WO2012165532A1 - 水添石油樹脂の製造方法 - Google Patents

水添石油樹脂の製造方法 Download PDF

Info

Publication number
WO2012165532A1
WO2012165532A1 PCT/JP2012/064049 JP2012064049W WO2012165532A1 WO 2012165532 A1 WO2012165532 A1 WO 2012165532A1 JP 2012064049 W JP2012064049 W JP 2012064049W WO 2012165532 A1 WO2012165532 A1 WO 2012165532A1
Authority
WO
WIPO (PCT)
Prior art keywords
petroleum resin
hydrogenated petroleum
hydrogenated
solvent
hydrogenation
Prior art date
Application number
PCT/JP2012/064049
Other languages
English (en)
French (fr)
Inventor
隆則 林
一 高杉
誠 鹿島
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to CN201280022339.0A priority Critical patent/CN103502288B/zh
Priority to EP12793712.6A priority patent/EP2716668A1/en
Priority to KR1020137029035A priority patent/KR101888716B1/ko
Priority to SG2013082144A priority patent/SG194810A1/en
Priority to US14/116,262 priority patent/US9023944B2/en
Publication of WO2012165532A1 publication Critical patent/WO2012165532A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F240/00Copolymers of hydrocarbons and mineral oils, e.g. petroleum resins

