WO2012172678A1 - 燃料電池システムおよび燃料電池システムの制御方法 - Google Patents

燃料電池システムおよび燃料電池システムの制御方法 Download PDF

Info

Publication number
WO2012172678A1
WO2012172678A1 PCT/JP2011/063898 JP2011063898W WO2012172678A1 WO 2012172678 A1 WO2012172678 A1 WO 2012172678A1 JP 2011063898 W JP2011063898 W JP 2011063898W WO 2012172678 A1 WO2012172678 A1 WO 2012172678A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
pressure
temperature
cell system
cathode electrode
Prior art date
Application number
PCT/JP2011/063898
Other languages
English (en)
French (fr)
Inventor
裕司 石川
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP11867924.0A priority Critical patent/EP2722922B1/en
Priority to JP2013520383A priority patent/JP5692376B2/ja
Priority to US14/126,054 priority patent/US9299997B2/en
Priority to PCT/JP2011/063898 priority patent/WO2012172678A1/ja
Priority to RU2013155686/07A priority patent/RU2567233C2/ru
Priority to KR1020137033269A priority patent/KR20140022072A/ko
Priority to BR112013032548A priority patent/BR112013032548B1/pt
Priority to CN201180071622.8A priority patent/CN103597642B/zh
Publication of WO2012172678A1 publication Critical patent/WO2012172678A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04104Regulation of differential pressures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04179Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by purging or increasing flow or pressure of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04253Means for solving freezing problems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04783Pressure differences, e.g. between anode and cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system having a fuel cell stack that generates electric power upon receiving a reaction gas and a control method for the fuel cell system.
  • a fuel cell is composed of a fuel cell stack in which a plurality of fuel cells (single cells) are stacked, and each single cell is a membrane formed by arranging an anode electrode on one surface of an electrolyte membrane and a cathode electrode on the other surface. It has an electrode assembly, and this membrane-electrode assembly is sandwiched between a gas flow path layer and a separator.
  • a fuel gas containing hydrogen is supplied to the anode electrode, and protons are generated from the fuel gas by an oxidation reaction represented by the following formula (1). The generated protons move through the electrolyte membrane to the cathode electrode.
  • the other cathode electrode is supplied with an oxidant gas containing oxygen, and oxygen reacts with protons that have moved from the anode electrode to produce water by the reduction reaction shown in the following formula (2).
  • the fuel cell as a whole has an electromotive reaction of the formula (3), and electric energy is taken out from the electrodes by using an electrochemical reaction generated on the surface of the electrolyte membrane side of the pair of electrode structures.
  • the generated water is indicated by reference numeral 30 in FIG. 1
  • the generated water is frozen and frozen once in a low temperature environment such as below freezing point.
  • the generated water may be melted by the driving heat of the fuel cell and stay in the fuel cell again as water. If the water in the fuel cell freezes or stays in this way, the reaction gas flow path is blocked, gas diffusion is inhibited, and the output of the fuel cell is reduced.
  • Japanese Patent Application Laid-Open No. 2005-44795 discloses that power generation characteristics are improved by controlling the pressure of the reaction gas supplied to the fuel cell stack at the time of starting below freezing to be higher than the normal operation pressure. Has been. By increasing the supply pressure of the reaction gas, the gas is forcibly supplied to the reaction surface to compensate for a decrease in gas diffusivity.
  • Patent Document 1 is a technique that suppresses a decrease in gas diffusibility by supplying a larger amount of reaction gas than usual, and makes it possible to sufficiently supply gas to the reaction surface.
  • the fuel cell temperature is below freezing point. In the case of, it is effective. However, if the frozen water thaws and the generated water suddenly occurs when the fuel cell temperature exceeds 0 degrees, the generated water closes the gas flow path, so that the generated water is sufficiently drained. The amount of gas supplied to the reaction surface may decrease.
  • the ice present in the fuel cell when starting below freezing is present not only in the gas flow path, but also in the membrane-electrode assembly and in the catalyst layer. A decrease occurs.
  • the present invention relates to a fuel cell system capable of satisfactorily discharging water generated by melting frozen ice and improving the output of the fuel cell in a fuel cell started in a low temperature environment, and the control of the fuel cell system It aims to provide a method.
  • the present invention is a fuel cell system including a fuel cell stack for generating power by supplying a fuel gas to an anode electrode and an oxidant gas to a cathode electrode, and a temperature sensor for measuring a temperature in the fuel cell stack; A pressure sensor for measuring the pressure of the cathode electrode, a pressure regulator for adjusting the pressure of the cathode electrode, and a temperature in the fuel cell stack measured by the temperature sensor after starting below freezing exceeds 0 degrees. And a pressure control unit that controls the pressure regulator so as to apply a pulsation to the pressure of the cathode electrode.
  • the remaining water is effectively discharged by adding pulsation to the pressure on the cathode electrode side.
  • gas flow can be performed not only by flowing gas but also by using a pressure gradient, the gas flow path is blocked in the membrane-electrode assembly and in the catalyst layer together with water remaining in the gas flow path. It is possible to reliably discharge the water that is being discharged. Further, since the temperature in the fuel cell rises with the increase in pressure, the warm-up effect of the fuel cell can be obtained. Note that the pressure pulsation in the present invention is to instantaneously change the pressure increase / decrease.
  • the pressure control unit temporarily increases the inlet pressure of the cathode electrode by the pressure regulator and then reduces the pressure to a level not lower than the reference pressure value to add pulsation to the pressure. Is preferred.
  • the water staying in the vicinity of the inlet can be preferentially discharged by increasing or decreasing the cathode inlet pressure, and the amount of gas supplied to the cathode can be increased. Moreover, since pressure pulsation is applied at a reference pressure value or more, it is possible to suppress a decrease in output even when the pressure is reduced.
  • the pressure control unit further comprises an output measuring device for measuring the output of the fuel cell stack, and when the output of the fuel cell stack measured by the output measuring device is determined to be less than or equal to a required output value, It is preferable to control the pressure regulator.
  • the required output value indicates an output value required for operation, and is a value that can be arbitrarily set.
  • pressure pulsation is performed only when the output drops due to thawing of frozen water, and water in the fuel cell is effectively discharged by adding the minimum pulsation necessary for output recovery. And it can suppress that an output pressure is reduced by adding pressure pulsation excessively. Thereby, the pressure state and gas flow state after pressure pulsation can be stabilized at an early stage.
