り
 210 第2の吸入管
 211 第2の熱交換部

Claims (17)

  1.  圧縮機、第1の凝縮器、第2の凝縮器、蒸発器、および、前記第1の凝縮器の下流側に設けられた流路切替装置を少なくとも備え、前記圧縮機から前記第1の凝縮器に冷媒が供給される冷凍サイクルと、
     前記蒸発器において生成された冷気が供給される貯蔵室と、
     前記貯蔵室の近傍、かつ、前記蒸発器の下流側に設けられた蓄冷器と、
     制御装置と、
     を有する冷蔵庫であって、
     前記冷凍サイクルは、前記冷気を生成するために前記冷媒を前記蒸発器に供給する冷却経路と、前記冷媒を加熱し、加熱された前記冷媒を前記蒸発器に供給して除霜を行う除霜経路とに、前記第1の凝縮器の下流側で分岐しており、
     前記制御装置は、前記流路切替装置を制御して、前記冷媒の流路を前記冷却経路または前記除霜経路に切り替え、
     前記冷却経路において、前記冷媒は、前記第2の凝縮器を通過したうえで前記蒸発器に供給され、
     前記除霜経路を流れる前記冷媒は、前記圧縮機から前記第1の凝縮器に冷媒が供給される経路と熱交換することで加熱され、
     前記除霜経路において、前記蒸発器から吐出された前記冷媒は、前記蓄冷器において蒸発したうえで前記圧縮機の吸入側に供給される、冷蔵庫。
  2.  前記除霜経路において、前記蓄冷器から吐出された前記冷媒は、加熱されて前記圧縮機に供給される請求項1に記載の冷蔵庫。
  3.  前記除霜経路において、前記蓄冷器から吐出された前記冷媒は、前記除霜経路において前記蒸発器に前記冷媒が供給される経路と熱交換することにより加熱される請求項2に記載の冷蔵庫。
  4.  前記除霜を行う場合に、前記制御装置は、前記冷媒が流れる前記流路を前記冷却経路から前記除霜経路に切り換える請求項1から3のいずれか1項に記載の冷蔵庫。
  5.  前記除霜が完了した場合に、前記制御装置は、前記冷媒が流れる前記流路を前記除霜経路から前記冷却経路に切り替える請求項4に記載の冷蔵庫。
  6.  除霜ヒータをさらに備え、
     前記冷媒が流れる前記流路が前記冷却経路から前記除霜経路に切り換えられた後に、前記制御装置は前記除霜ヒータの動作を開始する請求項4に記載の冷蔵庫。
  7.  前記除霜が完了した場合に、前記制御装置は、前記冷媒が流れる前記流路を前記除霜経路から前記冷却経路に切り替え、かつ、前記除霜ヒータの動作を停止させる請求項6に記載の冷蔵庫。
  8.  前記除霜が完了した場合に、前記制御装置は、前記圧縮機を動作させたまま、前記冷媒が流れる前記流路を前記除霜経路から前記冷却経路に切り替える請求項5又は7に記載の冷蔵庫。
  9.  前記貯蔵室は、冷凍室である請求項1から8のいずれか1項に記載の冷蔵庫。
  10.  圧縮機、第1の凝縮器、第2の凝縮器、蒸発器、および、前記第1の凝縮器の下流側に設けられた流路切替装置を少なくとも備え、前記圧縮機から前記第1の凝縮器に冷媒が供給される冷凍サイクルと、
