WO2012164663A1 - レーザ加工ヘッド、レーザ加工装置、レーザ加工装置の光学系、レーザ加工方法、及びレーザ集束方法 - Google Patents

レーザ加工ヘッド、レーザ加工装置、レーザ加工装置の光学系、レーザ加工方法、及びレーザ集束方法 Download PDF

Info

Publication number
WO2012164663A1
WO2012164663A1 PCT/JP2011/062391 JP2011062391W WO2012164663A1 WO 2012164663 A1 WO2012164663 A1 WO 2012164663A1 JP 2011062391 W JP2011062391 W JP 2011062391W WO 2012164663 A1 WO2012164663 A1 WO 2012164663A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
laser
workpiece
lens
intensity distribution
Prior art date
Application number
PCT/JP2011/062391
Other languages
English (en)
French (fr)
Inventor
渡辺 眞生
坪田 秀峰
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US13/982,790 priority Critical patent/US9346126B2/en
Priority to PCT/JP2011/062391 priority patent/WO2012164663A1/ja
Priority to EP11866675.9A priority patent/EP2716397B1/en
Priority to JP2013517726A priority patent/JP5602300B2/ja
Publication of WO2012164663A1 publication Critical patent/WO2012164663A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0665Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0734Shaping the laser spot into an annular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/40Optical focusing aids