  • the present invention provides a control method of a fuel cell system including a fuel cell that generates power by supplying fuel gas to an anode electrode and supplying an oxidant gas to a cathode electrode, and the temperature of the fuel cell is less than a reference temperature below freezing point at start-up.
  • the sub-freezing start control is performed at the time of sub-freezing start, and then, when it is determined that the ice has thawed, the pressure pulsation is applied to the cathode electrode, thereby It is possible to discharge.
  • a fuel cell system in a fuel cell that starts under a low-temperature environment, a fuel cell system and a fuel cell that can discharge water generated by melting frozen ice well and improve the output of the fuel cell.
  • a system control method can be provided.
  • FIG. 3 is a flowchart showing an operation control process for supplying an oxidant gas in the fuel cell system shown in FIG. 2. It is a figure which shows the relationship between a pressure fluctuation
  • FIG. 1 shows a fuel cell 10.
  • the fuel cell 10 includes an electrolyte membrane 12, an anode catalyst layer 14, a cathode catalyst layer 16, an anode diffusion layer 18, and a cathode diffusion layer 20.
  • the electrolyte membrane 12 is made of an ion exchange membrane and has proton conductivity.
  • the anode catalyst layer 14 and the cathode catalyst layer 16 are disposed on both sides of the electrolyte membrane 12, and the anode diffusion layer 18 is disposed on the opposite side of the anode catalyst layer 14 from the electrolyte membrane 12, and the cathode catalyst layer 16 is disposed on the opposite side of the electrolyte 12.
  • the cathode diffusion layer 20 is disposed to form the membrane electrode assembly 22.
  • the separator 25 is disposed on both sides of the membrane electrode assembly 22 to form the fuel cell 10, and a plurality of the fuel cells 10 are stacked to form the fuel cell stack 1.
  • the fuel gas supplied from the outside of the cell 10 passes through the fuel gas flow path 26 and is supplied to the anode diffusion layer 18 and the anode catalyst layer 14, and the oxidant gas passes through the oxidant gas flow path 28 and the cathode diffusion layer 20. , And supplied to the cathode catalyst layer 16.
  • FIG. 2 is a diagram showing the configuration of the fuel cell system according to the embodiment of the present invention.
  • compressed air is supplied as an oxidant gas to the cathode electrode (the chamber on the anode side of the fuel cell) of the fuel cell stack 1. That is, the air sucked from the filter 32 is compressed by the compressor 41 and then supplied from the pipe 51 to the fuel cell stack 1.
  • the supply pressure of air is detected by the pressure sensor 42 and controlled to a predetermined reference pressure such as 150 kPa.
  • Exhaust gas from the cathode electrode (cathode side chamber of the fuel cell) is discharged to the outside through the pipe 52 and the diluter 43.
  • the supply pressure of air is detected by a pressure sensor 42 provided in the pipe 51 and is adjusted by a back pressure valve 45.
  • a pressure sensor 42 provided in the pipe 51 and is adjusted by a back pressure valve 45.
  • the opening degree of the back pressure valve 45 is increased, the outlet pressure is reduced, and a differential pressure is generated as a difference between the inlet pressure and the outlet pressure.
  • Hydrogen gas stored in the hydrogen tank 46 is supplied to the anode electrode of the fuel cell stack 1 through the pipe 53.
  • the hydrogen gas stored at a high pressure in the hydrogen tank 46 is supplied to the anode with the pressure and supply amount adjusted by a shut valve 47, a regulator 48, and a valve 49 provided at the outlet.
  • Exhaust gas from the anode flows out into the pipe 54 and splits into two on the way.
  • One is connected to a pipe 55 and a diluter 43 for discharging hydrogen gas to the outside, and is diluted with air and then discharged to the outside.
  • the other is connected to the pipe 56 via the pressurizing pump 50 and circulated again to the fuel cell stack 1.
  • the cooling water that cools the fuel cell stack 1 flows through the cooling pipe 61 by the pump 60, is cooled by the radiator 62, and is supplied to the fuel cell stack 1.
  • a temperature sensor 64 for detecting the coolant temperature is provided at the coolant outlet of the fuel cell stack 1. Since the coolant circulates in the fuel cell stack 1, the coolant temperature measured by the temperature sensor 64 can be used as the fuel cell temperature.
  • the fuel cell temperature may be detected by attaching a temperature sensor directly to the fuel cell stack.
  • the fuel cell system 40 is provided with a control unit (ECU) 66 that controls the fuel cell system 40. Detection signals from the pressure sensor 42 and the temperature sensor 64 are input to the control unit 66, and control signals are supplied to the back pressure valve 45, the valve 49, the compressor 41, and the like. The voltage value and current value detected by the cell monitor 70 are also input to the control unit 66. Further, an ignition switch 68 is connected to the controller 66, and an ignition ON / OFF signal is input. Note that some of the signals input to and output from the controller 66 are indicated by dotted lines in the figure.
  • FIG. 3 is a flowchart showing the processing contents of the control of the fuel cell system shown in FIG.
  • an operation start signal is input (IG-ON), and the process proceeds to step S101.
  • step S101 the temperature sensor 64 measures the temperature T1 in the fuel cell stack 1 and inputs it to the controller 66.
  • the controller 66 determines whether or not the temperature T1 is equal to or greater than 0 degrees. If the temperature T1 is greater than 0 degrees, the process proceeds to step S109, and room temperature start control is performed. When the temperature T is 0 ° C. or less, the process proceeds to step S102 and the below-freezing start control is performed.
  • the below-freezing start control is started while raising the temperature of the fuel cell stack while performing low-efficiency power generation as compared with the normal temperature start control.
  • Low-efficiency power generation refers to power generation in which the amount of reaction gas, particularly oxidant gas, supplied to the fuel cell is smaller than that during normal power generation, thereby causing large power loss.
  • the fuel cell is operated in a state where the air stoichiometric ratio is reduced to around 1.0 as compared with the normal temperature start control.
  • the fuel cell can be quickly warmed up.
  • the fuel cell is operated in a state where the stoichiometric ratio is set to 1.5 or higher so that high power generation efficiency can be obtained while suppressing power loss.
  • FIG. 6 is a diagram in which the fuel cell state is divided into three stages based on the fuel cell temperature and the remaining water amount at the time of starting.
  • step S102 After the below-freezing start control is performed in step S102, the process proceeds to step S103, and the temperature sensor 64 measures the temperature T2 in the fuel cell stack 1 again. Similar to step S101, the measured temperature T2 is input to the control unit 66, and the control unit 66 determines whether or not the temperature T2 is equal to or greater than 0 degrees. If the temperature T2 is greater than 0 degrees, the process proceeds to step S104. If the temperature T2 is 0 degrees or less, the process returns to step S102 and the below-freezing start control is continued. That is, the below-freezing start control in step S102 is performed until the temperature T2 of the fuel cell stack 1 exceeds 0 degrees, and the below-freezing start is terminated when the temperature T2 exceeds 0 degrees.