     前記蒸発器において生成された冷気が供給される貯蔵室と、
     前記圧縮機の近傍、かつ、前記蒸発器の下流側に設けられた蓄熱器と、
     制御装置と、
     を有する冷蔵庫であって、
     前記冷凍サイクルは、前記冷気を生成するために前記冷媒を前記蒸発器に供給する冷却経路と、前記冷媒を加熱し、加熱された前記冷媒を前記蒸発器に供給して除霜を行う除霜経路とに、前記第1の凝縮器の下流側で分岐しており、
     前記制御装置は、前記流路切替装置を制御して、前記冷媒の流路を前記冷却経路または前記除霜経路に切り替え、
     前記冷却経路において、前記冷媒は、前記第2の凝縮器を通過したうえで前記蒸発器に供給され、
     前記除霜経路を流れる前記冷媒は、前記圧縮機から前記第1の凝縮器に冷媒が供給される経路と熱交換することで加熱され、
     前記除霜経路において前記蒸発器から吐出された前記冷媒は、前記蓄熱器において蒸発したうえで前記圧縮機の吸入側に供給される冷蔵庫。
  11.  前記除霜を行う場合に、前記制御装置は、前記冷媒が流れる前記流路を前記冷却経路から前記除霜経路に切り換える請求項10に記載の冷蔵庫。
  12.  前記除霜が完了した場合に、前記制御装置は、前記冷媒が流れる前記流路を前記除霜経路から前記冷却経路に切り替える請求項11に記載の冷蔵庫。
  13.  除霜ヒータをさらに備え、
     前記冷媒が流れる前記流路が前記冷却経路から前記除霜経路に切り換えられた後に、前記制御装置は前記除霜ヒータの動作を開始する請求項11に記載の冷蔵庫。
  14.  前記除霜が完了した場合に、前記制御装置は、前記冷媒が流れる前記流路を前記除霜経路から前記冷却経路に切り替え、かつ、前記除霜ヒータの動作を停止させる請求項13に記載の冷蔵庫。
  15.  前記除霜が完了した場合に、前記制御装置は、前記圧縮機を停止した状態で、前記冷媒が流れる前記流路を前記除霜経路から前記冷却経路に切り替える請求項12又は14に記載の冷蔵庫。
  16.  前記圧縮機が収納されている機械室をさらに備え、
     前記蓄熱器は、前記機械室の壁面に埋設されている請求項10から15のいずれか1項に記載の冷蔵庫。
  17.  前記機械室は、前記冷蔵庫の上部に設けられている請求項16に記載の冷蔵庫。
PCT/JP2019/003840 2018-02-07 2019-02-04 冷蔵庫 WO2019156021A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018019716A JP6998509B2 (ja) 2018-02-07 2018-02-07 冷蔵庫
JP2018-019717 2018-02-07
JP2018-019716 2018-02-07
JP2018019717A JP2019138496A (ja) 2018-02-07 2018-02-07 冷蔵庫

