WO2012157748A1 - 固体酸化物形燃料電池セル及び固体酸化物形燃料電池セルの製造方法 - Google Patents

固体酸化物形燃料電池セル及び固体酸化物形燃料電池セルの製造方法 Download PDF

Info

Publication number
WO2012157748A1
WO2012157748A1 PCT/JP2012/062790 JP2012062790W WO2012157748A1 WO 2012157748 A1 WO2012157748 A1 WO 2012157748A1 JP 2012062790 W JP2012062790 W JP 2012062790W WO 2012157748 A1 WO2012157748 A1 WO 2012157748A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
solid oxide
fuel
electrode layer
fuel electrode
Prior art date
Application number
PCT/JP2012/062790
Other languages
English (en)
French (fr)
Inventor
光伸 塩野
正紀 古屋
稔 ▲高▼塩
安藤 茂
大 白▲濱▼
めぐみ 島津
川上 晃
Original Assignee
Toto株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto株式会社 filed Critical Toto株式会社
Priority to US14/118,168 priority Critical patent/US20140087282A1/en
Priority to JP2013515222A priority patent/JP5858249B2/ja
Priority to CN201280023995.2A priority patent/CN103548191B/zh
Priority to EP12785959.3A priority patent/EP2712011B1/en
Publication of WO2012157748A1 publication Critical patent/WO2012157748A1/ja
Priority to US15/149,746 priority patent/US20160254561A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1231Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8864Extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8875Methods for shaping the electrode into free-standing bodies, like sheets, films or grids, e.g. moulding, hot-pressing, casting without support, extrusion without support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/002Shape, form of a fuel cell
    • H01M8/004Cylindrical, tubular or wound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/126Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2428Grouping by arranging unit cells on a surface of any form, e.g. planar or tubular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/243Grouping of unit cells of tubular or cylindrical configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a solid oxide fuel cell and a method for producing a solid oxide fuel cell.
  • the solid oxide fuel cell is formed by sandwiching a solid electrolyte region between a fuel electrode and an air electrode.
  • a fuel gas containing hydrogen is caused to flow on the fuel electrode side of the solid oxide fuel cell, and air as an oxidant gas is caused to flow on the air electrode side to cause a power generation reaction.
  • solid oxide fuel cells there are various types of solid oxide fuel cells.
  • a solid oxide fuel cell in which a fuel gas flow path is provided inside the solid oxide fuel cell and an electric power generation reaction is caused by flowing air to the outside (for example, Japanese Patent Laid-Open No. 2006-2006). No. 302709).
  • a configuration is known in which external air and fuel are mixed and burned at the outlet side opening of the fuel gas flow path. (For example, JP 2010-277845 A)
  • the fuel electrode When operating a solid oxide fuel cell, the fuel electrode is exposed to a reducing atmosphere because fuel gas is supplied to the fuel electrode side. However, if the supply of fuel gas is stopped when the operation is stopped, air may flow into the fuel electrode side from the opening on the outlet side of the fuel gas flow path in a high temperature state. At this time, oxidative expansion occurred in the fuel electrode, and as a result, there was a problem that a crack or cell breakage occurred in the electrolyte.
  • the reformer provided in the front stage of the solid oxide fuel cell is used.
  • the reforming reaction becomes unstable, and C2 or higher fuel gas such as ethane may flow into the fuel electrode gas flow path of the solid oxide fuel cell.
  • the fuel electrode causes coking. That is, carbon adheres to the catalyst surface portion of the fuel electrode, hinders reaction with the fuel gas, and reduces the conductivity of the fuel electrode.
  • the fuel electrode acts as a structural support for the cell, it reacts with the fuel electrode and causes expansion. As a result, there has been a problem that the fuel electrode deteriorates.
  • the present invention has been made in view of such problems, and the object of the present invention is to provide a solid oxide that can prevent electrolyte cracking and cell breakage even when air flows into the fuel electrode side when the fuel cell is stopped.
  • the object is to provide a physical fuel cell.
  • the present inventors do not cause any problems even if the amount of oxidative expansion is large. Experimentally found that there is a cell. Accordingly, as a result of further examination in detail from the viewpoint of oxidative expansion, the inventors have found that it is effective to suppress the oxidative expansion rate for several minutes after the supply of fuel gas is stopped. That is, the present inventors have found that the speed of expansion is a point, not the size of expansion due to oxidation, and have reached the present invention.
  • a solid oxide fuel cell according to the present invention is a solid oxide fuel cell, comprising a fuel gas channel and an iron group provided around the fuel gas channel.
  • a fuel electrode layer comprising an element and ceramics, a solid electrolyte layer provided around the fuel electrode layer, and an air electrode layer provided around the solid electrolyte layer, wherein the fuel gas is In the high temperature state where the temperature of the solid oxide fuel cell is supplied from one side of the fuel gas flow channel and discharged from the opening provided on the other side of the fuel gas flow channel and close to the power generation temperature, the opening
  • An expansion rate suppression process is performed to suppress the rate of oxidative expansion of the fuel electrode layer that occurs when an oxidant gas flows in from.
  • it since it is “provided around”, it is not necessary to be provided around the entire periphery, and it is sufficient that it is provided even partially around the periphery.
  • the oxidative expansion rate can be suppressed for several minutes after the supply of fuel gas is stopped.
  • the shutdown stop means that the gas supply is automatically stopped by the alarm device of the microcomputer meter.
  • the high temperature state where the temperature of the solid oxide fuel cell is close to the power generation temperature refers to a state where the temperature of the cell is in the range of 500 to 800 ° C. Further, the temperature is preferably 550 to 700 ° C.
  • the solid oxide fuel cell of the present invention has a linear expansion coefficient per minute of the fuel electrode in a period after the oxidant gas starts to flow from the opening. 0.09% or less.
  • the linear expansion coefficient per minute of the fuel electrode is 0.04% or less. By doing so, the load due to cell expansion to the current collector that is in close contact with the cell is reduced, and it is possible to prevent current collection loss due to poor adhesion when the shutdown stop is repeated. More preferably, it is 0.03% or less. By making such a range, a rapid stress change due to oxidative expansion at a local site such as a gas seal portion can be suppressed, so that a seal failure can be caused when configuring a system that repeats shutdown stop more than 100 times. It becomes possible to prevent.
  • the fuel electrode layer of the solid oxide fuel cell of the present invention comprises a slurry liquid in which a powder made of the metal oxide of the iron group element and a powder made of the ceramic are dispersed in a solvent. It is obtained from a dried composite material, and the expansion rate suppression treatment includes a step of performing a treatment for reducing the dispersed particle size of the slurry liquid to less than 10 ⁇ m.
  • the “powder made of ceramics” is a powder as a raw material for obtaining a molded body.
  • the fuel cell which can suppress the expansion
  • the dispersed particle size of the slurry liquid is preferably 3 ⁇ m or less, more preferably 1 ⁇ m or less. Moreover, it is preferable that it is 50 nm or more.
  • the particles of the fuel electrode can be more uniformly dispersed and the expansion speed of the fuel electrode layer can be further suppressed. Even in a module that is operated with a temperature variation of 0 ° C., it is possible to suppress variations in the expansion rate, and to effectively suppress cracking of the electrolyte and cell damage even when repeatedly shutting down.
  • the fuel electrode layer is formed by extruding a composite material obtained by drying a slurry liquid in which a powder made of a metal oxide of an iron group element and a powder made of a ceramic are dispersed in a solvent.
  • the expansion rate suppression treatment includes a step of applying shear to the composite material during extrusion to form primary particles.
  • primary particle formation is to increase the proportion of primary particles by adding shear to the powder of the composite material to such an extent that it can be crushed.
  • the composite material is formed by extrusion means that the composite material is mixed with additives such as an organic binder, water, and a plasticizer, and is extruded by a wet process.
  • the aggregated particles are dispersed into primary particles, and the particles constituting the fuel electrode layer can be uniformly filled, so that the expansion rate of the fuel electrode layer is suppressed, and cracking of the electrolyte and cell damage are effectively suppressed. It is possible to provide a fuel cell that can be used.
  • the microstructure of the fuel electrode layer is further optimized, and the ceramic particles that form the skeleton of the fuel electrode layer and the metal oxide particles that oxidize and expand are uniformly arranged in a network. Therefore, the expansion occurs uniformly, and it is possible to effectively suppress the cracking and cell breakage of the electrolyte even when the shutdown stop is repeated.
  • the fuel electrode of the present invention is characterized in that the iron group element is nickel.
  • the electron conductivity of the fuel electrode layer exposed to the reducing atmosphere is secured, and at the same time, nickel is less oxidized than cobalt and iron, so the fuel electrode in a high temperature state close to the power generation temperature.
  • a fuel cell capable of suppressing the rate of oxidative expansion of the layer can be provided.
  • the fuel electrode of the present invention is characterized in that the ceramic is stabilized zirconia.
  • the fuel electrode of the present invention is characterized in that the stabilized zirconia is yttria stabilized zirconia.
  • the ceramic of the fuel electrode of the present invention is preferably stabilized zirconia.
  • Stabilizers include calcia, scandia, yttria and the like.
  • Yttria-stabilized zirconia is more preferable from the viewpoint of increasing the skeleton strength of the fuel electrode and making it difficult to damage the cell when the fuel electrode undergoes oxidative expansion.
  • yttria-stabilized zirconia is preferable as the ceramic for the fuel electrode from the viewpoint of excellent strength as a support and high stability.
  • the opening of the present invention is characterized in that an oxidant gas inflow suppressing part for increasing pressure loss with respect to the inflow of oxidant gas into the opening is provided.
  • the oxidant gas inflow suppression portion includes an oxidant gas inflow suppression passage and a body portion.
  • the oxidant gas inflow suppression channel is a gas channel having an opening cross-sectional area smaller than the opening of the fuel gas channel.
  • the cross-sectional shape of the oxidant gas inflow suppression channel is not particularly limited, and may be circular or polygonal. A plurality of cross-sectional areas may be used as long as the total cross-sectional area is smaller than the cell opening cross-sectional area.
  • the fuel gas channel is shielded from the oxidant gas around the cell so that the fuel gas channel can flow only from the suppression channel.
  • the body portion can also fix the oxidant gas inflow suppression channel to the cell.
  • a gas seal function can be provided by sandwiching the seal portion between the body portion and the cell.
  • the trunk portion is provided so as to cover at least the opening, and may cover the periphery of the cell or may cover the end of the cell. Moreover, you may cover both of them.
  • the pressure loss for the inflow of the oxidant gas at the opening is high, so that the temperature of the solid oxide fuel cell is close to the power generation temperature. It becomes difficult for the oxidant gas to flow in from the opening, and the oxidative expansion of the fuel electrode layer can be suppressed. As a result, it is possible to prevent electrolyte cracks and cell breakage due to shutdown stop.
  • the oxidant gas inflow suppression portion of the present invention includes an oxidant gas inflow suppression channel having a smaller cross-sectional area than the opening, and the oxidant gas inflow suppression channel is the fuel gas. It is characterized by communicating with the flow path.
  • the oxidant gas inflow suppression portion includes at least a trunk portion that covers the opening, and a reduced diameter portion that extends so as to protrude from the trunk portion and is smaller in diameter than the trunk portion.
  • the reduced diameter portion is a gas flow channel obtained by extending the oxidant gas inflow suppression channel from the body portion of the oxidant gas inflow suppression unit to the outside of the cell.
  • the opening cross-sectional area of the reduced diameter portion has an opening cross-sectional area smaller than the opening of the fuel gas flow channel, like the oxidant gas inflow suppression flow channel.
  • the reduced diameter portion has a function of further increasing the pressure loss with respect to the oxidant gas and further suppressing the inflow of oxygen to the fuel electrode side.
  • the reduced diameter portion may be provided in the oxidant gas inflow suppressing portion or may not be provided.
  • the reduced diameter portion may be formed integrally with the body portion, or may be formed anywhere on the body portion. The shape of the reduced diameter portion may be stretched or bent.
  • the material for the oxidant gas inflow suppression channel, the reduced diameter portion, and the body portion is not particularly limited.
  • an iron chromium type alloy, a nickel chromium type alloy, etc. are mentioned.
  • the oxidant gas inflow suppressing portion is configured to have an electrode terminal (on the fuel electrode side) by making the body portion conductive. It can also serve as an inner electrode terminal.
  • the fuel cell system of the present invention includes the solid oxide fuel cell described above.
  • the oxidative expansion rate after the supply of fuel gas is stopped particularly the oxidative expansion rate for the first few minutes, can be suppressed. Even if air flows from the portion to the fuel electrode side, cracking of the electrolyte and cell damage can be effectively suppressed.
  • FIG. 1 is an overall configuration diagram showing a solid oxide fuel cell system according to an embodiment of the present invention.
  • 1 is a diagram illustrating a solid oxide fuel cell stack according to an embodiment of the present invention. It is a figure which shows the solid oxide fuel cell unit by one Embodiment of this invention. It is side surface sectional drawing which shows the fuel cell module of the solid oxide fuel cell system by one Embodiment of this invention.
  • FIG. 6 is a sectional view taken along line III-III in FIG. 5. It is a figure which shows the time change of oxidation expansion amount. It is a figure which shows the linear expansion coefficient per minute. It is a figure which shows the fuel micro structure after the shutdown test of the solid oxide fuel cell which is not the implementation object of this invention.
  • FIG. 1 shows one embodiment of a cross section of a unit cell in a solid oxide fuel cell of the present invention, and shows a type using a fuel electrode as a support.
  • the solid oxide fuel cell according to the present invention includes, for example, a fuel electrode support 1 (for example, a composite of Ni and / or NiO and a zirconium-containing oxide doped with Y 2 O 3 ) and the surface of the fuel electrode support.
  • a first layer 2a (for example, a cerium-containing oxide represented by Ce 1-x La x O 2 (where 0.30 ⁇ x ⁇ 0.50)) in the solid electrolyte layer 2, and a solid electrolyte
  • the layer 2 includes a second layer 2b (lanthanum gallate oxide) and an air electrode 3 (for example, lanthanum cobalt oxide or samarium cobalt oxide) formed on the surface of the solid electrolyte.
  • the solid electrolyte layer in the present invention is not particularly limited as long as oxygen ions necessary for power generation can be transported from the air electrode side to the fuel electrode side. If the solid electrolyte layer is an electrolyte layer containing a lanthanum gallate oxide, power generation can be performed at a lower power generation temperature (550 to 700 ° C.), so that the oxidation of the fuel electrode layer is less likely to occur, electrolyte cracks and cells It is more preferable because damage can be effectively suppressed.