  • step S104 the control unit 66 calculates the output value W from the voltage value V and the current value I detected by the cell monitor 70, and determines whether or not the output value W is greater than the requested output value W0. That is, it is determined from the output whether each fuel cell in the fuel cell stack 1 is generating enough power. If the output value W is greater than the required output value W0, it is determined that sufficient power generation is being performed, and the process proceeds to step S109 to switch to room temperature start control. On the other hand, when the output value W is less than or equal to the required output value W0, it is determined that the water is generated due to the temperature exceeding 0 ° C., and the water stays in the fuel cell, and the process proceeds to step S105. .
  • the required output value W0 is a value that can be arbitrarily set.
  • the output value in the cell state that can be smoothly switched from the low temperature start control to the normal temperature start control.
  • It is set to 5 kW.
  • step S ⁇ b> 105 the pressure sensor 42 measures the inlet-side pressure P ⁇ b> 1 of the cathode electrode and inputs it to the control unit 66.
  • step S106 the control unit 66 closes the back pressure valve 45 that adjusts the outlet side pressure of the cathode electrode, and increases the pressure of the cathode electrode.
  • step S107 the cathode pole inlet side pressure P2 after valve closing is measured and input to the controller 66.
  • the controller 66 compares the pressure P1 before the valve closing, the pressure P2 after the valve closing, and the pressure fluctuation range ⁇ , and determines whether or not P2> P1 + ⁇ is satisfied. That is, it is determined whether or not P2 has increased by ⁇ kPa from the pressure P1 before closing the valve. If P2> P1 + ⁇ is satisfied, the process proceeds to step S108. If not satisfied, step S107 is repeated, and the process waits until P2> P1 + ⁇ .
  • can be arbitrarily set, and varies depending on the structure of the fuel cell stack 1. Therefore, it is preferable to conduct an experiment on the target fuel cell stack 1 and determine an appropriate value.
  • the relationship between the pressure fluctuation range ⁇ and the output recovery amount is measured and mapped in advance, and the shortage of the output amount (W1-W) and the necessary pressure fluctuation range from the map. It is also possible to calculate ⁇ . That is, water can be effectively discharged by increasing the pressure fluctuation range ⁇ when the output shortage is large.
  • step S108 the controller 66 opens the back pressure valve 45 to release the cathode electrode pressure.
  • the controller 66 controls the back pressure valve 45 so that the pressure at the cathode electrode does not drop below the reference pressure value P0. That is, pressure pulsation is applied to the cathode electrode by opening and closing the back pressure valve 45 while maintaining the reference pressure value P or higher.
  • the reference pressure value P refers to a pressure value required for supplying a constant reaction gas into the fuel cell, and can be arbitrarily set.
  • a pressure sensor is provided at the cathode electrode outlet of the fuel cell stack 1, and the opening of the back pressure valve 45 is controlled so that the pressure at the cathode electrode outlet does not become the reference pressure value P or less.
  • the valve is opened rapidly so that a predetermined pulsation is given to the gas pressure at the cathode electrode.
  • the reference pressure value P serving as the lower limit pressure is set to be relatively low. In order to cause a sufficient reaction in the fuel cell, a sufficient reaction gas is required, and it is preferable that the pressure is relatively high.
  • the pressure fluctuation range necessary for output recovery is calculated, and when the pressure fluctuation range is large, the pressure fluctuation range is increased by using the high upper limit pressure and the lower lower limit pressure, but the pressure fluctuation range required for output is compared.
  • the target is small, it is preferable to increase the reference pressure value P0 and reduce the pressure fluctuation range.
  • the upper limit pressure may be lowered and the lower limit pressure may be changed higher.
  • the water accumulated in the cathode electrode can be effectively discharged by periodically opening and closing the back pressure valve 45 to periodically increase and decrease the pressure of the cathode electrode.
  • FIG. 4B shows the state of pressure fluctuation from step S106 to step S108.
  • the pressure is increased by closing the back pressure valve 45 in step S106 from the atmosphere open state before the valve is closed.
  • the pressure is decreased by opening the back pressure valve 45 in step S108.
  • it is preferable to decrease the pressure so that it does not fall below the reference pressure value P. If the pressure is reduced to below the reference pressure value P after starting below the freezing point and exceeding 0 degrees, the amount of reaction gas inside the cell will decrease, resulting in insufficient output recovery and reduced performance. May cause.
  • By adding pulsation to the pressure so that it does not fall below the reference pressure value P even when the pressure drops efficient output recovery is possible.
  • step S105 After executing the output recovery control from step S105 to S108, the process returns to step S104.
  • the output recovery control (steps S105 to S108) is repeated.
  • the room temperature start control of step S109 is performed. Transition.
  • FIG. 5 includes a fuel cell system according to an embodiment of the present invention, and compares the case where the control method of the fuel cell system is implemented (when implemented) with the case where it is not implemented (when not implemented).
  • the output value and temperature of the fuel cell are shown in the graph.
  • the fuel cell temperature exceeds 0 degree after a lapse of A seconds after starting to start below freezing.
  • the above-described output recovery control (steps S105 to S108 in FIG. 3) is performed.
  • the air compression rate can be changed by adjusting the compressor 41 when the pressure of the cathode electrode is changed in steps S106 to S108.
  • pressure pulsation can be applied in the same way as when the back pressure valve 45 is opened / closed, improving drainage performance and output. Effects such as improvement and temperature improvement of the fuel cell can be obtained.
  • the fuel cell system and the control method of the fuel cell system according to the present embodiment it is possible to quickly discharge the water frozen in the fuel cell at the time of starting below the freezing point when it is thawed. .
  • the gas can be efficiently flowed using not only the gas but also the pressure gradient.
  • the water staying in the gas flow path and the water staying in the catalyst layer and the diffusion layer and closing the gas flow path can be surely discharged.
  • the temperature in the fuel cell rises as the gas pressure increases, a warm-up effect is also obtained.
  • the effects of the present invention can be obtained not only during pressure pulsation but also in drainage performance, cell temperature and output during subsequent fuel cell operation, and performance can be recovered in a short time.
  • 1 fuel cell stack 10 fuel cell, 12 electrolyte membrane, 14 anode catalyst layer, 16 cathode catalyst layer, 18 anode diffusion layer, 20 cathode diffusion layer, 21, 23 arrows, 22 membrane electrode assembly, 25 separator, 26 fuel Gas flow path, 28 oxidant gas flow path, 30 generated water, 32 filter, 40 fuel cell system, 41 compressor, 42 pressure sensor, 43 diluter, 45 back pressure valve, 46 hydrogen tank, 47 shut valve, 48 regulator, 49 Valve, 50 pressure pump, 51, 52, 53, 54, 55, 56 piping, 60 pump, 62 radiator, 64 temperature sensor, 66 control unit, 68 ignition switch, 70 cell monitor.

Abstract

 氷点下始動時において燃料電池内の排水性を向上させ、燃料電池の出力向上、発電効率の向上を図る。燃料ガスと酸化剤ガスを供給して発電を行う燃料電池システムにおいて、氷点下始動後の燃料電池の温度が0度を超過した段階で燃料電池の出力を測定し、該出力が基準出力値以下である場合にはカソード極に圧力脈動を加えて燃料電池内に滞留する水を排出する。

Description

燃料電池システムおよび燃料電池システムの制御方法
 本発明は、反応ガスの供給を受けて発電する燃料電池スタックを有する燃料電池システムおよび燃料電池システムの制御方法に関する。
 燃料電池は、燃料電池セル(単セル)を複数積層した燃料電池スタックにより構成され、各単セルは、電解質膜の一方の面にアノード極を、他方の面にカソード極を配してなる膜-電極接合体を有し、この膜-電極接合体をガス流路層とセパレータで挟持して構成される。アノード極には、水素を含有する燃料ガスが供給され、水素が下式(1)に示す酸化反応により燃料ガスからプロトンが生成される。生成されたプロトンは電解質膜を通ってカソード極へ移動する。他方のカソード極には、酸素を含有する酸化剤ガスが供給され、酸素がアノード極から移動してきたプロトンと反応して下式(2)に示す還元反応により水を生成する。燃料電池セル全体としては(3)式の起電反応となり、これら一対の電極構造体の電解質膜側の表面で生じる電気化学反応を利用して電極から電気エネルギを取り出す。
 H→2H+2e・・・(1)
 (1/2)O+2H+2e→HO・・・(2)
 H+(1/2)O→HO・・・(3)
 上述のように、燃料電池は水を生成(図1において生成水を符号30と示す)するため、氷点下等の低温環境下においては燃料電池内に存在する生成水が凍結すると共に、一旦凍結した生成水が燃料電池の駆動熱により溶融し、再び水として燃料電池内に滞留するおそれがある。このように燃料電池内の水の凍結、滞留が生じると、反応ガス流路が閉塞されガス拡散を阻害し、燃料電池の出力低下を引き起こす。上記問題に鑑み、特開2005-44795号公報には、氷点下始動時に燃料電池スタックに供給される反応ガスの圧力を通常運転圧力よりも高めに制御することにより、発電特性を向上させることが開示されている。反応ガスの供給圧を高めることによりガスを反応面に強制的に供給し、ガス拡散性の低下を補うものである。
特開2005-44795号公報
 特許文献1は、反応ガスを通常時に比して多く供給することによりガス拡散性の低下を抑制し、反応面に十分にガスを供給することを可能とする技術であり、燃料電池温度が氷点下の場合には効果を奏す。しかしながら、燃料電池温度が0度を超過した段階で凍結していた氷が解凍し生成水が急激に生じた場合には、生成水がガス流路を閉塞するため十分に生成水を排水することができず、反応面へ供給されるガス量が低下するおそれがある。また氷点下始動時に燃料電池内に存在する氷はガス流路のみならず、膜-電極接合体内、触媒層内にも存在し、これらが0度を超過した時点で一斉に融解するため急激な出力低下が生じる。特許文献1の技術では反応ガスの供給圧を高めることによりガス入口付近の生成水についてはある程度は排水することが可能であっても、燃料電池セル内部、特に膜-電極接合体内や触媒層内からの排水、ガス出口付近も含め燃料電池セル全体からの排水を十分に実施することは困難である。膜-電極接合体内や触媒層内に生成水が滞留した場合、生成水により反応ガスの供給が阻害、燃料電池反応が妨げられ、燃料電池温度の上昇が抑制される。燃料電池温度の上昇が抑制されると生成水の蒸発、流動効率を低下させるために、反応ガスの拡散が阻害され、燃料電池の発電反応が妨げられる。すなわち、燃料電池温度が低温であって、且つ膜-電極接合体内や触媒層内に生成水が滞留する場合には、ガス拡散性と燃料電池温度との間で悪循環を引き起こし、燃料電池の発電反応の進行を妨げて出力低下を引き起こすおそれがある。
 本発明は低温環境下で始動する燃料電池において、凍結する氷が融解することにより生成する水を良好に排出し、燃料電池の出力を向上させることが可能な燃料電池システムおよび燃料電池システムの制御方法を提供することを目的とする。
 本発明は、アノード極に燃料ガスを、カソード極に酸化剤ガスを供給し発電を行う燃料電池スタックを備えた燃料電池システムであって、前記燃料電池スタック内の温度を測定する温度センサと、前記カソード極の圧力を測定する圧力センサと、前記カソード極の圧力を調整する圧力調整器と、氷点下始動後に前記温度センサにより測定された前記燃料電池スタック内の温度が0度を超過した場合に、前記カソード極の圧力に脈動を加えるよう前記圧力調整器を制御する圧力制御部と、を備えることを特徴とする。
 上記構成の燃料電池システムによれば、氷点下始動後に燃料電池内で凍結していた水が解凍された際に、カソード極側の圧力に脈動を加えることによって滞留する水を効果的に排出することが可能である。単にガスを流動させるだけでなく、圧力の勾配を利用してガス流動を行うことができるため、ガス流路内に滞留する水と共に、膜-電極接合体内や触媒層内でガス流路を閉塞している水をも確実に排出することが可能となる。また圧力上昇に伴って燃料電池セル内の温度も上昇するため燃料電池セルの暖機効果も得られる。なお、本発明における圧力の脈動とは、圧力の増減を瞬間的に変化させることである。
 上記構成の燃料電池システムにおいて、前記圧力制御部は、前記圧力調整器によりカソード極の入り口圧力を一旦上昇させた後、基準圧力値を下回らない程度に圧力を低下させて圧力に脈動を加えることが好ましい。
 カソード極の入口圧力を上昇、下降させることにより入口付近に滞留する水を優先的に排出でき、カソード極に供給されるガス量を増加させることが可能である。また、基準圧力値以上で圧力脈動を加えるため、圧力を低下させたときでも出力が低下することを抑制できる。
 さらに、前記燃料電池スタックの出力を測定する出力測定器を備え、前記出力測定器により測定された前記燃料電池スタックの出力が要求出力値以下であると判断された場合に、前記圧力制御部は前記圧力調整器を制御することが好ましい。なお、要求出力値とは運転に必要とされる出力値のことを示し、任意に設定可能な値である。
 氷点下始動後、凍結していた水の解凍により出力が低下した場合にのみ圧力脈動を行うこと、また出力回復に必要な最小限の脈動を加えることにより、燃料電池内の水を効果的に排出し、過剰に圧力脈動を加えて出力を低下させることを抑制できる。これにより圧力脈動実施後の圧力状態やガス流動状態を早期に安定させることができる。
 また、本発明は、アノード極に燃料ガスを、カソード極に酸化剤ガスを供給し発電を行う燃料電池を含む燃料電池システムの制御方法において、始動時に前記燃料電池の温度が氷点下の基準温度以下であるかを判断するステップと、前記燃料電池の温度が前記基準温度以下である場合に氷点下始動制御を実行するステップと、前記氷点下始動制御実行後の前記燃料電池の温度が0度を超過したかを判断するステップと、前記氷点下始動制御実行後の前記燃料電池の温度が0度を超過した場合に、前記燃料電池の前記カソード極の圧力に脈動を加えるステップと、を有することを特徴とする。
 さらに、前記制御方法において、前記氷点下始動制御実行後の前記燃料電池の温度が0度を超過した場合に前記燃料電池の出力値と所定の出力要求値とを比較するステップと、前記燃料電池の出力値が出力要求値より低い場合に、両者の差から圧力変動幅を算出するステップと、を有し、前記カソード極の圧力に脈動を加えるステップでは、算出された圧力変動幅に基づいて前記カソード極の圧力に脈動を加えることが好ましい。
 上記構成の燃料電池システムの制御方法によれば、氷点下始動時に氷点下始動制御を行い、その後氷が解凍したと判断された時点でカソード極に圧力脈動を加えることによって燃料電池内に滞留する水を排出することが可能である。
