WO2012161137A1 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
WO2012161137A1
WO2012161137A1 PCT/JP2012/062861 JP2012062861W WO2012161137A1 WO 2012161137 A1 WO2012161137 A1 WO 2012161137A1 JP 2012062861 W JP2012062861 W JP 2012062861W WO 2012161137 A1 WO2012161137 A1 WO 2012161137A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
ion secondary
lithium ion
secondary battery
smoke
Prior art date
Application number
PCT/JP2012/062861
Other languages
English (en)
French (fr)
Inventor
佐藤 明
Original Assignee
新神戸電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新神戸電機株式会社 filed Critical 新神戸電機株式会社
Priority to JP2013516354A priority Critical patent/JP5574045B2/ja
Priority to CN201280003680.1A priority patent/CN103222103B/zh
Priority to US13/885,418 priority patent/US20130236750A1/en
Priority to KR1020137012698A priority patent/KR20140023255A/ko
Priority to EP12789042.4A priority patent/EP2717376A4/en
Publication of WO2012161137A1 publication Critical patent/WO2012161137A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • H01M10/523Removing gases inside the secondary cell, e.g. by absorption by recombination on a catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium ion secondary battery, and more particularly to a lithium ion secondary battery having a function of suppressing smoke generation.
  • a lithium ion secondary battery As a secondary battery installed in a wind power generation system or a solar power generation system using natural energy, or a secondary battery installed in a building, a lithium ion secondary battery (hereinafter referred to as a high capacity and high energy density) is used. Lithium batteries) are known to have desirable performance.
  • Patent Document 1 discloses a module having a countermeasure when a gas is discharged from a battery due to a battery abnormality in a power module for an electric vehicle.
  • An object of the present invention is to prevent the leakage of smoke generated from the inside of the battery and to enable safer use.
  • An electrode group in which a positive electrode and a negative electrode are manufactured via a separator is housed in a battery can together with an electrolytic solution, and the battery can is a metal sealed container having a lid, which absorbs smoke and gas components generated from the inside of the battery can And a lithium ion secondary battery provided with a portion that performs at least one of absorption inside the battery can.
  • a lithium ion secondary battery in which at least one of adsorption and absorption of smoke and gas components generated from the inside of the battery can is directly connected to a cleavage valve provided in the lid.
  • the battery can is cylindrical, has a pole column that electrically connects the electrode group and the terminal, and the part that performs at least one of adsorption and absorption of smoke and gas components generated from the inside of the battery can,
  • a lithium ion secondary battery having a space for penetrating a pole column near the center in a substantially circular cross-sectional direction of a cylindrical battery can.
  • the arrangement of the inlet and outlet of the flow path of the smoke or gas component in the portion that performs at least one of adsorption and absorption of smoke and gas components generated from the inside of the battery can is 90% with respect to the center of the battery can.
  • a lithium ion secondary battery in which a portion that performs at least one of adsorption and absorption of smoke and gas components generated from the inside of the battery can is a heat-resistant fluorine-based polymer compound in a temperature range of 250 ° C. or less.
  • a lithium ion secondary battery in which the fluorine polymer compound is a non-woven fabric using polytetrafluoroethylene or polyhexafluoropropylene.
  • a lithium ion secondary battery in which the part that performs at least one of adsorption and absorption of smoke and gas components generated from the inside of the battery can is an inorganic compound having heat resistance in a temperature range of 250 ° C. or lower.
  • the inorganic compound is any one of porous alumina oxide, silica gel, and zeolite.
  • the positive electrode uses lithium transition metal composite oxide as the positive electrode active material
  • the negative electrode uses carbon material / silicon / tin as the negative electrode active material
  • the electrolyte dissolves the lithium salt in a carbonate-based organic solvent.
  • the power supply made up of a lithium battery unit battery generates heat due to the internal resistance of the battery itself during charge and discharge during use.
  • a structure in which gas is convected for cooling is provided, and it becomes difficult to absorb and adsorb smoke components from the lithium battery in an emergency. Therefore, in this invention, it becomes possible not to depend on the shape and cooling structure of the power supply by a module by providing the part which absorbs and adsorb
  • FIG. 5 is a cross-sectional view taken along a line A ... B in FIG.
  • FIG. 4 of a rectangular battery can having a smoke substance adsorbing part of a lithium battery according to an embodiment to which the present invention is applicable. It is a block diagram which shows the adsorption
  • a power supply system for use in the power network requires a large-capacity power storage power supply. At that time, the capacity is at least several tens of kWh, and a large-scale one such as a factory requires several MWh. Clearly, the lithium battery which comprises the power supply is not comprised only with one single battery (single battery), but a plurality of single batteries are integrated and a power supply is comprised as a module.
  • a power supply of several kWh to several tens of kWh is configured by combining several tens of AA cells having a capacity 100 to 1000 times larger than a lithium battery used for a notebook computer or a mobile phone into a module. It becomes possible. By combining several tens of such modules, a power supply of several MWh can be configured.
  • the vaporized carbonate solvent used in the electrolyte hydrogen, methane, ethane, ethylene, carbon dioxide produced by the reaction between the positive and negative electrode active materials and the electrolyte It is done.
  • a preferred material for the vaporizing component is a carbon material such as activated carbon.
  • a carbon material such as activated carbon.
  • preferred materials include fiber materials that are heat-resistant fluoropolymers, fibrous glass, and the like.
  • FIG. 1 shows a schematic view of a cross section of a lithium battery housed in a battery can.
  • the positive electrode, the separator, the negative electrode, and the separator are arranged so as to overlap each other, and the electrode group 15 wound around the central axis is accommodated, and the gap fills the gap.
  • the current collectors of the positive electrode and the negative electrode are connected to the pole columns, which are connected to the terminals of the positive electrode and the negative electrode, respectively.
  • an adsorption portion for adsorbing smoke generating substances generated during abuse is disposed between the winding group and the positive electrode terminal, and the positive electrode pole column passes through the center.
  • each of the positive and negative current collectors is connected to the positive and negative terminals, respectively, and is insulated and fixed from the battery lid. And there is a gas discharge valve for releasing the gas generated at the time of abuse on the battery lid. Further, an adsorbing portion for adsorbing a smoke generating substance generated during abuse is disposed between the wound group or the battery lid, which is alternately laminated with the positive electrode, the separator, the negative electrode, and the separator.
  • the present invention will be described with reference to an example in which the present invention is applied as a storage battery for stabilizing the power output of industrial power generation, mainly wind power generation, and power generation by solar cells.
  • lithium batteries positive batteries, negative electrodes, separators, and electrolytes
  • metallic containers metallic containers
  • laminated batteries that use aluminum laminate with a film on an aluminum foil as an exterior material.
  • laminate type battery it is considered that there is a limit to the enlargement of the lithium battery due to the strength of the aluminum laminate. In this invention, it limits to the lithium battery of the battery can accommodated in the metal container.
  • the types of these generated gases include methane, ethane, ethylene, hydrogen gas, etc. as decomposition products of the carbonate solution of the vaporized electrolyte, positive electrode, and negative electrode, and decomposition products of lithium salts.
  • Examples thereof include a fluorophosphate compound (PF 3 O).
  • the fuming substance may be a vaporized organic solvent mist substance or a PF 3 O particulate substance.
  • a smoke generation phenomenon occurs at 120 ° C. or more when the lithium battery is overcharged or an internal short circuit, and thus heat resistance higher than this temperature is required. Therefore, as the material for removing the smoke generating material, a fluorine-based polymer compound that is a fibrous filter is desirable, and a nonwoven fabric using polytetrafluoroethylene or polyhexafluoropropylene is particularly desirable. Since the gas containing the smoke generating material is removed when passing through the filter, the removal effect is enhanced if the filter disposed in the smoke generating adsorption portion is a nonwoven fabric.
  • an inorganic compound as a material for removing smoke, and it is more easily adsorbed if it has an affinity with an organic substance such as a carbonate solvent, which is the main component of the electrolytic solution.
  • an organic substance such as a carbonate solvent, which is the main component of the electrolytic solution.
  • SiO 2 silica gel
  • zeolite can be used, and the shape may be anything such as powder, pellets, beads, and plates.
  • a bead shape is desirable.
  • the absorbent portion is filled with these adsorbents.
  • a glass filter with high heat resistance is provided at an inlet portion where the smoke generating material flows and an outlet portion where the smoke generating material is discharged so that these adsorbents do not leak.
  • the adsorbing portion of the fuming material is often cylindrical and has a donut-shaped structure in the center so that the positive pole can be penetrated. It contains a removal material, and the boundary between the battery winding group and the battery lid is partitioned by a lid provided with a cleavage valve that cleaves at a predetermined pressure.
  • a lid provided with a cleavage valve that cleaves at a predetermined pressure.
  • the cylindrical battery has a cylindrical shape in which the adsorbed portion of the smoke generating material is cut out at the center.
  • the flow path of the smoke generating substance adsorption portion is less than 90 ° with respect to the center of the cylindrical shape, the angle defined by the line connecting the inlet and the outlet of the flow path. If it exists, the fuming substance introduced into the adsorption part from the inlet will be discharged from the outlet without passing through the entire adsorbed substance, and the adsorption effect will be reduced. Therefore, the angle defined by the center of the battery can and the inlet and outlet is preferably 90 ° or more and 180 ° or less, and more preferably 120 ° to 180 °.
  • the number of the inlet and the outlet of the adsorption portion shown in the embodiment is one, but the number of inlets is two to increase the adsorption effect. It is also effective to have one exit.
  • the shape in a rectangular battery, is a rectangular parallelepiped, and has an inlet through which smoke material flows in at the lower part and an outlet through which it is discharged from the upper part or a side surface.
  • a connection structure is preferable. As a path through which the smoke generating material flows, it is desirable that the inlet and outlet portions do not overlap when viewed from above.
  • the adsorption portion is 15 to 40% of the thickness of the battery can in a cylindrical battery, and 10% to 10% by volume of the battery can in a square battery. A volume of 35% is desirable.
  • Either a cylindrical battery or a square battery has a structure in which the battery lid 17 is combined with the battery can 16.
  • the electrode group 15 side (temporarily lower) in the battery can 16 is a source of fuming material. Therefore, an inlet of the adsorption portion is provided on the lower side, and the battery lid 17 side (temporarily upper) is the fuming material. Therefore, a structure in which an outlet of the adsorption portion is provided on the upper side is conceivable. However, if a discharge port for the smoke generating material is provided in a part of the electrode can 16, the outlet of the smoke generating material may be provided on the side instead of the upper side.
  • the positive electrode used in the lithium battery of the present invention is formed by applying a positive electrode mixture composed of a positive electrode active material, a conductive agent and a binder on both sides of an aluminum foil, followed by drying and pressing.
  • the positive electrode active material one represented by the chemical formula LiMO 2 (M is at least one transition metal), spinel manganese, or the like can be used.
  • Mn, Ni, Co, etc. in the positive electrode active material such as lithium manganate, lithium nickelate, and lithium cobaltate can be used by being replaced with one or more transition metals.
  • a part of the transition metal can be replaced with a metal element such as Mg or Al.
  • the conductive agent may be a known conductive agent, for example, a carbon-based conductive agent such as graphite, acetylene black, carbon black, carbon fiber, and is not particularly limited.
  • binder known binders such as polyvinylidene fluoride and fluororubber may be used, and are not particularly limited.
  • a preferred binder in the present invention is, for example, polyvinylidene fluoride.
  • solvent various known solvents can be appropriately selected and used.
  • an organic solvent such as N-methyl-2-pyrrolidone is preferably used.
  • the mixing ratio of the positive electrode active material, the conductive agent, and the binder in the positive electrode mixture is not particularly limited. For example, when the positive electrode active material is 1, the weight ratio is 1: 0.05 to 0.20: 0.02. ⁇ 0.10 is preferred.
  • the negative electrode used in the lithium battery of the present invention is formed by applying a negative electrode mixture composed of a negative electrode active material and a binder to both sides of a copper foil, followed by drying and pressing.
  • a negative electrode mixture composed of a negative electrode active material and a binder
  • Preferred in the present invention is a carbon-based material such as graphite or amorphous carbon.
  • a binder the thing similar to the said positive electrode is used, for example, and it does not specifically limit.
  • Preferred in the present invention is, for example, polyvinylidene fluoride.
  • a preferred solvent is an organic solvent such as N-methyl-2-pyrrolidone.
  • the mixing ratio of the negative electrode active material and the binder in the negative electrode mixture is not particularly limited. For example, when the negative electrode active material is 1, the weight ratio is 1: 0.05 to 0.20.
  • non-aqueous electrolyte used in the lithium battery of the present invention a known one may be used and is not particularly limited.
  • non-aqueous solvents include propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, tetrahydrofuran, 1,2-diethoxyethane, and ionic liquid.
  • Nonaqueous electrolyte can be prepared by dissolving one or more lithium salts selected from 2 CF 2 CF 3 ) 2 and the like.
  • separators a polyolefin-based porous membrane is generally used, and a composite membrane of polyethylene and polypropylene is used as the material. Since the separator is required to have heat resistance, ceramic composite separators in which ceramics such as alumina are coated on the surface, and ceramic composite separators using them as a part of the constituent material of the porous film have been developed.
  • a general flame retardant may be used, and the flame retardant used in the present invention is not particularly limited.
  • a phosphoric ester, a phosphazene, a compound containing a fluorinated alkyl group, a flame retardant such as an ionic liquid, or a mixture of two or more of these may be used, and the mixing ratio is also limited. It is not something.
  • Each of the produced positive and negative electrodes was roll-formed with a press and then vacuum-dried at 150 ° C. for 5 hours.
  • a polyethylene (PE) porous polymer resin film (thickness 20 ⁇ m) as a separator, the positive electrode and the negative electrode are stacked so as to be insulated through the separator, and then wound, and the obtained electrode group 15 is formed into a cylinder.
  • the battery can 16 was inserted.
  • the obtained negative electrode current collector 14 was collected on the negative electrode pole column 13 and ultrasonically welded, passed through the battery lid 17 to the negative electrode pole column 13 and fixed with the negative electrode hexagon nut 10 serving as a negative electrode terminal.
  • the aluminum positive electrode current collector 12 was ultrasonically welded to the positive electrode column 11
  • the aluminum positive electrode column 11 was passed through the battery lid 17 and fixed with the positive electrode hexagon nut 9 serving as the positive electrode terminal.
  • an adsorption portion 21 for adsorbing a smoke generating material is provided so as to fill a space between the positive electrode pole 11 and the battery can 16.
  • a filter made of a fluorine-based polymer compound was used as the adsorbing substance in the adsorbing portion.
  • Each of the positive battery lid 17 and the negative battery lid 17 is sealed by laser welding with the battery can 16 to be sealed.
  • Example 2 A battery was produced in the same manner as in Example 1, and a cylindrical lithium battery was obtained by using silica gel as the adsorbing material of the adsorbing portion 21.
  • Example 3 When the positive electrode and the negative electrode are produced in the same manner as in Example 1 and the positive electrode and the negative electrode are wound through a separator, the cross section of the electrode group 15 called flat winding is made elliptical, The battery can 26 was inserted. The positive electrode current collector and the negative electrode current collector in the electrode are connected to the positive electrode pole column 11 and the negative electrode pole column 13, respectively, and after passing these electrode columns through the pole column cavity of the adsorption portion 21, Insulate and fix.
  • the battery lid 17 and the battery can 16 are sealed by laser welding so as to be sealed.
  • a prismatic lithium battery was obtained.
  • Example 4 A prismatic battery was produced in the same manner as in Example 3, and a prismatic lithium battery was obtained using silica gel as the adsorbing material for the adsorption portion 21.
  • Example 5 In the same manner as in Example 1, a positive electrode and a negative electrode were produced, and the positive electrode and the negative electrode were laminated via a separator to produce an electrode group 15.
  • a terminal taken out from the electrode was connected to the battery lid 17, and a rectangular shape was obtained.
  • the battery can 26 was inserted.
  • an adsorbing portion 21 for adsorbing a smoke generating substance is disposed between the battery lid 17 and the stacked electrodes.
  • the suction port of the adsorption portion 21 is arranged so as to overlap the cleavage valve 18 of the battery lid 17.
  • a filter made of a fluorine-based polymer compound was used as the adsorbing material for the adsorbing portion 21.
  • the battery lid 17 and the battery can 16 are sealed by laser welding so as to be sealed.
  • a laminated prismatic lithium battery was obtained.
  • Example 6 A prismatic battery was produced in the same manner as in Example 5, and a laminated prismatic lithium battery was obtained using silica gel as the adsorbing substance for the adsorption portion 21.
  • Example 1 A cylindrical lithium battery was obtained in the same manner as in Example 1 except for the adsorbing portion 21 for adsorbing the fuming substance filling the space between the positive electrode pole 11 and the battery can 16.
  • Comparative Example 2 A square lithium battery was obtained in the same manner as in Example 3 except for the adsorbing portion 21 for adsorbing the fuming substance so as to fill between the positive electrode pole 11 and the square battery can 26.
  • Comparative Example 3 A laminated prismatic lithium battery was obtained in the same manner as in Example 5 except for the adsorbing portion 21 for adsorbing the smoke generating material so as to fill the space between the positive electrode pole 11 and the prismatic battery can 26.
  • the batteries of the above Examples and Comparative Examples were charged and discharged at a charge end voltage of 4.2 V, a discharge end voltage of 3.0 V, and a charge / discharge rate of 1 C (1 hour rate), and the battery capacity was confirmed.
  • the overcharge test was performed under test conditions for charging a discharged battery with an amount of electricity 2.5 times the battery capacity.
  • the nail penetration test was performed under test conditions in which a nail having a diameter of 5 mm was internally short-circuited by being inserted into the battery. The results of examining the behavior of the battery at that time are shown in Table 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

 電池内から発生する発煙の漏出を防止し、より安全な利用を可能とすること。正極及び負極がセパレータを介して作製された電極群を電解液と共に電池缶に収納して、電池缶が蓋を有する金属製の密閉容器であり、電池缶内部から発生する煙や気体成分の吸着及び吸収の少なくともいずれかを行う部分を電池缶内部に備えるリチウムイオン二次電池とする。

Description

リチウムイオン二次電池
 本発明は、リチウムイオン二次電池に係り、特に、発煙現象の抑止機能を有するリチウムイオン二次電池に関する。
 低炭素化社会の実現に向けて、二酸化炭素の発生量を低減するため、ハイブリッド自動車、電気自動車の普及拡大が望まれている。また、同じく低炭素化社会の実現のため、発電所から各家庭、工業地域へ送電する電力網において、風力発電、太陽光発電等から発生する電力を電力網に使用することで、電力エネルギーを効率的に利用することが今後ますます求められている。
 従来の火力発電、水力発電、原子力発電は安定した電力供給が可能であるが、これらに対して風力発電、太陽光発電においては、自然のエネルギーを利用するものであるため、一日の間での時間単位において、発電量の変動の幅が大きくなる。また電力網における電力需要においても、一日の間で変動があるため、経時変化する電力需要に合わせて送電するために、大容量の二次電池が風力発電、太陽光発電のシステムに備えられること、さらに電力需要が大きい工場、ビル内に備えられることが予想されている。
 このように自然エネルギーを利用した風力発電、太陽光発電システムに備えられる二次電池や、ビル内に設置される二次電池としては、高容量、高エネルギー密度であるリチウムイオン二次電池(以下、リチウム電池という)が望ましい性能を有することが知られている。
 複数本の単電池を組み合わせたモジュール(組電池)において、電気自動車用の電源モジュールについて、電池異常により電池からガスが放出された際の対策を備えたモジュールとして、例えば特許文献1がある。
特開2004-14421号公報
 今後、電力網において、二次電池が必要とされるが、設置される場所として考えられるところとしては、一般家庭の住宅、商業施設、ビル内など、人々が生活する空間になることが予想される。しかしながら、火災や地震等の災害により、リチウム電池が非常に高温な状態に置かれたり、リチウム電池が落下物などの衝撃等により破壊されたりした際には、電池材料同士の化学的物性に起因した種々の反応が起こることが予想される。
 現在、電池材料、電池制御、電源システムの観点から、発火、燃焼が起こらないような対策が行われているが、災害等における電池内の反応生成物の噴出である発煙現象まで抑制することは困難である。詳細なメカニズムとしては、火災時の炎により電池が加熱されると、電解液が気化して電池内の圧力が上昇して、噴出する。またリチウム電池が落下物などで破壊される際は、正極・負極材料である正極・負極の活物質を塗布している集電体と呼ばれる金属箔同士が接触する現象が起こり、内部短絡により瞬間的に大電流が流れることで発熱する。この発熱による温度上昇に起因して、電解液の気化、もしくは他の電池材料との反応が起こり、発煙現象が起こる。
 火災や地震等の災害時において、住宅、商業施設、ビル内において、多くの人々が避難する際に、避難経路の確保が非常に重要である。そのため、このように二次電池に起因する煙が発生することは、避難誘導に大きな支障をきたす恐れがある。本発明においては、このような電池内から発生する発煙の漏出を防止し、より安全な利用を可能とすることを目的の一つとする。
 上記課題を解決するために、次に示すような構成が有効と考えられる。
 正極及び負極がセパレータを介して作製された電極群を電解液と共に電池缶に収納して、電池缶が蓋を有する金属製の密閉容器であり、電池缶内部から発生する煙や気体成分の吸着及び吸収の少なくともいずれかを行う部分を電池缶内部に備えるリチウムイオン二次電池。
 その際、電池缶内部から発生する煙や気体成分の吸着及び吸収の少なくともいずれかを行う部分が、蓋に備えられる開裂弁に直結されているリチウムイオン二次電池。
 そして、電池缶が円筒形であり、電極群と端子とを電気的に接続する極柱を有し、電池缶内部から発生する煙や気体成分の吸着及び吸収の少なくともいずれかを行う部分が、円筒形電池缶の略円形断面方向における中央付近に、極柱を貫通させるための空間を有しているリチウムイオン二次電池。
 そのとき、電池缶内部から発生する煙や気体成分の吸着及び吸収の少なくともいずれかを行う部分における、煙や気体成分の流路の入口及び出口の配置が、電池缶の中心に対して、90°乃至180°の角度を有する位置であるリチウムイオン二次電池。
 また、電池缶内部から発生する煙や気体成分の吸着及び吸収の少なくともいずれかを行う部分が、250℃以下の温度領域において、耐熱性を有するフッ素系高分子化合物であるリチウムイオン二次電池。
 そのとき、フッ素系高分子化合物が、ポリテトラフルオロエチレンまたはポリヘキサフルオロプロピレンを用いた不織布であるリチウムイオン二次電池。
 さらに、電池缶内部から発生する煙や気体成分の吸着及び吸収の少なくともいずれかを行う部分が、250℃以下の温度領域において、耐熱性を有する無機化合物であるリチウムイオン二次電池。
 そして、無機化合物が、多孔質体の酸化アルミナ、シリカゲル、ゼオライトのいずれかであるリチウムイオン二次電池。
 または、正極が、リチウム遷移金属複合酸化物を正極活物質として用い、負極が、炭素材料・シリコン・スズを負極活物質として用い、電解液が、カーボネート系の有機溶媒にリチウム塩を溶解して用いたリチウムイオン二次電池。
 電池の大型化にともない、リチウム電池の単電池からなるモジュールとした電源は、使用時の充放電にともなう電池自体の内部抵抗に起因する発熱があるため、単電池の冷却を考慮した構造とする必要がある。そこで、冷却のため気体を対流させた構造となり、非常時におけるリチウム電池からの発煙成分を吸収、吸着することが困難になる。従って、本発明においては、大型化したリチウム電池の単電池に対して発煙成分を吸収、吸着する部分を備えることで、モジュールによる電源の形状や冷却構造に依存しないことが可能となる。
 電池構造の詳細や発煙時の作用については、実施例を含めて後述する。
本発明が適用可能な実施形態のリチウム電池における発煙物質の吸着部分を有する円筒形電池缶の断面図の例である。 本発明が適用可能な実施形態のリチウム電池の円筒形電池缶の発煙物質の吸着部分の一例を示す図である。 本発明が適用可能な実施形態のリチウム電池の円筒形電池缶の発煙物質の吸着部分(円筒真上から)の一例を示す図である。 本発明が適用可能な実施形態のリチウム電池の発煙物質の吸着部分を有する角型電池缶の断面図である。 本発明が適用可能な実施形態のリチウム電池の発煙物質の吸着部分を有する角型電池缶の図4におけるA・・・Bの部分の断面図である。 本発明が適用可能な実施形態のリチウム電池の角型電池缶の発煙物質の吸着部分を示す構成図である。
 電力網に使用する電源システムの構築には、大容量の電力貯蔵用の電源が必要となるが、その際の容量は少なくとも数10KWhから工場などの大規模のものについては数MWhの容量が必要となる。その際に、その電源を構成するリチウム電池は、単独の1本の電池(単電池)のみで構成するのではなく、単電池を複数本集積させてモジュールとして、電源を構成させる。
 大容量の電源とするには、ノートパソコンに使用する18650型のリチウム電池の容量で構成すると、数10万本の電池を必要とするが、このような本数のリチウム電池の充放電や状態監視をすることは非常に困難となるため、実用化には適さない。そのためノートパソコンや携帯電話に使用するリチウム電池に比較して、100~1000倍の容量を持つ数10Ahの単電池を数10本まとめてモジュールとすることで数kWh~数10kWhの電源を構成することが可能となる。このようなモジュールを、さらに数10個組み合わせることで数MWhの電源を構成することが可能となる。
 またこのような単電池の利用により、バックアップ用電源、非常用電源に利用した際にも、発煙漏出の防止が行われているため設置場所の制約を受けることなく使用することが可能となることが期待される。
 非常時におけるリチウム電池からの発煙成分については、電解液に用いるカーボネート系溶媒が気化したもの、正極・負極活物質と電解液との反応により生成する水素、メタン、エタン、エチレン、二酸化炭素が挙げられる。他にもリチウム塩の分解物、Li塩がLiPFのときはPFO、リチウム塩とカーボネート系溶媒との反応生成による炭酸リチウム(LiCO)、カーボネート溶媒とLi反応生成物(LiOCOOR(R=-CH、-CHCH))が考えられる。これらの発煙成分を吸収、吸着するために、気化成分に対しては、好ましい材料として活性炭などの炭素材料が挙げられる。粒状物質に対しては、好ましい材料として耐熱性のあるフッ素系高分子化合物である繊維物質、繊維状のガラスなどが挙げられる。
 以下、図面を参照して、本発明の実施の形態について説明する。
 図1に、電池缶に収納したリチウム電池の断面の模式図を示す。
 電池缶16の内部に、正極、セパレータ、負極、セパレータが交互に重なるように配置され、中心軸を基に捲回した電極群15が収まっており、これらの隙間を電解液が満たしている。
 円筒形電池では、正極、負極の各集電体は極柱に接続されており、これがそれぞれ正極、負極の端子に繋がっている。そして正極側に濫用時に発生するガスを放出するためのガス排出弁がある。また捲回群と正極の端子との間に、濫用時に発生する発煙物質を吸着するための吸着部分が配置され、その中心を正極の極柱が貫通している。
 また図4に示すような角型電池では、正極、負極の各集電体は、それぞれ正極、負極の端子に繋がり、それが電池蓋と絶縁されて固定されている。そして電池蓋に濫用時に発生するガスを放出するためのガス排出弁がある。また捲回群、または正極、セパレータ、負極、セパレータと交互に積層したものと電池蓋との間に、濫用時に発生する発煙物質を吸着するための吸着部分が配置されている。
 以下、本発明の実施例を説明する。
 以下に説明する実施例では、本発明を、産業用、主に風力発電、太陽電池による発電の電力出力の安定のための蓄電池として適用した例を挙げて説明する。
 リチウム電池の形態として、正極、負極、セパレータ、電解液を収納する際に、金属性容器に収納した電池と、アルミ箔にフィルムを貼ったアルミラミネートを外装材としたラミネート型電池の2種類に大きく分けられる。ラミネート型電池については、アルミラミネートの強度により、リチウム電池の大型化には限界があると考えられる。本発明においては、金属製容器に収納した電池缶のリチウム電池に限定する。
 リチウム電池の濫用時として、リチウム電池が制御を行う電気回路が故障もしくは破損した際に、充電状態が維持されることにより過充電が行われる恐れがある。また、リチウム電池が、金属のような導電性の物質により貫通されること、外部からの力により集電体同士が接触することで内部短絡が起こりうる。これらの際には、電池の部材同士の反応熱、短絡による発熱により電池内部の温度が上昇する過程を経て、電池の部材由来の物質が発煙物質として電池外へ排出される。この際には、電池蓋に備えられた開裂弁が電池内の温度上昇に伴う圧力上昇により開裂することで電池内の物質が外気へと移動可能であるため、電池内の圧力には上限が設けられている。
 これらの発生するガスの種類は、気化した電解液のカーボネート溶媒、正極、負極上での電解液の分解生成物としてメタン、エタン、エチレン、水素ガスなどが挙げられ、リチウム塩の分解生成物としてフッ化リン酸化合物(PFO)などが挙げられる。これらの中で発煙物質としては、気化した有機溶媒の霧状物質、PFOの粒状物質が考えられる。
 本発明の吸着部分内に充填される発煙物質の除去に用いる物質としては、リチウム電池の過充電、内部短絡時に発煙現象が120℃以上で起こるため、この温度以上の耐熱性が求められる。そのため、発煙物質の除去材料としては、繊維状のフィルターであるフッ素系高分子化合物が望ましく、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレンを用いた不織布が特に望ましい。発煙物質を含む気体は、フィルターを通過する際に除去されることから、この発煙吸着部に配置されるフィルターが不織布であると除去効果が高まる。
 一方、発煙物質の除去材料として無機化合物を用いることも可能であり、電解液の主成分であるカーボネート溶媒のような有機物と親和性がある方が吸着しやすいため、多孔質体のアルミナ(Al)、シリカゲル(SiO)、ゼオライトを用いることが可能であり、形状も粉体、ペレット状、ビーズ状、板状など、何でもよい。しかし、フィルターを通過する際に、発煙物質を含む気体が除去される際のフィルターとの接触面積の向上による除去の行いやすさと、これらの除去するための無機化合物自体の漏洩を防ぐため、前述した形状のうちでは、ビーズ状が望ましい。吸収部分にこれらの吸着材を充填する構成とする。発煙物質が流入する入口、排出される出口部分には、これらの吸着材がもれないように耐熱性の高いガラスフィルターを備える。
 発煙物質の吸着部分については、図2に示すように、円筒形で中心部分は正極の極柱が貫通可能なように、ドーナツ型の構造である場合が多く、内部には前述の発煙物質の除去材料を含有しており、電池の捲回群と電池蓋との境目は所定の圧力で開裂する開裂弁を備えた蓋で仕切られている。濫用時の過充電、内部短絡により電池缶内の圧力が上昇した際には、開裂弁の耐えられる圧力よりも内圧が大きくなると、発煙物質が吸着部分へと流れ込み、吸着過程を経て、電池蓋の開裂弁から、発煙物質が除去された気体が排出される。
 円筒形電池においては、発煙物質の吸着部分が中心をくり抜いた円筒形の形状となる。また図3に示すように、この発煙物質の吸着部分の流路については、円筒形の中心に対して、この流路の入口、出口のおのおのを結ぶ線で規定される角度が90°未満であると、入口から吸着部分に導入された発煙物質が吸着物質全体を通らずに出口から排出されてしまい、吸着効果が低減する。そのため、電池缶中央と、これら入口と出口で規定される角度が90°以上であって180°以下であることが望ましく、特に120°~180°がより望ましい。
 この際、発煙物質の吸着効果を高めることが本来の趣旨であるため、実施例に示した吸着部分の入口及び出口は各一つとしたが、吸着効果がより高まるように、入口を二つにして、出口を一つとすることも有効である。
 また図6に示すように、角型電池においては、形状は直方体となり、下部に発煙物質が流入する入口、上部または側面に排出される出口を有して、さらに出口は電池蓋の開裂弁と接続する構造とすることが好ましい。発煙物質が流入する経路としては、上面から見たときに、入口と出口部分が重ならないのが望ましい。
 吸着部分は、図1や図5に概略を示すように、円筒形電池においては電池缶の長さに対して15~40%の厚み、角型電池においては電池缶の体積比で10%~35%の体積が望ましい。
 円筒形電池でも、角型電池でも、電池缶16に電池蓋17が組み合わされる構造となる。このとき、電池缶16内の電極群15の側(仮に下側)が発煙物質の発生源となるため、下側に吸着部分の入口を設け、電池蓋17の側(仮に上側)が発煙物質の放出方向となるのが通常であるため、上側に吸着部分の出口を設ける構造が考えられる。しかし、電極缶16の一部に発煙物質の放出口を設ければ、発煙物質の出口は上側ではなく、横側に設けても良い。
 本発明のリチウム電池に用いる正極は、正極活物質、導電剤および結着剤から構成された正極合剤を、アルミニウム箔の両面に塗布した後、乾燥、プレスして形成される。
 正極活物質には化学式LiMO(Mは少なくとも1種の遷移金属)で表されるもの、あるいはスピネルマンガンなどを用いることができる。マンガン酸リチウム、ニッケル酸リチウム、コバルト酸リチウムなどの正極活物質中のMn、Ni、Coなどの一部を1種あるいは2種以上の遷移金属で置換えして用いることができる。さらには遷移金属の一部をMg、Alなどの金属元素で置換えして用いることも可能である。導電剤には、公知の導電剤、例えば黒鉛、アセチレンブラック、カーボンブラック、炭素繊維などの炭素系導電剤を用いればよく、特に限定されない。結着剤としては、公知の結着剤、例えばポリフッ化ビニリデン、フッ素ゴムなどを用いればよく、特に限定されない。本発明で好ましい結着剤は、例えばポリフッ化ビニリデンである。また溶剤は、公知の種々の溶剤を適宜選択して使用することができ、例えばN-メチル-2-ピロリドン等の有機溶剤を用いるのが好ましい。正極合剤における正極活物質、導電剤および結着剤の混合比は、特に限定されないが、例えば正極活物質を1とした場合、重量比で1:0.05~0.20:0.02~0.10が好ましい。
 本発明のリチウム電池に用いる負極は、負極活物質および結着剤からなる負極合剤が、銅箔の両面に塗布された後、乾燥、プレスされて形成される。本発明で好ましいものは、黒鉛あるいは非晶質炭素などの炭素系の材料である。結着剤としては、例えば上記正極と同様のものが用いられ、特に限定されない。本発明で好ましいものは、例えばポリフッ化ビニリデンである。好ましい溶剤は、例えばN-メチル-2-ピロリドン等の有機溶剤である。負極合剤における負極活物質および結着剤の混合比は、特に限定されないが、例えば負極活物質を1とした場合、重量比で1:0.05~0.20である。
 本発明のリチウム電池に用いられる非水電解液としては、公知のものを用いれば良く、特に限定はされない。例えば非水溶媒としてプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、テトラヒドロフラン、1,2-ジエトキシエタン、イオン液体等がある。これらの溶媒の1種以上に、例えばLiPF、LiBF、LiClO、LiB(C、LiCHSO、LiCFSO、LiN(SOCF、LiN(SOCFCF等から選ばれた1種以上のリチウム塩を溶解させて非水電解液を調整することができる。
 更にセパレータ、電池ケース等の構造材料等の他の要素についても従来公知の各種材料が使用でき、特に制限はない。セパレータは、一般的にポリオレフィン系多孔質膜が使用され、材質はポリエチレンとポリプロピレンとの複合膜が使用されている。セパレータは耐熱性が要求されるため、アルミナ等のセラミックスを表面に塗布したセラミックス複合セパレータ、及びそれらを多孔質膜の構成材の一部としたセラミックス複合セパレータが開発されている。
 難燃化剤にリン酸トリエチルを例示したが、一般的な難燃化剤を用いてもよく、本発明に用いられる難燃化剤は特に制限されない。例えば、リン酸エステル系、ホスファゼン系、フッ化アルキル基を含む化合物、イオン液体などの難燃化剤または、これらを2種類以上混合したものを使用してもよく、混合配合比についても限定されるものではない。
(実施例1)
 正極活物質にはLiMnを用い、正極活物質、導電剤の黒鉛、結着剤のポリフッ化ビニリデンを85:10:5の重量比で混練機を用いて30分間混練し、正極合剤を得た。正極合剤を集電体である厚さ30μmのアルミニウム箔の両面に塗布した。一方、負極活物質には黒鉛材を用い、結着剤にはポリフッ化ビニリデンを用いて、負極活物質:結着剤=90:10の重量比で混練した。得られた負極合剤を厚さ20μmの銅箔の両面に塗布した。作製した正負電極は、いずれもプレス機で圧延成型した後、150℃で5時間真空乾燥した。ポリエチレン(PE)の多孔性高分子樹脂膜(厚さ20μm)をセパレータに用いて、正極と負極とをそれぞれセパレータを介して絶縁するように重ねた後に捲回し、得られた電極群15を円筒状の電池缶16に挿入した。また得られた負極集電体14は負極極柱13に集めて超音波溶接し、負極極柱13に電池蓋17を通して、負極端子となる負極六角ナット10で固定した。一方、アルミニウムの正極集電体12を正極極柱11に超音波溶接した後、アルミニウムの正極極柱11を電池蓋17に通して、正極端子となる正極六角ナット9で固定した。
 このとき、正極極柱11と電池缶16との間を埋めるように、発煙物質を吸着させるための吸着部分21が備えられる。吸着部分の吸着物質には、フッ素系高分子化合物によるフィルターを用いた。正極の電池蓋17、負極の電池蓋17のそれぞれを電池缶16とのレーザー溶接により封口して、密閉状態にする。電解液(LiPF/EC(エチレンカーボネート):MEC(メチルエチルカーボネート)=1:2)を負極側の電池蓋17の注液口(図示せず)から注入後、円筒形リチウム電池を得た。
(実施例2)
 実施例1と同様に電池を作製し、吸着部分21の吸着物質としてシリカゲルを用いて、円筒形リチウム電池を得た。
(実施例3)
 実施例1と同様に正極、負極を作製して、正極、負極とをセパレータを介して捲回する際に、扁平捲回と呼ばれる電極群15の断面が楕円形になるようにして、角型の電池缶26に挿入した。電極にある正極集電体、負極集電体をそれぞれ正極極柱11、負極極柱13と接続して、吸着部分21の極柱用空洞にこれらの極柱を通した後に、電池蓋17に絶縁して固定する。
 電池蓋17と電池缶16とをレーザー溶接により封口して、密閉状態にする。電解液(LiPF/EC(エチレンカーボネート):MEC(メチルエチルカーボネート)=1:2)を上面の電池蓋の注液口27から注入後、角型リチウム電池を得た。
(実施例4)
 実施例3と同様に角型電池を作製して、吸着部分21の吸着物質としてシリカゲルを用いて、角型リチウム電池を得た。
(実施例5)
 実施例1と同様に正極、負極を作製して、正極、負極とをセパレータを介して積層して電極群15を作製し、電極から取り出した端子を電池蓋17に接続して、角型の電池缶26に挿入した。電池蓋17と積層した電極との間に、発煙物質を吸着させるための吸着部分21を配置する。この吸着部分21の排出口を電池蓋17の開裂弁18と重なるように配置する。吸着部分21の吸着物質には、フッ素系高分子化合物によるフィルターを用いた。
 電池蓋17と電池缶16とをレーザー溶接により封口して、密閉状態にする。電解液(LiPF/EC(エチレンカーボネート):MEC(メチルエチルカーボネート)=1:2)を上面の電池蓋の注液口27から注入後、積層角型リチウム電池を得た。
(実施例6)
 実施例5と同様に角型電池を作製して、吸着部分21の吸着物質としてシリカゲルを用いて、積層角型リチウム電池を得た。
(比較例1)
 正極極柱11と電池缶16との間を埋めている発煙物質を吸着させるための吸着部分21を除き、その他は実施例1と同様に円筒形リチウム電池を得た。
(比較例2)
 正極極柱11と角型電池缶26との間を埋めるように、発煙物質を吸着させるための吸着部分21を除き、その他は実施例3と同様に角型リチウム電池を得た。
(比較例3)
 正極極柱11と角型電池缶26との間を埋めるように、発煙物質を吸着させるための吸着部分21を除き、その他は実施例5と同様に積層角型リチウム電池を得た。
 上記実施例、比較例の電池に対し、充電終止電圧4.2V、放電終止電圧3.0V、充放電レート1C(1時間率)で充放電し、電池容量を確認した。過充電試験は、電池容量の2.5倍の電気量を放電状態の電池に充電する試験条件で実施した。また、釘刺し試験は、直径5mmの釘を電池内に差し込むことにより内部短絡させる試験条件で実施した。そのときの電池の挙動を調べた結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 9…正極六角ナット、10…負極六角ナット、11…正極極柱、12…正極集電体、13…負極極柱、14…負極集電体、15…電極群、16…電池缶、17…電池蓋、18…開裂弁、19…電極積層群、21…吸着部分、22…吸着材、23…吸着部分の入り口、24…吸着部分の出口、25…極柱用空洞、26…角型電池缶、27…注液口。

Claims (9)

  1.  正極及び負極がセパレータを介して作製された電極群を電解液と共に電池缶に収納してなるリチウムイオン二次電池であって、
     前記電池缶が蓋を有する金属製の密閉容器であり、
     前記電池缶内部から発生する煙や気体成分の吸着及び吸収の少なくともいずれかを行う
    部分を前記電池缶内部に備えることを特徴とするリチウムイオン二次電池。
  2.  前記電池缶内部から発生する煙や気体成分の吸着及び吸収の少なくともいずれかを行う
    部分が、前記蓋に備えられる開裂弁に直結されていることを特徴とする請求項1記載のリチウムイオン二次電池。
  3.  前記電池缶が円筒形であり、
     前記電極群と端子とを電気的に接続する極柱を有し、
     前記電池缶内部から発生する煙や気体成分の吸着及び吸収の少なくともいずれかを行う部分が、前記円筒形電池缶の略円形断面方向における中央付近に、前記極柱を貫通させるための空間を有していることを特徴とする請求項2記載のリチウムイオン二次電池。
  4.  前記電池缶内部から発生する煙や気体成分の吸着及び吸収の少なくともいずれかを行う部分における、前記煙や気体成分の流路の入口及び出口の配置が、前記電池缶の中心に対して、90°乃至180°の角度を有する位置であることを特徴とする請求項3記載のリチウムイオン二次電池。
  5.  前記電池缶内部から発生する煙や気体成分の吸着及び吸収の少なくともいずれかを行う部分が、250℃以下の温度領域において、耐熱性を有するフッ素系高分子化合物であることを特徴とする請求項1乃至請求項3のいずれかに記載のリチウムイオン二次電池。
  6.  前記フッ素系高分子化合物が、ポリテトラフルオロエチレンまたはポリヘキサフルオロプロピレンを用いた不織布であることを特徴とする請求項5記載のリチウムイオン二次電池。
  7.  前記電池缶内部から発生する煙や気体成分の吸着及び吸収の少なくともいずれかを行う部分が、250℃以下の温度領域において、耐熱性を有する無機化合物であることを特徴とする請求項1乃至請求項3のいずれかに記載のリチウムイオン二次電池。
  8.  前記無機化合物が、多孔質体の酸化アルミナ、シリカゲル、ゼオライトのいずれかであることを特徴とする請求項7記載のリチウムイオン二次電池。
  9.  前記正極が、リチウム遷移金属複合酸化物を正極活物質として用い、
     前記負極が、炭素材料・シリコン・スズを負極活物質として用い、
     前記電解液が、カーボネート系の有機溶媒にリチウム塩を溶解して用いた、
    ことを特徴とする請求項1ないし請求項8記載のいずれかに記載のリチウムイオン二次電池。
PCT/JP2012/062861 2011-05-25 2012-05-18 リチウムイオン二次電池 WO2012161137A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013516354A JP5574045B2 (ja) 2011-05-25 2012-05-18 リチウムイオン二次電池
CN201280003680.1A CN103222103B (zh) 2011-05-25 2012-05-18 锂离子二次电池
US13/885,418 US20130236750A1 (en) 2011-05-25 2012-05-18 Lithium ion battery
KR1020137012698A KR20140023255A (ko) 2011-05-25 2012-05-18 리튬 이온 2차 전지
EP12789042.4A EP2717376A4 (en) 2011-05-25 2012-05-18 LITHIUM-ION SECONDARY BATTERY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011116494 2011-05-25
JP2011-116494 2011-05-25

Publications (1)

Publication Number Publication Date
WO2012161137A1 true WO2012161137A1 (ja) 2012-11-29

Family

ID=47217214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062861 WO2012161137A1 (ja) 2011-05-25 2012-05-18 リチウムイオン二次電池

Country Status (6)

Country Link
US (1) US20130236750A1 (ja)
EP (1) EP2717376A4 (ja)
JP (1) JP5574045B2 (ja)
KR (1) KR20140023255A (ja)
CN (1) CN103222103B (ja)
WO (1) WO2012161137A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023508217A (ja) * 2020-11-10 2023-03-01 エルジー エナジー ソリューション リミテッド ガス捕集用部材を含む二次電池

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016160703A1 (en) 2015-03-27 2016-10-06 Harrup Mason K All-inorganic solvents for electrolytes
CN105355969A (zh) * 2015-12-04 2016-02-24 深圳市沃特玛电池有限公司 一种锂离子电池及其制造方法
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
CN106505208A (zh) * 2016-12-26 2017-03-15 宁波市吉赛尔电子有限公司 一种碱性电池集电体及使用该集电体的碱性电池
WO2020110589A1 (ja) * 2018-11-30 2020-06-04 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極及び非水電解質二次電池
CN111356313B (zh) * 2020-03-13 2021-05-11 Oppo广东移动通信有限公司 壳体组件和电子设备
CN112615043A (zh) * 2020-08-26 2021-04-06 清陶(昆山)能源发展有限公司 一种全固态锂离子电池
CN113540600B (zh) * 2021-06-18 2022-09-06 陕西奥林波斯电力能源有限责任公司 一种大容量电池的安全结构

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63314777A (ja) * 1987-06-17 1988-12-22 Matsushita Electric Ind Co Ltd 密閉形ニッケル−水素蓄電池
JPH07192775A (ja) * 1993-12-24 1995-07-28 Sony Corp 非水電解液二次電池
JPH10255860A (ja) * 1997-03-13 1998-09-25 Asahi Chem Ind Co Ltd 非水系電池
JP2000012082A (ja) * 1998-06-17 2000-01-14 Hitachi Ltd リチウム二次電池およびリチウム二次電池を搭載したシステム
JP2001118557A (ja) * 1999-10-20 2001-04-27 Toshiba Battery Co Ltd 円筒形アルカリ電池
JP2001155790A (ja) * 1999-11-30 2001-06-08 Sony Corp 非水電解質電池
JP2003077549A (ja) * 2001-08-31 2003-03-14 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2003092147A (ja) * 2001-07-13 2003-03-28 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2004014421A (ja) 2002-06-11 2004-01-15 Matsushita Electric Ind Co Ltd 組電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE755337A (fr) * 1969-08-27 1971-02-26 Union Carbide Corp Matiere absorbant l'hydrogene pour les cellules electrochimiques
US7041412B2 (en) * 2001-07-23 2006-05-09 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
JP3975923B2 (ja) * 2003-01-20 2007-09-12 ソニー株式会社 非水電解質電池
JP4499680B2 (ja) * 2005-03-30 2010-07-07 三星エスディアイ株式会社 円筒形リチウムイオン二次電池
JP5173181B2 (ja) * 2006-11-01 2013-03-27 パナソニック株式会社 リチウムイオン二次電池及びリチウムイオン二次電池用負極板の製造方法
ITMI20071147A1 (it) * 2007-06-05 2008-12-06 Getters Spa Batterie ricaricabili al litio comprendenti mezzi per l'assorbimento di sostanze nocive

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63314777A (ja) * 1987-06-17 1988-12-22 Matsushita Electric Ind Co Ltd 密閉形ニッケル−水素蓄電池
JPH07192775A (ja) * 1993-12-24 1995-07-28 Sony Corp 非水電解液二次電池
JPH10255860A (ja) * 1997-03-13 1998-09-25 Asahi Chem Ind Co Ltd 非水系電池
JP2000012082A (ja) * 1998-06-17 2000-01-14 Hitachi Ltd リチウム二次電池およびリチウム二次電池を搭載したシステム
JP2001118557A (ja) * 1999-10-20 2001-04-27 Toshiba Battery Co Ltd 円筒形アルカリ電池
JP2001155790A (ja) * 1999-11-30 2001-06-08 Sony Corp 非水電解質電池
JP2003092147A (ja) * 2001-07-13 2003-03-28 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2003077549A (ja) * 2001-08-31 2003-03-14 Matsushita Electric Ind Co Ltd 非水電解質二次電池
JP2004014421A (ja) 2002-06-11 2004-01-15 Matsushita Electric Ind Co Ltd 組電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2717376A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023508217A (ja) * 2020-11-10 2023-03-01 エルジー エナジー ソリューション リミテッド ガス捕集用部材を含む二次電池
JP7418901B2 (ja) 2020-11-10 2024-01-22 エルジー エナジー ソリューション リミテッド ガス捕集用部材を含む二次電池

Also Published As

Publication number Publication date
JP5574045B2 (ja) 2014-08-20
CN103222103A (zh) 2013-07-24
CN103222103B (zh) 2016-08-10
US20130236750A1 (en) 2013-09-12
EP2717376A1 (en) 2014-04-09
JPWO2012161137A1 (ja) 2014-07-31
KR20140023255A (ko) 2014-02-26
EP2717376A4 (en) 2014-12-10

Similar Documents

Publication Publication Date Title
JP5574045B2 (ja) リチウムイオン二次電池
JP6414700B2 (ja) 非水電解質二次電池
US9543077B2 (en) Separator with heat resistant insulation layer
EP3134930B1 (en) Nonaqueous electrolyte secondary battery and method of manufacturing the same
JP5727019B2 (ja) 非水電解質電池及び電池パック
JP4649502B2 (ja) リチウムイオン二次電池
JP6139194B2 (ja) 非水電解質二次電池
JP5602128B2 (ja) リチウムイオン電池
CA2978735C (en) Current collecting structure for sealed secondary battery
JP2013016265A (ja) 非水電解質二次電池
JP2022172327A (ja) 電池、電池パック、車両及び定置用電源
JP2005285447A (ja) リチウムイオン二次電池
JPWO2019107561A1 (ja) 仕切り部材及び組電池
JP5414432B2 (ja) 蓄電システム
JP2011090929A (ja) 2次電池
US10177408B2 (en) Non-aqueous electrolyte secondary battery and method for producing same
JP7043813B2 (ja) 仕切り部材及び組電池
JP5904368B2 (ja) 非水電解液二次電池及びその製造方法
WO2012033044A1 (ja) リチウムイオン電池
CN221057480U (zh) 电池单体、电池及用电设备
CN221057481U (zh) 电池单体、电池及用电设备
KR20240035053A (ko) 이차전지 모듈, 전지팩 및 이를 포함하는 디바이스
KR20230131791A (ko) Y형 제올라이트 흡착제를 포함하는 이차전지
KR20240074566A (ko) 이차전지용 카트리지, 배터리 모듈 및 카트리지 모듈
Shi Using Amines and Alkanes as Thermal-Runaway Retardants for Lithium-Ion Battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12789042

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013516354

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012789042

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13885418

Country of ref document: US

Ref document number: 2012789042

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137012698

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE