WO2021184519A1 - 一种激光装置 - Google Patents

一种激光装置 Download PDF

Info

Publication number
WO2021184519A1
WO2021184519A1 PCT/CN2020/089531 CN2020089531W WO2021184519A1 WO 2021184519 A1 WO2021184519 A1 WO 2021184519A1 CN 2020089531 W CN2020089531 W CN 2020089531W WO 2021184519 A1 WO2021184519 A1 WO 2021184519A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
power density
spot
cylindrical
laser device
Prior art date
Application number
PCT/CN2020/089531
Other languages
English (en)
French (fr)
Inventor
千国达朗
牛增强
陈国宁
卢国杰
韩金龙
Original Assignee
深圳市联赢激光股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市联赢激光股份有限公司 filed Critical 深圳市联赢激光股份有限公司
Priority to JP2022543388A priority Critical patent/JP2023510398A/ja
Priority to KR1020227028465A priority patent/KR20220121900A/ko
Priority to EP20926072.8A priority patent/EP4122636A4/en
Publication of WO2021184519A1 publication Critical patent/WO2021184519A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0732Shaping the laser spot into a rectangular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0734Shaping the laser spot into an annular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0738Shaping the laser spot into a linear shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/08Anamorphotic objectives
    • G02B13/12Anamorphotic objectives with variable magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/06Simple or compound lenses with non-spherical faces with cylindrical or toric faces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping

Definitions

  • the present invention relates to the field of laser processing, and in particular to a laser device and processing method used for processing such as laser welding.
  • pre-heating and post-heating are often used during welding to prevent cracks.
  • special post-heating devices are required. Post-heating will cause thermal distortion. If used in product processing welding With this method, the dimensional accuracy will deteriorate and the product characteristics will also deteriorate.
  • the purpose of the present invention is to provide a laser device that can be flexibly applied to various types of lasers and can be used under high endurance.
  • the present invention provides a laser welding head that uses a collimating lens and a condenser lens to image the laser light emitted from an optical fiber, inserting a longer focal length before the collimating lens (or after or after the focusing lens)
  • the hollow part passes through the beam near the center of the optical fiber, and is collimated and focused by the welding head to obtain a high-power density spot.
  • the beam that deviates far from the center of the fiber passes through a convex cylindrical mirror/concave cylindrical mirror with a long focal length, and the focal position changes, and the focal point of the beam passing through the hollow part is deviated, and it is on the welding plane.
  • the light beam near the center of the optical fiber passes through the space part of the cylindrical mirror in front of or behind the collimating lens or behind the focusing lens without loss, and focuses on the surface of the workpiece without being affected, and other passes through the curved part of the cylindrical mirror.
  • a single direction changes the angle of the beam transmitted along the optical axis.
  • the focal position of the single direction is shifted relative to the focal position of the central beam, or moved forward or Moving backward, so two spots are obtained on the surface of the workpiece, one with high power density and the other with low power density.
  • the new method can prevent the occurrence of welding cracks, so it can improve quality and yield.
  • the power ratio of the high-power density spot and the low-power density spot can also be adjusted.
  • the optical axis of the cylindrical mirror deviates from the original optical axis, so the relative position of the high-power density spot and the low-power density spot can be adjusted, the process conditions can be changed slightly, and the welding quality can be further improved.
  • the laser endurance can be further improved.
  • Fig. 1 is an overall configuration diagram of the laser device of this embodiment; 1(a) is a side view, and 1(b) is a top view.
  • Fig. 2 is a basic configuration diagram of the laser light source according to the first embodiment.
  • 2(a) is the side view of the lens barrel of the convex cylindrical lens
  • 2(b) is the top view of the lens barrel of the convex cylindrical lens
  • 2(c) is the side view of the lens barrel of the concave cylindrical lens.
  • 3 is a diagram of the basic structure of a laser light source related to the second embodiment; 3(a) is a side view of the lens barrel of a convex cylindrical lens, 3(b) is a plan view of the lens barrel of a convex cylindrical lens, 3 (c) is a side view of the lens barrel of a concave cylindrical lens.
  • 4 is a diagram of the basic structure of a laser light source related to the third embodiment; 4(a) is a side view of a lens barrel of a convex cylindrical lens, and 4(b) is a top view of a lens barrel of a convex cylindrical lens; 4 (c) is a side view of the lens barrel of a concave cylindrical lens.
  • Fig. 5 is a schematic diagram of the adjustment method of the laser light source of the first, second, and third embodiments; 5(a) is the movement diagram of the cylindrical lens; 5(b) is the original spot shape diagram; 5(c) is the adjustment Topography of the back spot.
  • Fig. 6 is a basic configuration diagram of a laser light source according to a fifth embodiment.
  • 6(a) is a side view of the barrel view of the cylindrical lens
  • 6(b) is a top view of the barrel view of the cylindrical lens.
  • Table 1 shows the results of this embodiment and the prior art.
  • Fig. 1 is an overall configuration diagram of a laser device of this embodiment, in which 1(a) is a side view and 1(b) is a plan view.
  • the lens barrel is a hybrid exit lens barrel 3, which can be used for beam shaping and condensing the exit light from the single-core fiber to achieve high power density spot and/or low power density spot Of hybrid welding.
  • Fig. 2(a) is a side view of a basic configuration diagram of the laser device according to the first embodiment.
  • a convex cylindrical lens 10 is added between the optical fiber 2 and the collimating lens 12.
  • a cylindrical lens 10 Inside the hybrid exit lens barrel 3, on the same optical axis 11 as the single-core fiber 2, a cylindrical lens 10, a collimator lens 12, and a condenser lens 13 are arranged in sequence.
  • the laser light 16 passing through the hollow portion 15 of the convex cylindrical lens 10 is collimated by the collimator lens 12 and then condensed by the condenser lens 13, and can be obtained at the condensing point 17. Meet the high-brightness focus of keyhole welding 20.
  • the laser beam 16 passing through the convex cylindrical portion 18 of the non-hollow portion of the convex cylindrical lens 10 passes through the collimator lens 12, and then passes through the collimator lens 12, and is flattened with respect to the condenser lens 13.
  • the convex cylindrical lens slightly changes the angle of incidence, and the beam is focused on a position 19 slightly ahead of the light collecting point 17, and then diffused again after being concentrated. Therefore, after defocusing, a light spot 21 with low power density can be obtained on the working plane 5 with respect to the focusing point 17.
  • the low power density light spot 21 has the function of increasing the temperature of the workpiece before the keyhole welding, preheating, and slowing down the cooling speed of the workpiece after welding, and has the effect of generating cracks after the welding.
  • the intensity distribution can be changed by moving the cylindrical mirror 10 back and forth, so the welding conditions can be optimized.
  • the intensity ratio of the high-power density spot 20 and the low-power density spot 19 can also be adjusted, and the welding conditions can also be greatly changed.
  • Fig. 2(b) is a top view of a basic structural view of the laser device according to the first embodiment. From the top view, there is no change in the curvature of the cylindrical mirror 10, regardless of whether it is the laser passing through the hollow portion 15 or the non-hollow portion 18, the laser incident angle does not change, so there is no condensing point at position 19 in this direction. Focus on the same focal plane as the condensing point 17. Therefore, a hybrid spot 21 of a high-power density spot and a low-power density spot is obtained by using the cylindrical lens.
  • FIG. 2(c) is a side view of a basic configuration diagram of the laser device of the first embodiment in which a concave cylindrical mirror 30 is added.
  • the difference from Fig. 2(a) is only the difference in whether the lens is convex or concave, so the common points are omitted.
  • the laser beam 32 passing through the curved portion 31 that is not the hollow portion of the concave cylindrical mirror 30 passes through the collimator lens 12, and then enters after the incident angle is slightly enlarged with respect to the condenser lens 13, so The position of the focus point relative to the focus point 17 has changed.
  • a low-power density light spot 33 with a length of 100-10000 ⁇ m and a width of 10-200 ⁇ m can be obtained.
  • the top view of the basic configuration diagram of the laser device of the first embodiment of the concave cylindrical mirror 30 is the same as that of FIG. 2(b), and will not be described here.
  • FIG. 3(a) is a side view of the basic configuration diagram of the laser device of the second embodiment in which a convex cylindrical lens 40 is added between the collimator lens 12 and the condenser lens 13.
  • a collimator lens 12 Inside the hybrid exit lens barrel 3, on the same optical axis 11 as the single-core optical fiber 2, a collimator lens 12, a convex cylindrical lens 40 and a condenser lens 13 are arranged in sequence.
  • the laser light 14 emitted from the single-core fiber 2 is collimated by the collimator lens 12
  • the laser light 42 passing through the hollow portion 41 of the convex cylindrical lens 40 is condensed by the condensing lens 13, and the condensing point 17 is obtained.
  • High brightness focus for hole welding 20 is obtained.
  • the laser beam 44 passing through the non-hollow curved portion 43 of the convex cylindrical mirror 40 has the angle of the incident light slightly changed with respect to the condenser lens 13, so it is slightly ahead of the condensing point. After the light is collected at the position 19, it is diffused again, and by defocusing, a low-power density light spot 45 can be obtained on the working plane 5 with respect to the light collecting point 17.
  • the intensity ratio of the high power density spot 20 and the low power density spot 45 can be adjusted, and the welding conditions can also be greatly changed.
  • Fig. 3(b) is a top view of a basic structural view of a laser device according to the second embodiment. From the top view, there is no change in curvature of the convex cylindrical mirror 40. Regardless of whether it is the laser passing through the hollow portion 41 or the non-hollow portion 43, the laser incident angle does not change, so there is no condensing point at position 19 in this direction. All are focused on the same focal plane of the condensing point 17. Therefore, a hybrid spot 46 of a high-power density spot and a low-power density spot is obtained by using the cylindrical lens.
  • FIG. 3(c) is a side view of a basic configuration diagram of the laser device of the second embodiment in which a concave cylindrical mirror 50 is added.
  • the difference from Fig. 3(a) is only the difference in whether the lens is convex or concave, so the common points are omitted.
  • the laser beam collimated by the collimator lens 12 passes through the part 51 of the concave cylindrical mirror 50 that is not the hollow portion of the concave cylindrical mirror 50.
  • the laser beam 52 slightly expands the incident angle with respect to the condenser lens 13, so that the focal point is relative to the condenser lens.
  • the position of point 17 has changed.
  • a low-power density light spot 53 with a length of 100-10000 ⁇ m and a width of 10-200 ⁇ m can be obtained.
  • the top view of the basic configuration diagram of the laser device of the second embodiment with the addition of the concave cylindrical mirror 50 is the same as that of FIG. 3(b), and will not be described here.
  • FIG. 4(a) is a side view of the basic configuration diagram of the laser device of the third embodiment in which the convex cylindrical lens 60 is added after the condenser lens 13.
  • a collimator lens 12 Inside the hybrid exit lens barrel 3, on the same optical axis 11 as the single-core optical fiber 2, a collimator lens 12, a condenser lens 13, and a convex cylindrical lens 60 are arranged in sequence.
  • the laser beam 14 emitted from the single-core optical fiber 2 is collimated by the collimator lens 12, and then focused by the focusing lens 13, a part of the focused beam passes through the laser 62 of the hollow portion 61 of the convex cylindrical lens 60, and is obtained on the condensing point 17.
  • High-brightness focal point 20 capable of keyhole welding.
  • the laser beam 64 passing through the non-hollow curved portion 63 of the convex cylindrical mirror 60 has slightly changed the angle of the outgoing light, so it is collected again at a position 19 slightly before the collecting point. After being diffused, by defocusing, a low-power density light spot 65 can be obtained on the working plane 5 with respect to the focusing point 17.
  • the intensity distribution can be changed by moving the cylindrical mirror 60 back and forth, so the welding conditions can be optimized.
  • the intensity ratio of the high power density spot 20 and the low power density spot 65 can be adjusted, and the welding conditions can also be greatly changed.
  • Fig. 4(b) is a plan view of a basic configuration diagram of a laser device according to the third embodiment. From the top view, the convex cylindrical mirror 60 has no change in curvature. Whether it is the laser passing through the hollow part 61 or the non-hollow part 63, the laser exit angle has not changed, so there is no condensing point at position 19 in this direction. All are focused on the same focal plane of the condensing point 17. Therefore, a hybrid spot 66 of a high-power density spot and a low-power density spot is obtained by using a cylindrical lens.
  • FIG. 4(c) is a side view of the basic configuration diagram of the laser device of the third embodiment in which a concave cylindrical mirror 70 is added.
  • the difference from Fig. 4(a) is only the difference in whether the cylindrical mirror is convex or concave, so the common points are omitted.
  • the position of the light spot 17 has changed.
  • a low-power density light spot 73 with a length of 100-10000 ⁇ m and a width of 10-200 ⁇ m can be obtained.
  • the top view of the basic configuration diagram of the laser device of the third embodiment with the addition of the concave cylindrical mirror 70 is the same as that of FIG. 4(b), and will not be described here.
  • FIG. 5(a) is a side view of a basic configuration diagram of the laser device in which the position of the cylindrical mirror 80 has been adjusted.
  • the optical axis 81 of the cylindrical mirror 80 deviates from the optical axis 11 of the single-core optical fiber 2, and the collimating lens 12 and the condenser lens 13 overlap the optical fiber of the single-core optical fiber 2.
  • the laser 14 emitted from the single-core optical fiber 2 partially passes through the hollow portion 82 of the cylindrical mirror 80.
  • the laser 83 is collimated by the collimator lens 12, and then is focused by the focusing lens 13 to be able to perform on the condensing point 17. High-brightness focal point for keyhole welding 20.
  • the laser light 85 passing through the non-hollow curved portion 84 of the cylindrical mirror 80 has weakly changed the angle of the emitted light, and because the optical axis 81 of the cylindrical mirror deviates from the main optical axis 11, it is concentrated
  • the condensing point position of the light spot 87 not only moves forward or backward on the optical axis, but also deviates from the optical axis in the up and down direction. By defocusing, a light spot 86 with low power density can be obtained on the working plane 5 with respect to the focusing point 17.
  • the fourth embodiment is a general method, which can be applied to the first, second, and third cases at the same time. It is also applicable to flat-topped cylindrical mirrors, partial flat-topped cylindrical mirrors, multi-curvature cylindrical mirrors, and aspherical surfaces.
  • the cylindrical mirror 80 by changing the up and down positions of the cylindrical mirror 80, the relative positions of the high-power density spot 20 and the low-power density spot 86 are deviated, and the welding conditions can be greatly changed.
  • Figure 5(b) is a diagram of a hybrid spot of high power density spot and low power density spot when the optical axis of the cylindrical mirror coincides with the main optical axis.
  • the high power density spot 100 is located in the middle of the low power density spot 101 part.
  • 5(c) and 5(d) indicate that when the optical axis of the cylindrical mirror deviates from the main optical axis, the position of the high-power density spot 100 does not change, and the low-power density spot 101 moves up and down.
  • the cylindrical lens can be a convex or concave cylindrical lens, a flat-topped or partially flat-topped cylindrical lens, or a multi-curvature or aspherical cylindrical lens. .
  • FIG. 6(a) is a side view of a basic configuration diagram of a laser device of a fifth embodiment in which a cylindrical mirror 90 is added between the single-core fiber 2 and the collimator lens 12.
  • a cylindrical lens 90, a collimator lens 12, and a condenser lens 13 are sequentially arranged.
  • Part of the laser beam 14 emitted from the single-core optical fiber 2 passes through the curved surface of the cylindrical mirror 90 to slightly change the angle of the incident light. After passing through the collimator lens 12, it is focused non-parallel by the focusing lens 13, so The light is collected at a position 19 slightly ahead of the light collection point and then diffused again, and by defocusing, a low-power density light spot 92 can be obtained on the working plane 5 with respect to the light collection point 17.
  • the laser light 93 that has not passed through the cylindrical lens 90 is collimated by the collimating lens 12 and then focused by the focusing lens 13 to obtain a high-brightness focal point 20 capable of keyhole welding on the focusing point 17.
  • the intensity ratio of the high-power density spot 20 and the low-power density spot 45 can be adjusted.
  • cylindrical lens described in Example 5 may be a convex or concave cylindrical lens, a flat-topped or partially flat-topped cylindrical lens, or a multi-curvature or aspherical cylindrical lens.
  • the cylindrical lens described in Example 5 can be placed between the optical fiber 2 and the collimating lens 12 as in the case 1, or can be placed between the collimating lens 12 and the focusing lens as in the case 2 Between 13, it can also be placed behind the focusing lens as in Example 3.
  • Example 5 can be the same as that described in Example 4.
  • the cylindrical mirror described in Example 5 can be the same as that described in Example 4.
  • the single-core optical fiber 2 can obtain the same hybrid light spot of high power density light spot and low power density light spot in a single-mode or multi-mode fiber.
  • Table 1 shows the results of this embodiment and the prior art. As shown in Table 1, according to the present invention, it is possible to provide laser welding with no cracks, higher stability, higher speed, and higher quality than conventional laser devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Laser Beam Processing (AREA)
  • Laser Surgery Devices (AREA)
  • Semiconductor Lasers (AREA)
  • Glass Compositions (AREA)

Abstract

一种激光装置,包括单纤芯光纤(2)和用于对来自单纤芯光纤(2)的出射光进行聚光以实现高功率密度光斑和/或低功率密度光斑的混合焊接的镜筒(3),镜筒(3)内部与单纤芯光纤(2)在同一光轴(11)上依次设置有柱面镜(10)、准直透镜(12)及聚光透镜(13),柱面镜(10)设置在镜筒(3)内且位于光纤出口与准直透镜(12)之间,柱面镜(10)比聚光透镜(13)的焦点距离长,并且柱面镜(10)的中空直径设置在光纤射出的光束内。能够灵活地应对各公司光纤激光器,也能够进行单模传送,并在高耐力下利用简单的单纤芯光纤实现匙孔型和热传导型的混合焊接方式。

Description

一种激光装置 技术领域
本发明涉及激光加工领域,特别涉及用于进行激光焊接等加工的激光装置及加工方法。
背景技术
在高硅钢板的制造、或变压器、电动机等铁芯的制造中,焊接的部分在低温下容易产生裂纹等不良现象。含有硅的钢板具有优异的软磁特性,因此常常被用作电力转换器或电动机的铁心。在这种软磁材料中,随着硅含量的增加,铁损特性良好,并且磁致伸缩接近于零,因此磁导率也进一步得到提高,是非常好的新磁性材料。近年来,软磁材料作为一种以节能为目的、铁损值低、且能满足电器各种磁特性需求的新型磁性材料。但是,当硅浓度超过4.3wt%时,室温下如果采用现有的焊接技术,则会导致在焊接时发生变形,焊接部在低温下容易产生裂纹。
另一方面,焊接时常常实施预热、后热的方法防止裂纹的产生,为了在高温下进行后热,需要专用的后热装置,后热会导致热失真,如果在产品加工的焊接中应用这种方法的话,尺寸精度会变差,产品特性也会劣化。
发明概述
技术问题
综上所述,本发明为了解决上述问题,其目的在于提供一种能够灵活地应用于各类激光器,并可在高耐力下使用的一种激光装置。
问题的解决方案
技术解决方案
为了解决所述技术问题,本发明提供对于利用准直透镜和聚光透镜对从光纤射出的激光进行成像的激光焊接头,在准直透镜之前(或者之后或者聚焦镜之后)插入焦距较长的中空的凸柱面镜或凹柱面镜,中空部分通过光纤中心附近的光束,经过焊接头准直聚焦后得到高功率密度光斑。另一方面,偏离光纤中心 较远的光束,透过焦距很长的凸柱面镜/凹柱面镜,焦点位置发生了变化,与中空部分通过的光束的焦点发生了偏离,在焊接平面上得到相互重叠的,一个圆形的高功率密度光斑,一个长条状的低功率密度光斑。高功率密度光斑小,可以实现匙孔焊接。
在上述技术方案中,光纤中心附近的光束无损地通过了在准直透镜前面或者后面或者聚焦镜后面的柱面镜的空间部分,不受影响地聚焦于工件表面,其他通过柱面镜曲面部分的光束,因为柱面镜的曲面,单个方向改变了其沿光轴传输的光束的角度,光束聚焦后,其单个方向的焦点位置相对于中心光束的焦点位置发生了偏移,或者前移或者后移,所以在工件表面得到了两个光斑,一个高功率密度光斑,另一个低功率密度光斑。新方法能够防止焊接裂纹的发生,因此可以提高品质和成品率。
另外,通过改变光纤出射端与柱面镜的距离、柱面镜与聚焦镜之间的距离,还能够调整高功率密度光斑和低功率密度光斑的功率比率。
另外,因为能够简单地更换不同空洞尺寸的柱面镜,所以能够大幅改变过程条件幅度,能够简单且高质量地进行各种形状、材质的焊接。
另外,通过改变柱面镜的位置,使得柱面镜的光轴与原光轴偏离,所以能够调整高功率密度光斑和低功率密度光斑相对位置,能够细微地改变过程条件,进一步提高焊接质量。
再者,通过采用柱面中间部分是平面的平顶柱面镜代替柱面镜,能够进一步提高激光耐力。
发明的有益效果
对附图的简要说明
附图说明
图1本实施方式的激光装置的整体结构图;1(a)为侧视图,1(b)为上视图。
图2是第1实施方式的激光光源的基本结构图。2(a)是凸型柱面镜的镜筒图侧视图,2(b)是凸型柱面镜的镜筒图俯视图,2(c)是凹型柱面镜的镜筒图侧视图。
图3是有关第2实施方式的激光光源的基本结构图;3(a)是凸型柱面镜的镜筒图 侧视图,3(b)是凸型柱面镜的镜筒图俯视图,3(c)是凹型柱面镜的镜筒图侧视图。
图4是有关第3实施方式的激光光源的基本结构图;4(a)是凸型柱面镜的镜筒图侧视图,4(b)是凸型柱面镜的镜筒图俯视图;4(c)是凹型柱面镜的镜筒图侧视图。
图5是有关第1、第2、第3实施方式的激光光源的调节方法示意图;5(a)是柱面镜移动图;5(b)是原光斑形貌图;5(c)是调整后光斑形貌图。
图6是有关第5实施方式的激光光源的基本结构图。6(a)是柱面镜的镜筒图侧视图,6(b)是柱面镜的镜筒图俯视图。
表1表示本实施例与现有技术的成果。
发明实施例
本发明的实施方式
下列实施例是对本发明的进一步解释和补充,对本发明不会构成任何限制。下面结合附图对本发明的技术方案进行详细地描述。
实施例1
图1是本实施方式的激光器装置的整体结构图,其中1(a)是侧视图,1(b)是俯视图。从光纤激光器1经由单纤芯光纤2,进一步通过镜筒产生的混合光4对被焊接对象5进行焊接。在本实施例中,所述镜筒为混合出射镜筒3,其可以用于对来自单纤芯光纤的出射光进行光束整形及聚光,以实现高功率密度光斑和/或低功率密度光斑的混合焊接。
图2(a)是根据第一实施例的激光器装置的基本结构图的侧视图。
该激光器装置在光纤2和准直透镜12之间增加了凸型柱面镜10。在混合出射镜筒3内部,与单纤芯光纤2在同一光轴11上,依次排列有柱面镜10、准直透镜12及聚光透镜13。
从单纤芯光纤2射出的激光14中,通过凸型柱面镜10的中空部15的激光16被准直透镜12准直后由聚光透镜13聚光,在聚光点17上可以得到满足匙孔焊接的高亮度焦点20。
另一方面,通过凸型柱面镜10的非中空部的凸的柱面的部分18的激光16在通过 准直透镜12之后,经过准直透镜12后,相对于聚光透镜13,被平凸柱面镜微弱地改变了入射角度,光束聚焦在比集光点17稍靠前一点的位置19,聚光后再次扩散。因此,离焦以后,能够相对于聚光点17在工作平面5上得到低功率密度光斑21。该低功率密度光斑21具有在匙孔焊接前使加工物的温度上升、预热,焊接后使加工件冷却速度减慢的作用,起到放置焊接后产生裂纹的作用。
另外,该强度分布能够通过使柱面镜10前后移动而变化,因此能够优化焊接条件。
另外,通过改变中空部15的尺寸,也能够进行高功率密度光斑20和低功率密度光斑19的强度比调整,也能够大幅地改变焊接条件。
图2(b)是根据第一实施例的激光器装置的基本结构图的俯视图。从俯视图的方向,柱面镜10没有曲率的变化,不管是经过中空部分15,还是经过非中空部分18的激光,激光入射角度没有发生变化,所以这个方向没有产生位置19的聚光点,全部聚焦于聚光点17相同的焦平面。所以利用柱面镜得到的是高功率密度光斑和低功率密度光斑的混合型光斑21。
图2(c)是增加了凹型柱面镜30的第1实施方式的激光装置的基本结构图的侧视图。与图2(a)的不同点仅在于透镜是凸还是凹的差异,因此省略了共同点。在凹型柱面镜30的情况下,通过不是凹型柱面镜30的中空部的曲面的部分31的激光32,通过准直透镜12后,相对于聚光镜13微弱地扩大了入射角后入射,所以聚焦点相对于聚光点17的位置发生了变化。在聚光点17的焦平面上,可得到长:100~10000μm,宽:10-200um的低功率密度光斑33。凹型柱面镜30的第1实施方式的激光装置的基本结构图的俯视图,与图2(b)一样,在此不再阐述。
实施例2
图3(a)是在准直透镜12与聚光透镜13之间增加了凸柱面镜40的第二实施方式的激光装置的基本结构图的侧视图。在混合出射镜筒3的内部,与单纤芯光纤2在同一光轴11上,依次排列有准直透镜12、凸柱面镜40和聚光透镜13。
从单纤芯光纤2出射的激光14由准直透镜12准直后,通过凸柱面镜40的中空部41的激光42被聚光透镜13聚光,在聚光点17上得到能够进行匙孔焊接的高亮度焦点20。
另一方面,通过凸柱面镜40的非中空部的曲面的部分43的激光44相对于聚光透镜13,被微弱地改变了入射光的角度,因此在比集光点稍靠前一点的位置19集光后再次被扩散,通过离焦,能够相对于聚光点17在工作平面5上得到低功率密度光斑45。
另外,与图2(a)相同,通过改变中空部41的尺寸,可以调整高功率密度光斑20和低功率密度光斑45的强度比,也能够很大地改变焊接条件。
图3(b)是根据第二实施例的激光器装置的基本结构图的俯视图。从俯视图的方向,凸柱面镜40没有曲率的变化,不管是经过中空部分41,还是经过非中空部分43的激光,激光入射角度没有发生变化,所以这个方向没有产生位置19的聚光点,全部聚焦于聚光点17相同的焦平面。所以利用柱面镜得到的是高功率密度光斑和低功率密度光斑的混合型光斑46。
图3(c)是增加了凹型柱面镜50的第2实施方式的激光装置的基本结构图的侧视图。与图3(a)的不同点仅在于透镜是凸还是凹的差异,因此省略了共同点。经过准直透镜12准直后的激光,通过不是凹型柱面镜50的中空部的曲面的部分51的激光52,相对于聚光镜13微弱地扩大了入射角后入射,所以聚焦点相对于聚光点17的位置发生了变化。在聚光点17的焦平面上,可得到长:100~10000μm,宽:10-200um的低功率密度光斑53。增加了凹型柱面镜50的第2实施方式的激光装置的基本结构图的俯视图,与图3(b)一样,在此不再阐述。
实施例3
图4(a)是在聚光透镜13之后增加了凸柱面镜60的第三实施方式的激光装置的基本结构图的侧视图。在混合出射镜筒3的内部,与单纤芯光纤2在同一光轴11上,依次排列有准直透镜12、聚光透镜13和凸柱面镜60。
从单纤芯光纤2出射的激光14由准直透镜12准直后,再通过聚焦透镜13聚焦,部分聚焦光束通过凸柱面镜60的中空部61的激光62,在聚光点17上得到能够进行匙孔焊接的高亮度焦点20。
另一方面,通过凸柱面镜60的非中空部的曲面的部分63的激光64,被微弱地改变了出射光的角度,因此在比集光点稍靠前一点的位置19集光后再次被扩散, 通过离焦,能够相对于聚光点17在工作平面5上得到低功率密度光斑65。
另外,该强度分布能够通过使柱面镜60前后移动而变化,因此能够优化焊接条件。
另外,与图2(a)相同,通过改变中空部61的尺寸,高功率密度光斑20和低功率密度光斑65的强度比调整,也能够很大地改变焊接条件。
图4(b)是根据第三实施例的激光器装置的基本结构图的俯视图。从俯视图的方向,凸柱面镜60没有曲率的变化,不管是经过中空部分61,还是经过非中空部分63的激光,激光出射角度没有发生变化,所以这个方向没有产生位置19的聚光点,全部聚焦于聚光点17相同的焦平面。所以利用柱面镜得到的是高功率密度光斑和低功率密度光斑的混合型光斑66。
图4(c)是增加了凹型柱面镜70的第3实施方式的激光装置的基本结构图的侧视图。与图4(a)的不同点仅在于柱面镜镜是凸还是凹的差异,因此省略了共同点。经过准直透镜12准直后的激光,通过聚焦透镜13聚焦后,通过不是凹型柱面镜70的中空部的曲面的部分71的激光72,微弱地改变了出射角,所以聚焦点相对于聚光点17的位置发生了变化。在聚光点17的焦平面上,可得到长:100~10000μm,宽:10-200um的低功率密度光斑73。增加了凹型柱面镜70的第3实施方式的激光装置的基本结构图的俯视图,与图4(b)一样,在此不再阐述。
实施例4
图5(a)是调整了柱面镜80的位置的激光装置的基本结构图的侧视图。在混合出射镜筒3的内部,柱面镜80的光轴81与单纤芯光纤2的光轴11偏离,准直透镜12、聚光透镜13与单纤芯光纤2的光纤重合。
从单纤芯光纤2出射的激光14,部分通过柱面镜80的中空部分82的激光83,由准直透镜12准直后,再通过聚焦透镜13聚焦,在聚光点17上得到能够进行匙孔焊接的高亮度焦点20。
另一方面,通过柱面镜80的非中空部的曲面的部分84的激光85,被微弱地改变了出射光的角度,而且因为柱面镜的光轴81与主光轴11偏离,因此集光点87的聚光点位置不只是在光轴上前移或者后移,同时也在上下方向上偏离了光轴。通过离焦,能够相对于聚光点17在工作平面5上得到低功率密度光斑86。
另外,第4实施案例是通用方法,可以同时适用于第1、第2、第3的情况,也同样适用于平顶柱面镜、部分平顶柱面镜、多曲率柱面镜、非球面柱面镜等,通过改变柱面镜80的上下位置,高功率密度光斑20和低功率密度光斑86的相对位置发生了偏离,能够很大地改变焊接条件。
图5(b)是柱面镜的光轴与主光轴重合的情况下,高功率密度光斑和低功率密度光斑的混合型光斑图示,高功率密度光斑100位于低功率密度光斑101的中间部分。5(c)、5(d)是柱面镜的光轴与主光轴偏离的情况下,高功率密度光斑100的位置不改变,低功率密度光斑101上下移动。
在上述的第4实施案例,其中的柱面镜,可以是凸或者凹的柱面镜,也可以是平顶或者部分平顶的柱面镜,也可以是多曲率或者非球面的柱面镜。
实施例5
图6(a)是在单纤芯光纤2与准直镜片12之间增加了柱面镜90的第五实施方式的激光装置的基本结构图的侧视图。在混合出射镜筒3的内部,与单纤芯光纤2在同一光轴11上,依次排列有柱面镜90、准直透镜12和聚光透镜13。
从单纤芯光纤2出射的激光14,部分激光91通过柱面镜90的曲面部分,被微弱地改变了入射光的角度,通过准直透镜12后,不平行地通过聚焦透镜13聚焦,因此在比集光点稍靠前一点的位置19集光后再次被扩散,通过离焦,能够相对于聚光点17在工作平面5上得到低功率密度光斑92。
另一方面,没有通过柱面镜90的激光93,被准直镜片12准直后,再通过聚焦透镜13聚焦,在聚光点17上得到能够进行匙孔焊接的高亮度焦点20。
另外,可以通过移动柱面镜90的位置,调整其切入光束的量,可以调整高功率密度光斑20和低功率密度光斑45的强度比。
另外,实施案例5所述的柱面镜,可以是凸或者凹的柱面镜,也可以是平顶或者部分平顶的柱面镜,也可以是多曲率或者非球面的柱面镜。
另外,实施案例5所述的柱面镜,可以是与实施案例1一样,放置于光纤2与准直镜片12之间,也可以是与实施案例2一样,放置于准直镜片12与聚焦镜片13之间,也可以是与实施案例3一样,放置于聚焦镜片之后。
另外,实施案例5所述的柱面镜,可以与实施案例4所述一样,通过调整柱面镜 的光轴与主光轴的位置,实现高功率密度光斑20和低功率密度光斑92的相对位置调整的效果。
在上述的实施例中,单纤芯光纤2在单模或多模光纤中能够得到同样的高功率密度光斑和低功率密度光斑的混合型光斑。
另外,在振镜焊接头、手持式焊接头、YAG激光器、LD激光器等其他激光器中,通过在准直镜片前放置柱面镜,也能够实现高功率密度光斑和低功率密度光斑的混合型光斑。
表1表示本实施例与现有技术的成果。如表1所示,根据本发明,可以提供比以往的激光装置无裂纹,高稳定性,高速度,高质量的激光焊接。
尽管通过以上实施例对本发明进行了揭示,但是本发明的范围并不局限于此,在不偏离本发明构思的条件下,以上各构件可用所属技术领域人员了解的相似或等同元件来替换。

Claims (13)

  1. 一种激光装置,其特征在于,所述装置包括单纤芯光纤和用于对来自单纤芯光纤的出射光进行光束整形及聚光,以实现高功率密度光斑和/或低功率密度光斑的混合焊接的镜筒,所述镜筒内部与单纤芯光纤在同一光轴上依次设置有柱面镜、准直透镜及聚光透镜,所述柱面镜设置在所述镜筒内且位于光纤出口与准直透镜之间,所述柱面镜比聚光透镜的焦点距离长,并且所述柱面镜的中空直径设置在所述光纤射出的光束内。
  2. 一种激光装置,其特征在于,所述装置包括单纤芯光纤和用于对来自单纤芯光纤的出射光进行光束整形及聚光,以实现高功率密度光斑和/或低功率密度光斑的混合焊接的镜筒,所述镜筒内部与单纤芯光纤在同一光轴上依次设置有准直透镜、柱面镜及聚光透镜,所述柱面镜设置在所述镜筒内且位于所述准直透镜与聚光透镜之间,所述柱面镜比聚光透镜的焦点距离长,并且所述柱面镜的中空直径在准直光束内。
  3. 一种激光装置,其特征在于,所述装置包括单纤芯光纤和用于对来自单纤芯光纤的出射光进行光束整形及聚光,以实现高功率密度光斑和/或低功率密度光斑的混合焊接的镜筒,所述镜筒内部与单纤芯光纤在同一光轴上依次设置有准直透镜、聚光透镜及柱面镜,所述柱面镜设置在所述镜筒内且位于所述聚光透镜之后,所述柱面镜比聚光透镜的焦点距离长,并且所述柱面镜的中空直径在聚焦光束内。
  4. 根据权利要求1至3中任一项所述的激光装置,其特征在于,所述高功率密度光斑为圆点状光斑,其直径为10~200um。
  5. 根据权利要求1至3中任一项所述的激光装置,其特征在于,所述低功率密度光斑的形状是椭圆形、矩形、条形中的一种,所述低功率密度光斑的长度范围是100~10000μm,宽度范围是10~200um。
  6. 根据权利要求1至3中任一项所述的激光装置,其特征在于,所述柱面镜为平凸柱面镜、平凹柱面镜、平顶柱面镜、非平顶柱面镜、双凸柱面镜、双凹柱面镜、非球面柱面透镜中的一种。
  7. 根据权利要求6所述的激光装置,其特征在于,所述柱面镜相对于聚光透镜,在聚光点处离焦,能够获得长为100~10000μm,宽为10~200μm的条状光斑。
  8. 根据权利要求6所述的激光装置,其特征在于,从单纤芯光纤射出的激光中,通过柱面镜的中空部的激光被准直透镜准直后由聚光透镜聚光,在聚光点上可以得到满足匙孔焊接的高亮度点。
  9. 根据权利要求4所述的激光装置,其特征在于,通过改变柱面镜的中空部的尺寸,能够对高功率密度光斑和低功率密度光斑的强度值进行调整。
  10. 根据权利要求5所述的激光装置,其特征在于,通过改变柱面镜的中空部的尺寸,能够对高功率密度光斑和低功率密度光斑的强度值进行调整。
  11. 根据权利要求9或10所述的激光装置,其特征在于,通过使柱面镜前后移动,可以改变高功率密度光斑和低功率密度光斑的强度值。
  12. 根据权利要求9或10所述的激光装置,其特征在于,所述高功率密度光斑的强度值的调节范围是20~100%,所述低功率密度光斑的强度值的调节范围是0~80%。
  13. 根据权利要求9或10所述的激光装置,其特征在于,通过上下移动柱面镜,以改变高功率密度光斑和低功率密度光斑的相对位置。
PCT/CN2020/089531 2020-03-17 2020-05-11 一种激光装置 WO2021184519A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022543388A JP2023510398A (ja) 2020-03-17 2020-05-11 レーザー装置
KR1020227028465A KR20220121900A (ko) 2020-03-17 2020-05-11 레이저 장치
EP20926072.8A EP4122636A4 (en) 2020-03-17 2020-05-11 LASER DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010187307.2A CN113399825B (zh) 2020-03-17 2020-03-17 一种激光装置
CN202010187307.2 2020-03-17

Publications (1)

Publication Number Publication Date
WO2021184519A1 true WO2021184519A1 (zh) 2021-09-23

Family

ID=77677497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089531 WO2021184519A1 (zh) 2020-03-17 2020-05-11 一种激光装置

Country Status (5)

Country Link
EP (1) EP4122636A4 (zh)
JP (1) JP2023510398A (zh)
KR (1) KR20220121900A (zh)
CN (1) CN113399825B (zh)
WO (1) WO2021184519A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113828923A (zh) * 2021-10-18 2021-12-24 光惠(上海)激光科技有限公司 一种焊接用的手持激光器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050052755A1 (en) * 2003-09-09 2005-03-10 John Lawson Dual-band lens
US20140097161A1 (en) * 2012-10-05 2014-04-10 Mitsubishi Heavy Industries, Ltd. Optical system and laser processing apparatus
CN103722290A (zh) * 2014-01-15 2014-04-16 无锡创科源激光装备股份有限公司 聚焦装置以及具有该聚焦装置的激光切割装置
CN206952364U (zh) * 2017-07-03 2018-02-02 大族激光科技产业集团股份有限公司 点环形光斑焊接装置
CN110087817A (zh) * 2016-12-08 2019-08-02 可利雷斯股份有限公司 激光加工设备和方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61160846A (ja) * 1985-01-09 1986-07-21 Victor Co Of Japan Ltd 縦横比の大きな断面形状の光点の形成装置
JPH09108879A (ja) * 1995-10-20 1997-04-28 Hitachi Constr Mach Co Ltd レーザ加工装置
JP2000275568A (ja) * 1999-03-25 2000-10-06 Sumitomo Heavy Ind Ltd ビームモード変換光学系
JP2003340582A (ja) * 2002-05-23 2003-12-02 Mitsubishi Heavy Ind Ltd レーザ溶接装置およびレーザ溶接方法
CN100412969C (zh) * 2005-03-25 2008-08-20 鸿富锦精密工业(深圳)有限公司 光学系统及使用所述光学系统的光学记录/再现装置
CN201000999Y (zh) * 2006-07-13 2008-01-02 中国科学院西安光学精密机械研究所 激光输出双包层大模场光子晶体光纤激光器
WO2008087831A1 (ja) * 2007-01-15 2008-07-24 Japan Unix Co., Ltd. レーザー式はんだ付け装置
JP2009072789A (ja) * 2007-09-18 2009-04-09 Hamamatsu Photonics Kk レーザ加工装置
CN203541861U (zh) * 2013-10-19 2014-04-16 南京中科煜宸激光技术有限公司 一种激光电弧复合焊接同轴送丝加工装置
DE102015202347A1 (de) * 2015-02-10 2016-08-11 Trumpf Laser- Und Systemtechnik Gmbh Bestrahlungseinrichtung, Bearbeitungsmaschine und Verfahren zum Herstellen einer Schicht eines dreidimensionalen Bauteils
CN106624355A (zh) * 2017-02-23 2017-05-10 常州特尔玛枪嘴有限公司 一种可调节光斑能量密度分布的激光切割头
WO2018159857A1 (ja) * 2017-03-03 2018-09-07 古河電気工業株式会社 溶接方法および溶接装置
DE102017208979A1 (de) * 2017-05-29 2018-11-29 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum Tiefschweißen eines Werkstücks, mit Verteilung der Laserleistung auf mehrere Foki
CN110398842B (zh) * 2019-07-12 2024-04-16 南京波长光电科技股份有限公司 一种激光线性光斑整形光学系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050052755A1 (en) * 2003-09-09 2005-03-10 John Lawson Dual-band lens
US20140097161A1 (en) * 2012-10-05 2014-04-10 Mitsubishi Heavy Industries, Ltd. Optical system and laser processing apparatus
CN103722290A (zh) * 2014-01-15 2014-04-16 无锡创科源激光装备股份有限公司 聚焦装置以及具有该聚焦装置的激光切割装置
CN110087817A (zh) * 2016-12-08 2019-08-02 可利雷斯股份有限公司 激光加工设备和方法
CN206952364U (zh) * 2017-07-03 2018-02-02 大族激光科技产业集团股份有限公司 点环形光斑焊接装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113828923A (zh) * 2021-10-18 2021-12-24 光惠(上海)激光科技有限公司 一种焊接用的手持激光器
CN113828923B (zh) * 2021-10-18 2022-07-15 光惠(上海)激光科技有限公司 一种焊接用的手持激光器

Also Published As

Publication number Publication date
EP4122636A1 (en) 2023-01-25
JP2023510398A (ja) 2023-03-13
CN113399825B (zh) 2022-05-20
EP4122636A4 (en) 2023-10-04
CN113399825A (zh) 2021-09-17
KR20220121900A (ko) 2022-09-01

Similar Documents

Publication Publication Date Title
KR102418512B1 (ko) 레이저 프로세싱 장치 및 방법
EP2716397B1 (en) Optical system for laser working device, laser working head with such optical system, laser working device with such head, laser focusing method, and laser working method using such method
TW201805100A (zh) 雷射處理設備以及方法
CN110977152A (zh) 一种slm双激光复合加工系统
JP5184775B2 (ja) 光加工装置
WO2021184519A1 (zh) 一种激光装置
JP4357944B2 (ja) 固体レーザ加工装置およびレーザ溶接方法
CN110908099B (zh) 一种用于激光焊接机的准远心高功率光学聚焦镜头及其成像方法
CN101797666A (zh) 延长焦深的激光切割头
CN212885690U (zh) 一种双焦点激光焊接光学系统及其激光焊接头
CN211564832U (zh) 一种slm双激光复合加工装置
CN111736355A (zh) 一种基于微透镜组可调能量分布光学系统
CN112578538B (zh) 一种蓝色激光加工远心F-Theta扫描透镜
WO2021184513A1 (zh) 一种激光装置
JP2001009580A (ja) レーザ光集光装置
JP2003154477A (ja) レーザ切断方法および装置
CN219581927U (zh) 光纤输出混光式雷射系统
CN216966624U (zh) 激光成丝切割装置
US20240198451A1 (en) Fiber output hybrid laser system
CN210587655U (zh) 一种光纤端帽焊接装置
CN212191708U (zh) 一种环形光斑焊接头装置
CN218016452U (zh) 超短脉冲半导体晶圆隐切装置
JP2002023100A (ja) 分割光学素子、光学系及びレーザ加工装置
CN211438624U (zh) 一种基于非球面镜可调环形光斑定倍切割装置
CN118106621A (zh) 光纤输出混光式雷射系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926072

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022543388

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227028465

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020926072

Country of ref document: EP

Effective date: 20221017