 本発明によれば、低温環境下で始動する燃料電池において、凍結する氷が融解することにより生成する水を良好に排出し、燃料電池の出力を向上させることが可能な燃料電池システムおよび燃料電池システムの制御方法を提供できる。
本発明の実施の形態における燃料電池セルを示す図である。 本発明の実施の形態における燃料電池システムの構成を示す図である。 図2に示す燃料電池システムにおける酸化剤ガス供給の運転制御処理を示すフローチャートである。 圧力変動と出力回復の関係を示す図である。 圧力脈動による出力変動および温度変動を示す図である。 氷点下始動制御時の制御マップを示す図である。
 以下、本発明の実施の形態について、図1~3に基づいて説明する。図1は燃料電池セル10を示す。燃料電池セル10は、電解質膜12、アノード触媒層14、カソード触媒層16、アノード拡散層18、カソード拡散層20から構成される。電解質膜12はイオン交換膜からなり、プロトン伝導性を有する。アノード触媒層14とカソード触媒層16は電解質膜12の両側に配置され、さらにアノード触媒層14の電解質膜12と反対側にはアノード拡散層18が、カソード触媒層16の電解質12と反対側にはカソード拡散層20が配置されて膜電極接合体22が形成される。そして、膜電極接合体22の両側にはセパレータ25が配されて燃料電池セル10が形成され、燃料電池セル10が複数積層されて燃料電池スタック1が形成される。セル10外部から供給された燃料ガスは燃料ガス流路26を通過してアノード拡散層18、アノード触媒層14へ供給され、酸化剤ガスは酸化剤ガス流路28を通過してカソード拡散層20、カソード触媒層16へ供給される。
 図2は本発明の実施の形態における燃料電池システムの構成を示す図である。燃料電池システム40は燃料電池スタック1のカソード極(燃料電池セルのアノード側の室)には酸化剤ガスとして圧縮空気が供給される。すなわち、フィルタ32から吸入された空気が、コンプレッサ41で圧縮された後、配管51から燃料電池スタック1へ供給される。空気の供給圧力は、圧力センサ42によって検出され、例えば150kPaなど所定の基準圧力に制御される。カソード極(燃料電池セルのカソード側の室)からの排気は、配管52および希釈器43を通じて外部に排出される。空気の供給圧は配管51に設けられた圧力センサ42によって検出され、背圧弁45によって調節される。背圧弁45の開度を大きくすると出口圧力が低減し、入口圧力と出口圧力との差に差圧が発生する。
 燃料電池スタック1のアノード極には、水素タンク46に貯蔵された水素ガスが配管53を通って供給される。水素タンク46に高圧で貯蔵された水素ガスは、出口に設けられたシャットバルブ47、レギュレータ48、バルブ49によって圧力および供給量が調整されてアノードに供給される。アノードからの排気は配管54に流出し、途中で二手に分かれる。一方は水素ガスを外部に排出するための配管55、希釈器43に接続され、空気により希釈された後に外部へ排出される。他方は加圧ポンプ50を介して配管56に接続されて再度燃料電池スタック1へ循環される。
 燃料電池スタック1を冷却する冷却水は、ポンプ60によって冷却用の配管61を流れ、ラジエータ62で冷却されて燃料電池スタック1に供給される。燃料電池スタック1の冷却水出口には、冷却水温度を検出するための温度センサ64が設けられている。冷却水は燃料電池スタック1内を循環するため、温度センサ64にて測定された冷却水温度は燃料電池温度として用いることが可能である。なお、燃料電池温度は、燃料電池スタックに温度センサを直接取り付けたりして検出してもよい。
 燃料電池システム40には、燃料電池システム40の制御を行う制御部(ECU)66が設けられる。制御部66には圧力センサ42や温度センサ64などの検出信号が入力され、背圧弁45やバルブ49、コンプレッサ41などに制御信号を供給する。セルモニタ70により検出される電圧値や電流値も制御部66に入力される。また、制御部66にはイグニッションスイッチ68が接続され、イグニッションON、OFFの信号が入力される。なお、制御部66に入出力される信号の一部を図中に点線で示す。
 次に燃料電池システムの制御方法について図3に基づいて説明する。図3は図2に示す燃料電池システムの制御の処理内容を示すフローチャートである。まず、イグニッションスイッチ68がOFFからONに切り換わると運転開始信号が入力され(IG-ON)、ステップS101に進む。
 ステップS101では、温度センサ64により燃料電池スタック1内の温度T1が測定され、制御部66へ入力される。制御部66では温度T1が0度以上であるか否かを判定し、温度T1が0度より大きい場合にはステップS109へ進み、常温始動制御を実施する。温度Tが0度以下である場合にはステップS102へ進み氷点下用始動制御を実施する。
 ここで氷点下始動制御について述べる。氷点下始動制御は常温始動制御に比べて低効率発電を行いつつ、燃料電池スタックの温度を上昇させながら始動することが一般的に知られている。低効率発電とは燃料電池に供給される反応ガス、特に酸化剤ガスが通常発電時に対して少なく、これによって電力損失が大きい発電をいう。例えば常温始動制御時に比してエアストイキ比を1.0付近に絞った状態で燃料電池を運転する。このように、電力損失を大きく設定することで、燃料電池を急速暖機することが可能となる。なお、常温始動制御時には、電力損失を抑えて高い発電効率が得られるように、例えばストイキ比1.5以上に設定した状態で燃料電池を運転する。
 氷点下始動制御の中にも種々の手法があるが、具体的な一例を以下に挙げる。始動時の燃料電池温度と燃料電池内の残水量との関係から、燃料電池状態を三段階に区分けし、燃料電池状態に応じて三段階の制御を行う。図6に始動時の燃料電池温度と残水量から燃料電池状態を三段階に区分けした図を示す。このマップに基づき、(I)燃料電池温度が高く、残水量が少ない場合、(II)燃料電池温度が低く、残水量が多い場合、(III)上述以外、すなわち燃料電池温度が低く、残水量が少ない場合、および燃料電池温度が高く、残水量が多い場合、の3つに分けて制御を行う。燃料電池温度が高く、残水量が少ない場合(I)は、冷却水を循環させつつ反応ガスの供給量を増加させて急速暖機を実施する。燃料電池温度が低く、残水量が多い場合(II)は、冷却水を循環させず、反応ガスの供給量を低下させた状態で急速暖機を実施する。燃料電池温度が低く、残水量が多い場合、および燃料電池温度が高く、残水量が少ない場合(III)は、冷却水および反応ガスを循環させつつ急速暖機を実施する。このように、燃料電池スタックの温度と内部に滞留する水分量との兼ね合いから循環させる冷却水量を変化させることにより、燃料電池を良好に始動させることが可能である。
 ステップS102にて氷点下用始動制御を実施した後は、ステップS103に進み、再度温度センサ64により燃料電池スタック1内の温度T2が測定される。ステップS101と同様に、測定された温度T2は制御部66へ入力され、制御部66は温度T2が0度以上であるか否かを判定する。温度T2が0度より大きい場合にはステップS104へ進み、温度T2が0度以下である場合にはステップS102へ戻り氷点下用始動制御を継続する。すなわち、燃料電池スタック1の温度T2が0度を上回るまで、ステップS102の氷点下始動制御が行われ、温度T2が0度を超えたことで氷点下始動を終了する。
 ステップS104では、制御部66は、セルモニタ70により検出される電圧値Vおよび電流値Iから出力値Wを算出し、出力値Wが要求出力値W0より大きいか否かを判定する。すなわち、燃料電池スタック1における各燃料電池セルが十分な発電を行っているか否かをその出力により判定する。出力値Wが要求出力値W0より大きい場合には十分な発電が行われていると判定しステップS109へ進み、常温始動制御へ切り替える。一方、出力値Wが要求出力値W0以下である場合には、温度が0度を超えたことで水が生じ、その水が燃料電池セル内に滞留していると判断し、ステップS105へ進む。要求出力値W0とは任意に設定可能な値であり、低温始動制御から常温始動制御にスムーズに切り替えが可能なセル状態での出力値、本実施形態に係る燃料電池スタック1では、例えば1.5kWなどに設定される。
