WO2012157625A1 - 電界効果トランジスタ及び半導体装置 - Google Patents

電界効果トランジスタ及び半導体装置 Download PDF

Info

Publication number
WO2012157625A1
WO2012157625A1 PCT/JP2012/062360 JP2012062360W WO2012157625A1 WO 2012157625 A1 WO2012157625 A1 WO 2012157625A1 JP 2012062360 W JP2012062360 W JP 2012062360W WO 2012157625 A1 WO2012157625 A1 WO 2012157625A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
field effect
effect transistor
lower barrier
barrier layer
Prior art date
Application number
PCT/JP2012/062360
Other languages
English (en)
French (fr)
Inventor
岡本 康宏
安藤 裕二
中山 達峰
井上 隆
一樹 大田
Original Assignee
ルネサスエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ルネサスエレクトロニクス株式会社 filed Critical ルネサスエレクトロニクス株式会社
Priority to JP2013515154A priority Critical patent/JP5718458B2/ja
Priority to US14/117,763 priority patent/US8928038B2/en
Publication of WO2012157625A1 publication Critical patent/WO2012157625A1/ja
Priority to US14/550,118 priority patent/US9231096B2/en
Priority to US14/947,172 priority patent/US9530879B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate

Definitions

  • the present invention is based on the priority claim of Japanese patent application: Japanese Patent Application No. 2011-109636 (filed on May 16, 2011), the entire contents of which are incorporated herein by reference. Shall.
  • the present invention relates to a semiconductor device, and more particularly to a semiconductor device including a group III nitride semiconductor as a main material.
  • FIG. 11 is a diagram schematically showing a cross section of the structure of a normally-off type field effect transistor (Field Effect Transistor) using Group III nitride semiconductor of Related Technology 1.
  • a field effect transistor is described in Patent Document 1, for example.
  • Patent Document 1 discloses a GaN-based field effect transistor (FET) having a HEMT (High Electric Mobility Transistor) structure that is normally off, has a very low on-resistance during operation, and can operate at a high current.
  • FIG. 11 is newly rewritten this time based on FIG. 1 of Patent Document 1.
  • the field effect transistor of Related Art 1 has the following configuration, for example.
  • the substrate 110 is a sapphire substrate that is a (0001) plane, that is, a C-plane substrate,
  • the buffer layer 111 is GaN or AlGaN,
  • the channel layer 113 is GaN,
  • the electron supply layer 114 is AlGaN.
  • the source electrode 121 and the drain electrode 122 are spaced apart from each other on the electron supply layer 114 which is the uppermost layer of the semiconductor, and an ohmic contact is taken.
  • the semiconductor surface between the source electrode 121 and the drain electrode 122 is covered with SiN, which is a protective film 131, an opening is formed in a part of the protective film 131, and a groove-shaped recess 141 is formed in the semiconductor part immediately below the protective film 131. .
  • gate insulating film 132 made of, for example, Al 2 O 3 so as to cover the side surface and the bottom surface of the recess 141, and the gate electrode 123 is on it.
  • a two-dimensional electron gas (2DEG: 2 dimensional electron gas) is generated in the channel layer 113 at the heterojunction interface between the channel layer 113 and the electron supply layer 114.
  • a two-dimensional electron gas is not generated in the channel layer portion (recess 141) where the gate insulating film 132 is formed instead of the electron supply layer 114 and the electron supply layer 114 does not exist. That is, the two-dimensional electron gas 151 is in a state where the spread in the two-dimensional direction is cut off at the location where the gate insulating film 132 is formed. Therefore, when the gate is opened, the drain current flowing in the channel layer 113 is suppressed.
  • an electron accumulation layer (depletion layer) is formed at a position of the channel layer 113 immediately below the gate insulating film 132, and the two-dimensional electrons that were disconnected before the gate voltage was applied.
  • the gas communicates through the inversion distribution layer, and shows the operation of the field effect transistor (FET operation) (normally-off type FET).
  • FIG. 12 is an energy band diagram under the gate in an equilibrium state of the semiconductor device shown in FIG.
  • the Fermi level of the semiconductor becomes higher than the conduction band, and electrons accumulate at the interface between the insulating film and the semiconductor.
  • the gate voltage at which this state is realized is called “threshold voltage” and is one of the important indicators of the field effect transistor.
  • a threshold value of +3 V or more is required to ensure safety in consideration of noise resistance.
  • this threshold voltage is the difference between the conduction band at the insulating film-semiconductor interface and the Fermi level in the equilibrium state. (Amount represented by ⁇ VMS in FIG. 12) is closely related.
  • the threshold value can be changed by selecting a gate electrode material, the range is at most about 1V.
  • FIG. 13 shows the gate voltage (horizontal axis: V) when the thickness of the gate insulating film is changed and the two-dimensional electron concentration accumulated at the insulating film-semiconductor interface in the field effect transistor having the structure of the related art 1 ( This is the result of calculating the relationship of (electron concentration ⁇ thickness) (vertical axis: Ns (cm ⁇ 2 )) (according to the analysis results of the inventors of the present application).
  • the thickness of the gate insulating film for example, 132 in FIG. 11
  • the increase in the electron concentration starts with the same gate voltage
  • the threshold voltage Indicates no change at all.
  • the calculated threshold voltage is about 1V, which is different from + 3V required for application.
  • the field effect transistor according to the related art 1 has a problem that a sufficiently high threshold voltage cannot be realized and there is almost no room for threshold design.
  • FIG. 14 is a diagram obtained by rewriting FIG. 1 of Patent Document 2 (refer to the description of Patent Document 2 for details). Referring to FIG. 14, this field effect transistor has, for example, the following structure.
  • Substrate 110 is (0001) silicon carbide (SiC),
  • the buffer layer 111 is AlGaN,
  • the lower barrier layer 112 includes lattice-relaxed Al x Ga 1-x N (0 ⁇ x ⁇ 1),
  • the channel layer 113 is In y Ga 1-y N (0 ⁇ y ⁇ 1) having a smaller band gap than the lower barrier layer 112 and having compressive strain.
  • a source electrode 121 and a drain electrode 122 are disposed apart from each other and are in ohmic contact.
  • the semiconductor surface between the source electrode 121 and the drain electrode 122 is covered with a gate insulating film 132, and the gate electrode 123 is disposed thereon.
  • the gate insulating film 132 is polycrystalline or amorphous, and in the embodiment of Patent Document 2, silicon nitride (Si 3 N 4 ) is used.
  • Compressive strain is generated in the GaN channel layer 113, so that piezoelectric polarization occurs, and a two-dimensional electron layer 151 is generated at the interface with the lower barrier layer 112.
  • the buffer layer 111 is an undoped graded AlGaN layer, and the Al composition of the buffer layer 111 gradually decreases from, for example, 1 to 0.1 as it goes from the substrate 110 toward the lower barrier layer 112 side.
  • the buffer layer 111 has a function of releasing the accumulation of strain energy due to lattice mismatch or the like by the generation of dislocations (misfit dislocations generated at the interface or the like), and the lattice constant of the outermost surface of the buffer layer is changed to the AlGaN lower barrier layer 112. (Lattice matching).
  • the AlGaN buffer layer 111 is a buffer layer for bringing the AlGaN lower barrier layer 112 into a lattice-relaxed state (no strain).
  • the thickness of the AlGaN buffer layer 111 is, for example, 0.1 ⁇ m or more and 10 ⁇ m or less in order to reduce the influence of dislocation. Since the AlGaN lower barrier layer 112 is lattice-matched with the outermost surface of the buffer layer 111, it is strain-free, that is, lattice-relaxed.
  • the channel layer 113 is an undoped GaN layer, which is a strained lattice layer that is thinner than the critical film thickness for dislocation generation.
  • the two-dimensional electron layer 151 can be changed and the threshold can be designed in a wide range.
  • the present invention is generally configured as follows (however, the present invention is not limited to the following).
  • the composition includes a substrate and a semiconductor layer provided on the substrate, and the semiconductor layer is provided on the substrate, grown on a Ga plane, and has a lattice relaxed composition In 1-z Al z N.
  • a field effect transistor is provided in which a gate electrode is disposed in a region between drain electrodes via a gate insulating film.
  • the threshold voltage of the field effect transistor can be controlled, which greatly contributes to increasing the threshold voltage of the field effect transistor and expanding the design range of the threshold voltage. Further, according to the present invention, since the channel layer is lattice-matched with the lower barrier layer, high reliability can be realized without entraining strain.
  • FIG. 1 It is a figure which shows the relationship of the composition of lattice matching of InGaN and InAlN. It is a figure which shows the relationship between a gate insulating film and a threshold voltage. It is a figure which shows typically the cross-sectional structure of the field effect transistor of 2nd embodiment. It is a figure which shows typically the cross-sectional structure of the field effect transistor of the related art 1. It is a figure which shows the energy band of the field effect transistor of the related art 1. It is a figure which shows the relationship between the gate voltage of the field effect transistor of related art 1, and the charge density accumulated. It is a figure which shows typically the cross-sectional structure of the field effect transistor of the related technique 2.
  • FIG. 1 shows the relationship of the composition of lattice matching of InGaN and InAlN. It is a figure which shows the relationship between a gate insulating film and a threshold voltage. It is a figure which shows typically the cross-sectional structure of the field effect transistor of 2nd embodiment. It is
  • the field effect transistor comprises a substrate (10) and a semiconductor layer provided on the substrate (10), wherein the semiconductor layer is on the substrate (10).
  • a buffer layer (11) comprising Ga-grown GaN or AlGaN, a lower barrier layer (12) having a lattice-relaxed composition In 1-z Al z N (0 ⁇ z ⁇ 1), and the lower portion Provided on the barrier layer (12) and lattice-matched with the lower barrier layer (12), the composition Al x Ga 1-x N (0 ⁇ x ⁇ 1) or In y Ga 1-y N (0 ⁇ y ⁇ ) 1), a source electrode (21) and a drain electrode (22) that are in ohmic contact with the upper portion of the semiconductor layer are disposed apart from each other, and the source electrode (21) And the drain electrode (22) In a region between the gate electrode (23) is disposed through a gate insulating film (32).
  • the field effect transistor has a negative polarity at the interface between the lower barrier layer In 1-z Al z N and the channel layer Al x Ga 1-x N or ln y Ga 1-y N due to the polarization effect. Interfacial charges are generated.
  • a negative electric field E is generated in the gate insulating film in an equilibrium state (the electric field E is substantially normal to the gate insulating film and from the channel layer to the gate electrode).
  • V E ⁇ d
  • the threshold voltage of the field effect transistor can be controlled.
  • Vth0 + E ⁇ d a positive voltage
  • V E ⁇ d
  • the composition of the channel layer is Al x Ga 1-x N (0 ⁇ x ⁇ 1), and the composition of the lower barrier layer In 1-z Al z N is 0.76 ⁇ It is in the range of z ⁇ 1.
  • the composition of the channel layer is In y Ga 1-y N (0 ⁇ y ⁇ 1), and the composition of the lower barrier layer In 1-z Al z N is 0 ⁇ z ⁇ 0.86. It is in the range.