Definitions

  • the present invention relates to a laser processing head, a laser processing apparatus, an optical system of the laser processing apparatus, a laser processing method, and a laser focusing method.
  • a laser beam is sent from a laser oscillator to a machining head for machining a metal or alloy workpiece (workpiece) via an optical fiber, and the development of a laser cutting device that cuts the workpiece by the laser beam has progressed.
  • the laser using the optical fiber is a solid laser (for example, a fiber laser, a disk laser, a semiconductor laser, etc.) that is transmitted using the optical fiber.
  • Patent Document 1 discloses a condensing optical system that condenses a laser beam generated by a laser light source at a desired focal depth.
  • a condensing optical system configured to generate spherical aberration is described.
  • the quality of the laser beam tends to be better in the central area than the peripheral area (higher straightness), and the quality is worse as the distance from the central area increases. Therefore, when cutting the workpiece, the laser beam in the peripheral area with poor quality will come into contact with the cutting edge of the workpiece, affecting the cutting quality (cutting accuracy, roughness, etc.). It becomes.
  • the thick severe mm or more, for example more than 8 mm
  • Patent Document 2 an energy density distribution having a Gaussian distribution in a cross section of a laser beam is measured on the inside and outside of a plane including the optical axis of the laser beam by an internal / external reversal optical system including two cylindrical lens pairs.
  • a reversing laser processing device is described.
  • the pair of cylindrical lenses arranged on the upstream side in the traveling direction of the laser beam is a lens pair in which two cylindrical lenses having the same shape are bonded in parallel.
  • the arranged cylindrical lens pair is a lens pair in which two cylindrical lenses are arranged in parallel and spaced apart from each other, and collimates the laser beam divided into two by the upstream cylindrical lens pair and enters the condenser lens.
  • the laser processing apparatus described in Patent Document 2 reverses the energy density distribution having a Gaussian distribution on the inside and outside of the plane including the optical axis of the laser beam. Will be in contact with the workpiece.
  • the cross section of the laser beam at the position of the workpiece is not circular, so that the workpiece is processed only in the direction in which the laser beam is in contact with the workpiece. I can't process things. That is, in the laser processing apparatus described in Patent Document 2, the direction in which the workpiece can be processed is limited.
  • the laser beam is divided by two cylindrical lens pairs, and after being reversed inside and outside, the laser beam is condensed on one point of the workpiece by the condenser lens. For this reason, the configuration of the optical system is very complicated.
  • the optical axis of the laser beam before the division and the optical axes of the two divided laser beams are adjusted, and the two divided laser beams are placed on the workpiece. It is necessary to focus at the same position, and it is very difficult to adjust the optical axis.
  • the present invention has been made in view of such circumstances, and with a simple configuration, can generate a laser beam that is reversed inside and outside at the position of the workpiece, and has a machining direction in machining the workpiece. It is an object to provide a laser processing head, a laser processing apparatus, an optical system of the laser processing apparatus, a laser processing method, and a laser focusing method that are not limited.
  • the laser processing head, laser processing apparatus, optical system of the laser processing apparatus, laser processing method, and laser focusing method of the present invention employ the following means.
  • a laser processing apparatus is a laser processing head provided in a laser processing apparatus that processes a workpiece by irradiating a laser beam, and includes a spherical lens and a spherical surface for condensing the laser beam. Due to at least one of the aspherical lenses capable of generating aberrations, the laser beam intensity distribution is higher in the peripheral region than in the central region at the position of the workpiece, and the focal point position of the workpiece is The workpiece is irradiated with the laser beam shifted from the position.
  • At least one of the spherical lens and the aspherical lens for condensing the laser beam has a caldera shape in which the intensity distribution of the laser beam is higher in the peripheral region than in the central region at the position of the workpiece.
  • the workpiece is irradiated with a laser beam whose focal position is deviated from the position of the workpiece.
  • the intensity distribution of the laser beam By making the intensity distribution of the laser beam a caldera shape that is higher in the peripheral area than in the central area, the intensity of the side surface of the laser beam in contact with the work piece is increased when machining the work piece, resulting in higher processing accuracy. Can be increased. And, in order to make the intensity distribution in the caldera shape in this way, by using the spherical aberration of the spherical lens or an aspherical lens that is not sufficiently corrected for aberrations (that is, capable of generating spherical aberration), This can be realized by inverting the central region and the peripheral region of the laser beam. In order to perform the inverting, it is necessary to shift the focal position of the laser beam from the position of the workpiece.
  • the quality of the laser beam in the central region is better than that in the peripheral region, that is, the straightness is high.
  • the straightness is increased, and therefore the distance (depth of focus) at which the beam diameter can be maintained becomes longer, and high-quality processing is possible even for a workpiece having a thickness.
  • the laser beam is inverted using the spherical aberration of at least one of the spherical lens and the aspherical lens, and the laser beam is focused in a circular shape, the position of the workpiece can be achieved with a simple configuration.
  • the laser beam can be generated by reversing the inside and outside, and the machining direction is not limited in machining the workpiece.
  • the laser beam has a ring-shaped intensity distribution at the position of the workpiece.
  • the laser beam on the rear side in the processing direction of the workpiece contributes to the temperature rise of the molten metal.
  • the laser beam can sufficiently raise the temperature of the molten metal, and can cut even a thick workpiece.
  • the laser beam has a non-ring-shaped intensity distribution of the laser beam at the position of the workpiece.
  • the non-ring shape is, for example, a circular shape having intensity in the central area as well as in the peripheral area, and is a state in which the intensity distribution of the inverted laser beam is uniform compared to the ring shape.
  • the laser beam has a peak in a central region of the intensity distribution at the position of the workpiece.
  • the laser beam has a depth of focus of 1 mm or more at the position of the workpiece.
  • the center region of the laser beam is better in quality than the peripheral region, that is, has a high straightness.
  • the peripheral region of the inverted laser beam has high straightness, so that the depth of focus is increased at the position of the workpiece, and high-quality processing is possible even for a workpiece having a thickness.
  • board thickness of a to-be-processed object can be suppressed by making the focal depth of a laser beam into 1 mm or more, processing with higher quality is attained.
  • the intensity distribution of the laser beam is higher by 10% or more in the laser beam having the side steepness in the caldera shape than in the laser beam before the caldera shape.
  • the laser beam with higher quality is positioned on the side surface, and processing with higher quality becomes possible.
  • the spherical lens includes a convex lens positioned on the upstream side in the traveling direction of the laser beam, and a concave lens positioned on the downstream side in the traveling direction of the laser beam from the convex lens, and the convex lens and the concave lens It is preferable that the positional relationship between the focal position of the laser beam and the position where the intensity distribution of the laser beam becomes the caldera shape can be adjusted by changing at least one of the curvatures.
  • a laser processing apparatus includes a laser oscillator that oscillates a laser beam, the laser processing head described above that receives the laser beam oscillated by the laser oscillator, and a workpiece. And a stage that moves relative to the laser processing head.
  • An optical system of a laser processing apparatus is an optical system of a laser processing apparatus that processes a workpiece by a laser beam oscillated by a laser oscillator, and is an aspherical surface capable of generating a spherical lens and spherical aberration.
  • the center region of the laser beam is inverted to the peripheral region at the position of the workpiece, and the peripheral region of the laser beam is moved to the center region at the position of the workpiece.
  • the focusing unit causes the central region of the laser beam to be inverted to the peripheral region at the position of the workpiece using the spherical aberration of at least one of the spherical lens and the aspherical lens, and the laser beam
  • the peripheral area is inverted to the central area at the position of the workpiece, and the laser beam is focused in a circle. Then, the inverted laser beam will process the workpiece.
  • a laser beam has a better quality in the central region than the peripheral region, that is, has a high straightness. For this reason, the peripheral region of the inverted laser beam has high straightness.
  • the distance (depth of focus) at which the beam diameter can be maintained becomes long, and high-quality processing is possible even for a workpiece having a thickness.
  • the laser beam is inverted using the spherical aberration of at least one of the spherical lens and the aspheric lens, the laser beam in which the inside and outside are reversed at the position of the workpiece with a simple configuration.
  • the processing direction is not limited in the processing of the workpiece.
  • the laser processing method also includes a spherical lens for oscillating a laser beam for processing a workpiece from a laser oscillator and condensing the oscillated laser beam, and an aspherical surface capable of generating spherical aberration. At least one of the lenses irradiates a laser beam whose intensity distribution has a higher caldera shape in the peripheral area than in the central area and whose focal position is deviated from the position of the work piece. Then, the workpiece is processed while relatively moving the irradiated laser beam and the workpiece.
  • the laser focusing method according to the present invention is a laser focusing method of a laser processing apparatus for processing a workpiece by a laser beam oscillated by a laser oscillator, and includes a spherical lens and an aspheric lens capable of generating spherical aberration.
  • the central region of the laser beam is inverted to the peripheral region at the position of the workpiece, and the peripheral region of the laser beam is inverted to the central region at the position of the workpiece.
  • focusing the laser beam in a circle.
  • the present invention it is possible to generate a laser beam whose inside and outside are reversed at the position of the workpiece with a simple configuration, and the machining direction is not limited in the machining of the workpiece.
  • FIG. 1 It is a schematic diagram which shows the structure of the optical system of the laser cutting device which concerns on embodiment of this invention. It is a figure which shows the light trace of the laser beam which passed the concave lens of the laser cutting device which concerns on embodiment of this invention. It is a schematic diagram showing the intensity distribution at different positions of the laser beam emitted by the laser cutting device according to an embodiment of the present invention, (A) is the intensity distribution of the laser beam immediately after emitted from the laser incident part, (B) is the intensity distribution of the laser beam at the focal position, and (C) is the intensity distribution of the laser beam at a position closer to the workpiece than the focal position. It is a lineblock diagram of an intensity distribution measuring device which measures intensity distribution of a laser beam concerning an embodiment of the present invention.
  • FIG. 1 It is a schematic diagram which shows the steepness of the side surface of the laser beam which concerns on embodiment of this invention. It is a schematic diagram which shows intensity distribution of the laser beam in the position of the workpiece which concerns on embodiment of this invention, (A) is a case where intensity distribution is made into ring shape, (B) is intensity distribution in non-ring shape. (C) is a case having a peak in the central region. It is the figure which showed the cut surface of the workpiece by a laser cutting device, (A) is a cut surface of the workpiece by the laser beam before inversion, (B) is the laser cutting which concerns on this embodiment In the apparatus, it is a cut surface of a workpiece by a laser beam that has been inverted.
  • the laser processing apparatus according to the present invention will be described as a laser cutting apparatus for cutting a workpiece.
  • the laser cutting device 10 includes a laser oscillator 12, an optical fiber 14, a laser processing head 15, and a stage 25.
  • the laser cutting device 10 uses a solid laser as the laser oscillator 12.
  • the stage 25 is a stage on which the workpiece 20 is placed and moves relative to the laser processing head 15.
  • the stage 25 is a so-called XY stage that is movable in the plane direction (X, Y direction) with respect to the laser processing head 15.
  • the laser cutting device 10 cuts the workpiece 20 by moving the workpiece 20 or the laser processing head 15 while continuously irradiating the workpiece 20 with the laser beam.
  • the workpiece 20 is a metal, and in the present embodiment, the workpiece 20 is an example of carbon steel. Further, the thickness of the workpiece 20 is, for example, several mm (for example, 6 mm to 300 mm, particularly 15 mm to 300 mm) or more. Further, the laser cutting device 10 according to the present embodiment cuts the workpiece 20 while blowing oxygen gas, which is an assist gas, to the cutting portion when cutting the workpiece 20.
  • oxygen gas which is an assist gas
  • the laser oscillator 12 generates a laser beam (in this embodiment, a fiber laser).
  • the laser generated by the laser oscillator 12 is transmitted through the optical fiber 14.
  • the laser processing head 15 includes a laser incident portion 16 and an optical system 18.
  • the laser incident part 16 is connected to the end of the optical fiber 14 and emits a laser beam transmitted by the optical fiber 14 to the optical system 18.
  • the optical system 18 includes a spherical lens.
  • the spherical lens includes a condensing lens 22 that is a convex lens positioned on the upstream side in the laser beam traveling direction, and a downstream side in the laser beam traveling direction from the condensing lens 22.
  • the condensing lens 22 and the concave lens 24 are arranged so that the central axis 26 is coaxial.
  • the condensing lens 22 may be composed of a single lens or a plurality of lenses.
  • the condensing lens 22 may convert the laser beam emitted from the optical fiber 14 into parallel light.
  • FIG. 2 is a diagram illustrating an example of a light trace of a laser beam that has passed through the concave lens 24 of the laser cutting device 10 according to the embodiment.
  • the concave lens 24 has a curvature on the upstream side in the traveling direction of the laser beam, but has no curvature on the downstream side.
  • the position where the laser beam incident on the outer side of the concave lens 24 (solid line in FIG. 2) is focused is the position where the laser beam incident on the inner side of the concave lens 24 (broken line in FIG. 2) is collected. It is further downstream than the position where it shines. That is, the concave lens 24 irradiates the surface of the workpiece 20 while condensing and diffusing the laser beam at different positions depending on the incident position.
  • the laser beam that has passed through the concave lens 24 diverges on the downstream side where the focal point (position B) is formed as a whole.
  • the concave lens 24, which is a spherical lens inverts the laser beam (broken line in FIG. 2) that has been in the central area so far to the peripheral area on the downstream side (workpiece 20 side) from the focal position due to the spherical aberration.
  • the laser beam (solid line in FIG. 2) that has been in the peripheral region is inverted to the central region, and the laser beam is focused in a circular shape. That is, the laser cutting device 10 according to the present embodiment uses the concave lens 24 as the final stage of the optical system 18 and inverts the laser beam between the final stage of the optical system 18 and the workpiece.
  • FIG. 3 is a schematic diagram showing intensity distributions at different positions of the laser beam emitted from the laser cutting apparatus 10 according to the present embodiment.
  • FIG. 3A shows the intensity distribution of the laser beam immediately after being emitted from the laser incident portion 16 (position A in FIG. 1).
  • FIG. 3B shows the intensity distribution of the laser beam at the focal position (position B in FIGS. 1 and 2).
  • the quality of the laser beam is better in the central region of the laser beam than in the peripheral region (high linearity). That is, the quality of the laser beam in the peripheral region is worse than that in the central region.
  • the laser beam in the peripheral area with poor quality comes into contact with the cut end of the workpiece 20, and the quality of cutting (cutting accuracy, roughness, etc.) Will be affected.
  • FIG. 3C shows the intensity distribution of the laser beam at a position closer to the workpiece 20 than the focal position (position C in FIGS. 1 and 2).
  • the concave lens 24 by the action of the concave lens 24, the laser beam is inverted from the central region to the peripheral region, the laser beam from the peripheral region is inverted to the central region, and the laser beam is focused in a circular shape.
  • a high-quality laser beam that is, a laser beam having a long distance (focal depth) capable of maintaining the beam diameter is positioned in the peripheral region because of its high linearity. Become.
  • the diameter of the laser beam at the position of the workpiece 20 is set to 0.1 to 2.0 mm.
  • FIG. 4 is a configuration diagram of an intensity distribution measuring apparatus 50 that measures the intensity distribution of a laser beam.
  • the intensity distribution measuring apparatus 50 includes a scanning unit 54 that scans a laser beam on a part of a circular main body 52.
  • the scanning unit 54 is in contact with the laser beam and guides a part of the laser beam to a photodetector 58 (photodiode) provided above the main body 52 via the mirror 56.
  • the photodetector 58 outputs the intensity of the detected laser beam.
  • the main body 52 can be rotated in the circumferential direction, and can be moved in the height direction and in the left-right direction that crosses the laser beam. By rotating and moving, the laser beam generated by the scanning unit 54 can be obtained. Scan.
  • the steepness of the side surface of the intensity distribution of the laser beam emitted from the laser cutting apparatus 10 according to the present embodiment is higher in the caldera-shaped laser beam than in the laser beam before the caldera-shaped. Specifically, it is desirable that the steepness is 10% or more, preferably 20% or more higher than the tangential angle of the side surface. Thereby, a laser beam with higher quality is positioned on the side surface, and processing with higher quality becomes possible. For example, as shown in FIG.
  • FIG. 6 is a schematic diagram showing the intensity distribution at the position of the workpiece 20 of the laser beam used in the laser cutting device 10.
  • FIG. 6A shows the case where the caldera-like intensity distribution of the laser beam is made more ring-shaped by the above-described inversion.
  • the ring shape is a state in which the intensity of the peripheral region is higher than that of the central region of the laser beam, and the intensity of the central region is very small.
  • the depth of focus is preferably set as long as possible while maintaining the energy density required for cutting the workpiece 20. Specifically, by setting the focal depth of the laser beam to 1 mm or more, a reduction in energy density within the plate thickness of the workpiece 20 can be suppressed, so that higher quality processing is possible.
  • FIG. 6B shows a case where the intensity distribution of the laser beam is made non-ring-shaped by the above-described inversion.
  • the non-ring shape is, for example, a circular shape having intensity in the central region as well as in the peripheral region, and is a state in which the intensity distribution of the inverted laser beam is made uniform compared to the ring shape. Even in this case, the quality of the laser beam in the peripheral region is better than that of a laser beam obtained by a conventional condenser lens that corrects aberrations without performing the above-described inversion, and the workpiece can be cut with high quality. .
  • FIG. 6C shows a case where the intensity distribution of the laser beam having a peak also in the central region of the intensity distribution at the position of the workpiece 20 is obtained.
  • the intensity of the peak in the central area may be larger or smaller than the intensity of the peak in the peripheral area.
  • the intensity distribution of the inverted laser beam includes the distance between the laser incident portion 16 and the optical system 18, the distance between the condenser lens 22 and the concave lens 24, the number of condenser lenses 22, and the positions of the condenser lens 22 and the concave lens 24.
  • the intensity distributions as shown in FIG. 6 are formed in different shapes.
  • FIG. 7 is a view showing a cut surface of the workpiece 20.
  • FIG. 7A shows a cut surface of the workpiece 20 by the laser beam before being inverted.
  • FIGS. 7A and 7B show the intensity distribution of the laser beam used for the cutting, and the laser beam has a peak in the central region.
  • the figure shown in the upper stage of FIG. 7 (A) is the photograph which image
  • FIG. 7B shows a cut surface of the workpiece 20 by the laser beam that has been inverted in the laser cutting apparatus 10 according to the present embodiment.
  • 7B shows the intensity distribution of the laser beam used for the cutting, and the laser beam has a caldera-like intensity distribution and has a peak in the central region.
  • the figure shown in the upper stage of FIG. 7 (B) is the photograph which image
  • the positional relationship between the focal position of the laser beam and the position where the intensity distribution of the laser beam becomes a caldera shape, that is, the position where the lens is inverted. can be adjusted.
  • the curvature of the condenser lens 22 is changed.
  • the curvature of the concave lens 24 is reduced by increasing it.
  • the curvature of the condensing lens 22 is reduced and the curvature of the concave lens 24 is increased.
  • changing the curvature of the condensing lens 22 and the concave lens means that the condensing lens 22 and the concave lens 24 are replaced with another condensing lens 22 and a concave lens 24 having different curvatures.
  • the laser cutting device 10 according to the above can easily adjust the positional relationship between the focal position of the laser beam and the position where the intensity distribution of the laser beam becomes a caldera shape.
  • the condensing lens 22 and the concave lens 24 are described as different lenses.
  • these lenses are an integrated lens group 60, and the lens group 60 has a different curvature.
  • the position of inversion may be adjusted by exchanging with the group lens 60.
  • the laser cutting device 10 inverts the laser beam using the spherical aberration of the spherical lens and focuses the laser beam in a circular shape, so that the workpiece can be processed with a simple configuration.
  • the laser beam can be generated by reversing the inside and outside, and the machining direction is not limited in machining the workpiece.
  • the present invention is not limited to this, and as a form using other gas such as nitrogen gas or argon gas as the assist gas. Also good.
  • a fiber laser is used for the laser cutting device 10 .
  • the present invention is not limited to this.
  • a disk laser (wavelength 1.05) transmitted by an optical fiber is used. ⁇ 1.09 ⁇ m), YAG laser, gas laser CO 2 laser, or other lasers may be used.
  • the intensity distribution of the laser beam is made to be a caldera using a spherical lens.
  • the present invention is not limited to this, and sufficient aberration correction is not performed (
  • the intensity distribution of the laser beam may be in the form of a caldera using an aspheric lens capable of generating spherical aberration.
  • the intensity distribution of the laser beam may be a caldera shape by combining the spherical lens and the aspheric lens.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Laser Beam Processing (AREA)

