WO2012169147A1 - 光半導体パッケージおよびその製造方法 - Google Patents

光半導体パッケージおよびその製造方法 Download PDF

Info

Publication number
WO2012169147A1
WO2012169147A1 PCT/JP2012/003521 JP2012003521W WO2012169147A1 WO 2012169147 A1 WO2012169147 A1 WO 2012169147A1 JP 2012003521 W JP2012003521 W JP 2012003521W WO 2012169147 A1 WO2012169147 A1 WO 2012169147A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
optical semiconductor
semiconductor package
lead
reflector
Prior art date
Application number
PCT/JP2012/003521
Other languages
English (en)
French (fr)
Inventor
純崇 福嶋
祐之 阪本
速人 高木
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/703,996 priority Critical patent/US9018658B2/en
Priority to CN201280001880.3A priority patent/CN102971874A/zh
Publication of WO2012169147A1 publication Critical patent/WO2012169147A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present invention relates to an optical semiconductor package in which a lead is held by a resin and an optical semiconductor element mounting area is provided on the lead, a manufacturing method thereof, and an optical semiconductor device.
  • the optical semiconductor package is formed of a plurality of leads and a resin that holds the leads.
  • the lead is divided into a lead for mounting the optical semiconductor element and one or a plurality of leads that function as external terminals and are electrically connected to terminals of the mounted optical semiconductor element.
  • a reflector is formed so as to surround at least an optical semiconductor element mounting region.
  • This reflector may use the same resin as the resin that holds the leads or a different resin, but it reflects the light emitted by the optical semiconductor element and improves the light emission efficiency of the light emitted from the optical semiconductor device. It is provided for the purpose of making it happen. Therefore, at least the reflector is generally made of a thermoplastic resin having a high light reflectance (see, for example, Patent Document 1).
  • an optical semiconductor package has been manufactured by injection molding because the viscosity of the thermoplastic resin is high and the fluidity is low.
  • the mold temperature is about 150 ° C. to 200 ° C.
  • the temperature of the resin before injection is about 300 ° C. to 330 ° C.
  • the resin is injected, the resin is cooled in the mold, and the resin is cured. It was.
  • the thermoplastic resin has a high water absorption rate of about 3% to 1%, and the thermoplastic resin is hydrolyzed in a state of absorbing moisture. Therefore, the thermoplastic resin is dried in advance. From injection molding.
  • the reflector is formed of a thermoplastic resin
  • the thermoplastic resin when the light emitting operation is performed for a long time, the thermoplastic resin is denatured and discolored by ultraviolet rays contained in the emitted light, and the reflectance is increased with use. It had the problem of lowering.
  • polyamide 50% to 70% aromatic component, 10% to 40% titanium oxide, and 10% to 20% glass fiber are added. In this case, the resin was discolored by causing the optical semiconductor device to emit light at 150 ° C. for 1000 hours, and the reflectance was reduced to 70% or less.
  • an object of the present invention is to suppress deterioration of resin and suppress a decrease in reflectance of emitted light.
  • an optical semiconductor package of the present invention includes a first lead having an optical semiconductor element mounting region on a main surface, and a connection region of a conductive material used for conduction with the optical semiconductor element on the main surface.
  • a holding resin that holds the first lead and the second lead, and the holding resin exposed at least around the mounting region is a thermosetting resin. It is characterized by being.
  • it further includes a reflector formed on the main surface of the first lead and the second lead by opening at least the mounting region and the connection region, and the reflector is a thermosetting resin. good.
  • thermosetting resin is a resin not containing an aromatic component.
  • thermosetting resin may be any one of an epoxy resin, a silicone resin, and a modified silicone resin.
  • thermosetting resin is preferably a cycloaliphatic epoxy resin.
  • thermosetting resin is an unsaturated polyester resin.
  • a filler made of glass fiber and spherical silica is added to the unsaturated polyester resin.
  • titanium oxide is added to the unsaturated polyester resin.
  • a filler composed of glass fibers and spherical silica, titanium oxide, and an arbitrary additive are added to the unsaturated polyester resin, the component ratio of the unsaturated polyester resin is A, the component ratio of the glass fiber is B, and the oxidation
  • the titanium component ratio is C
  • the silica component ratio is D
  • the method for manufacturing an optical semiconductor package of the present invention is a method for manufacturing the optical semiconductor package, the step of placing the first lead and the second lead in a mold, The holding resin or the reflector is transferred and molded, and the thermosetting resin is cured, and the thermosetting resin is an epoxy resin or a cyclic aliphatic resin. It is a type epoxy resin.
  • the method for manufacturing an optical semiconductor package of the present invention is a method for manufacturing the optical semiconductor package, the step of placing the first lead and the second lead in a mold, A step of injecting the thermosetting resin into the holding resin or the reflector and a step of curing the thermosetting resin, wherein the thermosetting resin is a silicone resin, a modified silicone resin or It is an unsaturated polyester resin.
  • the mold is held at 150 ° C. to 200 ° C., and the thermosetting resin is heated to 50 ° C. to 90 ° C. to flow into or inject into the mold.
  • the optical semiconductor device of the present invention includes the optical semiconductor package, the optical semiconductor element mounted in the mounting region, and the conductive material that electrically connects a terminal of the optical semiconductor element and the connection region. And a lens formed on the main surface of the first lead and the second lead so as to cover at least the optical semiconductor element and the conductive material.
  • the optical semiconductor device of the present invention includes the optical semiconductor package, the optical semiconductor element mounted in the mounting region, and the conductive material that electrically connects a terminal of the optical semiconductor element and the connection region. And a translucent resin that seals the optical semiconductor element and the conductive material in the opening of the reflector.
  • thermosetting resin is preferably an epoxy resin, a cycloaliphatic epoxy resin, a silicone resin, a modified silicone resin or an unsaturated polyester resin.
  • thermosetting resin such as unsaturated polyester as the resin exposed around the reflector or the optical semiconductor element, it is possible to suppress the deterioration of the resin and suppress the reduction of the reflectance.
  • 6A and 6B illustrate a structure of an optical semiconductor package including a reflector according to Embodiment 1.
  • 2A and 2B illustrate a configuration of an optical semiconductor package that does not include a reflector according to Embodiment 1.
  • Cross-sectional process diagram illustrating a method of manufacturing an optical semiconductor package by transfer molding Process sectional drawing which shows the manufacturing method of the optical semiconductor package by injection molding Sectional drawing which shows the structure of the optical semiconductor device of this invention
  • FIG. 1A and 1B are diagrams for explaining the configuration of an optical semiconductor package including a reflector according to Embodiment 1
  • FIG. 1A is a plan view
  • FIG. 1B is a cross-sectional view taken along line XX ′ in FIG.
  • FIG. 2A and 2B are diagrams illustrating the configuration of an optical semiconductor package that does not include a reflector according to the first embodiment.
  • FIG. 2A is a plan view
  • FIG. 2B is a cross-sectional view taken along line XX ′ in FIG.
  • the optical semiconductor package used in the optical semiconductor device includes leads 1 and 2 that are external terminals, a holding resin 20 that holds the leads 1 and 2, and a reflector 5.
  • the lead 1 functions as an external terminal, and includes a mounting area 3 for mounting an optical semiconductor element on the main surface.