  • the solid electrolyte layer may have a two-layer structure of a cerium-containing oxide and a lanthanum gallate oxide represented by, for example, Ce 1-x La x O 2 (where 0.30 ⁇ x ⁇ 0.50).
  • the cerium-containing oxide of the first layer has a reactivity with the second layer made of lanthanum gallate oxide.
  • those represented by the general formula Ce 1-x La x O 2 (where 0.30 ⁇ x ⁇ 0.50) are preferable.
  • the optimum doping amount of La varies within the above range depending on the composition of the lanthanum gallate oxide used in the second layer, but the lanthanum gallate oxide having a high oxygen ion conductivity in the second layer (for example, the general formula la 1-a Sr a Ga 1 -bc Mg b Co c O 3 ( where, 0.05 ⁇ a ⁇ 0.3,0 ⁇ b ⁇ 0.3,0 ⁇ c ⁇ 0.15) lanthanum represented by In view of the use of (gallate oxide), the doping amount of La is more preferably 0.35 ⁇ x ⁇ 0.45.
  • the composition of the lanthanum gallate oxide is La 0.8 Sr 0.2 Ga 0.8 Mg 0.2 O 3 or La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 3 , 0.4 ⁇ x ⁇ 0.45 is more preferable.
  • a sintering aid may be added to the cerium-containing oxide layer.
  • the sintering aid to be added is one that improves the denseness of the cerium-containing oxide layer and is less affected by the reaction with surrounding materials. As a result of various studies of the sintering aid, we have found that it is effective for the Ga element.
  • the Ga element source for example, gallium oxide (Ga 2 O 3 ) or a gallium compound that becomes Ga 2 O 3 during the firing step is preferable.
  • 0 ⁇ X ⁇ 5 when the content of Ga element contained in the cerium-containing oxide layer is Xwt% in terms of oxide. This is because the cerium-containing oxide layer becomes denser by limiting to the above range, and thus the reaction between the support and the lanthanum gallate oxide layer can be effectively suppressed, and the resistance in the cerium-containing oxide layer This is because the loss is reduced.
  • a more preferable range of X is 0.3 ⁇ X ⁇ 2.0. This is because, in addition to the above effect, the electrical conductivity of the cerium-containing oxide itself is improved, so that the resistance loss in the first layer is further reduced.
  • the film thickness of the cerium-containing oxide is preferably 3 to 50 ⁇ m. Further, 3 to 40 ⁇ m is more preferable.
  • the thickness of the cerium-containing oxide layer is preferably as thin as possible within a range that can sufficiently prevent the reaction between the support and the lanthanum gallate oxide layer.
  • the film thickness of the lanthanum gallate oxide is preferably 20 to 70 ⁇ m, more preferably 20 to 50 ⁇ m.
  • the lanthanum gallate oxide layer has a thickness of 20 ⁇ m or more, which makes it difficult for the cracks of the electrolyte to occur due to stress due to the oxidative expansion of the fuel electrode, while the lanthanum gallate oxide layer has a thickness of less than 70 ⁇ m. This is because the influence of the resistance loss in the physical layer can be reduced, and the influence of the resistance loss in the lanthanum gallate oxide layer can be further reduced by setting the thickness to 50 ⁇ m or less.
  • the solid oxide fuel cell of the present invention is not limited to a structure in which the solid electrolyte and the fuel electrode layer are in direct contact.
  • the fuel electrode layer is a support, and the catalytic activity is between the support and the electrolyte. It is also possible to provide a fuel electrode catalyst layer with an increased height. This is preferable because it reduces the stress on the electrolyte membrane caused by the oxidative expansion of the fuel electrode. Considering a balance from the viewpoint of stress relaxation and catalyst activity, the porosity of the fuel electrode catalyst layer is preferably 20 to 50% in the operating state.
  • the fuel electrode catalyst layer is preferably a mixture of NiO and CeO 2 -based material. NiO is reduced to Ni during operation.
  • the CeO 2 -based material a material obtained by doping CeO 2 with 10 to 20 mol% of Gd is preferable.
  • the mixing ratio is preferably a mixture of NiO and CeO 2 based material in a weight ratio of 40:60 to 60:40.
  • the film thickness of the fuel electrode catalyst layer is preferably about 5 to 30 ⁇ m. This is because when the thickness is 5 ⁇ m or more, the catalytic activity of the fuel electrode catalyst layer effectively works, and when the thickness is 30 ⁇ m or less, film peeling can be suppressed during film formation. From the viewpoint of relieving stress due to oxidative expansion of the fuel electrode and preventing cracking of the electrolyte, about 10 to 30 ⁇ m is more preferable.
  • the fuel electrode layer of the present invention includes an iron group element and ceramics.
  • As the fuel electrode layer it is preferable to use a material having high electron conductivity in the fuel atmosphere of the solid oxide fuel cell and capable of efficiently performing the reactions (1) and (2).
  • preferable iron group elements include nickel, iron, and cobalt. Of these, nickel is more preferable. By using nickel, the electron conductivity of the fuel electrode layer exposed to the reducing atmosphere is ensured, and at the same time, nickel is less oxidized than iron and cobalt, making it difficult to cause electrolyte cracking and cell damage due to oxidative expansion. It becomes possible. Furthermore, since nickel is superior in catalytic activity against hydrogen in fuel gas compared to iron, the reaction of formula (1) can be performed more efficiently.
  • the ceramic forming the fuel electrode layer of the present invention is not particularly limited as long as it forms a skeleton of the fuel electrode layer and can secure the strength of the fuel electrode layer.
  • an oxide having oxygen ion conductivity is preferable.
  • oxygen ion conductive oxides used in the electrolyte are more preferable.
  • zirconium-containing oxide, cerium-containing oxide, lanthanum gallate oxide Etc is more preferable.
  • zirconium-containing oxide for example, stabilized zirconia doped with one or more of CaO, Y 2 O 3 , and Sc 2 O 3 is preferable. More preferred is yttria stabilized zirconia (YSZ).
  • YSZ yttria stabilized zirconia
  • Yttria-stabilized zirconia is less reactive with other materials than calcia-stabilized zirconia and is less expensive than scandia-stabilized zirconia, which is advantageous when considering the durability and cost of fuel cells. From the viewpoint, it is more preferable.
  • cerium-containing oxide represented by the general formula Ce 1-y Ln y O 2 (where, Ln is La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc , Y, or a combination of two or more, 0.05 ⁇ y ⁇ 0.50).
  • Ln is La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc , Y, or a combination of two or more, 0.05 ⁇ y ⁇ 0.50.
  • the cerium-containing oxide is reduced in a fuel atmosphere, Ce 4+ becomes Ce 3+ , and electron conductivity is expressed by surplus electrons. Therefore , the conductive species becomes a mixed conductor of electrons and oxygen ions.
  • the lanthanum gallate oxide is not particularly limited, but La 1-a Sr a Ga 1-bc Mg b Co c O 3 (however, in order to perform the reaction of the formulas (1) and (2) more efficiently) 0.05 ⁇ a ⁇ 0.3, 0 ⁇ b ⁇ 0.3, 0 ⁇ c ⁇ 0.15).
  • Examples of the material for forming the fuel electrode layer of the present invention include NiO / zirconium-containing oxide, NiO / cerium-containing oxide, NiO / lanthanum gallate oxide, and the like.
  • NiO / zirconium-containing oxide, NiO / cerium-containing oxide, and NiO / lanthanum gallate oxide include NiO and zirconium-containing oxide, NiO and cerium-containing oxide, and NiO and lanthanum gallate oxide, respectively. , Refers to those uniformly mixed at a predetermined ratio. Further, since NiO is reduced to Ni in the fuel atmosphere, the mixture becomes Ni / zirconium-containing oxide, Ni / cerium-containing oxide, and Ni / lanthanum gallate oxide, respectively.
  • the fuel electrode layer of the present invention can be produced by forming a molded body using a powder composed of a metal oxide of an iron group element and a powder composed of a ceramic as raw materials.
  • the powder consisting of a metal oxide of an iron group element and the powder consisting of ceramics referred to here are powders as raw materials for obtaining a molded body, respectively, and before firing in the production of a solid oxide fuel cell. Refers to things.
  • the mixing ratio of the powder made of metal oxide of iron group element and the powder made of ceramics can be considered from the fact that the electronic conductivity necessary for power generation can be secured and the thermal expansion coefficient of the electrolyte membrane is combined.
  • a weight ratio of 30:70 to 75:25 is preferred.
  • the fuel electrode oxidizes and expands when exposed to air.
  • the mixing ratio of the oxide powder and the ceramic powder is more preferably 55:45 to 75:25 by weight.
  • the mixing ratio after firing is almost the same as the mixing ratio of the powder.
  • the average particle diameter ratio of the iron group element metal oxide and the ceramic is preferably 1.00 to 3.30 times, more preferably 1.00 to 1.25 times. By making the particle size ratio such as this, the expansion due to the oxidative expansion of the fuel electrode can be made more uniform throughout the fuel electrode, so that it is possible to prevent cracking of the electrolyte and cell damage even when repeatedly shutting down. Is possible. It should be noted that the particle size of the iron group element metal oxide and the ceramic may be larger, and may be the same.
  • the average particle size of the iron group element metal oxides and ceramics is determined by the following method. After the cell piece cut out of a part of the cell is embedded in the resin, polishing is performed so that the cross section of the cell is exposed. For the polishing, cross-sectional ion milling is performed. The backscattered electron image of the processed fuel electrode layer on the processed surface is observed with a high resolution field emission scanning electron microscope (FE-SEM) equipped with an annular backscattered electron detector. The acceleration voltage is observed at 25 kV. In the reflected electron image, particles containing an element having a higher atomic number are observed brighter. On the other hand, particles with smaller atomic numbers are observed relatively dark.
  • FE-SEM field emission scanning electron microscope
  • the particles are classified into metal oxides of iron group elements and ceramics, and the size of each particle is measured.
  • the diameter is the particle diameter
  • the length of one side is calculated as the particle diameter. The observation was calculated from the average of the particle diameters of 100 arbitrary particles measured at an arbitrary magnification and measured in the 3rd to 97th ranges when arranged in order of decreasing diameter.
  • the dispersed particle size of the slurry liquid of the present invention can be measured by the following method. That is, a slurry liquid in which a powder made of a metal oxide of an iron group element and a powder made of ceramics are dispersed in a solvent is prepared. Further, this slurry liquid is dropped on a small-capacity sample circulator (model MICROTRAC-SVR-SC) of Nikkiso Co., Ltd.'s Microtrac particle size measuring device MT3300EX and measured by a laser diffraction / scattering method based on JIS R1629.
  • the dispersed particle diameter is a volume average particle diameter calculated by volume average, and is an average value of two measurements.
  • Microtrack particle size analyzer Ver.10.1.2-018SD is used as the analysis software.
  • the circulation pump speed is set to a circulation flow rate of 3.0 to 4.2 L / min, and measurement is performed without using a stirring blade and ultrasonic waves in the dispersion tank.
  • the solvent of the slurry liquid is water
  • the solvent refractive index is 1.333
  • the powder refractive index is 1.81
  • the measurement is performed with a Setzero time of 30 seconds and a measurement time of 30 seconds.
  • the dispersed particle diameter of the slurry liquid is the volume average particle diameter of the secondary particles dispersed in the slurry at this time.
  • the smaller the dispersed particle size the more the powder in the solvent does not aggregate locally, indicating that the powder is more uniformly dispersed.
  • a composite material for forming a fuel electrode can be obtained by drying the slurry liquid.
  • the drying method is not particularly limited as long as it is a method that evaporates moisture while maintaining a uniformly dispersed state of particles in the slurry liquid.
  • spray drying is performed by spraying the slurry liquid into a gas and rapidly drying it to produce a dry powder. Preferably by the method.
  • the firing method for producing the cells of the solid oxide fuel cell according to the present invention by a sintering method is not particularly limited as long as a high output can be obtained. That is, a sequential firing method may be used, or a co-firing method in which at least two kinds, preferably all members are sintered at once may be used. However, in consideration of mass productivity, the co-firing method is preferable because the man-hour is reduced.
  • a step of preparing a fuel electrode or air electrode support body and calcining at 800 ° C. to 1200 ° C., and forming a solid electrolyte layer on the surface of the obtained calcined body 1200 A cell manufacturing method comprising a step of co-sintering with a support at a temperature of 1 ° C. to 1400 ° C. and a step of forming another electrode on the surface of the sintered solid electrolyte layer and sintering at 800 ° C. to 1200 ° C. is preferable.
  • the sintering temperature at the time of co-firing of the support and the electrolyte is more preferably from 1250 ° C. to 1350 ° C. from the viewpoint of suppressing the diffusion of metal components from the support and obtaining a solid electrolyte layer having no gas permeability. .
  • the solid oxide fuel cell system according to the present invention is not particularly limited as long as it is provided with the solid oxide fuel cell according to the present invention. it can.
  • FIG. 2 is an overall configuration diagram showing a solid oxide fuel cell system according to an embodiment of the present invention.
  • a solid oxide fuel cell system 1 according to an embodiment of the present invention includes a fuel cell module 2 and an auxiliary unit 4.
  • the fuel cell module 2 includes a housing 6, and a sealed space 8 is formed in the housing 6 through heat insulation. In addition, you may make it not provide a heat insulating material.
  • a fuel cell assembly 12 that performs a power generation reaction with fuel gas and an oxidant (air) is disposed in a power generation chamber 10 that is a lower portion of the sealed space 8.
  • the fuel cell assembly 12 includes ten fuel cell stacks 14 (see FIG. 3), and the fuel cell stack 14 includes 16 fuel cell units 16 (see FIG. 4). Yes.
  • the fuel cell assembly 12 has 160 fuel cell units 16, and all of these fuel cell units 16 are connected in series.
  • a combustion chamber 18 is formed above the above-described power generation chamber 10 in the sealed space 8 of the fuel cell module 2.
  • this combustion chamber 18 residual fuel gas that has not been used for the power generation reaction and residual oxidant (air) ) And combusted to generate exhaust gas.
  • a reformer 20 for reforming the fuel gas is disposed above the combustion chamber 18, and the reformer 20 is heated to a temperature at which a reforming reaction can be performed by the combustion heat of the residual gas.
  • an air heat exchanger 22 is disposed above the reformer 20 to heat the air by receiving heat from the reformer 20 and suppress a temperature drop of the reformer 20.
  • the auxiliary unit 4 stores a pure water tank 26 that stores water from a water supply source 24 such as tap water and uses the filter to obtain pure water, and a water flow rate that adjusts the flow rate of the water supplied from the water storage tank.
  • An adjustment unit 28 is provided.
  • the auxiliary unit 4 also includes a gas shut-off valve 32 that shuts off the fuel gas supplied from a fuel supply source 30 such as city gas, a desulfurizer 36 for removing sulfur from the fuel gas, and a flow rate of the fuel gas.
  • a fuel flow rate adjustment unit 38 for adjustment is provided.
  • the auxiliary unit 4 includes an electromagnetic valve 42 that shuts off air that is an oxidant supplied from the air supply source 40, a reforming air flow rate adjusting unit 44 that adjusts the flow rate of air, and a power generation air flow rate adjusting unit. 45, a first heater 46 for heating the reforming air supplied to the reformer 20, and a second heater 48 for heating the power generating air supplied to the power generation chamber.
  • the first heater 46 and the second heater 48 are provided in order to efficiently raise the temperature at startup, but may be omitted.
  • the fuel cell module 2 is connected to a hot water production apparatus 50 to which exhaust gas is supplied.
  • the hot water production apparatus 50 is supplied with tap water from the water supply source 24, and the tap water is heated by the heat of the exhaust gas and supplied to a hot water storage tank of an external hot water heater (not shown).
  • the fuel cell module 2 is provided with a control box 52 for controlling the amount of fuel gas supplied and the like.
  • the fuel cell module 2 is connected to an inverter 54 that is a power extraction unit (power conversion unit) for supplying the power generated by the fuel cell module to the outside.
  • FIG. 5 is a side sectional view showing a fuel cell module of a solid oxide fuel cell system according to an embodiment of the present invention
  • FIG. 6 is a sectional view taken along line III-III in FIG.
  • the fuel cell assembly 12, the reformer 20, and heat exchange for air are sequentially performed from below.
  • a vessel 22 is arranged.
  • the reformer 20 is provided with a pure water introduction pipe 60 for introducing pure water and a reformed gas introduction pipe 62 for introducing reformed fuel gas and reforming air to the upstream end side thereof.
  • a pure water introduction pipe 60 for introducing pure water
  • a reformed gas introduction pipe 62 for introducing reformed fuel gas and reforming air to the upstream end side thereof.
  • an evaporation unit 20a and a reforming unit 20b are formed in order from the upstream side, and the reforming unit 20b is filled with a reforming catalyst.
  • the fuel gas and air mixed with the steam introduced into the reformer 20 are reformed by the reforming catalyst filled in the reformer 20.
  • a fuel gas supply pipe 64 is connected to the downstream end side of the reformer 20, and the fuel gas supply pipe 64 extends downward and further in a manifold 66 formed below the fuel cell assembly 12. It extends horizontally.
  • a plurality of fuel supply holes 64 b are formed in the lower surface of the horizontal portion 64 a of the fuel gas supply pipe 64, and the reformed fuel gas is supplied into the manifold 66 from the fuel supply holes 64 b.
  • a lower support plate 68 having a through hole for supporting the fuel cell stack 14 described above is attached above the manifold 66, and the fuel gas in the manifold 66 flows into the fuel cell unit 16. Supplied.
  • the air heat exchanger 22 includes an air aggregation chamber 70 on the upstream side and two air distribution chambers 72 on the downstream side.
  • the air aggregation chamber 70 and the air distribution chamber 72 include six air flow path tubes 74. Connected by.
  • three air flow path pipes 74 form a set (74a, 74b, 74c, 74d, 74e, 74f), and the air in the air collecting chamber 70 is in each set. It flows into each air distribution chamber 72 from the air flow path pipe 74.
  • the air flowing through the six air flow path pipes 74 of the air heat exchanger 22 is preheated by exhaust gas that burns and rises in the combustion chamber 18.
  • An air introduction pipe 76 is connected to each of the air distribution chambers 72, the air introduction pipe 76 extends downward, and the lower end side communicates with the lower space of the power generation chamber 10, and the air that has been preheated in the power generation chamber 10. Is introduced.
  • an exhaust gas chamber 78 is formed below the manifold 66. Further, as shown in FIG. 6, an exhaust gas passage 80 extending in the vertical direction is formed inside the front surface 6 a and the rear surface 6 b which are surfaces along the longitudinal direction of the housing 6, and the upper end of the exhaust gas chamber passage 80 is formed. The side communicates with the space in which the air heat exchanger 22 is disposed, and the lower end side communicates with the exhaust gas chamber 78. Further, an exhaust gas discharge pipe 82 is connected to substantially the center of the lower surface of the exhaust gas chamber 78, and the downstream end of the exhaust gas discharge pipe 82 is connected to the above-described hot water producing apparatus 50 shown in FIG. As shown in FIG. 5, an ignition device 83 for starting combustion of fuel gas and air is provided in the combustion chamber 18.
  • FIG. 4 is a partial cross-sectional view showing a fuel cell unit of a solid oxide fuel cell system according to an embodiment of the present invention.
  • the fuel cell unit 16 includes a fuel cell 84 and inner electrode terminals 86 respectively connected to the vertical ends of the fuel cell 84.
  • the fuel cell 84 is a tubular structure extending in the vertical direction, and includes a cylindrical inner electrode layer 90 that forms a fuel gas flow path 88 therein, a cylindrical outer electrode layer 92, an inner electrode layer 90, and an outer side.
  • An electrolyte layer 94 is provided between the electrode layer 92 and the electrode layer 92.
  • the inner electrode terminal 86 is an aspect of the oxidant gas inflow suppressing portion.
  • the upper portion 90 a of the inner electrode layer 90 includes an outer peripheral surface 90 b and an upper end surface 90 c exposed to the electrolyte layer 94 and the outer electrode layer 92.
  • the inner electrode terminal 86 is connected to the outer peripheral surface 90b of the inner electrode layer 90 through a conductive sealing material 96, and is further in direct contact with the upper end surface 90c of the inner electrode layer 90, thereby Electrically connected.
  • a fuel gas passage 98 communicating with the fuel gas passage 88 of the inner electrode layer 90 is formed at the center of the inner electrode terminal 86.
  • the fuel battery cell 16 uses the fuel battery cell of the present invention.
  • the fuel cell system When stopping the operation of the fuel cell system, the fuel cell system is stopped by shutting down the supply of current, fuel gas, air and water of the fuel cell system operating at the rated temperature almost simultaneously.
  • the fuel can be stopped while being gradually reduced, or can be stopped without flowing a purge gas such as N 2 gas.
  • the method for forming the fuel gas flow path in the present invention is not particularly limited.
  • a fuel electrode layer is used as a cylindrical support, and a fuel gas is flown into the cylinder, or a fuel electrode, an electrolyte, and an air electrode are laminated in this order from the surface side of an insulating porous cylindrical support, and the insulating property
  • a method of flowing fuel gas inside a porous cylindrical support, a solid oxide fuel cell consisting of a flat fuel electrode, electrolyte, and air electrode is stacked via a separator, and a fuel gas flow path is formed in the separator The method of doing is mentioned.
  • the iron group elements and ceramics constituting the fuel electrode of the solid oxide fuel cell of this embodiment are less likely to diffuse. Accordingly, diffusion when the fuel electrode and the solid electrolyte are simultaneously fired is reduced, and adverse effects on the ionic conductivity of the solid electrolyte layer can be suppressed.
  • Example 1 Nickel oxide powder having an average particle size of 0.3 ⁇ m, yttria-stabilized zirconia (YSZ) powder having an average particle size of 0.25 ⁇ m, a dispersant (polycarboxylic acid amine), and water are used as yttria-stabilized zirconia balls having a diameter of 5 mm.
  • the slurry was obtained by ball mill mixing for 20 hours. At this time, the weight ratio of NiO and YSZ was 55:45 to 65:35.
  • the average particle diameter of nickel oxide powder and YSZ powder is calculated from the average of the particle diameters of 100 particles measured by SEM observation at a magnification of 20000 times.
  • the dispersed particle size of the obtained slurry was measured by the method based on Paragraph 0059.
  • the dispersed particle size of the slurry liquid was 1.0 ⁇ m.
  • the obtained slurry was dried with a spray dryer to obtain a composite material for a fuel electrode.
  • a solid oxide fuel cell was produced by the following method. A fuel obtained by mixing an organic binder (methylcellulose), water, and a plasticizer (glycerin) into the composite material for the fuel electrode, shearing it with an extrusion molding machine to form primary particles, and forming into a cylindrical shape and calcining at 900 ° C A polar support was prepared.
  • a mixture of NiO and GDC10 (10 mol% Gd 2 O 3 -90 mol% CeO 2 ) in a weight ratio of 50:50 was formed by a slurry coating method, and a fuel electrode reaction catalyst layer was formed. Formed. Further, LSGM having a composition of LDC40 (40 mol% La 2 O 3 -60 mol% CeO 2 ) and La 0.9 Sr 0.1 Ga 0.8 Mg 0.2 O 3 was sequentially laminated on the fuel electrode reaction catalyst layer by a slurry coating method, and an electrolyte layer was formed. Formed.
  • an LSCF having a composition of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 as an air electrode layer is formed by a slurry coating method and fired at 1050 ° C.
  • a total of 160 solid oxide fuel cells were prepared, with a polar composition of NiO and YSZ in a weight ratio of 55:45 cells: 50 cells, 60:40 cells: 60 cells, and 65:35 cells: 50 cells. did.
  • the produced solid oxide fuel cell has a fuel electrode support having an outer diameter of 10 to 10.2 mm, a wall thickness of 1 to 1.2 mm, a fuel electrode reaction catalyst layer thickness of 10 to 30 ⁇ m, The thickness of the layer was 3 to 40 ⁇ m, the thickness of the LSGM layer was 20 to 50 ⁇ m, and the thickness of the air electrode was 18 to 24 ⁇ m.
  • the outer diameter of the fuel electrode support was measured with a micrometer at a location where no film was formed.
  • the film thickness is obtained by cutting the cell after the system operation test and observing the cross section with an SEM at an arbitrary magnification of 30 to 2000 times, adding the maximum value and the minimum value of the film thickness and dividing by 2. The cut part was the central part of the part where the air electrode was formed.
  • the area of the air electrode was 35 cm 2 . Further, the average particle diameter of the fuel electrode support was measured by the method based on Paragraph 0058. The particle diameter ratio of the average particle diameter of the nickel particles and YSZ particles was 1.23 times.
  • Ag is applied as a current collector on the air electrode of the solid oxide fuel cell, and a conductive seal material having both a current collector and a gas seal is attached to both ends of the fuel electrode support, and the fuel electrode An oxidant gas inflow suppressing part was provided at both ends of the battery so as to cover the conductive sealing material, thereby producing a fuel cell unit.
  • the oxidant gas inflow suppressing portion has a reduced diameter portion that is reduced in diameter from the inner diameter of the fuel electrode support serving as the fuel gas flow path and extends outward from the respective ends of the cell.
  • a set of 16 fuel cell units was assembled, and 16 were connected in series with a connector for connecting a fuel electrode and an air electrode to form a stack. Ten stacks were mounted and 160 were connected in series. Further, a reformer, air piping, and fuel piping were attached, and then enclosed in a housing to produce a solid oxide fuel cell module. The fuel cell module was incorporated into a solid oxide fuel cell system.
  • Example 2 A solid oxide fuel cell module was produced in the same manner as in Example 1 except that nickel oxide powder having an average particle diameter of 0.6 ⁇ m and yttria-stabilized zirconia (YSZ) powder having an average particle diameter of 2 ⁇ m were used.
  • the obtained slurry liquid had a dispersed particle size of 3.0 ⁇ m.
  • the average particle size ratio of the nickel particles and YSZ particles of the fuel electrode support was 3.30 times.
  • Example 3 The same as in Example 1 except that PMMA with an average particle diameter of 3 ⁇ m was further added as a pore forming agent to the composite material for the fuel electrode, and sheared by an extruder to form primary particles, which were then formed into a cylindrical shape. Thus, a solid oxide fuel cell module was produced.
  • the ratio of the composite material for the fuel electrode to PMMA was 72:28 Vol%.
  • the obtained slurry liquid had a dispersed particle size of 1.0 ⁇ m.
  • the average particle size ratio between the nickel particles and the YSZ particles of the fuel electrode support was 1.30 times.
  • Example 4 Ball mill mixed with yttria-stabilized zirconia balls having a diameter of 10 mm for 6 hours, formed into a cylindrical shape without applying shear with an extruder, and provided with an oxidant gas inflow suppressing portion having no reduced diameter portion.
  • a solid oxide fuel cell module was produced in the same manner as Example 1 except for the above.
  • the obtained slurry liquid had a dispersed particle size of 8.0 ⁇ m.
  • the average particle size ratio between the nickel particles and the YSZ particles of the fuel electrode support was 1.50 times.
  • Example 5 A solid oxide fuel cell module was produced in the same manner as in Example 1 except that ball mill mixing was performed for 2 hours with yttria-stabilized zirconia balls having a diameter of 10 mm.
  • the dispersion particle diameter of the obtained slurry was 10.0 ⁇ m.
  • the average particle size ratio between the nickel particles and the YSZ particles of the fuel electrode support was 1.42 times.
  • Example 6 A solid oxide fuel cell was produced in the same manner as in Example 1.
  • a conductive sealing material having both a current collector and a gas seal similar to that of the first embodiment is attached to only the lower end portion of the fuel electrode support, and the lower end portion of the fuel electrode is covered with the conductive sealing material.
  • the same oxidant gas inflow suppressing part as that in Example 1 was provided to produce a fuel cell unit. That is, the fuel cell unit was manufactured without providing the oxidant gas inflow suppressing portion at the upper end of the fuel cell.
  • the obtained slurry liquid had a dispersed particle size of 1.0 ⁇ m.
  • the average particle size ratio of nickel particles and YSZ particles of the fuel electrode support was 1.23 times.
  • Example 1 A solid oxide fuel cell in the same manner as in Example 1 except that ball mill mixing was performed for 2 hours with yttria-stabilized zirconia balls having a diameter of 10 mm, and the cylinder was formed without applying shear using an extruder. A module was produced.
  • the dispersion particle diameter of the obtained slurry was 10.0 ⁇ m. Further, the difference in average particle diameter between the nickel particles and the YSZ particles of the fuel electrode support was 1.54 times.
  • the produced fuel cell system and the sample for evaluating the expansion rate were evaluated as follows.
  • the oxidation expansion coefficient was measured with the reduced product of the obtained sintered body.
  • the reduced body of the sintered body was exposed to an air atmosphere at 700 ° C., and the change with time in the oxidation expansion coefficient was measured.
  • the oxidative expansion rate was calculated by measuring the length of the sample in the longitudinal direction and expressing (L2-L1) / L1 as a percentage, where L1 is the length of the reductant and L2 is the length after oxidation.
  • FIG. 7 shows the change over time in the expansion coefficient when each sample is exposed to an air atmosphere at 700 ° C.
  • FIG. 8 shows the result of the linear expansion coefficient per minute for 10 minutes from the start of oxidation.
  • Table 1 shows the maximum linear expansion coefficient per minute, the maximum expansion coefficient, and the appearance results of the solid oxide fuel cell after shutdown.
  • “ ⁇ ” indicates that there is no cracking or breakage of the electrolyte in 100 times or more of shutdown shutdowns, and “ ⁇ ” indicates that the electrolyte cracks in 5 or more shutdowns without any problem of power generation.
  • the “x” mark indicates a case where the electrolyte is cracked or broken in less than 5 shutdown stops and the performance is deteriorated.
  • the fuel cell system provided with the solid oxide fuel cell of the present invention it was confirmed that excellent power generation performance was obtained.
  • the maximum value of the linear expansion coefficient per minute is smaller in Examples 1 and 2 than in Examples 3, 4 and 5. For this reason, when the shutdown stop is repeated, the influence on the electrolyte is small, and it is presumed that a good power generation performance can be obtained even with a larger number of shutdown stops.
  • Examples 1 and 2 were compared, the maximum expansion coefficient was higher in Example 1 at 0.38%, but the state of cracking or breakage of the electrolyte due to shutdown stop was good. This suggests that the linear expansion rate per minute has more influence on the cracking and breakage of the electrolyte due to shutdown stop than the maximum expansion rate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

 燃料ガス流路と、前記燃料ガス流路の周囲に設けられた鉄族元素とセラミックスとを含んでなる燃料極層と、前記燃料極層の周囲に設けられた固体電解質層と、前記固体電解質層の周囲に設けられた空気極層とを有する固体酸化物形燃料電池セルであって、燃料ガスが前記燃料ガス流路の一方側から供給され、前記燃料ガス流路の他方側に設けられた開口部から排出される固体酸化物形燃料電池セルの温度が発電温度に近い高温状態において、前記開口部から酸化剤ガスが流入した場合に生じる前記燃料極層の酸化膨張の速度を抑制するための、膨張速度抑制処理を施したことで、燃料電池の運転停止に伴う燃料極側への空気の流入が生じても電解質亀裂及びセル破損を防止できる固体酸化物形燃料電池セルを提供することが可能になった。

Description

固体酸化物形燃料電池セル及び固体酸化物形燃料電池セルの製造方法
 本発明は、固体酸化物形燃料電池セル及び固体酸化物形燃料電池セルの製造方法に関するものである。
 固体酸化物形燃料電池セルは、固体電解質領域を燃料極と空気極とで挟んで形成されている。この固体酸化物形燃料電池セルの燃料極側に水素を含む燃料ガスを流し、空気極側に酸化剤ガスとしての空気を流すことで発電反応を起こさせている。
 固体酸化物形燃料電池セルの形状は様々なものがある。例えば、固体酸化物形燃料電池セルの内部に燃料ガス流路を設け、外部に空気を流すことで発電反応を起こさせる固体酸化物形燃料電池セルが知られている(例えば、特開2006-302709号公報)。上記のような固体酸化物形燃料電池セルでは、燃料ガス流路の出口側開口部で外部の空気と燃料が混合し、燃焼させる構成が知られている。(例えば、特開2010-277845号公報)
 固体酸化物形燃料電池を運転する場合、燃料極側には燃料ガスが供給されるので、燃料極は還元雰囲気に曝されることになる。ところが、運転停止時に燃料ガスの供給を止めると高温状態で燃料ガス流路の出口側開口部から燃料極側に空気が流入してしまう場合がある。このとき、燃料極に酸化膨張が発生し、その結果、電解質への亀裂やセル破損が生じる不具合が発生していた。
 燃料極の酸化膨張量が小さくなる低温域になるまで燃料ガスを供給し続けることも考えられるが、前記低温域になると、固体酸化物形燃料電池セルの前段に設けられた改質器での改質反応が不安定になり、エタンなどC2以上の燃料ガスが固体酸化物形燃料電池セルの燃料極ガス流路に流入する場合がある。このとき、燃料極はコーキングを起こす。つまり、燃料極の触媒表面部分への炭素付着を起こし、燃料ガスとの反応を妨げ、燃料極の伝導性を低減させてしまう。また、燃料極がセルの構造的支持体として作用する場合には燃料極と反応し膨張を起こす。その結果、燃料極が劣化してしまう不具合が生じていた。
 そこで、高温状態で燃料ガスの出口側開口部から燃料極側に空気が流入しても、電解質の亀裂やセル破損の生じない固体酸化物形燃料電池セルが求められていた。
 本発明はこのような課題に鑑みてなされたものであり、その目的は、燃料電池の運転停止に伴う燃料極側への空気の流入が生じても電解質の亀裂及びセル破損を防止できる固体酸化物形燃料電池セルを提供することにある。
 本発明者等は、燃料極側への空気の流入による電解質の亀裂やセル破損を起こす固体酸化物形燃料電池セルの燃料極について詳細に検討した結果、酸化膨張量が大きくとも不具合を生じないセルがあることを実験的に見出した。そこで、前記不具合の有無について、さらに酸化膨張の観点から詳細に検討した結果、燃料ガスの供給を止めてから数分間の酸化膨張速度を抑えることが有効であることを見出した。つまり、酸化による膨張の大きさではなく、膨張の速度がポイントであることを見出し、本発明に至った。
 上記課題を解決するために本発明に係る固体酸化物形燃料電池セルは、固体酸化物形燃料電池セルであって、燃料ガス流路と、前記燃料ガス流路の周囲に設けられた鉄族元素とセラミックスとを含んでなる燃料極層と、前記燃料極層の周囲に設けられた固体電解質層と、前記固体電解質層の周囲に設けられた空気極層とを有し、燃料ガスが前記燃料ガス流路の一方側から供給され、前記燃料ガス流路の他方側に設けられた開口部から排出され、固体酸化物形燃料電池セルの温度が発電温度に近い高温状態において、前記開口部から酸化剤ガスが流入した場合に生じる前記燃料極層の酸化膨張の速度を抑制するための、膨張速度抑制処理が施されていることを特徴とする。ここで、「周囲に設けられた」というために、周囲全体に設けられている必要はなく、その周囲に一部でも設けられていれば良い。
 この膨張速度抑制処理が施された燃料極層を備えた固体酸化物形型燃料電池においては、燃料ガスの供給を止めてから数分間の酸化膨張速度を抑えることができるため、例えば、シャットダウン停止のように高温状態で燃料ガスの供給を止めた場合に、燃料ガスの出口側開口部から燃料極側に空気が流入しても、燃料極層の酸化速度を抑制することができる。これにより、電解質の亀裂やセル破損を有効に抑制することが可能な燃料電池を提供することができる。例えば、シャットダウン停止とは、マイコンメータの警報装置によってガスの供給が自動的に停止することが挙げられる。
 なお、ここで固体酸化物形燃料電池セルの温度が発電温度に近い高温状態とは、セルの温度が500~800℃にある状態を指す。さらに、好ましくは、550~700℃の状態である。
 また、ある態様において、本発明の固体酸化物形燃料電池セルは、前記開口部から前記酸化剤ガスが流入し始めた以降の期間における、前記燃料極の1分間当たりの線膨張率が、0.09%以下であることを特徴とする。このような膨張速度に抑制することで燃料極の膨張により電解質に与えられる応力を緩和し、電解質の亀裂やセル破損を防ぐことができる。
 燃料極の1分間あたりの線膨張率が0.04%以下であることが好ましい。このようにすることでセルに密着している集電体へのセル膨張による負荷が軽減され、シャットダウン停止を繰り返した際の密着性低下による集電ロスを防ぐことが可能となる。さらに好ましくは、0.03%以下である。このような範囲とすることでガスシール部のような局部的な部位での酸化膨張による急激な応力変化を抑制できるので、シャットダウン停止を100回以上繰り返すようなシステムを構成する際にシール不良を防ぐことが可能となる。
 さらに、ある態様において、本発明の固体酸化物形燃料電池の燃料極層は、前記鉄族元素の金属酸化物からなる粉末と、前記セラミックスからなる粉末とを、溶媒に分散させたスラリー液を乾燥させた複合材料から得られるものであり、前記膨張速度抑制処理は、前記スラリー液の分散粒子径を10μm未満とする処理を施す工程を含むことを特徴とする。ここで、「セラミックスからなる粉末」とは、成形体を得るための原料としての粉末である。
このような分散粒子径とすることにより、燃料極層の膨張速度を抑制し、電解質の亀裂やセル破損を有効に抑制することが可能な燃料電池を提供することができる。
 本発明において、スラリー液の分散粒子径を3μm以下とすることが好ましく、さらに好ましくは1μm以下である。また、50nm以上であることが好ましい。このような範囲とすることでより均一に燃料極の粒子を分散させることができ、燃料極層の膨張速度をより抑制することができるため、セルを100数十本束ねて作製し、数10℃温度ばらつきをもって運転されるモジュールにおいても、膨張速度のばらつきを抑制し、繰り返しシャットダウン停止を実施する際にも電解質の亀裂やセル破損を有効に抑制することが可能となる。
ある態様において、前記燃料極層は、前記鉄族元素の金属酸化物からなる粉末と、前記セラミックスからなる粉末とを、溶媒に分散させたスラリー液を乾燥させた複合材料を押出成形させてなるものであり、前記膨張速度抑制処理は、押出成形時に複合材料にせん断を加え、1次粒子化する工程を含むことを特徴とする。ここで、1次粒子化とは、複合材料の粉末に、解砕する程度にせん断を加え、1次粒子の割合を増やすことである。
 なお、複合材料を押出成形させてなるとは、複合材料に、有機バインダー、水、可塑剤等の添加剤を混合し、湿式で押出成形することである。
 このようにすることにより、凝集した粒子を1次粒子に分散化し、燃料極層を構成する粒子を均一充填できるので燃料極層の膨張速度を抑制し、電解質の亀裂やセル破損を有効に抑制することが可能な燃料電池を提供することができる。成形前の原料が均一分散している場合にはさらに燃料極層の微構造が最適化され、燃料極層の骨格となるセラミックス粒子及び酸化膨張する金属酸化物粒子が網目状に均一に配置されるので、膨張が均一に起こり、シャットダウン停止を繰り返した際にも電解質の亀裂やセル破損を有効に抑制することが可能となる。
 また、ある態様において、本発明の燃料極は、鉄族元素がニッケルであることを特徴とする。
 鉄族元素をニッケルとすることで、還元雰囲気中にさらされる燃料極層の電子導電率を確保すると同時に、ニッケルはコバルトや鉄に比べ酸化されにくいため、発電温度に近い高温状態での燃料極層の酸化膨張速度を抑制することが可能な燃料電池を提供することができる。
 ある態様において、本発明の燃料極は、セラミックスが安定化ジルコニアであることを特徴とする。
 さらに、本発明の燃料極は、安定化ジルコニアがイットリア安定化ジルコニアであることを特徴とする。
 本発明の燃料極のセラミックスは好ましくは安定化ジルコニアである。安定化剤としてはカルシア、スカンジア、イットリアなどが含まれる。燃料極が酸化膨張した際に、燃料極の骨格強度を高め、セル破損しにくくするという観点からするとイットリア安定化ジルコニアがより好ましい。
 特に、燃料極を支持体とする場合には、支持体としての強度に優れ、かつ安定性が高いという観点から、燃料極のセラミックスはイットリア安定化ジルコニアが好ましい。
 さらに、ある態様において、本発明の開口部には、開口部への酸化剤ガスの流入に対する圧力損失を高める酸化剤ガス流入抑制部が設けられていることを特徴とする。ここで、酸化剤ガス流入抑制部は、酸化剤ガス流入抑制流路と胴体部からなる。酸化剤ガス流入抑制流路とは、燃料ガス流路の開口部よりも小さい開口断面積をもつガス流路のことである。このガス流路には平常運転時、燃料ガス流路から流れてきた燃料ガスがセルの外側に向かって流れている。酸化剤ガス流入抑制流路は、燃料ガスをセルの外側へ流す役割と、燃料ガス流路の開口部よりも絞られた流路によってガス圧力損失を高くし、酸化剤ガスがセルの燃料ガス流路に流れ込む単位時間当たりの量を少なくする役割を果たす。酸化剤ガス流入抑制流路の断面形状は特に限定されず、円形でもよいし、多角形でもよい。総和の断面積がセル開口部断面積より小さければ複数でもよい。酸化剤ガス流入抑制流路を設けることによって、酸化剤ガスに対して圧力損失を高くし、燃料極側へ酸素の流入を抑制することで、燃料極層の酸化膨張速度を抑制し、電解質の亀裂やセル破損を防止することが可能になる。胴体部は燃料ガス流路の開口部から排出された燃料ガスを酸化剤ガス抑制流路に送るものである。また、燃料ガス流路をセルの周りにある酸化剤ガスと遮蔽し、抑制流路だけから流入できるようにしている。胴体部はセルに酸化剤ガス流入抑制流路を固定することもできる。また、胴体部とセルの間にシール部を挟むことで、ガスシールの機能も有することができる。胴体部は少なくとも開口部を覆うように設けられており、セルの周囲を覆っていてもよいし、セルの端部を覆っていてもよい。また、その両方を覆っていてもよい。
 開口部での酸化剤ガスの流入に対する圧力損失が高くなることで、固体酸化物形燃料電池セルの温度が発電温度に近い高温状態において、燃料ガスの供給が停止するシャットダウン停止の際にも、前記開口部から酸化剤ガスが流入し難くなり、燃料極層の酸化膨張を抑制することができる。その結果、シャットダウン停止による電解質の亀裂やセル破損を防止することが可能となる。
 さらに、ある態様において、本発明の酸化剤ガス流入抑制部は、前記開口部よりも小さい断面積を有する酸化剤ガス流入抑制流路を具備し、この酸化剤ガス流入抑制流路は前記燃料ガス流路と連通していることを特徴とする。
 これにより、開口部から酸化剤ガスが流入しにくくなり、燃料極層の酸化膨張を抑制することができる。その結果、シャットダウン停止による電解質の亀裂やセル破損を防止することが可能となる。
さらに、ある態様において、前記酸化剤ガス流入抑制部は、少なくとも前記開口部を覆う胴体部と、前記胴体部から突出するよう伸び、前記胴体部よりも径が細い縮径部とを有することを特徴とする。ここで、縮径部とは、酸化剤ガス流入抑制流路を酸化剤ガス流入抑制部の胴体部からセルの外方向に伸ばしたガス流路のことである。縮径部の開口断面積は酸化剤ガス流入抑制流路と同様、燃料ガス流路の開口部より小さい開口断面積をもつ。縮径部は、酸化剤ガスに対する圧力損失をさらに高くし、燃料極側への酸素の流入をさらに抑制する機能を有する。縮径部は、酸化剤ガス流入抑制部に設けられていても良いし、設けられてなくても良い。縮径部は胴体部と一体的に形成されていても良いし、胴体部のどこに形成されていてもよい。縮径部の形状は、延伸していてもよいし、屈曲していてもよい。
 酸化剤ガス流入抑制流路、縮径部及び胴体部の材質としては、特に限定されない。例えば、鉄クロム系合金、ニッケルクロム系合金などが挙げられる。なお、燃料極が支持体であるような固体酸化物形燃料電池セルの場合には、胴体部に導電性を有する構成にすることで、酸化剤ガス流入抑制部は燃料極側の電極端子(内側電極端子)の役割も果たすことができる。
 また、ある態様において、本発明の燃料電池システムは、上記固体酸化物形燃料電池セルを備えることを特徴とする。
 本発明の固体酸化物形燃料電池セルでは、燃料ガスの供給を止めてからの酸化膨張速度、特に最初の数分間の酸化膨張速度を抑えることができるため、高温状態で燃料ガスの出口側開口部から燃料極側に空気が流入しても、電解質の亀裂やセル破損を有効に抑制することができる。
本発明の固体酸化物形燃料電池における単電池の断面を示す図である。 本発明の一実施形態による固体酸化物形燃料電池システムを示す全体構成図である。 本発明の一実施形態による固体酸化物形燃料電池スタックを示す図である。 本発明の一実施形態による固体酸化物形燃料電池セルユニットを示す図である。 本発明の一実施形態による固体酸化物形燃料電池システムの燃料電池モジュールを示す側面断面図である。 図5のIII-III線に沿った断面図である。 酸化膨張量の時間変化を示す図である。 1分間当たりの線膨張率を示す図である。 本発明の実施対象外の固体酸化物形燃料電池セルのシャットダウン試験後の燃料極微構造を示す図である。
 以下に本発明における固体酸化物形燃料電池について説明する。図1は本発明の固体酸化物形燃料電池における単電池の断面の一態様であり、燃料極を支持体としたタイプについて示した。本発明における固体酸化物形燃料電池は、例えば燃料極支持体1(例えばNi及び/又はNiOと、Y23をドープしたジルコニウム含有酸化物との複合体)と、該燃料極支持体表面に形成された、固体電解質層2における第一の層2a(例えばCe1-xLax2(但し0.30≦x≦0.50)で表されるセリウム含有酸化物)と、固体電解質層2における第二の層2b(ランタンガレート酸化物)と、該固体電解質の表面に形成された空気極3(例えばランタンコバルト系酸化物やサマリウムコバルト系酸化物)とから構成される。
 図1に示す固体酸化物形燃料電池を例として作動原理を以下に示す。空気極側に空気を流し、燃料極側に燃料を流すと空気中の酸素が、空気極と固体電解質層との界面近傍で酸素イオンに変わり、この酸素イオンが固体電解質層を通って燃料極に達する。そして燃料ガスと酸素イオンが反応して水および二酸化炭素になる。これらの反応は(1)、(2)および(3)式で表される。空気極と燃料極を外部回路で接続することによって外部に電気を取り出すことが出来る。
 H2+O2-→H2O+2e- (1)
 CO+O2-→CO2+2e- (2)
 1/2O2+2e-→O2-  (3)
 なお燃料ガスに含まれるCH4等も(1)、(2)式と類似した電子を生成する反応があるとの報告もあるが固体酸化物形燃料電池の発電における反応のほとんどが(1)、(2)式で説明できるので、ここでは(1)、(2)式で説明することとした。
 本発明における固体電解質層は発電に必要な酸素イオンを空気極側から燃料極側へ輸送できれば、特に限定されない。固体電解質層がランタンガレート酸化物を含む電解質層であると、より低温の発電温度(550~700℃)で発電を行うことができるので、燃料極層の酸化を起こしにくくし、電解質亀裂やセル破損を有効に抑制できることから、より好ましい。また、固体電解質層は例えばCe1-xLax2(但し0.30≦x≦0.50)で表されるセリウム含有酸化物とランタンガレート酸化物の2層構造でもよい。
 本発明の固体電解質層をセリウム含有酸化物とランタンガレート酸化物の2層構造とした場合、第一の層のセリウム含有酸化物は、ランタンガレート酸化物からなる第二の層との反応性が低いという観点から、一般式Ce1-xLax2(但し0.30≦x≦0.50)で表されるものが好ましい。上記組成とすることで、ランタンガレート酸化物からなる固体電解質層との反応を最も効果的に防止することができるため、発電性能は向上する。なお最適なLaのドープ量は、第二層に用いるランタンガレート酸化物の組成により前記範囲内で変わるが、第二の層に酸素イオン伝導率が高い組成のランタンガレート酸化物(例えば、一般式La1-aSraGa1-b-cMgbCoc3(但し、0.05≦a≦0.3、0≦b≦0.3、0≦c≦0.15)で表されるランタンガレート酸化物)を用いることを鑑みると、Laのドープ量は0.35≦x≦0.45であることがより好ましい。例えばランタンガレート酸化物の組成がLa0.8Sr0.2Ga0.8Mg0.23もしくはLa0.9Sr0.1Ga0.8Mg0.23である場合は0.4≦x≦0.45がより好ましい。
 前記セリウム含有酸化物の層には焼結助剤を添加してもよい。添加する焼結助剤は、セリウム含有酸化物層の緻密性を向上させるものであって、周りの材料との反応による影響が少ないものが好ましい。我々は焼結助剤の検討を種々行った結果、Ga元素について効果があることを見出した。Ga元素源としては、例えば酸化ガリウム(Ga23)または焼成工程中にGa23となるガリウム化合物などが好ましい。
 前記セリウム含有酸化物層に含まれるGa元素の含有量を酸化物換算でXwt%としたとき、0<X≦5であることが好ましい。この理由は、上記範囲に限定することで、セリウム含有酸化物層がより緻密化するため、支持体とランタンガレート酸化物層との反応を効果的に抑制できるとともに、セリウム含有酸化物層における抵抗損が減少するためである。さらに好ましいXの範囲は、0.3<X<2.0である。この理由は、前記効果に加えて、セリウム含有酸化物自体の電気伝導性が向上するため、第一の層における抵抗損がさらに減少するためである。
 前記セリウム含有酸化物の膜厚は3~50μmが好ましい。さらには3~40μmがより好ましい。
 この理由は、セリウム含有酸化物層の厚みを3μmよりも厚くすることで、セリウム含有酸化物の成膜時欠陥を防止し、支持体とランタンガレート酸化物層との反応を抑制できるからである。一方、セリウム含有酸化物層の厚みを50μmよりも薄くすることで、セリウム含有酸化物層における抵抗損の影響を小さくでき、さらに40μm以下とすることで、セリウム含有酸化物層における抵抗損の影響をより小さくできるからである。従って、セリウム含有酸化物層の厚みは、支持体とランタンガレート酸化物層との反応を十分防止できる範囲で、できるだけ薄くするのが好ましい。
 前記ランタンガレート酸化物の膜厚は20~70μmが好ましく、さらには20~50μmがより好ましい。
 この理由は、ランタンガレート酸化物層の厚みを20μm以上とすることで、燃料極の酸化膨張による応力に対して電解質の亀裂を発生しにくくでき、一方、70μmより薄くすることで、ランタンガレート酸化物層における抵抗損の影響を小さくでき、さらに50μm以下とすることで、ランタンガレート酸化物層における抵抗損の影響をより小さくできるからである。
 なお、本発明の固体酸化物形燃料電池は、固体電解質と燃料極層が直接接する構成に限定されるものではなく、例えば燃料極層を支持体とし、支持体と電解質との間に触媒活性を高めた燃料極触媒層を設けたものであっても良い。設けることで燃料極の酸化膨張で生じる電解質膜への応力を緩和させるので設けたほうが好ましい。応力緩和の観点と触媒活性の観点からバランスを考えると燃料極触媒層の気孔率は運転時状態で20~50%が好ましい。
 前記燃料極触媒層はNiOとCeO2系材料を混合したものが好ましい。NiOは運転時には還元されてNiになる。CeO2系材料としてはCeO2にGdを10~20mol%ドープさせたものが好ましい。混合比はNiOとCeO2系材料が重量比で40:60~60:40で混合したものが好ましい。燃料極触媒層の膜厚は5~30μm程度が好ましい。この理由は、5μm以上とすることで燃料極触媒層の触媒活性を有効に働かせ、一方、30μm以下とすることで成膜時に膜剥がれを抑制できるからである。燃料極の酸化膨張による応力を緩和し、電解質の亀裂を防止するという観点からすると10~30μm程度がより好ましい。
 本発明の燃料極層は、鉄族元素とセラミックスとを含んでなる。燃料極層としては、固体酸化物形燃料電池の燃料雰囲気下において電子伝導性が高く、(1)、(2)式の反応が効率良く行われる材料を用いることが好ましい。
 これらの観点から好ましい鉄族元素としては、ニッケル、鉄、コバルトが挙げられる。その中でも更に好ましくはニッケルである。ニッケルを用いることで、還元雰囲気中にさらされる燃料極層の電子導電率を確保すると同時に、鉄、コバルトに比べ、ニッケルは酸化されにくいため、酸化膨張による電解質の亀裂やセル破損を起こりにくくすることが可能となる。さらに、ニッケルは鉄に比べて、燃料ガス中の水素に対する触媒活性に優れるため、(1)式の反応をより効率よく行うことができる。
 また、本発明の燃料極層を形成するセラミックスとは、燃料極層の骨格を形成し、燃料極層の強度を確保できるものであれば、特に限定されない。(1)、(2)式の反応を効率よく行うという観点から酸素イオン導電性を有する酸化物が好ましい。電解質との熱膨張を合わせることや電解質との反応を抑制するという観点から、電解質に用いられる酸素イオン導電性酸化物がより好ましく、例えば、ジルコニウム含有酸化物、セリウム含有酸化物、ランタンガレート酸化物などが挙げられる。
 ジルコニウム含有酸化物としては、例えばCaO、Y23、Sc23のうちの一種以上をドープした安定化ジルコニアが好ましい。更に好ましくはイットリア安定化ジルコニア(YSZ)である。これにより燃料極が酸化膨張した際に、燃料極の骨格強度を高め、セル破損しにくくするとなることが可能となる。また、イットリア安定化ジルコニアはカルシア安定化ジルコニアより他の材料との反応性が低く、スカンジア安定化ジルコニアよりも安価であるため、燃料電池の耐久性やコスト面を考えた際に有利になるので、その観点からもより好ましい。
 またセリウム含有酸化物としては、一般式Ce1-yLny2(但し、LnはLa、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sc、Yのいずれか一種又は二種以上の組み合わせであり、0.05≦y≦0.50)が挙げられる。セリウム含有酸化物は、燃料雰囲気下で還元されてCe4+がCe3+となり、余剰電子により電子伝導性が発現するため、導電種が電子と酸素イオンの混合伝導体となる。
 ランタンガレート酸化物としては、特に限定は無いが、(1)、(2)式の反応をより効率良く行うために、La1-aSraGa1-b-cMgbCoc3(但し、0.05≦a≦0.3、0≦b≦0.3、0≦c≦0.15)であることが好ましい。
 本発明の燃料極層を形成するための材料としては、例えばNiO/ジルコニウム含有酸化物、NiO/セリウム含有酸化物、NiO/ランタンガレート酸化物等が挙げられる。ここで言う、NiO/ジルコニウム含有酸化物、NiO/セリウム含有酸化物、NiO/ランタンガレート酸化物とは、それぞれNiOとジルコニウム含有酸化物、NiOとセリウム含有酸化物、NiOとランタンガレート酸化物とが、所定の比率で均一に混合されたものを指す。またNiOは燃料雰囲気下で還元されてNiとなるため、前記混合物はそれぞれNi/ジルコニウム含有酸化物、Ni/セリウム含有酸化物、Ni/ランタンガレート酸化物となる。
 本発明の燃料極層は、鉄族元素の金属酸化物からなる粉末と、セラミックスからなる粉末とを原料として用い、成形体形成することで作製することができる。なお、ここで言う鉄族元素の金属酸化物からなる粉末及びセラミックスからなる粉末とは、それぞれ成形体を得るための原料としての粉末であり、固体酸化物形燃料電池セル作製時における焼成前のものを指す。
 本発明における、鉄族元素の金属酸化物からなる粉末とセラミックスからなる粉末との混合比率は、発電に必要な電子導電性を確保できることと電解質膜との熱膨張係数を合わせることから考えると、重量比で30:70~75:25が好ましい。さらに、燃料極は空気に触れた際に酸化膨張するが、鉄族元素の金属量が多いと燃料極自身が塑性変形して電解質の亀裂を起こしにくいという観点も合わせると、鉄族元素の金属酸化物からなる粉末とセラミックスからなる粉末との混合比率は、重量比で55:45~75:25がより好ましい。なお、焼成後の混合比率は、粉末の混合比率とほぼ同様である。