Abstract

レーザ切断装置(10)は、レーザ発振器(12)によって発振されたレーザビームが入射され、レーザビームを集光させるための球面レンズによって、被加工物(20)の位置においてレーザビームの強度分布が中心領域よりも周辺領域の方が高いカルデラ状となり、かつ焦点位置が被加工物(20)の位置からずれたレーザビームを被加工物(20)に照射するレーザ加工ヘッド(15)を備える。従って、レーザ切断装置(10)は、球面レンズが有する球面収差を用いてレーザビームの倒置を行うので、簡易な構成で、被加工物(2)の位置において内外を逆転させたレーザビームを生成でき、かつ被加工物(20)の加工において加工方向が限定されない。

Description

レーザ加工ヘッド、レーザ加工装置、レーザ加工装置の光学系、レーザ加工方法、及びレーザ集束方法
 本発明は、レーザ加工ヘッド、レーザ加工装置、レーザ加工装置の光学系、レーザ加工方法、及びレーザ集束方法に関するものである。
 近年、金属や合金の被加工物(ワーク)を加工する加工ヘッドに、レーザ発振器から光ファイバーを介してレーザビームが送られ、該レーザビームによって被加工物を切断するレーザ切断装置の開発が進んでいる。この光ファイバーを用いたレーザは、固体レーザ(例えば、ファイバレーザ、ディスクレーザ、半導体レーザ等)が光ファイバーを用いて伝送されるものである。
 従来は、光ファイバーで伝送可能なYAGレーザや半導体レーザの集光性が悪く、被加工物の加工にはCOレーザが用いられてきたが、ファイバレーザは、COレーザに比較してレーザの生成に要する電気エネルギーが少なく、ビームの品質(レーザビームの集光性と直進性)も同等以上で、高出力化も容易であるため、近年普及が進んでいる。
 ここで、集光スポットのサイズを小さく、かつ焦点深度が長いレーザビームを得るために、特許文献1には、レーザ光源で発生させたレーザビームを所望の焦点深度で集光させる集光光学系であって、球面収差を発生させるように構成されている集光光学系が記載されている。
 また、レーザビームは、中心領域の方が周辺領域よりも品質が良く(直進性が高い)、中心領域から離れるに従い、品質が悪いという傾向がある。そのため、被加工物を切断しているときは、品質が悪い周辺領域のレーザビームが被加工物の切断端部に接することとなり、切断の品質(切断精度及び粗度等)に影響を与えることとなる。
 特に、YAGレーザ(波長が1μm帯)による合金を含む金属の切断加工では、板厚の厚い(数mm以上、例えば8mm以上)金属を切断できない場合もあり、切断できたとしても従来のCOレーザ(波長が10μm帯)による切断加工ほどの品質が得られなかった。
 そこで、特許文献2には、レーザビームの断面におけるガウス型分布をもったエネルギー密度分布を、2つのシリンドリカルレンズ対を備えた内外逆転光学系によりレーザビームの光軸を含む平面に対して内外で逆転させるレーザ加工装置が記載されている。なお、このレーザビームの進行方向の上流側に配置されたシリンドリカルレンズ対は2つの同一形状のシリンドリカルレンズが並列して接着された形状のレンズ対であってレーザビームを2分割し、下流側に配置されたシリンドリカルレンズ対は2つのシリンドリカルレンズが並列かつ離間して配列されたレンズ対であって上流側のシリンドリカルレンズ対によって2分割されたレーザビームをコリメートして集光レンズに入射させる。
特開2008-139476号公報 特開平9-108879号公報
 上記のように特許文献2に記載のレーザ加工装置は、ガウス型分布をもったエネルギー密度分布を、レーザビームの光軸を含む平面に対して内外で逆転させているため、品質が良いレーザビームが被加工物に接することとなる。しかしながら、レーザビームを2分割して内外を逆転させているため、被加工物の位置におけるレーザビームの断面は、円形をしていないため、レーザビームが被加工物に接する方向のみでしか被加工物の加工ができない。すなわち、特許文献2に記載のレーザ加工装置では、被加工物に対して加工可能な方向が限定される。
 また、特許文献2に記載のレーザ加工装置では、レーザビームを2つのシリンドリカルレンズ対によって分割し、内外の逆転を行った後に、集光レンズによって被加工物の一点へ集光させている。このため光学系の構成が非常に複雑であり、分割する前のレーザビームの光軸、分割した2つのレーザビームの光軸を各々調整し、かつ分割した2つのレーザビームを被加工物上の同位置に集束させる必要があり、光軸調整が非常に困難である。
 本発明は、このような事情に鑑みてなされたものであって、簡易な構成で、被加工物の位置において内外を逆転させたレーザビームを生成でき、かつ被加工物の加工において加工方向が限定されないレーザ加工ヘッド、レーザ加工装置、レーザ加工装置の光学系、レーザ加工方法、及びレーザ集束方法を提供することを目的とする。
 上記課題を解決するために、本発明のレーザ加工ヘッド、レーザ加工装置、レーザ加工装置の光学系、レーザ加工方法、及びレーザ集束方法は以下の手段を採用する。
 すなわち、本発明に係るレーザ加工装置は、レーザビームを照射することによって被加工物を加工するレーザ加工装置に備えられるレーザ加工ヘッドであって、前記レーザビームを集光させるための球面レンズ及び球面収差を発生可能な非球面レンズの少なくとも一方によって、前記被加工物の位置において前記レーザビームの強度分布が中心領域よりも周辺領域の方が高いカルデラ状となり、かつ焦点位置が前記被加工物の位置からずれた前記レーザビームを前記被加工物に照射する。
 本発明によれば、レーザビームを集光させるための球面レンズ及び非球面レンズの少なくとも一方によって、被加工物の位置においてレーザビームの強度分布が中心領域よりも周辺領域の方が高いカルデラ状となり、かつ焦点位置が被加工物の位置からずれたレーザビームが被加工物に照射される。
 レーザビームの強度分布を、中心領域よりも周辺領域の方が高いカルデラ状とすることで、被加工物を加工する際に被加工物に接するレーザビームの側面の強度が高くなり、より加工精度を高めることができる。
 そして、このように強度分布をカルデラ状とするためには、球面レンズが有する球面収差あるいは、十分な収差補正を行っていない(つまりは球面収差を発生可能な)非球面レンズを用いることによって、レーザビームの中心領域と周辺領域とを倒置させることによって実現することができ、該倒置を行うためには、レーザビームの焦点位置を被加工物の位置からずらす必要がある。また、レーザビームは、その中心領域の方が周辺領域に比べて品質が良い、すなわち直進性が高い。そのため、倒置されたレーザビームの周辺領域は、直進性が高くなるためビーム径を保持できる距離(焦点深度)が長くなり、厚みを有する被加工物でも品質の良い加工が可能となる。
 このように、本発明は、球面レンズ及び非球面レンズの少なくとも一方が有する球面収差を用いてレーザビームの倒置を行い、レーザビームを円形に集束させるので、簡易な構成で、被加工物の位置において内外を逆転させたレーザビームを生成でき、かつ被加工物の加工において加工方向が限定されない。
 また、上記構成において、前記レーザビームが、前記被加工物の位置において前記レーザビームの強度分布がリング状とされることが好ましい。
 このようにすることにより、被加工物の加工方向後方側のレーザビームが、溶融金属の温度上昇に寄与することとなる。この結果、レーザビームは、溶融金属の温度を十分に上昇させることができ、厚みのある被加工物でも切断することができる。
 また、上記構成において、前記レーザビームが、前記被加工物の位置において前記レーザビームの強度分布を非リング状とされることが好ましい。
 このようにすることにより、加工により発生した溶融金属の温度を平均的に上昇させることができる。この結果、レーザビームは、溶融金属の温度を十分に上昇させることができ、厚みのある被加工物でも切断することができる。なお、非リング状とは、例えば周辺領域と共に中心領域にも強度を有する円状であり、倒置されたレーザビームの強度分布がリング状に比べ均一とされている状態である。
 また、上記構成において、前記レーザビームが、前記被加工物の位置において前記強度分布の中心領域にもピークを有することが好ましい。
 このようにすることにより、中心領域の強度分布にピークを有するため、溶融金属に対してより多くの熱を与えることとなるので、溶融金属の温度を十分に上昇させることができ、厚みのある被加工物の切断が行える。
 また、上記構成において、前記レーザビームが、前記被加工物の位置において焦点深度が1mm以上であることが好ましい。
 レーザビームは、その中心領域の方が周辺領域に比べて品質が良い、すなわち直進性が高い。そのため、倒置されたレーザビームの周辺領域は、直進性が高くなるため、被加工物の位置において焦点深度が長くなり、厚みを有する被加工物でも品質の良い加工が可能となる。
 そして、レーザビームの焦点深度を1mm以上とすることで、被加工物の板厚内でのエネルギー密度の低下を抑制できるため、より品質の高い加工が可能となる。
 また、上記構成において、前記レーザビームの強度分布が、側面の急峻度がカルデラ状となった前記レーザビームの方がカルデラ状となる前の前記レーザビームよりも10%以上高いことが好ましい。