  • the lead 2 includes one or a plurality of leads, and functions as an external terminal, and includes a connection region 4 that is electrically connected to a terminal of the optical semiconductor element on each main surface.
  • the reflector 5 has a function of reflecting light emitted from the optical semiconductor element in the emission direction of the optical semiconductor device.
  • the mounting area 3 of the lead 1 and the connection area 4 of the lead 2 are opened, and the mounting area 3 and the connection area 4 of the leads 1 and 2 are provided so as to surround the mounting area 3 and the connection area 4. Formed on top.
  • the reflector 5 since the reflector 5 reflects emitted light, it is necessary to increase at least the reflectance inside the opening.
  • the optical semiconductor package can be configured such that no reflector is formed as shown in FIG. That is, the resin 6 is formed around the lead 1 including the mounting region 3 and the lead 2 including the connection region 4 so as to hold the lead 1 and the lead 2 while being electrically separated from each other. Then, it is necessary to increase the reflectance of the portion of the resin 6 exposed at least around the mounting region 3.
  • ceramics have been used for the reflector 5 or the like as a material having high light reflectivity and high resistance to deterioration.
  • ceramics have a high material cost, and lead insertion, thermal resistance There was a problem that it was difficult to lower the value.
  • a feature of the optical semiconductor package in Embodiment 1 is that the reflector 5 or the resin 6 is formed of a thermosetting resin.
  • thermoplastic resin is a linear polymer, and the linear polymer easily breaks the main chain and side chain of the molecule by heat, and the carbon-carbon bond energy of the thermoplastic resin is lower than the ultraviolet wavelength.
  • Plastic resins are susceptible to ultraviolet radiation.
  • the thermosetting resin since the thermosetting resin has a strong bonding structure such as a network structure, the atomic structure is not easily broken by heat and UV irradiation, so that the deterioration resistance is increased.
  • thermosetting resin By using a thermosetting resin as the reflector 5 or the resin 6, the thermosetting resin has a high reflection efficiency and a high resistance to deterioration with respect to ultraviolet rays or the like. Even when the device emits light for a long time, the deterioration of the reflector 5 or the resin 6 and the discoloration due to the deterioration can be suppressed, and the light emission rate can be maintained while maintaining a high reflectance.
  • the thermosetting resin has a structure that can be easily changed in composition, and since the aromatic component can be separated, it can be configured without the aromatic component, and the aromatic component can be added to the thermosetting resin. Deterioration resistance can be improved by using a structure that does not have the.
  • the holding resin 20 for holding the reflector 5, the resin 6, and the leads 1 and 2 may be formed of the same thermosetting resin, but is exposed on the inner surface of the opening of the reflector 5 or around the mounting region 3 of the resin 6. Only the portion to be formed may be formed of a thermosetting resin.
  • the optical semiconductor package in the second embodiment uses an epoxy resin, a silicone resin, or a modified silicone resin as the thermosetting resin in the optical semiconductor package in the first embodiment. Since these resins have high reflection efficiency and high resistance to deterioration such as ultraviolet rays, even when the optical semiconductor device emits light for a long time, it is possible to suppress the deterioration of the reflector or the resin and the discoloration due to the deterioration, and maintain a high reflectance. The light emission rate can be maintained.
  • the epoxy resin has a network structure
  • the composition can be easily changed, and the aromatic component can be separated to obtain a cycloaliphatic epoxy resin having no aromatic component.
  • a cycloaliphatic epoxy resin or the like that does not have an aromatic component, it does not have a carbon-carbon bond and can be hardly affected by ultraviolet rays.
  • it since it has a network structure that is stronger than a thermoplastic resin, it is not easy to cut the main chain or side chain of the molecule by heat, and deterioration resistance can be improved.
  • a silicone-based resin has a helical structure with a stronger binding force than general polymer bonds such as linear polymers and network structures, so it has excellent heat resistance and weather resistance. Resistance can be improved.
  • thermosetting resin a method for manufacturing an optical semiconductor package when an epoxy resin, a silicone resin, or a modified silicone resin is used as a thermosetting resin
  • FIG. 3 is a process cross-sectional view illustrating a method of manufacturing an optical semiconductor package by transfer molding.
  • the lead 1, 2, holding resin, and reflector formation area are modeled on the inner surface, and a mold provided with an injection port 9 for the resin 13 is prepared. Then, the leads 1 and 2 are placed at predetermined positions inside the lower mold 7 of the mold (FIG. 3A).
  • the lower mold 7 and the upper mold 8 are put together, and molten epoxy resin or the like is poured into the mold from the injection port 9.
  • the temperature of the mold is set to about 150 ° C. to 200 ° C.
  • the temperature of the resin 13 is set to about 50 ° C. to 90 ° C. (FIG. 3B).
  • the optical semiconductor package using the epoxy resin, the silicone resin, and the modified silicone resin having high reflection efficiency and high deterioration resistance against ultraviolet rays can be formed as the reflector 5, even when the optical semiconductor device emits light for a long time, The deterioration of the resin and the discoloration due to the deterioration can be suppressed, the high reflectance can be maintained, and the light emission rate can be maintained.
  • the reflector 5 and the holding resin 20 are molded together has been described as an example.
  • the reflector 5 and the holding resin 20 can be molded separately from different materials.
  • the optical semiconductor package in the third embodiment is characterized in that an unsaturated polyester resin is used as the thermosetting resin in the optical semiconductor package in the first embodiment.
  • Unsaturated polyester resin also has high reflection efficiency and high resistance to deterioration of ultraviolet rays, etc., so even if the optical semiconductor device emits light for a long time, it can suppress the deterioration of the reflector or resin, and the discoloration due to the deterioration, and maintain high reflectivity. Thus, the light emission rate can be maintained.
  • thermosetting resin a method for manufacturing an optical semiconductor package when an unsaturated polyester resin is used as the thermosetting resin
  • FIG. 4 is a process cross-sectional view illustrating a method of manufacturing an optical semiconductor package by injection molding.
  • the lead 1, 2, holding resin, and reflector formation area are formed on the inner surface, and a mold provided with an injection port 9 for the resin 14 is prepared. Then, the leads 1 and 2 are placed at predetermined positions inside the lower mold 7 of the mold (FIG. 4A).
  • a hopper 12 that holds a molten unsaturated polyester resin 14 is connected to the cylinder 11, and the unsaturated polyester resin 14 that is melted from the injection port 9 is pressurized and injected into the mold through the cylinder 11.
  • the pellet-shaped unsaturated polyester resin is heated in the hopper 12 to 50 ° C. to 90 ° C., melted and kneaded with a screw in the cylinder 11, and then at 150 at a stroke with an injection pressure of 80 Mpa to 250 Mpa through the nozzle 10.
  • Unsaturated polyester resin 14 is injected into a mold heated to from 200 ° C. to 200 ° C. (FIG. 4B).
  • the optical semiconductor package using the unsaturated polyester resin having high reflection efficiency and high deterioration resistance against ultraviolet rays or the like can be formed as the reflector 5, even when the optical semiconductor device emits light for a long time, Discoloration due to deterioration can be suppressed, and high light reflectance can be maintained while maintaining high reflectance.