Definitions

  • the present invention relates to a production method for producing a hydrogenated petroleum resin.
  • Hot melt adhesives are widely used in the manufacture and binding of paper diapers and various packaging.
  • a hot melt adhesive a styrene butadiene styrene block copolymer (Styrene-Butadiene-Styrene block copolymer: hereinafter referred to as SBS), a styrene isoprene-styrene block copolymer (hereinafter referred to as SBS), SIS), ethylene vinyl acetate block copolymer (hereinafter referred to as EVA), amorphous polyAlpha-Olefin (hereinafter referred to as APAO), and the like.
  • SBS styrene butadiene styrene block copolymer
  • SBS styrene isoprene-styrene block copolymer
  • SIS SIS
  • EVA ethylene vinyl acetate block copolymer
  • APAO amorphous polyAlp
  • a hydrogenated petroleum resin as a tackifier is blended with the base polymer.
  • the hydrogenated petroleum resin is produced by a hydrogenation treatment in which a polymer obtained by polymerizing a styrene monomer with cyclopentadiene is hydrogenated. From the point of handling, it may be manufactured into a hemispherical pellet.
  • the granulated hydrogenated petroleum resin is analyzed, and the hydrogenated petroleum resin having the specified physical properties is manufactured by batch processing that adjusts the polymerization conditions and hydrogenation conditions based on the analysis results. ing.
  • the method for producing a hydrogenated petroleum resin of the present invention measures the near-infrared absorption spectrum of the molten resin after separating the hydrogenated solvent, and controls the method for producing the hydrogenated petroleum resin based on the measured results. It is characterized by doing.
  • the measured result shows a physical property value of at least one of the aroma content and bromine value in the molten resin
  • At least one of the temperature, pressure, reaction time, and hydrogen amount of the hydrogenation reaction is set so that the difference between the physical property value and the physical property value of the hydrogenated petroleum resin pellets to be produced is reduced. It is preferable to adopt a configuration to control.
  • the measured results indicate the softening point of the molten resin, and the softening point of the hydrogenated petroleum resin pellets for production purposes. It is preferable that at least one of the temperature and the pressure in the step of separating the hydrogenated solvent or the low molecular weight material is controlled so that the difference from the point becomes small.
  • the block diagram which shows schematic structure of the manufacturing plant of the hydrogenated petroleum resin pellet which concerns on the manufacturing method of the hydrogenated petroleum resin of this invention.
  • Explanatory drawing which shows the calibration curve data regarding the aroma content memorize
  • Explanatory drawing which shows the calibration curve data regarding the bromine number memorize
  • a hydrogenated petroleum resin pellet conveying device as a granulated material conveying device of the present invention will be described with reference to the drawings.
  • a hydrogenated petroleum resin pellet is illustrated as a granular material, it can apply not only to this but to various granular materials, and the granular material which is easy to be damaged especially by an impact can be made into object.
  • the structure of the manufacturing plant which manufactures the hydrogenated petroleum resin pellet provided with the conveyance apparatus of the hydrogenated petroleum resin pellet is demonstrated below.
  • a hydrogenated petroleum resin pellet manufacturing plant 1 is a plant for manufacturing hydrogenated petroleum resin pellets from hydrogenated petroleum resin raw materials.
  • the production plant 1 includes a polymerization reaction unit 2, a hydrogenation reaction unit 3, a hydrogenation solvent recovery unit 4, a granulation unit 5, a transport unit 6, a storage unit 7, and a control unit (not shown). I have.
  • the polymerization reaction unit 2 performs a polymerization reaction in which a cyclopentadiene compound and a vinyl aromatic compound are thermally polymerized to obtain a copolymer.
  • the polymerization reaction unit 2 includes a polymerization reaction tank for performing a thermal polymerization reaction with a cyclopentadiene compound and a vinyl aromatic compound that are hydrogenated petroleum resin raw materials using a solvent.
  • the cyclopentadiene compound include cyclopentadiene, methylcyclopentadiene, and ethylcyclopentadiene, as well as dimers and co-dimers thereof.
  • Examples of vinyl aromatic compounds include styrene, ⁇ -methylstyrene, vinyltoluene and the like.
  • Examples of the solvent include aromatic solvents, naphthene solvents, aliphatic hydrocarbon solvents, and the like. Specifically, benzene, toluene, xylene, cyclohexane, methylcyclohexane, dimethylcyclohexane, ethylcyclohexane and the like can be suitably used.
  • the solvent is appropriately recovered from the polymerization reaction tank and reused.
  • the recovered solvent usually contains a low molecular weight substance having a molecular weight of about 200 to 350.
  • the concentration of the low molecular weight substance in the solvent when reused as the solvent for thermal polymerization is at least 4% by mass or less.
  • the low molecular weight substance is separated and removed separately or diluted with a new solvent to obtain a low molecular weight concentration of 4% by mass or less, and at the start of the polymerization reaction. Used as a solvent for polymerization.
  • the polymerization reaction tank is a reactor that performs polymerization under pressure and heating, and includes a stirrer and a heating device (not shown). Then, the first raw material tank, the second raw material tank, and the solvent tank of the solvent recovery unit are connected to the polymerization reaction tank, and the cyclopentadiene compound, the vinyl aromatic compound, and the solvent are appropriately introduced. In addition, the obtained copolymer is discharged from the bottom of the polymerization reaction tank and used for the next hydrogenation reaction.
  • the amount of the polymerization solvent used is 50 to 500 parts by mass with respect to 100 parts by mass of the monomer mixture.
  • the temperature of the solvent is heated to 100 ° C., preferably 150 ° C. or more at the start of thermal polymerization.
  • copolymerization is performed while a mixture of a cyclopentadiene compound and a vinyl aromatic compound is added in portions in a heated solvent.
  • the divided addition time is usually 0.5 to 5 hours, and it is desirable to add them equally.
  • the reaction temperature is 150 ° C. or more and 350 ° C.
  • the polymerization reaction tank has a softening point of 60 ° C. or higher and 130 ° C. or lower, a vinyl aromatic compound content of 30% by mass or higher and 90% by mass or lower, and a bromine value of 30 g / 100 g or higher depending on the conditions of these thermal polymerizations.
  • a copolymer having 90 g / 100 g or less and a number average molecular weight of 400 to 1000 is obtained.
  • the hydrogenation reaction section 3 performs a hydrogenation reaction in which hydrogen is added to the copolymer produced by thermal polymerization in the polymerization reaction section 2 to obtain a hydrogenation reaction product.
  • the hydrogenation reaction section 3 includes a plurality of hydrogenation reaction towers for performing hydrogenation reaction by adding hydrogen to the copolymer produced by thermal polymerization in the polymerization reaction section 2 in the presence of a hydrogenation solvent. ing.
  • the hydrogenation solvent include cyclohexane, methylcyclohexane, dimethylcyclohexane, ethylcyclohexane, tetrahydrofuran, and the like.
  • the hydrogenation reaction tower is a tower filled with a hydrogenation reaction catalyst, and may be used in multiple stages.
  • the hydrogenation reaction catalyst nickel, palladium, cobalt, platinum, rhodium-based catalyst or the like is used.
  • the hydrogenation reaction column hydrogenates the copolymer with hydrogen in the presence of a hydrogenation reaction catalyst at a temperature of 120 to 300 ° C., a reaction pressure of 1 to 6 MPa, and a reaction time of 1 to 7 hours. .
  • the softening point is 70 ° C. or more and 140 ° C.
  • the vinyl aromatic compound content is 0% by mass or more and 35% by mass or less
  • the bromine value is 0 g / 100 g or more and 30 g / 100 g or less
  • number average A hydrogenation reaction product having a molecular weight of 400 to 1000 is obtained.
  • the hydrogenation reaction section 3 after the hydrogenation reaction in the hydrogenation reaction tower, the gas phase containing unreacted hydrogen is separated and appropriately recovered and treated outside the system.
  • the hydrogenation solvent recovery unit 4 separates and removes the hydrogenation solvent from the hydrogenation reaction product.
  • the hydrogenated solvent recovery unit 4 includes a solvent evaporation tank 41 as a first evaporator, a thin film evaporator 42 as a second evaporator, and the like.
  • the solvent evaporation tank 41 is connected to the hydrogenation reaction unit 3, and separates and recovers the hydrogenation solvent from the hydrogenation reaction product obtained in the hydrogenation reaction unit 3.
  • the evaporated hydrogenated solvent is separately collected and reused as a hydrogenated solvent used in the hydrogenation reaction in the hydrogenation reaction unit 3.
  • the thin film evaporator 42 is connected to the solvent evaporation tank 41 and evaporates and recovers the hydrogenated solvent remaining in the hydrogenation reaction product.
  • the evaporated hydrogenated solvent and low molecular weight substance are separately collected and reused as appropriate as the hydrogenated solvent used in the hydrogenation reaction in the hydrogenation reaction section 3 in accordance with the physical properties of the hydrogenated petroleum resin pellets to be produced. Is done.
  • an addition unit for adding an antioxidant is provided between the solvent evaporation tank 41 and the thin film evaporator 42 of the hydrogenated solvent recovery unit 4.
  • the addition part of the antioxidant adds the antioxidant to the hydrogenation reaction product from which most of the hydrogenation solvent has been removed in the solvent evaporation tank 41.
  • the solvent for dissolving the antioxidant the remaining hydrogenated solvent together with the solvent in which the antioxidant is dissolved is separated by the evaporation treatment by the thin film evaporator 42 in the subsequent stage, and the recovered hydrogenated solvent is reused for the hydrogenation reaction. can do. This is because the hydrogenation reaction is not affected.
  • the solvent in which the antioxidant is dissolved is separated and recovered from the hydrogenation reaction product together with the hydrogenation solvent by the thin film evaporator 42 on the downstream side.
  • a molten resin that is a hydrogenated reaction product from which the hydrogenated solvent and the low molecular weight material have been removed that is, a molten hydrogenated petroleum resin before granulation.
  • a near-infrared analysis unit 45 is provided for measuring the physical properties of the light. The near-infrared analysis unit 45 measures the physical properties of the molten resin of hydrogenated petroleum resin supplied to the granulating unit 5 by the supply pump 44 using near-infrared rays.
  • the near-infrared analysis unit 45 irradiates a near-infrared absorption spectrum by irradiating near infrared rays to a translucent translucent pipe through which the molten resin circulates and a molten resin through the translucent pipe.
  • a spectrum detection unit for detection and a calculation unit for calculating physical properties of the molten resin from a near-infrared absorption spectrum detected by the spectrum detection unit based on a calibration database are provided.
  • the calibration database is constructed of calibration curve data based on the results of measuring the near-infrared absorption spectra of various hydrogenated petroleum resin pellets produced and actually measuring the physical properties of the hydrogenated petroleum resin pellets.
  • the calibration curve data is, for example, as shown in the graph of FIG. 2, the calibration curve data of the aroma content of the molten resin, for example, as shown in the graph of FIG. 3, of the calibration curve of the bromine number of the molten resin.
  • Data for example, calibration curve data of the softening point of the hydrogenated petroleum resin pellets to be produced is stored as shown in the graph of FIG.
  • These calibration curves are prepared based on the measurement results indicated by the points in FIGS. 2 to 4 in which the aroma content, bromine number, and softening point of various hydrogenated petroleum resin pellets that have already been manufactured are measured.
  • These calibration curves can be created by various conventionally used calculation methods.
  • the calculation unit calculates the physical properties of the molten resin from the measurement results of the near-infrared absorption spectrum of the hydrogenation reaction product detected by the spectrum detection unit, based on the calibration curve data of the calibration database, that is, the aroma content of the hydrogenated compound , Bromine number, and softening point. And a calculating part transmits the physical property of the detected hydrogenated petroleum resin pellet to a control part, and adjusts the driving
  • the granulating unit 5 granulates the molten resin, which is a hydrogenation reaction product from which the hydrogenating solvent has been removed and the antioxidant is added, into hemispherical pelleted hydrogenated petroleum resin pellets.
  • the granulation unit 5 includes a granulator (not shown) and a granulation air cooling unit.
  • the granulator for example, drops molten resin onto a cooling conveyor to granulate hemispherical hydrogenated petroleum resin pellets.
  • the granulated hydrogenated petroleum resin pellets are scraped off from the cooling conveyor and supplied to the transport unit 6 that transports them to the storage unit 7.
  • the transport unit 6 transports the hydrogenated petroleum resin pellets granulated by the granulation unit 5 to the storage unit 7.
  • the transport unit 6 includes a chute, a transport conveyor, a bucket conveyor and the like connected to the granulation unit 5 and transports hydrogenated petroleum resin pellets.
  • the conveyance part 6 can utilize not only such a structure but various conveyance apparatuses and structures.
  • the hydrogenated petroleum resin pellets are relatively fragile, a configuration in which the hydrogenated petroleum resin pellets are not damaged by an impact during transportation is preferable.
  • the storage unit 7 stores the hydrogenated petroleum resin pellets conveyed by the conveyance unit 6 so as to be appropriately removable.
  • the storage unit 7 includes a storage hopper (not shown) and a switching unit (not shown) that inputs hydrogenated petroleum resin pellets conveyed by the bucket conveyor of the conveyance unit 6 into a predetermined storage hopper.
  • control A control part controls the process of the manufacturing plant 1 whole.
  • the control unit includes a storage device that stores various programs and databases, and an arithmetic device that executes the programs and performs various operations, and controls the entire process of the manufacturing plant 1. Specifically, control of the temperature, pressure, and reaction time of the polymerization reaction in the polymerization reaction unit 2 and the hydrogenation reaction unit 3, recovery of the hydrogenated solvent in the hydrogenated solvent recovery unit 4, addition of an antioxidant For example, addition of an antioxidant in the section, granulation of hydrogenated petroleum resin pellets in the granulation section 5, transport operation and intake / exhaust in the transport section 6, control of operating conditions of various valves, blowers and pumps.
  • control unit compares the characteristic value of the hydrogenated compound being manufactured, which is transmitted from the calculation unit of the near infrared analysis unit 45, with the physical property value of the hydrogenated petroleum resin pellet for production purpose, and performs near infrared analysis.
  • the operating state of the manufacturing plant 1 is controlled so that the detected characteristics are the physical properties for manufacturing purposes. Specifically, depending on the difference between the measured aroma content and the aroma content for production purposes, and the difference between the measured bromine value and the bromine value for production purposes, the temperature, pressure, and reaction conditions for the hydrogenation reaction Control is performed to change the operating condition of at least one of time and the amount of hydrogen.
  • the physical property value of at least one of the aroma content and the bromine value shown from the measurement result of the measured near infrared absorption spectrum, and these physical properties of the hydrogenated petroleum resin pellets for production purposes Controlling at least one of the temperature, pressure, reaction time, and hydrogen amount of the hydrogenation reaction that affects the aroma content and bromine number in a state where the difference between the values is small . For this reason, it is possible to easily produce a hydrogenated petroleum resin having desired physical properties.
  • a softening point is affected in the state from which the difference of the softening point shown from the measurement result of the measured near-infrared absorption spectrum and the softening point of the hydrogenated petroleum resin pellet made into a manufacture becomes small. It controls at least one of temperature and pressure in the step of separating the hydrogenation solvent or low molecular weight substance. For this reason, it is possible to easily produce a hydrogenated petroleum resin having desired physical properties.
  • control unit is not limited to the case where the operating conditions of the manufacturing plant are controlled by a program or the like, for example, the operator is notified that the operating conditions of the manufacturing plant are controlled based on the measurement result, and the notification result It is good also as a structure from which an operator changes an operating condition based on.
  • the aroma content, the bromine number, and the softening point are measured, and the configuration for controlling the operating conditions of the hydrogenation reaction step and the operating conditions of the hydrogenation solvent removal step is exemplified. Only one or two physical property values of the bromine number and the softening point may be measured.
  • the control of the operating conditions of the hydrogenation reaction step based on the aroma content or bromine number is not limited to controlling all of the temperature, pressure, reaction time, and amount of hydrogen in the hydrogenation reaction, but at least Any configuration that controls any one of the operating conditions may be used.
  • control of the operating condition of the hydrogenation solvent removal step based on the softening point is not limited to controlling both the temperature and the pressure of the thin film evaporator 42, and at least one of the temperature and the pressure. Any configuration may be used as long as the operating conditions are controlled.
  • the hydrogenation solvent or the low molecular weight substance may be separated by only one stage or three or more stages. Good. In such a case, the operation condition of at least one of temperature and pressure in the step of separating the low molecular weight substance that affects the softening point may be controlled.
  • the present invention can be applied to the production of hydrogenated petroleum resin pellets in which a hydrogenated solvent is separated to obtain a molten resin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 水素化溶媒除去工程で水素化溶媒を分離した後の溶融樹脂である水素化化合物(水添石油樹脂)の近赤外吸収スペクトルを測定し、検量線データに基づいて水素化化合物の物性値であるアロマ含有率と臭素価と軟化点とを算出する。近赤外分析で測定したアロマ含有率と臭素価と、製造目的の水添石油樹脂ペレットのアロマ含有率と臭素価との差分が小さくなるように、水素化反応部(3)における温度と、圧力と、反応時間と、水素量とのうちの少なくともいずれか1つの運転条件を制御する。近赤外分析で測定した軟化点と、製造目的の水添石油樹脂ペレットの軟化点との差分が小さくなるように、薄膜蒸発機(42)の温度と圧力とのうちの少なくともいずれか一方を制御する。

