KR20140022072A - 연료전지 시스템 및 연료전지 시스템의 제어방법 - Google Patents

연료전지 시스템 및 연료전지 시스템의 제어방법 Download PDF

Info

Publication number
KR20140022072A
KR20140022072A KR1020137033269A KR20137033269A KR20140022072A KR 20140022072 A KR20140022072 A KR 20140022072A KR 1020137033269 A KR1020137033269 A KR 1020137033269A KR 20137033269 A KR20137033269 A KR 20137033269A KR 20140022072 A KR20140022072 A KR 20140022072A
Authority
KR
South Korea
Prior art keywords
fuel cell
pressure
temperature
cathode
output
Prior art date
Application number
KR1020137033269A
Other languages
English (en)
Inventor
유지 이시카와
Original Assignee
도요타 지도샤(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도요타 지도샤(주) filed Critical 도요타 지도샤(주)
Publication of KR20140022072A publication Critical patent/KR20140022072A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04104Regulation of differential pressures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04179Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by purging or increasing flow or pressure of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04253Means for solving freezing problems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04783Pressure differences, e.g. between anode and cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

영하 시동시에 있어서 연료전지 내의 배수성을 향상시키고, 연료전지의 출력 향상, 발전 효율의 향상을 도모한다. 연료가스와 산화제 가스를 공급하여 발전을 행하는 연료전지 시스템에 있어서, 영하 시동 후의 연료전지의 온도가 0도를 초과한 단계에서 연료전지의 출력을 측정하고, 당해 출력이 기준 출력치 이하인 경우에는 캐소드극에 압력 맥동을 가하여 연료전지 내에 체류하는 물을 배출한다.

Description

연료전지 시스템 및 연료전지 시스템의 제어방법{FUEL CELL SYSTEM AND METHOD FOR CONTROLLING FUEL CELL SYSTEM}
본 발명은, 반응 가스의 공급을 받아 발전하는 연료전지 스택을 가지는 연료전지 시스템 및 연료전지 시스템의 제어방법에 관한 것이다.
연료전지는, 연료전지 셀(단셀)을 복수 적층한 연료전지 스택에 의해 구성되고, 각 단셀은, 전해질막의 일방(一方)의 면에 애노드극을, 타방(他方)의 면에 캐소드극을 배치하여 이루어지는 막-전극접합체를 가지며, 이 막-전극접합체를 가스 유로층과 세퍼레이터로 협지(挾持)하여 구성된다. 애노드극에는, 수소를 함유하는 연료가스가 공급되고, 수소가 하기 식(1)에 나타내는 산화반응에 의해 연료가스로부터 프로톤이 생성된다. 생성된 프로톤은 전해질막을 통하여 캐소드극으로 이동한다. 타방의 캐소드극에는, 산소를 함유하는 산화제 가스가 공급되고, 산소가 애노드극으로부터 이동해 온 프로톤과 반응하여 하기 식(2)에 나타내는 환원반응에 의해 물을 생성한다. 연료전지 셀 전체로서는 (3)식의 기전(起電)반응이 되고, 이들 한 쌍의 전극 구조체의 전해질막측의 표면에서 생기는 전기 화학 반응을 이용하여 전극으로부터 전기 에너지를 취출(取出)한다.
H2→2H++2e-···(1)
(1/2)O2+2H++2e-→H2O···(2)
H2+(1/2)O2→H2O···(3)
상술한 바와 같이, 연료전지는 물을 생성(도 1에서 생성수를 부호 30으로 나타냄)하기 때문에, 영하 등의 저온 환경하에서는 연료전지 내에 존재하는 생성수가 동결됨과 함께, 일단 동결된 생성수가 연료전지의 구동열에 의해 용융되어, 다시 물로서 연료전지 내에 체류할 우려가 있다. 이와 같이 연료전지 내의 물의 동결, 체류가 생기면, 반응 가스 유로가 폐색되어 가스 확산을 저해하고, 연료전지의 출력 저하를 일으킨다. 상기 문제를 감안하여, 일본 공개특허 특개 2005-44795호 공보에는, 영하 시동시에 연료전지 스택에 공급되는 반응 가스의 압력을 통상 운전 압력보다 높게 제어함으로써, 발전 특성을 향상시키는 것이 개시되어 있다. 반응 가스의 공급압을 높임으로써 가스를 반응면에 강제적으로 공급하여, 가스 확산성의 저하를 보충하는 것이다.
일본 공개특허 특개2005-44795호 공보
특허문헌 1은, 반응 가스를 통상시에 비하여 많이 공급함으로써 가스 확산성의 저하를 억제하고, 반응면에 충분히 가스를 공급하는 것을 가능하게 하는 기술이며, 연료전지 온도가 영하인 경우에는 효과를 가진다. 그러나, 연료전지 온도가 0도를 초과한 단계에서 동결되어 있던 얼음이 해동되어 생성수가 급격하게 생긴 경우에는, 생성수가 가스 유로를 폐색하기 때문에 충분히 생성수를 배수할 수 없어, 반응면에 공급되는 가스량이 저하될 우려가 있다. 또한 영하 시동시에 연료전지 내에 존재하는 얼음은 가스 유로뿐만 아니라, 막-전극접합체 내, 촉매층 내에도 존재하고, 이들이 0도를 초과한 시점에서 일제히 융해하기 때문에 급격한 출력 저하가 생긴다. 특허문헌 1의 기술에서는 반응 가스의 공급압을 높임으로써 가스 입구 부근의 생성수에 대해서는 어느 정도는 배수하는 것이 가능할지라도, 연료전지 셀 내부, 특히 막-전극접합체 내나 촉매층 내로부터의 배수, 가스 출구 부근도 포함하여 연료전지 셀 전체로부터의 배수를 충분히 실시하는 것은 곤란하다. 막-전극접합체 내나 촉매층 내에 생성수가 체류한 경우, 생성수에 의해 반응 가스의 공급이 저해, 연료전지 반응이 방해되어, 연료전지 온도의 상승이 억제된다. 연료전지 온도의 상승이 억제되면 생성수의 증발, 유동 효율을 저하시키기 때문에, 반응 가스의 확산이 저해되고, 연료전지의 발전 반응이 방해된다. 즉, 연료전지 온도가 저온이며, 또한 막-전극접합체 내나 촉매층 내에 생성수가 체류하는 경우에는, 가스 확산성과 연료전지 온도 사이에서 악순환을 야기하고, 연료전지의 발전반응의 진행을 방해하여 출력 저하를 일으킬 우려가 있다.
본 발명은 저온 환경하에서 시동하는 연료전지에 있어서, 동결된 얼음이 융해됨으로써 생성되는 물을 양호하게 배출하여, 연료전지의 출력을 향상시키는 것이 가능한 연료전지 시스템 및 연료전지 시스템의 제어방법을 제공하는 것을 목적으로 한다.
본 발명은, 애노드극에 연료가스를, 캐소드극에 산화제 가스를 공급하여 발전을 행하는 연료전지 스택을 구비한 연료전지 시스템에 있어서, 상기 연료전지 스택 내의 온도를 측정하는 온도센서와, 상기 캐소드극의 압력을 측정하는 압력센서와, 상기 캐소드극의 압력을 조정하는 압력 조정기와, 영하 시동 후에 상기 온도센서에 의해 측정된 상기 연료전지 스택 내의 온도가 0도를 초과한 경우에, 상기 캐소드극의 압력에 맥동을 가하도록 상기 압력 조정기를 제어하는 압력 제어부를 구비하는 것을 특징으로 한다.
상기 구성의 연료전지 시스템에 의하면, 영하 시동 후에 연료전지 내에서 동결되어 있던 물이 해동되었을 때에, 캐소드극측의 압력에 맥동을 가함으로써 체류하는 물을 효과적으로 배출하는 것이 가능하다. 단지 가스를 유동시킬 뿐만 아니라, 압력의 구배를 이용하여 가스 유동을 행할 수 있기 때문에, 가스 유로 내에 체류하는 물과 함께, 막-전극접합체 내나 촉매층 내에서 가스 유로를 폐색하고 있는 물도 확실하게 배출하는 것이 가능해진다. 또한 압력 상승에 수반하여 연료전지 셀 내의 온도도 상승하기 때문에 연료전지 셀의 난기(暖機) 효과도 얻을 수 있다. 또한, 본 발명에서의 압력의 맥동이란, 압력의 증감을 순간적으로 변화시키는 것이다.
상기 구성의 연료전지 시스템에서, 상기 압력 제어부는, 상기 압력 조정기에 의해 캐소드극의 입구 압력을 일단 상승시킨 후, 기준 압력치를 하회하지 않을 정도로 압력을 저하시켜 압력에 맥동을 가하는 것이 바람직하다.
캐소드극의 입구 압력을 상승, 하강시킴으로써 입구 부근에 체류하는 물을 우선적으로 배출할 수 있어, 캐소드극에 공급되는 가스량을 증가시키는 것이 가능하다. 또한, 기준 압력치 이상에서 압력 맥동을 가하기 때문에, 압력을 저하시켰을 때라도 출력이 저하되는 것을 억제할 수 있다.
또한, 상기 연료전지 스택의 출력을 측정하는 출력 측정기를 구비하고, 상기 출력 측정기에 의해 측정된 상기 연료전지 스택의 출력이 요구 출력치 이하라고 판단된 경우에, 상기 압력 제어부는 상기 압력 조정기를 제어하는 것이 바람직하다. 또한, 요구 출력치란 운전에 필요한 출력치를 나타내고, 임의로 설정 가능한 값이다.
영하 시동 후, 동결되어 있던 물의 해동에 의해 출력이 저하된 경우에만 압력 맥동을 행하는 것, 또는 출력 회복에 필요한 최소한의 맥동을 가함으로써, 연료전지 내의 물을 효과적으로 배출하여, 과잉으로 압력 맥동을 가하여 출력을 저하시키는 것을 억제할 수 있다. 이로 인해 압력 맥동 실시 후의 압력 상태나 가스 유동 상태를 조기에 안정시킬 수 있다.
또한, 본 발명은, 애노드극에 연료가스를, 캐소드극에 산화제 가스를 공급하여 발전을 행하는 연료전지를 포함하는 연료전지 시스템의 제어방법에 있어서, 시동시에 상기 연료전지의 온도가 영하의 기준 온도 이하인지를 판단하는 단계와, 상기 연료전지의 온도가 상기 기준 온도 이하인 경우에 영하 시동 제어를 실행하는 단계와, 상기 영하 시동 제어 실행 후의 상기 연료전지의 온도가 0도를 초과하였는지를 판단하는 단계와, 상기 영하 시동 제어 실행 후의 상기 연료전지의 온도가 0도를 초과한 경우에, 상기 연료전지의 상기 캐소드극의 압력에 맥동을 가하는 단계를 가지는 것을 특징으로 한다.
또한, 상기 제어방법에 있어서, 상기 영하 시동 제어 실행 후의 상기 연료전지의 온도가 0도를 초과한 경우에 상기 연료전지의 출력치와 소정의 출력 요구치를 비교하는 단계와, 상기 연료전지의 출력치가 출력 요구치보다 낮은 경우에, 양자의 차이로부터 압력 변동폭을 산출하는 단계를 가지고, 상기 캐소드극의 압력에 맥동을 가하는 단계에서는, 산출된 압력 변동폭에 근거하여 상기 캐소드극의 압력에 맥동을 가하는 것이 바람직하다.
상기 구성의 연료전지 시스템의 제어방법에 의하면, 영하 시동시에 영하 시동 제어를 행하고, 그 후 얼음이 해동되었다고 판단된 시점에서 캐소드극에 압력 맥동을 가함으로써 연료전지 내에 체류하는 물을 배출하는 것이 가능하다.
본 발명에 의하면, 저온 환경하에서 시동하는 연료전지에 있어서, 동결된 얼음이 융해됨으로써 생성되는 물을 양호하게 배출하여, 연료전지의 출력을 향상시키는 것이 가능한 연료전지 시스템 및 연료전지 시스템의 제어방법을 제공할 수 있다.
[도 1] 본 발명의 실시형태에서의 연료전지 셀을 나타내는 도면이다.
[도 2] 본 발명의 실시형태에서의 연료전지 시스템의 구성을 나타내는 도면이다.
[도 3] 도 2에 나타내는 연료전지 시스템에서의 산화제 가스 공급의 운전 제어 처리를 나타내는 플로우 차트이다.
[도 4] 압력 변동과 출력 회복의 관계를 나타내는 도면이다.
[도 5] 압력 맥동에 의한 출력 변동 및 온도 변동을 나타내는 도면이다.
[도 6] 영하 시동 제어시의 제어맵을 나타내는 도면이다.
이하, 본 발명의 실시형태에 대하여, 도 1∼3에 근거하여 설명한다. 도 1은 연료전지 셀(10)을 나타낸다. 연료전지 셀(10)은, 전해질막(12), 애노드 촉매층(14), 캐소드 촉매층(16), 애노드 확산층(18), 캐소드 확산층(20)으로 구성된다. 전해질막(12)은 이온 교환막으로 이루어지고, 프로톤 전도성을 가진다. 애노드 촉매층(14)과 캐소드 촉매층(16)은 전해질막(12)의 양측에 배치되고, 또한 애노드 촉매층(14)의 전해질막(12)과 반대측에는 애노드 확산층(18)이, 캐소드 촉매층(16)의 전해질(12)과 반대측에는 캐소드 확산층(20)이 배치되어 막전극접합체(22)가 형성된다. 그리고, 막전극접합체(22)의 양측에는 세퍼레이터(25)가 배치되어 연료전지 셀(10)이 형성되고, 연료전지 셀(10)이 복수 적층되어 연료전지 스택(1)이 형성된다. 셀(10) 외부로부터 공급된 연료가스는 연료가스 유로(26)를 통과하여 애노드 확산층(18), 애노드 촉매층(14)으로 공급되고, 산화제 가스는 산화제 가스 유로(28)를 통과하여 캐소드 확산층(20), 캐소드 촉매층(16)으로 공급된다.
도 2는 본 발명의 실시형태에서의 연료전지 시스템의 구성을 나타내는 도면이다. 연료전지 시스템(40)은 연료전지 스택(1)의 캐소드극(연료전지 셀의 애노드측의 방)에는 산화제 가스로서 압축공기가 공급된다. 즉, 필터(32)로부터 흡입된 공기가, 컴프레서(41)에서 압축된 후, 배관(51)으로부터 연료전지 스택(1)으로 공급된다. 공기의 공급 압력은, 압력센서(42)에 의해 검출되고, 예를 들면 150kPa 등 소정의 기준압력으로 제어된다. 캐소드극(연료전지 셀의 캐소드측의 방)으로부터의 배기는, 배관(52) 및 희석기(43)를 통하여 외부에 배출된다. 공기의 공급압은 배관(51)에 설치된 압력센서(42)에 의해 검출되고, 배압 밸브(45)에 의해 조절된다. 배압 밸브(45)의 개도를 크게 하면 출구 압력이 저감하여, 입구 압력과 출구 압력의 차이에 압력차가 발생한다.
연료전지 스택(1)의 애노드극에는, 수소 탱크(46)에 저장된 수소 가스가 배관(53)을 통하여 공급된다. 수소 탱크(46)에 고압으로 저장된 수소 가스는, 출구에 설치된 셧 밸브(47), 레귤레이터(48), 밸브(49)에 의해 압력 및 공급량이 조정되어 애노드에 공급된다. 애노드로부터의 배기는 배관(54)에 유출되고, 도중에 두 조로 나뉜다. 일방은 수소 가스를 외부에 배출하기 위한 배관(55), 희석기(43)에 접속되어, 공기에 의해 희석된 후에 외부로 배출된다. 타방은 가압 펌프(50)를 개재하여 배관(56)에 접속되어 다시 연료전지 스택(1)으로 순환된다.
연료전지 스택(1)을 냉각하는 냉각수는, 펌프(60)에 의해 냉각용 배관(61)을 흘러, 라디에이터(62)에서 냉각되어 연료전지 스택(1)에 공급된다. 연료전지 스택(1)의 냉각수 출구에는, 냉각수 온도를 검출하기 위한 온도센서(64)가 설치되어 있다. 냉각수는 연료전지 스택(1) 내를 순환하기 때문에, 온도센서(64)로 측정된 냉각수 온도는 연료전지 온도로 이용하는 것이 가능하다. 또한, 연료전지 온도는, 연료전지 스택에 온도센서를 직접 장착하거나 하여 검출해도 된다.
연료전지 시스템(40)에는, 연료전지 시스템(40)의 제어를 행하는 제어부(ECU)(66)가 설치된다. 제어부(66)에는 압력센서(42)나 온도센서(64) 등의 검출 신호가 입력되고, 배압 밸브(45)나 밸브(49), 컴프레서(41) 등에 제어신호를 공급한다. 셀 모니터(70)에 의해 검출되는 전압치나 전류치도 제어부(66)에 입력된다. 또한, 제어부(66)에는 이그니션 스위치(68)가 접속되고, 이그니션 ON, OFF의 신호가 입력된다. 또한, 제어부(66)에 입출력되는 신호의 일부를 도면 중에 점선으로 나타낸다.
다음에 연료전지 시스템의 제어방법에 대하여 도 3 에 근거하여 설명한다. 도 3은 도 2에 나타내는 연료전지 시스템의 제어의 처리 내용을 나타내는 플로우 차트이다. 우선, 이그니션 스위치(68)가 OFF에서 ON으로 전환되면 운전 개시 신호가 입력되고(IG-ON), 단계 S101로 나아간다.
단계 S101에서는, 온도센서(64)에 의해 연료전지 스택(1) 내의 온도(T1)가 측정되고, 제어부(66)에 입력된다. 제어부(66)에서는 온도(T1)가 0도 이상인지의 여부를 판정하고, 온도(T1)가 0도보다 큰 경우에는 단계 S109로 나아가, 상온 시동 제어를 실시한다. 온도(T)가 0도 이하일 경우에는 단계 S102로 나아가 영하용 시동 제어를 실시한다.
여기에서 영하 시동 제어에 대하여 서술한다. 영하 시동 제어는 상온 시동 제어에 비하여 저효율 발전을 행하면서, 연료전지 스택의 온도를 상승시키면서 시동하는 것이 일반적으로 알려져 있다. 저효율 발전이란 연료전지에 공급되는 반응 가스, 특히 산화제 가스가 통상 발전시에 비하여 적고, 이로 인하여 전력손실이 큰 발전을 말한다. 예를 들면 상온 시동 제어시에 비하여 에어 스토이키비를 1.0 부근으로 좁힌 상태에서 연료전지를 운전한다. 이와 같이, 전력손실을 크게 설정함으로써, 연료전지를 급속 난기하는 것이 가능해진다. 또한, 상온 시동 제어시에는, 전력손실을 억제하여 높은 발전 효율이 얻어지도록, 예를 들면 스토이키비 1.5 이상으로 설정한 상태에서 연료전지를 운전한다.
영하 시동 제어 중에도 여러 가지 방법이 있으나, 구체적인 일례를 이하에 든다. 시동시의 연료전지 온도와 연료전지 내의 잔수량(殘水量)의 관계로부터, 연료전지 상태를 3단계로 구분하고, 연료전지 상태에 따라 3단계의 제어를 행한다. 도 6에 시동시의 연료전지 온도와 잔수량으로부터 연료전지 상태를 3단계로 구분한 도면을 나타낸다. 이 맵에 근거하여, (Ⅰ) 연료전지 온도가 높고, 남수량이 적은 경우, (Ⅱ) 연료전지 온도가 낮고, 잔수량이 많은 경우, (Ⅲ) 상술 이외의, 즉 연료전지 온도가 낮고, 잔수량이 적은 경우 및 연료전지 온도가 높고, 잔수량이 많은 경우의, 3개로 나누어 제어를 행한다. 연료전지 온도가 높고, 잔수량이 적은 경우 (I)은, 냉각수를 순환시키면서 반응 가스의 공급량을 증가시켜 급속 난기를 실시한다. 연료전지 온도가 낮고, 잔수량이 많은 경우 (Ⅱ)는, 냉각수를 순환시키지 않고, 반응 가스의 공급량을 저하시킨 상태에서 급속 난기를 실시한다. 연료전지 온도가 낮고, 잔수량이 많은 경우 및 연료전지 온도가 높고, 잔수량이 적은 경우 (Ⅲ)는, 냉각수 및 반응 가스를 순환시키면서 급속 난기를 실시한다. 이와 같이, 연료전지 스택의 온도와 내부에 체류하는 수분량의 균형으로부터 순환시키는 냉각수 양을 변화시킴으로써, 연료전지를 양호하게 시동시키는 것이 가능하다.
단계 S102에서 영하용 시동 제어를 실시한 후에는, 단계 S103로 나아가, 다시 온도센서(64)에 의해 연료전지 스택(1) 내의 온도(T2)가 측정된다. 단계 S101과 마찬가지로, 측정된 온도(T2)는 제어부(66)로 입력되고, 제어부(66)는 온도(T2)가 0도 이상인지의 여부를 판정한다. 온도(T2)가 0도보다 큰 경우에는 단계 S104로 나아가고, 온도(T2)가 0도 이하인 경우에는 단계 S102로 되돌아가 영하용 시동 제어를 계속한다. 즉, 연료전지 스택(1)의 온도(T2)가 0도를 상회할 때까지, 단계 S102의 영하 시동 제어가 행해지고, 온도(T2)가 0도를 넘음으로써 영하 시동을 종료한다.
단계 S104에서는, 제어부(66)는, 셀 모니터(70)에 의해 검출되는 전압치(V) 및 전류치(I)로부터 출력치(W)를 산출하고, 출력치(W)가 요구 출력치(W0)보다 큰지의 여부를 판정한다. 즉, 연료전지 스택(1)에서의 각 연료전지 셀이 충분한 발전을 행하고 있는지의 여부를 그 출력에 의해 판정한다. 출력치(W)가 요구 출력치(W0)보다 큰 경우에는 충분한 발전이 행해지고 있다고 판정하여 단계 S109로 나아가, 상온 시동 제어로 전환한다. 한편, 출력치(W)가 요구 출력치(W0) 이하인 경우에는, 온도가 0도를 넘음으로써 물이 생기고, 그 물이 연료전지 셀 내에 체류하고 있다고 판단하여, 단계 S105로 나아간다. 요구 출력치(W0)란 임의로 설정가능한 값이고, 저온 시동 제어로부터 상온 시동 제어로 원활히 전환이 가능한 셀 상태에서의 출력치, 본 실시형태와 관련되는 연료전지 스택(1)에서는, 예를 들면 1.5kW 등으로 설정된다.
단계 S105에서는, 압력센서(42)에 의해 캐소드극의 입구측 압력(P1)이 측정되고, 제어부(66)로 입력된다.
단계 S106에서 제어부(66)는, 캐소드극의 출구측 압력을 조정하는 배압 밸브(45)를 밸브 폐쇄하여, 캐소드극의 압력을 상승시킨다.
단계 S107에서는, 밸브 폐쇄 후의 캐소드극 입구측 압력(P2)이 측정되고, 제어부(66)로 입력된다. 제어부(66)는, 밸브 폐쇄 전의 압력(P1)과 밸브 폐쇄 후의 압력(P2)과 압력 변동폭(α)을 비교하여, P2>P1+α를 충족시키는지 아닌지를 판정한다. 즉, P2가 밸브 폐쇄 전의 압력(P1)으로부터 αkPa 상승하였는지 아닌지를 판정한다. P2>P1+α를 충족시키면 단계 S108로 나아가고, 만족시키지 않으면 단계 S107을 반복하여, P2>P1+α까지 기다린다. 여기에서, α는 임의로 설정하는 것이 가능하고, 연료전지 스택(1)의 구조 등에 의해서도 다르기 때문에, 대상으로 하는 연료전지 스택(1)에 대하여, 실험을 행하여, 적절한 값을 결정하는 것이 바람직하다.
또한 도 4(a)에 나타내는 바와 같이, 미리 압력 변동폭(α)과 출력 회복량과의 관계를 측정, 맵화하여 두고, 출력량의 부족분(W1-W)과 당해 맵으로부터 필요한 압력 변동폭(α)을 산출하는 것도 가능하다. 즉, 출력의 부족분이 클 때에 압력 변동폭(α)을 크게 함으로써 물의 효과적인 배출을 행할 수 있다.
단계 S108에서는, 제어부(66)는 배압 밸브(45)를 밸브 개방하여, 캐소드극의 압력을 개방한다. 이 때, 제어부(66)는 캐소드극의 압력이 기준 압력치(P0) 이하까지 저하되지 않도록 배압 밸브(45)를 제어한다. 즉, 기준 압력치(P) 이상을 유지한 상태에서, 배압 밸브(45)를 개폐함으로써 캐소드극에 압력 맥동을 가한다. 또한, 기준 압력치(P)란, 연료전지 셀 내부에 일정한 반응 가스를 공급하기 위하여 필요한 압력치를 나타내고, 임의로 설정하는 것이 가능하다.
도시한 바와 같이, 연료전지 스택(1)의 캐소드극의 출구에 압력센서를 설치해 두고, 캐소드극의 출구에서의 압력이 기준 압력치(P) 이하가 되지 않도록, 배압 밸브(45)의 밸브 개방을 제어한다. 다만, 캐소드극에서의 가스압에 대하여 소정의 맥동이 주어지도록 밸브 개방은 급격히 행하는 것이 적절하다.
여기서, 물이 많이 체류하고 있는 경우에는, 출력 회복을 위하여, 될 수 있는 한 큰 압력변화를 주고자 하는 요구가 있다. 그러나, 캐소드극에서의 가스 압력을 너무 높게 할 수는 없다. 그래서, 큰 압력 변화폭을 얻을 경우에는, 하한 압력이 되는 기준 압력치(P)를 비교적 낮게 설정하게 된다. 연료전지 셀에서 충분한 반응을 생기(生起)하기 위해서는 충분한 반응 가스가 필요하고, 비교적 높은 압력으로 하는 것이 바람직하다.
그래서, 출력 회복에 필요한 압력 변동폭을 산출하고, 당해 압력 변동폭이 클 때에는, 높은 상한 압력, 낮은 하한 압력을 이용하여, 압력 변동폭을 크게 하지만, 출력에 필요한 압력 변동폭이 비교적 작을 때에는, 기준 압력치(P0)를 높게 하여, 압력 변동폭을 작게 하는 것이 적절하다. 또한, 출력에 필요한 압력 변동폭이 비교적 작을 때에, 상한 압력을 낮게, 하한 압력을 높게 변경해도 된다.
이와 같이 하여, 캐소드극에 맥동을 줄 때에, 반응 가스의 양의 감소를 억제하여, 캐소드극에서의 반응을 충분한 것으로 유지할 수 있다.
또한, 대상으로 하는 시스템에 있어서, 배압 밸브(45)를 닫았을 때에, 어느 정도 압력이 상승하는지는 실험 등에 의하여 추정할 수 있다. 그래서, S107에서의 처리를 일정 시간 경과했는지와 같은 처리로 하는 것도 가능하다.
어느쪽이든, 배압 밸브(45)를 주기적으로 개폐하는 것으로 캐소드극의 압력을 주기적으로 오르내림으로써, 캐소드극에 괴인 물을 효과적으로 배출할 수 있다.
도 4(b)에는 단계 S106 내지 단계 S108에서의 압력 변동의 모습을 나타낸다. 밸브 폐쇄 전의 대기 개방 상태로부터, 단계 S106에서 배압 밸브(45)를 밸브 폐쇄함으로써 압력을 상승시킨다. 압력 변동폭(αkPa)분(分) 상승시킨 후, 단계 S108에서 배압 밸브(45)를 밸브 개방함으로써 압력을 저하시키나, 이 때 기준 압력치(P)를 하회하지 않을 정도로 압력을 저하시키는 것이 바람직하다. 영하 시동 후이며, 0도를 초과하였을 때에 압력을 기준 압력치(P) 이하까지 저하시킨 경우에는, 셀 내부의 반응 가스량이 저하되기 때문에 출력 회복이 불충분하게 되어, 성능 저하를 일으킬 우려가 있다. 압력 저하시에 있어서도 기준 압력치(P)를 하회하지 않도록 압력에 맥동을 가함으로써, 효율적인 출력 회복이 가능해진다.
단계 S105 내지 S108에서 출력 회복 제어를 실시한 후에는, 단계 S104로 되돌아간다. 출력치(W)가 요구 출력치(W0)를 충족시키고 있지 않은 경우에는 출력 회복 제어(단계 S105 내지 S108)를 반복하고, 단계 S104에서, 출력(W)이 요구 출력치(W0)를 넘은 시점에서 단계 S109의 상온 시동 제어로 이행한다.
도 5에, 본 발명의 실시형태에서의 연료전지 시스템을 구비하고, 당해 연료전지 시스템의 제어방법을 실시한 경우(실시시)와, 실시하지 않은 경우(미실시시)를 비교하여, 연료전지의 출력치 및 온도를 그래프에 나타낸다. 영하 시동 개시 후, A초 경과하면 연료전지 온도가 0도를 넘는다. 이 시점에서 연료전지의 출력치(W)가 요구 출력치(W0) 이하였을 경우에 앞서 서술한 출력 회복 제어(도 3에서의 단계 S105 내지 S108)가 실시된다. A초 경과 후에 있어서, 본 발명의 제어를 실시한 경우는 미실시의 경우에 비교하여 출력 및 온도가 급격하게 상승하고 있고, 그 후의 회복 상태도 각별히 향상하는 것을 알 수 있다. 실시형태와 관련되는 제어를 실시한 경우(단계 S105 내지 S108까지의 출력 회복 제어를 1사이클 실시한 경우)에는, 실시하지 않은 경우에 비하여, 출력 향상 시간 및 온도 상승 시간을 약20% 단축할 수 있음이 확인되었다.
또한, 변형예로서, 단계 S106 내지 S108에서 캐소드극의 압력을 변화시킬 때에, 컴프레서(41)를 조정함으로써 공기의 압축률을 변화시키는 것도 가능하다. 컴프레서(41)의 회전수를 변화시켜, 0도 초과 후에 산화제 가스의 유량을 급격하게 증감시키는 것에 의해서도, 배압 밸브(45)의 개폐시와 마찬가지로 압력 맥동을 가할 수 있어, 배수성 향상, 출력 향상, 연료전지 셀의 온도 향상 등의 효과가 얻어진다. 또한, 배압 밸브(45)와 함께 컴프레서(41)를 제어하여 캐소드극 입구측의 압력을 상승시키는 것도 가능하고, 캐소드극의 입구측과 출구측의 압력 증감량이나 증감 시간, 타이밍을 조정함으로써 보다 효율적으로 압력 맥동을 가하여 출력, 배수성, 온도의 향상을 도모할 수 있다.
이상, 본 실시형태에 의한 연료전지 시스템 및 연료전지 시스템의 제어방법 에 의하면, 영하 시동시에 연료전지 내부에서 동결되어 있는 물을, 해동된 단계에서 신속히 배출하는 것이 가능하다. 0도를 넘은 시점에서 압력을 증감하여 맥동을 가함으로써, 단순히 가스를 유동시킬 뿐만 아니라 압력의 구배를 이용하여 효율적으로 가스 유동을 행할 수 있다. 이로 인하여 가스 유로 내에 체류하는 물과 함께, 촉매층 내, 확산층 내에서 체류하여 가스 유로를 폐색하고 있는 물도 확실하게 배출하는 것이 가능해진다. 또한, 가스 압력의 증가에 따라 연료전지 셀 내의 온도가 상승하기 때문에, 난기 효과도 얻어진다. 본 발명에 의한 효과는 압력 맥동시 뿐만 아니라, 그 후의 연료전지 가동시의 배수 성능, 셀 온도 및 출력의 향상도 얻어져, 단시간에서의 성능 회복이 가능하다.
1 : 연료전지 스택
10 : 연료전지 셀
12 : 전해질막
14 : 애노드 촉매층
16 : 캐소드 촉매층
18 : 애노드 확산층
20 : 캐소드 확산층
21, 23 : 화살표
22 : 막전극접합체
25 : 세퍼레이터
26 : 연료가스 유로
28 : 산화제 가스 유로
30 : 생성수
32 : 필터
40 : 연료전지 시스템
41 : 컴프레서
42 : 압력센서
43 : 희석기
45 : 배압 밸브
46 : 수소 탱크
47 : 셧 밸브
48 : 레귤레이터
49 : 밸브
50 : 가압 펌프
51, 52, 53, 54, 55, 56 : 배관
60 : 펌프
62 : 라디에이터
64 : 온도센서
66 : 제어부
68 : 이그니션 스위치
70 : 셀 모니터

Claims (6)

  1. 애노드극에 연료가스를, 캐소드극에 산화제 가스를 공급하여 발전을 행하는 연료전지 스택을 구비한 연료전지 시스템에 있어서,
    상기 연료전지 스택 내의 온도를 측정하는 온도센서와,
    상기 캐소드극의 압력을 측정하는 압력센서와,
    상기 캐소드극의 압력을 조정하는 압력 조정기와,
    영하 시동 후에 상기 온도센서에 의해 측정된 상기 연료전지 스택 내의 온도가 0도를 초과한 경우에, 상기 캐소드극의 압력에 맥동을 가하도록 상기 압력 조정기를 제어하는 압력 제어부를 구비하는, 연료전지 시스템.
  2. 제 1 항에 있어서,
    상기 압력 제어부는, 상기 압력 조정기에 의해 캐소드극의 입구 압력을 일단 상승시킨 후, 기준 압력치를 하회하지 않을 정도로 압력을 저하시켜 압력에 맥동을 가하는, 연료전지 시스템.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 연료전지 스택의 출력을 측정하는 출력 측정기를 구비하고,
    상기 출력 측정기에 의해 측정된 상기 연료전지 스택의 출력이 요구 출력치 이하라고 판단된 경우에, 상기 압력 제어부는 상기 압력 조정기를 제어하는, 연료전지 시스템.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    또한, 압력 산출부를 구비하고,
    상기 압력 산출부는, 연료전지 출력치와 요구 출력치로부터 출력 회복에 필요한 압력 변동폭을 산출하고,
    상기 압력 제어부는, 상기 압력 산출부에 의해 산출된 압력 변동폭에 근거하여, 상기 압력 조정기를 제어하는, 연료전지 시스템.
  5. 애노드극에 연료가스를, 캐소드극에 산화제 가스를 공급하여 발전을 행하는 연료전지를 포함하는 연료전지 시스템의 제어방법에 있어서,
    시동시에 상기 연료전지의 온도가 영하의 기준 온도 이하인지를 판단하는 단계와,
    상기 연료전지의 온도가 상기 기준 온도 이하인 경우에 영하 시동 제어를 실행하는 단계와,
    상기 영하 시동 제어 실행 후의 상기 연료전지의 온도가 0도를 초과하였는지를 판단하는 단계와,
    상기 영하 시동 제어 실행 후의 상기 연료전지의 온도가 0도를 초과한 경우에, 상기 연료전지의 상기 캐소드극의 압력에 맥동을 가하는 단계를 가지는, 연료전지 시스템의 제어방법.
  6. 제 5 항에 있어서,
    또한,
    상기 영하 시동 제어 실행 후의 상기 연료전지의 온도가 0도를 초과한 경우에 상기 연료전지의 출력치와 소정의 출력 요구치를 비교하는 단계와,
    상기 연료전지의 출력치가 출력 요구치보다 낮은 경우에, 양자의 차이로부터 압력 변동폭을 산출하는 단계를 가지고,
    상기 캐소드극의 압력에 맥동을 가하는 단계에서는, 산출된 압력 변동폭에 근거하여 상기 캐소드극의 압력에 맥동을 가하는, 연료전지 시스템의 제어방법.
KR1020137033269A 2011-06-17 2011-06-17 연료전지 시스템 및 연료전지 시스템의 제어방법 KR20140022072A (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/063898 WO2012172678A1 (ja) 2011-06-17 2011-06-17 燃料電池システムおよび燃料電池システムの制御方法

Publications (1)

Publication Number Publication Date
KR20140022072A true KR20140022072A (ko) 2014-02-21

Family

ID=47356704

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137033269A KR20140022072A (ko) 2011-06-17 2011-06-17 연료전지 시스템 및 연료전지 시스템의 제어방법

Country Status (8)

Country Link
US (1) US9299997B2 (ko)
EP (1) EP2722922B1 (ko)
JP (1) JP5692376B2 (ko)
KR (1) KR20140022072A (ko)
CN (1) CN103597642B (ko)
BR (1) BR112013032548B1 (ko)
RU (1) RU2567233C2 (ko)
WO (1) WO2012172678A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160054634A (ko) * 2014-10-13 2016-05-17 현대제철 주식회사 외부 응축수 유입에 의한 연료전지 스택의 성능 감소 회복 방법
US10297846B2 (en) 2015-06-01 2019-05-21 Hyundai Motor Company Operation control method of fuel cell system

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014009851A1 (de) 2014-07-03 2016-01-07 Daimler Ag Verfahren zum Starten einer Brennstoffzelle
JP6102882B2 (ja) * 2014-10-16 2017-03-29 トヨタ自動車株式会社 燃料電池システム
FR3036230A1 (fr) * 2015-05-15 2016-11-18 Commissariat Energie Atomique Pile a combustible a membrane d’echange de protons presentant une duree de vie accrue
KR101856290B1 (ko) 2015-08-21 2018-05-09 현대자동차주식회사 연료전지 시스템의 스택 성능 개선 장치
KR101838510B1 (ko) * 2016-03-11 2018-03-14 현대자동차주식회사 증발냉각식의 연료 전지 시스템과 그것을 위한 냉각 제어 방법
US10693161B2 (en) * 2016-09-07 2020-06-23 Nissan Motor Co., Ltd. Fuel cell system and method for controlling same
DE102017220353B4 (de) * 2017-11-15 2020-10-08 Audi Ag Brennstoffzellenanordnung und Einheitszelle für einen Brennstoffzellenstapel
JP6596057B2 (ja) * 2017-11-27 2019-10-23 本田技研工業株式会社 流量調整構造体及び流量調整方法
KR102614135B1 (ko) 2018-05-24 2023-12-13 현대자동차주식회사 연료전지의 공기 공급 제어방법 및 제어시스템
CN108630975B (zh) * 2018-06-29 2023-12-15 张家港氢云新能源研究院有限公司 能实现-40℃以下超低温冷启动的质子交换膜燃料电池电堆
DE102019206119A1 (de) * 2019-04-29 2020-10-29 Audi Ag Verfahren zum Starten einer Brennstoffzellenvorrichtung unter Froststartbedingungen sowie Brennstoffzellenvorrichtung und Kraftfahrzeug
DE102019207310A1 (de) * 2019-05-20 2020-11-26 Audi Ag Verfahren zum Starten eines Brennstoffzellensystems bei Vorliegen von Froststartbedingungen
DE102019217877A1 (de) 2019-11-20 2021-05-20 Robert Bosch Gmbh Brennstoffzellensystem mit einem Schwingungsgenerator und Verfahren zum Betreiben eines Brennstoffzellensystems mit einem Schwingungsgenerator
CN110911721B (zh) * 2019-11-28 2022-11-25 东风汽车集团有限公司 一种燃料电池控制方法及燃料电池控制装置
DE102021200148A1 (de) * 2021-01-11 2022-07-14 Robert Bosch Gesellschaft mit beschränkter Haftung Brennstoffzellensystem mit Vereisungsschutz

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3485243B2 (ja) * 1997-03-25 2004-01-13 松下電器産業株式会社 固体高分子型燃料電池
US6117579A (en) 1997-03-25 2000-09-12 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell
PL190848B1 (pl) * 1998-07-08 2006-02-28 Toyota Motor Co Ltd Urządzenie do reformowania paliwa
JP4806886B2 (ja) 2003-05-16 2011-11-02 トヨタ自動車株式会社 燃料電池システムの運転制御
CA2473213C (en) * 2003-07-09 2011-02-08 Honda Motor Co., Ltd. Method of starting up operation of fuel cell at low temperature
JP4996814B2 (ja) * 2003-07-09 2012-08-08 本田技研工業株式会社 燃料電池の低温起動方法
JP2005174645A (ja) * 2003-12-09 2005-06-30 Nissan Motor Co Ltd 燃料電池システム
JP2006032171A (ja) 2004-07-16 2006-02-02 Toyota Motor Corp 燃料電池の制御装置
US7662495B2 (en) * 2004-11-05 2010-02-16 Gm Global Technologies Operations, Inc. Passive restriction pathways in fuel cell water drainage
JP4818605B2 (ja) 2004-11-16 2011-11-16 本田技研工業株式会社 燃料電池システムおよび燃料電池システムの制御方法
JP2007157375A (ja) * 2005-12-01 2007-06-21 Toyota Motor Corp 燃料電池システム及びその運転方法並びに移動体
JP4881027B2 (ja) * 2006-02-07 2012-02-22 本田技研工業株式会社 燃料電池システム及び燃料電池の低温下起動方法
US8389167B2 (en) * 2006-08-28 2013-03-05 GM Global Technology Operations LLC Detection of cell-to-cell variability in water holdup using pattern recognition techniques
JP5200414B2 (ja) * 2007-04-26 2013-06-05 トヨタ自動車株式会社 燃料電池システム
JP4460601B2 (ja) 2007-11-26 2010-05-12 本田技研工業株式会社 燃料電池システム
US20100196743A1 (en) 2009-02-02 2010-08-05 Hyundai Motor Company Apparatus and method for purging residual water and hydrogen during shutdown of fuel cell
JP5417917B2 (ja) * 2009-03-17 2014-02-19 アイシン精機株式会社 燃料電池システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160054634A (ko) * 2014-10-13 2016-05-17 현대제철 주식회사 외부 응축수 유입에 의한 연료전지 스택의 성능 감소 회복 방법
US10297846B2 (en) 2015-06-01 2019-05-21 Hyundai Motor Company Operation control method of fuel cell system

Also Published As

Publication number Publication date
US20140134508A1 (en) 2014-05-15
CN103597642B (zh) 2016-06-29
JPWO2012172678A1 (ja) 2015-02-23
EP2722922B1 (en) 2019-07-24
BR112013032548A2 (pt) 2017-01-17
EP2722922A4 (en) 2015-05-20
CN103597642A (zh) 2014-02-19
US9299997B2 (en) 2016-03-29
JP5692376B2 (ja) 2015-04-01
RU2013155686A (ru) 2015-07-27
WO2012172678A1 (ja) 2012-12-20
RU2567233C2 (ru) 2015-11-10
EP2722922A1 (en) 2014-04-23
BR112013032548B1 (pt) 2020-01-28

Similar Documents

Publication Publication Date Title
KR20140022072A (ko) 연료전지 시스템 및 연료전지 시스템의 제어방법
JP5224082B2 (ja) 燃料電池システム及びその排水制御方法
JP7139754B2 (ja) 燃料電池システム
JP2004342473A (ja) 燃料電池システムの運転制御
JP2009026605A (ja) 燃料電池システム及び移動体
JP2013239290A (ja) 燃料電池システム及びその制御方法
JP2014225399A (ja) 燃料電池システムおよびその制御方法
KR101078794B1 (ko) 연료전지시스템 및 상기 연료전지시스템의 순환비산출방법
CN110783605B (zh) 燃料电池系统
KR101134475B1 (ko) 연료전지 저온 운전 제어방법
JP2009295505A (ja) 燃料電池システム
JP2009117066A (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP5070794B2 (ja) 燃料電池システム
JP2009151999A (ja) 燃料電池システム
JP4797346B2 (ja) 燃料電池システム
JP2005310435A (ja) 燃料電池システム
JP2009104955A (ja) 燃料電池システム及びその制御方法
JP2008041346A (ja) 燃料電池システム及び排気弁の異常判定方法
JP2007280721A (ja) 燃料電池システム
JP5555282B2 (ja) 燃料電池システム
US11502318B2 (en) Fuel cell system and method of controlling fuel cell system
JP2008159407A (ja) 燃料電池システム
JP2006049134A (ja) 燃料電池システム
JP2023155547A (ja) 燃料電池システム
JP2010129226A (ja) 燃料電池システム及びそれを用いた燃料電池システムの制御方法

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL NUMBER: 2015101005901; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20151006

Effective date: 20170404