 ステップS105では、圧力センサ42によりカソード極の入口側圧力P1が測定され、制御部66へ入力される。
 ステップS106にて制御部66は、カソード極の出口側圧力を調整する背圧弁45を閉弁し、カソード極の圧力を上昇させる。
 ステップS107では、閉弁後のカソード極入口側圧力P2が測定され、制御部66へ入力される。制御部66は、閉弁前の圧力P1と閉弁後の圧力P2と圧力変動幅αを比較し、P2>P1+αを満たすかどうかを判定する。すなわち、P2が閉弁前の圧力P1からαkPa上昇したかどうかを判定する。P2>P1+αを満たせばステップS108に進み、満たさなければステップS107を繰り返し、P2>P1+αまで待つ。ここで、αは任意に設定することが可能であり、燃料電池スタック1の構造などによっても異なるため、対象とする燃料電池スタック1について、実験を行い、適切な値を決定することが好ましい。
 また図4(a)に示すように、予め圧力変動幅αと出力回復量との関係を測定、マップ化しておき、出力量の不足分(W1-W)と該マップから必要な圧力変動幅αを算出することも可能である。すなわち、出力の不足分が大きいときに圧力変動幅αを大きくすることで水の効果的な排出が行える。
 ステップS108では、制御部66は背圧弁45を開弁し、カソード極の圧力を開放する。このとき、制御部66はカソード極の圧力が基準圧力値P0以下まで低下しないよう背圧弁45を制御する。すなわち、基準圧力値P以上を維持した状態で、背圧弁45を開閉することによりカソード極に圧力脈動を加える。なお、基準圧力値Pとは、燃料電池セル内部に一定の反応ガスを供給するために必要な圧力値を指し、任意に設定することが可能である。
 図示のように、燃料電池スタック1のカソード極の出口に圧力センサを設けておき、カソード極の出口における圧力が基準圧力値P以下にならないように、背圧弁45の開弁を制御する。ただし、カソード極におけるガス圧について所定の脈動が与えられるように開弁は急激に行うことが好適である。
 ここで、水が多く滞留している場合には、出力回復のために、なるべく大きな圧力変化を与えたいという要求がある。しかし、カソード極におけるガス圧力をあまり高くすることはできない。そこで、大きな圧力変化幅を得る場合には、下限圧力となる基準圧力値Pを比較的低く設定することになる。燃料電池セルにおいて十分な反応を生起するためには十分な反応ガスが必要であり、比較的高い圧力とすることが好適である。
 そこで、出力回復に必要な圧力変動幅を算出し、該圧力変動幅が大きいときには、高い上限圧力、低い下限圧力を用いて、圧力変動幅を大きくするが、出力に必要な圧力変動幅が比較的小さいときには、基準圧力値P0を高くして、圧力変動幅を小さくすることが好適である。また、出力に必要な圧力変動幅が比較的小さいときに、上限圧力を低く、下限圧力を高く変更してもよい。
 このようにして、カソード極に脈動を与える際に、反応ガスの量の減少を抑制して、カソード極における反応を十分なものに維持することができる。
 なお、対象とするシステムにおいて、背圧弁45を閉じた際に、どのくらい圧力が上昇するかは実験等によって推定することができる。そこで、S107における処理を一定時間経過したかという処理にすることも可能である。
 いずれにしても、背圧弁45を周期的に開閉することでカソード極の圧力を周期的に上下することで、カソード極に溜まった水を効果的に排出することができる。
 図4(b)にはステップS106からステップS108における圧力変動の様子を示す。閉弁前の大気開放状態から、ステップS106にて背圧弁45を閉弁することにより圧力を上昇させる。圧力変動幅αkPa分上昇させた後、ステップS108にて背圧弁45を開弁することにより圧力を低下させるが、このとき基準圧力値Pを下回らない程度に圧力を低下させることが好ましい。氷点下始動後であって、0度を超過した際に圧力を基準圧力値P以下まで低下させた場合には、セル内部の反応ガス量が低下するために出力回復が不十分となり、性能低下を引き起こすおそれがある。圧力低下時においても基準圧力値Pを下回らないように圧力に脈動を加えることで、効率的な出力回復が可能となる。
 ステップS105からS108にて出力回復制御を実施した後は、ステップS104へ戻る。出力値Wが要求出力値W0を満たしていない場合には出力回復制御(ステップS105からS108)を繰り返し、ステップS104において、出力Wが要求出力値W0を超えた時点でステップS109の常温始動制御へ移行する。
 図5に、本発明の実施の形態における燃料電池システムを備え、該燃料電池システムの制御方法を実施した場合(実施時)と、実施しなかった場合(未実施時)とを比較して、燃料電池の出力値および温度をグラフに示す。氷点下始動開始後、A秒経過しすると燃料電池温度が0度を超える。この時点で燃料電池の出力値Wが要求出力値W0以下であった場合に先に述べた出力回復制御(図3におけるステップS105からS108)が実施される。A秒経過後において、本発明の制御を実施した場合は未実施の場合に比べて出力および温度が急激に上昇しており、その後の回復具合も格段に向上することが分かる。実施の形態に係る制御を実施した場合(ステップS105からS108までの出力回復制御を1サイクル実施した場合)には、実施しなかった場合に比べて、出力向上時間および温度上昇時間が約20%短縮できることが確認された。
 また、変形例として、ステップS106からS108にてカソード極の圧力を変化させる際に、コンプレッサ41を調整することにより空気の圧縮率を変化させることも可能である。コンプレッサ41の回転数を変化させて、0度超過後に酸化剤ガスの流量を急激に増減させることによっても、背圧弁45の開閉時と同様に圧力脈動を加えることができ、排水性向上、出力向上、燃料電池セルの温度向上などの効果が得られる。なお、背圧弁45とともにコンプレッサ41を制御してカソード極入口側の圧力を上昇させることも可能であり、カソード極の入口側と出口側の圧力増減量や増減時間、タイミングを調整することでより効率的に圧力脈動を加えて出力、排水性、温度の向上を図ることができる。
 以上、本実施の形態による燃料電池システムおよび燃料電池システムの制御方法によれば、氷点下始動時に燃料電池内部にて凍結している水を、解凍された段階で速やかに排出することが可能である。0度を超えた時点で圧力を増減し脈動を加えることにより、単にガスを流動させるだけでなく圧力の勾配を利用して効率的にガス流動を行うことができる。これによりガス流路内に滞留する水と共に、触媒層内、拡散層内で滞留しガス流路を閉塞している水も確実に排出することが可能となる。また、ガス圧力の増加に伴い燃料電池セル内の温度が上昇するため、暖機効果も得られる。本発明による効果は圧力脈動時のみならず、その後の燃料電池稼動時の排水性能、セル温度および出力の向上も得られ、短時間での性能回復が可能である。
 1 燃料電池スタック、10 燃料電池セル、12 電解質膜、14 アノード触媒層、16 カソード触媒層、18 アノード拡散層、20 カソード拡散層、21,23 矢印、22 膜電極接合体、25 セパレータ、26 燃料ガス流路、28 酸化剤ガス流路、30 生成水、32 フィルタ、40 燃料電池システム、41 コンプレッサ、42 圧力センサ、43 希釈器、45 背圧弁、46 水素タンク、47 シャットバルブ、48 レギュレータ、49 バルブ、50 加圧ポンプ、51,52,53,54,55,56 配管、60 ポンプ、62 ラジエータ、64 温度センサ、66 制御部、68 イグニッションスイッチ、70 セルモニタ。

Claims (6)

  1.  アノード極に燃料ガスを、カソード極に酸化剤ガスを供給し発電を行う燃料電池スタックを備えた燃料電池システムであって、
     前記燃料電池スタック内の温度を測定する温度センサと、
     前記カソード極の圧力を測定する圧力センサと、
     前記カソード極の圧力を調整する圧力調整器と、
     氷点下始動後に前記温度センサにより測定された前記燃料電池スタック内の温度が0度を超過した場合に、前記カソード極の圧力に脈動を加えるよう前記圧力調整器を制御する圧力制御部と、
     を備える、燃料電池システム。
  2.  請求項1に記載の燃料電池システムであって、
     前記圧力制御部は、前記圧力調整器によりカソード極の入り口圧力を一旦上昇させた後、基準圧力値を下回らない程度に圧力を低下させて圧力に脈動を加える、燃料電池システム。
  3.  請求項1または請求項2に記載の燃料電池システムであって、
     前記燃料電池スタックの出力を測定する出力測定器を備え、
     前記出力測定器により測定された前記燃料電池スタックの出力が要求出力値以下であると判断された場合に、前記圧力制御部は前記圧力調整器を制御する、燃料電池システム。
  4.  請求項1から請求項3のいずれかに記載の燃料電池システムであって、
     さらに、圧力算出部を備え、
     前記圧力算出部は、燃料電池の出力値と要求出力値から出力回復に必要な圧力変動幅を算出し、
     前記圧力制御部は、前記圧力算出部により算出された圧力変動幅に基づいて、前記圧力調整器を制御する、燃料電池システム。
  5.  アノード極に燃料ガスを、カソード極に酸化剤ガスを供給し発電を行う燃料電池を含む燃料電池システムの制御方法において、
     始動時に前記燃料電池の温度が氷点下の基準温度以下であるかを判断するステップと、
     前記燃料電池の温度が前記基準温度以下である場合に氷点下始動制御を実行するステップと、
     前記氷点下始動制御実行後の前記燃料電池の温度が0度を超過したかを判断するステップと、
     前記氷点下始動制御実行後の前記燃料電池の温度が0度を超過した場合に、前記燃料電池の前記カソード極の圧力に脈動を加えるステップと、
     を有する、燃料電池システムの制御方法。
  6.  請求項5に記載の燃料電池システムの制御方法において、
     さらに、
     前記氷点下始動制御実行後の前記燃料電池の温度が0度を超過した場合に前記燃料電池の出力値と所定の出力要求値とを比較するステップと、
     前記燃料電池の出力値が出力要求値より低い場合に、両者の差から圧力変動幅を算出するステップと、
     を有し、
     前記カソード極の圧力に脈動を加えるステップでは、算出された圧力変動幅に基づいて前記カソード極の圧力に脈動を加える、燃料電池システムの制御方法。
PCT/JP2011/063898 2011-06-17 2011-06-17 燃料電池システムおよび燃料電池システムの制御方法 WO2012172678A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP11867924.0A EP2722922B1 (en) 2011-06-17 2011-06-17 Fuel cell system and method for controlling fuel cell system
JP2013520383A JP5692376B2 (ja) 2011-06-17 2011-06-17 燃料電池システムおよび燃料電池システムの制御方法
US14/126,054 US9299997B2 (en) 2011-06-17 2011-06-17 Fuel cell system and method for controlling fuel cell system
PCT/JP2011/063898 WO2012172678A1 (ja) 2011-06-17 2011-06-17 燃料電池システムおよび燃料電池システムの制御方法
RU2013155686/07A RU2567233C2 (ru) 2011-06-17 2011-06-17 Система генерирования электрической энергии на базе топливных элементов и способ управления данной системой генерирования электрической энергии
KR1020137033269A KR20140022072A (ko) 2011-06-17 2011-06-17 연료전지 시스템 및 연료전지 시스템의 제어방법
BR112013032548A BR112013032548B1 (pt) 2011-06-17 2011-06-17 sistema de células de combustível e método para controlá-lo
CN201180071622.8A CN103597642B (zh) 2011-06-17 2011-06-17 燃料电池系统及燃料电池系统的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/063898 WO2012172678A1 (ja) 2011-06-17 2011-06-17 燃料電池システムおよび燃料電池システムの制御方法

Publications (1)

Publication Number Publication Date
WO2012172678A1 true WO2012172678A1 (ja) 2012-12-20

Family

ID=47356704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063898 WO2012172678A1 (ja) 2011-06-17 2011-06-17 燃料電池システムおよび燃料電池システムの制御方法

Country Status (8)

Country Link
US (1) US9299997B2 (ja)
EP (1) EP2722922B1 (ja)
JP (1) JP5692376B2 (ja)
KR (1) KR20140022072A (ja)
CN (1) CN103597642B (ja)
BR (1) BR112013032548B1 (ja)
RU (1) RU2567233C2 (ja)
WO (1) WO2012172678A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014009851A1 (de) 2014-07-03 2016-01-07 Daimler Ag Verfahren zum Starten einer Brennstoffzelle
CN110911721A (zh) * 2019-11-28 2020-03-24 东风汽车集团有限公司 一种燃料电池控制方法及燃料电池控制装置
JP2022530521A (ja) * 2019-04-29 2022-06-29 アウディ アクチェンゲゼルシャフト 燃料電池装置の凍結起動条件下での起動方法、燃料電池装置および自動車

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101641779B1 (ko) * 2014-10-13 2016-07-22 현대제철 주식회사 외부 응축수 유입에 의한 연료전지 스택의 성능 감소 회복 방법
JP6102882B2 (ja) * 2014-10-16 2017-03-29 トヨタ自動車株式会社 燃料電池システム
FR3036230A1 (fr) * 2015-05-15 2016-11-18 Commissariat Energie Atomique Pile a combustible a membrane d’echange de protons presentant une duree de vie accrue
KR101724846B1 (ko) 2015-06-01 2017-04-07 현대자동차주식회사 연료전지 시스템의 운전 제어 방법
KR101856290B1 (ko) 2015-08-21 2018-05-09 현대자동차주식회사 연료전지 시스템의 스택 성능 개선 장치
KR101838510B1 (ko) * 2016-03-11 2018-03-14 현대자동차주식회사 증발냉각식의 연료 전지 시스템과 그것을 위한 냉각 제어 방법
US10693161B2 (en) 2016-09-07 2020-06-23 Nissan Motor Co., Ltd. Fuel cell system and method for controlling same
DE102017220353B4 (de) * 2017-11-15 2020-10-08 Audi Ag Brennstoffzellenanordnung und Einheitszelle für einen Brennstoffzellenstapel
JP6596057B2 (ja) * 2017-11-27 2019-10-23 本田技研工業株式会社 流量調整構造体及び流量調整方法
KR102614135B1 (ko) 2018-05-24 2023-12-13 현대자동차주식회사 연료전지의 공기 공급 제어방법 및 제어시스템
CN108630975B (zh) * 2018-06-29 2023-12-15 张家港氢云新能源研究院有限公司 能实现-40℃以下超低温冷启动的质子交换膜燃料电池电堆
DE102019207310A1 (de) * 2019-05-20 2020-11-26 Audi Ag Verfahren zum Starten eines Brennstoffzellensystems bei Vorliegen von Froststartbedingungen
DE102019217877A1 (de) 2019-11-20 2021-05-20 Robert Bosch Gmbh Brennstoffzellensystem mit einem Schwingungsgenerator und Verfahren zum Betreiben eines Brennstoffzellensystems mit einem Schwingungsgenerator
DE102021200148A1 (de) * 2021-01-11 2022-07-14 Robert Bosch Gesellschaft mit beschränkter Haftung Brennstoffzellensystem mit Vereisungsschutz
CN115224317A (zh) * 2021-05-31 2022-10-21 广州汽车集团股份有限公司 燃料电池系统的管理方法、燃料电池系统及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10326622A (ja) * 1997-03-25 1998-12-08 Matsushita Electric Ind Co Ltd 固体高分子型燃料電池
JP2004342473A (ja) * 2003-05-16 2004-12-02 Toyota Motor Corp 燃料電池システムの運転制御
JP2005044795A (ja) 2003-07-09 2005-02-17 Honda Motor Co Ltd 燃料電池の低温起動方法
JP2005174645A (ja) * 2003-12-09 2005-06-30 Nissan Motor Co Ltd 燃料電池システム
JP2006147166A (ja) * 2004-11-16 2006-06-08 Honda Motor Co Ltd 燃料電池システムおよび燃料電池システムの制御方法
JP2007157375A (ja) * 2005-12-01 2007-06-21 Toyota Motor Corp 燃料電池システム及びその運転方法並びに移動体
JP2010218876A (ja) * 2009-03-17 2010-09-30 Aisin Seiki Co Ltd 燃料電池システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0867963A3 (en) * 1997-03-25 2002-09-04 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
KR100388161B1 (ko) * 1998-07-08 2003-06-25 도요다 지도샤 가부시끼가이샤 연료개질장치
CA2473213C (en) * 2003-07-09 2011-02-08 Honda Motor Co., Ltd. Method of starting up operation of fuel cell at low temperature
JP2006032171A (ja) 2004-07-16 2006-02-02 Toyota Motor Corp 燃料電池の制御装置
US7662495B2 (en) * 2004-11-05 2010-02-16 Gm Global Technologies Operations, Inc. Passive restriction pathways in fuel cell water drainage
JP4881027B2 (ja) * 2006-02-07 2012-02-22 本田技研工業株式会社 燃料電池システム及び燃料電池の低温下起動方法
US8389167B2 (en) * 2006-08-28 2013-03-05 GM Global Technology Operations LLC Detection of cell-to-cell variability in water holdup using pattern recognition techniques
JP5200414B2 (ja) * 2007-04-26 2013-06-05 トヨタ自動車株式会社 燃料電池システム
JP4460601B2 (ja) 2007-11-26 2010-05-12 本田技研工業株式会社 燃料電池システム
US20100196743A1 (en) 2009-02-02 2010-08-05 Hyundai Motor Company Apparatus and method for purging residual water and hydrogen during shutdown of fuel cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10326622A (ja) * 1997-03-25 1998-12-08 Matsushita Electric Ind Co Ltd 固体高分子型燃料電池
JP2004342473A (ja) * 2003-05-16 2004-12-02 Toyota Motor Corp 燃料電池システムの運転制御
JP2005044795A (ja) 2003-07-09 2005-02-17 Honda Motor Co Ltd 燃料電池の低温起動方法
JP2005174645A (ja) * 2003-12-09 2005-06-30 Nissan Motor Co Ltd 燃料電池システム
JP2006147166A (ja) * 2004-11-16 2006-06-08 Honda Motor Co Ltd 燃料電池システムおよび燃料電池システムの制御方法
JP2007157375A (ja) * 2005-12-01 2007-06-21 Toyota Motor Corp 燃料電池システム及びその運転方法並びに移動体
JP2010218876A (ja) * 2009-03-17 2010-09-30 Aisin Seiki Co Ltd 燃料電池システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014009851A1 (de) 2014-07-03 2016-01-07 Daimler Ag Verfahren zum Starten einer Brennstoffzelle
JP2022530521A (ja) * 2019-04-29 2022-06-29 アウディ アクチェンゲゼルシャフト 燃料電池装置の凍結起動条件下での起動方法、燃料電池装置および自動車
JP7224497B2 (ja) 2019-04-29 2023-02-17 アウディ アクチェンゲゼルシャフト 燃料電池装置の凍結起動条件下での起動方法、燃料電池装置および自動車
CN110911721A (zh) * 2019-11-28 2020-03-24 东风汽车集团有限公司 一种燃料电池控制方法及燃料电池控制装置
CN110911721B (zh) * 2019-11-28 2022-11-25 东风汽车集团有限公司 一种燃料电池控制方法及燃料电池控制装置

Also Published As

Publication number Publication date
BR112013032548B1 (pt) 2020-01-28
US20140134508A1 (en) 2014-05-15
CN103597642A (zh) 2014-02-19
US9299997B2 (en) 2016-03-29
JPWO2012172678A1 (ja) 2015-02-23
KR20140022072A (ko) 2014-02-21
CN103597642B (zh) 2016-06-29
EP2722922B1 (en) 2019-07-24
RU2013155686A (ru) 2015-07-27
EP2722922A1 (en) 2014-04-23
RU2567233C2 (ru) 2015-11-10
BR112013032548A2 (pt) 2017-01-17
JP5692376B2 (ja) 2015-04-01
EP2722922A4 (en) 2015-05-20

Similar Documents

Publication Publication Date Title
JP5692376B2 (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP5224082B2 (ja) 燃料電池システム及びその排水制御方法
JP4328324B2 (ja) 燃料電池システム
JP4806886B2 (ja) 燃料電池システムの運転制御
JP2013239290A (ja) 燃料電池システム及びその制御方法
JP5168814B2 (ja) 燃料電池システム、および燃料電池システムを搭載する車両
JP2009117066A (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP2007305334A (ja) 燃料電池システム
JP2007220355A (ja) 燃料電池システムと燃料電池の低温起動方法
JP2011048948A (ja) 燃料電池システム
CN110783605B (zh) 燃料电池系统
JP2005285610A (ja) 燃料電池システム
JP4797346B2 (ja) 燃料電池システム
JP2005310435A (ja) 燃料電池システム
JP2006092801A (ja) 燃料電池システム
JP2010027217A (ja) 燃料電池システム
JP2009104955A (ja) 燃料電池システム及びその制御方法
JP4803996B2 (ja) 燃料電池の低温起動方法及び燃料電池システム
JP2014241211A (ja) 燃料電池システム
JP2011204447A (ja) 燃料電池システム
JP5555282B2 (ja) 燃料電池システム
JP2010262937A (ja) 燃料電池システム
JP2012003890A (ja) 燃料電池システム
JP2008159407A (ja) 燃料電池システム
JP2006049134A (ja) 燃料電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867924

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013520383

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137033269

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14126054

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013155686

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013032548

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013032548

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131217