 このようにすることにより、より品質の高いレーザビームが側面に位置することとなり、より品質の高い加工が可能となる。
 また、上記構成において、前記球面レンズが、前記レーザビームの進行方向上流側に位置する凸レンズ、及び該凸レンズよりも前記レーザビームの進行方向下流側に位置する凹レンズを含み、前記凸レンズ及び前記凹レンズの曲率の少なくとも一方を変化させることで、前記レーザビームの前記焦点位置と前記レーザビームの強度分布が前記カルデラ状となる位置との位置関係が調整可能とされることが好ましい。
 このように、レーザビームの進行方向上流側に位置する凸レンズ、及び凸レンズよりもレーザビームの進行方向下流側に位置する凹レンズの曲率を替えることによって、すなわち、凸レンズ及び凹レンズを曲率の異なる他の凸レンズ及び凹レンズに替えることで、レーザビームの焦点位置とレーザビームの強度分布がカルデラ状となる位置との位置関係とを容易に調整できる。
 また、本発明に係るレーザ加工装置は、レーザビームを発振するレーザ発振器と、前記レーザ発振器によって発振された前記レーザビームが入射される上記記載のレーザ加工ヘッドと、被加工物が載置されると共に、前記レーザ加工ヘッドに対して相対的に移動するステージと、を備える。
 また、本発明に係るレーザ加工装置の光学系は、レーザ発振器によって発振されたレーザビームによって被加工物を加工するレーザ加工装置の光学系であって、球面レンズ及び球面収差を発生可能な非球面レンズの少なくとも一方が有する球面収差を用いて、前記レーザビームの中心領域を前記被加工物の位置において周辺領域へ倒置させると共に、前記レーザビームの周辺領域を前記被加工物の位置において中心領域へ倒置させ、かつ前記レーザビームを円形に集束させる集束手段、を備える。
 本発明によれば、集束手段によって、球面レンズ及び非球面レンズの少なくとも一方が有する球面収差を用いて、レーザビームの中心領域が被加工物の位置において周辺領域へ倒置されると共に、レーザビームの周辺領域が被加工物の位置において中心領域へ倒置され、かつレーザビームが円形に集束される。
 そして、倒置されたレーザビームが、被加工物を加工することとなる。一般にレーザビームは、その中心領域の方が周辺領域に比べて品質が良い、すなわち直進性が高い。そのため、倒置されたレーザビームの周辺領域は、直進性が高くなる。従って、中心領域、周辺領域で集光位置を調整することで、ビーム径を保持できる距離(焦点深度)が長くなり、厚みを有する被加工物でも品質の良い加工が可能となる。
 このように、本発明は、球面レンズ及び非球面レンズの少なくとも一方が有する球面収差を用いてレーザビームの倒置を行うので、簡易な構成で、被加工物の位置において内外を逆転させたレーザビームを生成でき、かつ被加工物の加工において加工方向が限定されない。
 また、本発明に係るレーザ加工方法は、被加工物を加工するためのレーザビームをレーザ発振器から発振し、発振した前記レーザビームを集光させるための球面レンズ及び球面収差を発生可能な非球面レンズの少なくとも一方によって、前記被加工物の位置において、強度分布が中心領域よりも周辺領域の方が強度の高いカルデラ状となり、かつ焦点位置が該被加工物の位置からずれたレーザビームを照射し、照射したレーザビームと前記被加工物とを相対的に移動させながら、前記被加工物を加工する。
 また、本発明に係るレーザ集束方法は、レーザ発振器によって発振されたレーザビームによって被加工物を加工するレーザ加工装置のレーザ集束方法であって、球面レンズ及び球面収差を発生可能な非球面レンズの少なくとも一方が有する球面収差を用いて、前記レーザビームの中心領域を前記被加工物の位置において周辺領域へ倒置させると共に、前記レーザビームの周辺領域を前記被加工物の位置において中心領域へ倒置させ、かつ該レーザビームを円形に集束させる。
 本発明によれば、簡易な構成で、被加工物の位置において内外を逆転させたレーザビームを生成でき、かつ被加工物の加工において加工方向が限定されない、という効果を奏する。
本発明の実施形態に係るレーザ切断装置の光学系の構成を示す模式図である。 本発明の実施形態に係るレーザ切断装置の凹レンズを通過したレーザビームの光跡を示す図である。 本発明の実施形態に係るレーザ切断装置で出射されたレーザビームの異なる位置における強度分布を示す模式図であり、(A)はレーザ入射部から出射された直後のレーザビームの強度分布であり、(B)は焦点位置におけるレーザビームの強度分布であり、(C)は焦点位置よりも被加工物側の位置におけるレーザビームの強度分布である。 本発明の実施形態に係るレーザビームの強度分布を測定する強度分布測定装置の構成図である。 本発明の実施形態に係るレーザビームの側面の急峻度を示す模式図である。 本発明の実施形態に係る被加工物の位置におけるレーザビームの強度分布を示す模式図であり、(A)は強度分布をリング状とした場合であり、(B)は強度分布を非リング状とした場合であり、(C)は中心領域にピークを有する場合である。 レーザ切断装置による被加工物の切断面を示した図であり、(A)は倒置が行われる前のレーザビームによる被加工物の切断面であり、(B)は本実施形態に係るレーザ切断装置において、倒置が行われたレーザビームによる被加工物の切断面である。 本発明の実施形態に係るレーザビームの焦点位置とレーザビームの強度分布がカルデラ状となる位置との位置関係の調整の説明に要する図である。 本発明の実施形態に係るレーザ切断装置のレンズを組レンズとした場合の構成図である。
 以下に、本発明に係るレーザ切断装置及びレーザ切断方法の一実施形態について、図面を参照して説明する。なお、本実施形態では、本発明に係るレーザ加工装置を、被加工物を切断するレーザ切断装置として説明する。
 図1に、本実施形態に係るレーザ切断装置10の光学系の構成を示す。
 レーザ切断装置10は、レーザ発振器12、光ファイバー14、レーザ加工ヘッド15、ステージ25を備えている。なお、本実施形態に係るレーザ切断装置10は、レーザ発振器12として個体レーザを用いる。
 ステージ25は、被加工物20が載置されると共に、レーザ加工ヘッド15に対して相対的に移動するステージである。なお、ステージ25は、一例として、レーザ加工ヘッド15に対して平面方向(X,Y方向)に移動可能とされている所謂X-Yステージとされる。これにより、レーザ切断装置10は、被加工物20に対して連続的にレーザビームを照射しながら、被加工物20又はレーザ加工ヘッド15を移動させることで被加工物20を切断する。
 被加工物20は、金属であり、本実施形態では被加工物20を一例として炭素鋼とする。また、被加工物20の厚みは、例えば数mm(例えば6mm~300mm、特に15mm~300mm)以上である。また、本実施形態に係るレーザ切断装置10は、被加工物20を切断する際に、アシストガスである酸素ガスを切断部分に吹きかけながら切断する。
 レーザ発振器12は、レーザビーム(本実施形態では、ファイバレーザ)を生成する。レーザ発振器12によって生成されたレーザは、光ファイバー14で伝送される。
 レーザ加工ヘッド15は、レーザ入射部16、及び光学系18を備えている。レーザ入射部16は、光ファイバー14の末端に接続され、光ファイバー14によって伝送されたレーザビームを、光学系18へ出射する。
 光学系18は、球面レンズによって構成されており、球面レンズには、レーザビームの進行方向上流側に位置する凸レンズである集光レンズ22、及び集光レンズ22よりもレーザビームの進行方向下流側に位置する凹レンズ23が含まれ、集光レンズ22及び凹レンズ24は、中心軸線26が同軸となるように配置されている。
 集光レンズ22は、光ファイバー14から出射される所定の拡がり(開口数NA=sinθ)を有するレーザビームを集光させる。集光レンズ22は、一つのレンズで構成されてもよいし、複数のレンズで構成されてもよい。また、集光レンズ22は、光ファイバー14から出射されるレーザビームを平行光にしてもよい。
 図2は、実施形態に係るレーザ切断装置10の凹レンズ24を通過したレーザビームの光跡の一例を示す図である。凹レンズ24は、レーザビームの進行方向上流側に曲率を有する一方、下流側には曲率を有さない。
 図2の例に示すように、凹レンズ24の外側に入射してきたレーザビーム(図2の実線)が集光する位置は、凹レンズ24の内側に入射してきたレーザビーム(図2の破線)が集光する位置よりも、より下流側となる。すなわち、凹レンズ24は、レーザビームを入射位置に応じて異なる位置で集光拡散させつつ、被加工物20の表面に照射させる。
 そして、図2に示すように、凹レンズ24を通過したレーザビームは、全体として焦点(位置B)を結んだ下流側で発散する。ここで、球面レンズである凹レンズ24は、その球面収差により、焦点位置より下流側(被加工物20側)において、それまで中心領域にあったレーザビーム(図2の破線)を周辺領域へ倒置させると共に、それまで周辺領域にあったレーザビーム(図2の実線)を中心領域へ倒置させ、かつレーザビームを円形に集束させる。すなわち、本実施形態に係るレーザ切断装置10は、凹レンズ24を光学系18の最終段とし、光学系18の最終段と被加工物との間でレーザビームの倒置を行う。
 図3は、本実施形態に係るレーザ切断装置10から出射されるレーザビームの異なる位置における強度分布を示す模式図である。
 図3(A)は、レーザ入射部16から出射された直後(図1の位置A)のレーザビームの強度分布を示す。また、図3(B)は、焦点位置(図1,2の位置B)におけるレーザビームの強度分布を示す。
 図3(A),(B)に示すように、レーザビームの中心領域の方が、周辺領域に比べてレーザビームの品質が良い(直進性が高い)。すなわち、周辺領域のレーザビームの品質は、中心領域よりも悪い。このような、レーザビームを用いて被加工物20を切断すると、品質が悪い周辺領域のレーザビームが被加工物20の切断端部に接することとなり、切断の品質(切断精度及び粗度等)に影響を与えることとなる。
 一方、図3(C)は、焦点位置よりも被加工物20側の位置(図1,2の位置C)におけるレーザビームの強度分布を示す。
 上述したように凹レンズ24の作用によって、レーザビームは、中心領域であったレーザビームを周辺領域へ倒置させると共に、周辺領域であったレーザビームを中心領域へ倒置させ、かつレーザビームを円形に集束させる。このため、図3(C)に示すように、品質の良いレーザビーム、すなわち、直進性の高いため、ビーム径を保持できる距離(焦点深度)が長いレーザビームが、周辺領域へ位置することになる。
 このように、強度分布をカルデラ状とするためには、球面レンズが有する球面収差によって、レーザビームの中心領域と周辺領域とを倒置させることで実現することができ、該倒置を行うためには、レーザビームの焦点位置を被加工物20の位置からずらす必要がある。
 なお、本実施形態に係るレーザ切断装置10は、被加工物20の位置におけるレーザビームの径を0.1~2.0mmとする。
 図4は、レーザビームの強度分布を測定する強度分布測定装置50の構成図である。
 強度分布測定装置50は、円形の本体52の一部にレーザビームをスキャンするスキャン部54を備える。スキャン部54は、レーザビームと接し、ミラー56を介してレーザビームの一部を本体52の上方に設けられた光検出器58(フォトダイオード)へ導く。光検出器58は、検出したレーザビームの強度を出力する。
 また、本体52は、その周方向に回転可能とされると共に、高さ方向及びレーザビームを横切る方向である左右方向へ移動可能とされ、回転及び移動を行うことで、スキャン部54によるレーザビームのスキャンを行う。
 また、本実施形態に係るレーザ切断装置10が出射するレーザビームの強度分布の側面の急峻度は、カルデラ状となったレーザビームの方がカルデラ状となる前のレーザビームよりも高い。具体的には、急峻度は、側面の接線角度が10%以上、好ましくは20%以上高いことが望ましい。これにより、より品質の高いレーザビームが側面に位置することとなり、より品質の高い加工が可能となる。
 急峻度は、例えば、図5に示されるように、レーザビームの強度分布のピークから1/e(eは自然対数の低、e=2.71828)で定義される直線と、レーザビームの強度分布の側面との交点における接線角αを、カルデラ状となる前後で比較することによって算出される。
 図6は、レーザ切断装置10で用いるレーザビームの被加工物20の位置における強度分布を示す模式図である。
 図6(A)は、上述した倒置によりレーザビームのカルデラ状の強度分布を、よりリング状とした場合である。リング状とは、レーザビームの中心領域に比べて周辺領域の方の強度がより高い状態であり、中心領域の強度が非常に小さい状態である。レーザビームの強度分布をリング状とすることによって、被加工物の位置における周辺領域に品質の良いレーザビームが長焦点深度で形成されることとなり、特に厚板の切断を品質良く行うことができる。
 なお、焦点深度は、エネルギー密度が被加工物20の切断に必要な値を保ちつつ、極力長く設定することが好ましい。具体的には、レーザビームの焦点深度を1mm以上とすることで、被加工物20の板厚内でのエネルギー密度の低下を抑制できるため、より品質の高い加工が可能となる。
 図6(B)は、上述した倒置によりレーザビームの強度分布を非リング状とした場合である。非リング状とは、例えば、周辺領域と共に中心領域にも強度を有する円状であり、倒置されたレーザビームの強度分布がリング状に比べ均一とされている状態である。
 この場合においても、上記した倒置を行わずに収差補正を行う従来の集光レンズにより得られるレーザビームよりも、周辺領域のレーザビームの品質が良好となり、品質の良い被加工物の切断が行える。
 図6(C)は、被加工物20の位置において強度分布の中心領域にもピークを有するレーザビームの強度分布とした場合である。この場合は、中心領域の強度分布にピークを有するため、溶融金属に対してより多くの熱を与えることとなるので、溶融金属の温度を十分に上昇させることができ、厚みのある被加工物20の切断が行える。なお、中心領域におけるピークの強度は、周辺領域のピークの強度よりも大きくても小さくてもよい。
 倒置されたレーザビームの強度分布は、レーザ入射部16と光学系18との距離、集光レンズ22と凹レンズ24との距離、集光レンズ22の枚数、及び集光レンズ22と凹レンズ24の位置関係等の調整、すなわち、光学系18を構成する集光レンズ22及び凹レンズ24の組み合わせが調整されることで、図6に示されるような強度分布が各々異なる形状に形成される。
 図7は、被加工物20の切断面を示した図である。
 図7(A)は、倒置が行われる前のレーザビームによる被加工物20の切断面を示す。図7(A)の中段及び下段に示される図が該切断に用いたレーザビームの強度分布を示し、該レーザビームは、中心領域にピークを有している。そして、図7(A)の上段に示される図が、切断面を実際に撮影した写真である。
 一方、図7(B)は、本実施形態に係るレーザ切断装置10において、倒置が行われたレーザビームによる被加工物20の切断面を示す。図7(B)の中段及び下段に示す図が該切断に用いたレーザビームの強度分布を示し、該レーザビームは、強度分布がカルデラ状であり、かつ中心領域にピークを有している。そして、図7(B)の上段に示される図が、切断面を実際に撮影した写真である。
 図7(A)と図7(B)における写真を比較すると、図7(B)に示される倒置が行われたレーザビームによる切断面の方が、より滑らかに切断されていることが分かる。
 また、凸レンズである集光レンズ22及び凹レンズ24の曲率の少なくとも一方を変化させることで、レーザビームの焦点位置とレーザビームの強度分布がカルデラ状となる位置との位置関係、すなわち倒置を行う位置が調整可能とされている。
 例えば、図8に示すように、焦点位置(図8の“B-B”)よりも上流側で倒置(図8の“C-C”)を行う場合には、集光レンズ22の曲率を大きくし、凹レンズ24の曲率を小さくする。一方、焦点位置よりも下流側で倒置を行う場合は、集光レンズ22の曲率を小さくし、凹レンズ24の曲率を大きくする。
 なお、集光レンズ22及び凹レンズの曲率を替えるということは、すなわち、集光レンズ22及び凹レンズ24を曲率の異なる他の集光レンズ22及び凹レンズ24に替えることであり、これにより、本実施形態に係るレーザ切断装置10は、レーザビームの焦点位置とレーザビームの強度分布がカルデラ状となる位置との位置関係とを容易に調整できる。
 また、本実施形態では集光レンズ22と凹レンズ24を各々異なるレンズとして記載しているが、例えば、図9に示すようにこれらを一体の組レンズ60とし、該組レンズ60を曲率の異なる他の組レンズ60に交換することによって、倒置の位置を調整してもよい。
 以上説明したように、本実施形態に係るレーザ切断装置10は、球面レンズが有する球面収差を用いてレーザビームの倒置を行い、レーザビームを円形に集束させるので、簡易な構成で、被加工物の位置において内外を逆転させたレーザビームを生成でき、かつ被加工物の加工において加工方向が限定されない。
 以上、本発明を、上記実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で上記実施形態に多様な変更または改良を加えることができ、該変更または改良を加えた形態も本発明の技術的範囲に含まれる。
 例えば、上記実施形態では、アシストガスとして酸素ガスを用いる場合について説明したが、本発明は、これに限定されるものではなく、アシストガスとして窒素ガスやアルゴンガス等、他のガスを用いる形態としてもよい。
 また、上記実施形態では、レーザ切断装置10にファイバレーザを用いた場合について説明したが、本発明は、これに限定されるものではなく、例えば、光ファイバーによって伝送されるディスクレーザ(波長1.05~1.09μm)やYAGレーザ、気体レーザのCOレーザ等、他のレーザを用いる形態としてもよい。
 また、上記実施形態では、球面レンズを用いてレーザビームの強度分布をカルデラ状とする場合について説明したが、本発明は、これに限定されるものではなく、十分な収差補正を行っていない(つまりは球面収差を発生可能な)非球面レンズを用いてレーザビームの強度分布をカルデラ状とする形態としてもよい。また、球面レンズ及び上記非球面レンズを組み合わせてレーザビームの強度分布をカルデラ状としてもよい。
 10  レーザ切断装置
 12  レーザ発振器
 15  レーザ加工ヘッド
 16  レーザ入射部
 18  光学系
 20  被加工物
 22  集光レンズ
 24  凹レンズ
 25  ステージ

Claims (11)

  1.  レーザビームを照射することによって被加工物を加工するレーザ加工装置に備えられるレーザ加工ヘッドであって、
     前記レーザビームを集光させるための球面レンズ及び球面収差を発生可能な非球面レンズの少なくとも一方によって、前記被加工物の位置において前記レーザビームの強度分布が中心領域よりも周辺領域の方が高いカルデラ状となり、かつ焦点位置が前記被加工物の位置からずれた前記レーザビームを前記被加工物に照射する、
    レーザ加工ヘッド。
  2.  前記レーザビームは、前記被加工物の位置において前記レーザビームの強度分布がリング状とされる請求項1又は請求項2記載のレーザ加工ヘッド。
  3.  前記レーザビームは、前記被加工物の位置において前記レーザビームの強度分布を非リング状とされる請求項1から請求項3の何れか1項記載のレーザ加工ヘッド。
  4.  前記レーザビームは、前記被加工物の位置において前記強度分布の中心領域にもピークを有する請求項3記載のレーザ加工ヘッド。
  5.  前記レーザビームは、前記被加工物の位置において焦点深度が1mm以上である請求項1から請求項4の何れか1項記載のレーザ加工ヘッド。
  6.  前記レーザビームの強度分布は、側面の急峻度がカルデラ状となった前記レーザビームの方がカルデラ状となる前の前記レーザビームよりも10%以上高い請求項1から請求項5の何れか1項記載のレーザ加工ヘッド。
  7.  前記球面レンズは、前記レーザビームの進行方向上流側に位置する凸レンズ、及び該凸レンズよりも前記レーザビームの進行方向下流側に位置する凹レンズを含み、
     前記凸レンズ及び前記凹レンズの曲率の少なくとも一方を変化させることで、前記レーザビームの前記焦点位置と前記レーザビームの強度分布が前記カルデラ状となる位置との位置関係が調整可能とされている請求項1から請求項6の何れか1項記載のレーザ加工ヘッド。
  8.  レーザビームを発振するレーザ発振器と、
     前記レーザ発振器によって発振された前記レーザビームが入射される請求項1から請求項7の何れか1項記載のレーザ加工ヘッドと、
     被加工物が載置されると共に、前記レーザ加工ヘッドに対して相対的に移動するステージと、
    を備えたレーザ加工装置。
  9.  レーザ発振器によって発振されたレーザビームによって被加工物を加工するレーザ加工装置の光学系であって、
     球面レンズ及び球面収差を発生可能な非球面レンズの少なくとも一方が有する球面収差を用いて、前記レーザビームの中心領域を前記被加工物の位置において周辺領域へ倒置させると共に、前記レーザビームの周辺領域を前記被加工物の位置において中心領域へ倒置させ、かつ前記レーザビームを円形に集束させる集束手段、
    を備えたレーザ加工装置の光学系。
  10.  被加工物を加工するためのレーザビームをレーザ発振器から発振し、
     発振した前記レーザビームを集光させるための球面レンズ及び球面収差を発生可能な非球面レンズの少なくとも一方によって、前記被加工物の位置において、強度分布が中心領域よりも周辺領域の方が強度の高いカルデラ状となり、かつ焦点位置が該被加工物の位置からずれたレーザビームを照射し、
     照射したレーザビームと前記被加工物とを相対的に移動させながら、前記被加工物を加工する
    レーザ加工方法。
  11.  レーザ発振器によって発振されたレーザビームによって被加工物を加工するレーザ加工装置のレーザ集束方法であって、
     球面レンズ及び球面収差を発生可能な非球面レンズの少なくとも一方が有する球面収差を用いて、前記レーザビームの中心領域を前記被加工物の位置において周辺領域へ倒置させると共に、前記レーザビームの周辺領域を前記被加工物の位置において中心領域へ倒置させ、かつ該レーザビームを円形に集束させるレーザ集束方法。
PCT/JP2011/062391 2011-05-30 2011-05-30 レーザ加工ヘッド、レーザ加工装置、レーザ加工装置の光学系、レーザ加工方法、及びレーザ集束方法 WO2012164663A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/982,790 US9346126B2 (en) 2011-05-30 2011-05-30 Laser processing head, laser processing apparatus, optical system of laser processing apparatus, laser processing method, and laser focusing method
PCT/JP2011/062391 WO2012164663A1 (ja) 2011-05-30 2011-05-30 レーザ加工ヘッド、レーザ加工装置、レーザ加工装置の光学系、レーザ加工方法、及びレーザ集束方法
EP11866675.9A EP2716397B1 (en) 2011-05-30 2011-05-30 Optical system for laser working device, laser working head with such optical system, laser working device with such head, laser focusing method, and laser working method using such method
JP2013517726A JP5602300B2 (ja) 2011-05-30 2011-05-30 レーザ加工ヘッド、レーザ加工装置、レーザ加工装置の光学系、レーザ加工方法、及びレーザ集束方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/062391 WO2012164663A1 (ja) 2011-05-30 2011-05-30 レーザ加工ヘッド、レーザ加工装置、レーザ加工装置の光学系、レーザ加工方法、及びレーザ集束方法

Publications (1)

Publication Number Publication Date
WO2012164663A1 true WO2012164663A1 (ja) 2012-12-06

Family

ID=47258549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062391 WO2012164663A1 (ja) 2011-05-30 2011-05-30 レーザ加工ヘッド、レーザ加工装置、レーザ加工装置の光学系、レーザ加工方法、及びレーザ集束方法

Country Status (4)

Country Link
US (1) US9346126B2 (ja)
EP (1) EP2716397B1 (ja)
JP (1) JP5602300B2 (ja)
WO (1) WO2012164663A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015115231A (ja) * 2013-12-12 2015-06-22 アズビル株式会社 紫外線放電管の製造方法
CN105458493A (zh) * 2014-09-30 2016-04-06 发那科株式会社 激光加工装置
JP2017001097A (ja) * 2016-08-03 2017-01-05 株式会社アマダホールディングス レーザ加工機
WO2023286265A1 (ja) * 2021-07-16 2023-01-19 三菱電機株式会社 レーザ加工装置及びレーザ加工方法
CN117001173A (zh) * 2023-09-12 2023-11-07 重庆奥方工贸有限公司 一种汽车车灯透镜激光切割装置
DE102024104564A1 (de) 2023-03-10 2024-09-12 Tamron Co., Ltd. Optisches system einer laserbearbeitungsvorrichtung und laserbearbeitungsvorrichtung

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI772353B (zh) * 2017-01-16 2022-08-01 日商索尼股份有限公司 光偵測方法、光偵測裝置及程式產品
EP3412400A1 (en) 2017-06-09 2018-12-12 Bystronic Laser AG Beam shaper and use thereof, device for laser beam treatment of a workpiece and use thereof, method for laser beam treatment of a workpiece
JP6980025B2 (ja) * 2017-10-17 2021-12-15 三菱電機株式会社 レーザ溶接方法およびレーザ加工装置
CN111565881B (zh) * 2018-03-23 2022-06-14 普锐特冶金技术日本有限公司 激光加工头、激光加工装置以及激光加工头的调整方法
CN108941896B (zh) * 2018-07-06 2021-04-16 武汉光谷航天三江激光产业技术研究院有限公司 激光聚焦装置及激光系统
DE102019115554A1 (de) 2019-06-07 2020-12-10 Bystronic Laser Ag Bearbeitungsvorrichtung zur Laserbearbeitung eines Werkstücks und Verfahren zur Laserbearbeitung eines Werkstücks
DE102019122064A1 (de) 2019-08-16 2021-02-18 Bystronic Laser Ag Bearbeitungsvorrichtung zur Laserbearbeitung eines Werkstücks, Teilesatz für eine Bearbeitungsvorrichtung zur Laserbearbeitung eines Werkstücks und Verfahren zur Laserbearbeitung eines Werkstücks
US20220283416A1 (en) * 2021-03-04 2022-09-08 Ii-Vi Delaware, Inc. Dynamic Focus For Laser Processing Head
EP4056309A1 (de) 2021-03-09 2022-09-14 Bystronic Laser AG Vorrichtung und verfahren zum laserschneiden eines werkstücks und erzeugen von werkstückteilen
KR102696979B1 (ko) * 2021-08-23 2024-08-20 주식회사 대곤코퍼레이션 레이저가공장치 및 이를 이용해 객체를 가공하는 방법
NL2030028B1 (en) 2021-12-03 2023-06-20 Inphocal B V Laser marking system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003305581A (ja) * 2002-04-11 2003-10-28 Toyota Motor Corp レーザ溶接方法およびレーザ溶接装置
JP2008139476A (ja) 2006-11-30 2008-06-19 Sumitomo Electric Ind Ltd 集光光学系及びレーザ加工装置
JP2009208092A (ja) * 2008-02-29 2009-09-17 Toyota Motor Corp レーザ加工装置及びレーザ加工方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352495A (en) * 1989-02-16 1994-10-04 The Wiggins Teape Group Limited Treatment of a surface by laser energy
JP2880061B2 (ja) * 1994-02-03 1999-04-05 住友重機械工業株式会社 レーザ加工
JPH09108879A (ja) * 1995-10-20 1997-04-28 Hitachi Constr Mach Co Ltd レーザ加工装置
US5886318A (en) * 1995-11-03 1999-03-23 Vasiliev; Anatoly Valentinovich Method for laser-assisted image formation in transparent objects
JPH11254160A (ja) * 1998-03-10 1999-09-21 Matsushita Electric Ind Co Ltd レーザ装置
JP3287318B2 (ja) * 1998-10-13 2002-06-04 松下電器産業株式会社 光ビーム加熱装置
JP2003236690A (ja) * 2002-02-14 2003-08-26 Sumitomo Heavy Ind Ltd レーザ加工方法
US6884962B2 (en) * 2002-03-18 2005-04-26 Hitachi Via Mechanics, Ltd. Beam or wave front
JP4350558B2 (ja) 2004-03-09 2009-10-21 三菱電機株式会社 レーザビーム光学系およびレーザ加工装置
JP2006035303A (ja) * 2004-07-30 2006-02-09 Tdk Corp レーザ加工方法及びレーザ加工装置
JP2007029990A (ja) * 2005-07-26 2007-02-08 Sumitomo Heavy Ind Ltd レーザ加工装置およびレーザ加工方法
US7626138B2 (en) * 2005-09-08 2009-12-01 Imra America, Inc. Transparent material processing with an ultrashort pulse laser
US7656592B2 (en) * 2005-12-16 2010-02-02 Reliant Technologies, Inc. Optical system having aberrations for transforming a Gaussian laser-beam intensity profile to a quasi-flat-topped intensity profile in a focal region of the optical system
US9211609B2 (en) * 2005-12-28 2015-12-15 Intel Corporation Laser via drilling apparatus and methods
US7847213B1 (en) * 2007-09-11 2010-12-07 Ultratech, Inc. Method and apparatus for modifying an intensity profile of a coherent photonic beam
US8288682B2 (en) * 2007-09-28 2012-10-16 Intel Corporation Forming micro-vias using a two stage laser drilling process
JP5190421B2 (ja) * 2009-08-03 2013-04-24 株式会社アマダ 小型熱レンズ補償加工ヘッド
JP5832412B2 (ja) * 2012-11-12 2015-12-16 三菱重工業株式会社 光学系及びレーザ加工装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003305581A (ja) * 2002-04-11 2003-10-28 Toyota Motor Corp レーザ溶接方法およびレーザ溶接装置
JP2008139476A (ja) 2006-11-30 2008-06-19 Sumitomo Electric Ind Ltd 集光光学系及びレーザ加工装置
JP2009208092A (ja) * 2008-02-29 2009-09-17 Toyota Motor Corp レーザ加工装置及びレーザ加工方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2716397A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015115231A (ja) * 2013-12-12 2015-06-22 アズビル株式会社 紫外線放電管の製造方法
CN105458493A (zh) * 2014-09-30 2016-04-06 发那科株式会社 激光加工装置
JP2016068131A (ja) * 2014-09-30 2016-05-09 ファナック株式会社 集光径を拡大できるレーザ加工装置
US9656349B2 (en) 2014-09-30 2017-05-23 Fanuc Corporation Laser processing apparatus capable of increasing focused beam diameter
CN105458493B (zh) * 2014-09-30 2017-10-27 发那科株式会社 激光加工装置
JP2017001097A (ja) * 2016-08-03 2017-01-05 株式会社アマダホールディングス レーザ加工機
WO2023286265A1 (ja) * 2021-07-16 2023-01-19 三菱電機株式会社 レーザ加工装置及びレーザ加工方法
DE102024104564A1 (de) 2023-03-10 2024-09-12 Tamron Co., Ltd. Optisches system einer laserbearbeitungsvorrichtung und laserbearbeitungsvorrichtung
CN117001173A (zh) * 2023-09-12 2023-11-07 重庆奥方工贸有限公司 一种汽车车灯透镜激光切割装置
CN117001173B (zh) * 2023-09-12 2024-05-07 重庆奥方工贸有限公司 一种汽车车灯透镜激光切割装置

Also Published As

Publication number Publication date
US20130306609A1 (en) 2013-11-21
EP2716397A1 (en) 2014-04-09
EP2716397B1 (en) 2016-07-20
EP2716397A4 (en) 2015-03-11
US9346126B2 (en) 2016-05-24
JP5602300B2 (ja) 2014-10-08
JPWO2012164663A1 (ja) 2014-07-31

Similar Documents

Publication Publication Date Title
JP5602300B2 (ja) レーザ加工ヘッド、レーザ加工装置、レーザ加工装置の光学系、レーザ加工方法、及びレーザ集束方法
JP5832412B2 (ja) 光学系及びレーザ加工装置
JP5033693B2 (ja) ファイバレーザ加工機における集光直径の変換制御方法及びその装置
WO2008069099A1 (ja) 集光光学系、レーザ加工方法及び装置、並びに脆性材料素材の製造方法
CN110908099B (zh) 一种用于激光焊接机的准远心高功率光学聚焦镜头及其成像方法
KR101346296B1 (ko) 레이저 가공 장치 및 방법
JP2720811B2 (ja) レーザ集光方法及び装置
JP2009178725A (ja) レーザ加工装置及びレーザ加工方法
PT1681126E (pt) Corte laser com lente de duplo foco de peças metálicas de pouca espessura
JP2007310368A (ja) ホモジナイザを用いた整形ビームの伝搬方法およびそれを用いたレ−ザ加工光学系
JP2005028428A (ja) レーザ加工装置
JP5221031B2 (ja) 集光光学系及びレーザ加工装置
JP5595573B1 (ja) レーザ加工装置及びレーザ加工方法
JP2006150433A (ja) レーザ加工装置
JP6920540B2 (ja) レーザ加工ヘッド及びレーザ加工装置並びにレーザ加工ヘッドの調整方法
JP2015044225A (ja) レーザ加工装置
JP2020199513A (ja) レーザ加工機及びレーザ加工機の制御方法
WO2021184519A1 (zh) 一种激光装置
JP2012086229A (ja) レーザ加工装置及びレーザ加工方法
JP5943812B2 (ja) レーザ切断装置及びレーザ切断方法
JP2001009580A (ja) レーザ光集光装置
CN211454086U (zh) 一种用于激光焊接机的准远心高功率光学聚焦镜头
US20210245294A1 (en) Scanning light source module
CN113369679A (zh) 激光加工装置、激光加工装置的光学系统
JP2022063975A (ja) レーザビーム照射用光学ユニット及びレーザ加工装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866675

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013517726

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011866675

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13982790

Country of ref document: US

Ref document number: 2011866675

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE