WO2012169067A1 - 高強度、高伸び率金合金ボンディングワイヤ - Google Patents

高強度、高伸び率金合金ボンディングワイヤ Download PDF

Info

Publication number
WO2012169067A1
WO2012169067A1 PCT/JP2011/063377 JP2011063377W WO2012169067A1 WO 2012169067 A1 WO2012169067 A1 WO 2012169067A1 JP 2011063377 W JP2011063377 W JP 2011063377W WO 2012169067 A1 WO2012169067 A1 WO 2012169067A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
gold
bonding wire
heat treatment
elongation
Prior art date
Application number
PCT/JP2011/063377
Other languages
English (en)
French (fr)
Inventor
道孝 三上
Original Assignee
田中電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田中電子工業株式会社 filed Critical 田中電子工業株式会社
Priority to DE112011100491T priority Critical patent/DE112011100491T5/de
Priority to SG2012024006A priority patent/SG186692A1/en
Priority to PCT/JP2011/063377 priority patent/WO2012169067A1/ja
Priority to KR1020127008167A priority patent/KR20140033299A/ko
Priority to CN2011800489953A priority patent/CN103155129A/zh
Priority to US13/499,977 priority patent/US20120312428A1/en
Publication of WO2012169067A1 publication Critical patent/WO2012169067A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0227Rods, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3013Au as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/14Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of noble metals or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48699Principal constituent of the connecting portion of the wire connector being Aluminium (Al)
    • H01L2224/487Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48717Principal constituent of the connecting portion of the wire connector being Aluminium (Al) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48724Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds

Definitions

  • the present invention relates to a gold alloy bonding wire suitable for connection between an IC chip electrode used in a semiconductor device and a substrate such as an external lead, in particular, a gold alloy bonding used in a high temperature environment such as an in-vehicle or high-speed device.
  • a gold alloy bonding wire suitable for connection between an IC chip electrode used in a semiconductor device and a substrate such as an external lead, in particular, a gold alloy bonding used in a high temperature environment such as an in-vehicle or high-speed device.
  • a gold wire for connecting an IC chip electrode of a semiconductor device and an external lead a gold wire having a purity of 99.99% by mass or more in which a small amount of other metal element is contained in high-purity gold is excellent in reliability. It is used a lot.
  • One end of such a pure gold wire is connected to a pure Al pad or Al alloy pad on the IC chip electrode by an ultrasonic combined thermocompression bonding method, and the other end is connected to an external lead or the like on the substrate.
  • the semiconductor device is stopped.
  • Such an Al alloy pad is usually formed by vacuum deposition or the like, and is typically an Al—Cu alloy, an Al—Si alloy, an Al—Si—Cu alloy, or the like.
  • This Au—Pd alloy wire can suppress the diffusion of Au into the Al pad at the bonding interface between the Al alloy pad and the pure gold wire in a high temperature environment by Pd.
  • the formation of the intermetallic compound Au 4 Al which is said to be easy, is relatively hindered, the deterioration of the Al alloy pad or the joint between the Al alloy pad and the gold alloy wire can be suppressed, and the joint strength is not reduced.
  • This Au-1 mass% Pd alloy wire is superior in mechanical characteristics to a pure gold wire having a purity of 99.99 mass% or more, it has a high specific resistance value of the bonding wire, which is an electrical characteristic.
  • the resistivity of a pure gold wire with a purity of 99.99% by mass is 2.3 ⁇ ⁇ cm
  • the Au-1% by mass Pd alloy is 3.0 ⁇ ⁇ cm.
  • the element may malfunction or break due to heat generated by the wire, and the signal response speed may be delayed. This tendency becomes stronger as the diameter of the bonding wire is reduced from 25 ⁇ m to 15 ⁇ m.
  • the detailed mechanism is unknown, but the presence of Pd may promote the oxidation of Al unexpectedly at the bonding interface.
  • the oxidation of Al is more than that of an Au bonding wire containing a trace amount of added elements and having a purity of 99.99 mass% or more.
  • a large amount of the product Al 2 O 3 may be generated and become weak.
  • This bonding wire contains 0.05 to 0.95 mass% of Ag and 0.0001 to 0.005 mass% of one or more of Ca, Y and rare earth elements with the balance being Au and inevitable impurities. It is an alloy.
  • An object of this bonding wire is to provide a gold alloy wire for a semiconductor device that has high strength, prevents an excessive increase in specific resistance, and does not cause loop deformation (paragraph 0010 of the publication).
  • This tendency indicates a high purity gold (Au) bonding wire having a purity of 99.99% by mass or more and a curve representing the elongation rate in the vicinity of 4% elongation at break and high strength at break. Since the slope of the curve is gradual, even if the heat treatment conditions in the vicinity of 4% elongation at break were wide, there was no significant change. However, in the case of a gold alloy having a high content of additive elements and a low gold purity, it is generally high in strength, high in breaking strength and low in elongation.
  • the elongation rate is improved by heat treatment and the breaking strength is lowered to an appropriate range, but when the heat treatment temperature is raised and the elongation rate is improved, the elongation rate suddenly increases from around 4%, On the other hand, the breaking strength on the other hand suddenly decreases, making it extremely difficult to balance the two values.
  • FIGS. In the figure, the high-purity gold wire has a gentle slope of the curve representing the change in elongation and breaking strength in the vicinity of the heat treatment temperature where the elongation is around 4%, and has a large tolerance for the heat treatment temperature change.
  • the change rate of the elongation rate is small with respect to the width of the heat treatment temperature range (similarly, the change width of the breaking strength is also small), it is easy to adjust the breaking strength based on the elongation rate.
  • an alloy wire containing a strengthening element and improved in strength greatly changes in elongation rate and breaking strength with respect to changes in the heat treatment temperature, and both curves have a large slope.
  • the width of the elongation change (the width of the breaking strength change) is remarkably expanded with respect to the same heat treatment temperature change width, and these values greatly change with the slight change of the heat treatment temperature. .
  • the elongation rate is adjusted to 5 to 10 or more according to these strengths. If the temperature is set to%, the curves representing the change in elongation and the change in wire strength accompanying the temperature change intersect at a steep slope in the heat treatment temperature range, making it difficult to set and maintain the heat treatment conditions, and the properties of the obtained wire Is not constant. For this reason, a bonding wire having a constant property cannot be obtained, which causes a variation in leaning and loop height.
  • the bonding wire becomes thinner, the bonding pitch becomes narrower and the density becomes higher, and wiring is made with a multistage or long / short difference in one semiconductor element, the gold alloy bonding wire is second bonded.
  • the variation in the loop height and the variation in the loop height due to the leaning have become apparent, and it has begun to greatly affect the bonding quality of the bonding wire.
  • leaning refers to a bonding method in which a bonding wire is ball-bonded to the pad side, the wire is erected immediately above the ball, and the wire erection part falls down in the loop formation that gently inclines toward the lead side. It is a malfunction that may come into contact.
  • the bonding wires are thin and the distance between the wires is narrow, so that leaning is likely to occur, which is a major factor in reducing the assembly yield of the semiconductor device.
  • the present invention has been made to solve the above problems.
  • the heat treatment temperature varies somewhat or the composition of the bonding wire gold alloy is slightly different, there is little variation in loop height due to leaning, and certain mechanical properties. It is an object to provide a bonding wire having
  • the inventors have set at least one of copper (Cu), silver (Ag), palladium (Pd), and platinum (Pt) having a region in which the elongation becomes flat as the heat treatment temperature rises to 0. Bonding with less variation in loop height due to leaning when bonding wire is heat-treated using a flat heat treatment temperature region in a gold alloy bonding wire consisting of .5-30% by mass and the balance being gold (Au) It has been found that a wire can be obtained.
  • the alloys include beryllium (Be), calcium (Ca), rare earth elements (Y, La, Ce, Eu, Gd, Nd, and Sm), silicon (Si), germanium (Ge), tin (Sn), It has been found that even when at least one of indium (In), bismuth (Bi), and boron (B) is contained in a total amount of 10 to 150 ppm by mass, the structure of the wire cross section hardly changes.
  • (A) In the first aspect of the present invention, at least one of copper (Cu), silver (Ag), palladium (Pd), or platinum (Pt) having a region in which the elongation becomes flat as the heat treatment temperature increases.
  • a semiconductor element characterized in that it is a bonding wire composed of 0.5 to 30% by mass of seeds or more and the balance being gold (Au), and is heat-treated at 450 to 650 ° C., which is a flat region. It is a bonding wire.
  • (B) In the second aspect of the present invention, at least at least one of copper (Cu), silver (Ag), palladium (Pd), and platinum (Pt) having a region where the elongation becomes flat as the heat treatment temperature rises.
  • One or more types of bonding wires made up of 0.5 to 30% by mass in total and the balance being gold (Au), the elongation rate of which is a flat region, heat-treated at 450 to 650 ° C. and then water-cooled
  • Au gold
  • the gold alloy of the present invention comprises 0.5 to 30% by mass of at least one of copper (Cu), silver (Ag), palladium (Pd) and platinum (Pt), and the balance is gold (Au). .
  • Copper (Cu), silver (Ag), palladium (Pd) or platinum (Pt) is a typical element to be contained in the gold alloy.
  • copper (Cu) or silver (Ag) forms a solid solution in Au even in a small amount to form an Au—Cu alloy or Au—Ag alloy.
  • Au-Cu alloy or Au-Ag alloy has a wider temperature range for heat treatment in a flat region than a gold alloy of palladium (Pd) or platinum (Pt).
  • palladium (Pd) is preferably in the range of 0.5 to 2% by mass and the balance of gold (Au) from the practical viewpoint.
  • platinum (Pt) is preferably in the range of 0.5 to 5% by mass and the balance of gold (Au).
  • silver (Ag) is preferably in the range of 5 to 20% by mass and the balance of gold (Au).
  • the gold alloy of the present invention contains 0.5 to 30% by mass of at least one of copper (Cu), silver (Ag), palladium (Pd) or platinum (Pt), the gold alloy is heat treated. It has a region where the elongation becomes flat as the temperature rises. The region where the elongation becomes flat and the elongation vary somewhat depending on the type and amount of the metal contained and the heat treatment temperature.
  • a more preferable range for the Au—Cu alloy is a range of 0.5 to 5 mass%.
  • a more preferable range for the Au—Ag alloy is a range of 5 to 20% by mass. In any case, the temperature range of the heat treatment in the flat region becomes larger.
  • a gold alloy having a purity of 99.99% by mass or more does not have such a flat region, and the elongation rate continues to increase as the heat treatment temperature rises. End up.
  • the heat treatment temperature of the gold alloy is too high, as with the gold alloy having a purity of 99.99% by mass or more, the elongation rate continues to increase with the increase of the heat treatment temperature, and eventually breaks.
  • the heat treatment temperature and elongation of the gold and gold alloy having the composition shown in Table 1, and the heat treatment temperature. 1 and 2 show the relationship between the strength and the breaking strength.
  • the bonding wire of 5N high-purity gold tends to have a relatively flat elongation change at a heat treatment temperature of 350 to 400 ° C. near an elongation of 4%, while the breaking load shown in FIG. In relation to the heat treatment temperature, the same heat treatment temperature within the same range shows a tendency to change relatively slowly.
  • the respective alloys of Au-16% Ag, Au-18% Ag, Au-1% Cu, Au-1.5% Pd the relationship between the heat treatment temperature, the elongation rate, and the breaking load is shown in the graph.
  • the breaking load is reduced as in the case of the 5N pure gold wire, but the heat treatment temperature of 450 ° C. to 650 ° C. is inherently high strength. It can be seen that a value equal to or higher than the breaking load at 4% elongation of 5N pure gold wire is maintained.
  • the above findings were obtained as a result of rigorous verification by adding these additive elements to high-purity gold, but by utilizing these properties, a wide range of heat treatment temperatures, that is, stable heat treatment conditions were obtained.
  • a gold alloy wire having a strength corresponding to the above elongation can be obtained, and an alloy wire having a different strength can be obtained by controlling the heat treatment temperature, and the variation in these properties is small and obtained under stable conditions. It is done.
  • the starting temperature of the region where the elongation change with respect to the heat treatment temperature of the gold alloy of the present invention becomes flat is generally in the temperature range of 450 to 650 ° C.
  • the heat treatment of the present invention has a temperature range from the region where the elongation becomes flat (hereinafter referred to as “ST”) to ST + 200 ° C., more preferably from ST to ST + 100 ° C. This is because the size of the crystal grains becomes more uniform.
  • Water cooling after heat treatment By rapidly cooling after the heat treatment, the coarsening of the partial crystal grains of the bonding wire can be prevented, and even with a bonding wire of tens of thousands of meters, more uniform crystal grains can be obtained throughout. Water cooling is preferably performed immediately before winding of the bonding wire. Since the bonding wire is wound around the spool under a certain tension, the bonding wire is provided with rigidity. For this reason, as the wire diameter of the bonding wire is reduced to 8 to 16 ⁇ m, the rapid cooling effect of the heat treatment is exhibited.
  • the gold alloy wire for bonding wire according to the present invention has a structure in which crystal grains having a grain size larger than the conventional grain size are regularly arranged with respect to the crystal structure of the bonding wire.
  • the mechanical properties are softer than those of conventional alloy wires. Therefore, the bonding wire made of the gold alloy of the present invention has the effect that there is no variation in the leaning and loop height and the variation in the bonding strength of the second bond due to ultrasonic bonding is less than that of the conventional bonding wire. is there.
  • the gold alloy of the present invention since the gold alloy of the present invention has a good bondability with the Al pad or the Al alloy pad in the first bond, the bonding reliability of the bonding wire can be secured, regardless of the use environment such as high temperature or normal temperature. Therefore, it is possible to ensure the bonding reliability for the semiconductor device.
  • Elongation rate change with respect to heat treatment temperature of high purity gold wire and gold alloy wire of the present invention Change in breaking strength (breaking load) with respect to the heat treatment temperature of the high purity alloy wire and the gold alloy wire of the present invention.
  • the conceptual diagram which shows the relationship between the heat processing temperature, elongation rate, and breaking strength of a high purity gold alloy wire and a strengthening element containing high strength alloy wire.
  • the best mode of the present invention is when the gold alloy wire of the present invention continuously die-drawn is made at a heat treatment temperature of ST to ST + 100 ° C. from the final wire drawing die to being wound on the spool. Achieved. Since the bonding wire is thin, it is rapidly cooled even in the atmosphere, but the quality is stabilized by water cooling. In particular, in the case of an Au-20 mass% Ag alloy, an Au-0.5 to 5 mass% Cu alloy, and an Au-0.8 to 1.2 mass% Pd alloy, the leaning and loop height under the above conditions Stable bonding reliability is obtained with respect to variations in the wire strength from the semiconductor chip (the same applies hereinafter) and variations in the bonding strength of the second bond.
  • a gold alloy wire of 20 ⁇ m was formed by melt casting and drawing a gold alloy of Examples having a component composition in these ranges.
  • Gold alloy wires for bonding wires according to the present invention (hereinafter referred to as “wires of the present invention”) Nos. 1 to 27 and gold alloy wires for bonding wires of comparative examples that do not fall within the composition range of the present invention (hereinafter referred to as comparative wire) No. 28 to 36 were manufactured. These wire Nos. 1 to 27 and comparative wires No.
  • leaning indicates the deviation value of the amount of wire inclination
  • indicates less than 5 ⁇ m
  • indicates 5 ⁇ m or more and less than 8 ⁇ m
  • Triangle indicates 8 ⁇ m or more and less than 10 ⁇ m
  • X indicates 10 ⁇ m or more.
  • the loop height indicates the value of the standard deviation of the variation.
  • the symbol ⁇ indicates less than 15 ⁇ m
  • the symbol ⁇ indicates 15 ⁇ m or more and less than 20 ⁇ m
  • the symbol ⁇ indicates 20 ⁇ m or more and less than 30 ⁇ m
  • the symbol ⁇ indicates 30 ⁇ m. The above is shown respectively.
  • the bonding strength of the second bond indicates the value of standard deviation, with ⁇ marked less than 0.8, ⁇ marked 0.8 or more and less than 1.0, ⁇ marked 1 0.0 or more and less than 1.5, and x indicates 1.5 or more, respectively.
  • the gold alloy wire of the present invention is characterized in that it is heat-treated in a region where the change in elongation is flattened with respect to the element composition contained in the invention range.
  • the resulting wire of the present invention is soft and has good mechanical properties, while leaning, variation in loop height, and bonding strength of the second bond are good. It can be seen that the comparative wires No. 28 to No. 36 which do not have at least one of these evaluations are defective.
  • the elongation rate of the wire of the present invention is kept almost constant in these heat treatment temperature ranges, by using this condition, an alloy wire with a certain strength or higher can be obtained regardless of temperature change, and the temperature By appropriately selecting the region, wires having different properties with respect to these elongation rates can be obtained. Furthermore, from the combination of these conditions, a property with almost constant properties can be obtained with little variation in properties related to leaning and loop height.
  • the comparative example has a large elongation and change in strength with respect to the heat treatment temperature change, so that a certain property cannot be obtained, and more elements are added to improve the mechanical properties and strength. In addition, both of them were poor in leaning and loop height, and the balance between elongation and strength was not maintained.
  • the bonding wire of the present invention can obtain a wire having a desired breaking strength by utilizing the existence of a flat region where the elongation changes with respect to the heat treatment temperature.
  • By heat-treating in various regions it is possible to obtain wires with stable properties, so it is possible to stably manufacture wires with various properties required for bonding wires, and to improve their productivity. Can also contribute.

Abstract

【課題】金合金線からなるボンディングワイヤにおいて、所要の伸びと破断強度の組み合わせを得る。 【解決手段】高純度金(Au)に銅(Cu)、銀(Ag)、パラジウム(Pd)または白金(Pt)の内の少なくとも一種以上を0.5~30質量%含有することによって、ワイヤ伸線加工の熱処理温度において、450~650℃の範囲で、伸び率変化の平坦な領域が出現する。この温度範囲において、ワイヤの破断強度は低下するが、なお高純度金線の標準とされる伸び率4%の熱処理温度に対応する強度以上の強度を維持する。 従って、この平坦領域で熱処理することにより、温度変化によらず一定以上の強度の合金ワイヤが得られ、また温度域を適宜に選択することによってこれらの伸び率に対して強度の異なる性質のワイヤが得られる。

Description

高強度、高伸び率金合金ボンディングワイヤ
 本発明は、半導体装置に用いられるICチップ電極と外部リード等の基板の接続に好適な金合金ボンディングワイヤ、特に、車載用や高速デバイス用等の高温となる環境下で使用される金合金ボンディングワイヤに関する。
 従来から、半導体装置のICチップ電極と外部リードを接続する金線として、高純度金に他の金属元素を微量含有させた純度99.99質量%以上の金線が信頼性に優れているとして多用されている。このような純金線は、一端が超音波併用熱圧着ボンディング法によってICチップ電極上の純AlパッドやAl合金パッドと接続され、他端が基板上の外部リード等に接続され、その後、樹脂封止して半導体装置とされる。このようなAl合金パッドは、通常、真空蒸着などによって形成され、Al-Cu合金、Al-Si合金、Al-Si-Cu合金等が一般的である。
 ところが、樹脂封止された半導体装置が高温の過酷な使用環境で高度の信頼性が要求される車載用ICや、動作温度が高くなる高周波ICなどで使用されると、カーケンダイルボイドと呼ばれる空隙やクラック、或いは、封止樹脂中に含まれるハロゲン成分による腐食などが発生し、AlパッドやAl合金パッドと純金線との接合界面における抵抗値の上昇や接合強度の低下を招く。このため、これまでよりも高い接合信頼性(ある環境下でのボールボンディングによる接合界面における抵抗値と接合強度の持続性)を確保することが求められ、Au-1質量%Pd合金のボンディングワイヤが使用されている。
このAu-Pd合金のワイヤは、高温環境下でのAl合金パッドと純金線との接合界面においてAuがAlパッド中へ拡散するのをPdによって抑制できるため、接合界面のハロゲン成分による腐食を受けやすいといわれる金属間化合物AuAlの形成が比較的妨げられ、Al合金パッドやAl合金パッドと金合金線との接合部の劣化を抑えることができ、接合強度の低下を招くことがないという利点を有する。このAu-1質量%Pd合金ワイヤは、純度99.99質量%以上の純金線に比べて機械的特性が優れているものの、電気的特性であるボンディングワイヤの比抵抗値が高い。例えば、純度99.99質量%の純金線の比抵抗値が2.3μΩ・cmであるのに対し、Auー1質量%Pd合金は3.0μΩ・cmである。このため、高密度実装を行おうとすると、ワイヤの発熱によって素子が誤動作をしたり、断線をしたりするほか、信号の応答速度も遅延するおそれが生じる。ボンディングワイヤの径を25μmから15μmへと細くしてゆくと、ますますこの傾向が強まる。しかも、Au-1質量%Pd合金の場合、詳細なメカニズムは不明であるが、Pdが存在すると、接合界面で予想外にAlの酸化を促進させることがある。例えば、Au-1質量%Pd合金からなるボンディングワイヤを樹脂封止せずに大気中で高温放置試験をすると、微量添加元素を含有した純度99.99質量%以上のAuボンディングワイヤよりもAlの酸化物Alが多く生成し、弱くなってしまうことがある。
また、Auと全率固溶するAgを合金化してボンディングワイヤとして使用するという着想は、特開昭52-51867合公報や特開昭64-87734号公報などで古くから知られている。そこで、純度99.99質量%以上のAuに対して機械的強度を増強する微量添加元素として知られているCaやLaを、Ag微量添加したAu合金に応用することが考えられて試された。これは、純度99.99質量%程度の純金線の比抵抗値とほぼ同等の比抵抗値を得る目的で、Auを全率固溶するAgを0.06~0.95質量%しつつ、Ca、Y及び希土類元素の内の1種以上を0.001~0.005質量%微量添加する半導体ボンディングワイヤである(後述する特許文献1)。このボンディングワイヤは、Agを0.05~0.95質量%並びにCa,Y及び希土類元素の内の1種以上を0.0001~0.005質量%含み、残部がAu及び不可避不純物とするAu合金である。このボンディングワイヤは、高強度であり、過度な比抵抗値の上昇が抑えられ、かつループ変形が起きない、半導体素子用金合金ワイヤを提供することを目的とする(同公報段落0010)。
 ところが、これまでの金合金のボンディングワイヤは、ほとんど純度99.99質量%以上の金(Au)ボンディングワイヤにおける機械的性質の測定方法を踏襲し、それによる伸び率が4~8%の範囲で破断強度を求めていた。
 ボンディングワイヤの伸びと応力との関係は、引っ張り試験により評価されるが、測定時にボンディングワイヤが破断するまでの最大応力値を引っ張り強さ(破断強度)、そのときの伸びを破断伸びといい、機械的性質として破断伸びを大きくすると引っ張り強さは小さくなり、一般に両者は相反する傾向を示す。
 この引っ張り強度を大きくすると伸び率が低下して破断しやすくなり、また伸び率を大きくとるとボンディングワイヤの引っ張り強度、剛性が低下して、リーニングやワイヤフローを生じるようになる。このため、これらの機械的性質のバランスを兼ねて通常、伸び率4%程度の値が採用される(特許文献2参照)。
 しかしながら、これらの領域は、これらの機械的性質を付与する熱処理温度との関係が、熱処理温度の上昇につれて下降する破断強度曲線と逆に上昇する伸び率を示す曲線とが交差する関係にある。
 この傾向は、純度99.99質量%以上の高純度金(Au)ボンディングワイヤの場合は、本来伸び率が高く、かつ、破断伸び4%の近傍での伸び率を表す曲線および破断強度を表す曲線の傾斜が緩やかであるため、破断伸び4%の近傍になる熱処理条件に幅があっても大きな変化とはならなかった。
 ところが、添加元素の含有量が多く、金の純度が低い金合金の場合には、一般に高強度であって、破断強度が高くかつ伸び率が小さい。これらのバランスをとるため熱処理によって伸び率を向上させると共に破断強度を適正範囲に低下させるが、熱処理温度を上げて、伸び率を向上させると伸び率4%近傍から急激に伸び率が上昇し、これに対する破断強度は逆に急激に低下するようになり、両者の値のバランスを取ることが極めて困難となる。
これらの関係を概念的に図3(A)、(B)の模式図に示す。図において高純度金ワイヤは、伸び率4%近傍となる熱処理温度近傍で伸び率及び破断強度の変化を表す曲線の傾斜が緩やかであり、熱処理温度変化に対して許容度が大きく、また図の熱処理温度域の幅に対して伸び率の変化の幅が小さい(同様に破断強度の変化幅も小さい)ため、伸び率を基準として破断強度を調整することも容易である。
他方、強化元素を含有して強度を向上した合金ワイヤは、熱処理温度の変化に対しての伸び率、及び破断強度共に大きく変化し、いずれの曲線も傾斜が大きくなるため、(B)に図示するように同様の熱処理温度変化の幅に対して、伸び率変化の幅(破断強度変化の幅も)が著しく拡大し、熱処理温度のわずかな変化に対してこれらの値が大きく変わるようになる。
したがって、伸び率4%近傍をいわば指標とする従来の熱処理に倣って、これらの金合金ワイヤの伸び率と強度・剛性のバランスを得るため、伸び率をこれらの強度に合わせて5~10数%に設定しようとすると、その熱処理温度領域では温度変化に伴う伸び率変化及びワイヤ強度変化を表す曲線が急傾斜で交差し、熱処理条件の設定、維持が困難であり、また得られるワイヤの性質が一定しない。
このため、性質の一定したボンディングワイヤが得られず、リーニングやループ高さのバラツキが生じる原因となる。
 一方、ボンディングワイヤが細くなり、ボンディングピッチが狭く高密度になり、かつ、一つの半導体素子中で多段や長短の差を設けて配線するようになってくると、金合金のボンディングワイヤではセカンド接合性のバラツキやリーニングによるループ高さのバラツキが顕在化し、ボンディングワイヤの接合性の良否に大きく影響するようになってき始めた。
 ここで、リーニングとは、ボンディングワイヤをパッド側にボールボンディングしてボール直上部でワイヤを直立させ、リード側に向けて緩やかに傾斜をつけるループ形成において、ワイヤ直立部が倒れて隣接するワイヤと接触するおそれがある不具合のことである。特に、高密度実装においては、ボンディングワイヤが細く、かつ、ワイヤ間の間隔も狭くなるので、リーニングが発生しやすく、半導体装置の組立収率を下げる大きな要因となっている。
特開2003-7757号公報 特開2009-33127号公報
 本発明は、上記課題を解決するためになされたものである。本発明は、ボンディングワイヤ用金合金において、熱処理温度が多少ばらついても、また、ボンディングワイヤの金合金の組成が多少異なっていても、リーニングによるループ高さのバラツキが少なく、一定の機械的性質を有するボンディングワイヤを提供することを目的とする。
 本発明者らは、熱処理温度の上昇と共に伸び率が平坦になる領域を有する、銅(Cu)、銀(Ag)、パラジウム(Pd)、又は白金(Pt)の内の少なくとも1種以上を0.5~30質量%及び残部が金(Au)からなる金合金のボンディングワイヤにおいて、この平坦な熱処理温度領域を利用してボンディングワイヤの熱処理を行えば、リーニングによるループ高さのバラツキが少ないボンディングワイヤが得られることを見出した。
また、上記合金は、ベリリウム(Be)、カルシウム(Ca)、希土類元素(Y、La、Ce、Eu、Gd、Nd、及びSm)、シリコン(Si)、ゲルマニウム(Ge)、すず(Sn)、インジウム(In)、ビスマス(Bi)又はホウ素(B)の内の少なくとも1種以上を合計で10~150質量ppm含んでいても、このワイヤ断面の組織構造がほとんど変化しないことが解った。
  (a)第一の本発明は、熱処理温度の上昇と共に伸び率が平坦になる領域を有する、銅(Cu)、銀(Ag)、パラジウム(Pd)、又は白金(Pt)の内の少なくとも1種以上を0.5~30質量%及び残部が金(Au)からなるボンディングワイヤであって、その伸び率が平坦な領域である450~650℃の熱処理されたことを特徴とする半導体素子用ボンディングワイヤである。
(b)また、第二の本発明は、熱処理温度の上昇と共に伸び率が平坦になる領域を有する、銅(Cu)、銀(Ag)、パラジウム(Pd)又は白金(Pt)の内のすくなくとも1種以上を合計で0.5~30質量%及び残部が金(Au)からなるボンディングワイヤであって、その伸び率が平坦な領域である450~650℃の熱処理された後に水冷されたことを特徴とする半導体素子用ボンディングワイヤである。
 本発明の金合金は、銅(Cu)、銀(Ag)、パラジウム(Pd)または白金(Pt)の内の少なくとも1種以上を0.5~30質量%及び残部が金(Au)からなる。
 銅(Cu)、銀(Ag)、パラジウム(Pd)または白金(Pt)は、金合金に含有させる元素としては代表的なものである。
 このうち、銅(Cu)または銀(Ag)は、周知のように、少量の場合でもAuの中に完全に固溶してAu-Cu合金またはAu-Ag合金を形成する。Au-Cu合金またはAu-Ag合金は、平坦な領域の熱処理の温度範囲がパラジウム(Pd)または白金(Pt)の金合金よりも広い。これは、Cu原子またはAg原子がAuの格子中に満遍なく散在し、均質なAu-Cu合金またはAu-Ag合金を形成していることによるものと考えられる。
 他方、パラジウム(Pd)は、0.5~2質量%の範囲および残部が金(Au)からなる範囲が実用的観点から好ましい。また、白金(Pt)は、同様の理由から、0.5~5質量%の範囲および残部が金(Au)からなる範囲が好ましい。また、銀(Ag)は、同様の理由から、5~20質量%の範囲および残部が金(Au)からなる範囲が好ましい。
 本発明の金合金において、銅(Cu)、銀(Ag)、パラジウム(Pd)または白金(Pt)の内の少なくとも1種以上を0.5~30質量%含有すれば、この金合金は熱処理温度の上昇とともに伸び率が平坦になる領域を有する。伸び率が平坦になる領域や伸び率は、含有金属の種類と量および熱処理温度によっていくぶん異なる。Au-Cu合金にとってより好ましい範囲は、0.5~5質量%の範囲である。Au-Ag合金にとってより好ましい範囲は、5~20質量%の範囲である。いずれも平坦な領域の熱処理の温度範囲がより大きくなるからである。
 他方、純度99.99質量%以上の金合金は、このような平坦な領域がなく、熱処理温度の上昇と共に伸び率が上昇を続け、一定の張力をかけながら熱処理すると、最終的には切れてしまう。なお、上記金合金も熱処理温度が高くなりすぎると、純度99.99質量%以上の金合金と同様、熱処理温度の上昇と共に伸び率が上昇を続け、最終的には切れてしまう。
純度99.99質量%以上の金合金(5N)及びAg、Cu、Pd、Ptを添加した金合金のこれらの性質について、表1の組成の金及び金合金の熱処理温度と伸び、及び熱処理温度と破断強度との関係を図1及び2に示す。

Figure JPOXMLDOC01-appb-T000001
図1に示すように、5N高純度金のボンディングワイヤは、伸び率4%近傍の熱処理温度350~400℃付近で伸び率変化は比較的フラットな傾向にあり、一方、図2の破断荷重と熱処理温度との関係では、同じ範囲の熱処理温度では同様に比較的緩やかに変化する傾向を見せる。
これに対して、Au-16%Ag、Au-18%Ag、Au-1%Cu、Au-1.5%Pdの各合金についてそれぞれ、熱処理温度と伸び率、及び破断荷重の関係をグラフにみると、従来、伸び率5~10数%となる熱処理を行った温度範囲では、伸び率変化は極めて鋭く急上昇しており、これに対する破断荷重は逆方向に急激に降下することがわかる。このため、この温度領域で、伸び率と強度とを望む範囲に制御することは極めて困難である。
 ところが、これらの合金について熱処理温度をさらに高めると、伸び率の変化が合金組成によって異なるが、450℃近傍から8~13%でほぼ平坦となり、600℃以上、あるいは650℃に達してもその傾向を維持する。
また、これに対して、破断荷重を示す図2のグラフによれば、5N純金線の場合と同様に破断荷重が低下するが、元来高強度であるため、450℃~650℃の熱処理温度において、5N純金線の4%伸び率における破断荷重以上の値を維持することがわかる。
 以上の知見は高純度金に対してこれらの添加元素を加えて厳密に検証した結果得られたものであるが、これらの性質を利用することによって、幅広い熱処理温度域、すなわち安定した熱処理条件下で、上記の伸び率に応じた強度の金合金ワイヤが得られ、また、熱処理温度を制御して強度の異なる合金ワイヤが得られ、しかも、これらの性質のバラツキが小さく、安定した条件で得られる。
 これらの性質は、合金線に添加したAg、Cu、Pd、Ptのそれぞれについて、Ag:5~20質量%、Cu:0.5~30質量%、  Pd:0.5~2質量%、Pt:0.5~5質量%の範囲において発揮される。伸び率と強度とのバランスは、これらの金合金ワイヤに応じて上記の特性を利用して定めればよく、ボンディングワイヤに求められる多様な性質に応じたボンディングワイヤを得ることができる。
 以下に、本発明の金合金ボンディングワイヤの熱処理条件を示す。
 (熱処理温度)
 本発明の金合金の熱処理温度に対する伸び率変化が平坦になる領域の開始温度は、一般的に450~650℃の温度範囲である。好ましくは、本発明の熱処理は、伸び率が平坦になる領域の温度(以下、「ST」という。)から、ST+200℃までの温度で、より好ましくはSTからST+100℃までの温度範囲がよい。結晶粒の大きさがより均質になるからである。
 (一定の張力)
 本発明の金合金の伸び率変化が平坦になる領域での熱処理は、最終の伸線ダイスとスプールに巻き取られるまでの間で行われるので、ボンディングワイヤには一定の張力が加わっている。
 (熱処理後の水冷)
 熱処理後に急冷することによって、ボンディングワイヤの部分的な結晶粒の粗大化が防止でき、数万mのボンディングワイヤであっても、全体にわたってより均質な結晶粒が得られる。水冷は、ボンディングワイヤの巻取り直前に水冷することが好ましい。ボンディングワイヤはスプールに一定の張力の下で巻き取られていくので、ボンディングワイヤに剛性がもたらされる。このため、ボンディングワイヤの線径が8~16μmと細くなればなるほど、熱処理の急冷効果が発揮される。
 上述のように、本発明のボンディングワイヤ用金合金線は、ボンディングワイヤの結晶組織構造についてこれまでの粒径よりも大きな粒径の結晶粒が規則正しく整列した構造となっており、また、ボンディングワイヤの機械的性質についてはこれまでの同系合金ワイヤよりも軟質になっている。そのため、本発明の金合金からなるボンディングワイヤは、これまでのボンディングワイヤよりもリーニングやループ高さのバラツキがなく、しかも、超音波接合による第二ボンドの接合強度のバラツキが少なくなるという効果がある。また、本発明の金合金は、第一ボンドにおけるAlパッドまたはAl合金パッドとの接合性も良好なことから、ボンディングワイヤの接合信頼性も確保することができ、高温や常温といった使用環境を問わず、半導体装置に対する接合信頼性を確保することができる。
高純度金ワイヤ及び本発明金合金ワイヤの熱処理温度に対する伸び率変化。 高純度合金ワイヤ及び本発明金合金ワイヤの熱処理温度に対する破断強度(破断荷重)の変化。 高純度金合金ワイヤと強化元素含有高強度合金ワイヤの熱処理温度と伸び率及び破断強度の関係を示す概念図。
 本発明の最良の形態は、連続してダイス引きされた本発明の金合金ワイヤが、最終の伸線ダイスからスプールに巻き取られるまでの間にST~ST+100℃の熱処理温度でなされた場合に達成される。ボンディングワイヤは細いので、大気中でも急冷されるが、水冷することにより品質が安定する。特に、Au-20質量%Ag合金、Au-0.5~5質量%Cu合金およびAu-0.8~1.2質量%Pd合金の場合には、上記の条件下でリーニングやループ高さ(半導体チップからのワイヤ高さを言う。以下同じ。)のバラツキや第二ボンドの接合強度のバラツキについて安定した接合信頼性が得られる。
 表1に示される本発明の金合金ワイヤについて、ボンディングワイヤとしての特性を確認するため、それらの範囲の成分組成を有する実施例金合金を溶解鋳造し、伸線加工することにより20μmの線径を有する本発明に係るボンディングワイヤ用金合金線(以下、本発明ワイヤという。)No.1~27と本発明の組成範囲に入らない比較例のボンディングワイヤ用金合金線(以下、比較例ワイヤという。)No.28~36を製造した。
これらの本発明ワイヤNo.1~27および比較ワイヤNo.28~36をKulicke&Soffa(キューリッケ・アンド・ソファ)社製のワイヤボンダー(商品名:sMaxum plus)にセットし、半導体ICチップに搭載されたAl-0.5質量%Cu合金からなる50μm角Al合金パッドに、加熱温度:200℃、ループ長さ:5mm、ループ高さ:220μm、圧着ボール径:54μm、圧着ボール高さ:8μm,の条件でボンディングを行って、ループ高さのバラツキおよび第二ボンドの接合強度のバラツキについて評価を行った。各々の合金組成に対し、1000本ボンディングしたときのリーニングとループ高さのバラツキを測定した。それらの評価結果を表2および表3の評価項目欄に示す。
(評価方法)
 ここで、リーニングは、第一ボンドから第二ボンドまでのループを描いたとき、ループ高さ方向(Z方向)におけるチップからの高さの最高点をXY平面に投射して第一ボンドと第二ボンドを結んだXY平面上の直線からの最短距離のずれを自動三次元測定器によって測定し、これをリーニング線(傾き量)として表した。また、ループ高さは、第一ボンドから第二ボンドまでループを描いた際に自動三次元測定器のカメラを追随させ、ループの高さ方向(Z方向)における最高点を測定した。そして、リーニングおよびループ高さのそれぞれのバラツキを算出し、標準偏差によって定量的評価を行った。なお、第二ボンドの接合強度は、第二ボンドの接合部より200μm第一ボンド側で万能ボンドテスターにてプル強度試験を行った。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2、3の評価項目欄中、リーニングはワイヤ傾き量の偏差値を示し、◎印では5μm未満、○印では5μm以上8μm未満、三角印では8μm以上10μm未満、×印では10μm以上をそれぞれ示す。
また、表の評価項目欄中、ループ高さはバラツキの標準偏差の値を示し、◎印では15μm未満、○印では15μm以上20μm未満、△印では、20μm以上30μm未満、×印では、30μm以上をそれぞれ示す。
また、表の表評価項目欄中、第二ボンドの接合強度は、標準偏差の値を示し、◎印では0.8未満、○印では0.8以上1.0未満、△印では、1.0以上1.5未満、×印では、1.5以上をそれぞれ示す。
 表2及び3から示される結果から明らかなように、本発明の金合金ワイヤはその発明範囲の含有元素組成に対して伸び率変化が平坦化する領域において、熱処理することを特徴としており、その結果得られた本発明ワイヤは軟質であるため機械的性質が良く、リーニング、ループ高さのバラツキおよび第二ボンドの接合強度が良好であるのに対し、これらの組成をはずれ、これらの特性を有していない比較例ワイヤであるNo.28~36はこれらの評価の少なくともいずれか一つは不良となることが分かる。
 すなわち、本発明ワイヤは、これらの熱処理温度範囲において伸び率がほぼ一定に保たれるため、この条件を利用することによって、温度変化によらず一定以上の強度の合金ワイヤが得られ、また温度域を適宜に選択することによってこれらの伸び率に対して強度の異なる性質のワイヤが得られる。さらに、これらの条件の組み合わせから、リーニング及びループ高さに関する性質のバラツキが少なくほぼ一定の性質のものが得られる。
これに対して、比較例のものは熱処理温度変化に対する伸び、及び強度の変化が大きいため、一定の性質のものが得られず、また、機械的性質、強度を向上するために添加元素を多く加えても、いずれもリーニング及びループ高さにおいて不良となり、伸び率と強度とのバランスが保たれていない結果となった。
 本発明のボンディングワイヤは、熱処理温度に対する伸び率の変化の平坦な領域が存在することを利用して、所望の破断強度のワイヤを得ることができ、また、熱処理温度のこれ伸び率変化の平坦な領域で熱処理することにより、これらの性質の安定したワイヤを得ることができるため、ボンディングワイヤに求められる種々の性質のワイヤを安定して製造することが可能であり、これらの生産性向上にも寄与することができる。

Claims (7)

  1. 銅(Cu)、銀(Ag)、パラジウム(Pd)または白金(Pt)の内の少なくとも一種以上を0.5~30質量%および残部が金(Au)からなるボンディングワイヤであって、熱処理温度の上昇に伴って上昇する伸び率が平坦になる450~650℃の領域で熱処理されたことを特徴とする半導体素子用ボンディングワイヤ。
  2. 銅(Cu)、銀(Ag)、パラジウム(Pd)または白金(Pt)の内の少なくとも一種以上を合計で0.5~30質量%および残部が金(Au)からなるボンディングワイヤであって、熱処理温度の上昇に伴って上昇する伸び率が平坦になる450~650℃の領域で熱処理されたことを特徴とする半導体素子用ボンディングワイヤ。
  3. 銅(Cu)、銀(Ag)、パラジウム(Pd)または白金(Pt)の内の少なくとも一種以上を0.5~30質量%および残部が金(Au)からなるボンディングワイヤであって、熱処理温度の上昇に伴って上昇する伸び率が平坦になる450~650℃の領域で熱処理された後に水冷されたことを特徴とする請求項1または2記載の半導体素子用ボンディングワイヤ。
  4. 上記金合金が銅(Cu)を0.5~5質量%および残部が金(Au)からなる金合金であることを特徴とする請求項1または2記載の半導体素子用ボンディングワイヤ。
  5. 上記金合金が銀(Ag)を5~20質量%および残部が金(Au)からなる金合金であることを特徴とする請求項1または2記載の半導体素子用ボンディングワイヤ。
  6. 上記金合金がパラジウム(Pd)を0.5~2質量%および残部が金(Au)からなる金合金であることを特徴とする請求項1または2記載の半導体素子用ボンディングワイヤ。
  7. 上記熱処理は伸び率が平坦になる領域の開始温度(以下「ST」という。)からST+200℃までの温度範囲で行なわれたことを特徴とする請求項1または請求項2のいずれかに記載の半導体素子用ボンディングワイヤ。
     

     
PCT/JP2011/063377 2011-06-10 2011-06-10 高強度、高伸び率金合金ボンディングワイヤ WO2012169067A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE112011100491T DE112011100491T5 (de) 2011-06-10 2011-06-10 Bonddraht aus Au-Legierung mit hoher Festigkeit und hoher Dehnungsrate
SG2012024006A SG186692A1 (en) 2011-06-10 2011-06-10 High strength and high elongation ratio of au alloy bonding wire
PCT/JP2011/063377 WO2012169067A1 (ja) 2011-06-10 2011-06-10 高強度、高伸び率金合金ボンディングワイヤ
KR1020127008167A KR20140033299A (ko) 2011-06-10 2011-06-10 고강도, 고신장률 금 합금 본딩 와이어
CN2011800489953A CN103155129A (zh) 2011-06-10 2011-06-10 高强度高伸长率的金合金接合线
US13/499,977 US20120312428A1 (en) 2011-06-10 2011-06-10 High strength and high elongation ratio of au alloy bonding wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/063377 WO2012169067A1 (ja) 2011-06-10 2011-06-10 高強度、高伸び率金合金ボンディングワイヤ

Publications (1)

Publication Number Publication Date
WO2012169067A1 true WO2012169067A1 (ja) 2012-12-13

Family

ID=47292124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063377 WO2012169067A1 (ja) 2011-06-10 2011-06-10 高強度、高伸び率金合金ボンディングワイヤ

Country Status (6)

Country Link
US (1) US20120312428A1 (ja)
KR (1) KR20140033299A (ja)
CN (1) CN103155129A (ja)
DE (1) DE112011100491T5 (ja)
SG (1) SG186692A1 (ja)
WO (1) WO2012169067A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151130A1 (ja) * 2018-01-30 2019-08-08 タツタ電線株式会社 ボンディングワイヤ

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105308198B (zh) * 2013-09-10 2018-04-13 苹果公司 具有改善的硬度的晶体金合金
CH714785B1 (it) * 2018-03-15 2022-05-13 Argor Heraeus Sa Lega d'oro resistente alla decolorazione e metodo di produzione della medesima.
CN108588467A (zh) * 2018-06-02 2018-09-28 北京椿树电子材料有限公司 一种金基银铜合金材料
CN108922876B (zh) * 2018-06-27 2020-05-29 汕头市骏码凯撒有限公司 一种金合金键合丝及其制造方法
CN108796269A (zh) * 2018-06-30 2018-11-13 汕头市骏码凯撒有限公司 金合金键合丝及其制造方法
CN110117733A (zh) * 2019-04-30 2019-08-13 汕头市骏码凯撒有限公司 一种金银合金键合丝及其制造方法
JP6811466B1 (ja) * 2019-09-26 2021-01-13 田中貴金属工業株式会社 医療用Au−Pt−Pd合金
CN112981165A (zh) * 2021-02-06 2021-06-18 贵研铂业股份有限公司 用作轻负荷电接触材料的金铜钆合金、丝材及其制备方法
CN113862504B (zh) * 2021-12-01 2022-03-08 北京达博有色金属焊料有限责任公司 一种金合金和合金制品及其制备方法
EP4245871A1 (fr) * 2022-03-18 2023-09-20 Nivarox-FAR S.A. Alliage d'or
CN116705745B (zh) * 2023-08-04 2023-10-13 烟台一诺电子材料有限公司 一种键合金丝及其生产工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04229631A (ja) * 1990-12-27 1992-08-19 Sumitomo Metal Mining Co Ltd ボンデイングワイヤー
JPH10326803A (ja) * 1997-05-23 1998-12-08 Nippon Steel Corp 半導体素子用金銀合金細線
JP2002057183A (ja) * 2000-08-09 2002-02-22 Sumitomo Metal Mining Co Ltd ボンディングワイヤ、並びにその製造方法および保管方法
JP2003055748A (ja) * 2001-08-10 2003-02-26 Nittetsu Micro Metal:Kk 金ボンディングワイヤの熱処理方法及び熱処理装置
JP2007027335A (ja) * 2005-07-14 2007-02-01 Tanaka Electronics Ind Co Ltd ボール・ボンディング用Au極細線の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5251867A (en) 1975-10-23 1977-04-26 Nec Corp Bonding wire for semiconductor device
JP2613224B2 (ja) 1987-09-29 1997-05-21 田中貴金属工業株式会社 金極細線用材料
JP2533916B2 (ja) * 1988-06-30 1996-09-11 田中電子工業株式会社 半導体用ボンディングワイヤの巻取り方法及びその装置
JP2003007757A (ja) 2001-06-18 2003-01-10 Sumitomo Metal Mining Co Ltd 半導体素子ボンディング用金合金ワイヤ
JP2004255464A (ja) * 2003-02-03 2004-09-16 Nippon Steel Corp 金属線材及びその製造方法
CN100532598C (zh) * 2004-12-21 2009-08-26 田中电子工业股份公司 接合性、直线前进性及耐树脂流动性好的焊线用金合金线
JP5116101B2 (ja) 2007-06-28 2013-01-09 新日鉄住金マテリアルズ株式会社 半導体実装用ボンディングワイヤ及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04229631A (ja) * 1990-12-27 1992-08-19 Sumitomo Metal Mining Co Ltd ボンデイングワイヤー
JPH10326803A (ja) * 1997-05-23 1998-12-08 Nippon Steel Corp 半導体素子用金銀合金細線
JP2002057183A (ja) * 2000-08-09 2002-02-22 Sumitomo Metal Mining Co Ltd ボンディングワイヤ、並びにその製造方法および保管方法
JP2003055748A (ja) * 2001-08-10 2003-02-26 Nittetsu Micro Metal:Kk 金ボンディングワイヤの熱処理方法及び熱処理装置
JP2007027335A (ja) * 2005-07-14 2007-02-01 Tanaka Electronics Ind Co Ltd ボール・ボンディング用Au極細線の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151130A1 (ja) * 2018-01-30 2019-08-08 タツタ電線株式会社 ボンディングワイヤ
KR20200113192A (ko) * 2018-01-30 2020-10-06 타츠타 전선 주식회사 본딩 와이어
KR102460206B1 (ko) 2018-01-30 2022-10-27 타츠타 전선 주식회사 본딩 와이어

Also Published As

Publication number Publication date
CN103155129A (zh) 2013-06-12
SG186692A1 (en) 2013-03-28
DE112011100491T5 (de) 2013-06-13
KR20140033299A (ko) 2014-03-18
US20120312428A1 (en) 2012-12-13

Similar Documents

Publication Publication Date Title
WO2012169067A1 (ja) 高強度、高伸び率金合金ボンディングワイヤ
JP4866490B2 (ja) 半導体用銅合金ボンディングワイヤ
JP4771562B1 (ja) Ag−Au−Pd三元合金系ボンディングワイヤ
JP5409673B2 (ja) 半導体用ボンディングワイヤ
JP5840328B1 (ja) 半導体装置用ボンディングワイヤ及びその製造方法
TWI545207B (zh) A bonding wire for a semiconductor device
CN100557784C (zh) 接合引线用金合金线
JP5343069B2 (ja) ボンディングワイヤの接合構造
JP4130843B1 (ja) 高信頼性金合金ボンディングワイヤ及び半導体装置
JP4726206B2 (ja) 高い初期接合性、高い接合信頼性、圧着ボールの高い真円性、高い直進性、高い耐樹脂流れ性および低い比抵抗を有するボンディングワイヤ用金合金線
JP4947670B2 (ja) 半導体素子用ボンディングワイヤの熱処理方法
JP5840327B1 (ja) 半導体装置用ボンディングワイヤ及びその製造方法
JP2005294874A (ja) ワイヤをウェッジ接合した半導体装置及び金合金ボンディングワイヤ
JP2003059964A (ja) ボンディングワイヤ及びその製造方法
JP6369994B2 (ja) ボールボンディング用銅合金細線
JP6898705B2 (ja) ボールボンディング用銅合金細線
JP4641248B2 (ja) 接合性、直進性および耐樹脂流れ性に優れたボンディングワイヤ用金合金線
JPH09321075A (ja) ボンディングワイヤ
JP3426473B2 (ja) 半導体素子用金合金細線
JP2003023030A (ja) ボンディングワイヤ及びその製造方法
JP2001308133A (ja) ワイヤをウェッジ接合した半導体装置および金合金ボンディングワイヤ
JP2003133362A (ja) 半導体装置及び半導体装置用ボンディングワイヤ
JP5240890B2 (ja) 高い初期接合性、高い接合信頼性、圧着ボールの高い真円性、高いループ制御性および低い比抵抗を有するボンディングワイヤ用金合金線

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180048995.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20127008167

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13499977

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112011100491

Country of ref document: DE

Ref document number: 1120111004915

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 12012501713

Country of ref document: PH

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867411

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 11867411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP