WO2012165118A1 - 内燃機関の制御方法、内燃機関及びそれを搭載した車両 - Google Patents

内燃機関の制御方法、内燃機関及びそれを搭載した車両 Download PDF

Info

Publication number
WO2012165118A1
WO2012165118A1 PCT/JP2012/062025 JP2012062025W WO2012165118A1 WO 2012165118 A1 WO2012165118 A1 WO 2012165118A1 JP 2012062025 W JP2012062025 W JP 2012062025W WO 2012165118 A1 WO2012165118 A1 WO 2012165118A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
internal combustion
combustion engine
resonance
rotational speed
Prior art date
Application number
PCT/JP2012/062025
Other languages
English (en)
French (fr)
Inventor
恒 小澤
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to US14/123,012 priority Critical patent/US9732693B2/en
Priority to EP12793677.1A priority patent/EP2716898B1/en
Priority to CN201280025254.8A priority patent/CN103562529B/zh
Publication of WO2012165118A1 publication Critical patent/WO2012165118A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an internal combustion engine control method that reduces rolling vibration due to torque fluctuation, an internal combustion engine, and a vehicle equipped with the internal combustion engine.
  • An internal combustion engine having a piston crank mechanism (hereinafter referred to as an engine) is caused by the reciprocating mass of a piston and the inertial force of a rotating mass such as a crankshaft, and the gas pressure in a cylinder (hereinafter referred to as in-cylinder pressure).
  • a force hereinafter referred to as “vibration force”
  • a moment hereinafter referred to as “vibration moment”
  • the main component of the generated vibration force and frequency component of the vibration moment is determined by the cylinder arrangement of the engine.
  • the engine rotation secondary component is the main component. This is because in the case of in-line four cylinders, the crankshaft is opposed to the crankshaft at a 180 degree position. Since the combustion stroke occurs twice during one revolution of the crankshaft, the interval is every 180 degrees in crank angle, and the main component of the rolling vibration moment is the engine rotation 2 that fluctuates every cycle twice. Next component.
  • the vibration transmission system uses a vibration-proof support such as a rubber mount in order to improve vibration problems caused by transmission of the derived power plant vibration to the vehicle side. .
  • FIG. 7 shows the relationship between the ratio of the mount resonance frequency ⁇ 0 and the vibration force or vibration moment frequency ⁇ , and the vibration transmissibility T from the engine side to the vehicle side.
  • a region where the vibration transmissibility T is smaller than 1 hereinafter referred to as an anti-vibration region
  • the main component at the normal engine speed (idling speed or higher) is a frequency ⁇ .
  • the mount resonance frequency ⁇ 0 is set so that
  • ⁇ / ⁇ 0 exists in a range where ⁇ / ⁇ 0 is larger than 1
  • resonance point RP1 1
  • this vibration phenomenon is composed of an engine 2X, a clutch housing 3, and a transmission 3, and these devices occur in a power plant 1X mounted on a vehicle with vibration-proof support by a rubber mount 6. As shown in the figure, roll vibration that swings around the longitudinal axis of the engine 2X occurs in the power plant 1X.
  • Fig. 9 shows the change in the in-cylinder pressure of each cylinder during the starting process of this engine.
  • This represents the in-cylinder pressure of each of the cylinders C1 to C4 when the in-line four-cylinder engine is started.
  • the ignition order of this engine is cylinder C2, cylinder C1, cylinder C3, and cylinder C4.
  • a region where torque is applied from the starter motor is a starter assist region A2, a region where the rotation is increased by the torque generated by the engine itself is a rotation increase region A3, and a region where the engine speed is the normal rotation speed is a normal rotation speed region A3.
  • the rotation increasing region A3 between 0.4 seconds and 0.9 seconds is in the process of increasing the engine speed, and the in-cylinder pressure is high.
  • the in-cylinder pressure becomes substantially constant when the rotation speed region A4 is reached.
  • a time point (dotted line in the figure) t1 that passes through the resonance point RP1 described above when the in-cylinder pressure is high.
  • Roll vibration of the power plant is generated by the vibration moment caused by the in-cylinder pressure of the cylinder C4 that shows a high in-cylinder pressure after the resonance time t1 is exceeded.
  • the present invention has been made in view of the above-described problems, and its object is to maintain a piston torque 2 that is a main component of a rolling vibration moment while maintaining an average torque equal when passing through a resonance point when starting an engine.
  • the number of revolutions of a multi-cylinder internal combustion engine is such that resonance occurs between a power plant including the internal combustion engine and roll vibration in the power plant support device.
  • This is a method characterized by temporarily making the fuel injection amount for each cylinder in the resonance rotational speed region near the rotational speed nonuniform.
  • the above control method of the internal combustion engine includes a cylinder in which an in-cylinder pressure becomes larger than a preset in-cylinder pressure when the rotation speed enters the resonance rotation speed region, and a cylinder that has two ignition orders after the cylinder. Is determined as a depressurizing cylinder, and at least one cylinder other than the depressurizing cylinder is determined as a boosting cylinder, and the fuel injection amount of the depressurizing cylinder is reduced when the rotational speed is in the resonance rotational speed region. And increasing the combustion injection amount of the pressure-increasing cylinder.
  • the engine speed is calculated from the crank angle sensor, and the injection cylinder is determined from the outputs of the cam angle sensor and the crank angle sensor.
  • numerical data is input to the ECU (control device) in advance for the resonance frequency, the cylinder arrangement, and the increase / decrease amount (correction amount) of the fuel injection amount when passing the resonance point. Based on these pieces of information, a rotational speed region where vibration due to roll resonance occurs is determined, and control is performed to increase or decrease the fuel injection amount for each cylinder in that region.
  • a lower limit and an upper limit threshold are set in the rotation speed range to be controlled, and when the lower limit threshold is exceeded, the cylinder in which the in-cylinder pressure reaches its peak and the cylinder whose ignition order is two after that cylinder are defined as the decompression cylinder.
  • a determination is made and at least one of the cylinders other than the decompression cylinder is determined to be a pressure-increasing cylinder.
  • the rotation speed passes the resonance point, that is, when the in-cylinder pressure reaches the peak, the combustion injection amount of the decompression cylinder including the cylinder that reaches the peak is decreased, the increase is suppressed, and the fuel injection amount of the pressure increasing cylinder is increased.
  • the maximum value of the excitation moment at the time of passing through the resonance point (at the time of passing through the resonance point) is suppressed, and at the same time, the engine rotation secondary component is dispersed into other components such as the 0.5th order and the primary. Temporarily decreases.
  • the main component of the rolling excitation moment can be changed by reducing the fuel injection amount of the cylinder in which the in-cylinder pressure reaches a peak when passing through the resonance point and suppressing the increase in the in-cylinder pressure.
  • the fuel injection amount of the other cylinders is increased so that the average torque in the starting process is set to a uniform injection amount for each cylinder. It can be equivalent to the case.
  • An internal combustion engine for achieving the above object is a multi-cylinder internal combustion engine including a fuel injection device capable of adjusting the fuel injection amount of each cylinder and a control device. And means for determining whether or not the rotation speed is in a resonance rotation speed region in the vicinity of a resonance rotation speed at which resonance occurs between a power plant including the internal combustion engine and roll vibration in the power plant support device. And means for controlling the fuel injection device so that the fuel injection amount for each cylinder in which the rotation speed is within the resonance rotation speed region is non-uniform.
  • the means for determining whether or not the internal combustion engine speed is within the resonance speed area determines the resonance speed area from the information on the resonance frequency input in advance to the control device, and within the resonance speed area. It is determined whether or not the engine has a rotational speed. According to this configuration, the same effect as described above can be obtained.
  • the control device includes a cylinder whose in-cylinder pressure becomes larger than a preset in-cylinder pressure when the rotation speed enters the resonance rotation speed region, and a second ignition order after the cylinder.
  • Means for discriminating the cylinder as a decompression cylinder, discriminating at least one of the cylinders other than the decompression cylinder as a boosting cylinder, and fuel injection into the decompression cylinder when the rotational speed is in the resonance rotational speed region Means for controlling the fuel injection device so that the amount can be decreased, and for controlling the fuel injection device so that the combustion injection amount to the pressure-increasing cylinder can be increased.
  • the injection cylinder is determined from the outputs of the cam angle sensor and the crank angle sensor, the cylinder in which the in-cylinder pressure reaches a peak in the resonance speed range (reduced pressure) in consideration of the cylinder arrangement previously input to the ECU. Cylinder) and the cylinders before and after that (pressure increasing cylinder) are discriminated. Then, the fuel injection device is controlled so that the control device injects fuel at a predetermined fuel injection amount for each cylinder.
  • the rotation order component which is the main component of the rolling excitation moment
  • a vehicle for achieving the above object is configured by mounting any of the above internal combustion engines.
  • This internal combustion engine can be applied to a gasoline engine or a diesel engine mounted on a vehicle.
  • the present invention can be applied to an internal combustion engine such as a generator in which vibration at the start is a problem.
  • the average torque is kept equal, and the piston rotation secondary component, which is the main component of the rolling vibration moment, is changed temporarily to avoid the resonance frequency.
  • power plant vibration can be reduced without impairing startability.
  • FIG. 1 is a side view showing a power plant including an internal combustion engine according to an embodiment of the present invention.
  • FIG. 2 is a configuration diagram of the internal combustion engine according to the embodiment of the present invention.
  • FIG. 3 is a diagram showing resonance points between the rotational speed and roll vibration of the internal combustion engine according to the embodiment of the present invention.
  • 4 is a diagram showing the in-cylinder pressure of each cylinder of the internal combustion engine of the embodiment according to the present invention.
  • FIG. 5 is a flowchart showing a method of controlling the internal combustion engine according to the embodiment of the present invention.
  • FIG. 6 is a diagram showing an excitation moment improved by the internal combustion engine of the embodiment according to the present invention.
  • FIG. 7 is a view showing an outline of a conventional anti-vibration support.
  • FIG. 8 is a side view showing roll vibration of a conventional internal combustion engine.
  • FIG. 9 is a diagram showing the in-cylinder pressure of each cylinder of a conventional internal combustion engine.
  • a power plant 1 includes an engine 2, a clutch housing 3, and a transmission 4, and the rubber mount 6 supports the power plant 1 on a vehicle in a vibration-proof manner.
  • the engine 2, the clutch housing 3, and the transmission 4 constituting the power plant 1 general ones can be used.
  • the engine 2 can be a diesel engine or a gasoline engine, and the cylinder arrangement and the number of cylinders are not limited to the in-line 4 cylinders, but may be in-line 6 cylinders or V-type 6 cylinders.
  • the rubber mount 6 only needs to be able to support the power plant 1 on the vehicle, and the support point and number can be arbitrarily set, and an active hydraulic mount device or the like can be used.
  • the engine 2 includes a cylinder block 11, a cylinder head 12, a crankshaft 13, a crankshaft timing gear 14, a timing chain 15, a camshaft timing gear 16, a camshaft 17, an intake valve 18, and an exhaust valve 19. Also provided are cylinders C1 to C4, pistons P1 to P4, and injectors i1 to i4.
  • the engine 2 is an in-line four-cylinder diesel engine, and performs a general four-stroke stroke including an intake stroke, a compression stroke, a combustion stroke, and an exhaust stroke.
  • crankshaft pulsar rotor 21 a crank angle sensor 22 a camshaft pulsar rotor 23, and a cam angle sensor 24 are also provided.
  • an ECU (engine control unit) 20 that is a control device connected to the injectors i1 to i4, the crank angle sensor 22, and the cam angle sensor 24 through signal lines is also provided.
  • the ECU 20 receives sensor outputs such as a crank angle sensor 22 and a cam angle sensor 24 via a signal line. Further, the resonance frequency information D1, the cylinder arrangement information D2, and the fuel injection amount correction information D3 are input to the ECU 20 in advance. Then, based on the information, the ECU 20 controls the fuel injection amounts of the injectors i1 to i4.
  • the ECU 20 is a microcontroller that controls the engine by an electric circuit and comprehensively performs electrical control such as ignition timing (in the case of a gasoline engine), fuel injection timing, and fuel injection amount. In automatic vehicles, I am also in charge of controlling the entire power plant including the transmission.
  • the ECU 20 stores the optimum control values in all operating states, detects the state at that time with a sensor, selects the optimum value from the stored data by the input signal from the sensor, and controls each mechanism. . *
  • the crank angle sensor 22 is a sensor that is formed of an MR element (magnetic resistance element) and detects the angle of the crankshaft 13.
  • the crank angle sensor 22 is mounted to face a protrusion attached to a crankshaft pulsar rotor provided on the crankshaft 13. Thus, the engine speed signal and the cycle signals of the cylinders C1 to C4 are detected.
  • the cam angle sensor 24 is formed of an MR element or the like and detects the angle of the camshaft 17.
  • the cam angle sensor 24 is attached so as to oppose a protruding portion attached to the camshaft pulsar rotor 23 provided on the camshaft 17.
  • a dead point (TDC) signal and a cylinder discrimination signal are detected.
  • the ECU 20 can obtain the number of revolutions of the engine 2 and can perform cylinder discrimination for discriminating the compression stroke and exhaust stroke of each of the cylinders C1 to C4. Timing, fuel injection timing, and fuel injection amount are calculated. Therefore, the crank angle sensor 22 and the cam angle sensor 24 are not limited to the above configuration as long as the ECU 20 can calculate the ignition timing, the fuel injection timing, and the fuel injection amount.
  • the injectors i1 to i4 are devices connected to a common rail (not shown in the case of a diesel engine) and directly injecting fuel toward the top surfaces of the pistons P1 to P4.
  • the high-pressure fuel stored in the common rail is constantly supplied to the injectors i1 to i4.
  • a high-pressure supply pump (not shown) feeds fuel to the common rail.
  • the nozzles at the tip of the injectors i1 to i4 are formed in a conical shape having a plurality of fine nozzle holes, and the fuel is simultaneously injected radially from the plurality of fine nozzle holes.
  • the injectors i1 to i4 are not limited to the above configuration, and it is sufficient that the fuel can be injected toward the top surfaces of the pistons P1 to P4. *
  • the resonance frequency information D1 will be described.
  • FIG. 3 showing the relationship between the rotational speed of the engine 2 and the starting time, that is, the rotational speed in the starting process of the engine 2.
  • the resonance point is the resonance point RP1
  • the time when the resonance point is generated is the resonance occurrence time t1
  • a region in the vicinity of the resonance generation rotational speed R1 is a resonance rotational speed region A1, and roll vibration of the power plant 1 becomes significant in the resonant rotational speed region A1. Therefore, the resonance frequency information D1 becomes the resonance point RP1 and the resonance rotation speed R1, and the resonance occurrence time t1 and the resonance rotation speed region A1 are calculated therefrom. *
  • the lower limit and the upper limit threshold that is, the lower limit rotation speed RL and the upper limit rotation speed RH are set in the range of the resonance rotation speed region A1.
  • the lower limit rotational speed RL is set to a value of ⁇ 0 rpm to ⁇ 100 rpm with respect to the resonant rotational speed R1
  • the upper limit rotational speed RH is set to a value of +0 rpm to +300 rpm with respect to the resonant rotational speed R1, more preferably the lower limit rotational speed.
  • the number RL is set to a value of ⁇ 20 rpm to ⁇ 40 rpm with respect to the resonance speed R0, and the upper limit speed RH is set to a value of +80 rpm to +140 rpm with respect to the resonance speed R0.
  • the resonance point RP1, the resonance occurrence time t1, the resonance rotation speed R1, and the resonance rotation speed region A1 have various values depending on the type of the engine 2. Therefore, the above numerical value is just an example, and the range is the above value. Not exclusively.
  • the cylinder arrangement information D2 is data of the arrangement order of the cylinders C1 to C4 and the firing order thereof.
  • the ignition order of the engine 2 is the order of the cylinder C1, the cylinder C3, the cylinder C4, and the cylinder C2.
  • the fuel injection correction information D3 is a correction amount of fuel injected from the predetermined injectors i1 to i4.
  • This correction amount is a fuel injection amount controlled by the ECU 20 so as to be in-cylinder pressure shown in FIG.
  • the cylinder pressures of the cylinders C1 to C4 are CP1 to CP4.
  • the in-cylinder pressure CP4 is adjusted to be as close as possible to the in-cylinder pressure CP0 as much as possible by reducing the amount of fuel injected into the cylinder C4 so that the in-cylinder pressure CP4 is substantially the same as the in-cylinder pressure CP0 at the normal rotation speed R2. Compared with FIG.
  • the in-cylinder pressure CP2 and the in-cylinder pressure CP3 of the cylinders C2 and C3 other than the cylinders C4 and C1 are increased as compared with FIG. That is, the fuel injection amount of the cylinders C2 and C3 is increased so as to compensate for the decrease in the torque of the engine 2 corresponding to the decrease in the in-cylinder pressure CP4 and the in-cylinder pressure CP1 described above. Yes. Therefore, a fuel injection correction amount that maintains the average torque of the engine 2 is also input to the fuel injection correction information D3.
  • the rotational speed region A1 is determined and the rotational speed is within the resonance rotational speed region A1
  • the fuel injection amount of each of the cylinders C1 to C4 can be increased or decreased to make it nonuniform temporarily. Therefore, the main component of the rolling excitation moment due to the in-cylinder pressure changes, and the vibration of the engine 2 can be reduced by avoiding the coincidence with the roll resonance frequency.
  • crankshaft 13 When the engine 2 is started, the crankshaft 13 is rotated by a starter (not shown), and the pistons P1 to P4 start moving up and down in the cylinders C1 to C4.
  • the crank angle sensor 22 detects the rotation angle of the crankshaft 13 and the ECU 20 receives the signal.
  • the cam angle sensor 22 detects the phase angle of the camshaft 17, the ECU 20 receives the signal, calculates the position of the camshaft 17 from the deviation from the reference angle of the camshaft 17, and the signal detected by the crank angle sensor 22 And step S1 for determining which cylinder is injecting.
  • Step S2 for determining the number area A1 is performed.
  • a resonance rotation speed region A1 that is a range between a lower limit rotation speed RL and an upper limit rotation speed RH determined from the resonance rotation speed R1 is calculated.
  • the resonance rotational speed R1 360 rpm
  • the lower limit rotational speed RL 330 rpm
  • step S3 for determining the decompression cylinder is performed. From the cylinder discrimination in step S1, cylinder arrangement information D2, and the resonance rotational speed region A1 in step S2, the situation of each of the cylinders C1 to C4 when the rotational speed Rx exceeds the lower limit rotational speed RL is predicted. As shown in FIGS. 3 and 4, when the rotational speed Rx exceeds the value of the lower limit rotational speed RL, the cylinder C3 is predicted to perform the expansion stroke, and then enters the compression stroke, and the cylinder C4 in which the in-cylinder pressure CP4 increases. Is determined to be a decompression cylinder. Further, the cylinder C1 that is second in ignition order from the decompression cylinder C4 is also determined to be the decompression cylinder. This completes the discrimination between the decompression cylinder C4 and the decompression cylinder C1.
  • step S4 in which cylinders other than the decompression cylinders C4 and C1, that is, the cylinders C3 and C2 are determined to be pressure-increasing cylinders. From step 3 and step S5, the decompression cylinders C4 and C1 and the pressure increase cylinders C2 and C3 are determined, and the process proceeds to the next step.
  • step S5 for determining the fuel injection amounts of the decompression cylinders C4 and C1 and the pressure increase cylinders C2 and C3 is performed.
  • the ECU 20 determines a decrease amount of the fuel injection amount of the decompression cylinders C4 and C1 and an increase amount of the fuel injection amount of the pressure increase cylinders C2 and C3 from the combustion correction amount information D3.
  • the fuel injection amount of the decompression cylinder C4 is the fuel injection amount corrected so that the in-cylinder pressure CP4 after combustion is substantially the same as the in-cylinder pressure CP0 at the normal rotation speed R2.
  • the fuel injection amount of the decompression cylinder C1 approaches the in-cylinder pressure CP0, and becomes a fuel injection amount corrected so that the torque of the engine 2 does not decrease excessively. Further, the fuel injection amount of the booster cylinder C2 and the booster cylinder C3 can maintain the average torque when the decompression cylinders C4 and C1 are not decompressed by the reduced torque of the engine 2 corresponding to the decrease of the in-cylinder pressures CP4 and CP1. Thus, the corrected fuel injection amount is obtained. *
  • step S5 is performed in the starter assist area A2, and is completed before the engine speed Rx enters the engine speed increase area A3.
  • Step S6 for obtaining the rotational speed Rx of the engine 2 from the signal detected by the crank angle sensor 22 is performed.
  • step S7 is performed to determine whether or not the next rotation speed Rx is in the resonance rotation speed region A1. If the rotational speed Rx is not within the resonance rotational speed region A1, the process returns to step S6 where the rotational speed Rx is obtained again, and is performed until the rotational speed Rx enters the resonant rotational speed region A1.
  • the injectors i1 to i4 are sequentially corrected to the respective cylinders C1 to C4 with the fuel injection quantities determined in steps S3 to S5. In step S8, the fuel is injected.
  • step S8 the maximum value of the excitation moment when passing through the resonance point RP1 (resonance occurrence t1) is suppressed, and at the same time, the engine rotation secondary component is dispersed to other components such as the 0.5th order or the first order.
  • the vibration moment can be temporarily reduced.
  • Step 9 is performed to determine whether or not the next engine speed Rx is equal to the normal speed R2. If there is a resonance point other than the resonance point RP1 in step S2, the fuel injection amount different for each cylinder is also injected at the resonance point as described above.
  • the in-cylinder pressures CP1 to CP4 can be the main components of the rolling vibration exciting moment. It is necessary to make the cylinders C1 to C4 non-uniform.
  • Step 9 it is determined whether or not the rotational speed Rx becomes the normal rotational speed R2 at which the in-cylinder pressures CP1 to CP4 are substantially constant, and it is determined that the rotational speed Rx becomes the normal rotational speed R2, that is, substantially constant. Then proceed to the next step.
  • This step 9 is not limited to the above method, but uses, for example, a method for determining that the in-cylinder pressures CP1 to CP4 are substantially constant using sensors that detect the in-cylinder pressures CP1 to CP4 of the cylinders C1 to C4. You can also.
  • step S10 the control of the engine 2 is completed by performing step S10 for returning the fuel injection amount to each of the cylinders C1 to C4 to normal.
  • the fuel injection amount is reduced so that the in-cylinder pressure of the decompression cylinder C4 at which the inner pressure reaches a peak when passing through the resonance point becomes substantially the same as the in-cylinder pressure at the normal rotation speed R2.
  • the pressure reduction cylinder C1 which has two ignition orders after the pressure reduction cylinder C4, also reduces the combustion injection amount for the same reason.
  • the fuel injection amount of the booster cylinder C2 and the booster cylinder C3 other than the decompression cylinders C4 and C1 is increased to increase the average during the starting process.
  • the torque can be made equal to the case where a uniform injection amount is applied to each of the cylinders C1 to C4.
  • the vehicle equipped with the power plant 1 including the engine 2 that performs the above-described operation has a rotation order that is a main component of the rolling vibration generating moment while keeping the average torque equal at the time t1 when the engine 2 starts to resonate. Ingredients can be changed temporarily. Thus, the resonance frequency can be avoided and the engine 2 can be started without impairing the startability. This is effective when the engine 2 such as a vehicle equipped with an idling stop system is frequently started.
  • FIG. 6 shows a graph showing the vibration moment and average torque of the power plant 1 including the conventional power plant 1X and the engine 2 according to the embodiment of the present invention.
  • the power plant 1X and the power plant 1 have substantially the same average torque, but the excitation moment is reduced by about 2 dB in the power plant 1, and the effect of the internal combustion engine of the present invention can be confirmed. .
  • the fuel injection amount is reduced so that the cylinder pressure of the cylinder in which the in-cylinder pressure reaches the peak at the time t1 when the resonance occurs and the cylinder after the second ignition order from the cylinder are reduced.
  • the engine 2 is not limited to a vehicle engine, but can be applied to an internal combustion engine in which vibration at the start of a generator or the like causes a problem.
  • the control method of an internal combustion engine of the present invention, the internal combustion engine, and a vehicle equipped with the internal combustion engine can reduce vibrations at the start of the internal combustion engine, and thus can be used for vehicles such as trucks.
  • it can be used not only for an internal combustion engine of a vehicle but also for an internal combustion engine such as an electric motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 多気筒型の内燃機関の始動時に、内燃機関を含むパワープラントと支持装置によるロール振動を、始動性を損なわずに低減する内燃機関の制御方法と内燃機関とそれを搭載した車両を提供することである。多気筒型のエンジン(内燃機関)(2)のECU(制御装置)(20)が、前記エンジン(2)の回転数Rxと、前記エンジン(2)を含むパワープラント(1)とパワープラント(1)のラバーマウント(6)とによる共振が発生する共振回転数R1の近傍の共振回転数領域A1内に回転数Rxがあるか否かを判別する手段と、前記回転数Rxが、前記共振回転数領域A1内のときに、前記共振回転数領域A1でシリンダC1~C4の燃料噴射量が不均一になるように、インジェクタi1~i4を制御する手段と、を備えて構成される。

Description

内燃機関の制御方法、内燃機関及びそれを搭載した車両
 本発明は、トルク変動によるローリング振動を低減した内燃機関の制御方法と内燃機関とそれを搭載した車両に関する。
 ピストンクランク機構を備えた内燃機関(以下、エンジンという)は、ピストンなどの往復質量とクランク軸などの回転質量の慣性力、及びシリンダ内のガス圧力(以下、筒内圧という)に起因して、エンジン及び変速機から成るパワープラントに並進及び回転方向の振動を励起する力(以下、起振力という)、及びモーメント(以下、起振モーメントという)が作用する。
 このとき、発生する起振力、起振モーメントの周波数成分はエンジンの気筒配列によってその主成分が決まり、例えば直列4気筒の場合はエンジン回転2次成分が主成分となる。これは直列4気筒の場合クランクシャフトが180度位置で相対してクランクピンがあるからである。燃焼行程はクランクシャフトが1回転する間に2回発生するため、その間隔はクランク角で180度毎になり、ローリング起振モーメントの主成分は1回転に2回の周期で変動するエンジン回転2次成分となる。これは、各気筒で発生する起振モーメントを180度ずつずらして合成すると、180度が変動周期の整数倍となる成分が強め合って残り、その他(180度が1/2周期や1/4周期)の成分は打ち消しあるためである。4次、6次・・・成分も残るが最大は2次成分となる。他にも直列6気筒の場合はエンジン回転に対して同様の理由から3次成分が主成分となる。このようなパワープラントを車両に搭載する場合には、振動伝達系では派生したパワープラント振動の車両側への伝達による振動問題を改善するために、ラバーマウントなどによる防振支持を適用している。
 その各気筒の筒内圧に起因する振動を低減する装置として、各気筒の爆発行程毎の回転速度変動を検出し、回転速度変動の平均値と比較して、各気筒の回転速度変動を平滑化する装置がある(例えば特許文献1参照)。また、各気筒内での燃焼によって生じた音又は振動によって各気筒の燃料噴射量を制御する装置もある(例えば特許文献2参照)。しかし、これらの装置は各気筒の発生トルクを均一化して、直列4気筒エンジンでの前記180度が1/2周期や1/4周期の成分を低減することは出来るが、2次成分を低減することはできない。また、前者の装置では爆発行程毎の回転速度変動から噴射量を制御し、後者の装置では各気筒の音又は振動から噴射量を制御しているため、複雑な制御が必要である。
 ここで、パワープラントを質量、ラバーマウントをばね及び減衰とした振動系として考えると、この振動系は共振現象(以下、マウント共振という)を伴うことになる。マウント共振周波数ωと起振力又は起振モーメントの周波数ωの比、エンジン側から車両側への振動伝達率Tの関係を図7に示す。車両用パワープラントの防振支持においては、エンジンの常用回転数(アイドリング回転数以上)での主成分を周波数ωとした場合に、振動伝達率Tが1より小さい領域(以下、防振領域)になるようにマウント共振周波数ωを設定する。ここで、防振領域A0はω/ωが1より大きい範囲に存在するため、エンジン始動及び停止の過程でω/ω=1の状態(以下、共振点RP1)を通過することになり、マウント共振による顕著な振動現象が発生する。
 この振動現象は、図8に示すように、エンジン2X、クラッチハウジング3、トランスミッション3から構成され、これらの各装置をラバーマウント6によって防振支持して、車両に搭載したパワープラント1Xで起きる。図に示すように、パワープラント1Xにはエンジン2Xの長手方向軸まわりに揺動するロール振動が起きる。
 スタータモータなどの始動補助装置を装備したエンジンの始動過程では、始めにスタータモータでトルクを与え、吸入、圧縮行程が行われてシリンダ内が燃焼可能な吸入空気状態に至ると燃焼が開始される。その後は燃焼によるエンジン自身の発生トルクで回転を上昇させ、常用回転数に到達する。この過程で発生する起振モーメントは、エンジン回転数が低いため慣性力の影響は小さく、筒内圧の影響が支配的である。このとき、上述のマウント共振において、エンジンの長手方向軸まわりに揺動するロール共振が顕著なパワープラントでは、筒内圧に起因する起振モーメントで励起されるロール振動の発生が問題となる。
 このエンジンの始動過程の各気筒の筒内圧の変化を図9に示す。これは直列4気筒のエンジンを始動した際の各気筒C1~C4の筒内圧を表している。このエンジンの着火順は気筒C2、気筒C1、気筒C3、気筒C4である。スタータモータからトルクを与えられる領域をスタータアシスト領域A2、エンジン自身の発生トルクで回転を上昇させる領域を回転上昇領域A3、エンジンの回転数が常用回転数になる領域を常用回転数領域A3とする。筒内圧からも分かるように0.4秒~0.9秒の間の回転上昇領域A3はエンジンの回転数上昇過程にあり、筒内圧が高い。その後、常用回転数領域A4となりと、筒内圧は略一定になる。筒内圧が高い状態に前述した共振点RP1を通過する時点(図中の点線)t1が存在する。この共振時点t1を超えてから高い筒内圧を示す気筒C4の筒内圧に起因する起振モーメントによってパワープラントのロール振動が発生する。 
 また、共振点通過時にエンジン自身の発生トルクによる回転数上昇過程に達している場合には、筒内圧の上昇により起振モーメントが大きくなり、ロール振動が増大する。一方、始動可否、始動時間の短縮といった始動性の改善には筒内圧を上昇させることが望まれ、始動性と振動の両立が問題となる。
特開2001-355500号公報 特開2008-184915号公報
 本発明は、上記の問題を鑑みてなされたものであり、その目的は、エンジン始動時の共振点通過時に、平均トルクは同等に保った上でローリング起振モーメントの主成分であるピストン回転2次成分を一時的に変化させて、共振周波数を回避し、始動性を損なわずにパワープラント振動を低減することができる内燃機関の制御方法と内燃機関とそれを搭載した車両を提供することである。
 上記の目的を達成するための内燃機関の制御方法は、多気筒型の内燃機関の回転数が、前記内燃機関を含むパワープラントと前記パワープラントの支持装置におけるロール振動との共振が発生する共振回転数の近傍の共振回転数領域内にある気筒毎の燃料噴射量を、一時的に不均一にすることを特徴とする方法である。
 支持装置に防振支持された内燃機関を含むパワープラントは、マウント共振周波数と起振モーメントの周波数が共振点のときに顕著な振動現象が発生する。上記の方法によれば、内燃機関の回転数が共振点の近傍の共振回転数領域内にあるときに、気筒毎の燃料噴射量を一時的に不均一にすることによって筒内圧に起因するローリング起振モーメントの主成分を変化させることができるので、ロール共振周波数との一致を回避して内燃機関の振動を低減することができる。
 また、上記の内燃機関の制御方法は、前記回転数が前記共振回転数領域に入るときに筒内圧が予め設定した筒内圧より大きくなる気筒と、前記気筒から着火順が2つ後の気筒とを減圧気筒と判別し、前記減圧気筒以外の気筒の少なくとも1つの気筒を増圧気筒と判別して、前記回転数が前記共振回転数領域内にあるときの前記減圧気筒の燃料噴射量を減少させると共に、前記増圧気筒の燃焼噴射量を増加させることを特徴とする方法である。 
 上記の方法において、エンジン回転数はクランク角センサから算出し、噴射気筒をカム角センサとクランク角センサの出力から判別する。一方、共振周波数、シリンダ配列、及び共振点通過時の燃料噴射量の増減量(補正量)は予め数値データをECU(制御装置)に入力しておく。これらの情報を基にロール共振による振動が発生する回転数領域を判別し、その領域で気筒毎の燃料噴射量を増減する制御を行う。制御対象とする回転数領域には下限と上限の閾値を設定し、下限の閾値を上回った時点で、筒内圧がピークを迎える気筒とその気筒から着火順が2つ後の気筒を減圧気筒と判別し、その減圧気筒以外の気筒の少なくとも1つを増圧気筒と判別する。そして、回転数が共振点、つまり共振点を通過する時点で筒内圧がピークを迎える気筒を含む減圧気筒の燃焼噴射量を減少させて、上昇を抑制し、増圧気筒の燃料噴少量を増加させて内燃機関の平均トルクを保持する。これにより、共振点通過時(共振点を通過する時点)の起振モーメントの最大値を抑制すると同時に、エンジン回転2次成分が0.5次、1次など他の成分に分散することで一時的に一時的に減少する。
 この方法によれば、共振点通過時に筒内圧がピークを迎える気筒の燃料噴射量を減少させて筒内圧の上昇を抑制することで、ローリング起振モーメントの主成分を変化させることができる。加えて、筒内圧の上昇を抑制された気筒のトルク低下による回転上昇率の低下を防ぐために、他の気筒の燃料噴射量を増加させて始動過程における平均トルクを各気筒均一の噴射量とした場合と同等にすることができる。
 上記の目的を達成するための内燃機関は、各気筒の燃料噴射量を調整可能な燃料噴射装置と制御装置とを備えた多気筒型の内燃機関において、前記制御装置が、内燃機関の回転数と前記内燃機関を含むパワープラントと前記パワープラントの支持装置におけるロール振動との共振が発生する共振回転数の近傍の共振回転数領域内に、前記回転数があるか否かを判別する手段と、前記回転数が前記共振回転数領域内にある気筒毎の燃料噴射量が不均一になるように、前記燃料噴射装置を制御する手段と、を備えて構成される。 
 ここで、共振回転数領域内に内燃機関の回転数があるか否かを判別する手段は、予め制御装置に入力した共振周波数の情報から共振回転数領域を決定し、その共振回転数領域内に内燃機関の回転数があるか否かを判別している。この構成によれば、前述と同様の作用効果を得ることができる。
 また、上記の内燃機関は、前記制御装置が、前記回転数が前記共振回転数領域に入るときに筒内圧が予め設定した筒内圧より大きくなる気筒と、前記気筒から着火順が2つ後の気筒とを減圧気筒と判別し、前記減圧気筒以外の気筒の少なくとも1つの気筒を増圧気筒と判別する手段と、前記回転数が前記共振回転数領域にあるときの前記減圧気筒への燃料噴射量を減少可能に前記燃料噴射装置を制御すると共に、前記増圧気筒への燃焼噴射量を増加可能に前記燃料噴射装置を制御する手段と、を備え構成される。
 ここで、カム角センサとクランク角センサの出力から噴射気筒が判別されると、予めECUに入力しておいたシリンダ配列を考慮して、共振回転数領域で筒内圧がピークを迎える気筒(減圧気筒)とその前後の気筒(増圧気筒)とを判別する。そして、それぞれの気筒に対して、制御装置が予め定められた燃料噴射量で燃料を噴射するように燃料噴射装置を制御する。この構成によれば、エンジン始動時の共振点通過時に、平均トルクは同等に保った上でローリング起振モーメントの主成分である回転次数成分を一時的に変化させることができる。これによって、共振周波数を回避し、始動性を損なわずにパワープラント振動を低減することができる。
 さらに、上記の目的を達成するための車両は上記の内燃機関のいずれかを搭載して構成される。この内燃機関は、車両に搭載するガソリンエンジン又はディーゼルエンジンに適用することができる。また、車両以外にも発電機など始動時の振動が問題となる内燃機関に適用することができる。
 本発明によれば、エンジン始動時の共振点通過時に、平均トルクは同等に保った上でローリング起振モーメントの主成分であるピストン回転2次成分を一次的に変化させて、共振周波数を回避し、始動性を損なわずにパワープラント振動を低減することができる。
図1は本発明に係る実施の形態の内燃機関を含むパワープラントを示した側面図ある。 図2は本発明に係る実施の形態の内燃機関の構成図である。 図3は本発明に係る実施の形態の内燃機関の回転数とロール振動との共振点を示した図である。 図4本発明に係る実施の形態の内燃機関の各気筒の筒内圧を示した図である。 図5は本発明に係る実施の形態の内燃機関の制御方法を示したフローチャートである。 図6は本発明に係る実施の形態の内燃機関によって改善された起振モーメントを示した図である。 図7は従来の防振支持の概要を示した図である。 図8は従来の内燃機関のロール振動を示した側面図である。 図9は従来の内燃機関の各気筒の筒内圧を示した図である。
 以下、本発明に係る実施の形態の内燃機関の制御方法、内燃機関及びそれを搭載した車両について、直列4気筒の場合を例にして図面を参照しながら説明する。
 図1に示すように、パワープラント1をエンジン2、クラッチハウジング3、及びトランスミッション4から構成し、このパワープラント1をラバーマウント6が車両に防振支持する。このパワープラント1を構成するエンジン2、クラッチハウジング3及びトランスミッション4は一般的なものを使用することができる。例えばエンジン2はディーゼルエンジン及びガソリンエンジンを用いることができ、その気筒配列及び筒数も直列4気筒に限らず、直列6気筒やV型6気筒などでもよい。また、ラバーマウント6もパワープラント1を車両に支持することができればよく、支持点及び個数は任意に設定することができ、また、アクティブ油圧マウント装置などを用いることができる。
 エンジン2は、シリンダブロック11、シリンダヘッド12、クランクシャフト13、クランクシャフトタイミングギア14、タイミングチェーン15、カムシャフトタイミングギア16、カムシャフト17、吸気バルブ18、及び排気バルブ19を備える。また、シリンダC1~C4、ピストンP1~P4、及びインジェクタi1~i4も備える。このエンジン2は直列4気筒のディーゼルエンジンであり、一般的な吸気行程、圧縮行程、燃焼行程、排気行程の4サイクル行程を行う。
 加えて、クランクシャフトパルサロータ21、クランク角センサ22、カムシャフトパルサロータ23、及びカム角センサ24も備える。さらに、インジェクタi1~i4とクランク角センサ22とカム角センサ24と信号線で接続されている制御装置であるECU(エンジンコントロールユニット)20も備える。
 次に、図2に示すように、本発明に係る実施の形態の内燃機関の制御システムの構成を説明する。ECU20はクランク角センサ22とカム角センサ24などのセンサ出力を、信号線を介して受信する。また、ECU20に共振周波数情報D1、シリンダ配列情報D2、及び燃料噴射量補正情報D3を予め入力しておく。そして、それらの情報をもとにECU20はインジェクタi1~i4の燃料噴射量を制御していく。
 ECU20は、電気回路によってエンジンをコントロールしており、点火タイミング(ガソリンエンジンの場合)、燃料噴射タイミング、燃料噴射量などの電気的な制御を総合的に行うマイクロコントローラである。オートマチック車においてはトランスミッションを含むパワープラント全体の制御も担当している。ECU20にあらゆる運転状態における最適制御値を記憶させ、その時々の状態をセンサで検出し、センサからの入力信号により、記憶しているデータの中から最適値を選出し各機構を制御している。 
 クランク角センサ22は、MR素子(磁気抵抗素子)から形成され、クランクシャフト13の角度を検出するセンサであり、クランクシャフト13に設けたクランクシャフトパルサロータに取り付けられた突起部に対向させて取り付けられ、エンジン2の回転数信号や各シリンダC1~C4のサイクル信号を検出している。
 カム角センサ24は、MR素子などから形成され、カムシャフト17の角度を検出するセンサであり、カムシャフト17に設けたカムシャフトパルサロータ23に取り付けられた突起部に対向させて取り付けられ、上死点(TDC)信号や気筒判別信号を検出している。
 クランク角センサ22とカム角センサ24からの入力信号により、ECU20はエンジン2の回転数を得ることや、各シリンダC1~C4の圧縮行程や排気行程を判別する気筒判別をすることができ、点火タイミング、燃料噴射タイミング及び燃料噴射量を算出している。よって、ECU20が点火タイミング、燃料噴射タイミング及び燃料噴射量を算出することができれば、クランク角センサ22とカム角センサ24は上記の構成に限らない。
 インジェクタi1~i4は、コモンレール(ディーゼルエンジンの場合、図示せず)に接続され、ピストンP1~P4の頂面に向けて燃料を直接噴射する装置である。そのコモンレールに貯留された高圧燃料をインジェクタi1~i4に常時供給している。コモンレールへの燃料圧送は高圧サプライポンプ(図示せず)が行っている。インジェクタi1~i4の先端のノズルは、複数の微細な噴孔を有した円錐状に形成されており、その複数の微細な噴孔から燃料を放射状に同時に噴射する。インジェクタi1~i4は上記の構成に限らず、燃料をピストンP1~P4の頂面に向かって噴射することができればよい。 
 共振周波数情報D1について説明する。例えばエンジン2が直列4気筒の場合では、各気筒C1~C4で行われる燃焼行程は、クランクシャフト13が1回転する間に2回発生するため、その間隔はクランク角で180度毎になり、パワープラント1のローリング起振モーメントの主成分は1回転に2回の周期で変動するエンジン回転2次成分となる。これは、各気筒C1~C4で発生する起振モーメントを180度ずつずらして合成すると180度が変動周期の整数倍となる成分が強め合って残り、その他(180度が1/2周期や1/4周期)の成分は打ち消しあうためである。従って、ローリング起振モーメントの主成分はエンジン2の回転の2次成分であり、この成分が共振点RP1=12Hzと一致するエンジン2の回転数R0を下記の数式1より算出する。
Figure JPOXMLDOC01-appb-M000001
 ここで、エンジン2の回転数と始動時間との関係、つまりエンジン2の始動過程の回転数を表した図3を参照する。共振点を共振点RP1、共振点が発生する時点を共振発生時t1、回転数R1=360rpmを共振発生回転数R1とする。その共振発生回転数R1の近傍の領域が共振回転数領域A1となり、この共振回転数領域A1でパワープラント1のロール振動が顕著となる。従って、共振周波数情報D1は、この共振点RP1と共振回転数R1となり、そこから共振発生時t1と共振回転数領域A1を算出する。 
 共振回転数領域A1の範囲には下限と上限の閾値、つまり下限回転数RLと上限回転数RHとを設定する。これらは好ましくは、下限回転数RLを共振回転数R1に対して-0rpm~-100rpmの値とし、上限回転数RHを共振回転数R1に対して+0rpm~+300rpmの値とし、より好ましくは下限回転数RLを共振回転数R0に対して-20rpm~-40rpmの値とし、上限回転数RHを共振回転数R0に対して+80rpm~+140rpmの値とする。
 上記の共振点RP1、共振発生時t1、共振回転数R1、及び共振回転数領域A1は、エンジン2の種類によって様々値となるため、上記の数値はあくまで一例とし、その範囲は上記の値に限らない。
 シリンダ配列情報D2は、シリンダC1~C4の配列の順番とその着火順のデータである。このエンジン2の着火順はシリンダC1、シリンダC3、シリンダC4、シリンダC2の順番である。
 燃料噴射補正情報D3は、予め定めたインジェクタi1~i4から噴射される燃料の補正量である。この補正量は、図4に示す、筒内圧になるように、ECU20が制御する燃料噴射量のことである。ここで各シリンダC1~C4の筒内圧をCP1~CP4とする。シリンダC4への燃料噴射量を減らして筒内圧CP4を常用回転数R2時の筒内圧CP0と略同一に、筒内圧CP1をできるだけ筒内圧CP0に近づけるように調整している。前述の従来の筒内圧を示した図9と比較すると、共振点発生時t1を超えたときに一番始めに筒内圧がピークになっていたシリンダC4の筒内圧CP4と、シリンダC4から着火順が2つ後のシリンダC1の筒内圧CP1が減少していることがわかる。よって、燃料噴射補正情報D3には、図4に示すような筒内圧になるように燃料噴射補正量を入力している。
 また、図4に示すように、シリンダC4、C1以外のシリンダC2とシリンダC3の筒内圧CP2と筒内圧CP3とが、図9に比べて増加していることが分かる。つまり、シリンダC2、C3の燃料噴射量を、前述した筒内圧CP4と筒内圧CP1が減少した分のエンジン2のトルクが通常時の平均トルクよりも減少してしまう分を補うように増加させている。よって、燃料噴射補正情報D3には、このエンジン2の平均トルクを保持するような燃料噴射補正量も入力している。
 上記の構成によれば、クランク角センサ22、カム角センサ24、共振周波数情報D1、シリンダ配列情報D2、及び燃料噴射補正情報D3を基にして、パワープラント1のロール共振による振動が発生する共振回転数領域A1を判別し、その共振回転数領域A1内に回転数があるとき、各シリンダC1~C4の燃料噴射量を増減して一時的に不均一にすることができる。そのため、筒内圧に起因するローリング起振モーメントの主成分が変化し、ロール共振周波数との一致を回避することによってエンジン2の振動を低減することができる。
 次に図5に示すように、本発明の実施の形態の制御方法(エンジン2の動作)を説明する。ここでエンジン2の回転数をRxとする。
 エンジン2を始動すると、スタータ(図示しない)によって、クランクシャフト13が回転して、各ピストンP1~P4がシリンダC1~C4内で上下運動を開始する。エンジン2が始動し、4サイクル行程が始まると、次にクランク角センサ22がクランクシャフト13の回転角度を検知して、その信号をECU20が受け取る。同時にカム角センサ22がカムシャフト17の位相角を検知して、その信号をECU20が受け取り、カムシャフト17の位置をカムシャフト17の基準角に対するずれから算出し、クランク角センサ22が検知した信号と合わせてどの気筒が噴射しているかを判別するステップS1を行う。
 次に、共振周波数情報D1(共振点RP1と共振回転数R1)から、パワープラント1のロール振動が発生するロール共振周波数と共振する共振点RP1が発生する時点の共振発生時t1、及び共振回転数領域A1を決定するステップS2を行う。共振回転数R1から決まる下限回転数RLと上限回転数RHとの範囲である共振回転数領域A1を算出する。共振回転数R1=360rpmの場合は、下限回転数RL=330rpm、及び上限回転数RH=460rpmと設定する。
 次に、減圧気筒を判別するステップS3を行う。ステップS1の気筒判別とシリンダ配列情報D2とステップS2の共振回転数領域A1から、回転数Rxが下限回転数RLを超えたときの各シリンダC1~C4の状況を予測する。図3及び図4に示すように、回転数Rxが下限回転数RLの値を上回った時に、シリンダC3が膨張行程を行うと予測され、次に圧縮行程に入り筒内圧CP4が高くなるシリンダC4を減圧気筒と判断する。また、減圧気筒C4から着火順が2つ後の気筒C1も減圧気筒と判断する。これで、減圧気筒C4と減圧気筒C1との判別が完了する。
 図5に示すように、減圧気筒C4、C1が決定されると、次にECU20は減圧気筒C4、C1以外の気筒、つまりシリンダC3及びシリンダC2を増圧気筒と判断するステップS4を行う。ステップ3及びステップS5から減圧気筒C4、C1と増圧気筒C2、C3が判別され、次のステップへと進む。
 次に、減圧気筒C4、C1と増圧気筒C2、C3の燃料噴射量を決定するステップS5を行う。ここではECU20は燃焼補正量情報D3から減圧気筒C4、C1の燃料噴射量の減少量と、増圧気筒C2、C3の燃料噴射量の増加量を決定する。前述したように、減圧気筒C4の燃料噴射量は燃焼後の筒内圧CP4が、常用回転数R2時の筒内圧CP0と略同一になるように補正された燃料噴射量になる。また、減圧気筒C1の燃料噴射量は筒内圧CP0に近づき、且つエンジン2のトルクが低下し過ぎないように補正された燃料噴射量になる。さらに、増圧気筒C2と増圧気筒C3の燃料噴射量は筒内圧CP4、CP1を減少させた分、減少したエンジン2のトルクを、減圧気筒C4、C1を減圧しない場合の平均トルクを保持できるように補正された燃料噴射量になる。 
 このステップS5までをスタータアシスト領域A2内で行い、エンジン2の回転数Rxが回転数上昇領域A3に入るまでに完了しておく。
 次にクランク角センサ22が検知した信号からエンジン2の回転数Rxを取得するステップS6を行う。回転数Rxが取得されると、次の回転数Rxが共振回転数領域A1にあるか否かを判別するステップS7を行う。回転数Rxが共振回転数領域A1内にない場合は、再度回転数Rxを取得するステップS6に戻り、回転数Rxが共振回転数領域A1内に入るまで行う。
 回転数Rxが共振回転数領域A1内にあると判断されると、ステップS3~ステップS5で決定された燃料噴射量で、各シリンダC1~C4へインジェクタi1~i4が順次その補正された噴射量で燃料を噴射するステップS8を行う。
 このステップS8により、共振点RP1通過時(共振発生時t1)の起振モーメントの最大値を抑制すると同時に、エンジン回転2次成分が0.5次、又は1次など他の成分に分散することで起振モーメントを一時的に減少することができる。
 ステップS8が完了すると、次のエンジン2の回転数Rxが常用回転数R2になるか否かを判別するステップ9を行う。仮にステップS2で共振点RP1以外に、共振点がある場合はその共振点でも上記と同様に気筒毎に異なる燃料噴射量の噴射を行う。
 回転数Rxが回転数上昇領域A3にあるうちは、つまり回転数Rxが常用回転数R2に達するまでは、筒内圧CP1~CP4がローリング起振モーメントの主成分と成り得るため、燃料噴射量を各気筒C1~C4で不均一にする必要がある。
 エンジン2の回転数Rxが常用回転数R2になるということは、図4に示すように、各シリンダC1~C4の筒内圧CP1~CP4が略一定の筒内圧CP0になるということである。ステップ9では、回転数Rxが、筒内圧CP1~CP4が略一定になる常用回転数R2になるか否かを判断し、回転数Rxが常用回転数R2になる、つまり略一定になったと判断すると次のステップへと進む。このステップ9では、上記の方法に限らず、例えば各シリンダC1~C4の筒内圧CP1~CP4を検出するセンサを用いて筒内圧CP1~CP4が略一定になることで、判断する方法を用いることもできる。
 回転数Rxが常用回転数R2であると判断されると、各シリンダC1~C4への燃料噴射量を通常に戻すステップS10を行って、エンジン2の制御は完了する。 
 上記の動作(方法)によれば、共振点通過時に都内圧がピークを迎える減圧気筒C4の筒内圧を常用回転数R2時の筒内圧と略同じになるように燃料噴射量を減少させて、筒内圧の上昇を抑制することで、ローリング起振モーメントの主成分を変化させることができる。また同時に、減圧気筒C4から着火順が2つ後になる減圧気筒C1も同様の理由から燃焼噴射量を減少させる。加えて、減圧気筒C4、C1のトルク低下による回転上昇率の低下を防ぐ為に、減圧気筒C4、C1以外の増圧気筒C2及び増圧気筒C3の燃料噴射量を増加させて始動過程における平均トルクを各シリンダC1~C4へ均一の噴射量とした場合と同等にすることができる。これによって、共振点RP1が発生する時点(共振点発生時t1)の起振モーメントの最大値を抑制すると同時に、エンジン回転2次成分が0.5次及び1次など他の成分に分散するので、起振モーメントが一時的に減少することができる。
 上記の動作を行うエンジン2を含むパワープラント1を搭載した車両は、エンジン2の始動時の共振発生時t1に、平均トルクは同等に保った上でローリング起振モーメントの主成分である回転次数成分を一時的に変化させることができる。これによって、共振周波数を回避し、始動性を損なわずにエンジン2を始動することができる。アイドリングストップシステムを搭載した車両などのエンジン2の始動が多い場合に効果的である。 
 図6は、従来のパワープラント1Xと本発明の実施の形態のエンジン2を含むパワープラント1の起振モーメントと平均トルクを示したグラフを表している。パワープラント1Xとパワープラント1とでは、平均トルクは略同一になるが、起振モーメントはパワープラント1の方が、約2dB低減しており、本発明の内燃機関の効果を確認することができる。
 上記のエンジン2が6気筒の場合も同様に、共振発生時t1に筒内圧がピークを迎える気筒と、その気筒から着火順が2つ後の気筒の筒内圧を減少させるように、燃料噴射量を制御し、それの間に着火順がくる気筒の筒内圧を増加させるように燃料噴射量を制御することで上記と同様の作用効果を得ることができる。
 上記のエンジン2は、車両のエンジンに限らず、発電機などの始動時の振動が問題となる内燃機関にも適用することができる。
 本発明の内燃機関の制御方法、その内燃機関及びそれを搭載した車両は、内燃機関の始動時の振動を低減することができるため、トラックなどの車両に用いることができる。加えて、車両の内燃機関に限らず、電動機などの内燃機関にも用いることができる。
1 パワープラン                         
2 エンジン(内燃機関)                  
3 クラッチハウジング                    
4 トランスミッション                    
5 ラバーマウント(減衰装置)            
11 シリンダブロック                    
12 シリンダヘッド                      
13 クランクシャフト                    
14 クランクシャフトタイミングギア      
15 タイミングチェーン                  
16 カムシャフトタイミングギア          
17 カムシャフト                        
18 吸気バルブ                         
19 排気バルブ                          
20 ECU(制御装置)
21 クランクシャフトパルスロータ
22 クランク角センサ
23 カムシャフトパルスロータ
24 カム角センサ
C1~C4 シリンダ
P1~P4 ピストン
i1~i4 インジェクタ
R1 共振回転数
R2 常用回転数
RL 下限回転数
A1 共振回転数領域
t1 共振発生時

Claims (5)

  1.  多気筒型の内燃機関の回転数が、前記内燃機関を含むパワープラントと前記パワープラントの支持装置におけるロール振動との共振が発生する共振回転数の近傍の共振回転数領域内にある気筒毎の燃料噴射量を、一時的に不均一にすることを特徴とする内燃機関の制御方法。
  2.  前記回転数が前記共振回転数領域に入るときに筒内圧が予め設定した筒内圧より大きくなる気筒と、前記気筒から着火順が2つ後の気筒とを減圧気筒と判別し、前記減圧気筒以外の気筒の少なくとも1つの気筒を増圧気筒と判別して、前記回転数が前記共振回転数領域内にあるときの前記減圧気筒の燃料噴射量を減少させると共に、前記増圧気筒の燃焼噴射量を増加させることを特徴とする請求項1に記載の内燃機関の制御方法。
  3.  各気筒の燃料噴射量を調整可能な燃料噴射装置と制御装置とを備えた多気筒型の内燃機関において、
     前記制御装置が、内燃機関の回転数と前記内燃機関を含むパワープラントと前記パワープラントの支持装置におけるロール振動との共振が発生する共振回転数の近傍の共振回転数領域内に、前記回転数があるか否かを判別する手段と、
     前記回転数が前記共振回転数領域内にある気筒毎の燃料噴射量が不均一になるように、前記燃料噴射装置を制御する手段と、を備えたことを特徴とする内燃機関。
  4.  前記制御装置が、前記回転数が前記共振回転数領域に入るときに筒内圧が予め設定した筒内圧より大きくなる気筒と、前記気筒から着火順が2つ後の気筒とを減圧気筒と判別し、前記減圧気筒以外の気筒の少なくとも1つの気筒を増圧気筒と判別する手段と、
     前記回転数が前記共振回転数領域にあるときの前記減圧気筒への燃料噴射量を減少可能に前記燃料噴射装置を制御すると共に、前記増圧気筒への燃焼噴射量を増加可能に前記燃料噴射装置を制御する手段と、を備えたことを特徴とする請求項3に記載の内燃機関。
  5.  請求項3又は4に記載の内燃機関を搭載したことを特徴とする車両。
PCT/JP2012/062025 2011-05-30 2012-05-10 内燃機関の制御方法、内燃機関及びそれを搭載した車両 WO2012165118A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/123,012 US9732693B2 (en) 2011-05-30 2012-05-10 Method for controlling internal combustion engine, internal combustion engine, and vehicle equipped with same
EP12793677.1A EP2716898B1 (en) 2011-05-30 2012-05-10 Method for controlling internal combustion engine, internal combustion engine, and vehicle equipped with same
CN201280025254.8A CN103562529B (zh) 2011-05-30 2012-05-10 内燃机的控制方法、内燃机及搭载该内燃机的车辆

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-120321 2011-05-30
JP2011120321A JP5807393B2 (ja) 2011-05-30 2011-05-30 内燃機関の制御方法、内燃機関及びそれを搭載した車両

Publications (1)

Publication Number Publication Date
WO2012165118A1 true WO2012165118A1 (ja) 2012-12-06

Family

ID=47258982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062025 WO2012165118A1 (ja) 2011-05-30 2012-05-10 内燃機関の制御方法、内燃機関及びそれを搭載した車両

Country Status (5)

Country Link
US (1) US9732693B2 (ja)
EP (1) EP2716898B1 (ja)
JP (1) JP5807393B2 (ja)
CN (1) CN103562529B (ja)
WO (1) WO2012165118A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015101005B4 (de) * 2015-01-23 2022-12-08 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Starten eines Kraftfahrzeugmotors sowie Motorsteuergerät zur Steuerung eines Kraftfahrzeugmotors
DE102015216154A1 (de) * 2015-08-25 2017-03-16 Volkswagen Aktiengesellschaft Startverfahren für eine Verbrennungskraftmaschine und Kraftfahrzeug
DE102016117304B4 (de) * 2015-09-17 2022-09-08 Hyundai Motor Company Ungleichmäßiger-Hubraum-Verbrennungsmotor-Steuersystem und -verfahren mit einem Transienter-Zustand-Steuerungsmodus
JP6711415B2 (ja) * 2016-11-30 2020-06-17 マツダ株式会社 圧縮着火式エンジンの制御方法及び制御装置
JP6711414B2 (ja) 2016-11-30 2020-06-17 マツダ株式会社 圧縮着火式エンジンの制御方法及び制御装置
US10890122B2 (en) 2016-11-30 2021-01-12 Mazda Motor Corporation Method and device for controlling starting of engine
US20220065178A1 (en) * 2018-12-14 2022-03-03 Eaton Intelligent Power Limited Diesel engine cylinder deactivation modes
JP6857642B2 (ja) 2018-12-25 2021-04-14 日本電子株式会社 Nmr測定装置及び試料管回転制御方法
CN113982772B (zh) * 2021-09-26 2024-03-22 湖南三一华源机械有限公司 一种工程机械发动机控制方法及装置、平地机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63255546A (ja) * 1987-04-10 1988-10-21 Mazda Motor Corp 多気筒エンジンの燃焼制御装置
JPH03275958A (ja) * 1990-03-23 1991-12-06 Mitsubishi Heavy Ind Ltd ディーゼル機関のクランク軸ねじり振動抑制装置
JP2001355500A (ja) 2000-06-15 2001-12-26 Denso Corp 多気筒エンジン用燃料噴射装置
JP2008184915A (ja) 2007-01-26 2008-08-14 Mitsubishi Motors Corp 内燃機関の燃料噴射制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09264170A (ja) * 1996-03-29 1997-10-07 Mazda Motor Corp エンジンの制御装置
DE19633066C2 (de) * 1996-08-16 1998-09-03 Telefunken Microelectron Verfahren zur zylinderselektiven Steuerung einer selbstzündenden Brennkraftmaschine
JPH10159631A (ja) * 1996-11-26 1998-06-16 Nissan Motor Co Ltd エンジンの空燃比制御装置
JP3405163B2 (ja) * 1997-12-17 2003-05-12 トヨタ自動車株式会社 内燃機関の燃料噴射量制御装置
US6668812B2 (en) * 2001-01-08 2003-12-30 General Motors Corporation Individual cylinder controller for three-cylinder engine
ITBO20030001A1 (it) * 2003-01-02 2004-07-03 Ferrari Spa Metodo per la riduzione dei fenomeni di risonanza in una linea
JP4503631B2 (ja) 2007-05-18 2010-07-14 本田技研工業株式会社 内燃機関の制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63255546A (ja) * 1987-04-10 1988-10-21 Mazda Motor Corp 多気筒エンジンの燃焼制御装置
JPH03275958A (ja) * 1990-03-23 1991-12-06 Mitsubishi Heavy Ind Ltd ディーゼル機関のクランク軸ねじり振動抑制装置
JP2001355500A (ja) 2000-06-15 2001-12-26 Denso Corp 多気筒エンジン用燃料噴射装置
JP2008184915A (ja) 2007-01-26 2008-08-14 Mitsubishi Motors Corp 内燃機関の燃料噴射制御装置

Also Published As

Publication number Publication date
CN103562529A (zh) 2014-02-05
EP2716898B1 (en) 2018-10-31
CN103562529B (zh) 2016-01-13
US9732693B2 (en) 2017-08-15
EP2716898A1 (en) 2014-04-09
EP2716898A4 (en) 2015-12-23
JP5807393B2 (ja) 2015-11-10
JP2012246864A (ja) 2012-12-13
US20140216413A1 (en) 2014-08-07

Similar Documents

Publication Publication Date Title
JP5807393B2 (ja) 内燃機関の制御方法、内燃機関及びそれを搭載した車両
JP4415876B2 (ja) 内燃機関の制御装置
US9970403B2 (en) Control apparatus for internal combustion engine
US8972155B2 (en) Device and method for controlling start of compression self-ignition engine
JP5229006B2 (ja) 内燃機関の制御装置
JPH11173200A (ja) 内燃機関の燃料噴射制御装置
JP3591428B2 (ja) 多気筒エンジン用燃料噴射装置
JP4738304B2 (ja) 内燃機関の制御装置
JP5040754B2 (ja) ディーゼルエンジンの自動停止装置
JP2014211130A (ja) エンジンの制御装置
JP6395025B2 (ja) 内燃機関の燃料噴射装置
JP2017223117A (ja) 内燃機関の失火検出装置
JP5910176B2 (ja) 圧縮自己着火式エンジンの始動制御装置
JP4529943B2 (ja) 内燃機関の燃料噴射制御装置
JP2013060827A (ja) 内燃機関の停止方法、内燃機関、及びそれを搭載した車両
JP6372552B2 (ja) 圧縮着火式エンジンの制御方法および制御装置
JP4421451B2 (ja) 内燃機関用燃料供給システムの異常検出装置
US10995690B2 (en) Control device of internal combustion engine
JP2012159005A (ja) 内燃機関の燃料噴射制御装置および燃料噴射制御方法
WO2015186759A1 (ja) 燃料ポンプの制御装置
JP2007092548A (ja) 内燃機関の停止制御装置
JP6414584B2 (ja) 圧縮着火式エンジンの制御方法および制御装置
JP2008297949A (ja) 内燃機関の始動制御装置
JP6823360B2 (ja) 内燃機関の制御装置及び内燃機関の制御方法
JP2001050083A (ja) 内燃機関の燃料噴射制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12793677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14123012

Country of ref document: US