WO2012160718A1 - 薄膜形成装置 - Google Patents

薄膜形成装置 Download PDF

Info

Publication number
WO2012160718A1
WO2012160718A1 PCT/JP2011/071655 JP2011071655W WO2012160718A1 WO 2012160718 A1 WO2012160718 A1 WO 2012160718A1 JP 2011071655 W JP2011071655 W JP 2011071655W WO 2012160718 A1 WO2012160718 A1 WO 2012160718A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
thin film
film forming
forming apparatus
electrode
Prior art date
Application number
PCT/JP2011/071655
Other languages
English (en)
French (fr)
Inventor
健 三科
猿渡 哲也
大輔 今井
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to KR1020137027164A priority Critical patent/KR101535582B1/ko
Priority to JP2013516164A priority patent/JPWO2012160718A1/ja
Priority to CN201180069697.2A priority patent/CN103534383B/zh
Publication of WO2012160718A1 publication Critical patent/WO2012160718A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/515Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using pulsed discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a thin film forming apparatus that performs film formation processing by exciting plasma.
  • a plasma processing apparatus is used in a film forming process, an etching process, an ashing process, and the like because of high-precision process control.
  • a plasma chemical vapor deposition (CVD) apparatus is known as a plasma processing apparatus.
  • the raw material gas is turned into plasma by high-frequency power or the like, and a thin film is formed on the substrate by a chemical reaction.
  • a plasma CVD apparatus using hollow cathode discharge has been proposed (see, for example, Patent Document 1).
  • a silicon nitride film having a refractive index of 1.9 to 2.4 and a film thickness of about 70 to 100 nm is used for a passivation film such as an antireflection film of a crystalline silicon solar cell.
  • a passivation film such as an antireflection film of a crystalline silicon solar cell.
  • an AC power source having a frequency of 1 MHz or more is used.
  • a thin film silicon film for a thin film transistor (TFT) is formed, there is no particular problem even if a frequency of 1 MHz or higher is used.
  • TFT thin film transistor
  • an antireflection film for a crystalline silicon solar cell if an AC power source having a frequency of 1 MHz or more is used, the passivation effect on the surface of the crystalline silicon film and the inside of the substrate is lowered, and the conversion efficiency of the solar cell There was a problem that decreased.
  • an object of the present invention is to provide a thin film forming apparatus that forms a thin film in which a decrease in the passivation effect is suppressed and has high film forming efficiency.
  • a thin film forming apparatus for forming a passivation film on a substrate, comprising: (a) a chamber into which a reaction gas containing a material gas for the passivation film is introduced; A substrate plate on which the substrate is placed, (c) an electrode disposed in the chamber and having a groove formed on the surface of the substrate plate facing the substrate, and (d) AC power having a frequency of 40 kHz to 450 kHz.
  • a thin film forming apparatus provided with an AC power source that supplies plasma between a substrate plate and an electrode and excites plasma containing a source gas on the upper surface of the substrate while stopping the supply of AC power at a constant cycle.
  • the present invention it is possible to provide a thin film forming apparatus that forms a thin film in which a decrease in the passivation effect is suppressed and has high film forming efficiency.
  • a thin film forming apparatus 10 is a thin film forming apparatus that forms a passivation film 110 on a substrate 100.
  • the thin film forming apparatus 10 includes a chamber 11 into which a reaction gas 120 containing a raw material gas for a passivation film 110 is introduced, a substrate plate 12 placed in the chamber 11 on which a substrate 100 is placed, and a chamber 11.
  • the electrode 13 is disposed on the surface of the substrate plate 12 facing the substrate 100, the openings of the plurality of ejection holes 131 through which the reaction gas 120 passes and the grooves 132 formed around the openings.
  • alternating-current power having a frequency of 50 kHz or more and 450 kHz or less is supplied between the substrate plate 12 and the electrode 13 while stopping the supply of the alternating-current power, and plasma containing a source gas is formed on the upper surface of the substrate 100. And an alternating current power source 14 to be excited.
  • the reaction gas 120 is introduced into the chamber 11 by the gas supply mechanism 15. Further, the inside of the chamber 11 is depressurized by the gas exhaust mechanism 16. After the pressure of the reaction gas in the chamber 11 is adjusted to a predetermined gas pressure, a predetermined AC power is supplied between the substrate plate 12 and the electrode 13 by the AC power supply 14 through the matching box 141. Thereby, the reaction gas 120 containing the source gas in the chamber 11 is turned into plasma. By exposing the substrate 100 to the formed plasma, a desired thin film is formed on the exposed surface of the substrate 100.
  • the openings of the ejection holes 131 and the grooves 132 are arranged on the surface of the electrode 13 facing the substrate 100, and the electrode 13 functions as a hollow cathode electrode that generates a hollow cathode discharge. That is, electrons are confined by the hollow cathode effect in the groove 132 formed on the surface of the electrode 13, and high-density plasma is stably generated in a form supplied from the groove 132. As a result, the source gas is efficiently decomposed, and the passivation film 110 is uniformly formed over a large area at a high speed.
  • FIG. 2 shows an example in which grooves 132 are continuously formed around the ejection holes 131 on the surface 130 of the electrode 13 facing the substrate 100 along the arrangement direction of the ejection holes 131 for one row. If it is arranged around the opening of the ejection hole 131, various configurations can be adopted for the layout of the groove 132.
  • the grooves 132 may be formed in a lattice shape so that the openings of the ejection holes 131 are arranged at the intersections of the lattice.
  • the frequency of the AC power supplied between the electrodes is 1 MHz or more. For this reason, in the thin film forming apparatus 10 that uses AC power having a frequency of 50 kHz to 450 kHz, the supply of AC power is stopped at a constant period in order to stably form plasma in the chamber 11.
  • the AC power supply 14 performs pulse control of the supply of AC power between the substrate plate 12 and the electrode 13 to periodically turn on / off the supply of AC power.
  • the AC power is supplied between the substrate plate 12 and the electrode 13 so that the ON time and the OFF time are alternately repeated, with the ON time for supplying AC power being 600 ⁇ s and the OFF time for stopping the supply of AC power being 50 ⁇ s. Is done.
  • the on time is set to about 300 ⁇ s to 1500 ⁇ s
  • the off time is set to about 25 ⁇ s to 50 ⁇ s. If the off time is set too long, the power efficiency is lowered. Therefore, it is preferable to set the off time to about 50 ⁇ sec at the longest.
  • the frequency of AC power is 1 MHz or more, it is not necessary to turn off the supply of AC power.
  • the reason why the frequency of AC power supplied between the substrate plate 12 and the electrode 13 in the thin film forming apparatus 10 is set to 50 kHz to 450 kHz is that the number of ions colliding with the substrate 100 in a state where plasma is formed in the chamber 11 is large. It is to do. As a result, as described below, the surface and internal passivation effect of the substrate 100 can be increased, and the conversion efficiency of the crystalline silicon solar cell can be improved.
  • a polysilicon substrate is used as a substrate for a crystalline silicon solar cell.
  • the grain boundary of polysilicon becomes a defect.
  • Carriers are supplemented by this defect, and conversion efficiency decreases.
  • H ions or the like to collide with the substrate 100, dangling bonds of crystals in the polysilicon can be terminated with H ions. This reduces carrier supplementation due to defects and increases the passivation effect. As a result, the conversion efficiency of the crystalline silicon solar cell is improved.
  • the graph shown in FIG. 3 shows the relationship between the frequency of power supplied between the electrodes and the number of ions colliding with the substrate surface (Akihisa Matsuda et al., “Influence of Power-Source Frequency on the Properties of GD a-Si : H ", Japanese Journal Applied Physics, Vol.23, N0.8, August, 1984, L568-L569).
  • the frequency is 10 kHz to 500 kHz
  • the number of ions that collide with the substrate is large, and when the frequency is 1 MHz or more, the number of ions that collide with the substrate is small.
  • the frequency of the AC power supplied between the substrate plate 12 and the electrode 13 is 10 kHz to 500 kHz, a larger number of ions can collide with the substrate 100 than when the frequency is 1 MHz or more.
  • the frequency of the AC power be 50 kHz to 450 kHz.
  • the surface and internal passivation effect of the substrate 100 is increased by setting the frequency of the AC power supplied from the AC power supply 14 to 50 kHz to 450 kHz. That is, the thin film forming apparatus 10 can form a thin film having a high passivation effect. Thereby, the conversion efficiency of a solar cell can be improved, for example.
  • the substrate 100 is a crystalline silicon solar cell substrate, and the passivation film 110 is an antireflection film.
  • the substrate 100 is a substrate in which an n-type semiconductor layer having a surface diffusion concentration of 1 ⁇ 10 18 to 1 ⁇ 10 22 is formed on a p-type silicon substrate, or a surface diffusion concentration of 1 on the n-type silicon substrate.
  • a substrate on which a p-type semiconductor layer of ⁇ 10 18 to 1 ⁇ 10 22 is formed can be used.
  • the passivation film 110 is a silicon nitride (SiN) film having a refractive index of 1.3 to 3.0 and a film thickness of about 50 to 150 nm.
  • a passivation film 110 made of, for example, a SiN film on the substrate 100 monosilane, ammonia, or the like is employed as a source gas, and nitrogen (N), hydrogen (H), argon (Ar), Helium (He) or the like is employed.
  • the width of the groove 132 is set to 5 mm to 10 mm.
  • the width of the groove formed on the surface of the high-frequency electrode is about 1 to 4 mm.
  • plasma can be stably formed by increasing the width of the groove 132.
  • the groove 132 preferably does not exceed 10 mm.
  • the diameter of the opening part of the ejection hole 131 is dependent also on the number of the ejection holes 131 formed in the electrode 13, it is generally 1 mm or less.
  • the pressure of the reaction gas is 500 Pa or more.
  • the pressure of the reaction gas 120 including the source gas and the carrier gas is set to be as low as about 50 Pa to 100 Pa.
  • conversion efficiency high solar cell conversion efficiency
  • the temperature of the substrate 100 can be arbitrarily set by the heater 17 built in the substrate plate 12. As described above, by setting the temperature of the substrate 100 to 300 ° C. to 450 ° C., high conversion efficiency can be obtained. Further, it is more preferable that the temperature of the substrate 100 is 400 ° C. to 450 ° C.
  • FIG. 5 shows an example in which a passivation film 110 is formed as an antireflection film for a crystalline silicon solar cell using the thin film forming apparatus 10 shown in FIG. 1 and the comparative thin film forming apparatus.
  • the frequency of the AC power of the thin film forming apparatus 10 is 250 kHz.
  • the frequency of AC power was 250 kHz, and parallel plate electrodes were used without using a hollow cathode electrode.
  • a hollow cathode electrode is used, and the frequency of AC power is 213.56 MHz.
  • the produced crystalline silicon solar cell has a structure in which a SiN film having a thickness of 80 nm is formed on a polysilicon substrate.
  • the solar cell conversion efficiency is equal between the thin film forming apparatus 10 and the comparative example 1 in which the frequency of the AC power is 250 kHz.
  • the film formation rate of Comparative Example 1 is 28 nm / min
  • the film formation rate of the thin film forming apparatus 10 using the hollow cathode electrode is 180 nm / min, and the film forming efficiency of the thin film forming apparatus 10 is very high. Very expensive.
  • the film forming rate is the same between the thin film forming apparatus 10 and the comparative example 2 using the hollow cathode electrode.
  • the solar cell conversion efficiency of Comparative Example 2 in which the frequency of the AC power is 13.56 MHz is 16.3%, whereas the solar cell conversion efficiency of the thin film forming apparatus 10 is 16.5%. Greater than Example 2. That is, in Comparative Example 2 where the frequency of AC power is high, the passivation effect is greatly reduced, and the conversion efficiency is reduced. On the other hand, in the thin film forming apparatus 10, a decrease in the passivation effect is suppressed as compared with Comparative Example 2, and high conversion efficiency is obtained.
  • the thin film forming apparatus 10 can achieve high film formation efficiency by using the hollow cathode electrode while obtaining high solar cell conversion efficiency by supplying an AC electrode having a low frequency.
  • film formation using hollow cathode discharge can be realized using AC power having a frequency of 50 kHz to 450 kHz.
  • AC power having a frequency of 50 kHz to 450 kHz As a result, it is possible to provide a thin film forming apparatus 10 that forms a thin film in which a decrease in the passivation effect is suppressed and has high film forming efficiency.
  • the present invention is also applicable when the electrode 13 is not a shower plate type electrode as described above.
  • the reaction gas 120 may be introduced directly into the chamber 11 from the gas supply mechanism 15 without passing the reaction gas 120 through the inside of the electrode 13.
  • the electrode 13 having the groove 132 formed on the surface functions as a hollow cathode electrode. That is, the confinement of electrons due to the hollow cathode effect occurs in the groove 132 formed on the surface of the electrode 13, and high-density plasma is stably generated. As a result, the source gas is efficiently decomposed, and the passivation film 110 is uniformly formed over a large area at a high speed.
  • the grooves 132 may be formed in a lattice shape or a stripe shape.
  • the present invention is also applicable to the thin film forming apparatus 10 having a plurality of positions where the substrate 100 is arranged.
  • the substrate plate 12 and the electrode 13 have a comb shape having a plurality of tooth portions extending in the vertical direction toward the paper surface, and the comb tooth portions of the substrate plate 12 and the electrode 13. Are arranged in the shape of cross fingers.
  • the substrate 100 is mounted on each of a plurality of tooth portions facing the electrodes 13 of the substrate plate 12.
  • the reaction gas 120 is introduced from the gas supply mechanism 15 into the chamber 11 of FIG. 7 in which the plurality of substrates 100 are arranged vertically.
  • a groove 132 is formed on the surface of the tooth portion of the electrode 13, and the electrode 13 functions as a hollow cathode electrode.
  • the groove 132 is formed through the tooth portion of the electrode 13. According to the thin film forming apparatus 10 shown in FIG. 7, it is possible to simultaneously form a passivation film on a plurality of substrates 100.
  • the thin film forming apparatus of the present invention can be used for the purpose of forming a thin film in which a decrease in the passivation effect is suppressed.

Abstract

 基板上にパッシベーション膜を形成する薄膜形成装置であって、パッシベーション膜の原料ガスを含む反応ガスが導入されるチャンバーと、チャンバー内に配置され、基板を載せる基板プレートと、チャンバー内に配置され、基板プレート上の基板と対向する面に溝が形成された電極と、40kHz以上且つ450kHz以下の周波数の交流電力を、その交流電力の供給を一定の周期で停止させながら、基板プレートと電極間に供給して基板の上面において原料ガスを含むプラズマを励起する交流電源とを備える。

Description

薄膜形成装置
 本発明は、プラズマを励起して成膜処理を行う薄膜形成装置に関する。
 半導体デバイスの製造工程において、高精度のプロセス制御が容易であるという利点から、成膜工程、エッチング工程、アッシング工程などにおいてプラズマ処理装置が用いられている。例えば、プラズマ処理装置としてプラズマ化学気相成長(CVD)装置が知られている。
 プラズマCVD装置では、高周波電力などにより原料ガスがプラズマ化され、化学反応によって基板上に薄膜が形成される。また、成膜効率を向上させるために、ホローカソード放電を利用したプラズマCVD装置が提案されている(例えば、特許文献1参照)。
特開2004-296526号公報
 結晶シリコン系太陽電池の反射防止膜などのパッシベーション膜には、一般的に屈折率1.9~2.4、膜厚70~100nm程度の窒化シリコン膜などが使用されている。このような薄膜を形成する場合に、プラズマCVD装置の交流電源の周波数として1MHz以下の低い周波数を使用すると、結晶シリコン膜の表面及び結晶シリコン膜が形成される基板の内部のパッシベーション効果が高まり、太陽電池の変換効率が向上する。しかし、1MHz以下の低い周波数を使用すると、成膜プロセス時のプラズマ密度が低下し、成膜効率が低下する。
 一方、ホローカソード放電を用いるプラズマCVD装置では、1MHz以上の周波数の交流電源が使用される。例えば薄膜トランジスタ(TFT)用の薄膜シリコン膜を形成する場合には、1MHz以上の周波数を用いても特に問題はない。しかし、結晶シリコン系太陽電池の反射防止膜を成膜する場合などにおいては、1MHz以上の周波数の交流電源を用いると結晶シリコン膜の表面及び基板内部のパッシベーション効果が低くなり、太陽電池の変換効率が低下するという問題があった。
 上記問題点に鑑み、本発明は、パッシベーション効果の低下が抑制された薄膜を形成し、且つ、成膜効率の高い薄膜形成装置を提供することを目的とする。
 本発明の一態様によれば、基板上にパッシベーション膜を形成する薄膜形成装置であって、(イ)パッシベーション膜の原料ガスを含む反応ガスが導入されるチャンバーと、(ロ)チャンバー内に配置され、基板を載せる基板プレートと、(ハ)チャンバー内に配置され、基板プレート上の基板と対向する面に溝が形成された電極と、(ニ)40kHz以上且つ450kHz以下の周波数の交流電力を、その交流電力の供給を一定の周期で停止させながら、基板プレートと電極間に供給して基板の上面において原料ガスを含むプラズマを励起する交流電源とを備える薄膜形成装置が提供される。
 本発明によれば、パッシベーション効果の低下が抑制された薄膜を形成し、且つ、成膜効率の高い薄膜形成装置を提供できる。
本発明の実施形態に係る薄膜形成装置の構成を示す模式図である。 本発明の実施形態に係る薄膜形成装置の電極の表面に形成される溝の例を示す模式図である。 供給される電力の周波数と基板表面に衝突するイオン数との関係を示すグラフである。 基板温度と変換効率との関係を示すグラフである。 本発明の実施形態に係る薄膜形成装置による薄膜形成と、比較例による薄膜形成との比較を示す表である。 本発明の他の実施形態に係る薄膜形成装置の構成を示す模式図である。 本発明の他の実施形態に係る薄膜形成装置の構成を示す模式図である。
 図面を参照して、本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであることに留意すべきである。又、以下に示す実施形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の実施形態は、構成部品の構造、配置などを下記のものに特定するものでない。この発明の実施形態は、請求の範囲において、種々の変更を加えることができる。
 本発明の実施形態に係る薄膜形成装置10は、基板100上にパッシベーション膜110を形成する薄膜形成装置である。図1に示すように、薄膜形成装置10は、パッシベーション膜110の原料ガスを含む反応ガス120が導入されるチャンバー11と、チャンバー11内に配置され、基板100を載せる基板プレート12と、チャンバー11内に配置され、基板プレート12上の基板100と対向する面に、反応ガス120が通過する複数の噴出孔131の開口部及びその開口部の周囲に形成された溝132が配置された電極13と、50kHz以上且つ450kHz以下の周波数の交流電力を、その交流電力の供給を一定の周期で停止させながら、基板プレート12と電極13間に供給して基板100の上面において原料ガスを含むプラズマを励起する交流電源14とを備える。
 反応ガス120は、ガス供給機構15によってチャンバー11内に導入される。また、ガス排気機構16によってチャンバー11内が減圧される。チャンバー11内の反応ガスの圧力が所定のガス圧に調整された後、マッチングボックス141を介して、交流電源14により所定の交流電力が設置された基板プレート12と電極13間に供給される。これにより、チャンバー11内の原料ガスを含む反応ガス120がプラズマ化される。形成されたプラズマに基板100を曝すことにより、基板100の露出した表面に所望の薄膜が形成される。
 図1に示したように、電極13の基板100に対向する表面には噴出孔131の開口部と溝132が配置されており、電極13はホローカソード放電を生じさせるホローカソード電極として機能する。即ち、電極13の表面に形成された溝132においてホローカソード効果による電子の閉じ込めが起こり、溝132から供給される形態で高密度プラズマが安定に生成される。その結果、原料ガスが効率よく分解され、高速で大面積に均一にパッシベーション膜110が基板100上に形成される。
 図2に、電極13の基板100と対向する面130に、一列分の噴出孔131の配列方向に沿って噴出孔131の周囲に連続的に溝132を形成した例を示す。噴出孔131の開口部の周囲に配置されていれば、溝132のレイアウトに種々の構成を採用できる。例えば、格子の交点に噴出孔131の開口部が配置されるようにして、格子状に溝132を形成してもよい。
 通常、ホローカソード放電を利用してプラズマを励起する場合、電極間に供給される交流電力の周波数は1MHz以上である。このため、50kHz~450kHzの周波数の交流電力を使用する薄膜形成装置10においては、チャンバー11内においてプラズマを安定して形成するために、一定の周期で交流電力の供給が停止される。
 即ち、交流電源14は、基板プレート12と電極13間への交流電力の供給をパルス制御して、交流電力の供給を周期的にオン・オフさせる。例えば、交流電力を供給するオン時間を600μ秒、交流電力の供給を停止するオフ時間を50μ秒として、オン時間とオフ時間を交互に繰り返すように基板プレート12と電極13間に交流電力が供給される。なお、オン時間は300μ秒~1500μ秒程度、オフ時間は25μ秒~50μ秒程度に設定される。オフ時間を長く設定しすぎるとパワー効率が低下するため、最長でもオフ時間は50μ秒程度に設定することが好ましい。通常、交流電力の周波数が1MHz以上であるような場合は、交流電力の供給をオフする必要はない。
 薄膜形成装置10において基板プレート12と電極13間に供給される交流電力の周波数を50kHz~450kHzとしたのは、チャンバー11内でプラズマが形成された状態において基板100に衝突するイオンの数を多くするためである。これにより、以下に述べるように基板100の表面及び内部のパッシベーション効果を大きくし、結晶シリコン系太陽電池の変換効率を向上させることなどができる。
 例えばポリシリコン基板が、結晶シリコン系太陽電池の基板に使用される。ポリシリコン基板では、ポリシリコンの粒界が欠陥となる。この欠陥にキャリアが補足され、変換効率が低下する。しかし、水素(H)イオンなどを基板100に衝突させることにより、ポリシリコン内の結晶の未結合手をHイオンにより終端させることができる。これにより、欠陥によるキャリアの補足が減少し、パッシベーション効果が大きなる。その結果、結晶シリコン系太陽電池の変換効率が向上する。
 図3に示したグラフは、電極間に供給される電力の周波数と基板表面に衝突するイオン数との関係を示す(Akihisa Matsuda他、「Influence of Power-Source Frequency on the Properties of GD a-Si:H」、Japanese Journal of Applied Physics、Vol.23、N0.8、August, 1984、L568-L569)。図3に示されるように、周波数が10kHz~500kHzの場合に基板に衝突するイオン数が多く、周波数が1MHz以上の場合に基板に衝突するイオン数が少ない。
 したがって、基板プレート12と電極13間に供給される交流電力の周波数を10kHz~500kHzにすることにより、周波数が1MHz以上の場合に比べて多数のイオンを基板100に衝突させることができる。既に説明したように、Hイオンなどを基板100に衝突させることにより、基板100の表面及び内部のパッシベーション効果を大きくすることができる。なお、より確実には、交流電力の周波数を50kHz~450kHzにすることが好ましい。
 上記のように、薄膜形成装置10によれば、交流電源14が供給する交流電力の周波数を50kHz~450kHzにすることにより、基板100の表面及び内部のパッシベーション効果が大きくなる。つまり、薄膜形成装置10によれば、パッシベーション効果の高い薄膜を形成できる。これにより、例えば太陽電池の変換効率を向上させることができる。
 以下に、図1に示した薄膜形成装置10によって、結晶シリコン系太陽電池の反射防止膜を形成する場合を考える。即ち、基板100が結晶シリコン系太陽電池基板であり、パッシベーション膜110が反射防止膜である。このとき、基板100には、p型シリコン基板上に表面拡散濃度が1×1018~1×1022のn型半導体層を形成した基板、或いは、n型シリコン基板上に表面拡散濃度が1×1018~1×1022のp型半導体層を形成した基板などが採用可能である。また、パッシベーション膜110は、屈折率が1.3~3.0、膜厚が50~150nm程度の窒化シリコン(SiN)膜などである。
 基板100上に、例えばSiN膜からなるパッシベーション膜110を形成するためには、原料ガスにはモノシラン、アンモニアなどが採用され、キャリアガスとして窒素(N)、水素(H)、アルゴン(Ar)、ヘリウム(He)などが採用される。
 溝132の幅は5mm~10mmに設定される。通常のホローカソード放電を利用する場合に高周波電極の表面に形成される溝の幅は1~4mm程度である。薄膜形成装置10では、溝132の幅を広くすることにより、プラズマを安定して形成することができる。ただし、幅が広すぎるとプラズマの状態が不安定になりやすくなるため、溝132の溝は10mmを超えないことが好ましい。なお、噴出孔131の開口部の径は、電極13に形成される噴出孔131の数にも依存するが、一般的に1mm以下である。
 通常、ホローカソード放電を利用する場合には、反応ガスの圧力は500Pa以上である。しかし、薄膜形成装置10においては、チャンバー11内でプラズマを安定して形成するために、原料ガスとキャリアガスを含む反応ガス120の圧力を50Pa~100Pa程度に低く設定することが好ましい。
 また、チャンバー11内でプラズマが励起された状態において、基板100を250℃~550℃に設定することが、高い太陽電池変換効率(以下において、単に「変換効率」という。)を実現する点で好ましい。図4に基板温度と変換効率との関係を示すように、基板温度が300℃~450℃において、15.6%~16%以上の高い変換効率が得られる。
 図1に示した薄膜形成装置10では、基板プレート12に内蔵されたヒータ17によって、基板100の温度を任意に設定することができる。上記のように、基板100の温度を300℃~450℃に設定することにより、高い変換効率が得られる。更に、基板100の温度を400℃~450℃にすることがより好ましい。
 以下に、図1に示した薄膜形成装置10と比較例の薄膜形成装置とをそれぞれ用いて、結晶シリコン系太陽電池の反射防止膜としてパッシベーション膜110を形成した例を、図5に示す。ここで、薄膜形成装置10の交流電力の周波数は250kHzである。比較例1では、交流電力の周波数が250kHzで、ホローカソード電極を使用せずに並行平板電極を使用した。比較例2では、ホローカソード電極を使用し、交流電力の周波数は213.56MHzである。なお、作成した結晶シリコン系太陽電池は、ポリシリコン基板上に膜厚80nmのSiN膜を形成した構造である。
 図5に示すように、薄膜形成装置10と、交流電力の周波数が250kHzの比較例1とでは、太陽電池変換効率は同等である。しかし、比較例1の成膜レートが28nm/分であるのに対し、ホローカソード電極を使用した薄膜形成装置10の成膜レートは180nm/分であり、薄膜形成装置10の成膜効率は非常に高い。
 また、薄膜形成装置10と、ホローカソード電極を使用した比較例2とでは、成膜レートは同等である。しかし、交流電力の周波数が13.56MHzである比較例2の太陽電池変換効率が16.3%であるのに対して、薄膜形成装置10の太陽電池変換効率は16.5%であり、比較例2よりも大きい。つまり、交流電力の周波数が高い比較例2ではパッシベーション効果の低下が大きく、変換効率が低下する。一方、薄膜形成装置10では、比較例2と比較してパッシベーション効果の低下が抑制され、高い変換効率が得られる。
 したがって、薄膜形成装置10では、低い周波数の交流電極を供給することによって高い太陽電池変換効率を得ながら、ホローカソード電極を使用することによる高い成膜効率を実現できる。
 以上に説明したように、本発明の実施形態に係る薄膜形成装置10では、周波数が50kHz~450kHzの交流電力を用いて、ホローカソード放電を利用した成膜を実現できる。その結果、パッシベーション効果の低下が抑制された薄膜を形成し、且つ、成膜効率の高い薄膜形成装置10を提供することができる。
 上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
 図1では、電極13の内部を反応ガス120が通過し、電極13の表面に形成された噴出孔131の開口部から反応ガス120がチャンバー11内に噴出する例を示した。しかし、電極13が上記のようなシャワープレート型電極でない場合にも、本発明は適用可能である。
 例えば、図6に示すように、反応ガス120を電極13の内部を通過させずに、ガス供給機構15から直接チャンバー11内に反応ガス120を導入してもよい。図6に示した薄膜形成装置10においても、表面に溝132が形成された電極13はホローカソード電極として機能する。即ち、電極13の表面に形成された溝132においてホローカソード効果による電子の閉じ込めが起こり、高密度プラズマが安定に生成される。その結果、原料ガスが効率よく分解され、高速で大面積に均一にパッシベーション膜110が基板100上に形成される。なお、図1に示した薄膜形成装置10と同様に、図6に示した薄膜形成装置10においても、溝132のレイアウトに種々の構成を採用できる。即ち、溝132を格子状に形成してもよいし、ストライプ状に形成してもよい。
 また、図7に示すように、基板100が配置される位置が複数ある薄膜形成装置10についても、本発明は適用可能である。図7に示した例では、基板プレート12及び電極13は、互いに紙面に向かって上下方向にそれぞれ延伸する複数の歯部分を有する櫛型形状をなし、基板プレート12と電極13の櫛の歯部分が交差指状に配置される。基板100は、基板プレート12の電極13に対向する複数の歯部分にそれぞれ搭載される。
 そして、複数の基板100が垂直に配置された図7のチャンバー11内に、ガス供給機構15から反応ガス120が導入される。電極13の歯部分の表面に溝132が形成されており、電極13はホローカソード電極として機能する。図7に示した例では、溝132が電極13の歯部分を貫通して形成されている。図7に示した薄膜形成装置10によれば、複数の基板100に同時にパッシベーション膜を形成することが可能である。
 このように、本発明はここでは記載していない様々な実施形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な請求の範囲に係る発明特定事項によってのみ定められるものである。
 本発明の薄膜形成装置は、パッシベーション効果の低下が抑制された薄膜を形成する用途に利用可能である。

Claims (9)

  1.  基板上にパッシベーション膜を形成する薄膜形成装置であって、
     前記パッシベーション膜の原料ガスを含む反応ガスが導入されるチャンバーと、
     前記チャンバー内に配置され、前記基板を載せる基板プレートと、
     前記チャンバー内に配置され、前記基板プレート上の前記基板と対向する面に溝が形成された電極と、
     50kHz以上且つ450kHz以下の周波数の交流電力を、該交流電力の供給を一定の周期で停止させながら、前記基板プレートと前記電極間に供給して前記基板の上面において前記原料ガスを含むプラズマを励起する交流電源と
     を備えることを特徴とする薄膜形成装置。
  2.  前記電極に形成された前記溝の底部に、前記反応ガスが通過する複数の噴出孔の開口部が形成されていることを特徴とする請求項1に記載の薄膜形成装置。
  3.  前記交流電力の供給が停止される時間が25μ秒以上且つ50μ秒以下であることを特徴とする請求項1に記載の薄膜形成装置。
  4.  前記溝の幅が5mm以上且つ10mm以下であることを特徴とする請求項1に記載の薄膜形成装置。
  5.  前記プラズマが励起された状態において前記基板を300℃以上且つ450℃以下に設定する加熱装置を更に備えることを特徴とする請求項1に記載の薄膜形成装置。
  6.  前記チャンバー内の前記反応ガスの圧力が50Pa以上且つ100Pa以下に設定されることを特徴とする請求項1に記載の薄膜形成装置。
  7.  前記基板が結晶シリコン系太陽電池基板であることを特徴とする請求項1に記載の薄膜形成装置。
  8.  前記基板上に形成される前記パッシベーション膜が、結晶シリコン系太陽電池の反射防止膜であることを特徴とする請求項7に記載の薄膜形成装置。
  9.  前記基板上に形成される前記パッシベーション膜の成膜速度が180nm/分以上であることを特徴とする請求項1に記載の薄膜形成装置。
PCT/JP2011/071655 2011-05-20 2011-09-22 薄膜形成装置 WO2012160718A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137027164A KR101535582B1 (ko) 2011-05-20 2011-09-22 박막 형성 장치
JP2013516164A JPWO2012160718A1 (ja) 2011-05-20 2011-09-22 薄膜形成装置
CN201180069697.2A CN103534383B (zh) 2011-05-20 2011-09-22 薄膜形成装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011113241 2011-05-20
JP2011-113241 2011-05-20

Publications (1)

Publication Number Publication Date
WO2012160718A1 true WO2012160718A1 (ja) 2012-11-29

Family

ID=47216816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071655 WO2012160718A1 (ja) 2011-05-20 2011-09-22 薄膜形成装置

Country Status (4)

Country Link
JP (1) JPWO2012160718A1 (ja)
KR (1) KR101535582B1 (ja)
CN (1) CN103534383B (ja)
WO (1) WO2012160718A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107710386A (zh) * 2015-06-05 2018-02-16 应用材料公司 工艺腔室

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101602517B1 (ko) 2008-08-04 2016-03-10 에이지씨 플랫 글래스 노스 아메리카, 인코퍼레이티드 Pecvd를 이용한 박막 코팅을 증착하기 위한 플라즈마 소스 및 방법
CN107852805B (zh) * 2014-12-05 2020-10-16 Agc玻璃欧洲公司 空心阴极等离子体源
MY191327A (en) 2014-12-05 2022-06-16 Agc Flat Glass Na Inc Plasma source utilizing a macro-particle reduction coating and method of using a plasma source utilizing a macro-particle reduction coating for deposition of thin film coatings and modification of surfaces
JP6565502B2 (ja) * 2015-09-03 2019-08-28 株式会社島津製作所 成膜装置及び成膜方法
US9721765B2 (en) 2015-11-16 2017-08-01 Agc Flat Glass North America, Inc. Plasma device driven by multiple-phase alternating or pulsed electrical current
US10573499B2 (en) 2015-12-18 2020-02-25 Agc Flat Glass North America, Inc. Method of extracting and accelerating ions
CN109576669A (zh) * 2018-12-19 2019-04-05 北京建筑大学 一种空心阴极放电系统及制备类金刚石薄膜的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107196A1 (ja) * 2008-02-26 2009-09-03 株式会社島津製作所 プラズマ成膜方法、およびプラズマcvd装置
JP2010040978A (ja) * 2008-08-08 2010-02-18 Shimadzu Corp 成膜装置及び成膜方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093843A (ja) * 1999-09-27 2001-04-06 Kanegafuchi Chem Ind Co Ltd プラズマcvd装置およびシリコン系薄膜光電変換装置の製造方法
DE10326135B4 (de) * 2002-06-12 2014-12-24 Ulvac, Inc. Entladungsplasma-Bearbeitungsanlage
JP3837539B2 (ja) * 2003-03-25 2006-10-25 独立行政法人産業技術総合研究所 プラズマcvd装置
JP5105898B2 (ja) * 2007-02-21 2012-12-26 株式会社アルバック シリコン系薄膜の成膜方法
JP5496568B2 (ja) * 2009-08-04 2014-05-21 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
US8026157B2 (en) * 2009-09-02 2011-09-27 Applied Materials, Inc. Gas mixing method realized by back diffusion in a PECVD system with showerhead

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009107196A1 (ja) * 2008-02-26 2009-09-03 株式会社島津製作所 プラズマ成膜方法、およびプラズマcvd装置
JP2010040978A (ja) * 2008-08-08 2010-02-18 Shimadzu Corp 成膜装置及び成膜方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107710386A (zh) * 2015-06-05 2018-02-16 应用材料公司 工艺腔室

Also Published As

Publication number Publication date
CN103534383A (zh) 2014-01-22
CN103534383B (zh) 2016-08-17
KR20130135351A (ko) 2013-12-10
JPWO2012160718A1 (ja) 2014-07-31
KR101535582B1 (ko) 2015-07-09

Similar Documents

Publication Publication Date Title
WO2012160718A1 (ja) 薄膜形成装置
US8633050B2 (en) Solar cell, and method of manufacturing the same
US20130295709A1 (en) Method for manufacturing photoelectric conversion elements
JP2003273023A (ja) Cat−PECVD法、その方法の実施に用いる装置、その方法を用いて形成した膜、およびその膜を用いて形成したデバイス
JP2011023655A (ja) 窒化シリコン薄膜成膜方法および窒化シリコン薄膜成膜装置
KR101650795B1 (ko) 플라즈마 성막 장치
KR20140135202A (ko) 성막 장치
JP5530350B2 (ja) プラズマ成膜方法、およびプラズマcvd装置
JP3872357B2 (ja) 熱触媒体内蔵カソード型pecvd装置、熱触媒体内蔵カソード型pecvd法およびそれを用いるcvd装置
JP2007266094A (ja) プラズマcvd装置及びプラズマcvdによる半導体薄膜の成膜方法
JP5053595B2 (ja) Dlc膜の形成方法及びdlc膜の製造装置
TWI593130B (zh) 太陽能電池的製造方法
WO2013057835A1 (ja) 薄膜形成装置
JP2013247234A (ja) 大気圧プラズマ処理装置および薄膜形成方法
JP4515440B2 (ja) 薄膜トランジスタの作製方法
JP2010073970A (ja) 薄膜形成装置および薄膜形成方法
JP6065111B2 (ja) プラズマ処理装置
JP5308733B2 (ja) 非一体型カソード電極及びプラズマcvd装置
JP2005244037A (ja) シリコン膜の製造方法及び太陽電池の製造方法
WO2015045066A1 (ja) 薄膜形成装置
JP2015220418A (ja) 薄膜形成装置
KR101105420B1 (ko) 플라즈마 기판 처리 장치 및 방법
JP2016197651A (ja) 薄膜及びその形成方法
JP2005244098A (ja) プラズマプロセス装置
JPH10317150A (ja) 成膜方法及び成膜装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866426

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013516164

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137027164

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11866426

Country of ref document: EP

Kind code of ref document: A1