Publications (1)

Publication Number Publication Date
WO2019156021A1 true WO2019156021A1 (ja) 2019-08-15

Family

ID=67548113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003840 WO2019156021A1 (ja) 2018-02-07 2019-02-04 冷蔵庫

Country Status (1)

Country Link
WO (1) WO2019156021A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7025086B1 (ja) * 2021-08-24 2022-02-24 株式会社日本イトミック ヒートポンプ装置
WO2022070645A1 (ja) * 2020-09-30 2022-04-07 パナソニックIpマネジメント株式会社 冷蔵庫
WO2022070643A1 (ja) * 2020-09-30 2022-04-07 パナソニックIpマネジメント株式会社 冷蔵庫
WO2022070644A1 (ja) * 2020-09-30 2022-04-07 パナソニックIpマネジメント株式会社 冷蔵庫

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53158982U (ja) * 1977-05-19 1978-12-13
JPS5846063U (ja) * 1981-09-21 1983-03-28 星崎電機株式会社 ホツトガスデフロスト装置
JPH0241065U (ja) * 1988-09-12 1990-03-20
JPH0296585U (ja) * 1989-01-20 1990-08-01
WO2011099060A1 (ja) * 2010-02-10 2011-08-18 パナソニック株式会社 蓄熱装置及び該蓄熱装置を備えた空気調和機
US20130047652A1 (en) * 2011-08-30 2013-02-28 Taehee Lee Refrigerator and control method thereof
JP2017116224A (ja) * 2015-12-25 2017-06-29 東芝ライフスタイル株式会社 冷蔵庫
WO2017179500A1 (ja) * 2016-04-13 2017-10-19 パナソニックIpマネジメント株式会社 冷蔵庫および冷却システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53158982U (ja) * 1977-05-19 1978-12-13
JPS5846063U (ja) * 1981-09-21 1983-03-28 星崎電機株式会社 ホツトガスデフロスト装置
JPH0241065U (ja) * 1988-09-12 1990-03-20
JPH0296585U (ja) * 1989-01-20 1990-08-01
WO2011099060A1 (ja) * 2010-02-10 2011-08-18 パナソニック株式会社 蓄熱装置及び該蓄熱装置を備えた空気調和機
US20130047652A1 (en) * 2011-08-30 2013-02-28 Taehee Lee Refrigerator and control method thereof
JP2017116224A (ja) * 2015-12-25 2017-06-29 東芝ライフスタイル株式会社 冷蔵庫
WO2017179500A1 (ja) * 2016-04-13 2017-10-19 パナソニックIpマネジメント株式会社 冷蔵庫および冷却システム

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070645A1 (ja) * 2020-09-30 2022-04-07 パナソニックIpマネジメント株式会社 冷蔵庫
WO2022070643A1 (ja) * 2020-09-30 2022-04-07 パナソニックIpマネジメント株式会社 冷蔵庫
WO2022070644A1 (ja) * 2020-09-30 2022-04-07 パナソニックIpマネジメント株式会社 冷蔵庫
JP7442046B2 (ja) 2020-09-30 2024-03-04 パナソニックIpマネジメント株式会社 冷蔵庫
JP7442045B2 (ja) 2020-09-30 2024-03-04 パナソニックIpマネジメント株式会社 冷蔵庫
JP7442047B2 (ja) 2020-09-30 2024-03-04 パナソニックIpマネジメント株式会社 冷蔵庫
JP7025086B1 (ja) * 2021-08-24 2022-02-24 株式会社日本イトミック ヒートポンプ装置
WO2023026344A1 (ja) * 2021-08-24 2023-03-02 株式会社日本イトミック ヒートポンプ装置
US11965680B2 (en) 2021-08-24 2024-04-23 Nihon Itomic Co., Ltd. Heat pump device

Similar Documents

Publication Publication Date Title
WO2019156021A1 (ja) 冷蔵庫
US8479527B2 (en) Refrigerator and control method for the same
US6935127B2 (en) Refrigerator
US9057550B2 (en) Refrigerator
JP2004037065A (ja) 2つの蒸発器を備えた冷凍システムの運転制御方法
JP2012017920A (ja) 冷蔵庫
JP2011080733A (ja) 空気調和機
JP7416238B2 (ja) 冷凍サイクル装置
JP6998509B2 (ja) 冷蔵庫
JP2018173197A (ja) 冷凍装置
JPH11211325A (ja) 冷蔵庫
JP2018080899A (ja) 冷凍装置
JP2008175430A (ja) 空気調和機
JP7065279B2 (ja) 冷蔵庫
JP2019138496A (ja) 冷蔵庫
JP2010127602A (ja) 冷凍装置
WO2018147113A1 (ja) 冷蔵庫
KR20110097016A (ko) 냉장고의 제어 방법
JP2005156108A (ja) 冷蔵庫
JP7442045B2 (ja) 冷蔵庫
JP2012077938A (ja) 冷凍サイクル装置
JP7442047B2 (ja) 冷蔵庫
JP2013092342A (ja) 冷凍装置
JP4286106B2 (ja) 冷凍冷蔵庫
JP6640778B2 (ja) 冷凍サイクル及び冷凍サイクルを有する冷蔵庫

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19751637

Country of ref document: EP

Kind code of ref document: A1