  • the unsaturated polyester resin does not have a reactive functional group such as a hydroxyl group (—OH group) and does not chemically bond to a metal, so that resin burrs are hardly generated in the molding process. Even if it occurs, peeling is easy. Since the optical semiconductor package reflects light inside the opening of the reflector 5, the accuracy of the surface shape inside the opening is required. However, an epoxy resin is likely to cause a chemical bond with a metal, and burrs are likely to occur. Therefore, it is necessary to remove wet or dry burrs inside the opening of the reflector 5.
  • a reactive functional group such as a hydroxyl group (—OH group)
  • thermoplastic resin since the conventional thermoplastic resin has high water absorption, a step of drying the resin is required during holding with the hopper or before holding with the hopper. However, since the unsaturated polyester resin has a low water absorption of 0.07%, a drying step is unnecessary, and an optical semiconductor package can be formed more easily.
  • thermoplastic resin nylon
  • the added organic substance is carbonized to form black spots, and molding defects are likely to occur.
  • the plasticization temperature is about 80 ° C to 100 ° C, the temperature of the resin can be injection molded at 50 ° C to 90 ° C, suppressing the change in material properties. And molding defects can be suppressed.
  • thermoplastic resin since the melting temperature is about 50 ° C. to 90 ° C., a mold kept at 150 ° C. to 200 ° C. for cooling using a conventional thermoplastic resin may be used.
  • the resin can be heated and cured in the mold, and the conventional mold can be used as it is, and the change from the thermoplastic resin to the thermosetting resin is easy.
  • thermoplastic resin when a conventional thermoplastic resin is used, since the resin flow rate is low, it is necessary to inject the resin into the mold at a high pressure. In order to prevent deformation of the leads 1 and 2, 2 had to be provided.
  • unsaturated polyester resin since unsaturated polyester resin has a higher resin flow rate than thermoplastic resin, it can be injection-molded at a lower resin injection pressure than thermoplastic resin. Therefore, the possibility that the leads 1 and 2 are deformed is reduced, and it is not necessary to hold the leads 1 and 2 in the injection molding, so that the mold can be simplified.
  • the silicone resin can be injection-molded in a liquid type, it becomes a dedicated line corresponding to the material characteristics of the silicone resin, so that it is not versatile and has a high number of maintenances, resulting in low productivity.
  • an unsaturated polyester resin since the plasticizing temperature and the curing temperature are separated, it can be melted in the injection cylinder, and high-pressure resin can be injected by injection molding. Resin flows evenly, and variation in resin hardness can be suppressed. Further, when the molten resin is heated, the curing reaction proceeds rapidly, so that the resin can be molded in a short time.
  • the reflector 5 and the holding resin 20 are collectively formed has been described as an example.
  • the reflector 5 and the holding resin 20 can be separately formed from different materials.
  • the optical semiconductor package can be formed by injection molding by using a mold corresponding to the resin 6.
  • the strength of the resin can be improved by adding a filler made of glass fiber having a long fiber length and spherical silica to the unsaturated polyester resin of Embodiment 3.
  • the reflectance of light can be improved by adding titanium oxide.
  • maleic anhydride fumaric acid, styrene, filler, reinforcing agent, curing agent, mold release agent, pigment, and other additives should be added in appropriate combination. You can also.
  • the main agent contains 15% to 25% of unsaturated polyester component as the main agent, glass fiber 5% to 20%, titanium oxide 30% to 40%, silica 20% to 30%, and other additives.
  • glass fiber 5% to 20%
  • titanium oxide 30% to 40% titanium oxide 30% to 40%
  • silica 20% to 30% and other additives.
  • the unsaturated polyester resin When an unsaturated polyester resin is injection-molded as an optical semiconductor package, the unsaturated polyester resin has hard and brittle characteristics.
  • the resin may change color.
  • such problems are solved by optimizing the resin composition such as the proportion of unsaturated polyester material, the proportion of glass fiber, the proportion of titanium oxide, the proportion of release agent, and the like. It can be used for resin reflectors.
  • a method for producing a resin comprising these unsaturated polyesters is as follows. First, in a container, 15% to 25% of an unsaturated polyester component, 5% to 20% glass fiber as an additive, 30% to 40% titanium oxide, 20% to 30% silica and 1% to 3% of other additives are added and agitated, formed into an elongated cylindrical shape, then cut into pellets to form a resin material to be charged into the hopper 12 . (Embodiment 5) Next, the configuration of the optical semiconductor device of the present invention will be described with reference to FIG.
  • FIG. 5A and 5B are cross-sectional views illustrating the configuration of the optical semiconductor device of the present invention.
  • FIG. 5A illustrates an optical semiconductor device including a reflector
  • FIG. 5B illustrates an optical semiconductor device that does not include a reflector.
  • FIG. 5C is a diagram illustrating an optical semiconductor device in which a holding resin is provided on the back surface of the lead.
  • a semiconductor element 15 is bonded on the mounting region 3 of the lead 1 to the optical semiconductor package including the reflector shown in the first to fourth embodiments, and the semiconductor element 15 And the connection region 4 of the lead 2 are electrically connected by a conductive material such as a wire 16. Further, a translucent resin 17 is filled inside the opening of the reflector 5 so as to seal the semiconductor element 15 and the wire 16. Even when the optical semiconductor device emits light for a long time while maintaining the light reflectance, the optical semiconductor device having such a configuration can suppress the deterioration of the reflector 5 or the exposed holding resin 20 and the discoloration due to the deterioration. It is possible to maintain the high reflectance and maintain the luminous efficiency.
  • a semiconductor element 15 is bonded on the mounting region 3 of the lead 1 to the optical semiconductor package that does not include the reflector shown in the first to fourth embodiments.
  • a terminal of the semiconductor element 15 and the connection region 4 of the lead 2 are electrically connected by a conductive material such as a wire 16.
  • a lens 18 is bonded onto the leads 1 and 2 so as to cover at least the periphery of the semiconductor element 15 and the wire 16.
  • a resin for holding the leads 1 and 2 can be provided on the back surfaces of the main surfaces of the leads 1 and 2.
  • the leads 1 and 2 are also held on the back surface of the main surface of the leads 1 and 2 in the optical semiconductor package including the reflector shown in the first to fourth embodiments.
  • Resin 19 can be provided.
  • the leads 1 and 2 since the leads 1 and 2 are not exposed on the back surface, the leads 1 and 2 may be bent to form the terminals along the resin 19 on the back surface, or the terminals may be formed in a gull wing shape.
  • the semiconductor element 15 is bonded onto the mounting region 3 of the lead 1 to the optical semiconductor package formed in this way, and the terminal of the semiconductor element 15 and the connection region 4 of the lead 2 are connected by a conductive material such as a wire 16. Connect electrically.
  • a translucent resin 17 is filled inside the opening of the reflector 5 so as to seal the semiconductor element 15 and the wire 16. Even when the optical semiconductor device emits light for a long time while maintaining the light reflectance, the optical semiconductor device having such a configuration can suppress the deterioration of the reflector 5 or the exposed holding resin 20 and the discoloration due to the deterioration. It is possible to maintain the high reflectance and maintain the luminous efficiency.
  • the present invention can suppress deterioration of a resin, suppress a decrease in reflectance, hold a lead with resin, and provide an optical semiconductor element mounting region on the lead, a manufacturing method thereof, and an optical Useful for semiconductor devices and the like.

Abstract

本発明の光半導体パッケージおよびその製造方法ならびに光半導体装置は、リフレクタ5あるいは光半導体素子の周囲に露出する樹脂6として不飽和ポリエステル等の熱硬化性樹脂を用いることにより、樹脂の劣化を抑制し、反射率の低化を抑制することができる。

Description

光半導体パッケージおよびその製造方法
 本発明は、リードを樹脂で保持し、リード上に光半導体素子の搭載領域を備える光半導体パッケージおよびその製造方法ならびに光半導体装置に関する。
 光半導体パッケージは、複数のリードおよび、リードを保持する樹脂から形成されている。リードは光半導体素子を搭載するリードおよび、外部端子として機能し、搭載された光半導体素子の端子と電気的に接続される1または複数のリードに分けられる。また、光半導体パッケージには、少なくとも光半導体素子の搭載領域を取り囲むようにリフレクタが形成されるものもある。
 このリフレクタは、リードを保持する樹脂と同じ樹脂を用いても異なる樹脂を用いても良いが、光半導体素子が発光した光を反射して、光半導体装置から出射される光の発光効率を向上させることを目的として設けられる。そのため、少なくともリフレクタは、光の反射率の高い熱可塑性樹脂が用いられることが一般的である(例えば、特許文献1参照)。
 従来は、熱可塑性樹脂の粘度が高く、流動性が低いために、射出成形により光半導体パッケージを製造していた。この時、例えば、金型の温度を約150℃~200℃、注入前の樹脂の温度を約300℃~330℃とし、樹脂を注入して金型内で樹脂を冷却して樹脂を硬化させていた。また、射出成形の際には、熱可塑性樹脂の吸水率が3%~1%程度と高く、熱可塑性樹脂は水分を吸収している状態では加水分解するため、あらかじめ熱可塑性樹脂を乾燥してから射出成形していた。
特開平11-87780号公報
 しかしながら、リフレクタを熱可塑性樹脂で形成した場合には、長時間発光動作を行なった場合等に、発光光に含まれる紫外線等により、熱可塑性樹脂が変質して変色し、使用に伴い反射率が低化するという問題点を有していた。例えば、熱可塑性樹脂としてポリアミドを用いた場合、芳香族成分を50%~70%、酸化チタンを10%~40%、ガラス繊維を10%~20%添加される。この場合、150℃で1000時間光半導体装置を発光動作させることにより樹脂が変色し、反射率が70%以下に低化していた。
 さらに、近年の光半導体素子の高出力化に伴い、リフレクタの劣化による反射率の低化の問題を解決することが強く求められるようになってきている。
 上記問題点を解決するために、本発明は、樹脂の劣化を抑制して、発光光の反射率の低化を抑制することを目的とする。
 上記目的を達成するために、本発明の光半導体パッケージは、主面に光半導体素子の搭載領域を備える第1のリードと、主面に前記光半導体素子との導通に用いる導電材の接続領域を備える1または複数の第2のリードと、前記第1のリードおよび前記第2のリードを保持する保持樹脂とを有し、少なくとも前記搭載領域の周囲に露出する前記保持樹脂が熱硬化性樹脂であることを特徴とする。
 また、少なくとも前記搭載領域および前記接続領域を開口して前記第1のリードおよび前記第2のリードの主面上に形成されるリフレクタをさらに有し、前記リフレクタが熱硬化性樹脂であっても良い。
 また、前記熱硬化性樹脂が、芳香族成分が未含有の樹脂であることが好ましい。
 また、前記熱硬化性樹脂が、エポキシ樹脂、シリコーン樹脂、変性シリコーン樹脂のうちのいずれかであっても良い。
 また、前記熱硬化性樹脂が、環状脂肪族型エポキシ樹脂であることが好ましい。
 また、前記熱硬化性樹脂が、不飽和ポリエステル樹脂であることが好ましい。
 また、前記不飽和ポリエステル樹脂にガラス繊維と球状シリカからなるフィラーが添加されることが好ましい。
 また、前記不飽和ポリエステル樹脂に酸化チタンが添加されることが好ましい。
 また、前記不飽和ポリエステル樹脂にガラス繊維と球状シリカからなるフィラーと酸化チタンと任意の添加剤が添加され、前記不飽和ポリエステル樹脂の成分比をA、前記ガラス繊維の成分比をB、前記酸化チタンの成分比をC、前記シリカの成分比をD、前記添加剤の成分比をEとし、15%<A<25%、5%<B<20%、30%<C<40%、20%<D<30%、1%<E<3%、A+B+C+D+E=100%であることが好ましい。
 さらに、本発明の光半導体パッケージの製造方法は、前記光半導体パッケージの製造方法であって、金型内に前記第1のリードおよび前記第2のリードを載置する工程と、前記金型内に前記熱硬化性樹脂を流入させて前記保持樹脂または前記リフレクタをトランスファーモールド成形する工程と、前記熱硬化性樹脂を硬化させる工程とを有し、前記熱硬化性樹脂がエポキシ樹脂または環状脂肪族型エポキシ樹脂であることを特徴とする。
 また、本発明の光半導体パッケージの製造方法は、前記光半導体パッケージの製造方法であって、金型内に前記第1のリードおよび前記第2のリードを載置する工程と、前記金型内に前記熱硬化性樹脂を注入して前記保持樹脂または前記リフレクタを射出成形する工程と、前記熱硬化性樹脂を硬化させる工程とを有し、前記熱硬化性樹脂がシリコーン樹脂、変性シリコーン樹脂あるいは不飽和ポリエステル樹脂であることを特徴とする。
 また、前記金型を150℃~200℃で保持し、前記熱硬化性樹脂を50℃~90℃に加熱して前記金型内に流入または注入することが好ましい。
 さらに、本発明の光半導体装置は、前記光半導体パッケージと、前記搭載領域に搭載される前記光半導体素子と、前記光半導体素子の端子と前記接続領域とを電気的に接続する前記導電材と、少なくとも前記光半導体素子および前記導電材を覆って前記第1のリードおよび前記第2のリードの前記主面上に形成されるレンズとを有することを特徴とする。
 また、本発明の光半導体装置は、前記光半導体パッケージと、前記搭載領域に搭載される前記光半導体素子と、前記光半導体素子の端子と前記接続領域とを電気的に接続する前記導電材と、前記光半導体素子および前記導電材を前記リフレクタの開口内で封止する透光性樹脂とを有することを特徴とする。
 また、前記熱硬化性樹脂がエポキシ樹脂、環状脂肪族型エポキシ樹脂、シリコーン樹脂、変性シリコーン樹脂あるいは不飽和ポリエステル樹脂のいずれかであることが好ましい。
 以上のように、リフレクタあるいは光半導体素子の周囲に露出する樹脂として不飽和ポリエステル等の熱硬化性樹脂を用いることにより、樹脂の劣化を抑制し、反射率の低化を抑制することができる。
実施の形態1におけるリフレクタを備える光半導体パッケージの構成を説明する図 実施の形態1におけるリフレクタを備えない光半導体パッケージの構成を説明する図 トランスファーモールド成形による光半導体パッケージの製造方法を示す工程断面図 射出成形による光半導体パッケージの製造方法を示す工程断面図 本発明の光半導体装置の構成を示す断面図
 図面を用いて、本発明の光半導体パッケージおよびその製造方法ならびに光半導体装置の実施の形態について説明する。
(実施の形態1)
 まず、図1,図2を用いて、実施の形態1における光半導体パッケージの構成について説明する。
 図1は実施の形態1におけるリフレクタを備える光半導体パッケージの構成を説明する図であり、図1(a)は平面図、図1(b)は図1(a)のX-X’断面図である。図2は実施の形態1におけるリフレクタを備えない光半導体パッケージの構成を説明する図であり、図2(a)は平面図、図2(b)は図2(a)のX-X’断面図である。
 光半導体装置に用いる光半導体パッケージは、図1に示すように、外部端子となるリード1,2とリード1,2を保持する保持樹脂20と、リフレクタ5とから構成される。リード1は外部端子として機能すると共に、主面に光半導体素子を搭載する搭載領域3を備える。リード2は1または複数のリードから成り、外部端子として機能すると共に、それぞれの主面に光半導体素子の端子と電気的に接続する接続領域4を備える。リフレクタ5は光半導体素子の発光光を光半導体装置の出射方向に反射させる機能を備える。そのために、リード1の搭載領域3とリード2の接続領域4とを開口し、搭載領域3と接続領域4とを取り囲むようにリード1,2の搭載領域3および接続領域4が設けられる主面上に形成される。また、リフレクタ5は発光光を反射させるため、少なくとも開口内部の反射率を高くする必要がある。
 また、光半導体パッケージは、図2に示すように、リフレクタを形成しない構成とすることもできる。すなわち、搭載領域3を備えるリード1と接続領域4を備えるリード2との周囲にリード1およびリード2を電気的に離間しながら保持するように樹脂6を形成する。そして、樹脂6の少なくとも搭載領域3周囲に露出する部分の反射率を高くする必要がある。
 従来、光の反射率が高く、劣化耐性の高い材料として、リフレクタ5等にセラミックスが用いられる場合もあったが、セラミックスは材料コストが高く、また、リードをインサート形成することや、熱抵抗値を下げることが困難であるという問題が有った。
 実施の形態1における光半導体パッケージの特徴は、リフレクタ5あるいは樹脂6を熱硬化性樹脂で形成することである。
 従来から用いられていた熱可塑性樹脂は線状ポリマーであり、線状ポリマーは熱によって分子の主鎖や側鎖が切断し易く、熱可塑性樹脂の炭素間結合エネルギーは紫外波長より低いため、熱可塑性樹脂は紫外線の影響を受けやすい。これに対して、熱硬化性樹脂は網目構造等の強固な結合構造を有していることから熱、UV照射により簡単に原子の構造が壊れることはないため、劣化耐性が高くなる。
 リフレクタ5あるいは樹脂6として熱硬化性樹脂を用いることにより、熱硬化性樹脂は反射効率が高く紫外線等に対する劣化耐性が高いため、実施の形態1における光半導体パッケージに光半導体素子を搭載した光半導体装置を長時間発光させた場合でも、リフレクタ5あるいは樹脂6の劣化、および劣化による変色を抑制でき、高反射率を維持して発光光率を維持することができる。特に、熱硬化性樹脂は容易に組成変更することができる構造であり、芳香族成分を切り離すことができるため、芳香族成分を有しない構成とすることができ、熱硬化性樹脂に芳香族成分を有しない構造とすることで、劣化耐性を向上させることができる。
 なお、リフレクタ5、樹脂6、リード1,2を保持する保持樹脂20を同一の熱硬化性樹脂で形成しても良いが、リフレクタ5の開口内表面あるいは樹脂6の搭載領域3の周囲で露出する部分のみを熱硬化性樹脂で形成しても良い。
(実施の形態2)
 実施の形態2における光半導体パッケージは、実施の形態1における光半導体パッケージにおいて、熱硬化性樹脂として、エポキシ樹脂、シリコーン樹脂、変性シリコーン樹脂を用いる。これらの樹脂は反射効率が高く紫外線等に対する劣化耐性が高いため、光半導体装置を長時間発光させた場合でも、リフレクタあるいは樹脂の劣化、および劣化による変色を抑制でき、高反射率を維持して発光光率を維持することができる。
 すなわち、エポキシ樹脂は網目状構造をしているため、容易に組成変更ができ、芳香族成分を切り離し、芳香族成分を有さない環状脂肪族型エポキシ樹脂等とすることができる。芳香族成分を有さない環状脂肪族型エポキシ樹脂等とすることにより、炭素間結合を有さず、紫外線の影響を受け難くすることができる。また、熱可塑性樹脂に比べて強固な構造である網目状構造であるため、熱による分子の主鎖や側鎖の切断が容易でなく、劣化耐性を向上させることができる。
 同様に、シリコーン系の樹脂は、線状ポリマーや網目状構造等の一般的な高分子の結合に比べて結合力が強い螺旋構造の分子構造となるため、耐熱性、耐候性に優れ、劣化耐性を向上させることができる。
 以下、図3を用いて、熱硬化性樹脂としてエポキシ樹脂、シリコーン樹脂、変性シリコーン樹脂を用いた場合の光半導体パッケージの製造方法を説明する。
 図3はトランスファーモールド成形による光半導体パッケージの製造方法を示す工程断面図である。
 まず、リード1,2、保持樹脂およびリフレクタの形成領域を内面にかたどり、樹脂13の注入口9を設けた金型を用意する。そして、金型の下金型7の内部の所定の位置にリード1,2を載置する(図3(a))。
 次に、下金型7と上金型8とを合わせ、注入口9から溶融したエポキシ樹脂等を金型内に流入させる。この時、例えば、金型の温度を約150℃~200℃、樹脂13の温度を約50℃~90℃とする(図3(b))。
 最後に、樹脂13が金型温度に加熱されて硬化した後、形成品を金型から取り出す(図3(c))。
 このようにして、リフレクタ5として反射効率が高く紫外線等に対する劣化耐性が高いエポキシ樹脂、シリコーン樹脂、変性シリコーン樹脂を用いる光半導体パッケージが形成できるため、光半導体装置を長時間発光させた場合でも、樹脂の劣化、および劣化による変色を抑制でき、高反射率を維持して発光光率を維持することができる。
 なお、以上の説明ではリフレクタ5と保持樹脂20とを一括成形する場合を例に説明したが、別々に、さらに異なる材料で成形することもできる。
 また、図2に示すリフレクタを設けない光半導体パッケージの樹脂6を形成する場合にも、それに即した金型を用いることによりトランスファーモールド成形で光半導体パッケージを形成することができる。
(実施の形態3)
 実施の形態3における光半導体パッケージは、実施の形態1における光半導体パッケージにおいて、熱硬化性樹脂として、不飽和ポリエステル樹脂を用いることを特徴とする。不飽和ポリエステル樹脂も反射効率が高く紫外線等に対する劣化耐性が高いため、光半導体装置を長時間発光させた場合でも、リフレクタあるいは樹脂の劣化、および劣化による変色を抑制でき、高反射率を維持して発光光率を維持することができる。
 以下、図4を用いて、熱硬化性樹脂として不飽和ポリエステル樹脂を用いた場合の光半導体パッケージの製造方法を説明する。
 図4は射出成形による光半導体パッケージの製造方法を示す工程断面図である。
 まず、リード1,2、保持樹脂およびリフレクタの形成領域を内面にかたどり、樹脂14の注入口9を設けた金型を用意する。そして、金型の下金型7の内部の所定の位置にリード1,2を載置する(図4(a))。
 次に、下金型7と上金型8とを合わせ、シリンダ11の先端に設けられたノズル10を注入口9に挿入する。シリンダ11には溶融した不飽和ポリエステル樹脂14を保持するホッパー12が接続されており、シリンダ11を介して注入口9から溶融した不飽和ポリエステル樹脂14を金型内に加圧注入する。この時、例えば、ペレット形状の不飽和ポリエステル樹脂をホッパー12内で50℃~90℃に加熱し、シリンダ11内でスクリューにより溶融混練した後、ノズル10を介して射出圧力80Mpa~250Mpaで一気に150℃~200℃に加熱された金型内に不飽和ポリエステル樹脂14を射出する(図4(b))。
 最後に、不飽和ポリエステル樹脂14を金型温度で約15秒~30秒間硬化させた後、形成品を金型から取り出す(図4(c))。
 このようにして、リフレクタ5として反射効率が高く紫外線等に対する劣化耐性が高い不飽和ポリエステル樹脂を用いる光半導体パッケージが形成できるため、光半導体装置を長時間発光させた場合でも、樹脂の劣化、および劣化による変色を抑制でき、高反射率を維持して発光光率を維持することができる。
 また、不飽和ポリエステル樹脂を用いる場合、不飽和ポリエステル樹脂が水酸基(-OH基)等の反応性官能基を有さず、金属と化学結合しないため成形工程において樹脂バリが発生し難く、また仮に発生したとしても剥離が容易である。光半導体パッケージは、リフレクタ5開口内部で光を反射させるため、開口内部の表面形状の精度が要求される。しかし、エポキシ樹脂では金属と化学結合を起こし易く、バリが発生しやすい。そのため、リフレクタ5の開口内部において、湿式や乾式のバリの除去を行う必要がある。これに対し、不飽和ポリエステル樹脂を用いることにより、バリの発生を抑制でき、工程を抑制して生産性を向上させることができる。さらに、バリ除去によってリフレクタ5開口内部のリード1,2の表面にダメージが加わることがないので、高反射率を維持することができ、特に光半導体パッケージに適している。
 また、従来の熱可塑性樹脂では、吸水性が高いため、ホッパーでの保持中、またはホッパーでの保持前に樹脂を乾燥させる工程が必要であった。しかし、不飽和ポリエステル樹脂は吸水率が0.07%と低いため、乾燥工程が不要であり、より容易に光半導体パッケージを形成することができる。
 また、熱可塑性樹脂(ナイロン)の場合、融点(約300℃)に近い300℃~330℃で射出成形するため、添加された有機物が炭化して黒点となり、成形不良が発生しやすい。これに対して不飽和ポリエステル樹脂で射出成形する場合、可塑化温度が80℃~100℃程度であるため、樹脂の温度を50℃~90℃で射出成形でき、材料の特性変化を抑制することができ、成形不良を抑制することができる。
 また、不飽和ポリエステル樹脂を用いる場合、溶融温度が50℃~90℃程度であるため、従来の熱可塑性樹脂を用いて冷却のために150℃~200℃に保持された金型を用いても、樹脂を金型内で加熱して硬化させることができ、従来の金型をそのまま用いることができ、熱可塑性樹脂から熱硬化性樹脂への変更が容易である。
 また、従来の熱可塑性樹脂を用いた場合、樹脂の流度が低いため、高圧で金型に樹脂注入する必要があり、リード1,2の変形を防止するために、金型にリード1,2を保持する部品を設ける必要があった。これに対して、不飽和ポリエステル樹脂は熱可塑性樹脂に比べて樹脂の流度が高いため、熱可塑性樹脂に比べて低い樹脂注入圧で射出成形することができる。そのため、リード1,2が変形する可能性が低くなり、射出成形において、リード1,2の保持が不要となるため、金型を単純化することが可能となる。
 また、エポキシ樹脂を用いて光半導体パッケージを製造した場合には、一般的にエポキシ樹脂は可塑化温度と硬化温度が近いため、射出シリンダ内で溶融混練できず、トランスファーモールド成形により徐々に樹脂を溶融させ射出する方法が一般的である。しかし、トランスファーモールド成形により低圧で射出を行うため、樹脂の流入が困難な箇所が発生し、成形エリアによって樹脂の硬度がバラつきやすい。また、トランスファーモールド成形では金型内の加熱室に毎回タブレット樹脂を投入する必要があるので成形サイクルが長くなり、製造効率が低くなる。また、シリコーン樹脂は液状タイプで射出成形できるものの、シリコーン樹脂の材料特性に応じた専用ラインになってしまうため汎用性が無いことやメンテナンス回数が多いことから生産性が低い。これに対して、不飽和ポリエステル樹脂を用いた場合、可塑化温度と硬化温度が離れているため、射出シリンダ内で溶融させることができ、射出成形で高圧樹脂注入ができるため、金型内に樹脂が満遍なく流入し、樹脂の硬度のばらつきを抑制することができる。また、溶融された樹脂は加熱されると硬化反応が急激に進むため、短時間で樹脂成型をすることができる。また、射出成形で製造することができるため、あらかじめホッパー内に溶融樹脂を保持しておくことができ、連続的に光半導体パッケージの形成が可能となり、生産効率が向上する。また、一般的な射出成形装置を用いることができ、専用ラインが不要であり、汎用性が高く、メンテナンス性も高いため、生産効率の低化を防ぐことができる。
 なお、以上の説明ではリフレクタ5と保持樹脂20とを一括成形する場合を例に説明したが、リフレクタ5と保持樹脂20とを別々に、さらに異なる材料で成形することもできる。
 また、図2に示すリフレクタを設けない光半導体パッケージの樹脂6を形成する場合にも、それに即した金型を用いることにより射出成形で光半導体パッケージを形成することができる。
(実施の形態4)
 実施の形態3の不飽和ポリエステル樹脂に対して、さらに、繊維長の長いガラス繊維と球状のシリカからなるフィラーを添加することにより樹脂の強度を向上させることができる。
 また、酸化チタンを添加することにより光の反射率を向上させることができる。
 上記フィラー、または酸化チタン、あるいはこれらの両方に、さらに、無水マレイン酸,フマル酸,スチレン,充填材,補強剤,硬化剤,離型剤,顔料,その他の添加剤を適宜組み合わせて添加することもできる。
 例えば、主剤である不飽和ポリエステル成分を15%~25%含有し、添加剤としてガラス繊維を5%~20%、酸化チタンを30%~40%、シリカを20%~30%、その他添加剤を1%~3%添加することにより、光の反射率を高くしながら、劣化耐性を向上させることができる。
 光半導体パッケージとして不飽和ポリエステル樹脂を射出成形する場合に、不飽和ポリエステル樹脂は硬く脆い特徴を有するため、クラックや割れが発生したり、スクリューに巻きつき混練が不十分であったり、擦れ込みによって樹脂が変色する場合があった。本実施の形態では、不飽和ポリエステル材料の割合、ガラス繊維の割合、酸化チタンの割合、離型剤の割合等の樹脂配合を最適化することにより、このような課題を解決し、不飽和ポリエステル樹脂のリフレクタ等への使用を可能とした。
 これらの不飽和ポリエステルから成る樹脂の製造方法は、まず、容器に、15%~25%の不飽和ポリエステル成分、添加剤として5%~20%のガラス繊維、30%~40%の酸化チタン、20%~30%のシリカ、および1%~3%のその他の添加剤を投入して攪拌し、細長い円柱状に成形した後、ペレット状に切断してホッパー12に投入する樹脂材料を形成する。
(実施の形態5)
 次に、図5を用いて本発明の光半導体装置の構成を説明する。
 図5は本発明の光半導体装置の構成を示す断面図であり、図5(a)はリフレクタを備える光半導体装置を例示する図、図5(b)はリフレクタを備えない光半導体装置を例示する図、図5(c)はリードの裏面に保持樹脂を設ける光半導体装置を例示する図である。
 図5(a)に示すように、実施の形態1~実施の形態4で示したリフレクタを備える光半導体パッケージに対して、リード1の搭載領域3上に半導体素子15を接合し、半導体素子15の端子とリード2の接続領域4とをワイヤ16等の導電材で電気的に接続する。さらに、半導体素子15とワイヤ16とを封止するように、リフレクタ5の開口内部に透光性樹脂17を充填する。このような構成の光半導体装置により、光の反射率を維持しながら、光半導体装置を長時間発光させた場合でも、リフレクタ5あるいは露出する保持樹脂20の劣化、および劣化による変色を抑制でき、高反射率を維持して発光光率を維持することができる。
 また、図5(b)に示すように、実施の形態1~実施の形態4で示したリフレクタを備えない光半導体パッケージに対して、リード1の搭載領域3上に半導体素子15を接合し、半導体素子15の端子とリード2の接続領域4とをワイヤ16等の導電材で電気的に接続する。さらに、少なくとも半導体素子15とワイヤ16の周囲を覆うように、リード1,2上にレンズ18を接合する。このような構成の光半導体装置により、光の反射率を維持しながら、光半導体装置を長時間発光させた場合でも、露出する樹脂6の劣化、および劣化による変色を抑制でき、高反射率を維持して発光光率を維持することができる。
 また、リード1,2の主面に対する裏面にもリード1,2を保持するための樹脂を設けることができる。
 例えば、図5(c)に示すように、実施の形態1~実施の形態4で示したリフレクタを備える光半導体パッケージについて、リード1,2の主面に対する裏面にもリード1,2を保持するための樹脂19を設けることができる。この場合、裏面にリード1,2が露出しないため、リード1,2を折り曲げて裏面の樹脂19に沿うように端子を形成しても良いし、ガルウィング状に端子を形成しても良い。そして、このように形成した光半導体パッケージに対して、リード1の搭載領域3上に半導体素子15を接合し、半導体素子15の端子とリード2の接続領域4とをワイヤ16等の導電材で電気的に接続する。さらに、半導体素子15とワイヤ16とを封止するように、リフレクタ5の開口内部に透光性樹脂17を充填する。このような構成の光半導体装置により、光の反射率を維持しながら、光半導体装置を長時間発光させた場合でも、リフレクタ5あるいは露出する保持樹脂20の劣化、および劣化による変色を抑制でき、高反射率を維持して発光光率を維持することができる。
 本発明は、樹脂の劣化を抑制し、反射率の低化を抑制することができ、リードを樹脂で保持し、リード上に光半導体素子の搭載領域を備える光半導体パッケージおよびその製造方法ならびに光半導体装置等に有用である。

Claims (12)

  1.  主面に光半導体素子の搭載領域を備える第1のリードと、
     主面に前記光半導体素子との導通に用いる導電材の接続領域を備える1または複数の第2のリードと、
     前記第1のリードおよび前記第2のリードを保持する保持樹脂と
    を有し、少なくとも前記搭載領域の周囲に露出する前記保持樹脂が熱硬化性樹脂であることを特徴とする光半導体パッケージ。
  2.  少なくとも前記搭載領域および前記接続領域を開口して前記第1のリードおよび前記第2のリードの主面上に形成されるリフレクタをさらに有し、
    前記リフレクタが熱硬化性樹脂であることを特徴とする請求項1記載の光半導体パッケージ。
  3.  前記熱硬化性樹脂が、エポキシ樹脂、シリコーン樹脂、変性シリコーン樹脂のうちのいずれかであることを特徴とする請求項2記載の光半導体パッケージ。
  4.  前記熱硬化性樹脂が、環状脂肪族型エポキシ樹脂であることを特徴とする請求項2記載の光半導体パッケージ。
  5.  前記熱硬化性樹脂が、不飽和ポリエステル樹脂であることを特徴とする請求項2記載の光半導体パッケージ。
  6.  前記不飽和ポリエステル樹脂にガラス繊維と球状シリカからなるフィラーが添加されることを特徴とする請求項5記載の光半導体パッケージ。
  7.  前記不飽和ポリエステル樹脂に酸化チタンが添加されることを特徴とする請求項5記載の光半導体パッケージ。
  8.  前記不飽和ポリエステル樹脂にガラス繊維と球状シリカからなるフィラーと酸化チタンと任意の添加剤が添加され、前記不飽和ポリエステル樹脂の成分比をA、前記ガラス繊維の成分比をB、前記酸化チタンの成分比をC、前記シリカの成分比をD、前記添加剤の成分比をEとし、15%<A<25%、5%<B<20%、30%<C<40%、20%<D<30%、1%<E<3%、A+B+C+D+E=100%であることを特徴とする請求項5記載の光半導体パッケージ。
  9.  前記熱硬化性樹脂が、芳香族成分が未含有の樹脂であることを特徴とする請求項1~請求項8のいずれかに記載の光半導体パッケージ。
  10.  請求項2記載の光半導体パッケージの製造方法であって、
     金型内に前記第1のリードおよび前記第2のリードを載置する工程と、
     前記金型内に前記熱硬化性樹脂を流入させて前記保持樹脂および前記リフレクタをトランスファーモールド成形する工程と、
     前記熱硬化性樹脂を硬化させる工程と
    を有し、前記熱硬化性樹脂がエポキシ樹脂または環状脂肪族型エポキシ樹脂であることを特徴とする光半導体パッケージの製造方法。
  11.  請求項6記載の光半導体パッケージの製造方法であって、
     金型内に前記第1のリードおよび前記第2のリードを載置する工程と、
     前記金型内に前記熱硬化性樹脂を注入して前記保持樹脂および前記リフレクタを射出成形する工程と、
     前記熱硬化性樹脂を硬化させる工程と
    を有し、前記熱硬化性樹脂がシリコーン樹脂、変性シリコーン樹脂あるいは不飽和ポリエステル樹脂であることを特徴とする光半導体パッケージの製造方法。
  12.  前記金型を150℃~200℃で保持し、前記熱硬化性樹脂を50℃~90℃に加熱して前記金型内に流入または注入することを特徴とする請求項10または請求項11のいずれかに記載の光半導体パッケージの製造方法。
PCT/JP2012/003521 2011-06-07 2012-05-30 光半導体パッケージおよびその製造方法 WO2012169147A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/703,996 US9018658B2 (en) 2011-06-07 2012-05-30 Optical semiconductor package and method of manufacturing the same
CN201280001880.3A CN102971874A (zh) 2011-06-07 2012-05-30 光半导体封装体及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011126818 2011-06-07
JP2011-126818 2011-06-07

Publications (1)

Publication Number Publication Date
WO2012169147A1 true WO2012169147A1 (ja) 2012-12-13

Family

ID=47295735

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003521 WO2012169147A1 (ja) 2011-06-07 2012-05-30 光半導体パッケージおよびその製造方法

Country Status (4)

Country Link
US (1) US9018658B2 (ja)
JP (1) JPWO2012169147A1 (ja)
CN (1) CN102971874A (ja)
WO (1) WO2012169147A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014207304A (ja) * 2013-04-12 2014-10-30 パナソニック株式会社 光反射体用不飽和ポリエステル樹脂組成物、及び、発光素子用光反射体
JP2015055785A (ja) * 2013-09-12 2015-03-23 パナソニック株式会社 光反射体用成形材料、光反射体及び照明器具
JP2016213250A (ja) * 2015-04-30 2016-12-15 日亜化学工業株式会社 パッケージ及びその製造方法、並びに発光装置
JP2017113950A (ja) * 2015-12-22 2017-06-29 日亜化学工業株式会社 発光装置、並びにパッケージ及びその製造方法
JP2018045251A (ja) * 2017-11-27 2018-03-22 パナソニックIpマネジメント株式会社 光反射体用成形材料、光反射体、照明器具及び光反射体の製造方法
JP2018082034A (ja) * 2016-11-16 2018-05-24 日亜化学工業株式会社 発光装置
JPWO2018056106A1 (ja) * 2016-09-26 2019-06-24 パナソニックIpマネジメント株式会社 ミリ波反射用樹脂組成物、それを用いた樹脂シート、繊維及びミリ波反射用物品
JP2021535628A (ja) * 2018-08-30 2021-12-16 シェンツェン ジュフェイ オプトエレクトロニクス カンパニー リミテッドShenzhen Jufei Optoelectronics Co., Ltd 発光部品及びその製造方法、リードフレーム、ブラケット、発光装置
KR102556932B1 (ko) * 2023-04-18 2023-07-19 주식회사 유환 인쇄회로기판의 개별 엘이디 소자 주변부에 반사 성형체를 형성시키는 방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6443429B2 (ja) * 2016-11-30 2018-12-26 日亜化学工業株式会社 パッケージ及びパッケージの製造方法、発光装置及び発光装置の製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5868992A (ja) * 1981-10-20 1983-04-25 Toshiba Corp 半導体発光素子装置
JPH1095910A (ja) * 1996-09-26 1998-04-14 Fuji Electric Co Ltd 半導体封止用不飽和ポリエステル樹脂組成物とその成形方法
JP2002249636A (ja) * 2001-02-26 2002-09-06 Sumitomo Bakelite Co Ltd フェノール樹脂成形材料
JP2004251950A (ja) * 2003-02-18 2004-09-09 Fuji Xerox Co Ltd 画像表示媒体用リブ及びその製造方法、並びに、それを用いた画像表示媒体
JP2006156704A (ja) * 2004-11-30 2006-06-15 Nichia Chem Ind Ltd 樹脂成形体及び表面実装型発光装置並びにそれらの製造方法
JP2006157034A (ja) * 2006-01-16 2006-06-15 Matsushita Electric Works Ltd 電磁装置の製造方法
JP2007138017A (ja) * 2005-11-18 2007-06-07 Kyocera Chemical Corp 絶縁性透光基板及び光半導体装置
WO2010082660A1 (ja) * 2009-01-19 2010-07-22 大成プラス株式会社 金属合金を含む接着複合体とその製造方法
JP2011103437A (ja) * 2009-10-15 2011-05-26 Nichia Corp 発光装置及びその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2899540B2 (ja) * 1995-06-12 1999-06-02 日東電工株式会社 フィルムキャリアおよびこれを用いた半導体装置
JP3174271B2 (ja) * 1995-07-27 2001-06-11 株式会社小糸製作所 ランプ反射鏡用成形組成物、それを用いたランプ反射鏡の製造方法及びランプ反射鏡
JP3472450B2 (ja) 1997-09-04 2003-12-02 シャープ株式会社 発光装置
JP2001168400A (ja) * 1999-12-09 2001-06-22 Rohm Co Ltd ケース付チップ型発光装置およびその製造方法
JP4077170B2 (ja) * 2000-09-21 2008-04-16 シャープ株式会社 半導体発光装置
TW585015B (en) * 2001-06-28 2004-04-21 Sanyo Electric Co Hybrid integrated circuit device and method for manufacturing same
US20030236388A1 (en) * 2002-06-12 2003-12-25 General Electric Company Epoxy polymer precursors and epoxy polymers resistant to damage by high-energy radiation
TWI302041B (en) * 2006-01-19 2008-10-11 Everlight Electronics Co Ltd Light emitting diode packaging structure
US9673362B2 (en) * 2006-06-02 2017-06-06 Hitachi Chemical Company, Ltd. Optical semiconductor element mounting package, and optical semiconductor device using the same
JP5470680B2 (ja) * 2007-02-06 2014-04-16 日亜化学工業株式会社 発光装置及びその製造方法並びに成形体
JP4167717B1 (ja) * 2007-11-21 2008-10-22 E&E Japan株式会社 発光装置及びその製造方法
JP2009231269A (ja) * 2008-02-25 2009-10-08 Sumitomo Chemical Co Ltd 反射板及び発光装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5868992A (ja) * 1981-10-20 1983-04-25 Toshiba Corp 半導体発光素子装置
JPH1095910A (ja) * 1996-09-26 1998-04-14 Fuji Electric Co Ltd 半導体封止用不飽和ポリエステル樹脂組成物とその成形方法
JP2002249636A (ja) * 2001-02-26 2002-09-06 Sumitomo Bakelite Co Ltd フェノール樹脂成形材料
JP2004251950A (ja) * 2003-02-18 2004-09-09 Fuji Xerox Co Ltd 画像表示媒体用リブ及びその製造方法、並びに、それを用いた画像表示媒体
JP2006156704A (ja) * 2004-11-30 2006-06-15 Nichia Chem Ind Ltd 樹脂成形体及び表面実装型発光装置並びにそれらの製造方法
JP2007138017A (ja) * 2005-11-18 2007-06-07 Kyocera Chemical Corp 絶縁性透光基板及び光半導体装置
JP2006157034A (ja) * 2006-01-16 2006-06-15 Matsushita Electric Works Ltd 電磁装置の製造方法
WO2010082660A1 (ja) * 2009-01-19 2010-07-22 大成プラス株式会社 金属合金を含む接着複合体とその製造方法
JP2011103437A (ja) * 2009-10-15 2011-05-26 Nichia Corp 発光装置及びその製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014207304A (ja) * 2013-04-12 2014-10-30 パナソニック株式会社 光反射体用不飽和ポリエステル樹脂組成物、及び、発光素子用光反射体
JP2015055785A (ja) * 2013-09-12 2015-03-23 パナソニック株式会社 光反射体用成形材料、光反射体及び照明器具
JP2016213250A (ja) * 2015-04-30 2016-12-15 日亜化学工業株式会社 パッケージ及びその製造方法、並びに発光装置
US10790425B2 (en) 2015-04-30 2020-09-29 Nichia Corporation Package and method of manufacturing the same, and light emitting device using the package
JP2017113950A (ja) * 2015-12-22 2017-06-29 日亜化学工業株式会社 発光装置、並びにパッケージ及びその製造方法
JPWO2018056106A1 (ja) * 2016-09-26 2019-06-24 パナソニックIpマネジメント株式会社 ミリ波反射用樹脂組成物、それを用いた樹脂シート、繊維及びミリ波反射用物品
JP2018082034A (ja) * 2016-11-16 2018-05-24 日亜化学工業株式会社 発光装置
JP7053980B2 (ja) 2016-11-16 2022-04-13 日亜化学工業株式会社 発光装置
JP2018045251A (ja) * 2017-11-27 2018-03-22 パナソニックIpマネジメント株式会社 光反射体用成形材料、光反射体、照明器具及び光反射体の製造方法
JP2021535628A (ja) * 2018-08-30 2021-12-16 シェンツェン ジュフェイ オプトエレクトロニクス カンパニー リミテッドShenzhen Jufei Optoelectronics Co., Ltd 発光部品及びその製造方法、リードフレーム、ブラケット、発光装置
KR102556932B1 (ko) * 2023-04-18 2023-07-19 주식회사 유환 인쇄회로기판의 개별 엘이디 소자 주변부에 반사 성형체를 형성시키는 방법

Also Published As

Publication number Publication date
US9018658B2 (en) 2015-04-28
CN102971874A (zh) 2013-03-13
US20130134468A1 (en) 2013-05-30
JPWO2012169147A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
WO2012169147A1 (ja) 光半導体パッケージおよびその製造方法
TWI321594B (en) Method for the production of a radiation-emitting optical component and radiation-emitting optical component
JP6197933B2 (ja) 電子線硬化性樹脂組成物、リフレクター用樹脂フレーム、リフレクター、半導体発光装置、及び成形体の製造方法
CN101030611B (zh) 大功率发光二极管点胶工艺
US20130056774A1 (en) Lens, package and packaging method for semiconductor light-emitting device
JP5699329B2 (ja) リフレクター用樹脂組成物、リフレクター用樹脂フレーム、リフレクター、及び半導体発光装置
JP7065382B2 (ja) 光反射体用成形材料及びその製造方法、光反射体、ベース体及びその製造方法、並びに発光装置
JP2012094787A (ja) 光半導体装置およびそれに用いる光半導体装置用パッケージならびにこれらの製造方法
JP2013181123A (ja) リフレクター用樹脂組成物、リフレクター用樹脂フレーム、リフレクター、半導体発光装置、及び成形方法
KR20080029469A (ko) 다중 몰딩부재를 갖는 발광 다이오드 패키지 제조방법
TWI483418B (zh) 發光二極體封裝方法
TW201714904A (zh) 光反射體材料、光反射體以及照明器具
JP2013522077A (ja) オプトエレクトロニクス部品およびその製造方法
KR100727604B1 (ko) 발광 출력이 개선된 발광 다이오드
JPH04329680A (ja) 発光装置
KR100712876B1 (ko) 색 균일성을 향상시킬 수 있는 발광 다이오드 및 그제조방법
TWI422070B (zh) 化合物半導體封裝結構及其製造方法
JP2019104786A (ja) 光反射体用成形材料、光反射体、ベース体及びその製造方法、並びに発光装置
TW201803159A (zh) 發光二極體元件結構、支架材料、以及支架的製備方法
JP2020534706A (ja) 発光デバイス及びその製造方法
CN104981511A (zh) 电子束固化性树脂组合物、反射器用树脂框架、反射器、半导体发光装置、及成形体的制造方法
JP2004088006A (ja) 発光ダイオード及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280001880.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012540212

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13703996

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12797116

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12797116

Country of ref document: EP

Kind code of ref document: A1