Description

水添石油樹脂の製造方法
 本発明は、水添石油樹脂を製造する製造方法に関する。
 紙おむつの製造や製本、各種包装などにホットメルト接着剤が広く普及している。例えば、ホットメルト接着剤として、スチレンブタジエンスチレンブロック共重合体(Styrene-Butadiene-Styrene block copolymer:以下、SBSと称す。)、スチレンイソプレンスチレンブロック共重合体(Styrene-Isoprene-Styrene block copolymer:以下、SISと称す。)、エチレン酢酸ビニル共重合体(Ethylene Vinyl Acetate block copolymer:以下、EVAと称す。)、非晶性ポリアルファオレフィン(Amorphous PolyAlpha-Olefin:以下、APAOと称す。)などが挙げられる。該ベースポリマーに、粘着性付与剤としての水添石油樹脂が配合されている。
 水添石油樹脂は、例えば特許文献1に記載のように、シクロペンタジエンにスチレンモノマーを重合させて得られた重合物を水素化する水添処理により生成される。取り扱いの点から、半球状ペレットに製造されることがある。
 水添石油樹脂の製造においては、造粒された水添石油樹脂を分析し、分析結果に基づいて重合条件や水素化条件を調整するバッチ処理により、所定の物性の水添石油樹脂を製造している。
 しかしながら、所望の物性の水添石油樹脂ペレットを製造するために、製品ペレットの分析結果に基づいて製造条件を調整する作業を適宜繰り返すバッチ処理では、作業に時間が掛かり、かつ、煩雑であることから、生産管理の容易化が望まれている。
 例えば、特許文献2~4に示されているように、合成樹脂の製造において、近赤外分光分析装置を用いて、製造中の樹脂の吸収スペクトルを測定し、最終製品の物性を予測して製造工程を制御する方法が知られている。
国際公開第2004/056882号 特開2002-145966号公報 特許第4385433号公報 特許第2865755号公報
 このように、所望の物性の水添石油樹脂ペレットを製造するため、特許文献2~4に記載のような近赤外分光分析により製造工程を制御する方法を適用することが考えられる。
 しかしながら、水添石油樹脂ペレットは、水素化溶媒中で水添反応をした後、適宜水素化溶媒や低分子量体を除去することで、所望の物性となる水添石油樹脂が得られるため、製造工程を適切に制御することは困難である。
 本発明の目的は、水添石油樹脂を容易に製造できる水添石油樹脂の製造方法を提供することにある。
 本発明の水添石油樹脂の製造方法は、水素化溶媒を分離した後の溶融樹脂の近赤外吸収スペクトルを測定し、測定された結果に基づいて、水添石油樹脂を製造する方法を制御することを特徴とする。
 本発明では、前記水添石油樹脂ペレットを製造する方法の制御としては、測定された結果が、前記溶融樹脂中のアロマ含有率と臭素価とのうちの少なくともいずれか一方の物性値を示し、該物性値と、製造目的とする水添石油樹脂ペレットの物性値との差が小さくなるように水素化反応の温度と、圧力と、反応時間と、水素量のうちの少なくともいずれか1つを制御する構成とすることが好ましい。
 本発明では、前記水添石油樹脂ペレットを製造する方法の制御としては、測定された結果が、前記溶融樹脂の軟化点を示し、該軟化点と、製造目的とする水添石油樹脂ペレットの軟化点との差が小さくなるように前記水素化溶媒または低分子量体を分離する工程の温度と圧力とのうちの少なくともいずれか一方を制御する構成とすることが好ましい。
本発明の水添石油樹脂の製造方法に係る水添石油樹脂ペレットの製造プラントの概略構成を示すブロック図。 前記水添石油樹脂ペレットの製造プラントにおける近赤外分析部の検量データーベースに記憶されたアロマ含有率に関する検量線データをグラフで示す説明図。 前記近赤外分析部の検量データーベースに記憶された臭素価に関する検量線データをグラフで示す説明図。 前記近赤外分析部の検量データーベースに記憶された軟化点に関する検量線データをグラフで示す説明図。
 以下、本発明の造粒物の搬送装置として、水添石油樹脂ペレットの搬送装置に係る実施形態を、図面を参照して説明する。
 本発明では、粒状物として水添石油樹脂ペレットを例示するが、これに限らず、各種粒状物にも適用でき、特に衝撃により破損し易い粒状物を対象とすることができる。
 まず、水添石油樹脂ペレットの搬送装置を備えた水添石油樹脂ペレットを製造する製造プラントの構成について、以下に説明する。
[水添石油樹脂ペレットの製造プラントの構成]
 図1に示すように、水添石油樹脂ペレットの製造プラント1は、水添石油樹脂原料から水添石油樹脂ペレットを製造するプラントである。
 該製造プラント1は、重合反応部2と、水素化反応部3と、水素化溶媒回収部4と、造粒部5と、搬送部6と、貯蔵部7と、図示しない制御部と、を備えている。
 (重合反応)
 重合反応部2は、シクロペンタジエン系化合物とビニル芳香族系化合物とを熱重合させて共重合物を得る重合反応を実施する。
 該重合反応部2は、溶媒を用いて水添石油樹脂原料であるシクロペンタジエン系化合物とビニル芳香族系化合物と熱重合反応を実施する重合反応槽などを備えている。
 シクロペンタジエン系化合物としては、シクロペンタジエン、メチルシクロペンタジエン、エチルシクロペンタジエンの他、これらの二量体や共二量体などが例示できる。
 ビニル芳香族系化合物としては、スチレン、α-メチルスチレン、ビニルトルエンなどが例示できる。
 溶媒としては、芳香族系溶媒、ナフテン系溶媒、脂肪族炭化水素系溶媒などが例示できる。具体的には、ベンゼン、トルエン、キシレン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、エチルシクロヘキサンなどが好適に使用できる。溶媒は、重合反応槽から適宜回収されて再利用される。
 回収された溶媒の中には、通常、分子量200~350程度の低分子量体が含まれる。
 物性低下を防ぐために、熱重合用の溶媒として再使用される場合の溶媒の低分子量体の濃度は、少なくとも4質量%以下にする。回収溶媒中の低分子量体の含有量によっては、低分子量体を別途分離除去したり、あるいは新溶媒で希釈したりして、4質量%以下の低分子量体濃度とし、重合反応の開始時の重合用の溶媒として使用する。
 重合反応槽は、加圧および加熱下で重合を実施する反応器で、図示しない攪拌装置と加熱装置とを備えている。そして、重合反応槽には、第一原料タンク、第二原料タンクおよび溶媒回収部の溶媒タンクが接続され、シクロペンタジエン系化合物、ビニル芳香族系化合物および溶媒が適宜流入される。また、重合反応槽の底部は、得られた共重合物を流出し、次の水添反応に供する。
 ここで、シクロペンタジエン系化合物とビニル芳香族化合物との混合割合に特に制限はないが、通常は質量比でシクロペンタジエン系化合物:ビニル芳香族化合物=70:30~20:80の割合である。
 また、重合溶媒の使用量は、モノマー混合物100質量部に対して、50~500質量部の割合である。
 そして、重合反応槽では、熱重合の開始時、溶媒の温度を100℃、好ましくは150℃以上に加熱しておくことが望ましい。重合反応槽では、加熱された溶媒中にシクロペンタジエン系化合物とビニル芳香族化合物との混合物が分割添加されながら共重合を行う。
 分割添加時間は通常、0.5~5時間であり、等分に添加することが望ましい。該共重合反応は、シクロペンタジエン系化合物とビニル芳香族化合物との混合物を分割添加し終わった後も引き続き反応を行わせることが望ましい。その時の反応条件に特に制限はないが、通常は反応温度150℃以上350℃以下、反応圧力は、0MPa以上2MPa以下、反応時間は、1時間以上10時間以下である。
 そして、重合反応槽は、これらの熱重合の条件により、軟化点が60℃以上130℃以下、ビニル芳香族系化合物の含有量が30質量%以上90質量%以下、臭素価が30g/100g以上90g/100g以下、数平均分子量が400以上1000以下の共重合物を得る。
 (水素化反応)
 水素化反応部3は、重合反応部2で熱重合により生成された共重合物に水素を添加し水素化反応物を得る水素化反応を実施する。
 該水素化反応部3は、重合反応部2で熱重合により生成された共重合物に水素化溶媒の存在下で水素を添加して水素化反応を実施する複数の水素化反応塔などを備えている。
 水素化溶媒としては、例えば、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、エチルシクロヘキサン、テトラヒドロフランなどが用いられる。
 水素化反応塔は、水素化反応触媒がそれぞれ充填された塔であり、多段に用いても良い。水素化反応触媒としては、ニッケル、パラジウム、コバルト、白金、ロジウム系触媒などが用いられる。そして、水素化反応塔は、水素化反応触媒の存在下で、水素と共重合物を、120~300℃の温度、1~6MPaの反応圧力、1~7時間の反応時間で水素化反応させる。
 上記水素化反応の条件により、軟化点が70℃以上140℃以下、ビニル芳香族系化合物の含有量が0質量%以上35質量%以下、臭素価が0g/100g以上30g/100g以下、数平均分子量が400以上1000以下の水素化反応物を得る。
 水素化反応部3では、水素化反応塔による水素化反応後、未反応の水素を含む気相分を分離して適宜回収し系外にて処理する。
 (水素化溶媒除去)
 水素化溶媒回収部4は、水素化反応物から水素化溶媒を分離除去する。該水素化溶媒回収部4は、第一蒸発器である溶媒蒸発槽41と、第二蒸発器である薄膜蒸発機42と、などを備えている。
 溶媒蒸発槽41は、水素化反応部3に接続され、水素化反応部3で得られた水素化反応物から水素化溶媒を蒸発させて分離回収する。蒸発させた水素化溶媒は、別途回収され、水素化反応部3における水素化反応で利用する水素化溶媒として再利用される。
 薄膜蒸発機42は、溶媒蒸発槽41に接続され、水素化反応物に残留する水素化溶媒を蒸発させて分離回収する。蒸発させた水素化溶媒および低分子量体は、別途回収され、製造する水添石油樹脂ペレットの物性値に対応して、水素化反応部3における水素化反応で利用する水素化溶媒として適宜再利用される。
 水素化溶媒回収部4の溶媒蒸発槽41と薄膜蒸発機42との間には、酸化防止剤を添加する添加部が設けられている。
 酸化防止剤の添加部は、溶媒蒸発槽41で大半の水素化溶媒が除去された水素化反応物に、酸化防止剤を添加する。
 酸化防止剤を溶解する溶媒としては、後段の薄膜蒸発機42による蒸発処理で、酸化防止剤を溶解した溶媒とともに残留する水素化溶媒を分離し、回収した水素化溶媒を水素化反応に再利用することができる。水素化反応に影響を及ぼさないためである。
 そして、酸化防止剤を溶解した溶媒は、下流側の薄膜蒸発機42により、水素化溶媒とともに水素化反応物から分離回収される。
 水素化溶媒回収部4と後段の造粒部5との間には、水素化溶媒および低分子量体が除去された水素化反応物である溶融樹脂、すなわち造粒前の溶融した水添石油樹脂の物性を測定する近赤外分析部45が設けられている。
 この近赤外分析部45は、溶融樹脂を供給ポンプ44により造粒部5へ供給される水添石油樹脂の溶融樹脂の物性を近赤外線により測定する。具体的には、近赤外分析部45は、溶融樹脂が流通する透光性の透光性配管と、透光性配管を流通する溶融樹脂に近赤外線を照射して近赤外吸収スペクトルを検出するスペクトル検出部と、スペクトル検出部で検出された近赤外吸収スペクトルから検量データベースに基づいて溶融樹脂の物性を演算する演算部を備えている。
 ここで、検量データベースは、製造された各種水添石油樹脂ペレットの近赤外吸収スペクトルを測定し、その水添石油樹脂ペレットの物性を実際に測定した結果に基づく検量線データが構築されている。
 検量線データは、例えば図2のグラフにて示されるように、溶融樹脂のアロマ含有率の検量線のデータ、例えば図3のグラフにて示されるように、溶融樹脂の臭素価の検量線のデータ、例えば図4のグラフにて示されるように、製造する水添石油樹脂ペレットの軟化点の検量線のデータ、を記憶する。
 これら検量線は、既に製造された各種水添石油樹脂ペレットのアロマ含有率、臭素価、および軟化点を測定した図2~4中の点で示す測定結果に基づいて作成される。これら検量線の作成は、従来利用されている各種演算方法で求められる。
 演算部は、スペクトル検出部で検出した水素化反応物の近赤外吸収スペクトルの測定結果から、検量データベースの検量線データに基づいて、測定した溶融樹脂の物性、すなわち水添化合物のアロマ含有率、臭素価、および軟化点を演算する。
 そして、演算部は、検出した水添石油樹脂ペレットの物性を制御部に送信し、製造中の水添石油樹脂ペレットが所望の物性となるように、製造プラント1の運転状況を調整させる。
 (造粒)
 造粒部5は、水素化溶媒が除去され酸化防止剤が添加された水素化反応物である溶融樹脂を、半球状のペレット状の水添石油樹脂ペレットに造粒する。造粒部5は、図示しない造粒機と、造粒空冷部などを備えている。
 造粒機は、例えば溶融樹脂を冷却コンベヤ上に滴下して半球状の水添石油樹脂ペレットを造粒する。造粒された水添石油樹脂ペレットは、冷却コンベヤから掻き取られ、貯蔵部7へ搬送する搬送部6へ供給される。
 (搬送)
 搬送部6は、造粒部5で造粒された水添石油樹脂ペレットを、貯蔵部7へ搬送する。
 該搬送部6は、造粒部5に接続されたシュート、搬送コンベヤ、バケットコンベヤなどを備え、水添石油樹脂ペレットを搬送する。
 なお、搬送部6は、このような構成に限らず、各種搬送装置や構造物を利用できる。特に、水添石油樹脂ペレットが比較的に脆いため、搬送時の衝撃により水添石油樹脂ペレットが損傷しない構成としたものが好ましい。
 (貯蔵)
 貯蔵部7は、搬送部6で搬送された水添石油樹脂ペレットを適宜取り出し可能に貯蔵する。
 該貯蔵部7は、図示しない貯蔵ホッパーと、搬送部6のバケットコンベヤで搬送された水添石油樹脂ペレットを所定の貯蔵ホッパーに投入する図示しない切替部を備えている。
 (制御)
 制御部は、製造プラント1全体の工程を制御する。この制御部は、各種プログラムやデータベースを記憶する記憶装置と、プログラムを実行し各種演算を実施する演算装置とを備え、製造プラント1全体の工程を制御する。具体的には、重合反応部2における重合反応や水素化反応部3における水素化反応の温度、圧力、反応時間の制御、水素化溶媒回収部4の水素化溶媒の回収、酸化防止剤の添加部における酸化防止剤の添加、造粒部5における水添石油樹脂ペレットの造粒、搬送部6における搬送動作や吸排気、各種バルブやブロワ、ポンプの運転状況の制御などである。
 また、制御部は、近赤外分析部45の演算部から送信される製造中の水素化化合物における特性値と、製造目的の水添石油樹脂ペレットの物性値とを比較し、近赤外線分析により検出した特性が製造目的の物性となるように、製造プラント1の運転状況を制御する。具体的には、測定したアロマ含有率と製造目的のアロマ含有率との差分、測定した臭素価値と製造目的の臭素価値との差分に応じて、水素化反応の条件である温度、圧力、反応時間、水素量のうちの少なくともいずれか1つの運転条件を変更する制御をする。また、測定した軟化点と製造目的の軟化点との差分に応じて水素化溶媒または分子量体を分離する水素化溶媒除去工程における薄膜蒸発機42の温度と圧力とのうちの少なくともいずれか一方の運転条件を変更する制御をする。
[実施形態の作用効果]
 上述したように、上記実施形態では、水素化溶媒除去工程で水素化溶媒を分離した後の溶融樹脂である水素化化合物(水添石油樹脂)の近赤外吸収スペクトルを測定し、検量線データに基づいて水素化化合物の物性値を算出し、得られた物性値に基づいて水添石油樹脂ペレットを製造する一連の工程を制御している。
 このため、製造している水添石油樹脂の物性を、製造プラント外で分析する必要がなく自動的に検出でき、自動的に検出した物性に基づいて運転を制御することが可能となり、容易に所望の物性の水添石油樹脂を製造できる。
 また、上記実施形態では、測定した近赤外吸収スペクトルの測定結果から示されるアロマ含有率と臭素価との少なくともいずれか一方の物性値と、製造目的とする水添石油樹脂ペレットのこれらの物性値との差が小さくなる状態に、アロマ含有率と臭素価とに影響する水素化反応の温度と、圧力と、反応時間と、水素量とのうちの少なくともいずれか1つを制御している。
 このため、容易に所望の物性の水添石油樹脂を製造できる。
 さらに、上記実施形態では、測定した近赤外吸収スペクトルの測定結果から示される軟化点と、製造目的とする水添石油樹脂ペレットの軟化点との差が小さくなる状態に、軟化点に影響する水素化溶媒または低分子量体を分離する工程の温度と圧力とのうちの少なくともいずれかを制御している。
 このため、容易に所望の物性の水添石油樹脂を製造できる。
[変形例]
 なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
 具体的には、制御部が、製造プラントの運転条件をプログラムなどにより制御する場合に限らず、例えば測定結果に基づいて製造プラントの運転条件を制御する旨を作業者に報知して、報知結果に基づいて作業者が運転条件を変更する構成としてもよい。
 また、上記実施形態では、アロマ含有率と臭素価と軟化点とをそれぞれ測定し、水素化反応工程の運転条件および水素化溶媒除去工程の運転条件を制御する構成を例示したが、アロマ含有率と臭素価と軟化点とのうちのいずれか1つもしくは2つの物性値のみを測定してもよい。また、アロマ含有率あるいは臭素価に基づく水素化反応工程の運転条件の制御としては、水素化反応における温度と、圧力と、反応時間と、水素量との全てを制御する場合に限らず、少なくともいずれか1つの運転条件を制御する構成であればよい。同様に、軟化点に基づく水素化溶媒除去工程の運転条件の制御としては、薄膜蒸発機42の温度と圧力との双方を制御する場合に限らず、温度と圧力とのうちの少なくともいずれか一方の運転条件を制御する構成であればよい。
 また、水素化反応工程では、溶媒蒸発槽41と薄膜蒸発機42との二段処理で説明したが、一段のみ、もしくは三段以上で水素化溶媒さらには低分子量体を分離させるなどしてもよい。この様な場合、特に軟化点に影響する低分子量体を分離する工程における温度と圧力とのうちの少なくともいずれか一方の運転条件を制御する構成であればよい。
 その他、本発明の実施の際の具体的な構造および手順は、本発明の目的を達成できる範囲で他の構成に変更するなどしてもよい。
 本発明は、水素化溶媒を分離して溶融樹脂を得る水添石油樹脂ペレットの製造に適用できる。
   3…水素化反応部
   4…水素化溶媒回収部
  42…薄膜蒸発機

Claims (3)

  1.  水素化溶媒を分離した後の溶融樹脂の近赤外吸収スペクトルを測定し、
     測定された結果に基づいて、水添石油樹脂ペレットを製造する方法を制御する
     ことを特徴とする水添石油樹脂の製造方法。
  2.  請求項1に記載の水添石油樹脂の製造方法において、
     前記水添石油樹脂を製造する方法の制御としては、
     測定された結果が、前記溶融樹脂中のアロマ含有率と臭素価とのうちの少なくともいずれか一方の物性値を示し、
     該物性値と、製造目的とする水添石油樹脂ペレットの物性値との差が小さくなるように水素化反応の温度と、圧力と、反応時間と、水素量とのうちの少なくともいずれか1つを制御する
     ことを特徴とする水添石油樹脂の製造方法。
  3.  請求項1または請求項2に記載の水添石油樹脂の製造方法において、
     前記水添石油樹脂を製造する方法の制御としては、
     測定された結果が、前記溶融樹脂の軟化点を示し、
     該軟化点と、製造目的とする水添石油樹脂ペレットの軟化点との差が小さくなるように前記水素化溶媒または低分子量体を分離する工程の温度と圧力とのうちの少なくともいずれか一方を制御する
     ことを特徴とする水添石油樹脂の製造方法。
PCT/JP2012/064049 2011-06-01 2012-05-31 水添石油樹脂の製造方法 WO2012165532A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280022339.0A CN103502288B (zh) 2011-06-01 2012-05-31 氢化石油树脂的制备方法
EP12793712.6A EP2716668A1 (en) 2011-06-01 2012-05-31 Process for producing hydrogenated petroleum resin
KR1020137029035A KR101888716B1 (ko) 2011-06-01 2012-05-31 수소 첨가 석유 수지의 제조 방법
SG2013082144A SG194810A1 (en) 2011-06-01 2012-05-31 Process for producing hydrogenated petroleum resin
US14/116,262 US9023944B2 (en) 2011-06-01 2012-05-31 Process for producing hydrogenated petroleum resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-123664 2011-06-01
JP2011123664A JP5845001B2 (ja) 2011-06-01 2011-06-01 水添石油樹脂の製造方法、および、水添石油樹脂ペレットの製造プラント

Publications (1)

Publication Number Publication Date
WO2012165532A1 true WO2012165532A1 (ja) 2012-12-06

Family

ID=47259384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064049 WO2012165532A1 (ja) 2011-06-01 2012-05-31 水添石油樹脂の製造方法

Country Status (8)

Country Link
US (1) US9023944B2 (ja)
EP (1) EP2716668A1 (ja)
JP (1) JP5845001B2 (ja)
KR (1) KR101888716B1 (ja)
CN (1) CN103502288B (ja)
SG (1) SG194810A1 (ja)
TW (2) TWI553025B (ja)
WO (1) WO2012165532A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160319047A1 (en) * 2013-12-25 2016-11-03 Idemitsu Kosan Co.,Ltd. Method for producing hydrogenated petroleum resin

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5845001B2 (ja) * 2011-06-01 2016-01-20 出光興産株式会社 水添石油樹脂の製造方法、および、水添石油樹脂ペレットの製造プラント
CN104945560B (zh) * 2015-06-29 2017-11-21 安徽同心化工有限公司 一种加氢的苯乙烯改性双环戊二烯石油树脂及其制备方法
JP2019151753A (ja) * 2018-03-05 2019-09-12 東ソー株式会社 脂肪族−芳香族石油樹脂の製造法
JP7087468B2 (ja) * 2018-03-08 2022-06-21 東ソー株式会社 脂肪族-芳香族石油樹脂の製法
JP7333308B2 (ja) * 2018-03-08 2023-08-24 出光興産株式会社 石油樹脂及び水素添加石油樹脂、並びに水素添加石油樹脂の製造方法
KR20230008036A (ko) * 2020-04-14 2023-01-13 이데미쓰 고산 가부시키가이샤 수소화 석유 수지 펠릿 및 수소화 석유 수지 펠릿의 제조 방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61255918A (ja) * 1985-05-10 1986-11-13 Maruzen Petrochem Co Ltd 水素化c↓5石油樹脂の製造方法
JP2865755B2 (ja) 1987-12-31 1999-03-08 ビーピー ケミカルズ リミテッド 重合体の製造を制御する方法および装置
JPH11130820A (ja) * 1996-11-27 1999-05-18 Idemitsu Petrochem Co Ltd 共重合体及びその製造方法
JPH11228603A (ja) * 1997-08-21 1999-08-24 Bayer Ag ラマン分光法のオンライン適用による部分水素化アクリロニトリル−ブタジエンゴム(hnbr)の製造方法
JP2002145966A (ja) 2000-11-07 2002-05-22 Mitsui Chemicals Inc 芳香族石油樹脂の製造方法
JP2003532762A (ja) * 2000-05-12 2003-11-05 バイエル・インコーポレーテツド 水素化ビニル芳香族化合物−ジエン−ニトリルゴム
WO2004056882A1 (ja) 2002-12-20 2004-07-08 Idemitsu Kosan Co., Ltd. 水素添加石油樹脂の製造方法
JP4385433B2 (ja) 1998-09-04 2009-12-16 三井化学株式会社 近赤外分析による製造運転制御方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6040388A (en) 1996-11-27 2000-03-21 Idemitsu Petrochemical Co., Ltd. Copolymer, hydrogenated product thereof, and process for producing the same
KR200167140Y1 (ko) * 1996-12-24 2000-05-01 정몽규 워터 펌프
US6072576A (en) * 1996-12-31 2000-06-06 Exxon Chemical Patents Inc. On-line control of a chemical process plant
JP2004026969A (ja) * 2002-06-25 2004-01-29 Idemitsu Petrochem Co Ltd 高軟化点共重合体、その製造方法及びその水素添加物
JP2004189764A (ja) * 2002-12-06 2004-07-08 Idemitsu Petrochem Co Ltd 石油樹脂及び水素添加石油樹脂の製造方法
JP5845001B2 (ja) * 2011-06-01 2016-01-20 出光興産株式会社 水添石油樹脂の製造方法、および、水添石油樹脂ペレットの製造プラント

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61255918A (ja) * 1985-05-10 1986-11-13 Maruzen Petrochem Co Ltd 水素化c↓5石油樹脂の製造方法
JP2865755B2 (ja) 1987-12-31 1999-03-08 ビーピー ケミカルズ リミテッド 重合体の製造を制御する方法および装置
JPH11130820A (ja) * 1996-11-27 1999-05-18 Idemitsu Petrochem Co Ltd 共重合体及びその製造方法
JPH11228603A (ja) * 1997-08-21 1999-08-24 Bayer Ag ラマン分光法のオンライン適用による部分水素化アクリロニトリル−ブタジエンゴム(hnbr)の製造方法
JP4385433B2 (ja) 1998-09-04 2009-12-16 三井化学株式会社 近赤外分析による製造運転制御方法
JP2003532762A (ja) * 2000-05-12 2003-11-05 バイエル・インコーポレーテツド 水素化ビニル芳香族化合物−ジエン−ニトリルゴム
JP2002145966A (ja) 2000-11-07 2002-05-22 Mitsui Chemicals Inc 芳香族石油樹脂の製造方法
WO2004056882A1 (ja) 2002-12-20 2004-07-08 Idemitsu Kosan Co., Ltd. 水素添加石油樹脂の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160319047A1 (en) * 2013-12-25 2016-11-03 Idemitsu Kosan Co.,Ltd. Method for producing hydrogenated petroleum resin
US9644043B2 (en) * 2013-12-25 2017-05-09 Idemitsu Kosan Co., Ltd. Method for producing hydrogenated petroleum resin

Also Published As

Publication number Publication date
KR20140020995A (ko) 2014-02-19
KR101888716B1 (ko) 2018-08-14
US9023944B2 (en) 2015-05-05
SG194810A1 (en) 2013-12-30
JP5845001B2 (ja) 2016-01-20
TW201700518A (zh) 2017-01-01
CN103502288B (zh) 2015-11-25
TWI588169B (zh) 2017-06-21
TWI553025B (zh) 2016-10-11
JP2012251050A (ja) 2012-12-20
EP2716668A1 (en) 2014-04-09
US20140148550A1 (en) 2014-05-29
TW201307411A (zh) 2013-02-16
CN103502288A (zh) 2014-01-08

Similar Documents

Publication Publication Date Title
WO2012165532A1 (ja) 水添石油樹脂の製造方法
JP5787624B2 (ja) 水添石油樹脂ペレットの製造方法
JP5625056B2 (ja) オレフィン系ポリマーのための重合方法
CN108473624B (zh) 均匀微观结构的乙烯/丁二烯共聚物
JP6328348B2 (ja) 押出し機において修飾オレフィンポリマーを生成するためのプロセス
EP3371230B1 (en) Control methods for polymer product purge
RU2726197C2 (ru) Сополимер этилена и бутадиена с однородной микроструктурой
JP7123083B2 (ja) パスチレーション技術を使用した低粘度ポリマーの重合および単離
JP2013133451A (ja) ポリオレフィンの製造方法およびその装置
WO2021210400A1 (ja) 水素化石油樹脂ペレット及び水素化石油樹脂ペレットの製造方法
US20190077893A1 (en) Cross-copolymer and medical single-layer tube including same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12793712

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137029035

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14116262

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1301005612

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE