CN103534383B - 薄膜形成装置 - Google Patents

薄膜形成装置 Download PDF

Info

Publication number
CN103534383B
CN103534383B CN201180069697.2A CN201180069697A CN103534383B CN 103534383 B CN103534383 B CN 103534383B CN 201180069697 A CN201180069697 A CN 201180069697A CN 103534383 B CN103534383 B CN 103534383B
Authority
CN
China
Prior art keywords
substrate
film forming
forming device
equal
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201180069697.2A
Other languages
English (en)
Other versions
CN103534383A (zh
Inventor
三科健
猿渡哲也
今井大辅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Publication of CN103534383A publication Critical patent/CN103534383A/zh
Application granted granted Critical
Publication of CN103534383B publication Critical patent/CN103534383B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/515Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using pulsed discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

本发明提出一种薄膜形成装置,在基板上形成钝化膜,且包括:腔室,被导入包含钝化膜的原料气体的反应气体;基板底板,配置于腔室内,且载置基板;电极,配置于腔室内,在基板底板上的与基板相对向的面形成着槽;以及交流电源,一边使大于或等于50kHz且小于或等于450kHz的频率的交流电力的供给以固定的周期停止,一边将该交流电力供给至基板底板与电极之间,且在基板的上表面激发包含原料气体的等离子体。

Description

薄膜形成装置
技术领域
本发明涉及一种激发等离子体(plasma)来进行成膜处理的薄膜形成装置。
背景技术
在半导体元件的制造工序中,因具有容易进行高精度的工艺(process)控制的优点,所以在成膜工序、刻蚀工序、灰化(ashing)工序等中使用等离子体处理装置。例如,作为等离子体处理装置,已知有等离子体化学气相沉积(chemical vapor deposition,CVD)装置。
等离子体CVD装置中,利用高频电力等将原料气体等离子体化,并利用化学反应而在基板上形成薄膜。而且,为了提高成膜效率,而提出有利用了空心阴极(hollow cathode)放电的等离子体CVD装置(例如,参照专利文献1)。
先前技术文献
专利文献
专利文献1:日本专利特开2004-296526号公报
发明内容
[发明所要解决的课题]
结晶硅系太阳电池的防反射膜等钝化膜中,一般使用折射率为1.9~2.4、膜厚为70nm~100nm左右的氮化硅膜等。在形成此种薄膜的情况下,关于等离子体CVD装置的交流电源的频率,如果使用小于或等于1MHz的低频率,则结晶硅膜的表面及形成着结晶硅膜的基板的内部的钝化效果提高,太阳电池的转换效率提高。然而,如果使用小于或等于1MHz的低频率,则成膜工艺时的等离子体密度降低,成膜效率降低。
另一方面,在使用空心阴极放电的等离子体CVD装置中,使用大于或等于1MHz的频率的交流电源。例如在形成薄膜晶体管(Thin FilmTransistor,TFT)用的薄膜硅膜的情况下,即便使用大于或等于1MHz的频率也不会特别地发生问题。然而,在对结晶硅系太阳电池的防反射膜进行成膜的情况下等,存在下述问题:如果使用大于或等于1MHz的频率的交流电源,则结晶硅膜的表面及基板内部的钝化效果下降,太阳电池的转换效率降低。
鉴于所述问题,本发明的目的在于提供形成钝化效果的下降得以抑制的薄膜且成膜效率高的薄膜形成装置。
[用于解决课题的手段]
根据本发明的一形态,提供一种在基板上形成钝化膜的薄膜形成装置,其包括:(a)腔室,被导入包含钝化膜的原料气体的反应气体,(b)基板底板,配置于腔室内,且载置基板,(c)电极,配置于腔室内,在基板底板上的与基板相对向的面形成着槽,(d)交流电源,一边使大于或等于50kHz且小于或等于450kHz的频率的交流电力的供给以固定的周期停止,一边将该交流电力供给至基板底板与电极之间,且在基板的上表面激发包含原料气体的等离子体。
(发明的效果)
根据本发明,可提供形成钝化效果的下降得以抑制的薄膜且成膜效率高的薄膜形成装置。
附图说明
图1是表示本发明的实施方式的薄膜形成装置的构成的示意图。
图2是表示形成在本发明的实施方式的薄膜形成装置的电极的表面的槽的例子的示意图。
图3是表示所供给的电力的频率与碰撞到基板表面的离子数的关系的曲线图。
图4是表示基板温度与转换效率的关系的曲线图。
图5是表示利用本发明的实施方式的薄膜形成装置进行的薄膜形成与比较例的薄膜形成的比较的表格。
图6是表示本发明的其他实施方式的薄膜形成装置的构成的示意图。
图7是表示本发明的其他实施方式的薄膜形成装置的构成的示意图。
[符号的说明]
10:薄膜形成装置 11:腔室
12:基板底板 13:电极
14:交流电源 15:气体供给机构
16:气体排出机构 17:加热器
100:基板 110:钝化膜
120:反应气体 130:面
131:喷出孔 132:槽
141:匹配盒
具体实施方式
参照附图,对本发明的实施方式进行说明。以下的附图的记载中,对相同或类似的部分附上相同或类似的符号。其中,应留意附图为示意性的图。而且,以下所示的实施方式例示了用以将本发明的技术思想具体化的装置或方法,本发明的实施方式中,构成零件的结构、配置等并不特定为下述内容。本发明的实施方式可在权利要求中添加各种变更。
本发明的实施方式的薄膜形成装置10是在基板100上形成钝化膜110的薄膜形成装置。如图1所示,薄膜形成装置10包括:腔室11,被导入包含钝化膜110的原料气体的反应气体120;基板底板12,配置于腔室11内,且载置基板100;电极13,配置于腔室11内,在基板底板12上的与基板100相对向的面上,配置着供反应气体120通过的多个喷出孔131的开口部及形成于该开口部的周围的槽132;以及交流电源14,一边使大于或等于50kHz且小于或等于450kHz的频率的交流电力的供给以固定的周期停止,一边将该交流电力供给至基板底板12与电极13之间,且在基板100的上表面激发包含原料气体的等离子体。
反应气体120由气体供给机构15而导入至腔室11内。而且,利用气体排出机构16对腔室11内进行减压。在将腔室11内的反应气体的压力调整为规定的气压后,经由匹配盒(matching box)141,通过交流电源14将规定的交流电力供给至所设置的基板底板12与电极13之间。由此,腔室11内的包含原料气体的反应气体120被等离子体化。通过将基板100暴露于所形成的等离子体中,而在基板100的露出的表面形成所期望的薄膜。
如图1所示,在电极13的与基板100相对向的表面配置着喷出孔131的开口部与槽132,电极13作为产生空心阴极放电的空心阴极电极而发挥功能。也就是,在形成于电极13的表面的槽132中,由空心阴极效应引发电子的封入,以从槽132供给的形态而稳定地生成高密度等离子体。结果,原料气体被高效地分解,从而高速、大面积且均一地在基板100上形成钝化膜110。
图2表示如下例子:在电极13的与基板100相对向的面130上,沿着一行喷出孔131的排列方向而在喷出孔131的周围连续地形成槽132。只要配置于喷出孔131的开口部的周围,则槽132的布局(layout)中可采用各种构成。例如,还能够以在格子的交点处配置喷出孔131的开口部的方式,格子状地形成槽132。
通常,在利用空心阴极放电来激发等离子体的情况下,供给至电极间的交流电力的频率为大于或等于1MHz。因此,在使用50kHz~450kHz的频率的交流电力的薄膜形成装置10中,为了在腔室11内稳定地形成等离子体,而以固定的周期使交流电力的供给停止。
也就是,交流电源14脉冲控制对基板底板12与电极13之间的交流电力的供给,并周期性地接通/断开交流电力的供给。例如,将供给交流电力的接通时间设为600微秒,停止交流电力的供给的断开时间设为50微秒,且以接通时间与断开时间交替重复的方式,对基板底板12与电极13之间供给交流电力。另外,将接通时间设定为300微秒~1500微秒左右,断开时间设定为25微秒~50微秒左右。如果将断开时间设定得过长,则功率效率降低,因此最长的断开时间优选设定为50微秒左右。通常,在交流电力的频率为大于或等于1MHz的情况下,无须断开交流电力的供给。
薄膜形成装置10中将供给至基板底板12与电极13之间的交流电力的频率设为50kHz~450kHz,是为了在腔室11内形成有等离子体的状态下使碰撞到基板100的离子的数量增多。由此,如以下所述的那样,可增大基板100的表面及内部的钝化效果,并提高结晶硅系太阳电池的转换效率等。
例如多晶硅基板被用于结晶硅系太阳电池的基板中。多晶硅基板中,多晶硅的晶界成为缺陷。该缺陷由载体而补足,从而转换效率降低。然而,通过使氢(H)离子等与基板100发生碰撞,而可利用H离子使多晶硅内结晶的悬空键(dangling bond)终止。由此,由缺陷引起的载体的补足减少,从而钝化效果增大。结果,结晶硅系太阳电池的转换效率提高。
图3所示的曲线图表示供给至电极间的电力的频率与碰撞到基板表面的离子数的关系[明久松田等,“电源频率对GD非晶硅特性的影响(Influence of Power-Source Frequency on the Properties of GD a-Si:H)”,应用物理学日本期刊(Japanese Journal of Applied Physics),Vol.23,No.8,1984年8月,L568-L569]。如图3所示,在频率为10kHz~500kHz的情况下碰撞到基板的离子数多,而在频率为大于或等于1MHz的情况下碰撞到基板的离子数少。
因此,通过将供给至基板底板12与电极13之间的交流电力的频率设为10kHz~500kHz,相比于频率为大于或等于1MHz的情况,可使大量离子碰撞到基板100。如已说明的那样,通过使H离子等碰撞到基板100,而可增大基板100的表面及内部的钝化效果。另外,更确实来说,优选将交流电力的频率设为50kHz~450kHz。
如所述那样,根据薄膜形成装置10,通过将交流电源14供给的交流电力的频率设为50kHz~450kHz,而基板100的表面及内部的钝化效果增大。也就是,根据薄膜形成装置10,可形成钝化效果高的薄膜。由此,可提高例如太阳电池的转换效率。
以下,考虑如下情况:利用图1所示的薄膜形成装置10来形成结晶硅系太阳电池的防反射膜。也就是,基板100为结晶硅系太阳电池基板,钝化膜110为防反射膜。此时,基板100中,可采用在P型硅基板上形成着表面扩散浓度为1×1018~1×1022的n型半导体层的基板,或者可采用在n型硅基板上形成着表面扩散浓度为1×1018~1×1022的P型半导体层的基板等。而且,钝化膜110为折射率为1.3~3.0、膜厚为50nm~150nm左右的氮化硅(SiN)膜等。
为了在基板100上形成例如包含SiN膜的钝化膜110,原料气体中采用单硅烷(monosilane)、氨(ammonia)等,且作为载体气体,采用氮(N)、氢(H)、氩(Ar)、氦(He)等。
槽132的宽度设定为5mm~10mm。在利用空心阴极放电的情况下,形成于高频电极的表面的槽的宽度通常为1mm~4mm左右。薄膜形成装置10中,通过扩大槽132的宽度,而可稳定地形成等离子体。然而,如果宽度过大,则等离子体的状态容易变得不稳定,因而优选槽132的宽度不超过10mm。另外,喷出孔131的开口部的直径虽然还依存于形成在电极13的喷出孔131的数量,但一般而言为小于或等于1mm。
通常,在利用空心阴极放电的情况下,反应气体的压力为大于或等于500Pa。然而,薄膜形成装置10中,为了在腔室11内稳定地形成等离子体,而优选将包含原料气体与载体气体的反应气体120的压力设定得低至50Pa~100Pa左右。
而且,在腔室11内等离子体被激发的状态下,就实现高太阳电池转换效率(以下简称作“转换效率”)这一点而言,优选将基板100设定为250℃~550℃。如图4表示基板温度与转换效率的关系那样,基板温度为300℃~450℃时,获得15.6%~16%以上的高转换效率。
图1所示的薄膜形成装置10中,利用内置于基板底板12的加热器17,可任意地设定基板100的温度。如所述那样,通过将基板100的温度设定为300℃~450℃,而获得高转换效率。此外,更优选将基板100的温度设为400℃~450℃。
以下,图5表示如下例子:分别使用图1所示的薄膜形成装置10与比较例的薄膜形成装置,来形成钝化膜110作为结晶硅系太阳电池的防反射膜。此处,薄膜形成装置10的交流电力的频率为250kHz。比较例1中,交流电力的频率为250kHz,不使用空心阴极电极而使用平行板电极(parallel-plate electrode)。比较例2中,使用空心阴极电极,交流电力的频率为13.56MHz。另外,所制作的结晶硅系太阳电池为在多晶硅基板上形成膜厚80nm的SiN膜的结构。
如图5所示,就薄膜形成装置10与交流电力的频率为250kHz的比较例1而言,太阳电池转换效率相同。然而,比较例1的成膜速率为28nm/分钟,与此相对,使用了空心阴极电极的薄膜形成装置10的成膜速率为180nm/分钟,薄膜形成装置10的成膜效率非常高。
而且,就薄膜形成装置10与使用了空心阴极电极的比较例2而言,成膜速率相等。然而,交流电力的频率为13.56MHz的比较例2的太阳电池转换效率为16.3%,与此相对,薄膜形成装置10的太阳电池转换效率为16.5%,要大于比较例2。也就是,交流电力的频率高的比较例2中钝化效果的下降大,从而转换效率降低。另一方面,薄膜形成装置10中,与比较例2相比,钝化效果的下降得到抑制,从而获得高转换效率。
因此,薄膜形成装置10中,通过供给低频率的交流电极而获得高太阳电池转换效率,且通过使用空心阴极电极而实现高成膜效率。
如以上所说明的那样,本发明的实施方式的薄膜形成装置10中,使用频率为50kHz~450kHz的交流电力,而可实现利用了空心阴极放电的成膜。结果,可提供形成钝化效果的下降得以抑制的薄膜且成膜效率高的薄膜形成装置10。
已如所述那样,由实施方式记载了本发明,但应理解为成为该公开内容的一部分的论述及附图并不限定本发明。根据该公开内容,对于本领域技术人员而言,应易知各种代替实施方式、实施例及运用技术。
图1中表示了如下例子:反应气体120通过电极13的内部,并且反应气体120从形成于电极13的表面的喷出孔131的开口部向腔室11内喷出。然而,在电极13并非为如所述那样的喷淋板(shower plate)型电极的情况下,也可使用本发明。
例如,如图6所示,也可使反应气体120不通过电极13的内部,而使反应气体120从气体供给机构15直接向腔室11内导入。图6所示的薄膜形成装置10中,表面形成着槽132的电极13也作为空心阴极电极而发挥功能。也就是,在形成于电极13的表面的槽132中,由空心阴极效应而引发电子的封入,从而稳定地生成高密度等离子体。结果,原料气体被高效地分解,高速、大面积且均一地在基板100上形成钝化膜110。另外,与图1所示的薄膜形成装置10同样地,在图6所示的薄膜形成装置10中,槽132的布局中也可采用各种构成。也就是,槽132既可格子状地形成,也可条纹状地形成。
而且,如图7所示,本发明也可适用于存在多个配置有基板100的位置的薄膜形成装置10。图7所示的例子中,基板底板12及电极13形成具有相互沿纸面分别朝上下方向延伸的多个齿部分的梳形形状,基板底板12与电极13的梳的齿部分交叉指状地配置着。基板100分别搭载于基板底板12的与电极13相对向的多个齿部分。
而且,从气体供给机构15向垂直地配置着多个基板100的图7的腔室11内导入反应气体120。在电极13的齿部分的表面形成着槽132,电极13作为空心阴极电极而发挥功能。在图7所示的例子中,槽132贯通电极13的齿部分而形成。根据图7所示的薄膜形成装置10,可同时在多个基板100上形成钝化膜。
这样,本发明当然包含此处未记载的各种实施方式等。因此,本发明的技术范围根据所述说明而仅由合理的权利要求的发明特定事项来规定。
产业上的可利用性
本发明的薄膜形成装置可用于形成钝化效果的下降得以抑制的薄膜的用途中。

Claims (9)

1.一种薄膜形成装置,在基板上形成钝化膜,其特征在于包括:
腔室,被导入包含所述钝化膜的原料气体的反应气体;
基板底板,配置于所述腔室内,且载置所述基板;
电极,配置于所述腔室内,在所述基板底板上的与所述基板相对向的面形成槽;以及
交流电源,一边使大于或等于50kHz且小于或等于450kHz的频率的交流电力的供给以固定的周期停止,一边将所述交流电力供给至所述基板底板与所述电极之间,且在所述基板的上表面激发包含所述原料气体的等离子体,
其中,在所述电极的所述槽中,产生空心阴极放电,同时以所述固定的周期使所述交流电力的供给停止,借此在所述腔室内使得所述等离子体稳定。
2.根据权利要求1所述的薄膜形成装置,其特征在于:
在形成于所述电极的所述槽的底部,形成供所述反应气体通过的多个喷出孔的开口部。
3.根据权利要求1所述的薄膜形成装置,其特征在于:
所述交流电力的供给停止的时间为大于或等于25微秒且小于或等于50微秒。
4.根据权利要求1所述的薄膜形成装置,其特征在于:
所述槽的宽度为大于或等于5mm且小于或等于10mm。
5.根据权利要求1所述的薄膜形成装置,其特征在于:
还包括加热装置,所述加热装置在所述等离子体被激发的状态下,将所述基板设定为大于或等于300℃且小于或等于450℃。
6.根据权利要求1所述的薄膜形成装置,其特征在于:
所述腔室内的所述反应气体的压力设定为大于或等于50Pa且小于或等于100Pa。
7.根据权利要求1所述的薄膜形成装置,其特征在于:
所述基板为结晶硅系太阳电池基板。
8.根据权利要求7所述的薄膜形成装置,其特征在于:
形成于所述基板上的所述钝化膜为结晶硅系太阳电池的防反射膜。
9.根据权利要求1所述的薄膜形成装置,其特征在于:
形成于所述基板上的所述钝化膜的成膜速度为大于或等于180nm/分钟。
CN201180069697.2A 2011-05-20 2011-09-22 薄膜形成装置 Expired - Fee Related CN103534383B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011113241 2011-05-20
JP2011-113241 2011-05-20
PCT/JP2011/071655 WO2012160718A1 (ja) 2011-05-20 2011-09-22 薄膜形成装置

Publications (2)

Publication Number Publication Date
CN103534383A CN103534383A (zh) 2014-01-22
CN103534383B true CN103534383B (zh) 2016-08-17

Family

ID=47216816

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180069697.2A Expired - Fee Related CN103534383B (zh) 2011-05-20 2011-09-22 薄膜形成装置

Country Status (4)

Country Link
JP (1) JPWO2012160718A1 (zh)
KR (1) KR101535582B1 (zh)
CN (1) CN103534383B (zh)
WO (1) WO2012160718A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101602517B1 (ko) 2008-08-04 2016-03-10 에이지씨 플랫 글래스 노스 아메리카, 인코퍼레이티드 Pecvd를 이용한 박막 코팅을 증착하기 위한 플라즈마 소스 및 방법
CN107852805B (zh) * 2014-12-05 2020-10-16 Agc玻璃欧洲公司 空心阴极等离子体源
MY191327A (en) 2014-12-05 2022-06-16 Agc Flat Glass Na Inc Plasma source utilizing a macro-particle reduction coating and method of using a plasma source utilizing a macro-particle reduction coating for deposition of thin film coatings and modification of surfaces
WO2016195986A1 (en) * 2015-06-05 2016-12-08 Applied Materials, Inc. Process chamber
JP6565502B2 (ja) * 2015-09-03 2019-08-28 株式会社島津製作所 成膜装置及び成膜方法
US9721765B2 (en) 2015-11-16 2017-08-01 Agc Flat Glass North America, Inc. Plasma device driven by multiple-phase alternating or pulsed electrical current
US10573499B2 (en) 2015-12-18 2020-02-25 Agc Flat Glass North America, Inc. Method of extracting and accelerating ions
CN109576669A (zh) * 2018-12-19 2019-04-05 北京建筑大学 一种空心阴极放电系统及制备类金刚石薄膜的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101874293A (zh) * 2008-02-26 2010-10-27 株式会社岛津制作所 等离子体成膜方法以及等离子体cvd装置
CN102002687A (zh) * 2009-09-02 2011-04-06 应用材料股份有限公司 在具有喷头的等离子体增强化学汽相沉积系统中通过背面扩散实现气体混合的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093843A (ja) * 1999-09-27 2001-04-06 Kanegafuchi Chem Ind Co Ltd プラズマcvd装置およびシリコン系薄膜光電変換装置の製造方法
DE10326135B4 (de) * 2002-06-12 2014-12-24 Ulvac, Inc. Entladungsplasma-Bearbeitungsanlage
JP3837539B2 (ja) * 2003-03-25 2006-10-25 独立行政法人産業技術総合研究所 プラズマcvd装置
JP5105898B2 (ja) * 2007-02-21 2012-12-26 株式会社アルバック シリコン系薄膜の成膜方法
JP5018688B2 (ja) * 2008-08-08 2012-09-05 株式会社島津製作所 成膜装置及び成膜方法
JP5496568B2 (ja) * 2009-08-04 2014-05-21 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101874293A (zh) * 2008-02-26 2010-10-27 株式会社岛津制作所 等离子体成膜方法以及等离子体cvd装置
CN102002687A (zh) * 2009-09-02 2011-04-06 应用材料股份有限公司 在具有喷头的等离子体增强化学汽相沉积系统中通过背面扩散实现气体混合的方法

Also Published As

Publication number Publication date
CN103534383A (zh) 2014-01-22
KR20130135351A (ko) 2013-12-10
JPWO2012160718A1 (ja) 2014-07-31
KR101535582B1 (ko) 2015-07-09
WO2012160718A1 (ja) 2012-11-29

Similar Documents

Publication Publication Date Title
CN103534383B (zh) 薄膜形成装置
CN100426474C (zh) 半导体工艺的成膜方法和装置
CN101542749B (zh) 太阳能电池的制造方法及太阳能电池的制造装置
CN103354202B (zh) 等离子处理装置
US20100144122A1 (en) Hybrid chemical vapor deposition process combining hot-wire cvd and plasma-enhanced cvd
CN106133884A (zh) 无卤素气相硅蚀刻
US7589002B2 (en) Method of forming an oxygen- or nitrogen-terminated silicon nanocrystalline structure and an oxygen- or nitrogen-terminated silicon nanocrystalline structure formed by the method
US20130192759A1 (en) Plasma processing device
US20100323503A1 (en) Integrated emitter formation and passivation
US20130295709A1 (en) Method for manufacturing photoelectric conversion elements
CN101558183A (zh) 等离子体沉浸离子注入工艺
KR20060117134A (ko) 결정질 실리콘 증착을 위한 화학기상증착장치
TW201415540A (zh) 電漿處理方法及電漿處理裝置
CN101233621A (zh) 用于钝化衬底表面的方法
KR20010030355A (ko) 플라즈마 장치 및 플라즈마 cvd 성막 방법
US8704445B2 (en) Method for improving uniformity of high-frequency plasma discharge by means of frequency modulation
JP2008045180A (ja) Dlc膜の形成方法及びdlc膜の製造装置
CN105378938A (zh) 太阳能电池的制造方法
KR20100055618A (ko) 샤워헤드 및 이를 구비하는 플라즈마 처리장치
KR101402741B1 (ko) 양자점 형성 방법
CN109868459A (zh) 一种半导体设备
JP2011109141A (ja) プラズマcvd装置及びプラズマcvd装置を用いたシリコン系膜の製造方法
JP4133490B2 (ja) 成膜方法
JP4036299B2 (ja) 薄膜の形成方法および半導体デバイスの製造方法
JP2006019593A (ja) アモルファス太陽電池の成膜装置、及び、その製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160817

Termination date: 20180922

CF01 Termination of patent right due to non-payment of annual fee