 鉄族元素の金属酸化物とセラミックスとの平均粒子径の粒径比は1.00~3.30倍であることが好ましく、1.00~1.25倍であることがより好ましい。このような粒径比とすることで燃料極の酸化膨張による膨張を燃料極全体でより均一にすることができるので、繰り返しシャットダウン停止を実施する際にも電解質の亀裂やセル破損を防止することが可能になる。なお、鉄族元素の金属酸化物とセラミックスの粒径はどちらが大きくても良く、同程度であれば良い。
 前記鉄族元素の金属酸化物とセラミックスの平均粒子径は以下の方法で求められたものである。セルの一部分を切り出したセル片を樹脂包埋した後、セルの断面が露出するように研磨を行なう。研磨は断面イオンミリング加工を実施する。前記加工をした加工面の燃料極層部分の反射電子像を、アニュラー型反射電子検出器を備えた高分解能電解放出形走査電子顕微鏡(FE-SEM)にて観察する。加速電圧は25kVで観察する。反射電子像では原子番号のより大きい元素を含む粒子がより明るく観察される。一方、原子番号のより小さい粒子は相対的に暗く観察される。この濃淡差で粒子を鉄族元素の金属酸化物とセラミックスに区別し、それぞれの粒子の大きさを測定する。例えば粒子が円相当のものはその直径が粒子径となり、正方形相当のものは1辺の長さが粒子径として算出される。観察は任意の倍率にて任意の100個の粒子の粒子径を測定し、径の小さい順番から並べた際の3番目~97番目の範囲で測定されたものの平均から算出したものである。
 本発明のスラリー液の分散粒子径とは、以下の方法で測定することができる。すなわち、鉄族元素の金属酸化物からなる粉末と、セラミックスからなる粉末とを、溶媒に分散させたスラリー液を調製する。さらにこのスラリー液を日機装社のマイクロトラック粒度測定装置MT3300EXの小容量型試料循環器(型式MICROTRAC-SVR-SC)に滴下し、レーザー回折・散乱法にて、JISR1629に基づく方法で測定する。前記分散粒子径は、体積平均により算出した体積平均粒子径であり、2回測定の平均した値である。解析ソフトは、マイクロトラック粒度分析計Ver.10.1.2-018SDを用いる。循環ポンプスピードは、循環流量3.0~4.2L/minとし、分散槽内には撹拌翼及び超音波を使用せずに測定する。測定条件としては、スラリー液の溶媒が水の場合は、溶媒屈折率を1.333、粉末の屈折率を1.81とし、Setzero時間30秒、測定時間30秒にて測定する。スラリー液の分散粒子径とは、この際のスラリー中に分散した2次粒子の体積平均粒子径のことである。同一の平均粒子径の粉末を用いた場合、分散粒子径が小さいほど溶媒中の粉末が局所的に凝集せず、より均一に分散していることを示している。
 上記のスラリー液を乾燥することで燃料極を形成するための複合材料を得ることができる。なお、乾燥の方法としては、スラリー液中の粒子が均一分散した状態を保ったまま水分を蒸発させるような方法であれば特に限定されない。なお、本発明ではスラリー液中の粒子が均一分散した状態を保ったまま水分を容易に蒸発できる観点から、スラリー液を気体中に噴霧して急速に乾燥させ、乾燥粉体を製造する噴霧乾燥法で行うのが好ましい。
 本発明における固体酸化物形燃料電池のセルを焼結法で作製する場合の焼成方法については、高い出力が得られれば良く、特に限定はない。すなわち逐次焼成法でも良いし、少なくとも2種以上、望ましくはすべての部材を一度に焼結させる共焼成法でもよい。ただし、量産性を考慮すると、共焼成法の方が、工数が減るため好ましい。
 共焼成を行う場合、例えば、燃料極または空気極の支持体の成形体を作製し800℃~1200℃で仮焼する工程と、得られた仮焼体の表面に固体電解質層を成形し1200℃~1400℃で支持体と共焼結させる工程と、焼結した固体電解質層の表面にもう一方の電極を成形し800℃~1200℃で焼結させる工程と、を備えるセル作製方法が好ましい。なお支持体と電解質の共焼成時の焼結温度は、支持体からの金属成分の拡散を抑制する観点と、ガス透過性の無い固体電解質層を得る観点から、1250℃~1350℃がより好ましい。
 本発明における固体酸化物形燃料電池システムは、本発明の固体酸化物形燃料電池セルを備えたものであれば特に限定されず、その製造や他の材料等は、例えば、公知のものが使用できる。
 図2は、本発明の一実施形態による固体酸化物形燃料電池システムを示す全体構成図である。この図2に示すように、本発明の一実施形態による固体酸化物形燃料電池システム1は、燃料電池モジュール2と、補機ユニット4を備えている。
 燃料電池モジュール2は、ハウジング6を備え、このハウジング6内部には、断熱を介して密封空間8が形成されている。なお、断熱材は設けないようにしても良い。この密閉空間8の下方部分である発電室10には、燃料ガスと酸化剤(空気)とにより発電反応を行う燃料電池セル集合体12が配置されている。この燃料電池セル集合体12は、10個の燃料電池セルスタック14(図3参照)を備え、この燃料電池セルスタック14は、16本の燃料電池セルユニット16(図4参照)から構成されている。このように、燃料電池セル集合体12は、160本の燃料電池セルユニット16を有し、これらの燃料電池セルユニット16の全てが直列接続されている。
 燃料電池モジュール2の密封空間8の上述した発電室10の上方には、燃焼室18が形成 され、この燃焼室18で、発電反応に使用されなかった残余の燃料ガスと残余の酸化剤(空気)とが燃焼し、排気ガスを生成するようになっている。また、この燃焼室18の上方には、燃料ガスを改質する改質器20が配置され、前記残余ガスの燃焼熱によって改質器20を改質反応が可能な温度となるように加熱している。さらに、この改質器20の上方には、改質器20の熱を受けて空気を加熱し、改質器20の温度低下を抑制するための空気用熱交換器22が配置されている。
 次に、補機ユニット4は、水道等の水供給源24からの水を貯水してフィルターにより純水とする純水タンク26と、この貯水タンクから供給される水の流量を調整する水流量調整ユニット28を備えている。また、補機ユニット4は、都市ガス等の燃料供給源30から供給された燃料ガスを遮断するガス遮断弁32と、燃料ガスから硫黄を除去するための脱硫器36と、燃料ガスの流量を調整する燃料流量調整ユニット38を備えている。さらに、補機ユニット4は、空気供給源40から供給される酸化剤である空気を遮断する電磁弁42と、空気の流量を調整する改質用空気流量調整ユニット44及び発電用空気流量調整ユニット45と、改質器20に供給される改質用空気を加熱する第1ヒータ46と、発電室に供給される発電用空気を加熱する第2ヒータ48とを備えている。これらの第1ヒータ46と第2ヒータ48は、起動時の昇温を効率よく行うために設けられているが、省略しても良い。
 次に、燃料電池モジュール2には、排気ガスが供給される温水製造装置50が接続されている。この温水製造装置50には、水供給源24から水道水が供給され、この水道水が排気ガスの熱により温水となり、図示しない外部の給湯器の貯湯タンクへ供給されるようになっている。また、燃料電池モジュール2には、燃料ガスの供給量等を制御するための制御ボックス52が取り付けられている。さらに、燃料電池モジュール2には、燃料電池モジュールにより発電された電力を外部に供給するための電力取出部(電力変換部)であるインバータ54が接続されている。
 次に、図5及び図6により、本発明の実施形態による固体酸化物形燃料電池システムの燃料電池モジュールの内部構造を説明する。図5は、本発明の一実施形態による固体酸化物形燃料電池システムの燃料電池モジュールを示す側面断面図であり、図6は、図5のIII-III線に沿った断面図である。図5及び図6に示すように、燃料電池モジュール2のハウジング6内の密閉空間8には、上述したように、下方から順に、燃料電池セル集合体12、改質器20、空気用熱交換器22が配置されている。
 改質器20は、その上流端側に純水を導入するための純水導入管60と改質される燃料ガスと改質用空気を導入するための被改質ガス導入管62が取り付けられ、また、改質器20の内部には、上流側から順に、蒸発部20aと改質部20bが形成され、改質部20bには改質触媒が充填されている。この改質器20に導入された水蒸気が混合された燃料ガス及び空気は、改質器20内に充填された改質触媒により改質される。
 この改質器20の下流端側には、燃料ガス供給管64が接続され、この燃料ガス供給管64は、下方に延び、さらに、燃料電池セル集合体12の下方に形成されたマニホール66内で水平に延びている。燃料ガス供給管64の水平部64aの下方面には、複数の燃料供給孔64bが形成されており、この燃料供給孔64bから、改質された燃料ガスがマニホールド66内に供給される。
 このマニホールド66の上方には、上述した燃料電池セルスタック14を支持するための貫通孔を備えた下支持板68が取り付けられており、マニホールド66内の燃料ガスが、燃料電池セルユニット16内に供給される。
 次に、改質器20の上方には、空気用熱交換器22が設けられている。この空気用熱交換器22は、上流側に空気集約室70、下流側に2つの空気分配室72を備え、これらの空気集約室70と空気分配室72は、6個の空気流路管74により接続されている。ここで、図6に示すように、3個の空気流路管74が一組(74a,74b,74c,74d,74e,74f)となっており、空気集約室70内の空気が各組の空気流路管74からそれぞれの空気分配室72へ流入する。
 空気用熱交換器22の6個の空気流路管74内を流れる空気は、燃焼室18で燃焼して上昇する排気ガスにより予熱される。空気分配室72のそれぞれには、空気導入管76が接続され、この空気導入管76は、下方に延び、その下端側が、発電室10の下方空間に連通し、発電室10に余熱された空気を導入する。
 次に、マニホールド66の下方には、排気ガス室78が形成されている。また、図6に示すように、ハウジング6の長手方向に沿った面である前面6aと後面6bの内側には、上下方向に延びる排気ガス通路80が形成され、この排気ガス室通路80の上端側は、空気用熱交換器22が配置された空間と連通し、下端側は、排気ガス室78と連通している。また、排気ガス室78の下面のほぼ中央には、排気ガス排出管82が接続され、この排気ガス排出管82の下流端は、図2に示す上述した温水製造装置50に接続されている。図5に示すように、燃料ガスと空気との燃焼を開始するための点火装置83が、燃焼室18に設けられている。
 次に図4により燃料電池セルユニット16について説明する。図4は、本発明の一実施形態による固体酸化物形燃料電池システムの燃料電池セルユニットを示す部分断面図である。図4に示すように、燃料電池セルユニット16は、燃料電池セル84と、この燃料電池セル84の上下方向端部にそれぞれ接続された内側電極端子86とを備えている。燃料電池セル84は、上下方向に延びる管状構造体であり、内部に燃料ガス流路88を形成する円筒形の内側電極層90と、円筒形の外側電極層92と、内側電極層90と外側電極層92との間にある電解質層94とを備えている。なお、内側電極端子86は、酸化剤ガス流入抑制部の一態様である。
 燃料電池セル16の上端側と下端側に取り付けられた内側電極端子86は、同一構造であるため、ここでは、上端側に取り付けられた内側電極端子86について具体的に説明する。内側電極層90の上部90aは、電解質層94と外側電極層92に対して露出された外周面90bと上端面90cとを備えている。内側電極端子86は、導電性のシール材96を介して内側電極層90の外周面90bと接続され、さらに、内側電極層90の上端面90cとは直接接触することにより、内側電極層90と電気的に接続されている。内側電極端子86の中心部には、内側電極層90の燃料ガス流路88と連通する燃料ガス流路98が形成されている。
 燃料電池セル16は本発明の燃料電池セルを用いる。
 次に、本実施形態による固体酸化物形燃料電池システムの運転停止時の動作を説明する。燃料電池システムの運転停止を行う場合には、定格温度で運転している燃料電池システムの電流、燃料ガス、空気、水の供給をほぼ同時に遮断する、シャットダウン停止により燃料電池システムを停止させる。運転停止時に燃料を少しずつ絞りながら停止したり、N2ガスなどのパージガスを流すことなく停止することが可能である。
 シャットダウン停止のほぼ同時とは、電流、空気、ガス、水が数10秒以内という非常に短い時間にて全て停止することを示す。より詳細には、電流を止めたのち10数秒後に空気と燃料ガスの供給を止め、さらにその10数秒後に水の供給を止める停止操作となる。
 本発明における燃料ガス流路を形成する方法としては、特に限定されない。例えば、燃料極層を筒状支持体とし、筒の内部に燃料ガスを流す方法や絶縁性の多孔質筒状支持体の表面側から燃料極、電解質、空気極の順に積層させ、前記絶縁性多孔質筒状支持体の内部に燃料ガスを流す方法、平板状の燃料極、電解質、空気極からなる固体酸化物形燃料電池をセパレータを介して積層させ、そのセパレータに燃料ガス流路を形成する方法などが挙げられる。
 また、本実施形態の固体酸化物形燃料電池セルの燃料極を構成している鉄族元素及びセラミックスは、何れも拡散しにくい。従って、燃料極と固体電解質とを同時焼成した場合における拡散が低減され、固体電解質層のイオン伝導度への悪影響を抑制することができる。
 以下の実施例によって本発明をさらに詳細に説明する。なお、本発明はこれらの実施例に限定されるものではない。
(実施例1)
 平均粒子径0.3μmの酸化ニッケル粉末と平均粒子径0.25μmのイットリア安定化ジルコニア(YSZ)粉末と分散剤(ポリカルボン酸アミン)と水とを径が5mmのイットリア安定化ジルコニアボールにて20時間ボールミル混合してスラリー液を得た。このときNiOとYSZの重量比は55:45~65:35とした。なお、酸化ニッケル粉末およびYSZ粉末の平均粒子径はSEM観察で20000倍の倍率にて100個の粒子の粒子径を測定したものの平均から算出したものである。
 得られたスラリー液の分散粒子径を段落0059に基づく方法にて測定した。スラリー液の分散粒子径は1.0μmであった。
 (燃料極用の複合材料の作製)
 得られたスラリー液を噴霧乾燥機にて乾燥させて燃料極用の複合材料を得た。
 (固体酸化物形燃料電池セルの作製)
 上記のようにして得られた燃料極用複合材料を用いて、以下の方法で固体酸化物形燃料電池セルを作製した。
 前記燃料極用の複合材料に有機バインダー(メチルセルロース)と水、可塑剤(グリセリン)を混合し押出成形機にてせん断を加え1次粒子化させて円筒状に成形し900℃で仮焼した燃料極支持体を作製した。この燃料極支持体上に、NiOとGDC10(10mol%Gd23-90mol%CeO2)とを重量比50:50で混合したものをスラリーコート法により製膜し、燃料極反応触媒層を形成した。さらに、燃料極反応触媒層上にLDC40(40mol%La23-60mol%CeO2)、La0.9Sr0.1Ga0.8Mg0.23の組成のLSGMをスラリーコート法により順次積層し、電解質層を形成した。得られた成形体を1300℃にて焼成した後に、空気極層としてLa0.6Sr0.4Co0.2Fe0.83の組成のLSCFをスラリーコート法にて製膜し、1050℃で焼成することで燃料極組成がNiOとYSZの重量比で55:45のセルが50本、60:40のセルが60本、65:35のセルが50本の計160本の固体酸化物形燃料電池セルを作製した。
 作製した固体酸化物形燃料電池セルは、燃料極支持体が外径10~10.2mm、肉厚1~1.2mmであり、燃料極反応触媒層の厚さが10~30μmであり、LDC層の厚みが3~40μmであり、LSGM層の厚みが20~50μmであり、空気極の厚みが18~24μmであった。なお、燃料極支持体の外径は成膜していない個所をマイクロメータで測定した。膜厚はシステムの運転試験後にセルを切断して、断面をSEMで30~2000倍の任意の倍率にて観察し、膜厚の最大値と最小値を足して2で割ったものである。切断箇所は空気極の成膜してある部分の中央部とした。空気極の面積は35cm2とした。また、燃料極支持体の平均粒子径を段落0058に基づく方法にて測定した。ニッケル粒子とYSZ粒子の平均粒子径の粒径比は1.23倍であった。
 (固体酸化物形燃料電池モジュールの作製)
 前記固体酸化物形燃料電池セルの空気極上に集電体としてAgを塗布し、また燃料極支持体の両端部に集電体とガスシールを兼ね備えた導電性シール材を取付け、さらに前記燃料極の両端部に前記導電性シール材を覆うように酸化剤ガス流入抑制部を設け、燃料電池セルユニットを作製した。なお、酸化剤ガス流入抑制部は燃料ガス流路となる燃料極支持体の内径より縮径し、前記セルのそれぞれの端部からセルの外方向に伸びる縮径部を有するものとした。前記燃料電池セルユニットを16本一組とし、燃料極と空気極を接続するコネクタで16本を直列につなげスタック化した。前記スタックを10組搭載し160本を直列に接続し、さらに改質器、空気配管、燃料配管を取付けた後ハウジングで囲み、固体酸化物形燃料電池モジュールを作製した。前記燃料電池モジュールを固体酸化物形燃料電池システムに組み込んだ。
(実施例2)
 平均粒子径0.6μmの酸化ニッケル粉末と平均粒子径2μmのイットリア安定化ジルコニア(YSZ)粉末を用いたこと以外は実施例1と同様にして、固体酸化物形燃料電池モジュールを作製した。
 得られたスラリー液の分散粒子径は3.0μmであった。
 また、燃料極支持体のニッケル粒子とYSZ粒子の平均粒子径の粒径比は3.30倍であった。
(実施例3)
 燃料極用の複合材料にさらに造孔剤として平均粒子径3μmのPMMAを添加し、押出成形機にてせん断を加え1次粒子化させて円筒状に成形したこと以外は実施例1と同様にして、固体酸化物形燃料電池モジュールを作製した。燃料極用の複合材料とPMMAの比率は72:28Vol%の割合とした。
 得られたスラリー液の分散粒子径は1.0μmであった。
 また、燃料極支持体のニッケル粒子とYSZ粒子の平均粒子径の粒径比は1.30倍であった。
(実施例4)
 径が10mmのイットリア安定化ジルコニアボールにて6時間ボールミル混合し、押出成形機にてせん断を加えずに円筒状に成形し、縮径部を有さない酸化剤ガス流入抑制部を設けたこと以外は実施例1と同様にして、固体酸化物形燃料電池モジュールを作製した。
 得られたスラリー液の分散粒子径は8.0μmであった。
 また、燃料極支持体のニッケル粒子とYSZ粒子の平均粒子径の粒径比は1.50倍であった。
(実施例5)
 径が10mmのイットリア安定化ジルコニアボールにて2時間ボールミル混合したこと以外は実施例1と同様にして、固体酸化物形燃料電池モジュールを作製した。
 得られたスラリー液の分散粒子径は10.0μmであった。
 また、燃料極支持体のニッケル粒子とYSZ粒子の平均粒子径の粒径比は1.42倍であった。
(実施例6)
 実施例1と同様にして固体酸化物形燃料電池セルを作製した。これに燃料極支持体の下端部のみに実施例1と同様の集電体とガスシールを兼ね備えた導電性シール材を取付け、さらに前記燃料極の下端部に前記導電性シール材を覆うように実施例1と同様の酸化剤ガス流入抑制部を設け、燃料電池セルユニットを作製した。すなわち、燃料電池セルの上端部には、酸化剤ガス流入抑制部を設けずに燃料電池セルユニットを作製した。それ以外は実施例1と同様にして固体酸化物形燃料電池モジュールを作製した。
 得られたスラリー液の分散粒子径は1.0μmであった。
 また、燃料極支持体のニッケル粒子とYSZ粒子の平均粒子径の粒径比は1.23倍であった。
(比較例1)
 径が10mmのイットリア安定化ジルコニアボールにて2時間ボールミル混合したことと押出成形機にてせん断を加えずに円筒状に成形したこと以外は実施例1と同様にして、固体酸化物形燃料電池モジュールを作製した。
 得られたスラリー液の分散粒子径は10.0μmであった。
 また、燃料極支持体のニッケル粒子とYSZ粒子の平均粒子径の差は1.54倍であった。
 次に、実施例1~5及び比較例1で得られた燃料極用の複合材料を用いて酸化膨張速度を評価するサンプルを作製し、評価した。
(焼結体の作製)
 実施例1~3及び5で得られた燃料極用の複合材料に有機バインダー(メチルセルロース)と水、可塑剤(グリセリン)を混合し押出成形機にてせん断を加え1次粒子化させて円柱状に成形した。また、実施例4及び比較例1で得られた燃料極用の複合材料に有機バインダー(メチルセルロース)と水、可塑剤(グリセリン)を混合し押出成形機にてせん断を加えずに円柱状に成形した。得られたそれぞれの成形体を大気雰囲気中1300℃で焼結させて焼結体を得た。焼結体のNiOとYSZの重量比は65:35とした。
(焼結体の還元体の作製)
 得られた焼結体を水素中900℃で還元させそれぞれの還元体を得た。還元体の寸法は直径5mm×長さ15mmの円柱状とした。
作製した燃料電池システム及び、酸化膨張速度評価用サンプルについて以下のようにして評価した。
評価:シャットダウン試験
 作製した燃料電池システムを以下のように運転させたのち、シャットダウン停止後、モジュール内の固体酸化物形燃料電池セルの外観を目視にて確認した。
(燃料電池システム発電)
 発電条件としては、燃料は都市ガス13Aで燃料利用率は75%とした。酸化剤は空気で空気利用率は40%とした。S/C=2.25とした。発電定常温度は700℃とし、電流密度0.2A/cm2で運転した。
(燃料電池システム停止)
 定常温度で2時間運転したのち、燃料電池システムの電流、燃料ガス、空気、水の供給をほぼ同時に遮断する、シャットダウン停止により燃料電池システムを停止させた。システム内のモジュールを取り出し、内部の固体酸化物形燃料電池セルの外観を目視にて確認した。
(評価:酸化膨張速度の測定)
 得られた焼結体の還元体で酸化膨張率の測定を行った。焼結体の還元体を700℃の大気雰囲気下にさらし、酸化膨張率の時間変化を測定した。酸化膨張率はサンプルの長手方向の長さを測定し、還元体の長さをL1、酸化後の長さをL2として、(L2-L1)/L1をパーセント表示することで算出した。また、ある時間におけるサンプルの長手方向の長さをL3、その1分後の長さをL4として、(L4-L3)/L3をパーセント表示することで1分間当たりの線膨張率、即ち酸化膨張速度を算出した。
Figure JPOXMLDOC01-appb-T000001
 図7に、それぞれのサンプルを700℃の大気雰囲気下にさらした際の酸化膨張率の時間変化を示す。図8には酸化開始から10分間における1分間当たりの線膨張率の結果を示す。また、表1には1分間当たりの線膨張率の最大値と最大膨張率、シャットダウン停止後の固体酸化物形燃料電池セルの外観結果を示す。なお、表1中の「◎」印は100回以上のシャットダウン停止において発電に支障なく電解質の亀裂や破損のない場合、「○」印は5回以上のシャットダウン停止において発電に支障なく電解質の亀裂や破損のない場合、「×」印は5回未満のシャットダウン停止において電解質の亀裂や破損し、性能が低下した場合を示す。本発明の固体酸化物形燃料電池セルを備えた燃料電池システムにおいて、優れた発電性能が得られることが確認できた。
 酸化膨張速度の測定結果をみると、実施例1及び2は実施例3、4及び5に比べ、1分間当たりの線膨張率の最大値がさらに小さくなっている。このため、シャットダウン停止を繰り返した際にも電解質へ与える影響も小さく、より多いシャットダウン停止においても良好な発電性能が得られるものと推察される。実施例1と2を比較すると、最大膨張率は実施例1のほうが0.38%と高いがシャットダウン停止による電解質の亀裂や破損の状態は良好であった。このことから最大膨張率よりも1分間当たりの線膨張率のほうがシャットダウン停止による電解質の亀裂や破損に対して影響していることが示唆される。さらに、図7、8より、実施例1では1分間当たりの線膨張率の最大値が0.022%と非常に小さい上に、酸化膨張の飽和に達するまで緩やかに酸化膨張が起こり、160分程度で最終的に0.4%程度の酸化膨張量で飽和している。このため、燃料極支持体と直接接するガスシール部分にて酸化膨張による急激な応力が生じず、シャットダウン停止を繰り返した際にもさらに安定して良好な発電性能が得られるものと推察される。実施例1~6と比較例1の燃料極における差の要因は明らかでないが、燃料極の粒子の良好な分散性により燃料極の微構造が最適化された結果、酸化膨張が燃料極全体で均一に起こり、電解質の亀裂やセル破損を起こさなかったことが推察される。初期酸化膨張速度が急激であった比較例1はシャットダウン試験後、図9に示すようにNiが骨格を広げるように外側へ膨張し、Zr骨格が崩れて(Zr同士が離れて)いることが確認された。実施例1~6ではZr骨格が崩れていなかった。この理由は明らかではないが、燃料極の粒子の良好な分散性によりNiが骨格を広げることなく均一に酸化膨張したためと考えられる。

Claims (14)

  1.  固体酸化物形燃料電池セルであって、
    燃料ガス流路と、
    前記燃料ガス流路の周囲に設けられた鉄族元素とセラミックスとを含んでなる燃料極層と、
    前記燃料極層の周囲に設けられた固体電解質層と、
    前記固体電解質層の周囲に設けられた空気極層とを有し、
    燃料ガスが前記燃料ガス流路の一方側から供給され、前記燃料ガス流路の他方側に設けられた開口部から排出され、固体酸化物形燃料電池セルの温度が発電温度に近い高温状態において、前記開口部から酸化剤ガスが流入した場合に生じる前記燃料極層の酸化膨張の速度を抑制するための、膨張速度抑制処理が施されていることを特徴とする、固体酸化物形燃料電池セル。
  2.  前記開口部から前記酸化剤ガスが流入し始めた以降の期間における、前記燃料極の1分間当たりの線膨張率が、0.09%以下であることを特徴とする、
    請求項1に記載の固体酸化物形燃料電池セル。
  3.  前記燃料極層は、前記鉄族元素の金属酸化物からなる粉末と、前記セラミックスからなる粉末とを、溶媒に分散させたスラリー液を乾燥させた複合材料から得られるものであり、
    前記膨張速度抑制処理は、前記スラリー液の分散粒子径を10μm未満とする処理を施す工程を含むことを特徴とする、請求項2に記載の固体酸化物形燃料電池セル。
  4.  前記燃料極層は、前記鉄族元素の金属酸化物からなる粉末と、前記セラミックスからなる粉末とを、溶媒に分散させたスラリー液を乾燥させた複合材料を押出成形させてなるものであり、
    前記膨張速度抑制処理は、押出成形時に複合材料にせん断を加え、1次粒子化する工程を含むことを特徴とする、請求項2又は3に記載の固体酸化物形燃料電池セル。
  5.  前記鉄族元素がニッケルであることを特徴とする請求項1~4のいずれか一項に記載の固体酸化物形燃料電池セル。
  6.  前記セラミックスが安定化ジルコニアであることを特徴とする請求項1~5のいずれか一項に記載の固体酸化物形燃料電池セル。
  7.  前記安定化ジルコニアがイットリア安定化ジルコニアであることを特徴とする請求項1~6のいずれか一項に記載の固体酸化物形燃料電池セル。
  8.  前記開口部には、前記開口部への酸化剤ガスの流入に対する圧力損失を高める酸化剤ガス流入抑制部が設けられていることを特徴とする請求項1~7のいずれか一項に記載の固体酸化物形燃料電池セル。
  9.  前記酸化剤ガス流入抑制部は、前記開口部よりも小さい断面積を有する酸化剤ガス流入抑制流路を具備し、
    この酸化剤ガス流入抑制流路は前記燃料ガス流路と連通していることを特徴とする請求項8に記載の固体酸化物形燃料電池セル。
  10. 前記酸化剤ガス流入抑制部は、少なくとも前記開口部を覆う胴体部と、前記胴体部から突出するよう伸び、前記胴体部よりも径が細い縮径部とを有することを特徴とする請求項9に記載の固体酸化物形燃料電池セル。
  11.  請求項1~10のいずれか一項に記載の固体酸化物形燃料電池セルを備える燃料電池システム。
  12.  燃料ガス流路と、
    前記燃料ガス流路の周囲に設けられた鉄族元素とセラミックスとを含んでなる燃料極層と、
    前記燃料極層の周囲に設けられた固体電解質層と、
    前記固体電解質層の周囲に設けられた空気極層とを有し、燃料ガスが前記燃料ガス流路の一方側から供給され、前記燃料ガス流路の他方側に設けられた開口部から排出される固体酸化物形燃料電池セルの製造方法であって、
    固体酸化物形燃料電池セルの温度が発電温度に近い高温状態において、前記開口部から酸化剤ガスが流入した場合に生じる前記燃料極層の酸化膨張の速度を抑制するための、膨張速度抑制処理を固体酸化物形燃料電池セルに施す工程を有することを特徴とする、固体酸化物形燃料電池セルの製造方法。
  13.  前記鉄族元素の金属酸化物からなる粉末と、前記セラミックスからなる粉末とを、溶媒に分散させたスラリー液を乾燥させた複合材料から前記燃料極層を得る工程を含み、
    前記膨張速度抑制処理は、前記スラリー液の分散粒子径を10μm未満とする処理を施す工程を有することを特徴とする、請求項12に記載の固体酸化物形燃料電池セルの製造方法。
  14.  前記鉄族元素の金属酸化物からなる粉末と、前記セラミックスからなる粉末とを、溶媒に分散させたスラリー液を乾燥させた複合材料を押出成形させて前記燃料極層を得る工程を含み、
    前記膨張速度抑制処理は、押出成形時に複合材料にせん断を加え、1次粒子化する工程を含むことを特徴とする、請求項12又は13に記載の固体酸化物形燃料電池セルの製造方法。
PCT/JP2012/062790 2011-05-18 2012-05-18 固体酸化物形燃料電池セル及び固体酸化物形燃料電池セルの製造方法 WO2012157748A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/118,168 US20140087282A1 (en) 2011-05-18 2012-05-18 Solid oxide fuel cell and method for producing solid oxide fuel cell
JP2013515222A JP5858249B2 (ja) 2011-05-18 2012-05-18 固体酸化物形燃料電池セル及び固体酸化物形燃料電池セルの製造方法
CN201280023995.2A CN103548191B (zh) 2011-05-18 2012-05-18 固体氧化物型燃料电池单电池及固体氧化物型燃料电池单电池的制造方法
EP12785959.3A EP2712011B1 (en) 2011-05-18 2012-05-18 Solid oxide type fuel battery cell and method for fabricating solid oxide type fuel battery cell
US15/149,746 US20160254561A1 (en) 2011-05-18 2016-05-09 Method for Producing a Solid Oxide Fuel Cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-111262 2011-05-18
JP2011111262 2011-05-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/118,168 A-371-Of-International US20140087282A1 (en) 2011-05-18 2012-05-18 Solid oxide fuel cell and method for producing solid oxide fuel cell
US15/149,746 Division US20160254561A1 (en) 2011-05-18 2016-05-09 Method for Producing a Solid Oxide Fuel Cell

Publications (1)

Publication Number Publication Date
WO2012157748A1 true WO2012157748A1 (ja) 2012-11-22

Family

ID=47177062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062790 WO2012157748A1 (ja) 2011-05-18 2012-05-18 固体酸化物形燃料電池セル及び固体酸化物形燃料電池セルの製造方法

Country Status (5)

Country Link
US (2) US20140087282A1 (ja)
EP (1) EP2712011B1 (ja)
JP (1) JP5858249B2 (ja)
CN (1) CN103548191B (ja)
WO (1) WO2012157748A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160043410A1 (en) * 2014-08-06 2016-02-11 Korea Institute Of Energy Research Tube-type solid-oxide secondary battery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105958159B (zh) * 2016-06-23 2018-06-19 河北工业大学 一种柱式单体电池锌空电池组
JP6284662B1 (ja) * 2017-02-02 2018-02-28 日本特殊陶業株式会社 電気化学反応単位および電気化学反応セルスタック
JP2021103643A (ja) * 2019-12-25 2021-07-15 富士電機株式会社 燃料電池システム及び運転方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06243872A (ja) * 1993-02-17 1994-09-02 Yuasa Corp 固体電解質型燃料電池用燃料極
JPH07105954A (ja) * 1993-09-30 1995-04-21 Mitsubishi Heavy Ind Ltd 固体電解質型電解セル燃料極
JP2001196069A (ja) * 1999-11-01 2001-07-19 Mitsubishi Heavy Ind Ltd 燃料電池
JP2006302709A (ja) 2005-04-21 2006-11-02 Toto Ltd 固体酸化物形燃料電池
JP2009037873A (ja) * 2007-08-01 2009-02-19 Central Res Inst Of Electric Power Ind 中温作動固体酸化物形燃料電池の管状の単セルとその製造方法
JP2010232136A (ja) * 2009-03-30 2010-10-14 Mitsubishi Materials Corp 積層固体電解質を備える高出力発電セル
JP2010257947A (ja) * 2009-03-30 2010-11-11 Mitsubishi Heavy Ind Ltd 固体電解質燃料電池用セルチューブ、及び固体電解質燃料電池
JP2010277845A (ja) 2009-05-28 2010-12-09 Toto Ltd 固体電解質型燃料電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1527486A4 (en) * 2001-06-29 2008-04-30 Nextech Materials Ltd NANO-COMPOSITE ELECTRODES AND METHOD FOR THE PRODUCTION THEREOF
JP3996861B2 (ja) * 2002-05-29 2007-10-24 京セラ株式会社 燃料電池セル及び燃料電池
EP1513214A1 (de) * 2003-09-05 2005-03-09 Sulzer Hexis AG Hochtemperaturbrennstoffzelle mit stabilisierter Cermet-Struktur
KR20050025065A (ko) * 2003-09-05 2005-03-11 술저 헥시스 악티엔게젤샤프트 고온 연료 전지
US8524419B2 (en) * 2004-09-13 2013-09-03 Kyocera Corporation Electrode support for fuel cells
CN100568597C (zh) * 2004-09-13 2009-12-09 京瓷株式会社 燃料电池
KR101521420B1 (ko) * 2007-11-05 2015-05-19 스미토모 긴조쿠 고잔 가부시키가이샤 고체 산화물형 연료 전지용 산화 니켈 분말 재료와 그 제조 방법, 및 그것을 이용한 연료극 재료, 연료극, 및 고체 산화물형 연료 전지

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06243872A (ja) * 1993-02-17 1994-09-02 Yuasa Corp 固体電解質型燃料電池用燃料極
JPH07105954A (ja) * 1993-09-30 1995-04-21 Mitsubishi Heavy Ind Ltd 固体電解質型電解セル燃料極
JP2001196069A (ja) * 1999-11-01 2001-07-19 Mitsubishi Heavy Ind Ltd 燃料電池
JP2006302709A (ja) 2005-04-21 2006-11-02 Toto Ltd 固体酸化物形燃料電池
JP2009037873A (ja) * 2007-08-01 2009-02-19 Central Res Inst Of Electric Power Ind 中温作動固体酸化物形燃料電池の管状の単セルとその製造方法
JP2010232136A (ja) * 2009-03-30 2010-10-14 Mitsubishi Materials Corp 積層固体電解質を備える高出力発電セル
JP2010257947A (ja) * 2009-03-30 2010-11-11 Mitsubishi Heavy Ind Ltd 固体電解質燃料電池用セルチューブ、及び固体電解質燃料電池
JP2010277845A (ja) 2009-05-28 2010-12-09 Toto Ltd 固体電解質型燃料電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2712011A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160043410A1 (en) * 2014-08-06 2016-02-11 Korea Institute Of Energy Research Tube-type solid-oxide secondary battery

Also Published As

Publication number Publication date
US20140087282A1 (en) 2014-03-27
EP2712011A4 (en) 2014-12-03
EP2712011A1 (en) 2014-03-26
JP5858249B2 (ja) 2016-02-10
EP2712011B1 (en) 2016-10-12
CN103548191A (zh) 2014-01-29
CN103548191B (zh) 2016-05-04
US20160254561A1 (en) 2016-09-01
JPWO2012157748A1 (ja) 2014-07-31

Similar Documents

Publication Publication Date Title
WO2016157566A1 (ja) プロトン伝導体、燃料電池用固体電解質層、セル構造体およびそれを備える燃料電池
EP2495791B1 (en) Fuel cell, cell stack, fuel cell module, and fuel cell device
US11909051B2 (en) Cell, cell stack unit, electrochemical module, and electrochemical apparatus
KR20130123189A (ko) 고체산화물 연료전지용 음극 지지체 및 그 제조방법과 이를 포함한 고체산화물 연료전지
EP2784863A1 (en) Solid oxide fuel cell and method for producing the same
JP5858249B2 (ja) 固体酸化物形燃料電池セル及び固体酸化物形燃料電池セルの製造方法
JP2010231918A (ja) 燃料電池セル、燃料電池セルスタック装置、燃料電池モジュールおよび燃料電池装置
JP5281950B2 (ja) 横縞型燃料電池セルスタックおよびその製法ならびに燃料電池
JP6999523B2 (ja) 固体酸化物形燃料電池セル
JP7015125B2 (ja) 空気極材料および固体酸化物形燃料電池
WO2015147072A1 (ja) セルスタック装置、モジュールおよびモジュール収容装置
JP6395111B2 (ja) 固体酸化物形燃料電池セル及びその製造方法
JP2006127973A (ja) 燃料電池セル
JP6999518B2 (ja) 固体酸化物形燃料電池
JP7107875B2 (ja) 燃料極-固体電解質層複合体の製造方法
Hartwell et al. Complex Material Behavior Seen with Novel Internal Cathode Tubular Solid Oxide Fuel Cells
JP2016054146A (ja) 固体酸化物形燃料電池システム
JP7382470B2 (ja) 固体酸化物形燃料電池
JP7100610B2 (ja) 固体酸化物形燃料電池用燃料極
JP5248177B2 (ja) 横縞型固体酸化物形燃料電池スタックおよびその作製方法
JP2019036414A (ja) 固体酸化物形燃料電池
JP2021051983A (ja) 固体酸化物形燃料電池セル
JP2015201428A (ja) 固体酸化物形燃料電池セル
JP2022119219A (ja) 燃料極-固体電解質層複合体、燃料極-固体電解質層複合部材、燃料電池、および、燃料電池の製造方法
Emley et al. Preparation of Freeze Cast T-SOFCs and a Universal Electrochemical Testing Fixture

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280023995.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12785959

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013515222

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14118168

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012785959

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012785959

Country of ref document: EP