  • the channel layer is lattice-matched with the lower barrier layer, high reliability can be realized without including strain (stress).
  • strain stress
  • FIG. 1 is a diagram schematically showing a cross-sectional configuration of the field effect transistor according to the first embodiment of the present invention.
  • the field effect transistor shown in FIG. 1 has the following configuration, for example.
  • the substrate 10 is a (0001) plane, that is, a sapphire substrate that is a C-plane substrate,
  • the buffer layer 11 is GaN or AlGaN,
  • the lower barrier layer 12 is lattice-relaxed InAlN,
  • the channel layer 13 is lattice-matched to the lower barrier layer 12, and Al x Ga 1-x N (0 ⁇ x ⁇ 1) or In y Ga 1-y N (0 ⁇ y ⁇ 1),
  • the electron supply layer 14 is AlGaN.
  • the source electrode 21 and the drain electrode 22 are arranged apart from each other and are in ohmic contact.
  • the semiconductor surface between the source electrode 21 and the drain electrode 22 is covered with SiN, which is a protective film 31, and there is an opening in a part of the protective film 31, and there is a groove-like recess 41 in the semiconductor part immediately below it.
  • the buffer layer 11 is a buffer layer for bringing the InAlN lower barrier layer 12 into a lattice-relaxed state (no strain). Since the InAlN lower barrier layer 12 is lattice-matched with the outermost surface of the buffer layer 11, it is strain-free, that is, lattice-relaxed.
  • FIG. 2A is an energy band diagram under the gate in the equilibrium state of the field effect transistor of FIG. Since negative surface charges are generated at the interface between the InAlN lower barrier layer 12 and the GaN channel layer 13, a negative electric field is generated in the GaN channel layer 13 and the Al 2 O 3 gate insulating film 32.
  • ⁇ VMS can be increased and a high threshold value can be realized as compared with the related technique 1 (FIG. 12) in which no electric field is generated in the gate insulating film.
  • ⁇ VMS can be changed by changing the thickness d of the gate insulating film (Al 2 O 3 ) 32 (FIG. 2A: gate insulating film (Al 2 ). O 3 ) 32 thickness d 1, ⁇ VMS 1, FIG. 2B: gate insulating film (Al 2 O 3 ) 32 thickness d 2, ⁇ VMS 2). Therefore, the threshold voltage can be designed by changing the device structure parameter (the thickness of the gate insulating film).
  • the threshold value is about 1V, whereas in the structure of this embodiment, a sufficiently high threshold value of + 4V or more can be realized.
  • the channel layer 13 As described above, an example of GaN as the channel layer 13 has been shown. However, if a negative charge can be generated at the interface with the lower barrier layer 12, the channel layer 13 can be AlGaN or InGaN.
  • the lower barrier layer 12 and the channel layer 13 are preferably a lattice-matched system, but a fluctuation of about 0.05 as the composition ratio is allowed.
  • the surface charge and the threshold are designed as follows.
  • the lattice constant a and spontaneous polarization PSP of InAlN, InGaN, and AlGaN are respectively expressed as follows.
  • the unit of spontaneous polarization is C (Coulomb) m ⁇ 2 .
  • the piezoelectric polarization of AlN is expressed by the following equations (7) and (8), and the piezoelectric polarization of GaN and InN is expressed by the following equations (9) and (10). It is expressed in
  • P PZ (AlN) ⁇ 1.808 ⁇ 7.888 ⁇ 2 Cm ⁇ 2 for ⁇ > 0 (8)
  • strain ⁇ is given by equation (11), where a buffer is the lattice constant of the buffer layer 11 and a es is the lattice constant of the lower barrier layer 12.
  • Piezoelectric polarizations of Al x Ga 1-x N and In y Ga 1-y N with strain ⁇ with respect to the buffer layer 11 are expressed by the following equations (12) and (13), respectively.
  • the spontaneous polarization P SP is obtained from the equations (4) and (6) when the channel layer 13 is Al x G 1-x N and the lower barrier layer 12 is In 1-z Al z N. Is given by the following equation (17).
  • the spontaneous polarization at the interface Al x Ga 1-x N channel layer and In 1-z Al z N lower barrier layer P SP is, Al x Ga 1-x spontaneous polarization in the N-channel layer P SP (Al x
  • the following formula (17) is obtained by subtracting the spontaneous polarization P SP (In 1-z Al z N) of the In 1-z Al z N lower barrier layer from Ga 1-x N).
  • Equation (18) charge density generated at the interface between the GaN channel layer 13 and the In 1-z Al z N lower barrier layer 12).
  • FIG. 5 is a diagram illustrating the relationship between the Al composition x (horizontal axis) of Al x Ga 1-x N that is lattice matched and the Al composition z (vertical axis) of In 1-z Al z N. From FIG. 5, z that lattice-matches with Al x Ga 1-x N is in the range of 0.81 ⁇ z ⁇ 1, but in the range of 0.76 ⁇ z ⁇ 1, taking into account fluctuations during crystal growth. If there is, the same effect can be expected.
  • ⁇ r relative dielectric constant of the gate insulating film
  • ⁇ 0 Dielectric constant of vacuum
  • E ins (Al x Ga 1-x N / In 1-z Al z N) in formula (19) is the charge at the interface between the Al x Ga 1-x N channel layer and the In 1-z Al z N lower barrier layer.
  • (Negative charge) ⁇ (Al x Ga 1-x N / In 1-z Al z N) represents the strength of the electric field applied to the gate insulating film 32 in the normal direction.
  • the gate insulating film 32 is a dielectric having a relative dielectric constant ⁇ r, and the side of the channel layer 13 sandwiching the gate insulating film 32 and the gate electrode 23 are parallel plate electrodes (area S: distance d ins ).
  • V th (Al x Ga 1-x N / In 1-z Al z N) E ins (Al x Ga 1-x N / In 1-z Al z N) ⁇ d ins + V th0 (20)
  • d ins is the thickness of the gate insulating film.
  • V th (Al x Ga 1-x N / In 1-z Al z N) in formula (20) is the charge at the interface between the Al x Ga 1-x N channel layer and the In 1-z Al z N lower barrier layer.
  • E ins (Al x Ga 1-x N / In 1-z Al z N) is applied to the gate insulating film 32 by ⁇ (Al x Ga 1-x N / In 1-z Al z N) Represents the threshold voltage.
  • FIG. 6 is a diagram showing the relationship between the gate insulating film and the threshold voltage in the Al x Ga 1-x N / In 1-z Al z N lattice matching system.
  • the horizontal axis represents the thickness (nm) of the gate insulating film, and the vertical axis represents the threshold voltage.
  • (x, z) (0, 0.81), (0.4, 0.89), ( 0.8, 0.96) results are shown. In either case, the threshold voltage increased almost in proportion to the increase in the thickness (nm) of the gate insulating film, and the formula (20) was confirmed.
  • FIG. 7 is a diagram showing the relationship between the InGaN composition and the charge density ⁇ when the lattice-matched In y Ga 1-y N channel layer 13 is used in FIG.
  • the horizontal axis represents the In composition ratio y
  • the vertical axis represents the charge density (charge surface density) (cm ⁇ 2 )
  • the charge density ⁇ in equation (22) is expressed as q (elementary charge: 1.602 ⁇ 10 ⁇ 19 is the absolute value of ⁇ / q divided by C).
  • FIG. 8 is a diagram illustrating a relationship between y of lattice-matched In y Ga 1-y N and z of In 1-z Al z N.
  • the horizontal axis represents In y Ga 1-y N and the In composition ratio y
  • the vertical axis represents the Al composition ratio z of Al z In 1-z N.
  • Z lattice-matched with In y Ga 1-y N of Al is in the range of 0 ⁇ z ⁇ 0.81, but in consideration of fluctuation during crystal growth, if it is in the range of 0 ⁇ z ⁇ 0.86 The same effect can be expected.
  • the threshold voltage is given by the following equation (24) in the same manner as equation (20).
  • V th (In y Ga 1- y N / In 1-z Al z N) E ins (In y Ga 1-y N / In 1-z Al z N) d ins + V th0 ⁇ (24)
  • V th0 is a threshold value in a structure in which an electric field is not applied to the gate insulating film in an equilibrium state, that is, a structure as shown in Related Art 1.
  • FIG. 9 shows the thickness (horizontal axis) of the gate insulating film 32 and the threshold voltage in the In y Ga 1-y N / In 1-z Al z N lattice matching system (the channel layer is In y Ga 1-y N). It is a figure which shows the relationship of a vertical axis
  • the horizontal axis represents the thickness (nm) of the gate insulating film, and the vertical axis represents the threshold voltage (V).
  • V threshold voltage
  • Non-Patent Document 1 As described above, based on the knowledge disclosed in Non-Patent Document 1, the composition design of the semiconductor material has been described. Design.
  • the composition ratio is, for example, 0.05. Even if there is a degree of fluctuation, almost the same effect can be obtained.
  • the above field effect transistor is formed as follows.
  • a buffer layer 11 (film thickness: 1 ⁇ m) and a lower part made of lattice-relaxed InAlN by, for example, metal organic chemical vapor deposition (abbreviated as “MOCVD”) on a (0001) plane sapphire substrate 10
  • MOCVD metal organic chemical vapor deposition
  • the barrier layer 12 (film thickness: 1 ⁇ m), the channel layer 13 (100 nm) made of GaN, and the electron supply layer 14 (film thickness: 30 nm) made of AlGaN are stacked in this order.
  • the lower barrier layer 12 (InAlN) has a composition lattice-matched with GaN of the upper channel layer 13. A two-dimensional electron layer 51 is generated at the interface between the electron supply layer 14 and the channel layer 13.
  • a metal such as titanium (Ti) / aluminum (Al) is deposited, and an annealing process is performed at, for example, 650 ° C., thereby forming the source electrode 21 and the drain electrode 22 in ohmic contact.
  • SiN having a film thickness of 100 nm is formed as the protective film 31 by using, for example, a plasma-enhanced chemical vapor deposition (abbreviated as “PECVD”) method.
  • PECVD plasma-enhanced chemical vapor deposition
  • a recess 41 is formed by opening a part of the protective film 31 by etching and etching the semiconductor layer using the protective film 31 as a mask.
  • the recess 41 has a depth at which the channel layer 13 is exposed.
  • Al 2 O 3 is grown to a thickness of 10 nm as the gate insulating film 32 by an atomic layer deposition (hereinafter abbreviated as “ALD”) method.
  • ALD atomic layer deposition
  • a gate electrode 23 is formed on the region where the recess 41 is formed by evaporating a metal such as Ni / Au. In this way, the field effect transistor shown in FIG. 1 is manufactured.
  • sapphire is used as the substrate 10, but SiC or Si may be used.
  • the protective film 31 may use a laminated structure of SiO 2 , SiN and SiO 2 in addition to the exemplified SiN.
  • SiN or SiO 2 may be used as the gate insulating film 32.
  • FIG. 10 is a diagram schematically showing a cross-sectional configuration of the field effect transistor according to the second embodiment of the present invention.
  • the field effect transistor shown in FIG. 10 has the following configuration, for example.
  • the substrate 10 is a sapphire substrate that is a (0001) plane, that is, a C-plane substrate,
  • the buffer layer 11 is GaN or AlGaN,
  • the lower barrier layer 12 is AlInN,
  • the channel layer 13 is GaN.
  • the source electrode 21 and the drain electrode 22 are spaced apart from each other on the channel layer 13 which is the uppermost layer of the semiconductor, and ohmic contact is taken.
  • a semiconductor surface between the source electrode 21 and the drain electrode 22 has a gate insulating film 32 that also serves as a protective film, and a gate electrode 23 is provided thereon.
  • a gate insulating film is used as a protective film, it is possible to form a protective film-semiconductor interface having a low trap density.
  • GaN is used as the channel layer 13
  • a configuration using AlGaN or InGaN as the channel layer may be used by using the design method shown in the first embodiment.
  • SiC or Si may be used as the substrate 10.
  • the protective film 31 may use a laminated structure of SiO 2 , SiN and SiO 2 in addition to the exemplified SiN.
  • SiN or SiO 2 may be used as the gate insulating film 32.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

 ゲート絶縁膜の厚さを変えることで、電界効果トランジスタの閾値電圧を制御することが可能となり、高閾値化や閾値電圧の設計範囲拡大に大きく寄与する電界効果トランジスタを提供する。基板と、前記基板上に設けられた半導体層とを備え、前記半導体層は、前記基板上に設けられ、Ga面成長し、格子緩和した組成In1-zAlN(0≦z≦1)を有する下部障壁層と、前記下部障壁層上に設けられ、前記下部障壁層と格子整合し、組成AlGa1-xN(0≦x≦1)またはInGa1-yN(0≦y≦1)を有するチャネル層を備え、前記半導体層の上部にオーミック接触するソース電極とドレイン電極とが互いに離間して配設されており、前記ソース電極と前記ドレイン電極の間の領域に、ゲート絶縁膜を介してゲート電極が配置されている。

Description

電界効果トランジスタ及び半導体装置
[関連出願についての記載]
 本発明は、日本国特許出願:特願2011-109636号(2011年 5月16日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
 本発明は、半導体装置に関し、特に、III族窒化物半導体を主原料として含む半導体装置に関する。
<関連技術1>
 III族窒化物半導体を主原料として含む半導体装置の関連技術を以下に説明する。図11は、関連技術1のIII族窒化物半導体を利用したノーマリオフ型の電界効果トランジスタ(Field Effect Transistor)の構造の断面を模式的に示す図である。このような電界効果トランジスタは、例えば特許文献1に記載されている。特許文献1には、ノーマリオフ型で、動作時のオン抵抗が非常に小さく、大電流動作可能なHEMT(High Electrol Mobility Transistor)構造のGaN系電界効果トランジスタ(FET)が開示されている。なお、図11は、特許文献1の第1図等に基づき今回新たに書き直したものである。図11を参照すると、関連技術1の電界効果トランジスタは、例えば下記の構成を有している。
 基板110は(0001)面すなわちC面基板であるサファイア基板、
 バッファ層111はGaNあるいはAlGaN、
 チャネル層113はGaN、
 電子供給層114はAlGaNである。
 半導体の最上層である電子供給層114の上にはソース電極121とドレイン電極122が離間して配置され、オーム性接触が取られている。
 ソース電極121とドレイン電極122の間の半導体表面は保護膜131であるSiNで覆われており、保護膜131の一部に開口部があり、その直下の半導体部に溝状のリセス141がある。
 リセス141の側面および底面を覆うように、例えばAlで形成されたゲート絶縁膜132があり、その上にゲート電極123がある。
 チャネル層113と電子供給層114のヘテロ接合界面におけるチャネル層113には2次元電子ガス(2DEG:2 dimensional electron gas)が発生する。しかし、電子供給層114の代わりにゲート絶縁膜132が形成され、電子供給層114が存在しない、チャネル層の箇所(リセス141)には、2次元電子ガスは発生しない。すなわち、2次元電子ガス151はゲート絶縁膜132の形成箇所でその2次元方向の広がりが断絶した状態となっている。したがって、ゲート開放時に、チャネル層113内を流れるドレイン電流(drain to source current)は抑制される。ゲート電極123に所定のバイアス電圧を印加すると、ゲート絶縁膜132直下のチャネル層113の箇所には電子の蓄積層(depletion layer)が形成され、ゲート電圧印加前には断絶していた2次元電子ガスが反転分布層を介して連絡することになり、電界効果トランジスタの動作(FET動作)を示す(ノーマリオフ型のFET)。
 図12は、図11に示した半導体装置の平衡状態におけるゲート下のエネルギーバンド図である。ゲート電極に正の電圧を印加すると、半導体のフェルミ準位が伝導帯より上の状態になり、絶縁膜と半導体の界面に電子が溜まる。この状態が実現されるゲート電圧を「閾値電圧」と呼び、電界効果トランジスタの重要な指標の一つである。
 特に、ノーマリオフ型のトランジスタを、電力制御用のスイッチング素子として用いる場合には、ノイズ耐性を考慮した安全性確保のため、+3V以上の閾値が要求される。
国際公開第2003/071607号(WO2003/071607)公報 国際公開第2009/081584号(WO2009/081584)公報
ジャーナル・オブ・フィジクス(Journal of Physics)、第14巻、第3399-3434頁、2002年
 以下に関連技術の分析を与える。
 図11及び図12を参照して説明した関連技術1の電界効果トランジスタの動作からも理解されるように、この閾値電圧は、平衡状態における絶縁膜-半導体界面の伝導帯とフェルミ準位の差(図12中ΔVMSで表される量)と密接な関係がある。
 関連技術1による電界効果トランジスタでは、このΔVMSは、ゲート電極(ゲート金属)の仕事関数ΦMと、半導体の電子親和力χSの差分で決まる(すなわち、ΔVMS=ΦM―χS)。
 言い換えると、図11等を参照して説明した関連技術1の構造の電界効果トランジスタでは、デバイス構造パラメータの変更による閾値設計の余地は極めて小さい。
 例えばゲート電極材料の選択により、閾値を変えることが可能ではあるものの、その範囲は高々1V程度である。また、電界効果トランジスタの閾値電圧設計のために、電極材料を変えることは、半導体装置を製造する上で、現実的とは言い難い。
 図13は、関連技術1の構造の電界効果トランジスタにおいて、ゲート絶縁膜の厚さを変えた時のゲート電圧(横軸:V)と、絶縁膜-半導体界面に蓄積される2次元電子濃度(電子濃度×厚さ)(縦軸:Ns(cm-2))の関係を計算した結果である(本願発明者等の分析結果による)。
 図13の結果から、ゲート絶縁膜(例えば図11の132)の厚さを5nm、10nm、15nmの範囲で変えても、同じ値のゲート電圧で、電子濃度の増加が始まっており、閾値電圧が全く変化しないことを示している。また、計算された閾値電圧は1V程度であり、応用上要求される+3Vとは隔たりがある。
 すなわち、関連技術1による電界効果トランジスタでは、十分に高い閾値電圧を実現することができないことに加え、閾値設計の余地がほとんどない、という問題点がある。
<関連技術2:閾値設計範囲の拡大技術>
 関連技術2として、閾値設計範囲を拡大する電界効果トランジスタが例えば特許文献2に記載されている。図14は、特許文献2の図1等を書き直した図である(なお、詳細は特許文献2の記載が参照される)。図14を参照すると、この電界効果トランジスタは、例えば下記の構造を有している。
 基板110は(0001)面の炭化珪素(SiC)、
 バッファ層111はAlGaN、
 下部障壁層112は格子緩和したAlGa1-xN(0≦x≦1)、
 チャネル層113は下部障壁層112よりもバンドギャップが小さく圧縮歪を有するInGa1-yN(0≦y≦1)である。
 半導体の最上層であるGaNチャネル層113の上には、ソース電極121とドレイン電極122が離間して配置され、オーム性接触が取られている。ソース電極121とドレイン電極122の間の半導体表面はゲート絶縁膜132で覆われており、その上にゲート電極123が配設される。ゲート絶縁膜132は多結晶又はアモルファルであり、特許文献2の実施形態では窒化珪素(Si)が用いられる。
 GaNチャネル層113には圧縮歪が生じるためにピエゾ分極が発生し、下部障壁層112との界面に二次元電子層151が発生する。
 バッファ層111は、アンドープ傾斜組成AlGaN層であり、バッファ層111のAl組成は基板110から下部障壁層112側に向かうにしたがって例えば1から0.1まで徐々に減少している。この場合、下部障壁層112AlGa1-xNにおいてAl組成x=0.1であり、N型不純物(例えば珪素Si)が添加されている。バッファ層111は、格子不整合等による歪エネルギーの蓄積を、転位(界面等に生じるミスフィット転位)の発生によって開放する働きを有し、バッファ層の最表面の格子定数をAlGaN下部障壁層112の格子定数と一致させてある(格子整合)。AlGaNバッファ層111はAlGaN下部障壁層112を格子緩和した状態(無歪)とするための緩衝層である。AlGaNバッファ層111の厚みは転位の影響を軽減するため、例えば0.1μm以上、10μm以下とされる。AlGaN下部障壁層112はバッファ層111の最表面と格子整合するため、無歪、すなわち格子緩和している。特許文献2の実施例ではチャネル層113はアンドープGaN層であり、転位発生の臨界膜厚よりも薄く歪格子層となっている。
 図14に示す関連技術2の電界効果トランジスタでは、AlGaN下部障壁層112にドーピングするn型不純物濃度を制御することによって、二次元電子層151を変化させ、閾値を広い範囲で設計可能としている。
 しかしながら、関連技術2においては、圧縮歪を有する層をチャネル層113として用いている。このため、自発性分極を相殺させる向きにピエゾ分極が発生し、逆ピエゾ効果(電圧を加えると機械的な歪みが生じる)によって、格子欠陥が発生した場合のドレイン電流特性に対する影響が大きい。このため、長期信頼性の点で、さらに改善の余地がある。
 上記問題点の少なくとも1つを解決するため、本発明が概略以下の構成とされる(ただし、以下に限定されない)。
 本発明によれば、基板と、前記基板上に設けられた半導体層とを備え、前記半導体層は、前記基板上に設けられ、Ga面成長し、格子緩和した組成In1-zAlN(0≦z≦1)を有する下部障壁層と、前記下部障壁層上に設けられ、前記下部障壁層と格子整合し、組成AlGa1-xN(0≦x≦1)またはInGa1-yN(0≦y≦1)を有するチャネル層を備え、前記半導体層の上部にオーミック接触するソース電極とドレイン電極とが互いに離間して配設されており、前記ソース電極と前記ドレイン電極の間の領域に、ゲート絶縁膜を介してゲート電極が配置されている電界効果トランジスタが提供される。
 本発明によれば、ゲート絶縁膜の厚さを変えることで、電界効果トランジスタの閾値電圧を制御することが可能となり、電界効果トランジスタの高閾値化や閾値電圧の設計範囲拡大に大きく寄与する。また、本発明によれば、チャネル層が下部障壁層と格子整合しているため、歪を内包することなく高い信頼性を実現することができる。本発明による上記外の作用・効果は、本発明を限定する意味を有しない好適な形態や実施形態の記載、さらに図面等から当業者には明らかとなろう。
第一の実施形態の電界効果トランジスタの断面構成を模式的に示す図である。 第一の実施形態の電界効果トランジスタのエネルギーバンドを模式的に示す図である。 第一の実施形態の電界効果トランジスタのゲート電圧と蓄積される電荷密度の関係を示す図である。 AlGaNのAl組成と蓄積される電荷密度の関係を示す図である。 AlGaNとInAlNの格子整合する組成の関係を示す図である。 ゲート絶縁膜の膜厚と閾値電圧の関係を示す図である。 InGaNのIn組成と蓄積される電荷密度の関係を示す図である。 InGaNとInAlNの格子整合する組成の関係を示す図である。 ゲート絶縁膜と閾値電圧の関係を示す図である。 第二の実施形態の電界効果トランジスタの断面構成を模式的に示す図である。 関連技術1の電界効果トランジスタの断面構成を模式的に示す図である。 関連技術1の電界効果トランジスタのエネルギーバンドを示す図である。 関連技術1の電界効果トランジスタのゲート電圧と蓄積される電荷密度の関係を示す図である。 関連技術2の電界効果トランジスタの断面構成を模式的に示す図である。
 本発明を実施するための好ましい形態について説明する。いくつかの好ましい形態によれば、閾値電圧の設計性に優れたノーマリオフ型のIII族窒化物系電界効果トランジスタが提供される。例えば、いくつかの好ましい形態によれば、電界効果トランジスタは、基板(10)と、前記基板(10)上に設けられた半導体層とを備え、前記半導体層は、前記基板(10)上に設けられ、Ga面成長したGaN又はAlGaNを含有するバッファ層(11)と、格子緩和した組成In1-zAlN(0≦z≦1)を有する下部障壁層(12)と、前記下部障壁層(12)上に設けられ、前記下部障壁層(12)と格子整合し、組成AlGa1-xN(0≦x≦1)またはInGa1-yN(0≦y≦1)を有するチャネル層(13)を含み、前記半導体層の上部にオーミック接触するソース電極(21)とドレイン電極(22)とが互いに離間して配設されており、前記ソース電極(21)と前記ドレイン電極(22)の間の領域に、ゲート絶縁膜(32)を介してゲート電極(23)が配置されている。
 好ましい態様において、電界効果トランジスタは、分極効果に起因して、下部障壁層In1-zAlNと、チャネル層AlGa1-xNまたはlnGa1-yNの界面に負の界面電荷が発生する。これにより、平衡状態においてゲート絶縁膜中に負の電界Eが発生する(電界Eはゲート絶縁膜の略法線方向、チャネル層からゲート電極の向き)。ゲート絶縁膜の厚さをdとすると、電圧V=E×dがゲート絶縁膜を間に挟む導体(電極)間に発生する。ゲート絶縁膜の厚さdを替えることで、V=E×dの値が変わる。このため、電界効果トランジスタの閾値電圧を制御することが可能となる。例えば、関連技術1の閾値電圧(Vth0:図13の例では約1V程度)に、さらに電圧V=E×d加算した値の正電圧又はそれ以上の電圧(Vth0+E×d)をゲート電極に印加することで、2次元電子ガスが生成され、ドレイン電流が流れ始めることになる。よって、電界効果トランジスタの高閾値化、閾値電圧の設計範囲の拡大に大きく寄与する。
 好ましい態様において、電界効果トランジスタは、前記チャネル層の組成がAlGa1-xN(0≦x≦1)であり、前記下部障壁層In1-zAlNの組成が0.76≦z≦1の範囲にある。
 あるいは、好ましい態様において、前記チャネル層の組成がInGa1-yN(0≦y≦1)であり、前記下部障壁層In1-zAlNの組成が0≦z≦0.86の範囲にある。
 好ましい態様において、チャネル層が下部障壁層と格子整合しているため、歪(応力)を内包することなく、高い信頼性を実現することができる。以下、実施形態に即してさらに詳しく説明する。
<第一の実施形態>
 図1は、本発明の第一の実施形態にかかる電界効果トランジスタの断面構成を模式的に示す図である。図1に示す電界効果トランジスタは、例えば下記の構成を有している。
 基板10は、(0001)面すなわちC面基板であるサファイア基板、
 バッファ層11はGaNあるいはAlGaN、
 下部障壁層12は格子緩和したInAlN、
 チャネル層13は下部障壁層12と格子整合した、AlGa1-xN(0≦x≦1)またはInGa1-yN(0≦y≦1)、
 電子供給層14はAlGaNである。
 半導体の最上層である電子供給層14の上にはソース電極21とドレイン電極22が離間して配置され、オーム性接触が取られている。ソース電極21とドレイン電極22の間の半導体表面は保護膜31であるSiNで覆われており、保護膜31の一部に開口部があり、その直下の半導体部に溝状のリセス41がある。リセス41の側面および底面を覆うように、例えばAlで形成されたゲート絶縁膜32があり、その上にゲート電極23がある。
 バッファ層11は、InAlN下部障壁層12を格子緩和した状態(無歪)とするための緩衝層である。InAlN下部障壁層12はバッファ層11の最表面と格子整合するため、無歪、すなわち格子緩和している。
 図2(a)は、図1の電界効果トランジスタの平衡状態におけるゲート下のエネルギーバンド図である。InAlN下部障壁層12、GaNチャネル層13の界面に負の面電荷が発生するため、GaNチャネル層13およびAlゲート絶縁膜32中に負の電界が生じている。
 このため、ゲート絶縁膜中に電界を生じない関連技術1(図12)と比較して、ΔVMSを大きくでき、高閾値を実現できる。
 また、図2(b)に示すように、ゲート絶縁膜(Al)32の厚さdを変えることで、ΔVMSを変えることができる(図2(a):ゲート絶縁膜(Al)32の厚さd1、ΔVMS1、図2(b):ゲート絶縁膜(Al)32の厚さd2、ΔVMS2)。したがって、デバイス構造パラメータ(ゲート絶縁膜の膜厚)の変更による閾値電圧設計が可能となる。
 図3は、図1の電界効果トランジスタにおいて、ゲート絶縁膜の厚さdを変えた時のゲート電圧と絶縁膜-半導体界面に蓄積される電子濃度(2次元電荷密度:電子濃度×厚さ:単位cm-2)の関係を計算した結果である。関連技術1の構造では、図13に示すように、閾値が1V程度であったのに対し、本実施形態の構造では、+4V以上と、十分な高閾値化が実現できる。ゲート絶縁膜の厚さを5nm、10nm、15nmと変えることで閾値が4V、6V、8Vと大きく変化しており、設計範囲が拡大している。
 以上、チャネル層13としてGaNの例を示したが、下部障壁層12との界面に負電荷を発生させることができれば、チャネル層13として、AlGaNあるいはInGaNとすることも可能である。
 また、本実施形態において、高信頼性を確保するために、下部障壁層12とチャネル層13は格子整合する系とすることが好ましいが、組成比として0.05程度の揺らぎは許容される。
 図1の電界効果トランジスタにおいて、面電荷および閾値は以下のように設計される。
 非特許文献1によれば、InAlN、InGaN、AlGaNの格子定数aおよび自発分極PSPはそれぞれ以下のように表される。自発分極の単位はC(Coulomb)m-2
a(AlGa1-xN)=3.1986-0.0891x   ・・・・(1)
a(InGa1-yN)=3.1986+0.3862y   ・・・・(2)
a(In1-zAlN)=3.5848-0.4753z   ・・・・(3)
SP(AlGa1-xN)=-0.090x-0.031(1-x)+0.021x(1-x) Cm-2   ・・・・(4)
SP(InGa1-yN)=-0.042y-0.034(1-y)+0.037y(1-y) Cm-2   ・・・・(5)
SP(In1-zAlN)=-0.090z-0.042(1-z)+0.070z(1-z) Cm-2   ・・・・(6)
 また、バッファ層11に対してεの歪がある時、AlNのピエゾ分極は、次式(7)、(8)、GaN、InNのピエゾ分極は、次式(9)、(10)のように表される。
PZ(AlN)=-1.808ε+5.624ε Cm-2 for ε<0   ・・・・(7)
PZ(AlN)=-1.808ε-7.888ε Cm-2 for ε>0   ・・・・(8)
PZ(GaN)=-0.918ε+9.541ε Cm-2   ・・・・(9)
PZ(InN)=-1.373ε+7.559ε Cm-2   ・・・・(10)
 上式(7)~(10)において、歪εは、バッファ層11の格子定数をabuffer、下層障壁層12の格子定数をaesとすると、式(11)で与えられる。
ε=(abuffer-aes)/aes     ・・・・(11)
 バッファ層11に対する歪がεであるAlGa1-xN、InGa1-yNのピエゾ分極は、それぞれ次式(12)、(13)と表される。
PZ(AlGa1-xN)=xPPZ(AlN)+(1-x)PPZ(GaN)   ・・・ (12)
PZ(InGa1-yN)=yPPZ(InN)+(1-y)PPZ(GaN)   ・・・ (13)
 したがって、式(7)、(8)、(9)、(10)より、
PZ(AlGa1-xN)=x(-1.808ε+5.624ε
+(1-x)(-0.918ε+9.541ε) for ε<0  ・・・(14)
PZ(AlGa1-xN)=x(-1.808ε-7.888ε
+(1-x)(-0.918ε+9.541ε) for ε>0  ・・・(15)
PZ(InGa1-yN)=y(-1.373ε+7.559ε
+(1-y)(-0.918ε+9.541ε)    ・・・(16)
 また、この系において、自発分極PSPは、チャネル層13がAl1-xNであり、下部障壁層12がIn1-zAlNの場合、式(4)、(6)より、次式(17)で与えられる。すなわち、AlGa1-xNチャネル層とIn1-zAlN下部障壁層の界面での自発分極PSPは、AlGa1-xNチャネル層での自発分極PSP(AlGa1-xN)から、In1-zAlN下部障壁層の自発分極PSP(In1-zAlN)を差し引いた、次式(17)となる。
SP(AlGa1-xN/In1-zAlN)=PSP(AlGa1-xN)-PSP(In1-zAlN)
={-0.090x-0.031(1-x)+0.021x(1-x)}
-{-0.090z-0.042(1-z)+0.070z(1-z)}・・・(17)
 AlGa1-xNチャネル層13とIn1-zAlN下部障壁層12の界面に発生する電荷密度σは次式(18)で与えられる。
σ(AlGa1-xN/In1-zAlN)=PSP(AlGa1-xN/In1-zAlN)+PPZ(AlGa1-xN)   ・・・(18)
 図4は、下部障壁層と格子整合するAlGa1-xNチャネル層を用いた場合の、AlGa1-xNのAl組成x(横軸)と、AlGa1-xNチャネル層とIn1-zAlN下部障壁層の界面の電荷密度(面密度)(縦軸)の関係を示す。なお、図4の縦軸(単位:cm-2)は、電荷密度(面密度)σをq(素電荷:1.602×10-19C)で除算した値σ/qの絶対値である。AlGa1-xNチャネル層13とIn1-zAlN下部障壁層12の界面には、図4の電荷密度(面密度)に素電荷qを乗じ、符号のマイナスとした電荷が単位面積に発生することになる。
 なお、図3に示した計算結果は、式(18)において、x=0の場合に該当する(GaNチャネル層13とIn1-zAlN下部障壁層12の界面に発生する電荷密度)。
 格子整合する組成の組み合わせは、(1)、(3)式より決定することができる。図5は、格子整合するAlGa1-xNのAl組成x(横軸)と、In1-zAlNのAl組成z(縦軸)の関係を示す図である。図5から、AlGa1-xNと格子整合するzは、0.81≦z≦1の範囲であるが、結晶成長時の揺らぎを考慮し、0.76≦z≦1の範囲であれば、同等の効果が期待できる。
 AlGa1-xNチャネル層13とIn1-zAlN下部障壁層12の界面に、電荷密度が(18)式で表される面電荷(負電荷)が存在する場合に、平衡状態でゲート絶縁膜32に加わる電界Einsは、次式(19)で与えられる。
 Eins(AlGa1-xN/In1-zAlN)=σ(AlGa1-xN/In1-zAlN)/(εε)   ・・・(19)
 ここで、
 εr:ゲート絶縁膜の比誘電率、
 ε0:真空の誘電率
である。
 式(19)のEins(AlGa1-xN/In1-zAlN)は、AlGa1-xNチャネル層とIn1-zAlN下部障壁層間の界面の電荷(負電荷)σ(AlGa1-xN/In1-zAlN)により、ゲート絶縁膜32のその法線方向に加わる電界の強さを表している。式(19)は、ゲート絶縁膜32を比誘電率εrの誘電体とし、ゲート絶縁膜32を間に挟むチャネル層13側とゲート電極23を平行平板電極(面積S:距離dins)とした平行平板コンデンサとみなし、平板電極の電荷を+Q、-Qとするとき、平行平板電極間の電界Eins(+Qから-Q電極側の向き)は、
 Eins×S=Q/(εε
 が成り立ち、Q/S=σから、
 Eins=σ/(εε)となる。
 平衡状態でゲート絶縁膜に電界がかからない構造、すなわち関連技術1(図11、図12)として示したような構造における閾値をVth0とすると、式(19)で表される電界Einsがかかっている場合の閾値Vthは、式(10)のEinsを用いて、次式(20)と表される。
 Vth(AlGa1-xN/In1-zAlN)=Eins(AlGa1-xN/In1-zAlN)×dins+Vth0     ・・・(20)
 ここで、dinsはゲート絶縁膜の厚さである。
 式(20)のVth(AlGa1-xN/In1-zAlN)は、AlGa1-xNチャネル層とIn1-zAlN下部障壁層間の界面の電荷σ(AlGa1-xN/In1-zAlN)により、ゲート絶縁膜32に電界Eins(AlGa1-xN/In1-zAlN)が加わっているときの閾値電圧を表している。
 なお、式(20)における、Eins×dinsは、平行平板コンデンサ・モデル(距離dins、電界Eins)における電極間の電位差V=Eins×dinsであることに対応し、図1の場合、ゲート絶縁膜32のチャネル層13側の電位が、ゲート電極23側の電位よりも、V=Eins×dins低いことに対応している。
 図6は、AlGa1-xN/In1-zAlN格子整合系におけるゲート絶縁膜と閾値電圧の関係を示す図である。横軸はゲート絶縁膜の膜厚(nm)、縦軸は閾値電圧である。AlGa1-xNのAl組成x、In1-zAlNのAl組成zについて、(x、z)=(0、0.81)、(0.4、0.89)、(0.8、0.96)の結果が示されている。いずれのケースも、ゲート絶縁膜の膜厚(nm)の増大にほぼ比例して閾値電圧が増大しており、式(20)が確かめられた。
 次に、チャネル層がInGa1-yNの場合の自発分極を起源とする界面電荷は、式(5)、(6)より、次式(21)で与えられる。
SP(InGa1-yN/In1-zAlN)=PSP(InGa1-yN)-PSP(In1-zAlN)
={-0.042y-0.034(1-y)+0.037y(1-y)}
-{-0.090z-0.042(1-z)+0.070z(1-z)}・・・(21)
 したがって、InGa1-yNチャネル層13とIn1-zAlN下部障壁層12界面に発生する電荷密度σは、次式(22)で与えられる。
σ(InGa1-yN/In1-zAlN)=PSP(InGa1-yN/In1-zAlN)+PPZ(InGa1-yN)  ・・・(22)
 図7は、図1において、格子整合するInGa1-yNチャネル層13を用いた場合の、InGaN組成と電荷密度σの関係を示す図である。図7において、横軸はIn組成比y、縦軸は電荷密度(電荷面密度)(cm-2)であり、(22)式の電荷密度σをq(素電荷:1.602×10-19C)で除算した値σ/qの絶対値である。
 In1-zAlN下部障壁層と格子整合するInGa1-yNチャネル層13の組成の組み合わせは、(2)、(3)式より決定することができる。図8は、格子整合するInGa1-yNのyと、In1-zAlNのzの関係を示す図である。図8の横軸はInGa1-yNとIn組成比y、縦軸はAlIn1-zNのAl組成比zである。AlのInGa1-yNと格子整合するzは、0≦z≦0.81の範囲であるが、結晶成長時の揺らぎを考慮し、0≦z≦0.86の範囲であれば、同等の効果が期待できる。
 平衡状態でゲート絶縁膜32に印加される電界Einsは、式(19)と同様にして、次式(23)で与えられる。
ins(InGa1-yN/In1-zAlN)=σ(InGa1-yN/In1-zAlN)/(εε)    ・・・(23)
 閾値電圧は、式(20)と同様にして、次式(24)で与えられる。
 Vth(InGa1-yN/In1-zAlN)=Eins(InGa1-yN/In1-zAlN)dins+Vth0   ・・・(24)
 ここで、Vth0は平衡状態でゲート絶縁膜に電界がかからない構造、すなわち関連技術1として示したような構造における閾値である。
 図9は、InGa1-yN/In1-zAlN格子整合系(チャネル層をInGa1-yN)におけるゲート絶縁膜32の厚さ(横軸)と閾値電圧(縦軸)の関係を示す図である。横軸はゲート絶縁膜の膜厚(nm)、縦軸は閾値電圧(V)である。InGa1-yNのIn組成y、In1-zAlNのAl組成zについて、(y、z)=(0、0.81)、(0.4、0.48)、(0.8、0.15)の結果が示されている。いずれのケースも、ゲート絶縁膜の膜厚(nm)の増大に略比例して閾値電圧が増大しており、式(24)が確かめられた。
 以上、非特許文献1に開示された知見に基づいて、半導体材料の組成設計について述べたが、今後の研究によりさらに高精度に上記の関係式が得られた場合には、新たな知見に基づいて設計を行うことができる。
 また本実施形態では、高信頼性を確保するために、下部障壁層とチャネル層を格子整合する系とすることが望ましいが、結晶成長時の不確実性により、組成比として、例えば0.05程度の揺らぎがあってもほぼ同等の効果を得ることができる。
 上記の電界効果トランジスタは以下のように形成される。
 (0001)面サファイア基板10上に、例えば有機金属気相成長(Metalorganic Chemical Vapor Deposition: 「MOCVD」と略記される)法により、バッファ層11(膜厚:1μm)、格子緩和したInAlNからなる下部障壁層12(膜厚:1μm)、GaNからなるチャネル層13(100nm)、AlGaNからなる電子供給層14(膜厚:30nm)の順に積層する。
 下部障壁層12(InAlN)は、上層のチャネル層13のGaNと格子整合する組成とする。電子供給層14とチャネル層13の界面には、二次元電子層51が発生する。
 次いで、エピタキシャル層の一部を、下部障壁層12が露出するまでエッチングで除去することにより、素子間分離メサを形成する。
 電子供給層14上に、例えばチタン(Ti)/アルミニウム(Al)などの金属を蒸着し、例えば650℃でアニール処理することによってオーム接触を取ったソース電極21およびドレイン電極22を形成する。
 次に、例えばプラズマ気相成長(Plasma-Enhanced Chemical Vapor Deposition:「PECVD」と略記される)法を用いて、保護膜31として例えば膜厚100nmのSiNを成膜する。
 保護膜31の一部をエッチングにより開口し、更に、保護膜31をマスクとして、半導体層のエッチングを行うことにより、リセス41を形成する。リセス41はチャネル層13が露出する深さとする。
 続いて、原子層堆積(Atomic-Layer Deposition:以下、「ALD」と略記される)法により、ゲート絶縁膜32としてAlを10nm成長する。
 次いで、リセス41を形成した領域の上に、例えばNi/Auなどの金属を蒸着してゲート電極23を形成する。このようにして、図1に示した電界効果トランジスタを作製する。
 以上の例では、基板10としてサファイアの例を示したが、SiCあるいはSiを用いても良い。
 保護膜31は、例示したSiNの他、SiO、SiNとSiOの積層構造を用いても良い。
 ゲート絶縁膜32としてはSiNあるいはSiOを用いても良い。
<第二の実施形態>
 図10は、本発明の第二の実施形態の電界効果トランジスタの断面構成を模式的に示す図である。図10に示す電界効果トランジスタは、例えば下記の構成を有している。
 基板10は(0001)面すなわちC面基板であるサファイア基板、
 バッファ層11はGaNあるいはAlGaN、
 下部障壁層12はAlInN、
 チャネル層13はGaNである。
 半導体の最上層であるチャネル層13の上にはソース電極21とドレイン電極22が離間して配置され、オーム性接触が取られている。
 ソース電極21およびドレイン電極22の下部には高濃度のn型領域52があり、オーム性接触の抵抗を下げる構造としている。
 ソース電極21とドレイン電極22の間の半導体表面は保護膜を兼ねたゲート絶縁膜32があり、その上にゲート電極23がある。
 本実施形態は、保護膜としてゲート絶縁膜を用いるため、トラップ密度が低い保護膜-半導体界面を形成することが可能である。
 また、保護膜の加工、半導体のエッチングといった工程を必要としないため、製造工程を簡略化できる利点がある。
 上記では、チャネル層13としてGaNを用いた例を説明したが、第一の実施形態で示した設計手法を用いて、チャネル層としてAlGaNあるいはInGaNを用いた構成としてもよい。
 また基板10としてSiCあるいはSiを用いても良い。
 保護膜31は、例示したSiNの他、SiO、SiNとSiOの積層構造を用いても良い。
 ゲート絶縁膜32としてはSiN、SiOを用いても良い。
 なお、上記の特許文献、非特許文献の各開示を、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素(各請求項の各要素、各実施例の各要素、各図面の各要素等を含む)の多様な組み合わせないし選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。
10、110 基板
11、111 バッファ層
12、112 下部障壁層
13、113 チャネル層
14、114 電子供給層
21、121 ソース電極
22、122 ドレイン電極
23、123 ゲート電極
31、131 保護膜
32、132 ゲート絶縁膜
41、141 リセス
51、151 二次元電子層(2次元電子ガス)
52 n型領域

Claims (8)

  1.  基板と、
     前記基板上に設けられた半導体層と、
     を備え、
     前記半導体層は、
     前記基板上に設けられ、Ga面成長し、格子緩和した組成In1-zAlN(0≦z≦1)を有する下部障壁層と、
     前記下部障壁層上に設けられ、前記下部障壁層と格子整合し、組成AlGa1-xN(0≦x≦1)又はInGa1-yN(0≦y≦1)を有するチャネル層を備え、
     前記半導体層の上部にオーミック接触するソース電極とドレイン電極とが互いに離間して配設されており、
     前記ソース電極と前記ドレイン電極の間の領域に、ゲート絶縁膜を介してゲート電極が配置されている、ことを特徴とする電界効果トランジスタ。
  2.  前記下部障壁層と前記チャネル層の界面に分極に起因する負の面電荷を有する、ことを特徴とする請求項1に記載の電界効果トランジスタ。
  3.  前記ゲート絶縁膜に平衡状態において負の電界が印加されている、ことを特徴とする請求項1又は2に記載の電界効果トランジスタ。
  4.  前記チャネル層の組成がAlGa1-xN(0≦x≦1)であり、
     前記下部障壁層In1-zAlNの組成が0.76≦z≦1の範囲にある、ことを特徴とする請求項1乃至3のいずれか1項に記載の電界効果トランジスタ。
  5.  前記チャネル層の組成がInGa1-yN(0≦y≦1)であり、
     前記下部障壁層In1-zAlNの組成が0≦z≦0.86の範囲にある、ことを特徴とする請求項1乃至3のいずれか1項に記載の電界効果トランジスタ。
  6.  前記半導体層が、
     前記基板の上に設けられ、Ga面成長したGaNを含有するバッファ層と、
     前記バッファ層の上に設けられる、前記下部障壁層、前記チャネル層、及び、電子供給層と、
     を備え、
     前記ソース電極と前記ドレイン電極の間の領域において、前記半導体層表面の保護膜と、前記半導体層の前記電子供給層を貫通し前記チャネル層が露出する深さの開口からなるリセスを備え、
     前記リセスの底面及び内壁を覆う前記ゲート絶縁膜の上に前記ゲート電極を備えた請求項1乃至5のいずれか1項に記載の電界効果トランジスタ。
  7.  前記半導体層が、
     前記基板の上に設けられ、Ga面成長したGaNを含有するバッファ層と、
     前記バッファ層の上に設けられる、前記下部障壁層、及び前記チャネル層と、
     を備え、
     前記チャネル層は、前記ソース電極及び前記ドレイン電極の下部に、高濃度不純物領域を備え、
     前記ソース電極と前記ドレイン電極の間の領域の半導体層表面は、保護膜を兼ねた前記ゲート絶縁膜で覆われる、請求項1乃至5のいずれか1項に記載の電界効果トランジスタ。
  8.  請求項1乃至7のいずれか1項に記載の電界効果トランジスタを1つ又は複数備えた半導体装置。
PCT/JP2012/062360 2011-05-16 2012-05-15 電界効果トランジスタ及び半導体装置 WO2012157625A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013515154A JP5718458B2 (ja) 2011-05-16 2012-05-15 電界効果トランジスタ及び半導体装置
US14/117,763 US8928038B2 (en) 2011-05-16 2012-05-15 Field effect transistor containing a group III nitride semiconductor as main component
US14/550,118 US9231096B2 (en) 2011-05-16 2014-11-21 Semiconductor device and field effect transistor with controllable threshold voltage
US14/947,172 US9530879B2 (en) 2011-05-16 2015-11-20 Semiconductor device and field effect transistor with controllable threshold voltage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011109636 2011-05-16
JP2011-109636 2011-05-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/117,763 A-371-Of-International US8928038B2 (en) 2011-05-16 2012-05-15 Field effect transistor containing a group III nitride semiconductor as main component
US14/550,118 Continuation US9231096B2 (en) 2011-05-16 2014-11-21 Semiconductor device and field effect transistor with controllable threshold voltage

Publications (1)

Publication Number Publication Date
WO2012157625A1 true WO2012157625A1 (ja) 2012-11-22

Family

ID=47176942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062360 WO2012157625A1 (ja) 2011-05-16 2012-05-15 電界効果トランジスタ及び半導体装置

Country Status (4)

Country Link
US (3) US8928038B2 (ja)
JP (2) JP5718458B2 (ja)
TW (2) TWI587512B (ja)
WO (1) WO2012157625A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150255575A1 (en) * 2014-03-06 2015-09-10 Taiwan Semiconductor Manufacturing Co., Ltd. Contacts for transistors
WO2016038859A1 (ja) * 2014-09-08 2016-03-17 株式会社デンソー 半導体装置
JP2016046413A (ja) * 2014-08-25 2016-04-04 ルネサスエレクトロニクス株式会社 半導体装置
JP2017195400A (ja) * 2017-06-20 2017-10-26 ルネサスエレクトロニクス株式会社 半導体装置
US9984884B2 (en) 2013-06-03 2018-05-29 Renesas Electronics Corporation Method of manufacturing semiconductor device with a multi-layered gate dielectric
JP2019134153A (ja) * 2018-01-30 2019-08-08 株式会社東芝 窒化物半導体装置
CN110323275A (zh) * 2018-03-28 2019-10-11 台湾积体电路制造股份有限公司 半导体结构

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI587512B (zh) * 2011-05-16 2017-06-11 Renesas Electronics Corp Field effect transistor and semiconductor device
WO2014057906A1 (ja) 2012-10-11 2014-04-17 ローム株式会社 窒化物半導体装置およびその製造方法
US8884334B2 (en) * 2012-11-09 2014-11-11 Taiwan Semiconductor Manufacturing Co., Ltd. Composite layer stacking for enhancement mode transistor
JP6534791B2 (ja) 2013-12-16 2019-06-26 ルネサスエレクトロニクス株式会社 半導体装置
JP6341679B2 (ja) * 2014-02-06 2018-06-13 ルネサスエレクトロニクス株式会社 半導体装置
JP6270572B2 (ja) * 2014-03-19 2018-01-31 株式会社東芝 半導体装置及びその製造方法
CN106575670B (zh) 2014-09-18 2020-10-16 英特尔公司 用于硅cmos相容半导体器件中的缺陷扩展控制的具有倾斜侧壁刻面的纤锌矿异质外延结构
US10229991B2 (en) 2014-09-25 2019-03-12 Intel Corporation III-N epitaxial device structures on free standing silicon mesas
US10573647B2 (en) 2014-11-18 2020-02-25 Intel Corporation CMOS circuits using n-channel and p-channel gallium nitride transistors
WO2016099509A1 (en) 2014-12-18 2016-06-23 Intel Corporation N-channel gallium nitride transistors
JP6401053B2 (ja) * 2014-12-26 2018-10-03 ルネサスエレクトロニクス株式会社 半導体装置および半導体装置の製造方法
EP3298628A4 (en) * 2015-05-19 2019-05-22 INTEL Corporation SEMICONDUCTOR DEVICES WITH SURFACE-DOPED CRYSTALLINE STRUCTURES
WO2016209283A1 (en) 2015-06-26 2016-12-29 Intel Corporation Heteroepitaxial structures with high temperature stable substrate interface material
JP6582736B2 (ja) * 2015-08-25 2019-10-02 富士電機株式会社 窒化物半導体装置の製造方法
WO2017111869A1 (en) 2015-12-24 2017-06-29 Intel Corporation Transition metal dichalcogenides (tmdcs) over iii-nitride heteroepitaxial layers
CN107331696A (zh) * 2017-06-23 2017-11-07 深圳市晶相技术有限公司 氮化镓半导体器件及其制备方法
TWI637511B (zh) * 2017-09-07 2018-10-01 世界先進積體電路股份有限公司 增強型高電子遷移率電晶體及其形成方法
US11233053B2 (en) 2017-09-29 2022-01-25 Intel Corporation Group III-nitride (III-N) devices with reduced contact resistance and their methods of fabrication
US10068986B1 (en) 2017-10-27 2018-09-04 Vanguard International Semiconductor Corporation Enhanced-mode high electron mobility transistor and method for forming the same
TWI680577B (zh) * 2017-12-12 2019-12-21 晶元光電股份有限公司 半導體元件及其製作方法
DE112017008324T5 (de) 2017-12-27 2020-09-03 Intel Corporation Feldeffekttransistoren und verfahren zum herstellen derselben
JP7065692B2 (ja) * 2018-05-29 2022-05-12 株式会社東芝 半導体装置
JP7446727B2 (ja) 2019-07-04 2024-03-11 株式会社東芝 半導体装置
US11862718B2 (en) * 2020-10-12 2024-01-02 Bae Systems Information And Electronic Systems Integration Inc. III-nitride thermal management based on aluminum nitride substrates
WO2023082058A1 (en) * 2021-11-09 2023-05-19 Innoscience (Suzhou) Technology Co., Ltd. Nitride-based semiconductor device and method for manufacturing thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235473A (ja) * 2003-01-30 2004-08-19 Shin Etsu Handotai Co Ltd 化合物半導体素子及びその製造方法
JP2007258406A (ja) * 2006-03-23 2007-10-04 Nippon Telegr & Teleph Corp <Ntt> 半導体装置
WO2009001888A1 (ja) * 2007-06-27 2008-12-31 Nec Corporation 電界効果トランジスタ、ならびに、該電界効果トランジスタの作製に供される多層エピタキシャル膜
WO2009113612A1 (ja) * 2008-03-12 2009-09-17 日本電気株式会社 半導体装置
JP2011049271A (ja) * 2009-08-26 2011-03-10 Sanken Electric Co Ltd 半導体装置
WO2011118099A1 (ja) * 2010-03-26 2011-09-29 日本電気株式会社 電界効果トランジスタ、電界効果トランジスタの製造方法、および電子装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002052652A1 (fr) * 2000-12-26 2002-07-04 Matsushita Electric Industrial Co., Ltd. Composant a semi-conducteur et son procede de fabrication
WO2003071607A1 (fr) 2002-02-21 2003-08-28 The Furukawa Electric Co., Ltd. Transistor a effet de champ gan
JP3977659B2 (ja) * 2002-02-21 2007-09-19 沖電気工業株式会社 ヘテロ接合電界効果トランジスタ
US7170111B2 (en) * 2004-02-05 2007-01-30 Cree, Inc. Nitride heterojunction transistors having charge-transfer induced energy barriers and methods of fabricating the same
JP2006269534A (ja) * 2005-03-22 2006-10-05 Eudyna Devices Inc 半導体装置及びその製造方法、その半導体装置製造用基板及びその製造方法並びにその半導体成長用基板
JP4282708B2 (ja) 2006-10-20 2009-06-24 株式会社東芝 窒化物系半導体装置
JP5292716B2 (ja) * 2007-03-30 2013-09-18 富士通株式会社 化合物半導体装置
JP5348364B2 (ja) * 2007-08-27 2013-11-20 サンケン電気株式会社 ヘテロ接合型電界効果半導体装置
WO2009066434A1 (ja) * 2007-11-19 2009-05-28 Nec Corporation 電界効果トランジスタおよびその製造方法
WO2009076076A2 (en) 2007-12-10 2009-06-18 Transphorm Inc. Insulated gate e-mode transistors
WO2009081584A1 (ja) 2007-12-26 2009-07-02 Nec Corporation 半導体装置
JP2010050347A (ja) * 2008-08-22 2010-03-04 Oki Electric Ind Co Ltd 半導体装置及びその製造方法
JP2010177416A (ja) 2009-01-29 2010-08-12 Mitsubishi Electric Corp 窒化物半導体装置
US20110147796A1 (en) * 2009-12-17 2011-06-23 Infineon Technologies Austria Ag Semiconductor device with metal carrier and manufacturing method
TWI587512B (zh) * 2011-05-16 2017-06-11 Renesas Electronics Corp Field effect transistor and semiconductor device
JP5127978B1 (ja) * 2011-09-08 2013-01-23 株式会社東芝 窒化物半導体素子、窒化物半導体ウェーハ及び窒化物半導体層の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004235473A (ja) * 2003-01-30 2004-08-19 Shin Etsu Handotai Co Ltd 化合物半導体素子及びその製造方法
JP2007258406A (ja) * 2006-03-23 2007-10-04 Nippon Telegr & Teleph Corp <Ntt> 半導体装置
WO2009001888A1 (ja) * 2007-06-27 2008-12-31 Nec Corporation 電界効果トランジスタ、ならびに、該電界効果トランジスタの作製に供される多層エピタキシャル膜
WO2009113612A1 (ja) * 2008-03-12 2009-09-17 日本電気株式会社 半導体装置
JP2011049271A (ja) * 2009-08-26 2011-03-10 Sanken Electric Co Ltd 半導体装置
WO2011118099A1 (ja) * 2010-03-26 2011-09-29 日本電気株式会社 電界効果トランジスタ、電界効果トランジスタの製造方法、および電子装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9984884B2 (en) 2013-06-03 2018-05-29 Renesas Electronics Corporation Method of manufacturing semiconductor device with a multi-layered gate dielectric
US10410868B2 (en) 2013-06-03 2019-09-10 Renesas Electronics Corporation Semiconductor device and method of manufacturing semiconductor device
US20150255575A1 (en) * 2014-03-06 2015-09-10 Taiwan Semiconductor Manufacturing Co., Ltd. Contacts for transistors
US9412836B2 (en) * 2014-03-06 2016-08-09 Taiwan Semiconductor Manufacturing Co., Ltd. Contacts for transistors
JP2016046413A (ja) * 2014-08-25 2016-04-04 ルネサスエレクトロニクス株式会社 半導体装置
WO2016038859A1 (ja) * 2014-09-08 2016-03-17 株式会社デンソー 半導体装置
JP2017195400A (ja) * 2017-06-20 2017-10-26 ルネサスエレクトロニクス株式会社 半導体装置
JP2019134153A (ja) * 2018-01-30 2019-08-08 株式会社東芝 窒化物半導体装置
CN110323275A (zh) * 2018-03-28 2019-10-11 台湾积体电路制造股份有限公司 半导体结构

Also Published As

Publication number Publication date
TW201308597A (zh) 2013-02-16
US20140084300A1 (en) 2014-03-27
JP5718458B2 (ja) 2015-05-13
TW201631767A (zh) 2016-09-01
TWI587512B (zh) 2017-06-11
US20150076511A1 (en) 2015-03-19
US8928038B2 (en) 2015-01-06
US9231096B2 (en) 2016-01-05
JPWO2012157625A1 (ja) 2014-07-31
TWI544628B (zh) 2016-08-01
JP2015149488A (ja) 2015-08-20
US20160079409A1 (en) 2016-03-17
US9530879B2 (en) 2016-12-27

Similar Documents

Publication Publication Date Title
JP5718458B2 (ja) 電界効果トランジスタ及び半導体装置
JP5348364B2 (ja) ヘテロ接合型電界効果半導体装置
JP5805830B2 (ja) 半導体装置
JP5810293B2 (ja) 窒化物半導体装置
JP6534791B2 (ja) 半導体装置
US8344422B2 (en) Semiconductor device
US8330187B2 (en) GaN-based field effect transistor
EP2575180A2 (en) Compound semiconductor device and method of manufacturing the same
US9978642B2 (en) III-V nitride semiconductor device having reduced contact resistance
US8586992B2 (en) Semiconductor device
JP2010050347A (ja) 半導体装置及びその製造方法
WO2004061978A1 (ja) 電界効果トランジスタ
JP2017073506A (ja) 窒化物半導体装置およびその製造方法
KR20100138871A (ko) 반도체 장치 및 반도체 장치의 제조 방법
JP2009099691A (ja) 電界効果半導体装置の製造方法
JP2017073499A (ja) 窒化物半導体装置およびその製造方法
JP2011210750A (ja) 電界効果トランジスタ、電界効果トランジスタの製造方法、および電子装置
JP5899879B2 (ja) 化合物半導体装置及びその製造方法
JPWO2010064706A1 (ja) 半導体装置
JP5732228B2 (ja) 窒化物半導体装置の製造方法
JP2015159307A (ja) 半導体装置
JP2018174196A (ja) 半導体装置および半導体装置の製造方法
JP2009004421A (ja) 半導体装置
WO2015037288A1 (ja) 高電子移動度トランジスタ及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12785560

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14117763

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013515154

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12785560

Country of ref document: EP

Kind code of ref document: A1